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Abstract. Let X be a projective variety of dimension r. We want
to understand when two birational embeddings of the same variety
are equivalent up to a Cremona transformation of the projective
space, in this case we say that they are Cremona equivalent. It
is proven that two birational embeddings of X in P

n with n ≥

r + 2 are Cremona equivalent. To do this, it is produced a chain
of Cremona transformations that modify the linear systems giving
the two embeddings one into the other. This is done by looking at
the two birational embeddings as different projections of a common
embedding.

On the other hand, if n = r + 1, there are birationally divisors
that are not Cremona equivalent. The case of plane curves is stu-
died in details. Let C be an irreducible and reduced plane curve
of arbitrary genus. It is proven that the curve C is birational to

either a line; either a curve  C, where the log pair
!

P
2, 3

d
 C
"

has
canonical singularities, the log canonical divisor nef and Kodaira

dimension κ = 0; or a curve  C ∼ α C0+β f ⊂ Fa, where the log pair
!

Fa, 2

α
 C
"

has canonical singularities and terminal singularities in a
neighborhood of the exceptional curve C0 ⊂ Fa, the log canonical
divisor nef and Kodaira dimension κ ≤ 1.

Finally, it is used the theory of &–minimal models to under-
stand whether a rational, irreducible and reduced curve is Cremona
equivalent to a line.

Sunto. Sia X una varietá proiettiva di dimensione r. Si vuole capire
quando due immersioni birazionali della stessa varietá sono equiv-
alenti a meno di una trasformazione di Cremona dello spazio proiet-
tivo, in tal caso esse si dicono Cremona equivalenti. Si dimostra che
due immersioni birazionali di X in P

n con n ≥ r + 2 sono Cremona
equivalenti. Per fare ciò, si produce una catena di trasformazioni di
Cremona che modificano l’uno nell’altro i sistemi lineari associati
alle due immersioni.

D’altra parte, se n = r + 1, esistono divisori birazionali che
non sono Cremona equivalenti. Il caso delle curve piane è studiato
in dettaglio. Sia C una curva piana, irriducibile e ridotta di genere
arbitrario. Si dimostra che la curva C è birazionale o ad una retta;

o ad una curva  C, tale che la coppia logaritmica
!

P
2, 3

d
 C
"

ha singo-
larità canoniche, divisore log canonico nef e dimensione di Kodaira

κ = 0; oppure ad una curva  C ∼ α C0 + β f ⊂ Fa, tale che la

coppia logaritmica
!

Fa, 2

α
 C
"

ha singolarità canoniche e singolarità
terminali in un intorno della curva eccezionale C0 ⊂ Fa, divisore
log canonico nef e dimensione di Kodaira κ ≤ 1.

Infine, è stata utilizzata la teoria dei modelli &–minimali per
capire quando una curva razionale, irriducibile e ridotta è Cremona
equivalente ad una retta.
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Introduction

Let us consider a rational projective variety X ⊂ Pn of dimension
r. Then there exists a birational map φ : X 99K Pr. The simplest em-
bedding of Pr, as a projective variety, is the linear one. It is quite na-
tural to ask whether the map φ can be extended to a birational map
Φ : Pn 99K Pn such that Φ(X) is linear. We shall say that in this case
the variety X is Cremona equivalent to a linear space.

This extension property reminds us the Abhyankar-Moh property
(AMP), [AM]. The latter asks about extensions of polynomial embed-
dings in Cn to automorphisms of Cn.

The AMP has been studied extensively and seems granted for high
codimension smooth varieties, for instance by Jelonek in [Je, Je1, Je2],
where, in the case of complex field, a positive answer is given for varieties
of codimension greater than the dimension.

The AMP can be extended to affine varieties over an infinite field, say
k. Then one can ask whether two different embeddings of the same affine
variety are equivalent up to an automorphism of kn. Also in this context,
in [Sr], Srinivas proved that the answer is positive for varieties with
isolated singularities and roughly local dimension half the embedding
dimension.

In this thesis, our aim is to solve a similar question in the context
of birational geometry of projective varieties. We want to understand
when two birational embeddings of the same variety are equivalent up
to a Cremona transformation of the projective space, in this case we say
that they are Cremona equivalent.

The birational nature of the problem suggests that singularities
should not be a main issue. Indeed we are able to treat arbitrarily
irreducible and reduced projective varieties. The main novelty comes
from the range where the answer is positive. It is not difficult to give
examples of rational hypersurfaces that are not Cremona equivalent to a
hyperplane. In general birationally equivalent divisors are not Cremona
equivalent. What is really surprising is that this is the only case. Namely,
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2 INTRODUCTION

we prove that two birational embeddings in Pn of the same projective
variety X of dimension r, over an algebraically closed field, are Cremona
equivalent as long as n ≥ r + 2.

Here is a brief summary of the contents.
In Chapter 1, we give some preliminary notions, that we will fre-

quently use.
The main features of birational geometry of surfaces in the frame-

work of the Mori program are recalled. The Minimal Model Program
(MMP) aims to show that given any n–dimensional complex projective
variety X over an algebraically closed field k with char(k) = 0, we have:

- if κ(X,KX) ≥ 0, then there exists a minimal model, that is a
variety Y birational to X such that KY is nef;

- if κ(X,KX) = −∞, then there is a variety Y birational to X
which admits a Fano fibration, that is a morphism Y → Z
whose fibres F have ample anticanonical class −KF .

We explicitly present the Log Minimal Model Program in dimension
2, which is the logarithmic generalization of the Mori program for a
log pair (S,B), where S is a non–singular projective surface and B is a
boundary divisor.

We then interpret the results of Dicks, [Di], about the study of &–
minimal pairs (S,C) up to birational equivalence, where S is a projective
non–singular surface and C ⊂ S is a reduced curve of arbitrary genus.
Dicks gives a classification of &–minimal models for a pair (S,C) and
some conditions about the uniqueness of these &–minimal models. In
general, a pair (S,C) may have no unique &–minimal model, for example
if S is rational. The ambiguity in this case is given by the action of the
Cremona group.

Finally, we illustrate some Cremona transformations, that is bira-
tional maps T : Pn 99K Pn, for n ≥ 2. In particular, we describe the
standard Cremona transformation of P2, the cubo–cubic Cremona trans-
formation of P3 and we give the construction of the (2, n) Cremona
transformation of Pn.

In Chapter 2, we consider projective varieties X ⊂ Pn of dimension
r ≤ n− 2 as a first step in the understanding of the problem.

In Section 1, we consider a rational, irreducible and reduced curve
C ⊂ Pn, for n ≥ 3. We study whether there exists a birational map
Φ : Pn 99K Pn, n ≥ 3, such that Φ(C) is a line.
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We have already seen that this extension property reminds the
Abhyankar-Moh property (AMP). The very first example solved po-
sitively was the line in C2, [AM]. This, translated in the dictionary of
projective geometry, says that a rational plane curve with a unique sin-
gularity is Cremona equivalent to a line. Note that an arbitrary rational
curve in P2 is not Cremona equivalent to a line. The simplest example
is a general projection of Γ ∼ (1, a) ⊂ Q2 ⊂ P3, for a ≥ 5.

Our results is that this is the unique negative answer.

Theorem 2.1.8. Let n ≥ 3 and C ⊂ Pn be an irreducible and
reduced rational curve. Then C is Cremona equivalent to a line.

Instead of trying to extend the birational map φ we deal with the
problem by a series of birational maps that get C closer and closer to
a line. First we provide a birational resolution of the singularities of C.
Namely a birational map Ω : Pn 99K Pn that resolves the singularities
of C. Here we consider sufficently general birational maps all of whose
fibers are curves. In this way it is harmless to control the image of a
curve and resolve the singularities. Next we single out smooth curves
Cremona equivalent to a line in any degree. This is accomplished with
the same birational maps used in the resolution. Finally we produce a
birational map Θ : Pn 99K Pn between two smooth rational curves of
the same degree. The main point here is to recognize a rational curve of
degree d as a sublinear system of OP1(d). Then the required map can be
interpreted as a way to pass from a subsystem to the other in a finite
number of steps.

In Section 2, we study the equivalent birational embeddings of a
fixed variety. Let X be a projective irreducible and reduced variety and
L a linear system on X. We say that L is a birational embedding (in
Pn) if ϕL : X 99K Pn is birational onto the image.

If L and G are two birational embeddings in Pn of the same variety
X, we say that L is Cremona equivalent to G if there exists a birational
map Φ : Pn 99K Pn such that ϕL = Φ ◦ ϕG′ . We prove the following:

Theorem 2.2.7. Let X be an irreducible and reduced projective
variety of dimension r over an algebraically closed field k. Then two
birational embeddings in Pn are Cremona equivalent as long as n ≥ r+2.

To prove the theorem we apply the same strategy used for curves, i.e.
we produce a chain of Cremona transformations that modify the linear
systems giving the two embeddings one into the other. This is done by
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looking at the two birational embeddings as different projections of a
common embedding.

In Chapter 3, we study the divisorial case. We consider X an ir-
reducible and reduced projective variety of dimension r ≤ 2 over an
algebraically closed field k, with char(k) = 0. We have that two divi-
sorial embeddings are in general not Cremona equivalent. Namely, we
prove the following:

Theorem 3.0.2. Let X be an irreducible and reduced projective
variety with dimX ≤ 2. Then, there exist infinitely many Cremona
inequivalent embeddings of X in P dimX+1.

In Section 1, we shall study log pairs (P2, αC), where C is an ir-
reducible and reduced curve of arbitrary genus. In particular, we shall

apply birational transformations to obtain a log pair (S, α C̃), which is
a model of (P2, αC) with canonical singularities, having the log canoni-

cal divisor KS + α C̃ nef and Kodaira dimension κ(S, α C̃) ≤ 1. In this
way, we can give a classification of such pairs in terms of a birational

equivalence between (P2, αC) and (S, α C̃). We get the following:

Theorem 3.1.4. An irreducible and reduced curve C ⊂ P2 is bira-
tional to one of the following:

a) a line;

b) a curve C̃, where the log pair
(
P2, 3d C̃

)
is a model with canonical

singularities, having the log canonical divisor KP2 + 3
d C̃ ∼ O

nef and κ
(
P2, 3d C̃

)
= 0;

c) a curve C̃ ⊂ Fa, with C̃ ∼ αC0 + β f , where the log pair(
Fa,

2
α C̃

)
is a model with canonical singularities and termi-

nal singularities in a neighborhood of the exceptional curve

C0 ⊂ Fa, having the log canonical divisor KFa +
2
α C̃ nef and

κ
(
Fa,

2
α C̃

)
≤ 1.

In Section 2, we use the results of Dicks to understand whether a
rational, irreducible and reduced curve C ⊂ P2 is Cremona equivalent to
a line. We give a new proof of the following result, which is been already
shown by Kumar–Murthy in [KuMu].

Proposition 3.2.11. Let ν : S → P2 be a minimal resolution of
singularities of the rational curve C and let CS = ν−1∗ (C) be the strict
transform of C. If C2

S ≥ −3, then C is Cremona equivalent to a line.
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The viceversa of the above proposition does not hold. Namely, there
exist rational curve C, which is Cremona equivalent to a line and having
C2
S arbitrarily negative.
In Section 3, we give other results about rational irreducible and

reduced curve C ⊂ P2 in terms of kind and number of singular points
and &–minimal model.

Let C ⊂ P2 be a rational, irreducible and reduced curve of degree
d. Let m1 ≥ m2 ≥ m3 ≥ . . . ≥ mk be the multiplicity of the singular
points of C. We list some particular results:

- Any rational, irreducible and reduced curve C ⊂ P2 of degree
d ≤ 5 is Cremona equivalent to a line, see Remark 3.2.14.

- If C is a rational curve of degree d ≥ 6 such that mi ≤
d
3 , for

any i = 1, . . . , k, then C is not Cremona equivalent to a line,
see Remarks 3.2.7, 3.3.1.

- If C is a rational curve of degree d ≥ 6 such thatm1+m2+m3 ≤
d, then C is not Cremona equivalent to a line, see Lemma 3.3.3.

- If C is a rational curve of degree d ≥ 6 having a singular point
of multiplicity m1 ≥ d− 3, then C is Cremona equivalent to a
line, see Lemma 3.3.8.

- Let C be a rational curve of degree d ≥ 6 such that the pair(
P2, 3dC

)
has ordinary canonical singularities.

Let ν : S → P2 be a minimal resolution of singularities of
C and let CS = ν−1∗ (C) be the strict transform of C. Then, the
pair (S,CS) is &–minimal. Moreover, the pair (S,CS) is the
unique &–minimal model of (P2, C), see Lemma 3.3.9.

In Section 4, we give a table containing models of rational plane
curves of degree 6 ≤ d ≤ 10 with only ordinary singular points, according
to Theorem 3.1.4.

Finally, in Section 5, we consider a rational, irreducible and reduced
surface S ⊂ P3 of low degree and we ask whether whether there exists
a birational map Ψ : P3 99K P3 such that Ψ(S) is a plane. We have the
following result.

Theorem 3.5.11. Let S ⊂ P3 be a rational, irreducible and reduced
cubic surface. Then, there exists a birational map φ : P3 99K P3 such
that φ(S) = H, where H is a plane.





CHAPTER 1

Preliminaries

1. Minimal Model Program in dimension 2

Let S be a nonsingular projective surface over an algebraically closed
field k. Assume that char(k) = 0. We have to introduce some basic
objects on S.

Let Div(S) be the group of Cartier divisors on S and Pic(S) be the
group of line bundles on S. Let Z1(S) be the group of Weil divisors
and let Z1(S) be the group of 1–cycles on S, i.e. the free abelian group
generated, respectively, by prime divisors and reduced irreducible curves.
Finally, let Div(S) ⊗ Q be the group of Q–Cartier divisors on S, that
are linear combinations with rational coefficients of Cartier divisors.

There is a pairing

Pic(S)× Z1(S)→ Z

defined, for an irreducible reduced curve C ⊂ S, by (L,C) → L · C :=
degC(L|C), and extended by linearity.

Two invertible sheaves L1, L2 ∈ Pic(S) are numerically equivalent,
denoted by L1 ≡ L2, if L1 · C = L2 · C, for every curve C ⊂ S. Two 1–
cycles C1, C2 are numerically equivalent, denoted by C1 ≡ C2, if C1 ·L =
C2 · L, for every L ∈ Pic(S). Define

N1(S) := {Pic(S)/ ≡} ⊗Z R; N1(S) := {Z1(S)/ ≡} ⊗Z R.

By definition, N1(S) and N1(S) are dual R–vector spaces and ≡ is the
smallest equivalence relation for which this holds.

For any divisor H ∈ Pic(S), we can view the class of H in N1(S) as
a linear form on N1(S). We will use the following notations:

H≥0 := {x ∈ N1(S) | H · x ≥ 0}; H⊥ := {x ∈ N1(S) | H · x = 0}.

Similarly, we can define H>0, H≤0 and H<0.
Since S is a surface, we have that N1(S) = N1(S), i.e. the algebraic

equivalence of 1–cycles and the numerical equivalence coincide, see [GH,
p. 163].

7



8 1. PRELIMINARIES

Let ρ(S) = dimRN1(S) = dimRN
1(S) the Picard number of S. By

Néron–Severi theorem [GH, p. 461], ρ(S) is a finite number.
We denote by NE(S) ⊂ N1(S) the convex cone generated by effective

1–cycles, i.e.

NE(S) = {C ∈ N1(S) | C =
∑

riCi, with ri ∈ R, ri ≥ 0},

where Ci are irreducible curves. Moreover, we denote by NE(S) the

closure of NE(S) in the real topology of N1(S). NE(S) is called the
Kleiman–Mori cone. For any H ∈ N1(S), we use the notation

NE(S)H≥0 := NE(S) ∩ H≥0. Similarly, we can define NE(S)H>0,

NE(S)H≤0 and NE(S)H<0.

We have the following:

Definition 1.1.1. A line bundle L ∈ N1(S) on S is numerically

eventually free or numerically effective, for short nef, if

L · C ≥ 0, for any curve C ⊂ S,

which is equivalent to saying

L ≥ 0 on NE(S) or L ≥ 0 on NE(S).

There is a criterion for ampleness that play an important role in the
Mori’s theory:

Theorem 1.1.2 (Kleiman’s Criterion for Ampleness, [Kl]). A
line bundle L on S is ample if and only if

L > 0 on NE(S).

Remark 1.1.3. In the criterion above it is crucial to consider the
closure NE(S), since, in general, L > 0 on NE(S) does not imply the
ampleness of L.

Denote by KS the canonical divisor of the surface S, that is KS ∈
Div(X) such that OS(KS) = Ω2S , where ΩS is the sheaf of one–forms on
S.

Definition 1.1.4. An irreducible and reduced curve E on a nonsin-
gular projective surface S is called a (−1)–curve if E ∼= P1 and E2 = −1.
Moreover, an irreducible and reduced curve E on a nonsingular projec-
tive surface S is a (−1)–curve if and only if KS · E < 0 and E2 < 0.



1. MINIMAL MODEL PROGRAM IN DIMENSION 2 9

Now, we present the main features of birational geometry of sur-
faces in the framework of the Mori program. We follow the approach of
Matsuki [Ma, BM].

From the view of the Minimal Model Program (MMP), the so called
Mori’s Program, our strategy to understand the birational geometry of
algebraic surfaces is divided into the following three steps:

MP1. Find a good representative in a fixed birational equivalence
class.

MP2. Study the properties of the good representative.
MP3. Study the birational relation among possibly many choices of

the good representatives.

We describe the main results from which we obtain the description
of the minimal model program in dimension 2:

Theorem 1.1.5 (Castelnuovo’s Contractibility Criterion). Let
S be a nonsingular projective surface, E ⊂ S a (−1)–curve. Then there
exists a morphism called the contraction of E, µ : S → T , onto another
projective surface T such that

i) µ(E) = p, where p ∈ T is a point, and µ : S \ E → T \ {p} is
an isomorphism;

ii) T is nonsingular.

In fact, µ : S → T is the blow up of T in p.

This theorem leads to a crude form of the minimal model program
for algebraic surfaces: in dimension 2, after finding a nonsingular pro-
jective surface in a given birational equivalence class via resolution of
singularities, we can create another in the same birational equivalence
class through the operation of blowing up a point, introducing a (−1)–
curve. Thus, in search of a good representative suggested in MP1, one
has to blow the (−1)–curve down via Castelnuovo’s contractibility cri-
terion.

The key criterion for the crude form of MMP is: is there a (−1)–
curve? This criterion does not provide much global information for an
end result of the program, since we know only that it does not have any
(−1)–curve. One of Mori’s brilliant ideas is to replace this criterion with
the one dictated by the canonical divisor KS of the surface S: is KS

nef ?
The following theorem states that when KS is not nef, there is an

extremal contraction:
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Theorem 1.1.6 (Extremal Contraction). If KS is not nef, then
there exists a morphism φ : S →W called an extremal contraction such
that

i) φ is not an isomorphism;
ii) for a curve C ⊂ S

φ(C) = p ⇒ KS · C < 0;

iii) all the curves contracted by φ are numerically proportional, i.e.

φ(C) = p and φ(D) = p ⇒ [D] = c[C] in H2(S,R) for some c ∈ Q>0;

iv) φ has connected fibers with W normal and projective.

The notion of an extremal contraction turns out not only to genera-
lize Castelnuovo’s contractibility criterion, but also to provide decisive
information on the global structures of the end results of the program.

Moreover, we can give a characterization of an extremal contrac-
tion in terms of the geometry of the convex cone generated by effective
1–cycles in the space of the numerical classes of curves: an extremal
contraction corresponds to an extremal ray of the cone.

What is missing is the characterization of the half–line called an
extremal ray Rl = R+[C] ⊂ NE(S) ⊂ N1(S), which contains the nume-
rical classes of all the curves C contracted by an extremal contraction
φ : S →W . The Cone Theorem and the Contraction Theorem give
the desired characterization. The Cone Theorem describes the extremal
rays purely in terms of convex geometry of the cone NE(S) in regard
to the intersection with the canonical bundle KS , while the Contraction
Theorem guarantees that each of those extremal rays described in the
Cone Theorem is associated to a geometric extremal contraction.

Theorem 1.1.7 (Cone Theorem in dimension 2). Let S be a
nonsingular projective surface. Then the closure of the cone of effective
curves has the description

NE(S) = NE(S)KS≥0
+

∑
Rl,

where
NE(S)KS≥0

:=
{
z ∈ NE(S) : KS · z ≥ 0

}

and the Rl are half–lines such that Rl \ {0} are in NE(S)KS<0
and such

that they are of the form

Rl = NE(S) ∩ L⊥

for some nef line bundles L.
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Moreover, the Rl are discrete in the half–space N1(S)KS<0
.

Theorem 1.1.8 (Contraction Theorem in dimension 2). For
each extremal ray Rl in the half–space N1(S)KS<0

, there exists an ex-
tremal contraction φ = contRl

: S → W , called the contraction of an
extremal ray Rl, such that

φ(C) = p ⇔ [C] ∈ Rl for any curve C ⊂ S.

Conversely, any extremal contraction as characterized in Theorem 1.1.6
is the contraction of an extremal ray.

The Cone Theorem and the Contraction Theorem finally establish the
complete form of the MMP in dimension 2, which provides a good repre-
sentative required in MP1 in the form of a minimal model or a Mori
fiber space as an end result of the program. The Mori’s Program for
S produces either a minimal model or a Mori fiber space as an output,
depending on whether the canonical divisor KS is nef or not. This is
called the “Easy Dichotomy”. We have the following:

Theorem 1.1.9 (Easy Dichotomy Theorem of MMP in di-
mension 2). Let S be a nonsingular projective surface. Then an end
result of MMP starting from S is a Mori fiber space if and only if there
exists a nonempty Zariski open set U ⊂ S such that for any point p ∈ U
there is an irreducible curve D passing through p with KS ·D < 0.

According to MP2, we now try to study the properties of these end
results.

Definition 1.1.10 (Mori Fiber Space in dimension 2). A
nonsingular projective surface S with a morphism φ : S → W is a
Mori fiber space if it is an extremal contraction φ : S → W with
dimW < dimS, or equivalently if

i) φ is a morphism with connected fibers onto a normal projective
variety W of dimW < dimS (i.e. in dimension 2, W is either
a nonsingular projective curve or a point), and

ii) all the curves C in fibers of φ are numerically proportional with
KS · C < 0.

The following feature of Mori fiber spaces turns out to give an im-
portant birational characterization:
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Proposition 1.1.11. Let φ : S → W be a Mori fiber space in
dimension 2. Then

H0(S,OS(mKS)) = 0 ∀ m ∈ N.

That is to say, κ(S) = −∞.

The following is the main structure theorem for Mori fiber spaces in
dimension 2:

Theorem 1.1.12 (Characterization of Mori Fiber Spaces in
dimension 2). Let φ : S → W be a Mori fiber space in dimension 2.
Then one of the following two cases occurs:

1) dimW = 1. In this case, every fiber of φ is isomorphic to P1,
i.e.

φ−1(p) ∼= P1 ∀ p ∈W.

More precisely, φ : S → W is a P1–bundle over a nonsingular
projective curve W in the algebraic category, i.e. for each point
p ∈ W there exists a Zariski open neighborhood p ∈ U ⊂ W
such that we have the following commutative diagram:

φ−1(U)

φ

��

∼ // P1 × U

p2

��
p ∈ U

∼ // U

2) dimW = 0. In this case, S ∼= P2 and φ : S ∼= P2 → W ∼= p,
where p is a point, is the obvious morphism.

We can rephrase the last theorem as the Classification Theorem for
extremal rays in dimension 2:

Theorem 1.1.13 (Classification of Extremal Rays in dimen-
sion 2). Let S be a nonsingular projective surface whose canonical
bundle KS is not nef. Then an extremal ray Rl with Rl \ {0} in the
half–space N1(S)KS<0

is one of the following:

i) Rl = R+[l], where l is a (−1)–curve with KS · l = −1, and
contRl

: S →W is the contraction of the (−1)–curve l;
ii) Rl = R+[l], where l is a fiber with KS · l = −2 of the algebraic

P1–bundle contRl
: S →W over a nonsingular projective curve

W , or
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iii) Rl = R+[l], where l is a line in S ∼= P2 with KS · l = −3
and contRl

: S → W is the structure morphism from P2 to
W = Spec C.

Conversely, any curve as described in i), ii) or iii) spans an extremal ray
Rl = R+[l] with respect to KS , and it has the minimum intersection
with −KS among the curves in its numerical class.

Now, we study minimal models in dimension 2, the other end result of
MMP in dimension 2:

Definition 1.1.14 (Minimal Model in dimension 2). A non-
singular projective surface S is a minimal model if and only if the
canonical bundle KS is nef.

We give the definition of the Kodaira dimension, a fundamental bi-
rational invariant, which plays a crucial role in our analysis:

Definition 1.1.15 (Kodaira Dimension). Let S be a nonsingular
projective variety. The Kodaira dimension κ(S) of S is defined to be

κ(S) = κ(S,KS) := −∞ if H0(S,OS(mKS)) = 0 ∀ m ∈ N,

κ(S) = κ(S,KS) := transdeg.C ⊕m≥0 H
0(S,OS(mKS))− 1

if H0(S,OS(mKS)) 6= 0 for some m ∈ N.

κ(S,D) can be defined similarly for any divisorD on S and for a singular
variety T the Kodaira dimension is defined to be that of its desingula-
rization κ(T ) = κ(S), where ν : S → T is a birational morphism from a
nonsingular projective variety S.

The most important propriety of a minimal model in dimension 2 is
the following:

Theorem 1.1.16 (Existence of an Effective Pluricanonical
Divisor for a Minimal Model in dimension 2). Let S be a minimal
model in dimension 2. Then κ(S) ≥ 0, i.e. H0(S,OS(mKS)) 6= 0, for
some m ∈ N.

The next result is the “Hard Dichotomy” Theorem, that gives the cha-
racterization of minimal models in terms of the Kodaira dimension, in
contrast to the Easy Dichotomy Theorem.

Theorem 1.1.17 (Hard Dichotomy Theorem of MMP in di-
mension 2). Let S be a nonsingular projective surface. Then an end
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result of MMP in dimension 2 starting from S is a minimal model (re-
spectively a Mori fiber space) if and only if κ(S) ≥ 0 (respectively
κ(S) = −∞).

Theorem 1.1.18 (Abundance Theorem in dimension 2). Let
S be a minimal model in dimension 2. Then the pluricanonical linear
system |mKS | is base point free for sufficiently divisible and largem ∈ N.

The Abundance Theorem paves the way to make a fusion between
the minimal model program and the Iitaka fibration Φ|mKS | : S → Scan,
where Scan is the canonical model of S. Moreover, we have that Scan =
Proj R, where R := ⊕m≥0H

0(S,OS(mKS)).

According to MP3, we now try to study the birational relation between
surfaces and we try to discuss the features of the birational relation
among the good representatives, namely minimal models when κ ≥ 0
and Mori fiber spaces when κ = −∞.

First, we factor any given birational map into a composite of blow
ups and blow downs:

Proposition 1.1.19 (Factorization of Birational Maps in di-
mension 2). Let φ : S1 99K S2 be a birational map between two non-
singular projective surfaces. Then there exists a sequence of blow ups
ψ1 : V → S1 followed by a sequence of blow downs ψ2 : V → S2 that
factorizes φ.

Uniqueness of the minimal model in a fixed birational equivalence
class is the special feature of the birational relation among the good
representatives with κ ≥ 0 in dimension 2:

Theorem 1.1.20 (Uniqueness of the Minimal Model in di-
mension 2). There exists an unique minimal model in a fixed birational
equivalence class in dimension 2. More strongly, if φ : S1 99K S2 is a bi-
rational map between two minimal models in dimension 2, then φ is an
isomorphism.

The Castelnuovo–Noether theorem decomposing any birational
map between two birational Mori fiber spaces into a composite of ele-
mentary transformations called “links” is the special feature of the bi-
rational relation among the good representatives with κ = −∞ in di-
mension 2. We describe the classical Castelnuovo–Noether theorem in
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the framework of the Sarkisov program, which has been developed
to give factorization of birational maps among higher–dimensional Mori
fiber spaces.

Theorem 1.1.21 (Castelnuovo–Noether Theorem = Sarki-
sov Program in dimension 2). Let Φ : S 99K S′ be a birational map
between two Mori fiber spaces φ : S →W , φ′ : S′ →W ′ in dimension 2.
Then there exists an algorithm, called Sarkisov Program in dimension
2, to decompose Φ into a composite of the following four of “links”
(elementary transformations):

1) Type I:

F1

~~}}
}}

}}
}}

��

P2

��
pt. P1oo

2) Type II:

Z

~~~~
~~

~~
~~

  B
BB

BB
BB

B

S

��

S1

��
W W1

∼oo

where S → W is a P1–bundle over a nonsingular projective
curve W ; Z → S is a blow up of a point in one ruling; Z → S1
is the contraction of the strict transform of that ruling to ob-
tain another P1–bundle S1 →W1 =W .

3) Type III, the inverse of Type I:

F1

  A
AA

AA
AA

A

��

P2

��
P1 // pt.
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4) Type IV:

P11 × P12

p1
��

= P11 × P12

p2
��

P11

##G
GG

GG
GG

GG
G P12

{{ww
ww

ww
ww

ww

pt.

1.1. Mori Program for algebraic surfaces.

We start to describe the first step MP1 of the Mori’s Program in di-
mension 2.
We take a nonsingular projective surface S by a resolution of singularities
with given function field k algebraically closed. We keep contracting
(−1)–curves until we get either a surface Smin with the canonical divisor
KSmin

being nef or a ruled surface Smori over a curve (or P2 over a point).
Hence, the Mori’s Program for S produces either a minimal model or
a Mori fiber space as an output, depending on whether the canonical
divisor KS is nef or not.

Indeed, if KS is nef, the MMP for S produces a minimal model,
while if KS is not nef, the Cone Theorem and the Contraction Theo-
rem state that there exists φ : S → W the contraction of an extremal
ray. At this point, we have two cases: if dimW = dimS, then the ex-
tremal contraction φ : S → W is the contraction of a (−1)–curve. We
replace S with W and we repeat the Mori’s program for W . While if
dimW < dimS, then the extremal contraction φ : S → W is by defini-
tion a Mori fiber space.

Now, we describe the second step MP2 of the Mori’s Program in di-
mension 2.
The most important property of good representatives is the Hard Di-
chotomy, which asserts that the Kodaira dimension controls the outcome
of MMP: the end result of MMP is either a Mori fiber space or a minimal
model depending on whether κ = −∞ or κ ≥ 0.

For a surface S with κ(S) ≥ 0, the Abundance theorem claims that a
minimal model Smin has a base point free pluri–canonical system, which
induces the canonical morphism Φ|mKSmin

| : Smin → Scan, crucial for the

understanding of the global structure of S and its moduli. This canonical
morphism Φ|mKSmin

| is:
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- a birational map to a canonically polarized surface with only
rational double points, when κ = 2;

- an elliptic fibration, when κ = 1;
- a trivial map to a point, where we know Smin must be either
Abelian, bielliptic, K3 or Enriques, when κ = 0.

For a surface S with κ(S) = −∞, the structure of a Mori fiber space
is rigid and well understood: either a P1–bundle over a nonsingular curve
or P2 over a point. They are of course covered by rational curves.

Finally, we describe the third step MP3 of the Mori’s Program in di-
mension 2.
A minimal model is unique in a fixed birational equivalence class for
surfaces with κ ≥ 0, while any birational map among ruled surfaces in a
given birational equivalence class is decomposed into a sequence of ele-
mentary transformations by Castelnuovo–Noether theorem (i.e. Sarkisov
program in dimension 2).

2. Log Minimal Model Program in dimension 2

In this section we discuss the log birational geometry of surfaces
through the Log Minimal Model Program (Log MMP for short) in
dimension 2.

Definition 1.2.1 (Logarithmic Pair). A logarithmic pair (also
called a log pair for short) (S,B) is a pair consisting of a projective sur-
face S and a boundary Q–divisor B =

∑
biBi with rational coefficients

0 ≤ bi ≤ 1.

Definition 1.2.2 (Logarithmic Canonical Bundle). Let S be
a nonsingular projective surface and B a boundary divisor with only
normal crossing. The sheaf of logarithmic 2–forms

Ω2X(logB)
∼= OS(KS +B)

is a line bundle called the logarithmic canonical bundle for the log
pair (S,B). We call KS + B the logarithmic canonical divisor (or
log canonical divisor for short) of the log pair (S,B).

Working with the logarithmic category has the following three great ad-
vantages:

i) Iitaka’s Philosophy: it allows us to deal with open surfaces U by
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considering logarithmic pairs (S,B) (called log pairs for short), con-
sisting of the compactifications S of U and the boundaries B = S \ U ,
which we choose to be of pure codimension one and hence called the
boundary divisor. Iitaka’s philosophy states that a theory or theorem
about complete surfaces S dictated by the canonical divisor KS should
find its counterpart in the logarithmic category as a theory or theorem
about log pairs (S,B) dictated by the log canonical divisor KS + B
and viceversa.

ii) Generalized Adjunction: the log canonical divisor KS + B of a
log pair (S,B) naturally restricts to the log canonical divisor on the
boundary through the generalized adjunction formula

KS +B|B = KB +Diff
S
B.

It may give an inductional structure to the scheme of arguments when
one tries to prove a property of the log canonical divisor KS +B, if the
property propagates through the adjunction to the log canonical divisor
of the boundary KB +Diff

S
B.

In the presence of singularities on S, the usual adjunction formula
KS +B|B = KB needs a correction term Diff

S
B called different to

hold as above, see [Co]. Thus the logarithmic category provides a more
natural stage for the generalized adjunction to work.

iii) Logarithmic Ramification Formula: as we have the ramification
formula for a morphism between (smooth) surfaces f : S′ → S

KS′ = f∗KS +R,

we have a similar ramification formula called the logarithmic ramification

formula for a morphism between logarithmic pairs (smooth with only
normal crossings) f : (S′, BS′)→ (S,BS)

KS′ +BS′ = f∗(KS +BS) +Rlog.

The logarithmic ramification formula behaves more naturally than the
usual one under some circumstances.

Finally, we have the following definitions about singularities of a
logarithmic pair, see [KoMo]:

Definition 1.2.3. Let (X,B) be a pair, where X is a normal va-
riety and B =

∑
biBi is a sum of distinct prime divisors with rational

coefficients 0 ≤ bi ≤ 1. Assume that the log canonical divisor KX + B
is Q–Cartier, i.e. there exists m ∈ N such that m(KX +B) is a Cartier
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divisor. Suppose f : Y → X is a birational morphism from a normal
variety Y . Let E ⊂ Y denote the exceptional locus of f and Ei ⊂ E the
irreducible exceptional divisors. Let

f−1∗ B :=
∑

bif
−1
∗ Bi

denote the birational transform of B. The two line bundles

OY (m(KY + f−1∗ B))|Y−E and f∗OX(m(KX +B))|Y−E

are naturally isomorphic. Thus there are rational numbers a(Ei, X,B)
such that m · a(Ei, X,B) are integers and

OY (m(KY + f−1∗ B)) ∼= f∗OX(m(KX +B))(
∑

i

(m · a(Ei, X,B))Ei).

By definition a(Bi, X,B) = −bi and a(D,X,B) = 0 for any divisor D ⊂
X which is different from the Bi. a(E,X,B) is called the discrepancy of
E with respect to (X,B).

Using numerical equivalence, we can write

KY + f−1∗ B ≡ f∗(KX +B) +
∑

Ei exceptional

a(Ei, X,B)Ei,

or

KY ≡ f∗(KX +B) +
∑

Ei arbitrary

a(Ei, X,B)Ei.

The discrepancy of (X,B) is given by

discrep(X,B) := inf
E
{a(E,X,B) : E is an exceptional divisor over X}.

That is, E runs through all the irreducible exceptional divisors of all
birational morphisms f : Y → X.

Definition 1.2.4 (Terminal and Canonical Singularities). Let
(X,B) be a pair, whereX is a normal variety and B =

∑
biBi is a sum of

distinct prime divisors with rational coefficients 0 ≤ bi ≤ 1. Assume that
the log canonical divisor KX +B is Q–Cartier. We say that (X,B) has
terminal (respectively canonical) singularities, or we say that the log
pair (X,B) is terminal (respectively canonical), by abuse of language, if

discrep(X,B) > 0 (respectively discrep(X,B) ≥ 0).
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2.1. Log Birational Geometry of Surfaces. The logarithmic
generalization of the Mori program in dimension 2 goes along the main
strategies MP1, MP2 and MP3.

MP1. We take a logarithmic pair (S,B) having only terminal singu-
larities, where S is a nonsingular projective surface and B =

∑
biBi is

a boundary Q–divisor with only normal crossing and rational coefficients
0 ≤ bi ≤ 1.

Thanks to the log Cone Theorem and the log Contraction Theorem,
if there exists a curve that intersects the log canonical divisor KS + B
negatively, then either this curve generates a log Mori fiber space or it
is contracted.

In the end of this process, we obtain either a log Mori fiber
space (Smori, Bmori) or a log minimal model (Smin, Bmin) such that
KSmin

+Bmin is nef. For details, see [Ma, chapter 2, p. 118].

MP2. Again the most important property is the “Hard Dichotomy”,
which asserts that the logarithmic Kodaira dimension controls the out-
come of log MMP: the outcome of log MMP is either a log Mori fiber
space or a log minimal model depending on whether κ(KS +B) = −∞
or κ(KS +B) ≥ 0.

We can prove the Hard Dichotomy theorem of log MMP in dimension
2 thanks to the existence of an effective pluri–log canonical divisor of a
log minimal model in dimension 2. Indeed, we have that if (Smin, Bmin)
is a log minimal model in dimension 2, then κ(KSmin

+Bmin) ≥ 0.
Once κ(KSmin

+Bmin) ≥ 0 for a log minimal model (Smin, Bmin) has
been established, we obtain the log Abundance theorem for log minimal
models in dimension 2, which claims that (Smin, Bmin) has a base point
free pluri–log canonical system.

On the other hand, for a log pair (S,B) with κ(KS + B) = −∞,
we have that a log Mori fiber space (Smori, Bmori) is covered by rational
curves intersecting KSmori

+Bmori negatively.

MP3. In the genuine birational geometry, we are interested in the rela-
tion among good representatives in a given birational equivalence class,
where two good representatives are outcomes of one appropriate nonsin-
gular projective variety through MMP if and only if they are birationally
equivalent. When we deal with the log pairs and the relation among good
representatives obtained through log MMP, the mere notion of birational
equivalence does not work well and one is naturally led to the notion of
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the log MMP relation: we say two or more good representatives are log
MMP–related if and only if they are outcomes through log MMP of
one appropriate log pair consisting of a nonsingular projective surface
and a boundary divisor with only normal crossing.

Then, the Uniqueness of the log minimal model in dimension 2 and
the log Sarkisov program in dimension 2 hold, replacing the notion of
“birational” with that of “log MMP–related”.

2.2. Conclusion about log pairs. Let (S,B) be a log pair con-
sisting of a normal surface S and a boundary Q–divisor B =

∑
biBi

with only normal crossing and rational coefficients 0 ≤ bi ≤ 1.
To (S,B) we can associated:

- a log resolution (S̃, B̃), where there exists a proper morphism

f : S̃ → S from a smooth surface S̃ such that the union of
the support of f−1∗ B and of the exceptional locus is a normal
crossing divisor.

- a log minimal model (Smin, Bmin), where the pair (Smin, Bmin)
has terminal singularities and KSmin

+Bmin is nef. We have that
the log minimal model is unique in a fixed log MMP–related
class.

- a log canonical model Proj(R(S,B)), with R(S,B) =⊕
mH

0(m(KS + B)), where the pair (S,B) has canonical sin-
gularities and KS +B is ample. We have that Proj(R(S,B)) is
a point if and only if κ(KS +B) = 0, Proj(R(S,B)) is a curve
if and only if κ(KS + B) = 1 and Proj(R(S,B)) is a surface if
and only if κ(KS +B) = 2.

- a model with canonical singularities (S,B), where the pair
(S,B) has canonical singularities and KS +B is nef.

Remark 1.2.5. Let (S,
∑
biBi) be a log pair with canonical sin-

gularities. If KS + B is ample, we have that, for any ε > 0, the pair
(S,

∑
(bi − ε)Bi) is a log minimal model.

3. The &–Minimal Model

In this section we present the results of Dicks in [Di] about the study
of &–minimal pairs (S,C) or S&C, up to birational equivalence, where S
is a projective, nonsingular surface and C is a reduced curve of arbitrary
genus on S.

Dicks gives a classification of &–minimal model for a pair (S,C), see
[Di, Theorem 3.1] and gives some conditions about the uniqueness of
&–minimal model, see [Di, Proposition 2.2, Theorem 2.3]. In general, a
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pair (S,C) or S&C may have no unique &–minimal model, for example
if S is rational. The ambiguity in this case is given by the action of the
Cremona group.

3.1. Existence and uniqueness of &–minimal model. In the
following, we collect the main definitions and theorems of Dicks [Di] we
are going to use afterwards.

Definition 1.3.1. A projective, non singular surface S with an
irreducible curve C ⊂ S is called a pair and denoted (S,C) or S&C.

Definition 1.3.2. Let C be a smooth curve and E a rank 2 vector
bundle over C; the projective bundle PC(E) is called P1–bundle.

Definition 1.3.3. Let KS be the canonical bundle on a surface
S. In analogy with Definition 1.1.4, a curve l is called (−n)–curve if
l2 = −n and KS · l = −2 + n.

Definition 1.3.4. A pair (S,C) is &-minimal if C is non singular
and for every (−1)–curve l ⊂ S with l 6= C, we have l · C ≥ 2.

Definition 1.3.5. Two pairs (S,C) and (S′, C ′) are birationally
equivalent if there is a birational map f : S 99K S′ such that f (respec-
tively f−1) is an isomorphism at the generic point of C (respectively
C’).

Definition 1.3.6. An &-minimal pair (S0, C0) is an &-minimal
model for (S,C) if (S,C) is birationally equivalent to (S0, C0).

Given a pair (S,C), it is always possible to find a birationally equi-
valent pair (S′, C ′) which is &–minimal: we blow up to make C a non-
singular curve C ′′ and then contract (−1)–curves l with l 6= C ′′ and
l · C ′′ ≤ 1.
We have the following theorem [Di, Theorem 3.1], which gives a classi-
fication of &-minimal models based on Mori theory:

Theorem 1.3.7 ([Di]. Classification of &–minimal model). Sup-
pose (S,C) is &-minimal. Then one of the following holds:

1) S ∼= P2 and C is a line or a conic;
2) S is a P1–bundle (i.e. S = PC(E), where E is a rank 2 vector

bundle over the smooth curve C) and C is a fibre or a section;
3) C is a (−1)–curve;
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4) C ∼= P1, C2 ≤ −4 and KS + (1 + 2
C2 )C is nef;

5) C ∼= P1, C2 = −2 or− 3 and KS is nef;
6) KS + C is nef.

Now, we consider the question of when an &–minimal pair can be
birational to, but not isomorphic to, an another &–minimal pair. The
following proposition [Di, Proposition 2.2] gives some conditions under
which a pair can be known to have an unique &–minimal model.

Proposition 1.3.8 ([Di]). Suppose that (S0, C0) is a pair and
f : (S0, C0) → (S,C) is a morphism such that f

|C0
: C0 → C is an

isomorphism; suppose that

KS + λC is nef for some λ ∈ Q, with 0 ≤ λ < 1.

Then (S,C) is the unique &–minimal model of (S0, C0).

This proposition prove that the &–minimal model is unique in a large
number of cases. Moreover, this proposition forms a large part of the
proof of the following theorem [Di, Theorem 2.3] about the uniqueness
of the &–minimal model. This theorem is essentially a list of all &–
minimal pairs which are not unique in their birational class.

Theorem 1.3.9 ([Di]. Uniqueness of &–minimal model). Let (S,C)
be an &–minimal pair which is not one of the following:

1) S ∼= P2 and C is a line, a conic or a cubic;
2) S is a P1–bundle and C is a fibre or a section;
3) S is a P1–bundle and C · f = 2 for a fiber f .

Let (S0, C0) be a birationally equivalent pair. Then (S0, C0) is&–minimal
if and only if the two pairs are isomorphic.

4. Cremona Transformations

A birational map T : Pn 99K Pn is called a Cremona transformation.
It is given by a n–dimensional linear system L ⊂ |OPn(d)| for some
d ≥ 1. A choice of a basis gives an explicit formula:

T : (x0, . . . , xn) 7→ (P0(x0, . . . , xn), . . . , Pn(x0, . . . , xn)),

where Pi(x0, . . . , xn) are homogeneous polynomials of degree d. A linear
system defining a Cremona transformation is called a homaloidal linear

system. Let

BL =
⋂

D∈L

D
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be the base locus of L or T , considered as a closed subscheme of Pn. By
cancelling the polynomials Pi’s by the common divisor, we assume that
BL has no divisorial components. Let π : X → Pn be the blow-up of the
subscheme BT . There is a morphism f : X → Pn such that f = T ◦ π
as rational maps, i.e. the following diagram is commutative

X
π

~~||
||

||
|| f

  B
BB

BB
BB

B

Pn
T // Pn

In fact, let L = P(V ), where V ⊂ H0(Pn,OPn(d)), and let I be the ideal
sheaf defining BL. Then there is a canonical surjection of sheaves

OPn ⊗ V → I ⊗OPn(d).

This defines a surjection of the symmetric Algebras

Sym(OPn(−d)⊗ V )→ Sym(I)

and hence a closed embedding

X →֒ Proj(Sym(OPn(−d)⊗ V )) ∼= Pn × P(V )∗.

The composition with the second projection is our map f . It follows
from this that

f∗OPn(1) = π∗OPn(d)⊗OX(−E),

where the image of π∗I inOX is the ideal sheafOX(−E) of some effective
divisor E on X (the exceptional divisor of π). Since f is birational,
f∗OX = OPn , and hence by the projection formula

f∗f
∗OPn(1) ∼= OPn(1)⊗ f∗OX ∼= OPn(1).

This implies that

H0(X, f∗OPn(1)) ∼= H0(X, f∗f
∗OPn(1)) ∼= H0(Pn,OPn(1)).

This shows that the morphism f is given by the complete linear system

|f∗OPn(1)| = |π∗OPn(d)⊗OX(−E)|.

The map T is birational if and only if f is a birational morphism. Assume
X is nonsingular. This can be achieved by composing π with resolution
of singularities. Let H be a hyperplane in Pn so that OPn(1) = OPn(H).
Then T is birational if and only if

f∗(H)n = (π∗(dH)− E)n = 1,

see [Do, chapter 7, pp. 153–154].
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4.1. Cremona Transformations of the plane.
Quadratic Cremona Transformations. Let T : P2 99K P2 be

a rational map of P2 to itself given by polynomials of degree 2, i.e.
T (t0, t1, t2) = (T0, T1, T2) = (P0(t0, t1, t2), P1(t0, t1, t2), P2(t0, t1, t2)),
where Pi ∈ C[t0, t1, t2]2, for i = 1, 2, 3. The pre-image of a line
V (a0T0 + a1T1 + a2T2) is the conic V (a0P0 + a1P1 + a2P2). The pre-
image of a general point is equal to the intersection of the pre-images
of two general lines, thus the intersection of two conics from the net L
of conics spanned by P0, P1, P2. If we want T to define a birational map
we need the intersection of two general conics to be equal to 1. This
can be achieved if all conics pass through the same set of three points
p1, p2, p3 (base points). These points must be non-collinear, otherwise all
polynomials have a common factor, after dividing, we get a projective
transformation. Birational automorphisms of P2 (Cremona transforma-

tions) which are obtained by nets of conics through three non-collinear
points are called quadratic transformations. If we choose a basis in P2

such that p1 = (1, 0, 0), p2 = (0, 1, 0), p3 = (0, 0, 1) and a basis in L
given by the conics V (T1T2), V (T0T2), V (T0T1), then the transforma-
tion is given by the formula

T : (x0, x1, x2) 7→ (x1x2, x0x2, x0x1).

This is called the standard Cremona transformation. For details, see [Do,
chapter 4, p. 84] and [SR, pp. 45–48].

The birational geometry of the plane. We have the following
theorem:

Theorem 1.4.1 (Noether–Castelnuovo). The group of bira-
tional transformations of the projective plane is generated by linear
transformations and the standard Cremona transformation, that is

(x0 : x1 : x2) 7→ (x1 x2 : x0 x2 : x0 x1),

where (x0 : x1 : x2) are the coordinates of P2.

Proof. See [AnMe, pp. 60–64]. �

In the study of plane curves will be fundamental another class of
transformations between rational surfaces:

Definition 1.4.2 (Elementary transformations). Let
π : X → C be a smooth ruled surface, see [Ha, chapter V, section
2, p. 369]. Let p be a point of X and let f be the fibre of π containing
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p. Let ε : X̃ → X be the blow up of the point p. Then the strict trans-

form f̃ of f on X̃ is isomorphic to P1 and f̃2 = −1. By Castelnuovo

Theorem, see [Ha, Theorem 5.7, p. 414], we can blow down f̃ . In other

words, there is a morphism µ : X̃ → X ′ sending f̃ to a point q and
such that µ is the blow up of the point q. If f ′ = µ(E), then f ′ ∼= P1

and f ′2 = 0. Moreover, the rational map π′ : X ′ → C obtained from
π on X \ f ∼= X ′ \ f ′ is a morphism, hence π′ : X ′ → C is another
smooth ruled surface. Indeed, the fibres of π′ are all isomorphic to P1

and, since π has a section, its strict transform on X ′ will be a section of
π′. This new ruled surface is called the elementary transformation
of X with center p.

By abuse of language, we call elementary transformation with center
p, the birational map elmp : X 99K X ′, where elmp = µ ◦ ε−1.

Let ω : P2 99K P2 be a birational map, which is not an isomorphism.
To study the map ω, we start by factorizing it into simpler birational
maps, called elementary links, between Mori spaces. We recall that these
maps will be either the blow up of a point in P2 or an elementary trans-
formation of a rational ruled surface.

Consider H = ω−1∗ O(−1) the strict transform of lines in P2; then H
is without fixed components and H ⊂ |O(d)|, for some d > 1. We have
the following:

Theorem 1.4.3. Let H ⊂ |O(d)| be as above and let H ∈ H
be its general elements. Then the log pair (P2, 3dH) has not canonical

singularities. In particular, there is a point x ∈ P2 such that

multxH >
d

3
.

Proof. See [AnMe, pp. 60–63]. �

We can generalize the above theorem using the following way (see
[Co1]). Let π : X 99K S and ϕ : Y 99K W be two Mori fiber spaces of
dimension ≤ 3. Let ω : X 99K Y be a birational non–biregular map. Let
HY be a very ample linear system on Y and H = ω−1∗ HY . Let H ∈ H
be a general element. By definition of a Mori fiber space, there exists
µ ∈ Q such that KX + 1

µH ≡π 0. We obtain the following:

Theorem 1.4.4 (Noether–Fano inequalities). In the above no-
tation, in particular for ω non–biregular and KX + 1

µH ≡π 0, either

(X, 1µH) has not canonical singularities or KX + 1
µH is not nef.
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We can interpret a standard Cremona transformation in terms of
elementary links:

Remark 1.4.5. A standard Cremona transformation is given by the
following links:

F1

~~}}
}}

}}
}

// F0 // F1

  A
AA

AA
AA

P2 P2

Conversely, any map of type

F1

~~}}
}}

}}
}

// Fa // F1

  A
AA

AA
AA

P2 P2

can be factorized into Cremona transformations.
We note that, since a Cremona transformation is given by conics

through 3 not collinear points, the last link above is possible only for
a = 0, 2. Links of this kind represent birational maps given by conics
with either 3 base point or 2 base point plus a tangent direction.

4.2. Cremona transformations of space. LetW1,W2 be projec-
tive varieties such that Wi ≃ P3, for i = 1, 2. We present the Cremona
transformation T :W1 99K W2. We follow the approach of [SR, chapter
VIII, section 4]. These transformations classify linear systems of surfaces
into classes of birationally equivalent system. An interesting application
of these transformations is, for example, the resolution of singularities
of space curves and surfaces.

If T is a Cremona transformation of W1 ≃ P3 into W2 ≃ P3, then
T is defined by a 3–dimensional homaloidal linear system of surfaces
Φ ⊂ |OW1

(d)|, for some d ≥ 1. Moreover, T−1 is defined by a 3–di-
mensional homaloidal linear system of surfaces Ψ ⊂ |OW2

(d′)|, for some
d′ ≥ 1.

Let D ∈ Φ be a general surface, we have that D is a rational sur-
face and D = T ∗Π′, for some plane Π′ ⊂ W2. Similarly, the general
D′ ∈ Ψ is a rational smooth surface and D′ = (T−1)

∗
Π, for some plane

Π ⊂ W1. Using the notations of [SR], a Φ–surface is a general sur-
face D ∈ Φ and a Ψ–surface is a general surface D′ ∈ Ψ. Moreover, a
Φ–curve is a rational curve C such that C = T ∗l′, for some line l′ ⊂W2

and a Ψ–curve is a rational curve C ′ such that C = (T−1)
∗
l, for some

line l ⊂W1.
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Then we have the following:

Theorem 1.4.6 ([SR]). In any space Cremona transformation with
generating systems Φ, Ψ, the degree of Φ–surfaces is equal to that of Ψ–
curves, and the degree of Ψ–surfaces is equal to that of Φ–curves.

Hence, when Φ has been chosen, the degrees of the Ψ–surfaces and
Ψ–curves are determined; our knowledge of the base elements of Ψ de-
rives from the fundamental surfaces and curves of Φ associated to the
base locus of Ψ. In particular, we have that:

- to any fundamental surface A of Φ there corresponds a base
point O of Ψ; if Φ1 is the system of surfaces residual to A in
Φ (representing planes through O in W2), then the multiplicity
of O for Ψ is equal to the difference between the degree of the
Φ–curves and Φ1–curves.

- To any simply infinite family of fundamental curves L of degree
λ of Φ there corresponds a λ–fold base curve of Ψ; the degree
of this curve is equal to the number of curves L which lies on
a generic Φ–surface.

Moreover, any Ψ–surface is represented on a plane Π of W1 by means of
the system of curves in which Π is met by Φ–surfaces.

At this point, we describe a method (due to Cremona) for the con-
struction of a homaloidal linear system Φ inW1. We note that the generic
(rational) surface D of a homaloidal web is met by the other surfaces of
the web in a homaloidal net of curves to which correspond, in the plane
representation of D, the curves of a plane homaloidal net.

We choose a rational surface Dd
0 that is a generic Φ–surface. In the

plane Π in which D0 is birationally represented, we construct the system
of curves |L| which represent the free curves of intersection of D0 with
surfaces of degree d having the same multiple points and curves as D0.
Then we reduce |L| to a homaloidal net |L∗| by imposing fixed compo-
nents A∗ and base points O∗i on |L|. A linear system Φ which meets D0

in the homaloidal net of curves corresponding to |L∗| is formed by the
surfaces of degree d, having the same multiple points and curves as D0,
which have further simple base curves A on D0, corresponding to A

∗ on
Π, and base points or base contacts at points Oi of D0 corresponding to
O∗i . Since D0 is supposedly a generic member of the system, it follows
that Φ is a homaloidal web.

Finally, we recall that Cremona transformation of W1 ≃ P3 may
also be generated by direct geometrical construction or by representing
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a rational threefold in two different ways, e.g. by two different projection,
on space W1 and W2.

Now, we give the description and the construction of two Cremona
space transformations that are useful in the next arguments.

1) Description of the cubo–cubic Cremona transformation.

Let W1, W2 be projective varieties such that Wi ≃ P3, for i = 1, 2 and
let C ⊂ P3 be a general smooth curve of degree 6 and genus 3.

Let |IC(3)| ⊂ |OW1
(3)| be the linear system of cubic surfaces in

W1 ≃ P3 containing C, then, by [Ve], we have that |IC(3)| is homaloidal
and defines a Cremona transformation cubo–cubic φ :W1 99K W2, with
base locus C.

Let Sec3(C) ⊂ W1 be the variety of trisecant lines to C, then, by
[Ve], we have that Sec3(C) is a surface and that Sing(Sec3(C)) = C,
because two distinct trisecant lines to C do not meet in W1 \ C.

Let p ∈ C be a point and consider a Cremona transformation cubo–
cubic φ :W1 99K W2, with base locus a general curve C. We can describe
φ in two principal steps:

1) Blowing ups of the curve C and of the point p.
Let ε : Y = BlCW1 →W1 be the blow up of the curve C in W1 ≃ P3

and EC its exceptional divisor. Let EY = ε∗−1(Sec3(C)) and Fp =
ε∗−1(p) denote, respectively, the strict transforms in Y of the surface
Sec3(C) and of the point p. We have that EY = P(NC/P3) is a ruled
surface over a curve of genus 3, whose fibers are the strict transforms
of trisecant lines to C and, moreover, that Fp = P(NC/P3,p) is a fibre.

Let µ1 : Z1 = BlpW1 →W1 be the blow up of the point p inW1 ≃ P3

and Ep ≃ P2 its exceptional divisor. Let C1 = µ1
∗
−1(C) denote the

strict transform in Z1 of C. Since C is a smooth curve, then C1∩Ep =
{q}, where q is a point.
Let µ2 : Z2 = BlC1

Z1 → Z1 be the blow up of the curve C1 in Z1
and EC1

its exceptional divisor. Let E′p = µ2
∗
−1(Ep) denote the strict

transform in Z2 of Ep, then we have that E
′
p ≃ F1.

Now we consider the contraction of E′p and we have a bira-
tional morphism contE′p : Z2 → Y such that contE′p(EC1

) = EC
and contE′p(E

′
p) = Fp.

2) Contraction of trisecant lines to the curve C.
Let ν : Y → W2 be the contraction of trisecant lines to C. We have
that ν(EY ) = C ′, where C ′ is a curve of degree 6 and genus 3, and
that ν(EC) = Sec3(C

′), where Sec3(C
′) is the surface of trisecant

lines to the curve C ′.
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Note that, if we consider ε′ : Y ′ = BlC′W2 → W2 the blow up of
the curve C ′ in W2 ≃ P3 such that EC′ is its exceptional divisor and
EY ′ = ε′∗−1(Sec3(C

′)) is the strict transform of the surface Sec3(C
′),

and if we consider ν ′ : Y ′ → W1 the contraction of trisecant lines to
C ′, then we obtain that ν ′(EY ′) = C and ν ′(EC′) = Sec3(C).

2) Construction of a T(2,n) Cremona transformation. We want
to construct a birational map ψn : Pn 99K Pn, which is a (2, n) Cremona
transformation of [SR].

We consider Λn = |OPn(2) ⊗ IL ⊗ Ix1
⊗ . . . ⊗ Ixn | the linear sy-

stem of quadric surfaces in Pn containing a (n − 2)–dimensional linear
space L and n points x1, . . . , xn in general position. It is immediate that
dimΛn = n+ 1.
By considering a rational normal curve passing through x1, . . . , xn and
(n− 1)–secant to L, we obtain the birationality of ψn.

To understand better ψn, let us factor it as follows.
Let ε : BlLPn = X0 → Pn be the blow up of the linear space L in Pn.
Then X0 has a natural embedding in P2n of degree n+1. Therefore, X0

is a minimal degree variety in P2n.
To obtain the map ψn, we have now to simply project X0 from the

n points x1, . . . , xn.
Consider the projection πxk

: Xk−1 ⊂ P2n−k+1 99K Xk ⊂ P2n−k.
Clearly, Xk ⊂ P2n−k is a minimal degree variety and, in particular,
Xn−1 is quadric in Pn+1.

X0 = BlLPn

ε

yyrrrrrrrrrr

// . . . . . . // Xn−2

πxn−1 // Xn−1 = Qn

πxn

��
Pn

ψn // Pn

The variety Xk is a cone over P1 × Pn−k and πxk
projects the (strict

transform of) hyperplane Hxk
=< L, xk > from the point xk. Let Lxk

=
πxk

(Hxk
), then Lxk

is a linear space of dimension n− 2.
Let Sk−1 be the (strict transform of) linear space spanned by

< x1, . . . , xk >, then ψn(S
k−1) is a linear space of dimension k − 2.

Note that ψn|Sk−1 is given by the linear system |Λk−1 ⊗ Ixk
|. In par-

ticular, the fibers of ψn|Sk−1 are rational normal curves of degree k − 1

passing through x1, . . . , xk and (k − 1)–secant to L.
This description can be interpreted as a chain of elementary trans-

formations of vector bundles. In this way, it gives a factorization of ψn
in the Sarkisov category.
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Remark 1.4.7. The “fibers” of ψn are lines either passing through
xk and meeting L in a point, for k = 1, . . . , n, or rational normal curves
of degree n− 1 passing through x1, . . . , xn and (n− 1)–secant to L.





CHAPTER 2

Projective varieties of codimension at least 2

Let us consider a rational projective variety X ⊂ Pn of dimension
r. Then there exists a birational map φ : X 99K Pr. The simplest em-
bedding of Pr, as a projective variety, is the linear one. It is quite na-
tural to ask whether the map φ can be extended to a birational map
Φ : Pn 99K Pn such that Φ(X) is linear. We shall say that in this case
the variety X is Cremona equivalent, see Definition 2.2.3, to a linear
space.

This extension property reminds us the Abhyankar-Moh property
(AMP), [AM]. The latter asks about extensions of polynomial embed-
dings in Cn to automorphisms of Cn. More precisely, let A be an alge-
braic subset of Cn. We say that A has the AMP if for any polynomial
embedding f : A → Cn there exists a polynomial automorphism F of
Cn such that f is a restriction of this automorphism to the set A. In
particular, the affine set A ⊂ Cn has the AMP if and only if for any
two epimorphisms f1, f2 : C[x1, . . . , xn] → C[A] there exists an auto-
morphism F : C[x1, . . . , xn] → C[x1, . . . , xn] such that the following
diagram commutes:

C[x1, . . . , xn]

f1 &&MMMMMMMMMM

F // C[x1, . . . , xn]

f2xxqqqqqqqqqq

C[A]

The AMP has been studied extensively and seems granted for high
codimension smooth varieties, see for instance [Je, Theorems 1.1,1.2].
More precisely, Jelonek proves the followings:

Theorem 2.0.1 ([Je], Theorem 2.1). Let ϕ : Ck × 0 → Cn be a
birational isomorphism onto its image and n ≥ 2k + 1. There exists a
birational isomorphism Φ : Cn → Cn such that res

Ck×0
Φ = ϕ.

33
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Theorem 2.0.2 ([Je], Theorem 2.2). Let A ⊂ Cn be an algebraic
variety of dimension k. Let ϕ : A → Cn be a rational embedding. If
n ≥ 2k + 2, then there exists a birational isomorphism Φ : Cn → Cn

such that res
A
Φ = ϕ.

Hence, in the case of complex field, a positive answer is given for
varieties of codimension greater than the dimension.

The AMP can be extended to affine varieties over an infinite field, say
k. Then one can ask whether two different embeddings of the same affine
variety are equivalent up to an automorphism of kn. Also in this context
the answer is positive for varieties with isolated singularities and roughly
local dimension half the embedding dimension, see [Sr, Theorems 1,2].
The result (stated in algebraic language) of Srinivas is:

Theorem 2.0.3 ([Sr], Theorems 1,2). Let A be a finitely gene-
rated algebra over an infinite field k. Let m = dimSA(Ω

1
A|k) and r =

sup{m, 2 dimA + 1}. Then A is generated as k–algebra by r elements.
Moreover, suppose that f : k[x1, . . . , xn]→ A, g : k[x1, . . . , xn]→ A are
two surjections of k–algebras, with n > r. Then there is an elementary
k–algebra automorphism ϕ : k[x1, . . . , xn] → k[x1, . . . , xn] such that
f = g ◦ ϕ.

Our aim is to solve a similar question in the context of birational
geometry of projective varieties. We want to understand when two bira-
tional embeddings of the same variety are equivalent up to a Cremona
transformation of the projective space, in this case we say that they are
Cremona equivalent, see Section 2.

Remark 2.0.4. From Theorem 2.0.3 follows that two different em-
beddings in kn of A, where A is an affine variety of dimension 1 with
only isolated singularities, are equivalent up to an automorphism of kn,
if n ≥ 4.

In Section 1, we consider a rational, irreducible and reduced curve
C ⊂ Pn, for n ≥ 3. Then there exists a birational map
φ : C 99K P1. We study whether the map φ can be extended to a
birational map Φ : Pn 99K Pn, n ≥ 3, such that Φ(C) is a line. We shall
say that in this case the curve C is Cremona equivalent to a line. Indeed,
we state the following:
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Definition 2.0.5. An irreducible reduce rational curve C ⊂ Pn is
Cremona equivalent to a line if there exists a birational map
Ψ : Pn 99K Pn such that Ψ(C) is a line. More generally we say that
C is Cremona equivalent to a curve Y if there exists a birational map
Ψ : Pn 99K Pn such that Ψ(C) = Y .

We have already seen above that this extension property reminds
us the Abhyankar-Moh property (AMP). The very first example solved
positively was the line in C2, [AM]. This, translated in the dictionary of
projective geometry, says that a rational plane curve with a unique sin-
gularity is Cremona equivalent to a line. Note that an arbitrary rational
curve in P2 is not Cremona equivalent to a line. The simplest example
is a general projection of Γ ∼ (1, a) ⊂ Q2 ⊂ P3, for a ≥ 5 (see Chapter
3).

The main result of Section 1 is that this is the unique negative an-
swer.

1. Rational curves of Pn

Let consider a rational irreducible reduced curve C ⊂ Pn, with
n ≥ 3. In this Section, we study whether there exists a birational map
Φ : Pn 99K Pn, n ≥ 3, such that Φ(C) is a line. We shall say that in this
case the curve C is Cremona equivalent to a line, see Definition 2.0.5.

1.1. Birational maps. We work over the complex field. Note that
we need an algebraically closed field k with char(k) = 0 only for Defini-
tion 2.1.4.

Definition 2.1.1. Let L ⊂ Pn be a linear space of dimension l. We
will indicate with πL : Pn 99K Pn−l−1 the projection from L.

We start by describing the birational maps that will be used in this
section.

The map ψn[L, x1, . . . , xn].
The map ψn[L, x1, . . . , xn] : Pn 99K Pn is the classical Cremona transfor-
mation T(2,n) of [SR]. For more details, see the description of birational
map ψn in Section 4 of Chapter 1.

From now on we fix a smooth rational curve C of degree d in Pn, n ≥ 3,
and r = max{d, n}.



36 2. PROJECTIVE VARIETIES OF CODIMENSION AT LEAST 2

Definition 2.1.2. The standard rational normal curve Nr of degree
r in Pr = (xr+1 = . . . = x2r−d = 0) ⊆ P2r−d is the rational curve defined
by the minors of order 2 of the following 2× r matrix

(
x0 x1 x2 . . . xr−1
x1 x2 x3 . . . xr

)
.

Definition 2.1.3. The curve C ⊂ Pn is the L-projection of W , if
there exists a curve W ⊂ PN and a linear space L ⊂ PN such that

- ♯{L ∩W} = degW − degC
- πL(W ) = C.

The map χnC .

LetW ⊂ P2r−d be a smooth, linearly normal, rational curve of degree
r and L ⊂ P2r−d a linear space. Assume that C is the L-projection of
W .

Let ω : P2r−d → P2r−d be a projectivity such that ω(W ) = Nr. Let
ω(L) = L′ and C ′ the L′-projection of Nr. Note that degC = degC ′

and C ′ is a smooth rational curve.
For 2r− d = 3 we simply define χnC = ω. For 2r− d > 3 the map χnC

is given as follows.

W,Sk ⊂ P2r−d

 πp

��

ω // P2r−d ⊃ S′k, Nr

 πp′

��
C ⊂ Pn

χn
C // Pn ⊃ C ′

Let N = Pn ⊂ P2r−d such that L ∩ N = ∅ and < L,N >= P2r−d.
Let M = Pn+1 satisfying the following conditions: N ⊂ M ⊂ P2r−d

and L ∩ M = p. Let L̃ ⊂ L such that < L̃, p >= L. Then we can
factorize the projection πL : P2r−d 99K Pn = N into the two projection
π
!L
: P2r−d 99K M = Pn+1 and πp : Pn+1 = M 99K N = Pn. By

applying ω we obtain analogous linear spaces and maps in the target

P2r−d. Let C̃ = π
!L
(W ) ⊂ M = Pn+1. Then πp(C̃) = (πp ◦ π

!L
)(W ) =

πL(W ) = C. If C̃ ′ = ω(C̃) and if p′ = ω(p), then π
!L′
(Nr) = C̃ ′ and

πp′(C̃
′) = (πp′ ◦ π

!L′
)(Nr) = πL(Nr) = C ′.

Consider now a hypersurface Sk ⊂ M = Pn+1 such that C̃ ⊂ Sk,
multp(Sk) = k − 1 and p is not a vertex of Sk. If k >> 0 such a hy-
persurface exists. The rational map π̃p = πp|Sk

: Sk 99K Pn is birational
as the map π̃p′ = πp′|S′

k
: S′k 99K Pn, where S′k = ω(Sk) ⊂ M ′ = ω(M).
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Consider the Cremona transformation χnC : Pn 99K Pn defined as χnC =
π̃p′ ◦ ω|Sk

◦ π̃−1p . Then

χnC(C) = (π̃p′◦ω|Sk
◦π̃−1p )(C) = (π̃p′◦ω|Sk

)(C̃) = π̃p′(C̃
′) = πp′(C̃

′) = C ′.

It is clear that χnC is not defined uniquely by n and C, but we choose
this name to simplify the notation. This construction shows that any
smooth rational curve is Cremona equivalent to an L-projection of the
“standard” rational normal curve Nr, for some r.

The map ϕnr [L1, L2].
Let L1, L2 be linear spaces in P2r−d with

- dimL1 = dimL2 = 2r − d− n− 1;
- dimL1 ∩ L2 = 2r − d− n− 2;
- ♯{L1 ∩ L2 ∩Nr} = max{r − d− 1, 0}.

Let P = L1 ∩ L2, then dimP ≥ ♯{P ∩Nr} − 1.
Consider πP : P2r−d 99K Pn+1 and let

- πP (Nr) = Yd+1, where we assume that Yd+1 is smooth;
- πP (L1) = p1;
- πP (L2) = p2.

The map ϕnr [L1, L2] is given as follows:

P2r−d

πP

��
Pn+1

πp1

{{

πp2

##
Pn

ϕn
r [L1,L2] // Pn

Fix S ⊂ Pn+1 an irreducible and reduced hypersurface of degree k
such that S ⊃ Yd+1 and p1, p2 ∈ Yd+1 are points of multiplicity k− 1 for
S.

Claim. For k >> 0 such a hypersurface exists.

Proof. The curve Yd+1 is a smooth rational curve of degree d + 1,
the structure sequence reads

0 −→ IYd+1
(k) −→ OPn+1(k) −→ OP1(k(d+ 1)) −→ 0.

Taking cohomology we get

0 −→ H0(IYd+1
(k)) −→ H0(OPn+1(k)) −→ H0(OP1(k(d+ 1))) . . . .
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Since dimH0(OP1(k(d + 1))) = k(d + 1) + 1, then the codimension of
H0(IYd+1

(k)) in H0(OPn+1(k)) is at most linear in k.

On the other hand, we can write a hypersurface of degree k in Pn+1

with two points of multiplicity k − 1 as x0F + x1F
′ = 0, where F, F ′ ∈

C[x2, . . . , xn+1]k−1 are homogenous polynomials of degree k − 1 in the
n variables x2, . . . , xn+1. Hence, the space of such hypersurfaces has

dimension at least 2
(
(k−1)+(n−1)

n−1

)
, which is a polynomial of degree n− 1

in the variable k.
For k >> 0 this proves the claim. �

Let S ⊂ Pn+1 be the hypersurface of degree k with two points p1, p2 ∈ S
of multiplicity k − 1, then both the projections from p1 and from p2
are birational maps S 99K Pn. We chose S such that S ⊃ Yd+1. Let
πp1 : Pn+1 99K Pn and πp2 : Pn+1 99K Pn the projections of Yd+1 from
p1, p2, and πp1(Yd+1) = C, πp2(Yd+1) = C ′.

Then, we define ϕnr [L1, L2] = πp2 |S ◦ (πp1 |S)
−1, in particular

ϕnr [L1, L2](C) = C ′.
In the following, we use the above birational maps to desingularize curves
in Pn and to show that any rational curve is Cremona equivalent to a
line. For this purpose we introduce the following definition:

Definition 2.1.4. Let X be an irreducible and reduced curve in
Pn. For a point p ∈ X define

dX(p) := min{number of blowing ups of points to resolve p}.

Note that dX(p) is a well–defined and finite number.

Let d(X) =
∑

x∈X

dX(x). Now, we prove the following:

Proposition 2.1.5. Let X be a singular, irreducible and reduced
curve in Pn. Then there exists a birational map µ : Pn 99K Pn such that
d(µ(X)) < d(X).

Proof. Let x1 ∈ X be a point such that dX(x1) ≥ 1. Let x2, . . . , xn
be general points in Pn and L a general (n−2)–dimensional linear space
in Pn.

Let ψ := ψn[L, x1, . . . , xn]. From the description given in Defini-
tion 2.1.4 and for the generality of our choices, it is immediate that
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dψ(X)(ψ(x)) = dX(x), for any x ∈ X \ {x1} and
∑

ψ(yi)=x1

dψ(X)(yi) = dX(x1)− 1.

Then d(ψ(X)) < d(X). �

Corollary 2.1.6. Let X ⊂ Pn be a curve and n ≥ 3. Then X is
Cremona equivalent to a smooth curve in Pn.

We have the following:

Proposition 2.1.7. There exists at least one smooth rational curve
X ⊂ Pn of degree d, for all d ≥ 1, which is Cremona equivalent to a line.

Proof. We prove the proposition by induction on d.
Initial case: d ≤ 2. This result is immediate.
Induction step. Assume that the proposition is true for all d ≤ k.
Let Xk+1 ⊂ Pn be a rational curve of degree k + 1. Assume that k + 1
is even. Let X ⊂ Pn be a smooth rational curve of degree k+1

2 Cremona
equivalent to a line. Let x1, . . . , xn be general points in Pn, L a general
(n− 2)–dimensional linear space in Pn and ψ := ψn[L, x1, . . . , xn]. Then
ψ(X) is the curve we were looking for. To conclude the case k+1 is odd,
it is enough to consider X of degree k+2

2 , x2, . . . , xn ∈ Pn general and
x1 ∈ X general. �

Now, we can prove the following important result:

Theorem 2.1.8. Let Z ⊂ Pn be a rational curve, n ≥ 3. Then
there exist a birational map Φ : Pn 99K Pn such that Φ(Z) is a line.

Proof. Let Z ⊂ Pn be a rational curve of degree d. By corollary
2.1.6, we can assume Z is smooth.

By proposition 2.1.7, there exists at least a smooth rational curve
Z ′ ⊂ Pn of degree d Cremona equivalent to a line. Let r = max{d, n}.
The curves Y = χnZ(Z) and Y

′ = χnZ′(Z
′) are projections of Nr ⊂ P2r−d

from linear spaces L, L′ respectively. Consider a chain of linear spaces
L0 = L, . . . , Lt = L′ such that dim(Li ∩ Li+1) = 2r − d − n − 2 and
♯{Li ∩ Li+1 ∩ Nr} = max{0, r − d − 1}. The existence of such a chain
is immediate when r = d and L ∩ Nr = ∅. In the remaining case by
construction Li ∩ Nr = r − d and Nr has not Pk (k + 2)-secant. In
particular Li ∩ Nr is in general position with respect to linear spaces.
It is therefore possible to move the intersection L0 ∩ Nr to Lt ∩ Nr
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one point at a time. Let Yi = ϕnr [Li, Li+1](Yi−1) and Y0 = Y . Note
that Yt = Y ′ = χnZ′(Z

′) is Cremona equivalent to a line, therefore we
conclude. �

2. Equivalent birational embeddings

In this Section, leaning on the ideas of the previous one, we want
to understand when two birational embeddings of the same variety are
equivalent up to a Cremona transformation of the projective space, in
this case we say that they are Cremona equivalent. In this generaliza-
tion, we work over an algebraically closed field k, but we do not need
char(k) = 0, that is because we do not use the Hironaka’s resolution of
singularities.

Let X be a projective irreducible and reduced variety over an alge-
braically closed field k and L a linear system on X. Assume that L is
generated by {L0, . . . , Ln}. Then the map ϕL : X 99K P(L∗) is given by
evaluating the sections of Li at the points of X.

Definition 2.2.1. We say that (X,L), or simply L, is a birational
embedding (in Pn) if ϕL : X 99K Pn is birational onto the image. We say
that ϕL = ϕM, for two birational embeddings, if there exists a dense
open subset U ⊂ X where ϕL and ϕM are both defined and have equal
restriction.

Remark 2.2.2. Note that given a birational embedding L in Pn we
can consider it also an embedding into Pn+h by adding h-times the zero
section to get

L′ = {L0, . . . , Ln, 0, . . . , 0}

In all that follows we apply, mainly without mention, this construction
to compare birational embeddings into different projective spaces.

We are interested in studying birational embeddings of a fixed variety
X. We therefore identify L with OϕL(X)(1) via (ϕL)

−1
∗ (OPn(1)).

Let D ⊂ X be a divisor and consider the linear system LD =
{DL0, . . . , DLn}. Then we have ϕL = ϕLD

. In what follows we iden-
tify L and LD.

We extend Definition 2.0.5 to the following:

Definition 2.2.3. Let L in Pn and G = {G0, . . . , Gr} in Pr be two
birational embeddings, assume that n ≥ r and let

G′ = {G0, . . . , Gr, 0, . . . , 0},
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obtained by adding (n − r)-times the zero section. We say that L is
Cremona equivalent to G, or simply equivalent, if there exists a birational
map Φ : Pn 99K Pn such that

ϕL = Φ ◦ ϕG′

Such a Φ is called a (Cremona) equivalence between L and G.

Remark 2.2.4. The relation introduced is an equivalence relation
on the birational linear systems of a fixed variety. We never ask the
linear system neither to be complete nor to be minimally generated by
the Li’s.

The equivalence Φ has to be defined on the general point of ϕG′(X).

Let L and G be two linear systems on X. Then we have the following
commutative diagram

PN

πG

''

πL

ww
Pn XϕL

oo
ϕG

//

ϕL+G

OO

Pn

where L+ G = {LiGj}, with i, j = 0, . . . , n, and

πL ◦ ϕL+G = ϕLG0
πG ◦ ϕL+G = ϕGL0

In other terms L and G are linear spaces spanned, respectively by
{GjLi}, with j = 1, . . . , n, i = 0, . . . , n, and {GjLi} with i = 1, . . . , n,
j = 0, . . . , n.

This diagram allows us to look at two different embeddings as pro-
jections from a common one.

Remark 2.2.5. The projections πL, πG in the above diagram play
the role of the two projections of rational normal curve Nr ⊂ P2r−d from
the linear spaces L,L′ in the proof of Theorem 2.1.8.

A natural way to construct a birational self-map of Pn is to consider
a hypersurface of degree k in Pn+1 with two points of multiplicity exactly
k−1. Then the projections from the singular points build up the required
self-map. The following Lemma allow us to use this trick in a wide
contest.

Lemma 2.2.6. Let Y ⊂ Pn+1 be an irreducible reduced variety and
q1, q2 two points in Pn+1. Let CYi be the cone over Y with vertex qi.
Assume that dimY ≤ n− 2, h0(IY (1)) 6= 0 and CYi 6⊂ Bs |IY (1)|. Then



42 2. PROJECTIVE VARIETIES OF CODIMENSION AT LEAST 2

for k ≫ 0 there exists an irreducible reduced hypersurface S ∈ |IY (k)|
with:

- multqi S = k − 1, for i = 1, 2,
- S 6⊃ CYi.

Proof. Let l = 〈q1, q2〉 be the line spanned by the qi’s and consider
the projections

πq1 : Pn+1 99K Pn, πq2 : Pn+1 99K Pn, πl : Pn+1 99K Pn−1

Let Ỹ = πl(Y ), Yi = πqi(Y ) be varieties. Then we have the following
diagram

Y ⊂ Pn+1

πq1

xx

πq2

&&
πl

��

Y1 ⊂ Pn

&&

Pn ⊃ Y2

xx

Ỹ ⊂ Pn−1

Let us consider D = (d = 0) ⊂ Pn−1 a hypersurface of degree δ with

Ỹ ⊂ D. Let H = (h = 0) ∈ |IY (1)| be a general hyperplane. Define

S = (dg1 + hg2 = 0) ⊂ Pn+1

where:

g1 is general of degree k − δ and multiplicity k − δ − 1 at pi;
g2 is general with multqi hg2 = k − 1.

It is easy to check that S satisfies all the requirements. �

We are ready to prove our main result about Cremona equivalent
birational embeddings.

Theorem 2.2.7. Let X be an irreducible and reduced projective
variety of dimension r over an algebraically closed field k. Then two
birational embeddings in Pn are Cremona equivalent as long as n ≥ r+2.

Proof. Let X be an irreducible reduced projective variety. Let L and
G be two birational embeddings in Pn. Keep in mind that they are both
projections of L+ G and

L = LG0
= {L0G0, . . . , LnG0}, G = GL0

= {L0G0, . . . , L0Gn}.
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We want to construct a sequence of Cremona equivalent linear systems
{Ai}, for i = 0, . . . n, with

- A0 = LG0
= {L0G0, . . . , LnG0};

- Ai = {L0G0, . . . , L0Gi, A
i
i+1, . . . , A

i
n}, for some A

i
j ∈ |L + G|,

j = i+1, . . . , n;
- An = GL0

= {L0G0, . . . , L0Gn}.

To prove the theorem we give a recipe that builds Ai+1 from Ai. Let
Hi = {Ai, L0Gi+1} be a linear system and ϕHi

: X → P(H∗i ) = Pn+1

the associated embedding. Then we have Xi = ϕAi
(X) ⊂ (xn+1 = 0) ⊂

Pn+1. Let Z ⊂ Pn+1 be the cone over Xi with vertex q1 = [0, . . . , 0, 1]
and Yi := Z ∩H a general hyperplane section of Z. Then we have

πq1(Yi) = Xi

and Yi birational to X. Let q2 ∈ (x0 = . . . = xi = xn+1 = 0) be a general
point. In particular q2 6∈ H hence the projection πq2|Yi

is birational onto
the image. Let Xi+1 := πq2(Yi), then Xi+1 is birational to X and we
define Ai+1 := OXi+1

(1), keep in mind Remark 2.2.2. The choice of q2
gives

Ai+1 = {L0G0, . . . , L0Gi+1, A
i+1
i+2, . . . , A

i+1
n }

for some elements Ai+1j ∈ |L+ G|.
This reads in the following diagram

Yi ⊂ Pn+1

πq1

ww

πq2

((
ϕAi

(X) ⊂ Pn Pn ⊃ ϕAi+1
(X)

By construction h0(IYi
(1)) 6= 0 and Bs |IYi

(1)| 6∋ qi, for i = 1, 2. By
hypothesis we have dimY ≤ n − 2, then by Lemma 2.2.6 there exists
an irreducible hypersurface S ∈ |IYi

(k)| with multqi S = k − 1 and not
containing the cones over Yi with vertex both q1 and q2. In particular

πq1|S and πq2|S

are birational maps to Pn and π−1q1|S , π
−1
q2|S

are defined on the general

point of ϕAi
(X), ϕAi+1

(X) respectively. Define the map Φi : Pn 99K Pn

as follows

Φi = πq2|S ◦ π
−1
q1|S

By construction Φi is an equivalence between Ai and Ai+1. �

We want to stress some by-products of the main Theorem 2.2.7.
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Corollary 2.2.8. Let X ⊂ Pn be a subvariety of codimension at
least 2.

If X is rational then it is Cremona equivalent to a linear space.
If X is birational to a smooth subvariety of Pn. Then it is possible

to resolve the singularities of X with a Cremona transformation.
The Cremona group of Pn contains Bir(X), the group of birational

transformations of X.

We like to look at the Theorem 2.2.7 as a way to say that the Cre-
mona group of Pn is really huge.



CHAPTER 3

Divisorial embeddings

In Chapter 2, we have shown that two birational embeddings in Pn

of the same irreducible, reduced, projective variety X of dimension r are
Cremona equivalent as long as n ≥ r + 2, see Theorem 2.2.7.

In this Chapter, we want to understand whether two divisorial bira-
tional embeddings are Cremona equivalent.

In the following, we work over an algebraically closed field k, with
char (k) = 0.

If we consider a rational variety, it is not difficult to give examples of
rational hypersurfaces that are not Cremona equivalent to a hyperplane:
let C ⊂ P2 be a rational curve with only ordinary double points. If
degC ≥ 6 then C is never Cremona equivalent to a line (see Sections
2, 3 for the precise statement). It is easy to produce such curves by
projecting a divisor of type (1, a) in a smooth quadric. One can construct
similar examples in arbitrary dimension. Hence, in general, birationally
equivalent divisors are not Cremona equivalent.

The argument of Noether–Fano inequalities gives us a way to explici-
tly state that that two divisorial embeddings are in general not Cremona
equivalent. Indeed, we have the following:

Lemma 3.0.1. Let X be an irreducible and reduced projective
variety of dimension n − 1. Let L and G be two birational embeddings
in Pn such that degϕL(X) = d and degϕG(X) = d′, where d′ < d. If L
and G are Cremona equivalent, then the pair

(
Pn, n+1d ϕL(X)

)
has not

canonical singularities, see Definition 1.2.4.

Proof. Let ϕL(X) = Y and ϕG(X) = Y ′. Then Y, Y ′ ⊂ Pn are
hypersurfaces of degree d, d′ respectively, with d′ < d. Since L and G are
two Cremona equivalent birational embeddings in Pn, hence there exists
a birational map Φ : Pn 99K Pn such that Φ(Y ) = Y ′.

Consider the following resolution of Φ:

45
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Z
p

{{wwwwwwwww
q

$$H
HHHHHHHH

Y ⊂ Pn
Φ // Pn ⊃ Y ′

then we have:

OZ ∼ p∗
(
O
(
KPn +

n+ 1

d
Y
))

= KZ +
n+ 1

d
YZ −

∑
aiEi

and

q∗
(
O
(
KPn +

n+ 1

d
Y ′

))
= KZ +

n+ 1

d
YZ −

∑
biFi

where Ei, respectively Fi, are p, respectively q, exceptional divisors. Let
l ⊂ Pn be a general line in the right hand side Pn. Since d′ < d, we get

0 > q−1l ·
(
q∗

(
O
(
KPn +

n+ 1

d
Y ′

))
+

∑
biFi

)
= (

∑
aiEi) · q

−1l.

This proves that at least one ai < 0, then the singularities of the pair(
Pn, n+1d Y

)
are not canonical. �

With Lemma 3.0.1, we can easily shown the following:

Theorem 3.0.2. Let X be an irreducible and reduced projective
variety with dimX ≤ 2. Then, there exist infinitely many Cremona
inequivalent embeddings of X in P dimX+1.

Proof. Assume dimX = 2.
Let A1, A2 be two very ample divisors on X of degrees di = degAi ≥ 12,
for i = 1, 2, with d1 6= d2. Then X can be embedded in P(|Ai|) as a
surface Xi of degree di, for i = 1, 2. We consider the generic projection
πi : P(|Ai|) 99K P3 such that πi(Xi) = Yi, for i = 1, 2. We have that Yi is
an irreducible and reduced surface in P3 of degree di and, by a classical
result, if p ∈ Sing Yi, then multp Yi ≤ 3, for i = 1, 2.

Therefore, we have obtained two birational embeddings L and G
of X in P3 such that ϕL(X) = Y1 and ϕG(X) = Y2. Since di ≥ 12

and multp Yi ≤ 3, for i = 1, 2, we have that the pairs
(
P3, 4d1Y1

)

and
(
P3, 4d2Y2

)
have canonical singularities. Finally, since d1 6= d2, by

Lemma 3.0.1, the birational embeddings L and G cannot be Cremona
equivalent.

The case of curves can be treated equivalently. �

Remark 3.0.3. Using results of Mather [M1, M2, M3], we can
generalized Theorem 3.0.2 with dimX ≤ 14.
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1. Curves of P2 of arbitrary genus

Let C ⊂ P2 be a curve. We shall study log pairs (P2, αC). In par-
ticular, we shall apply birational transformations to obtain a log pair

(S, α C̃), which is a model of (P2, αC) with canonical singularities, hav-

ing the log canonical divisor KS + α C̃ nef and Kodaira dimension

κ(S, α C̃) ≤ 1. In this way, we can give a classification of such pairs

in terms of a birational equivalence between (P2, αC) and (S, α C̃).
A classical problems of birational geometry of plane curves is to give

some birational classifications of them in terms of birational invariants.
For example, in [Ii], Iitaka study the non–singular, relatively minimal
models of the pairs (S,C), where C is a curve on the surface S. Note
that, the notion of relatively minimal model of Iitaka is equivalent to the
notion of &–minimal model of Dicks in [Di], see Section 2. Moreover,
Iitaka gives some birational characterization of pairs (P2, C) in terms of
birational invariants.

Let C ⊂ P2 be an irreducible and reduced curve of genus g and
degree d. In the following, we denote mi = multpi

C the multiplicities
of singular points (including infinitely near singular points) of C, for
i = 1, . . . , k, such that m1 ≥ m2 ≥ m3 ≥ . . . ≥ mk ≥ 2. Using the
notations of Iitaka, we have the following:

Definition 3.1.1 ([Ii]). A curve C ⊂ P2 is said to be a curve of type

[d;m1, . . . ,mk], where d is the degree of C and the multiplicities of all the
singular points (including infinitely near singular points) arem1, . . . ,mk,
where m1 ≥ m2 ≥ m3 ≥ . . . ≥ mk ≥ 2. Whenever m1 = m2 = · · · = mf ,

the symbol [d;mf
1 ,mf+1, . . . ,mk]. If C is a smooth curve of degree d, C

is said to be of type [d; 1].

Notation 3.1.2. It is well known that given a rational surface
S, after contracting all exceptional curves on S successively, we have
relatively minimal models of S, that are the projective plane P2 or P1×P1

or a P1–bundle over P1 with a section C0 of negative self–intersection
number. The last surface is denoted by a symbol Fa, where C

2
0 = −a.

In particular, F0 denotes the product surface P1×P1. The Picard group
of Fa, for a ≥ 0, is generated by the section C0 and a fiber f of the
P1–bundle.

Let C̃ be an irreducible curve on Fa. Then there exist integers α and

β such that C̃ ∼ αC0 + β f .
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We have that C̃ ·f = α and C̃ ·C0 = −aα+β. Suppose that C̃ 6= C0,

then C̃ ·C0 ≥ 0, hence β ≥ aα. If a > 0, we have that C2
0 = −a < 0 and

such a section C0 is uniquely determined. If a = 0, we denote C0, f by
F1, F2 respectively, where Fi is the fiber of the projection πi : F0 → P1,
for i = 1, 2. We can assume that β ≥ α. Thus α and β are uniquely

determined for a given curve C̃ on Fa.

Let p ∈ C̃ ⊂ Fa be a point such that multp C̃ = m. Consider
µ : Fa 99K Fa±1 an elementary transformation with center p. In the

following, we denote by C̃ again the strict transform of C̃ with respect
to µ. We have two cases.

- If p ∈ C0 ⊂ Fa, then we obtain an elementary transformation

µ : Fa 99K Fa+1, where C̃ ∼ αC0 + (β + α − m)f ⊂ Fa+1.

The map µ introduces a new point q ∈ C̃ ⊂ Fa+1 such that

q /∈ C0 ⊂ Fa+1 and multq C̃ = α−m.
- If p /∈ C0 ⊂ Fa, then we obtain an elementary transformation

µ : Fa 99K Fa−1, where C̃ ∼ αC0+(β−m)f ⊂ Fa−1. The map µ

introduces a new point q ∈ C̃ ⊂ Fa−1 such that q ∈ C0 ⊂ Fa−1

and multq C̃ = α−m.

Using the notations of Iitaka, we have the following:

Definition 3.1.3 ([Ii]). A curve C ∼ αC0 + β f ⊂ Fa, with
a ≥ 0, is said to be a curve of type [α ∗ β, a;m1, . . . ,mk]. Whenever

m1 = m2 = · · · = mf , the symbol [α ∗ β, a;m
f
1 ,mf+1, . . . ,mk]. If C is a

smooth curve, we say that C is of type [α ∗ β, a; 1].

Now, we will characterize plane curves. A result similar to the fol-
lowing is given in other terms by Iitaka in [Ii].

Theorem 3.1.4. An irreducible and reduced curve C ⊂ P2 is bira-
tional to one of the following:

a) a line;

b) a curve C̃, where the log pair
(
P2, 3d C̃

)
is a model with canonical

singularities, having the log canonical divisor KP2 + 3
d C̃ ∼ O

nef and κ
(
P2, 3d C̃

)
= 0;

c) a curve C̃ ⊂ Fa, with C̃ ∼ αC0 + β f , where the log pair(
Fa,

2
α C̃

)
is a model with canonical singularities and termi-

nal singularities in a neighborhood of the exceptional curve
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C0 ⊂ Fa, having the log canonical divisor KFa +
2
α C̃ nef and

κ
(
Fa,

2
α C̃

)
≤ 1.

Proof. We prove the theorem by induction on degC = d.
First step. d = 1. We have that C ⊂ P2 is a line.

Induction step. Suppose that the theorem holds for any irreducible
and reduced curve C ⊂ P2 of degree degC < d.

Let C ⊂ P2 be an irreducible and reduced curve of type
[d;m1, . . . ,mk]. We have to study the following cases.

First case. m1 ≤
d
3 . Since mi ≤

d
3 , for any i = 1, . . . , k, we have that the

log pair
(
P2, 3dC

)
has canonical singularities. Moreover, sinceKP2+ 3

dC ∼

O, we have that KP2 + 3
dC is nef.

Then, the log pair
(
P2, 3dC

)
is a model of

(
P2, 3dC

)
with canonical

singularities having the log canonical divisor KP2 + 3
dC nef and Kodaira

dimension κ
(
P2, 3dC

)
= 0.

Second case. m1 >
d
3 . It immediately follows that

3
d <

2
d−m1

.

Ifm1 = d−1, then C ⊂ P2 is a rational, irreducible and reduced curve
having one point p of multiplicity d − 1. Then there exists a Cremona
transformation ω : P2 99K P2, with center p, p1, p2, where multpi

C = 1,
for i = 1, 2, such that degω(C) = d − 1 < d, hence, by induction step,
we conclude our proof. Moreover, in Section 2, we will show that a such
curve is Cremona equivalent to a line (see Lemma 3.2.8).

Therefore, in the following, we can assume that 3
d <

2
d−m1

≤ 1.

Let ν : F1 → P2 be the blow up of P2 at p1 ∈ C such that multp1 C = m1.

Consider the log pair
(
F1,

2
d−m1

C̃
)
, where C̃ ∼ (d−m1)C0 + d f ⊂ F1.

The choice of the coefficient 2
d−m1

ensures the existence a sequence
of elementary transformations φ : F1 99K Fa such that the log pair(
Fa,

2
d−m1

C
)
, where C is the strict transform of C̃ with respect to φ,

has canonical singularities and terminal singularities in a neighborhood
of C0 ⊂ Fa.

We have that C ∼ (d −m1)C0 + β f , where β ≥ a(d −m1). Since
d−m1 ≥ 2, we get that C is not a section of Fa, i.e. C 6= C0, then C is
nef. We have the following subcases.
i) Let a ≥ 2. We have that KFa +

2
d−m1

C is nef.

Therefore, the pair
(
Fa,

2
d−m1

C
)
is a model of

(
P2, 2

d−m1
C
)
, with ca-

nonical singularities and terminal singularities in a neighborhood of C0,
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having the log canonical divisorKFa+
2

d−m1
C nef and Kodaira dimension

κ
(
Fa,

2
d−m1

C
)
≤ 1.

ii) Let a = 1. IfKF1
+ 2
d−m1

C is nef, we have that the pair
(
F1,

2
d−m1

C
)

is a model of
(
P2, 2

d−m1
C
)
, with canonical singularities and terminal

singularities in a neighborhood of C0, having the log canonical divisor
KF1

+ 2
d−m1

C nef and Kodaira dimension κ
(
F1,

2
d−m1

C
)
≤ 1.

On the other hand, if KF1
+ 2

d−m1
C is not nef, we have that

2
d−m1

C · C0 < 1, then 2
d−m1

(−d + m1 + β) < 1. From this inequali-

ty, we get 2β
d−m1

< 3 and, since d−m1

2 < d
3 , we have β < d. Hence,

C ∼ (d − m1)C0 + β f ⊂ F1, where β < d. Let contC0
: F1 → P2 be

the contraction of C0, then contC0
(C̃) = C ′ ⊂ P2 is an irreducible and

reduced curve of degree β < d. Therefore, there exists a Cremona trans-
formation ω : P2 99K P2 such that ω(C) = C ′, where degC ′ = β < d
and, by induction step, we can conclude our proof.
- Let a = 0. If KF0

+ 2
d−m1

C is nef, we have that the pair
(
F0,

2
d−m1

C
)

is a model of
(
P2, 2

d−m1
C
)
, with canonical singularities and terminal

singularities in a neighborhood of C0, having the log canonical divisor
KF0

+ 2
d−m1

C nef and Kodaira dimension κ
(
F0,

2
d−m1

C
)
≤ 1.

On the other hand, if KF0
+ 2

d−m1
C is not nef, we have that

2
d−m1

C · F1 < 2, i.e. β = C · F1 < d − m1. In this case, we consider

the log pair
(
F0,

2
βC

)
such that KF0

+ 2
βC is nef and we apply the above

arguments to this pair to obtain a model with canonical singularities
and terminal singularities in a neighborhood of the exceptional curve.
Since β < d−m1, after finitely many steps, we conclude our proof. �

We have the following:

Remark 3.1.5. Consider the case c) of Theorem 3.1.4, in which the

log pair
(
Fa,

2
α C̃

)
has terminal singularities and log canonical divisor

KFa +
2
α C̃ nef. We have that

(
Fa,

2
α C̃

)
is a log minimal model, which is

unique in a fixed logarithmic class.

Moreover, if κ = 1, then the pair
(
Fa,

(
2
α + ε

)
C̃
)
, for 0 < ε << 1, is

a log canonical model of
(
P2,

(
2
α + ε

)
C
)
and it is unique.

On the other hand, if κ = 0, we have that κ
(
Fa,

(
2
α + ε

)
C̃
)
= 2, but

the log canonical divisor KFa+
(
2
α+ε

)
C̃ is not necessarily ample. Hence,

the log canonical model of
(
P2,

(
2
α + ε

)
C
)
is either

(
Fa,

(
2
α + ε

)
C̃
)
or(

S(0, 2),
(
2
α + ε

)
C̃
)
, where S(0, 2) is the quadric cone in P3.



1. CURVES OF P2 OF ARBITRARY GENUS 51

Consider C ⊂ P2 an irreducible and reduced curve as above and such
that m1 +m2 +m3 > d. If m1 +m2 +m3 > d, in general, we cannot
state that there exists a Cremona transformation ω : P2 99K P2 such
that degω(C) < d. We give the following examples. We remark that, in
these examples, it is possible to use also the results of Iitaka in [Ii].

Example 3.1.6. Let C ⊂ P2 be an irreducible and reduced curve
of degree 7 and genus g = 7 having p1, p2, p3 as singularities, where
p1, p2, p3 are infinitely near points such that m1 = multp1 C = 4, mi =
multpi

C = 2, for i = 1, 2.

We have that the log pair
(
F3,

2
3 C̃

)
is a model of

(
P2, 23C

)
having

terminal (and hence canonical) singularities, with KF3
+ 2

3 C̃ nef and

κ
(
F3,

2
3 C̃

)
= 1, like in Theorem 3.1.4.

Moreover, since C̃ is smooth, we have that
(
F3,

(
2
3 + ε

)
C̃
)
, where

0 < ε << 1, is a log canonical model of
(
P2,

(
2
3 + ε

)
C
)
.

Suppose that there exists a Cremona transformation ω : P2 99K P2

such that ω(C) = C ′, where C ′ is an irreducible and reduced plane
curve of degree 6 and genus 7. Then C ′ has either one 3–ple point or
three double points as singularities.

Let C ′ ⊂ P2 be an irreducible and reduced plane curve of degree 6
having only one 3–ple point as singularity.

We have that the log pair
(
F1,

2
3 C̃

′
)

is a model of
(
P2, 23C

′
)

having

terminal (and hence canonical) singularities, with KF1
+ 2

3 C̃
′ nef and

κ
(
F1,

2
3 C̃

′
)
= 1, like in Theorem 3.1.4. Moreover, since C̃ ′ is smooth, we

have that
(
F1,

(
2
3 + ε

)
C̃ ′

)
, where 0 < ε << 1, is a log canonical model

of
(
P2,

(
2
3 + ε

)
C ′

)
.

Since C,C ′ are Cremona equivalent curves and since the log canoni-

cal model is unique, we have that the pairs
(
F3,

(
2
3+ε

)
C̃
)
,
(
F1,

(
2
3+ε

)
C̃ ′

)

must be isomorphic, which is a contradiction. Therefore, there not exists
a Cremona transformation ω : P2 99K P2 such that ω(C) = C ′.

Let C ′ ⊂ P2 be an irreducible and reduced plane curve of degree 6
having three double points as singularities.

We have that the log pair
(
P2, 12C

′
)

is a model of
(
P2, 12C

′
)

having

canonical singularities, with KP2+ 1
2C

′ ∼ O nef and κ
(
P2, 12C

′
)
= 0, like

in Theorem 3.1.4.
Since 1

2 <
2
3 , then

(
F3,

1
2 C̃

)
is a model of

(
P2, 12C

)
with terminal (and

hence canonical) singularities with κ
(
F3,

1
2 C̃

)
< 0. Since

(
P2, 12C

)
has

a model with canonical singularities and log Kodaira dimension κ < 0,
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while
(
P2, 12C

′
)

has a model with canonical singularities and log Kodaira
dimension κ = 0, we have that there not exists a Cremona transforma-
tion ω : P2 99K P2 such that ω(C) = C ′.

Therefore, there not exists a Cremona transformation ω : P2 99K P2

such that degω(C) < 7.

Example 3.1.7. Let D1, D2 ⊂ F3 be two irreducible and reduced
curve such that Di ∼ 3C0+11f ⊂ F3, for i = 1, 2. Assume that D1 has a
unique singular point p with multpD1 = 2 such that p ∈ C0. Moreover,
we assume that D2 has a unique singular point q with multqD2 = 2
such that q /∈ C0.

We have that D1, D2 are birational to irreducible and reduced curves
of the same type [9; 6, 23] in P2, see Definition 3.1.1, but, by Theorem
3.1.4, D1, D2 have two different models.

Via elmp : F3 99K F4, we have that the log pair
(
F4,

2
3D1

)
, where

D1 = elmp∗D1, is a terminal model like in Theorem 3.1.4.

Via elmq : F3 99K F2, we have that the log pair
(
F2,

2
3D2

)
, where

D2 = elmq∗D2, is a terminal model like in Theorem 3.1.4.

In particular,
(
F4,

2
3D1

)
is not birational to

(
F2,

2
3D2

)
. On the other

hand, both
(
F4,

2
3D1

)
and

(
F2,

2
3D2

)
are birational to a curve D̃i ⊂ P2

of type [9; 6, 23], for i = 1, 2.
Indeed, we consider the smooth irreducible and reduced curve

D1 ∼ 3C0+12f ⊂ F4. Then there exists a birational map µ : F4 99K F1,
with µ = µ1 ◦ µ2 ◦ µ3, where µi : Fi+1 99K Fi, for i = 1, 2, 3, is an
elementary transformation with center a general point p̃i ∈ D1 ⊂ Fi+1
such that p̃i /∈ C0 ⊂ Fi+1. Each map µi introduces a new singular point
q̃i ∈ C0 ⊂ Fi with mult

 qi D1 = 2, for i = 1, 2, 3.

Consider contC0
: F1 → P2 the contraction of C0 ⊂ F1. Since

D1 ∼ 3C0 + 9f ⊂ F1, we have that contC0
(D1) = D̃1, where D̃1 is

an irreducible and reduced curve of type [9; 6, 23], with p1, p2, p3, p4 in-
finitely near singular points.

Now, we consider the irreducible and reduced curve D2 ⊂ F3 having
a singular point q /∈ C0 such that multqD2 = 2. Then there exists a
birational map µ : F3 99K F1, with µ = µ1 ◦ µ2, where µi : Fi+1 99K Fi,
for i = 1, 2, is an elementary transformation with center a general point
p̃i ∈ D2 ⊂ Fi+1 such that p̃i /∈ C0 ⊂ Fi+1. Each map µi introduces a
new singular point q̃i ∈ C0 ⊂ Fi with mult

 qi D2 = 2, for i = 1, 2. Note
that µ2(q) is a point of D2 ⊂ F2 such that multµ2(q)D2 = 2, µ2(q) ∈ C0
and it is infinitely near to q̃2.
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Consider contC0
: F1 → P2 the contraction of C0 ⊂ F1. Since

D2 ∼ 3C0 + 9f ⊂ F1, we have that contC0
(D2) = D̃2, where D̃2 is

an irreducible and reduced curve of type [9; 6, 23], with p1, p2, p3, p4 in-
finitely near singular points.

Moreover, we have that D1 is not birational to any irreducible and
reduced curve C1 ⊂ P2 of degree d ≤ 8, while D2 is birational to an
irreducible and reduced curve C2 ⊂ P2 of degree 8. Namely, we consider
the smooth irreducible and reduced curve D2 ∼ 3C0 + 9f ⊂ F2.

We can apply an elementary transformation elm
 p : F2 99K F1, where

p̃ /∈ C0. Let D2 denote again the strict transform of D2 with respect to
elm

 p. We have that D2 ∼ 3C0 + 8f ⊂ F1. The map elm
 p introduces a

new singular points q̃ ∈ C0 ⊂ F1 with mult
 qD2 = 2.

Consider contC0
: F1 → P2 the contraction of C0 ⊂ F1. Then,

contC0
(D2) = C2, where C2 is an irreducible and reduced curve of type

[8; 5, 2], with p1, p2 infinitely near singular points.

Now, we shall study the birational relations among models listed in
Theorem 3.1.4.

Proposition 3.1.8. Let (S, 2α C) and (S′, 2α′ C
′) be two models

listed in Theorem 3.1.4. Suppose that there exists a birational map
ϕ : (S, 2α C) 99K (S′, 2α′ C

′). Then
- α = α′;
- if (S, 2α C) has terminal singularities, then (S, 2α C)

∼= (S′, 2α′ C
′).

Proof. We prove that α = α′. Assume that α′ < α. Then the log
pair (S′, 2α C

′) has terminal singularities, that implies κ(S′, 2α C
′) =

κ(S, 2α C) ≥ 0.

Consider the model (S′, 2α′ C
′). Then there exists a family of distinct

curves {Zλ} in S
′ such that

(KS′ +
2

α′
C ′) · Zλ = 0.

Since α′ < α, i.e. 2
α′ >

2
α we have that 2

α′ C
′ · Zλ >

2
α C

′ · Zλ, hence

(KS′ +
2

α
C ′) · Zλ < 0,

which is a contradiction. Therefore, α′ ≥ α.
Assume that α′ > α. Likewise, we get a contradiction.

Therefore α′ = α.
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Suppose that the log pair (S, 2α C) has terminal singularities, then

(S, 2α C) is a log minimal model. If the log pair (S
′, 2α C

′) has canoni-
cal singularities, we can blow up the canonical singularities of this pair

and we obtain a pair (S
′
, 2α C

′
) with log terminal singularities. Hence

(S
′
, 2α C

′
) is a log minimal model. Since there exists a birational map

ϕ : (S, 2α C) 99K (S′, 2α C
′), then the two log minimal models (S, 2α C)

and (S
′
, 2α C

′
) are isomorphic. In particular, we have S ∼= S

′
, which is a

contradiction, that is because 2 = rkPicS 6= rkPicS
′
.

Therefore, if (S, 2α C) is terminal, then (S
′, 2α C

′) is terminal.

Consider the log pairs (S, ( 2α + ε)C) and (S′, ( 2α + ε)C ′). If the log

canonical divisors KS+(
2
α+ε)C and KS′+(

2
α+ε)C

′ are ample, we have

that the log pairs (S, ( 2α + ε)C) and (S′, ( 2α + ε)C ′) are log canonical

models. Since there exists a birational map ϕ : (S, 2α C) 99K (S′, 2α C
′),

by uniqueness of Log Canonical model, we have that (S, ( 2α + ε)C) and

(S′, ( 2α + ε)C ′) are isomorphic. Therefore, S ∼= S′ and C ∼= C ′.

If the log canonical divisorsKS+(
2
α+ε)C andKS′+(

2
α+ε)C

′ are not
ample, by Remark 3.1.5, we have that the log pairs
(S(0, 2), ( 2α + ε)C) and (S′(0, 2), ( 2α + ε)C ′) are log canonical models,
where S(0, 2), S′(0, 2) are quadratic cones. Since there exists a birational
map ϕ : (S, 2α C) 99K (S′, 2α C

′), by uniqueness of log canonical model,

we have that (S(0, 2), ( 2α +ε)C) and (S
′(0, 2), ( 2α +ε)C

′) are isomorphic.
Therefore, S(0, 2) ∼= S′(0, 2) and C ∼= C ′.

This conclude our proof. �

The Proposition 3.1.8 does not hold if the pairs have canonical sin-
gularities. We give the following example.

Example 3.1.9. Let C ⊂ P2 be an irreducible and reduced curve
of degree 6 having two singular points p, q ∈ C, where p is a node a q is a
tacnode. We have that the log pair

(
P2, 12 C

)
is a model of

(
P2, 12 C

)
with

canonical singularities, having the log canonical divisor KP2 + 1
2C ∼ O

nef and Kodaira dimension κ = 0, like in Theorem 3.1.4.

Let ν : F1 → P2 be the blow up of P2 at p. Let C̃ be the strict

transform of C with respect to ν. We have that the log pair
(
F1,

1
2 C̃

)
is a

model of
(
P2, 12 C

)
with canonical singularities and terminal singularities

in a neighborhood of C0, having the log canonical divisor KF1
+ 1

2 C̃ ∼ O
nef and Kodaira dimension κ = 0, like in Theorem 3.1.4.
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Let ν ′ : F1 → P2 be the blow up of P2 at q. Let C̃ be the strict
transform of C with respect to ν ′. Then, there exists a double singular

point q̃ ∈ C̃ ∩ C0 ⊂ F1. Let µ : F1 99K F2 be an elementary transforma-

tion with center q̃ and let C be the strict transform of C̃ with respect
to µ. We have that the log pair

(
F2,

1
2 C

)
is a model of

(
P2, 12 C

)
with

canonical singularities and terminal singularities in a neighborhood of
C0, having the log canonical divisor KF2

+ 1
2C ∼ O nef and Kodaira

dimension κ = 0, like in Theorem 3.1.4.

Therefore, the log pairs
(
P2, 12 C

)
,
(
F1,

1
2 C̃

)
and

(
F2,

1
2 C

)
are three

models of
(
P2, 12 C

)
, which are birational, but not isomorphic.

2. Rational curves of P2 according to D. Dicks

Let us consider a rational irreducible reduced curve C ⊂ P2. In this
Section, we ask us whether there exists a birational map Φ : P2 99K P2

such that Φ(C) is a line. In this case, by Definition 2.0.5, with n = 2,
the curve C is Cremona equivalent to a line.

It is easy and boring to show that any rational irreducible reduced
curve C ⊂ P2 of degree d ≤ 5 is Cremona equivalent to a line, in fact
there exists ω : P2 99K P2 a composition of Cremona transformation
such that ω(C) = l, where l is a line.

In analogy with Definition 2.1.4, we have the following:

Definition 3.2.1. For any rational, irreducible and reduced curve
C on a smooth surface S and p ∈ C, we put:

dC(p) := min{number of blowing ups to resolve the singularity of C in p}.

Let us recall the following theorem ([Ha, chapter V, theorem 3.9]):

Theorem 3.2.2 (Embedded resolution of curves in surfaces). Let
C be any curve in the surface S. Then there exists a finite sequence of
monoidal transformations S′ = Sn → Sn−1 → . . . → S0 = S, such that
if f : S′ → S is their composition, then the total inverse image f−1(C)
with a divisor with normal crossing.

Remark 3.2.3. a) By Theorem 3.2.2, we have that dC(p) is well
defined. Moreover, dC(p) is a finite number.

b) If p is a smooth point of C ⊂ S, then dC(p) = 0, while if p is an
ordinary singular point of C ⊂ S, then dC(p) = 1.

Remark 3.2.4. Let C be an irreducible and reduced curve of P2.
Let p ∈ C be a singular point with invariant dC(p) > 1. It is immediate
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that a general standard Cremona transformation centered in p and in
two general points decreases dC(p).

Let C ⊂ P2 be an irreducible and reduced curve of degree d and genus
g. Through Theorem 3.2.2, we get the well known:

Proposition 3.2.5. Let consider a pair (P2, C), then there exists a
birational map ω : P2 99K P2 such that ω(C) has only ordinary singular
points.

Proof. Let O3 be a singular point of C of multiplicity r. We put
dC(O3) = i. We prove the proposition by induction on i.

Initial case: i = 1. Then, by Remark 3.2.3 b), the point O3 is an
ordinary singular point of C.

Induction step. Assume that the proposition is true for dC(O3) =
i− 1.
Let O1, O2 ∈ P2 be two points such that:

1) O1, O2 /∈ C;
2) the lines l1 = 〈O2, O3〉, l2 = 〈O1, O3〉 meet C in the point O3 and in

d− r distinct points;
3) the line l3 = 〈O1, O2〉 meet C in d distinct points.

Let O1, O2, O3 the three fundamental points of the standard Cre-
mona transformation ω : P2 99K P2. Let ω(C) = C1 be a curve in P2. By
Remark 3.2.4, we have that:

i) degC1 = d1 = 2d− r;
ii) ω(l3) = L3 is an ordinary singular point of C1 of multiplicity d;
iii) ω(l1) = L1 and ω(l2) = L2 are ordinary singular points of C1 of

multiplicity d− r;
iv) if q ∈ C is a singular point of multiplicity s, then ω(q) ∈ C1 is a

singular point of the same kind and multiplicity of q.

Moreover, we have that C1 ∩ r1 = {L2, L3}, C1 ∩ r2 = {L1, L3} and

C1 ∩ r3 = {L1, L2, p1, . . . , pt}, where
t∑

j=1

multpj
C1 = r and dC1

(pJ) ≤

dC(O3)− 1 = i− 1, for j = 1, . . . , t.
Since dC1

(pj) ≤ i−1, we repeat this argument for any pj , then (the strict
transform of) C1 is a curve in P2 with only ordinary singular points at
(the strict transform of) L1, L2, L3.

To conclude, we apply these arguments for any not ordinary singular
point of C different from O3. �
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Let C ⊂ P2 be a rational irreducible and reduced curve of degree d.
We get an useful proposition, which is a particular case of Lemma 3.0.1.

Proposition 3.2.6. If C is Cremona equivalent to a line, then the
pair (P2, 3dC) has not canonical singularities.

Remark 3.2.7. We have that if the pair (P2, 3dC) has canonical sin-
gularities, then C is not Cremona equivalent to a line. In particular,
if the pair (P2, 3dC) has canonical singularities, then C is not Cremona
equivalent to any curve C ′ such that degC ′ = d′ < d.

Thanks to Proposition 3.2.6 and Remark 3.2.7, we can give the first
example of rational, plane curve not Cremona equivalent to a line: the
rational, irreducible and reduced curve C ⊂ P2 of degree 6 with 10
double points, known as Coble’s sextic, see for example [C, C1].

Let C ⊂ P2 be a rational, irreducible and reduced curve. Let
ν : S → P2 be a minimal resolution of singularities of C and let
CS = ν−1∗ (C) be the strict transform of C. Let (S′, C ′S) be an &-minimal
model for (S,CS). We have the following preliminary lemmas:

Lemma 3.2.8. Let C ⊂ P2 be a rational curve of degree d having
a singular point of multiplicity d− 1. Then C is Cremona equivalent to
a line.

Proof. We prove the lemma by induction on d.
Initial case. d = 1. It is obvious.
induction step. Let assume that the lemma is true for all d ≤ k.
Let C ⊂ P2 be a rational curve of degree k + 1 and let p0 ∈ C be the
unique singular point of C of multiplicity k.

Let consider two points p1, p2 ∈ C and three lines l0 = 〈p1, p2〉,
l1 = 〈p0, p2〉, l2 = 〈p0, p1〉. Let ω : P2 99K P2 be a standard Cremona
transformation with center p0, p1, p2 and fundamental lines l0, l1, l2. Then
ω(C) = C ′ is a plane curve of degree k, having a singular point q0 = ω(l0)
of multiplicity k − 1. By induction step, we conclude our proof. �

Remark 3.2.9. We can give a direct proof of previous lemma as
follows. Let C ⊂ P2 be a rational curve of degree d having a singular
point of multiplicity d − 1. Let Λ be the linear system of plane curves
of degree d with a singular point p0 of multiplicity d− 1 passing simply
through 2d− 2 points p1, . . . , p2d−2. We have that Λ is a 2–dimensional
homaloidal linear system, then it defines a Cremona transformation
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T : P2 99K P2 such that T (C) is a line. A such Cremona transformation
is called De Jonquières transformation.

Lemma 3.2.10. Let (Fn, C
′) be a pair, where C ′ is a section or

a fibre. Then there exists a birational map ϕ : Fn 99K P2 such that
ϕ(C ′) = l, where l is a line of P2.

Proof. There exists a birational map φ : Fn 99K F1 such that φ(C
′)

is either a section or a fibre. Let ε : F1 99K P2 be the natural contraction
of the special section C0 ⊂ F1 to the point p ∈ P2.

We have three cases.

a) If φ(C ′) is a fibre of F1, we apply the contraction ε : F1 99K P2,
then ε(φ(C ′)) is a line in P2 through p.

b) If φ(C ′) is a section of F1, with φ(C ′) 6= C0, we apply the

contraction ε : F1 99K P2, then ε(φ(C ′)) = C̃ is a curve of

degree d and multp C̃ = d− 1. By Lemma 3.2.8, we have that

C̃ is Cremona equivalent to a line.
c) Let φ(C ′) = C0. There exists an elementary transformation
ψ : F1 99K F1 such that ψ(C0) = C ′′, where C ′′ is a section
of F1, with C

′′ 6= C0. Now, we repeat the arguments of b) for
the not special section C ′′, we obtain that ε(C ′′) = C ⊂ P2 is

a curve of degree d and multp C̃ = d − 1, which is Cremona
equivalent to a line.

This concludes our proof. �

We are ready to prove the following (see [KuMu], Corollary 2.5):

Proposition 3.2.11. Let ν : S → P2 be a minimal resolution of
singularities of the rational curve C and let CS = ν−1∗ (C) be the strict
transform of C. If C2

S ≥ −3, then C is Cremona equivalent to a line.

Proof. Let (S′, C ′S) be an &–minimal pair, for which there exists
a morphism f : S → S′ such that f|CS

is an isomorphism. Then, by
Definitions 1.3.5, 1.3.6, the pair (S′, C ′S) is an &–minimal model for
(S,CS).

Let k be the number of (−1)–curves which are contracted by f , then

C ′S
2 = CS

2 + k ≥ −3 + k ≥ −3. Hence, (S′, C ′S) is an &–minimal model

for (S,CS) with C
′
S
2 ≥ −3. In particular, the case 4) of the Theorem

1.3.7 doesn’t hold.



2. RATIONAL CURVES OF P2 ACCORDING TO D. DICKS 59

Let observe that, since S′ is rational, the canonical divisor KS′ is
not nef. In particular, the case 5) of the Theorem 1.3.7 doesn’t hold and

C ′S
2 ≥ −1.
Let assume that KS′ +C

′
S is nef. We have that (KS′ +C

′
S) ·C

′
S ≥ 0,

then, by adjunction formula, 2g(C ′S) − 2 ≥ 0, i.e. g(C ′S) ≥ 1, which is
a contradiction by rationality of C. Hence KS′ + C ′S is not nef and, in
particular, the case 6) of the Theorem 1.3.7 doesn’t hold.

If the case 1) of the Theorem 1.3.7 holds, there exists a birational
map ω : P2 99K P2 such that ω(C) = l, where l is a line of P2.

If the case 2) of the Theorem 1.3.7 holds, by Lemma 3.2.10, there
exists a birational map ω : P2 99K P2 such that ω(C) = l, where l is a
line of P2.

If the case 3) of the Theorem 1.3.7 holds, there exists a birational
map ψ : S′ 99K S′′ such that ψ(C ′S) = C ′′S , where for the pair (S

′′, C ′′S) the
case 2) of the Theorem 1.3.7 holds. Therefore, there exists a birational
map ω : P2 99K P2 such that ω(C) = l, where l is a line of P2.

This conclude our proof. �

Let show that the result of Proposition 3.2.11 is sharp.

Example 3.2.12. Let C = (1, a) be a curve in a quadric surface
Q ⊂ P3. Let p ∈ P3\Q be a point and let πp : P3 99K P2 be the projection
from p. Then πp(C) = C ′ is a rational plane curve of degree d = a + 1
with only nodes as singularities. Let ν : S → P2 be a minimal resolution
of singularities of C ′ and let C ′S = ν−1∗ (C ′) be the strict transform of C ′.
If a ≥ 5, by Proposition 3.2.6, the curve C ′ is not Cremona equivalent
to a line and we have that C ′S

2 = (a+ 1)2 − 2a(a− 1) ≤ −4.

We have the following:

Remark 3.2.13. Let ν : S → P2 be a minimal resolution of sin-
gularities of the rational curve C and let CS = ν−1∗ (C) be the strict
transform of C. If we assume that (S,CS) is an &–minimal pair, the
curve C is Cremona equivalent to a line ⇔ C2

S ≥ −3. We can prove this
in the following way:
“⇒”. Let C2

S ≤ −4, then the case 4) of Theorem 1.3.7 holds. We have

that KS + λC is nef, where λ = 1 +
2

C2
S

< 1. By Proposition 1.3.8 and

Theorem 1.3.9, (S,CS) is the unique &-minimal model of (P
2, C) and

(S,CS) is not isomorphic to (P
2, l), where l is a line. Hence, the curve

C is not Cremona equivalent to a line.
“⇐”. It follows immediately by Proposition 3.2.11.
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On the other hand, we can observe that, in general, a curve C Cremona
equivalent to a line is such that the pair (S,CS) is not &–minimal. For
example, consider a rational curve C of degree 6 with four nodes and
two points of multiplicity 3. Since C2

S = 2 ≥ −3, by Proposition 3.2.11,
the curve C is Cremona equivalent to a line. If we consider a conic Γ
passing through the four nodes and through one point of multiplicity 3
of C, then ν−1∗ (Γ) = ΓS is a (−1)–curve of S meeting CS in a point.
Hence, the pair (S,CS) is not &–minimal.

Remark 3.2.14. We can prove easily that any rational, irreducible
and reduced curve C ⊂ P2 of degree d ≤ 5 is Cremona equivalent to a
line.

Let ν : S → P2 be a minimal resolution of singularities of the rational
curve C and let CS = ν−1∗ (C) be the strict transform of C. We have

that CS
2 is minimal if C has (d−1)(d−2)

2 double points (not necessarily

ordinary) as singularities. In this case CS
2 = d2 − 2(d − 1)(d − 2) =

−d2 + 6d − 4. Since d ≤ 5, we obtain that CS
2 ≥ 1 ≥ −3, then, by

Proposition 3.2.11, C is Cremona equivalent to a line.

Example 3.2.15. Let C0 ⊂ P2 be a rational, irreducible and re-
duced curve of degree d0 having ordinary singular points. Suppose that
C0 is Cremona equivalent to a line. Let ν0 : S0 → P2 be a minimal
resolution of singularities of C0 and let C0,S0

= ν−1∗ (C0) be the strict
transform of C0. We have that C2

0,S0
= d20−µ, where µ is the contribute

given by singularities of C0.
Consider ω0 : P2 99K P2 a Cremona transformation with center a

general point of C0 and two general points in P2. Let ω0(C0) = C1.
We have that C1 is a rational, irreducible and reduced curve of degree
d1 = 2d0 − 1, having the same singular points of C0, two points of
multiplicity d0 − 1 and one point of multiplicity d0. Moreover, C1 is
Cremona equivalent to a line. Let ν1 : S1 → P2 be a minimal resolution
of singularities of C1 and let C1,S1

= ν−1∗ (C1) be the strict transform of
C1. Since in C2

1,S1
the contribute is given by singularities of C0 and by

new singularities introduced by ω0, we get

C2
1,S1

= d21 − 2(d0 − 1)2 − d20 − µ =

= (2d0 − 1)2 − 2(d0 − 1)2 − d20 − µ = d20 − µ− 1 = C2
0,S0

− 1.

Recursively, we can repeat the above arguments i times and we
obtain a rational, irreducible and reduced curve Ci ⊂ P2 of degree
di = 2i(d0− 1)+ 1, having the same singular points of C0, two points of
multiplicity dj−1 and one point of multiplicity dj , for any j = 0, . . . , i−1.
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Moreover, Ci is Cremona equivalent to a line. Let νi : Si → P2 be a min-
imal resolution of singularities of Ci and let Ci,Si

= ν−1∗ (Ci) be the strict
transform of Ci. We get

C2
i,Si

= d2i − 2
i−1∑

j=0

(dj − 1)2 −
i−1∑

j=0

d2j − µ =

= (2i(d0 − 1) + 1)2 − 2

i−1∑

j=0

(2j(d0 − 1))2 −
i−1∑

j=0

(2j(d0 − 1) + 1)2 − µ =

= 1 + (d0 − 1)2 − i+ 2(d0 − 1)− µ = d20 − µ− i = C2
0,S0

− i.

Note that Ci is an example of curve Cremona equivalent to a line and
having C2

i,Si
arbitrarily negative.

2.1. Rational curves of P2 according to Kumar–Murthy.
The result of Proposition 3.2.11 is been already shown by Kumar–
Murthy [KuMu]. In [KuMu], Kumar–Murthy consider rational curves
with self intersection −n. They show that for n ≤ 3 the Kodaira dimen-
sion is −∞. This result is related to a theorem of Coolidge, see [Coo],
which gives necessary and sufficient condition for a plane curve to be
transformed into a straight line by a Cremona transformation.

Now, we reproduce the results of Kumar–Murthy, since it will useful
in the following.

Let D ≃ P1 be a smooth, rational, reduced projective curve having
negative self intersection and let X a smooth rational projective surface.
We have the following result:

Theorem 3.2.16 ([KuMu], Theorem 2.1). Let D →֒ X,
D2 = −n, with n > 0. Then the following are equivalent:

a) (X,D) is equivalent to (Fn, Dn), where Dn denote the unique
section of Fn with D2

n = −n, i.e. there exists a rational map
p : X → Fn which is an isomorphism between a neighborhood
of D and that of Dn.

b) There exists σ : Y → X a birational morphism such that
σ|σ−1(D) : σ

−1(D) → D is an isomorphism and Y \ σ−1(D)

contains an open set of the form U × P1, where U is a curve.
c) |mK + nD| = ∅, ∀ m > 0.
d) κ(X,D) = −∞.
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Lemma 3.2.17 ([KuMu], Lemma 2.2). Suppose (D +K)2 ≤ −2
and |m(D +K)| 6= ∅, for some m ≥ 1. Then there exists an exceptional
curve of the first kind such that E ∩D = ∅.

From this Lemma derive some important consequences:

Corollary 3.2.18 ([KuMu], Corollary 2.3). IfD →֒ X is a minimal
embedding and κ(X,D) ≥ 0, then (D +K)2 ≥ −1.

Corollary 3.2.19 ([KuMu], Corollary 2.4). The following state-
ments are equivalent:

a) κ(X,D) = −∞;
b) |2K +D| = ∅;
c) |2(K +D)| = ∅.

Corollary 3.2.20 ([KuMu], Corollary 2.5). If D2 ≥ −3, then
κ(X,D) = −∞.

Proof. Since D is a rational curve, by adjunction formula, we have
that D · (D +K) = −2. Consider D · (D + 2K), we have that:

D · (D + 2K) = D · (D +K) +D ·K = −2− 2−D2 ≤ −1 < 0.

Since D · (D + 2K) < 0, we get that |D + 2K| = ∅, hence, by Corollary
3.2.19, κ(X,D) = −∞. �

Now, we reproduce the proof of Coolidge’s Theorem given by Kumar–
Murthy, see [KuMu, Theorem 2.6].

Let C be any irreducible curve on a smooth rational surface Y . Let
F : X → Y be a birational morphism such that the proper transform D
of C is smooth. Let define κ(Y,C) = κ(X,D). We have that κ(Y,C) is
independent of F .

Theorem 3.2.21 (Coolidge). Let C ⊂ P2 be an irreducible rational
curve. Then there exists a Cremona transformation σ of P2 such that
σ(C) is a line if and only if κ(P2, C) = −∞.

Proof. Suppose that there exists σ : P2 99K P2 such that σ(C) = l,
where l is a line. The Kodaira dimension is a birational invariant in an
equivalence class of embeddings, then, since κ(P2, l) = −∞ for a line l,
we have that κ(P2, C) = −∞.

Suppose now that κ(P2, C) = −∞. By Theorem 3.2.16, there exists
a birational map f : P2 99K Fn, for some n, such that f(C) = Dn. It is
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well known that there is a birational map g : Fn 99K P2 such that g(Dn)
is a line.

This conclude the proof. �

Remark 3.2.22. The plan of the original proof of Coolidge, see
[Coo], is to reduce the degree of C by quadratic transformation. To
prove Theorem 3.2.21, Coolidge show that κ(P2, C) = −∞ if and only
if C has no adjoints. We recall that a curve D of degree n− 3s is said to
be an s–th adjoint of C if at any point p ∈ C, multpD ≥ (multpC)− s,
where for infinitely near points p of C, C and D are interpreted as the
proper transform.

Remark 3.2.23. By Corollary 3.2.20 and Theorem 3.2.21, we have
that if D2 ≥ −3, then D is Cremona equivalent to a line.

Let C ⊂ P2 be a rational, irreducible and reduced curve. We have
the following results.

Lemma 3.2.24. Let (S,CS) be the &–minimal model of (P2, C)
such that the case 4) of Theorem 1.3.7 holds. Then κ(S,CS) ≥ 0 and
hence C is not Cremona equivalent to a line.

Proof. Consider the pair (S,CS). If the case 4) of Theorem 1.3.7
holds, we have that CS ∼= P1, C2

S ≤ −4 and KS + λC is nef, where

λ = 1 + 2
C2

S

. Since CS is smooth, we have that the log pair (S, λCS)

has terminal singularities. Moreover, KS + λC is nef. Hence, the log
pair (S, λCS) is the log minimal model of (P

2, λC). By log Abundance
Theorem, we get κ(S, λCS) ≥ 0.

Since C2
S ≤ −4, we have that λ = 1 + 2

C2
S

< 1. It follows that

κ(S,CS) ≥ 0. Therefore, the pair (S,CS) is the &–minimal model of
(P2, C) with κ(S,CS) ≥ 0. By Theorem 3.2.21, the curve C is not Cre-
mona equivalent to a line. �

Let C ⊂ P2 be a rational, irreducible and reduced curve of degree
d ≥ 6. Let ν : S → P2 be a minimal resolution of singularities of the
rational curve C and let CS = ν−1∗ (C) be the strict transform of C.

Using the notations of Theorem 3.2.21, we have that κ(P2, αC) =
κ(S, αCS), for 0 < α ≤ 1. We can prove the following:

Lemma 3.2.25. We have that κ(P2, 12C) ≥ 0 if and only if C is
not Cremona equivalent to a line.
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Proof. “⇒”. Suppose that C is Cremona equivalent to a line. Since
κ(P2, l) = −∞, for a line l, we have that κ(P2, λ l) = −∞, for any
λ ≤ 1. Then κ(P2, 12 l) = −∞. Since C is Cremona equivalent to a

line, it follows that κ(P2, 12 C) = κ(S, 12CS) = −∞. That is because the
log Kodaira dimension is an invariant in a fixed birational equivalence
class. In this way, we have proved that if κ(P2, 12 C) ≥ 0, then C is not
Cremona equivalent to a line.

“⇐”. Suppose that κ(P2, 12 C) = κ(S, 12CS) = −∞. We consider the log

pair (S, 12CS) and we start a Log MMP having as input this pair. The

Log MMP for the log pair (S, 12CS) gives as output a log pair (S̃,
1
2C S

)

such that κ(S̃, 12C S
) = −∞, i.e. the log canonical divisor K

 S
+ 1

2C S
is

not nef.
Since (S, 12CS) is a log resolution of the pair (P

2, 12 C), we have that

any (−1)–curve E ⊂ S̃ contracted by the Log MMP satisfies the follo-
wing inequality:

(
K

 S
+
1

2
C
 S

)
· E = −1 +

1

2
C
 S
· E < 0,

i.e. C
 S
·E < 2. Hence, by Definition 1.3.4, the pair (S̃, C

 S
) is &–minimal.

More precisely, the pair (S̃, C
 S
) is an &–minimal model of (P2, C).

Now, we study the pair (S̃, C
 S
). We have two cases:

First Case: S̃ ∼= P2. Since C
 S
is a smooth rational plane curve, we

have that C
 S
∼ O(α), with α ≤ 2, i.e. C

 S
is a line or a conic in P2.

Hence, the curve C is Cremona equivalent to a line.

Second Case: S̃ ∼= Fa. We have that C
 S
∼ αC0 + βf , where Pic Fa =

〈C0, f〉. Since C
 S
is an irreducible curve, then β ≥ aα. Since the log

canonical divisor K
 S
+ 1

2C S
is not nef, we have that

(K
 S
+
1

2
C
 S
) · f = −2 +

1

2
C
 S
· f < 0.

Hence α = C
 S
· f < 4, i.e. α ≤ 3.

Consider the adjunction formula 2g(C
 S
)− 2 = (K

 S
+C

 S
) ·C

 S
, since

C
 S
is a rational curve, we have

−2 = (−2C0 + (−2− a)f) · (αC0 + βf) + (αC0 + βf)2,

that is

α(−aα+ 2β)− α(2 + a) + 2(aα− β) + 2 = 0.

We have the following subcases:
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i) α = 3. We have:

3(−3a+ 2β)− 3(2 + a) + 2(3a− β) + 2 = 0,

that is

β =
3a+ 2

2
.

Since β ≥ 3a, we get a = 0. Hence, we have a = 0, β = 1, i.e.

S̃ ∼= F0 and C
 S
∼ 3F1 +F2. Then C

 S
is a section of F0. Hence,

for the &–minimal pair (S̃, C
 S
) holds the case 2) of Theorem

1.3.7. Therefore, the curve C is Cremona equivalent to a line.
ii) α = 2. We have:

2(−2a+ 2β)− 2(2 + a) + 2(2a− β) + 2 = 0,

that is

β = a+ 1.

Since β ≥ 2a, we get a ≤ 1. If a = 1, we have β = 2, i.e. S̃ ∼= F1
and C

 S
∼ 2C0+2f . Then we consider the contraction of (−1)–

curve C0 ⊂ F1 contC0
: F1 → P2 such that contC0

(C
 S
) is a

smooth conic. Therefore, the curve C is Cremona equivalent

to a line. While, if a = 0, we have β = 1, i.e. S̃ ∼= F0 and
C
 S
∼ 2F1 + F2. Then C

 S
is a section of F0. Hence, for the

&–minimal pair (S̃, C
 S
) holds the case 2) of Theorem 1.3.7.

Therefore, the curve C is Cremona equivalent to a line.
iii) α = 1. We have:

−a+ 2β − 2− a+ 2a− 2β + 2 = 0,

that holds for any β. We have S̃ ∼= Fa and C
 S
∼ C0+ βf , with

β ≥ a. Then C
 S
is a section of Fa. Hence, for the &–minimal

pair (S̃, C
 S
) holds the case 2) of Theorem 1.3.7. Therefore, the

curve C is Cremona equivalent to a line.

iv) α = 0. We have −2β = −2, that is β = 1. We get S̃ ∼= Fa
and C

 S
∼ f , i.e. C

 S
is a fibre of Fa. Hence, for the &–minimal

pair (S̃, C
 S
) holds the case 2) of Theorem 1.3.7. Therefore, the

curve C is Cremona equivalent to a line.

We have shown that the &–minimal pair (S̃, C
 S
) is isomorphic to (P2, l),

then the curve C is Cremona equivalent to a line. In this way, we have
proved that if C is not Cremona equivalent to a line, then κ(P2, 12 C) ≥ 0.

This conclude our proof. �
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Remark 3.2.26. Thanks to Theorem 3.2.21 and Lemma 3.2.25, we
have:

κ
(
S,
1

2
CS

)
= −∞ ⇔ κ(S,CS) = −∞ ⇔

C is Cremona equivalent to a line.

This result is the best possible. It is easy to prove that if 12 ≤ λ ≤ 1, we
have:

κ(S, λCS) = −∞ ⇔ C is Cremona equivalent to a line.

On the other hand, if λ < 1
2 , we have:

κ(S, λCS) = −∞ 6⇒ C is Cremona equivalent to a line.

Indeed, we give the following example. Let C6 ⊂ P2 be the rational,
irreducible, reduced curve of degree 6 with only double points as singu-
larities. Moreover, since 1

2 =
3
d , we get that κ(P

2, 12C6) = 0. If λ < 1
2 ,

then κ(P2, λC6) = −∞, but C6 is not Cremona equivalent to a line.

3. Other results about rational curves of P2

In this section, we study some relations between the degree of C
and multiplicities of singular points of C and by these we search to
understand when C is Cremona equivalent to a line.

Let C ⊂ P2 be a rational, irreducible and reduced curve of de-
gree d. Let p1, . . . , pk ∈ C be the k (not necessarily ordinary) singular
points of multiplicity ei, for i = 1, . . . , k. Let emax = maxi=1,...,k{ei} and
emin = mini=1,...,k{ei}. Observe that, by genus formula [Ha], we have
that

(d− 1)(d− 2)

2
=

k∑

i=1

ei(ei − 1)

2
.

Finally, let ν : S → P2 be a minimal resolution of singularities of C and
let CS = ν−1∗ (C) be the strict transform of C.

Remark 3.3.1. We have that ei = multpi
C ≤ d

3 , for any

i = 1, . . . , k ⇔ (P2, 3dC) has canonical singularities.

3.1. Results about plane rational curves in terms of kind
and number of singular points. Now, we list some results about
Cremona equivalence to a line of a plane rational curve C.

Lemma 3.3.2. Let C ⊂ P2 be a rational, irreducible and reduced
curve of degree d. If emax = d − 2, then C is Cremona equivalent to a
line.
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Proof. Suppose that C has one point of multiplicity d − 2 and N
nodes as singularity. Then N = 1

2 [(d−1)(d−2)− (d−2)(d−3)] = d−2.
We have that

C2
S = d2 −

k∑

i=1

e2i = d2 − (d− 2)2 − 4(d− 2) = 4,

hence, by Proposition 3.2.11, C is Cremona equivalent to a line. �

Lemma 3.3.3. Let C ⊂ P2 be a rational, irreducible and reduced
curve of degree d ≥ 6. Letm1 ≥ m2 ≥ m3 ≥ . . . ≥ mk be the multiplicity
of the singular points of C. If m1+m2+m3 ≤ d, then C is not Cremona
equivalent to a line.

Proof. If m1 ≤
d
3 , then C has canonical singularities, hence, by Re-

mark 3.2.7, the curve C is not Cremona equivalent to a line.
Assumem1 >

d
3 . Suppose that C is Cremona equivalent to a line, i.e.

there exists a birational map ω : P2 99K P2 such that ω(C) = l, where l
is a line.

Let x ∈ C be a point such that multxC = m1. Since multxC =
m1 >

d
3 , then the pair (P

2, 3dC) is not canonical at x. Let ν : F1 → P2

be the blow up of x with exceptional divisor E. Let C ′ be the strict
transform of C.

We get KF1
+ 2

d−m1
C ′ ≡π 0, where π : F1 → P1 is a Mori space

structure. We have that KF1
+ 2

d−m1
C ′ is nef. In fact, let f ⊂ F1 be a

generic fiber of the ruled structure, then (KF1
+ 2
d−m1

C ′)·f = −2+2 = 0

and (KF1
+ 2

d−m1
C ′) · E = −1 + 2m1

d−m1
= 3m1−d

d−m1
> 0, since d

3 < m1 < d.

Let x′ ∈ C ′ such that multx′ C
′ = m2. If m2 ≤

d−m1

2 , then we

get that d−m1

2 ≥ m2 ≥ mi, for any i = 3, . . . , k. Hence, the pair

(F1,
2

d−m1
C ′) has canonical singularities. These arguments contradict

Noether–Fano inequalities, hence C is not Cremona equivalent to a line.
Assume multx′ C

′ = m2 >
d−m1

2 , then (F1,
2

d−m1
C ′) is not canonical

at x′.
We have two cases:

i) if x′ /∈ E, we consider an elementary transformation
µ : F1 99K F0 with center x′ such that µ(C ′) = C ′′. We get
KF0

+ 2
d−m1

C ′′ ≡πi
0, where πi : F0 → P1 is one of two Mori

space structures. Since m2+m3 ≤ d−m1 and m2 >
d−m1

2 , then

we have that mi ≤ m3 <
d−m1

2 , for any i = 3, . . . , k. Hence, the

pair (F0,
2

d−m1
C ′′) has canonical singularities.
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On the other hand, since d > m1 ≥ m2, we have

(KF0
+

2

d−m1
C ′′) · Fi = −2 +

2(d−mi)

d−m1
=
2(m1 −mi)

d−m1
≥ 0,

for i = 1, 2, where NE(F0) = 〈F1, F2〉 and F1, F2 are the strict
transform of a line through x, x′ respectively. Then
KF0

+ 2
d−m1

C ′′ is nef. These arguments contradict Noether–
Fano inequalities, hence C is not Cremona equivalent to a line.

ii) If x′ ∈ E, we consider an elementary transformation
µ : F1 99K F2 with center x′ such that µ(C ′) = C ′′. We get
KF2

+ 2
d−m1

C ′′ ≡π′ 0, where π
′ : F2 → P1 is a Mori space struc-

tures. Since m2 +m3 ≤ d−m1 and m2 >
d−m1

2 , then we have

that mi ≤ m3 <
d−m1

2 , for any i = 3, . . . , k. Hence, the pair

(F2,
2

d−m1
C ′′) has canonical singularities.

On the other hand, since d > m1 ≥ m2 > 0, we have
(KF2

+ 2
d−m1

C ′′) · f ′ = −2 + 2
d−m1

(d−m1) = −2 + 2 = 0, and

(KF2
+ 2

d−m1
C ′′) · E′ = 2

d−m1
(−2(d −m1) + 2d −m1 −m2) =

2(m1−m2)
d−m1

≥ 0, where NE(F2) = 〈E
′, f ′〉. Then KF2

+ 2
d−m1

C ′′

is nef. These arguments contradict Noether–Fano inequalities,
hence C is not Cremona equivalent to a line.

These arguments conclude our proof. �

The next two lemmas are particular cases of Lemma 3.3.3.

Lemma 3.3.4. Let C ⊂ P2 be a rational, irreducible and reduced
curve of degree d. If C has one singular point of multiplicity d − h and
the remaining singular points of multiplicity ≤ h

2 , with h ≥ 4, then C is
not Cremona equivalent to a line.

Proof. By Lemma 3.3.3, with m1 = d− h, m3 ≤ m2 ≤
h
2 , it follows

that C is not Cremona equivalent to a line. �

Lemma 3.3.5. Let C ⊂ P2 be a rational, irreducible and reduced
curve of degree d ≥ 8. Assume that C has one point of multiplicity r, one
point of multiplicity s and the remaining singular points of multiplicity
2. If

- r ≥ s ≥ ⌊d3⌋+ 1 ≥ 3;
- r + s = d− 2,

then C is not Cremona equivalent to a line.
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Proof. By Lemma 3.3.3, with m1 = r, m2 = s, m3 = 2, it follows
that C is not Cremona equivalent to a line. �

Let C ⊂ P2 be an irreducible and reduced curve, then, by Proposition
3.2.5, there exists a birational map ω : P2 99K P2 such that ω(C) has
only ordinary singular points.

Definition 3.3.6. Let C ⊂ P2 be a rational, irreducible and reduced
curve of degree d ≥ 6. For any point p ∈ C, we consider the invariant
dC(p) (see Definition 2.1.4). For any plane rational curve C, we put:

i(C) = max{dC(p) | p ∈ C}.

Let observe that i(C) is well–defined and it is a finite number. Moreover,
if C is smooth, then i(C) = 0, while if C has only ordinary singularities,
then i(C) = 1.

Let prove the following results:

Lemma 3.3.7. Let C ⊂ P2 be a rational, irreducible and reduced
curve of degree d ≥ 6. If emax = d−3, then there exists a birational map
φ : P2 99K P2 such that φ(C) is a rational, irreducible and reduced curve
of degree d ≤ d and emax = d− 3 having only ordinary singular points.

Proof. Let C ⊂ P2 be a rational, irreducible and reduced curve of
degree d and invariant i(C) = i. Let p ∈ C be the point such that
multpC = d− 3.

Let prove the lemma by induction on i.
Initial case. i = 1. We have that C has only ordinary singular points.
Induction step. Assume that the lemma holds for any i ≤ j.

Let C ⊂ P2 be a rational, irreducible and reduced curve of degree d
and invariant i(C) = j + 1. Let p, p′ ∈ C be points such that multpC =
d− 3 and multp′ C = m ≤ 3.

We consider a Cremona transformation with center p, p′, q, where
q ∈ C is general, then there exists a birational map ω : P2 99K P2 such
that ω(C) = C ′, where C ′ is a rational, irreducible and reduced curve of
degree 2d − (d − 3 +m + 1) = d −m + 2 = d′ ≤ d, with i(C ′) ≤ i(C).
Since q ∈ C is general, the map ω introduce an ordinary singular point
p1 of multiplicity d−m− 1 = d′ − 3 and one node.

We have two cases:

i) If dC′(p̃) < i(C) = j+1, for any point p̃ ∈ C ′, then i(C ′) < j+1.
By induction step we can conclude.
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ii) If there exists a point p ∈ C ′ of multiplicity m such that
dC′(p) = i(C) = j + 1, we consider a a Cremona transforma-
tion with center p1, p, q, where q ∈ C

′ is general, and we repeat
the above arguments. After finitely many steps, we obtain a
rational, irreducible and reduced curve C ⊂ P2 of degree d ≤ d′

having one singular point of multiplicity d−3 and i(C) < j+1.
By induction step we can conclude.

These arguments conclude our proof. �

Lemma 3.3.8. Let C ⊂ P2 be a rational, irreducible and reduced
curve of degree d ≥ 6. If emax ≥ d− 3, then C is Cremona equivalent to
a line.

Proof. If emax = d − 1, then there exists a birational map
φ : P2 99K P2 such that φ(C) is a rational, irreducible and reduced curve
of degree d having only ordinary singular points, with emax = d− 1. By
Lemma 3.2.8, the curve φ(C) is Cremona equivalent to a line. Hence C
is Cremona equivalent to a line.

If emax = d−2, then there exists a birational map φ : P2 99K P2 such that
φ(C) is a rational, irreducible and reduced curve of degree d having only
ordinary singular points, with emax = d− 2. By Lemma 3.3.2, the curve
φ(C) is Cremona equivalent to a line. Hence C is Cremona equivalent
to a line.

If emax = d−3, then there exists a birational map φ : P2 99K P2 such that
φ(C) = C is a rational, irreducible and reduced curve of degree d ≤ d
having only ordinary singular points, with emax = d − 3. Hence, in the
following, we consider a rational, irreducible and reduced curve C ⊂ P2

of degree d having only ordinary singular points, with emax = d− 3.
We prove the lemma by induction on d.

Initial case. Assume d = 6 and emax = 3. Let ν : S → P2 be a
minimal resolution of singularities of C and let CS = ν−1∗ (C) be the

strict transform of C. If emax = 3, we have that C
2
S is minimum when

C has only one point of multiplicity 3 and seven nodes as singularities.
In this case we get

C
2
S = d

2
−

k∑

i=1

e2i = 36− 9− 28 = −1,

then, by Proposition 3.2.11, the curve C is Cremona equivalent to a

line. By minimality of C
2
S , we can conclude that if emax = 3, then C is
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Cremona equivalent to a line.
Induction step. Assume that the lemma holds for d ≤ h.
Let C be a rational, irreducible and reduced curve of degree h+1 having
only ordinary singular points. Suppose that emax = (h+ 1)− 3 = h− 2.
The remaining singular points of C is such that ei ≤ 3. We have three
cases:

1) If C has at least two nodes as singularities, we consider a Cremona
transformation ω : P2 99K P2 with center p1, p2, p3, where multp1 C =

h − 2, multp2 C = 2 and multp3 C = 2. We have that ω(C) is a
rational curve of degree 2(h+ 1)− (h− 2)− 4 = h having a singular
point of multiplicity (h + 1) − 4 = h − 3. By Lemma 3.3.7, ω(C) is
Cremona equivalent to a rational, irreducible and reduced curve of
degree h′ ≤ h and emax = h′−3 having only ordinary singular points.
By induction step, we can conclude that C is Cremona equivalent to
a line.

2) If C has only one node as singularities, we consider a Cremona trans-
formation ω : P2 99K P2 with center p1, p2, p3, where multp1 C = h−2,
multp2 C = 3 and multp3 C = 2. We have that ω(C) is a rational curve
of degree 2(h + 1) − (h − 2) − 5 = h − 1 having a singular point of
multiplicity (h+1)− 5 = h− 4 = (h− 1)− 3. By Lemma 3.3.7, ω(C)
is Cremona equivalent to a rational, irreducible and reduced curve
of degree h′ ≤ h − 1 and emax = h′ − 3 having only ordinary singu-
lar points. By induction step, we can conclude that C is Cremona
equivalent to a line.

3) If C has only singular points of multiplicity 3, we consider a Cremona
transformation ω : P2 99K P2 with center p1, p2, p3, where multp1 C =

h − 2, multp2 C = 3 and multp3 C = 3. We have that ω(C) is a
rational curve of degree 2(h + 1) − (h − 2) − 6 = h − 2 having a
singular point of multiplicity (h + 1) − 6 = h − 5 = (h − 2) − 3. By
Lemma 3.3.7, ω(C) is Cremona equivalent to a rational, irreducible
and reduced curve of degree h′ ≤ h−2 and emax = h′−3 having only
ordinary singular points. By induction step, we can conclude that C
is Cremona equivalent to a line.

This concludes our proof. �

3.2. Results about plane rational curves in terms of MMP.

Lemma 3.3.9. Let C ⊂ P2 be a rational, irreducible and reduced
curve of degree d ≥ 6 such that the pair

(
P2, 3dC

)
has ordinary canonical
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singularities. Let ν : S → P2 be a minimal resolution of singularities of C
and let CS = ν−1∗ (C) be the strict transform of C. Then, the pair (S,CS)
is &–minimal. Moreover, the pair (S,CS) is the unique &–minimal model
of (P2, C).

Proof. Let p1, . . . , pN ∈ C be the ordinary singular points of C such
that multpi

C = ei, with ei ≤
d
3 , for any i = 1, . . . , N . The resolution

ν : S → P2 is the blow up of P2 at p1, . . . , pN with exceptional divisors
E1, . . . , EN . Then ν

∗C = CS + eiE1 + · · ·+ eNEN and CS is smooth.
We have to prove that for any (−1)–curve l ⊂ S, we have l ·CS ≥ 2.

The (−1)–curves in S are the exceptional divisors E1, . . . , EN and the
rational, irreducible and reduced curves R ⊂ P2 of degree m, having

multpi
R = ki ≥ 0, for i = 1, . . . , N , with

N∑

i=1

k2i = m2 + 1.

We have that

CS · Ej = (ν∗C − e1E1 − . . .− eNEN ) · Ej = −ejE
2
j = ej ≥ 2,

for any j = 1, . . . , N .
Moreover, since ν∗R = RS + k1E1 + . . .+ kNEN , we have that

CS ·RS = (ν∗C − e1E1 − . . .− eNEN ) · (ν
∗R− k1E1 − . . .− kNEN ) =

= ν∗C · ν∗R+ e1k1E
2
1 + . . .+ eNkNE

2
N = dm−

N∑

i=1

eiki.

Since R is a rational curve of degree m, by genus formula, we have

N∑

i=1

ki(ki − 1)

2
=
(m− 1)(m− 2)

2
=
m2 − 3m+ 2

2
.

Then, we get
N∑

i=1

ki =
N∑

i=1

ki
2 −m2 + 3m − 2. By hypothesis,

N∑

i=1

k2i =

m2 + 1, hence
N∑

i=1

ki = 3m − 1. Since ei ≤
d
3 . for any i = 1, . . . , N , we

obtain that

CS ·RS = dm−
N∑

i=1

eiki ≥ dm−
d

3

N∑

i=1

ki = dm−
d

3
(3m− 1) =

d

3
≥ 2,

since d ≥ 6.
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Therefore, (S,CS) is an &–minimal pair, i.e. (S,CS) is the &–minimal
model of (P2, C). Now, we have to prove that (S,CS) is the unique &–
minimal model of (P2, C).
Since the pair

(
P2, 3dC

)
has canonical singularities, by Remark 3.2.7, C

is not Cremona equivalent to a line. Hence the cases 1), 2), 3) of Theorem
1.3.7 don’t hold.

Since C is rational and CS is smooth, by adjunction formula, we
have that (KS + CS) · CS = −2 < 0, then KS + CS is not nef and, in
particular, the case 6) of Theorem 1.3.7 doesn’t hold.

Since S is rational, the canonical divisor KS is not nef. In particular,
the case 5) of Theorem 1.3.7 doesn’t hold.

Therefore, the case 4) of Theorem 1.3.7 holds, i.e. CS ∼= P1,
C2
S ≤ −4 and KS + λCS is nef, where λ = 1 + 2

C2
S

< 1. By Proposi-

tion 1.3.8 and Theorem 1.3.9, (S,CS) is the unique &–minimal model of
(P2, C). �

Remark 3.3.10. Under the hypotheses of Lemma 3.3.9, we consider
(S,CS) be the unique &–minimal model of the pair (P

2, C). Since the
case 4) of Theorem 1.3.7 holds for the pair (S,CS), then, by Lemma
3.2.24, we have that κ(S,CS) ≥ 0.

We have the following:

Corollary 3.3.11. Let C,C ′ ⊂ P2 be rational, irreducible and re-
duced curves of degrees d, d′ ≥ 6 such that the pairs

(
P2, 3dC

)
,
(
P2, 3d′C

′
)

have ordinary canonical singularities. If ♯(Sing C) 6= ♯(Sing C ′), then
there not exists a birational map ϕ : P2 99K P2 such that ϕ(C) = C ′.

Proof. Let ν : S → P2 be a minimal resolution of singularities of C
and let CS = ν−1∗ (C) be the strict transform of C. Let ν ′ : S′ → P2

be a minimal resolution of singularities of C ′ and let C ′S = ν−1∗ (C ′)

be the strict transform of C ′. Since the pairs
(
P2, 3dC

)
,
(
P2, 3d′C

′
)
have

canonical singularities, by Lemma 3.3.9, (S,CS) and (S′, C ′S) are the
unique &–minimal models of (P2, C) and (P2, C ′) respectively. Moreover,
by hypothesis, ♯(Sing C) 6= ♯(Sing C ′), i.e. rk (Pic (S)) 6= rk (Pic (S′)).
Then we have that (S,CS) and (S

′, C ′S) are not isomorphic, hence there
not exists a birational map ϕ : P2 99K P2 such that ϕ(C) = C ′. �

Remark 3.3.12. Let C ′ be a rational, irreducible and reduced curve
of degree 7 having 15 nodes as singularities. Since the pair

(
P2, 3d′C

′
)
has

canonical singularities, by Remark 3.2.7, C ′ is not Cremona equivalent
to a line. Moreover, by Corollary 3.3.11, we have that there not exists
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a birational map ϕ : P2 99K P2 such that ϕ(C) = C ′, where C is a
rational, irreducible and reduced curve of degree 6 having 10 nodes as
singularities, which is not Cremona equivalent to a line. Hence C ′ is
a rational curve not Cremona equivalent to a line and not Cremona
equivalent to a rational curve not Cremona equivalent to a line of degree
d < 7.

The condition ♯(Sing C) 6= ♯(Sing C ′) is not necessary to the not Cre-
mona equivalence between C and C ′. Namely, there exist rational curves
C, C ′ having ordinary canonical singular points, with ♯(Sing C) =
♯(Sing C ′), such that there not exists a birational map ϕ : P2 99K P2

such that ϕ(C) = C ′.

Example 3.3.13. Let C be the rational, irreducible and reduced
curve of degree 6 with ten nodes as singularities. Let C ′ be the rational,
irreducible and reduced curve of degree 15 with nine points of multiplici-
ty 5 and one node as singularities. We have that ♯(Sing C) = ♯(Sing C ′).

Let p : S → P2 be a minimal resolution of singularities of C and
let CS = p−1∗ (C) be the strict transform of C. By Lemma 3.3.9, (S,CS)
is the (unique) &–minimal model of (P2, C), then for any (−1)–curve
RS ⊂ S, we have RS · CS = 2.

Suppose that there exists a birational map ϕ : P2 99K P2 such that
ϕ(C) = C ′, i.e. C, C ′ are Cremona equivalent curves.
Let q : S′ → P2 be a minimal resolution of singularities of C ′ and
let C ′S′ = q−1∗ (C ′) be the strict transform of C ′. Since C, C ′ are Cre-
mona equivalent curves and since, by Lemma 3.3.9, the pairs (P2, C),
(P2, C ′) has unique &–minimal models, then there exists an isomorphism
f : (S,CS)→ (S′, C ′S′). Hence we can consider the pair (S,CS) as the &–
minimal model of (P2, C) and (P2, C ′), where p−1∗ (C) = CS = q−1∗ (C ′).

CS ⊂ S
p

yyrrrrrrrrrr
q

&&LLLLLLLLLL

C ⊂ P2
ϕ // P2 ⊃ C ′

Since C ′ has singular points of multiplicity 5, then there exists a (−1)–
curve lS ⊂ S such that CS · lS = 5, which is a contradiction.

Therefore, there not exists a birational map ϕ : P2 99K P2 such that
ϕ(C) = C ′.

Remark 3.3.14. Let C,C ′ ⊂ P2 be rational, irreducible and reduced
curves of degrees d, d′ ≥ 6. Let ν : S → P2 be a minimal resolution of
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singularities of C and let CS = ν−1∗ (C) be the strict transform of C. Let
ν ′ : S′ → P2 be a minimal resolution of singularities of C ′ and let
C ′S = ν−1∗ (C ′) be the strict transform of C ′. If there exists a birational

map ϕ : P2 99K P2 such that ϕ(C) = C ′, then CS
2 = C ′S

2.

In general, we have that ♯(Sing C) = ♯(Sing C ′) not implies that

CS
2 = C ′S

2. Namely, there exist rational curves C,C ′ having ♯(Sing C) =

♯(Sing C ′), but CS
2 6= C ′S

2. Hence, by Remark 3.3.14, there not exists a
birational map ϕ : P2 99K P2 such that ϕ(C) = C ′.

Example 3.3.15. Let C be the rational, irreducible and reduced
curve of degree 7 with only nodes as singularities. Let C ′ be the rational,
irreducible and reduced curve of degree 15 with eight points of multipli-
city 5, two points of multiplicity 3 and five node as singularities. Note
that ♯(Sing C) = ♯(Sing C ′) = 15. On the other hand, we get

CS
2 = d2 −

15∑

i=1

(multpi
C)2 = 49− 60 = −11

and

C ′S
2
= d′2 −

15∑

i=1

(multp′i C
′)2 = 225− 200− 18− 20 = −13.

Then CS
2 6= C ′S

2. Hence, by Remark 3.3.14, there not exists a birational
map ϕ : P2 99K P2 such that ϕ(C) = C ′.

Moreover, we have that CS
2 = C ′S

2 not implies that C,C ′ are Cre-
mona equivalent curves. Namely, there exist rational curves C,C ′ having
CS

2 = C ′S
2, such that there not exists a birational map ϕ : P2 99K P2

such that ϕ(C) = C ′.

Example 3.3.16. Let C be the rational, irreducible and reduced
curve of degree 6 with ten nodes as singularities. Let C ′ be the rational,
irreducible and reduced curve of degree 15 with nine points of multi-
plicity 5 and one node as singularities (see Example 3.3.13). Note that
♯(Sing C) = ♯(Sing C ′) = 10. We have that

CS
2 = d2 −

10∑

i=1

(multpi
C)2 = 36− 40 = −4
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and

C ′S
2
= d′2 −

10∑

i=1

(multp′i C
′)2 = 225− 225− 4 = −4.

Then CS
2 = C ′S

2. On the other hand, in Example 3.3.13 we have
proved that there not exists a birational map ϕ : P2 99K P2 such that
ϕ(C) = C ′.

Finally, we have the following:

Proposition 3.3.17. Let C,C ′ ⊂ P2 be rational, irreducible and
reduced curves of degrees d, d′ ≥ 6, having ordinary canonical singula-
rities. Let ν : S → P2 be a minimal resolution of singularities of C and
let CS = ν−1∗ (C) be the strict transform of C. Let ν ′ : S′ → P2 be a
minimal resolution of singularities of C ′ and let C ′S = ν−1∗ (C ′) be the
strict transform of C ′. There exists a birational map ϕ : P2 99K P2 such
that ϕ(C) = C ′, i.e. C, C ′ are Cremona equivalent curves if and only if
S ∼= S′ and CS ∼= C ′S′ .

Proof. “⇐”. It is obvious.
“⇒”. Since the pairs

(
P2, 3dC

)
,
(
P2, 3d′C

′
)
have canonical singularities,

by Lemma 3.3.9, (S,CS) and (S
′, C ′S) are the unique &–minimal models

of (P2, C) and (P2, C ′) respectively.
Since C, C ′ are Cremona equivalent curves and since the pairs (P2, C),

(P2, C ′) have unique &–minimal models, then there exists an isomor-
phism f : (S,CS) → (S′, C ′S′). Hence, S

∼= S′ and CS ∼= C ′S′ and we
conclude our proof. �

4. Models of rational plane curves of low degree with ordinary
singularities

In this Section, we give a table containing models of rational plane
curves of degree 6 ≤ d ≤ 10 with only ordinary singular points, according
to Theorem 3.1.4.

Let C ⊂ P2 be a rational, irreducible and reduced curve of degree d.
In the previous Sections, we have proved the following useful results:

- If C has an unique singular point of multiplicity d− 1, we have
that the curve C is Cremona equivalent to a line, see Lemma
3.2.8.

- If C has a singular point of multiplicity d− 2, by Lemma 3.3.2,
we have that C is Cremona equivalent to a line.
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- If C is a rational curve of degree d ≥ 6 having a singular point
of multiplicity d − 3, then, by Lemma 3.3.8, C is Cremona
equivalent to a line.

- In Example 3.2.12 is proved that any rational curve C of de-
gree d ≥ 6 having only ordinary nodes as singularities is not
Cremona equivalent to a line.

- By Remarks 3.2.7, 3.3.1, if ei ≤
d
3 , for any i = 1, . . . , k, then C

is not Cremona equivalent to a line.
- By Remark 3.2.14, any rational, irreducible and reduced curve
C ⊂ P2 of degree d ≤ 5 is Cremona equivalent to a line.

Let C ⊂ P2 be a rational, irreducible and reduced curve of degree
6 ≤ d ≤ 10, having only ordinary singular points of multiplicity mi, for
i = 1, . . . , k, with m1 ≥ m2 ≥ m3 ≥ · · · ≥ mk ≥ 2. By Definition 3.1.1,
the curve C is said to be of type [d;m1, . . . ,mk]. We can summarize
the possible models of such curves according to Theorem 3.1.4 in the
following table.

Remark 3.4.1. The assumption allow to drastically reduced the
length of the table.

Ordinary singularities avoid situations like in Example 3.1.7, while
the low degree ensures that the general fiber f ⊂ Fa is the strict trans-
form of the line in P2 through the point of multiplicity m1.

Type of the curve C Model Type of the curve C̃

[6;m1, . . . ,mk], with
m1 ≥ 3

(P2, C̃), where C̃ = l [1; 1]

[6; 210] (P2, 12 C̃), with κ = 0 [6; 210]

[7;m1, . . . ,mk], with
m1 ≥ 4

(P2, C̃), where C̃ = l [1; 1]

[7; 33,m4, . . . ,mk] (P2, C̃), where C̃ = l [1; 1]

[7; 32, 29] (P2, 12 C̃), with κ = 0 [6; 210]
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Type of the curve C Model Type of the curve C̃

[7; 3, 212] (F1,
1
2 C̃), with κ = 1 [4 ∗ 7, 1; 212]

[7; 215] (P2, 37 C̃), with κ = 0 [7; 215]

[8;m1, . . . ,mk], with
m1 ≥ 5

(P2, C̃), where C̃ = l [1; 1]

[8; 43,m4, . . . ,mk],
[8; 42, 3,m4, . . . ,mk],
[8; 4, 33,m5, . . . ,mk]

(P2, C̃), where C̃ = l [1; 1]

[8; 42, 29], [8; 4, 32, 29] (P2, 12 C̃), with κ = 0 [6; 210]

[8; 4, 3, 212] (F1,
1
2 C̃), with κ = 1 [4 ∗ 7, 1; 212]

(F2,
1
2 C̃), with κ = 1 [4 ∗ 9, 2; 212]

[8; 4, 215] (F1,
1
2 C̃), with κ = 1 [4 ∗ 8, 1; 215]

[8; 36,m7, . . . ,mk] (P2, C̃), where C̃ = l [1; 1]

[8; 35, 26] (P2, 12 C̃), with κ = 0 [6; 210]

[8; 34, 29] (F1,
1
2 C̃), with κ = 1 [4 ∗ 7, 1; 212]

[8; 33, 212] (P2, 37 C̃), with κ = 0 [7; 215]

[8; 32, 215] (F0,
2
5 C̃), with κ = 0 [5 ∗ 5, 0; 216]

[8; 3, 218] (F1,
2
5 C̃), with κ = 1 [5 ∗ 8, 1; 218]

[8; 221] (P2, 38 C̃), with κ = 0 [8; 221]
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Type of the curve C Model Type of the curve C̃

[9;m1, . . . ,mk], with
m1 ≥ 6

(P2, C̃), where C̃ = l [1; 1]

[9; 5, 42,m4, . . . ,mk],
[9; 5, 4, 32,m5, . . . ,mk],
[9; 5, 34,m6, . . . ,mk]

(P2, C̃), where C̃ = l [1; 1]

[9; 5, 4, 3, 29],
[9; 5, 33, 29]

(P2, 12 C̃), with κ = 0 [6; 210]

[9; 5, 4, 212], [9; 5, 32, 212] (F1,
1
2 C̃), with κ = 1 [4 ∗ 7, 1; 212]

(F2,
1
2 C̃), with κ = 1 [4 ∗ 9, 2; 212]

[9; 5, 3, 215] (F1,
1
2 C̃), with κ = 1 [4 ∗ 8, 1; 215]

(F2,
1
2 C̃), with κ = 1 [4 ∗ 10, 2; 215]

(F3,
1
2 C̃), with κ = 1 [4 ∗ 12, 3; 215]

[9; 5, 218] (F1,
1
2 C̃), with κ = 1 [4 ∗ 9, 1; 218]

[9; 44,m5, . . . ,mk],
[9; 43, 3,m5, . . . ,mk],
[9; 42, 34,m7, . . . ,mk],
[9; 4, 37, 2]

(P2, C̃), where C̃ = l [1; 1]

[9; 43, 210], [9; 42, 33, 27] (P2, 12 C̃), with κ = 0 [6; 210]

[9; 4, 36, 24] (P2, 12 C̃), with κ = 0 [6; 210]

(F2,
1
2 C̃), with κ = 0 [4 ∗ 8, 2; 29]

[9; 42, 32, 210] (F1,
1
2 C̃), with κ = 1 [4 ∗ 7, 1; 212]

[9; 4, 35, 27] (F1,
1
2 C̃), with κ = 1 [4 ∗ 7, 1; 212]

(F2,
1
2 C̃), with κ = 1 [4 ∗ 9, 2; 212]

(F3,
1
2 C̃), with κ = 1 [4 ∗ 11, 3; 212]
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Type of the curve C Model Type of the curve C̃

[9; 42, 3, 213],
[9; 4, 34, 210]

(P2, 37 C̃), with κ = 0 [7; 215]

[9; 42, 216] (F0,
2
5 C̃), with κ = 0 [5 ∗ 5, 0; 216]

[9; 4, 33, 213] (F0,
2
5 C̃), with κ = 0 [5 ∗ 5, 0; 216]

(F2,
2
5 C̃), with κ = 0 [5 ∗ 10, 2; 216]

[9; 4, 32, 216] (F1,
2
5 C̃), with κ = 1 [5 ∗ 8, 1; 218]

[9; 4, 3, 219] (F0,
2
5 C̃), with κ = 1 [5 ∗ 6, 0; 220]

[9; 4, 222] (F1,
2
5 C̃), with κ = 1 [5 ∗ 9, 1; 222]

[9; 3f , 2h] (P2, 13 C̃), with κ = 0 [9; 3f , 2h]

[10;m1, . . . ,mk], with
m1 ≥ 7

(P2, C̃), where C̃ = l [1; 1]

[10; 6, 43,m5, . . . ,mk],
[10; 6, 42, 3,m5, . . . ,mk],
[10; 6, 4, 33,m6, . . . ,mk],
[10; 6, 35,m7, . . . ,mk]

(P2, C̃), where C̃ = l [1; 1]

[10; 6, 42, 29],
[10; 6, 34, 29]

(P2, 12 C̃), with κ = 0 [6; 210]

[10; 6, 4, 32, 29] (P2, 12 C̃), with κ = 0 [6; 210]

(F2,
1
2 C̃), with κ = 0 [4 ∗ 8, 2; 29]

[10; 6, 4, 3, 212],
[10; 6, 33, 212]

(F1,
1
2 C̃), with κ = 1,

(F2,
1
2 C̃), with κ = 1

[4 ∗ 7, 1; 212],
[4 ∗ 9, 2; 212]
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Type of the curve C Model Type of the curve C̃

[10; 6, 4, 215],
[10; 6, 32, 215]

(F1,
1
2 C̃), with κ = 1,

(F2,
1
2 C̃), with κ = 1,

(F3,
1
2 C̃), with κ = 1

[4 ∗ 8, 1; 215],
[4 ∗ 10, 2; 215],
[4 ∗ 12, 3; 215]

[10; 6, 3, 218] (F1,
1
2 C̃), with κ = 1,

(F2,
1
2 C̃), with κ = 1,

(F3,
1
2 C̃), with κ = 1,

[4 ∗ 9, 1; 218],
[4 ∗ 11, 2; 218],
[4 ∗ 13, 3; 218]

[10; 6, 221] (F1,
1
2 C̃), with κ = 1 [4 ∗ 10, 1; 221]

[10; 53,m4, . . . ,mk],
[10; 52, 42,m5, . . . ,mk],
[10; 52, 4, 3,m5, . . . ,mk],
[10; 52, 34,m7, . . . ,mk],
[10; 5, 43,m5, . . . ,mk],
[10; 5, 42, 33,m7, . . . ,mk],
[10; 5, 4, 36, 22]

(P2, C̃), where C̃ = l [1; 1]

[10; 52, 4, 210],
[10; 52, 33, 27],
[10; 5, 42, 32, 28]

(P2, 12 C̃), with κ = 0 [6; 210]

[10; 5, 4, 35, 25],
[10; 5, 38, 22]

(P2, 12 C̃), with κ = 0,

(F2,
1
2 C̃), with κ = 0

[6; 210],
[4 ∗ 8, 2; 29]

[10; 52, 32, 210],
[10; 5, 42, 3, 211]

(F1,
1
2 C̃), with κ = 1 [4 ∗ 7, 1; 212]

[10; 5, 4, 34, 28],
[10; 5, 37, 25]

(F1,
1
2 C̃), with κ = 1,

(F2,
1
2 C̃), with κ = 1,

(F3,
1
2 C̃), with κ = 1

[4 ∗ 7, 1; 212],
[4 ∗ 9, 2; 212],
[4 ∗ 11, 3; 212]
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Type of the curve C Model Type of the curve C̃

[10; 52, 3, 213],
[10; 5, 42, 214],
[10; 5, 4, 33, 211],
[10; 5, 36, 28]

(P2, 37 C̃), with κ = 0 [7; 215]

[10; 52, 216] (F0,
2
5 C̃), with κ = 0 [5 ∗ 5, 0; 216]

[10; 5, 4, 32, 214],
[10; 5, 35, 211]

(F0,
2
5 C̃), with κ = 0,

(F2,
2
5 C̃), with κ = 0

[5 ∗ 5, 0; 216],
[5 ∗ 10, 2; 216]

[10; 5, 4, 3, 217],
[10; 5, 34, 214]

(F1,
2
5 C̃), with κ = 1 [5 ∗ 8, 1; 218]

[10; 5, 4, 220] (F0,
2
5 C̃), with κ = 1 [5 ∗ 6, 0; 220]

[10; 5, 33, 217] (F0,
2
5 C̃), with κ = 1,

(F2,
2
5 C̃), with κ = 1

[5 ∗ 6, 0; 220],
[5 ∗ 11, 2; 220]

[10; 5, 32, 220] (F1,
2
5 C̃), with κ = 1 [5 ∗ 9, 1; 222]

[10; 5, 3, 223] (F0,
2
5 C̃), with κ = 1 [5 ∗ 7, 0; 224]

[10; 5, 226] (F1,
2
5 C̃), with κ = 1 [5 ∗ 10, 1; 226]

[10; 46],
[10; 45, 3,m7, . . . ,mk],
[10; 44, 33,m8, . . . ,mk],
[10; 43, 36]

(P2, C̃), where C̃ = l [1; 1]

[10; 45, 26],
[10; 44, 32, 26],
[10; 43, 35, 23]

(P2, 12 C̃), with κ = 0 [6; 210]
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Type of the curve C Model Type of the curve C̃

[10; 44, 3, 29] (F1,
1
2 C̃), with κ = 1,

(F2,
1
2 C̃), with κ = 1,

(F3,
1
2 C̃), with κ = 1

[4 ∗ 7, 1; 212],
[4 ∗ 9, 2; 212],
[4 ∗ 11, 3; 212]

[10; 43, 34, 26] (F1,
1
2 C̃), with κ = 1 [4 ∗ 7, 1; 212]

[10; 44, 212] (F1,
1
2 C̃), with κ = 1 [4 ∗ 8, 1; 215]

[10; 43, 33, 29] (P2, 37 C̃), with κ = 0 [7; 215]

[10; 43, 32, 212] (F0,
2
5 C̃), with κ = 0 [5 ∗ 5, 0; 216]

[10; 43, 3, 215] (F1,
2
5 C̃), with κ = 1 [5 ∗ 8, 1; 218]

[10; 43, 218] (P2, 38 C̃), with κ = 0 [8; 221]

[10; 42, 3f , 2h] (P2, 13 C̃), with κ = 0 [9; 3f+1, 2h+1]

[10; 42, 224] (F0,
1
3 C̃), with κ = 0 [6 ∗ 6, 0; 225]

[10; 4, 3f , 2h] (F1,
1
3 C̃), with κ = 1 [6 ∗ 10, 1; 3f , 2h]

[10; 3f , 2h] (P2, 310 C̃), with κ = 0 [10; 3f , 2h]

We give some examples of computations of certain cases listed in the
above table. Similarly, we can prove the remaining ones.

- Let C ⊂ P2 be a rational, irreducible curve of type [8; 4, 3, 212].
Since C has ordinary singular points, there exists a Cremona
transformation ω : P2 99K P2 such that ω(C) = C ′, where
C ′ ⊂ P2 is a rational, irreducible and reduced curve of type
[7; 3, 212]. Let p1 ∈ C ′ be the point of multiplicity 3. If p1 is
not infinitely near to any double points of C ′, then the log pair
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(F1,
1
2 C̃), where C̃ is curve of type [4 ∗ 7, 1; 212], is a model of

(P2, 12C) with canonical singularities and terminal singularities

in a neighborhood of the (−1)–curve C0 ⊂ F1, having KF1
+ 1

2 C̃

nef and κ(F1,
1
2 C̃) = 1, like in Theorem 3.1.4. If there exists a

double point q ∈ C ′ such that p1 ≡ q, then the log pair (F2,
1
2 C̃),

where C̃ is curve of type [4∗9, 2; 212], is a model of (P2, 12C) with
canonical singularities and terminal singularities in a neighbor-

hood of C0 ⊂ F2, having KF2
+ 1

2 C̃ nef and κ(F2,
1
2 C̃) = 1, like

in Theorem 3.1.4.
- Let C ⊂ P2 be a rational, irreducible curve of type [8; 32, 215].
To obtain a model listed in Theorem 3.1.4, since C has ordinary
singular points, we have to blow up the points of multiplicity
m > d−m1

2 = 5
2 . Then, we consider the blow up of p1 and we

apply an elementary transformation with center p2, hence we

have that the log pair (F0,
2
5 C̃) is a model of (P

2, 25C) with ter-
minal singularities. Since with the elementary transformation
with center p2 we have introduced a singular point of multi-

plicity 2, then C̃ is an irreducible and reduced curve of type

[5 ∗ 5, 0; 216]. Therefore, (F0,
2
5 C̃) has KF0

+ 2
5 C̃ ∼ O nef and

κ(F0,
2
5 C̃) = 0.

- Let C ⊂ P2 be a rational, irreducible curve of type [8; 221]. By
Theorem 3.1.4, we have that the log pair (P2, 38C) is a model

of (P2, 38C) with canonical singularities, having KP2 + 3
8C ∼ O

nef κ(P2, 38C) = 0.

- Let C ⊂ P2 be a rational, irreducible curve of type [9; 5, 3, 215].
Since C has ordinary singular points, there exists a Cremona
transformation ω : P2 99K P2 such that ω(C) = C ′, where
C ′ ⊂ P2 is a rational, irreducible and reduced curve of type
[8; 4, 215]. Let p1 ∈ C ′ be the point of multiplicity 4. If p1 is
not infinitely near to any double points of C ′, then the log pair

(F1,
1
2 C̃), where C̃ is curve of type [4 ∗ 8, 1; 215], is a model of

(P2, 12C) with canonical singularities and terminal singularities

in a neighborhood of the (−1)–curve C0 ⊂ F1, having KF1
+ 1

2 C̃

nef and κ(F1,
1
2 C̃) = 1, like in Theorem 3.1.4. If there exists

an unique double point q1 ∈ C ′ such that p1 ≡ q1, then the

log pair (F2,
1
2 C̃), where C̃ is curve of type [4 ∗ 10, 2; 215], is

a model of (P2, 12C) with canonical singularities and terminal

singularities in a neighborhood of C0 ⊂ F2, having KF2
+ 1

2 C̃
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nef and κ(F2,
1
2 C̃) = 1, like in Theorem 3.1.4. Finally, if there

exist two double points q1, q2 ∈ C
′ such that p1 ≡ q1 ≡ q2, then

the log pair (F3,
1
2 C̃), where C̃ is curve of type [4 ∗ 12, 3; 215], is

a model of (P2, 12C) with canonical singularities and terminal

singularities in a neighborhood of C0 ⊂ F3, having KF3
+ 1

2 C̃

nef and κ(F3,
1
2 C̃) = 1, like in Theorem 3.1.4.

- Let C ⊂ P2 be a rational, irreducible curve of type [9; 5, 218]. To
obtain a model listed in Theorem 3.1.4, since C has ordinary
singular points, we have to blow up the points of multiplicity
m > d−m1

2 = 2. Then, we consider the blow up of p1, hence

we have that the log pair (F1,
1
2 C̃) is a model of (P

2, 12C) with
canonical singularities and terminal singularities in a neighbor-

hood of the (−1)–curve C0 ⊂ F1, where C̃ is an irreducible

and reduced curve of type [4∗9, 1; 218]. Therefore, (F1,
1
2 C̃) has

KF1
+ 1

2 C̃ nef and κ(F1,
1
2 C̃) = 1.

- Let C ⊂ P2 be a rational, irreducible curve of type [9; 4, 3, 219].
To obtain a model listed in Theorem 3.1.4, since C has ordinary
singular points, we have to blow up the points of multiplicity
m > d−m1

2 = 5
2 . Then, we consider the blow up of p1 and we ap-

ply an elementary transformation with center p2, hence we have

that the log pair (F0,
2
5 C̃) is a model of (P

2, 25C) with termi-
nal singularities. Since with the elementary transformation with
center p2 we have introduced a singular point of multiplicity 2,

then C̃ is an irreducible and reduced curve of type [5∗6, 0; 220].

Therefore, (F0,
2
5 C̃) has KF0

+ 2
5 C̃ nef and κ(F0,

2
5 C̃) = 1.

5. Rational surfaces of low degree in P3

Let us consider a rational irreducible reduced surface S ⊂ P3. In
analogy with Definition 2.0.5, we have:

Definition 3.5.1. An irreducible reduce rational surface S ⊂ Pn,
n ≥ 3, is Cremona equivalent to a plane if there exists a birational map
Ψ : Pn 99K Pn such that Ψ(C) is a plane.

In the following, we ask us whether a rational irreducible and reduced
surface S ⊂ P3 of degree d ≤ 3 is Cremona equivalent to a plane.

5.1. Quadric surfaces.
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Proposition 3.5.2. Let Q ⊂ P3 be an irreducible and reduced
quadric surface. Then there exists a birational map φ : P3 99K P3 such
that φ(Q) = P2, i.e. Q is Cremona equivalent to a plane.

Proof. Let Q be a quadric surface of P3 with C ⊂ Q a smooth conic
and let P = 〈C〉.

Consider Λ = |OP3(2)⊗ IC | the linear system of quadric surfaces of
P3 containing C.

Let ε : X = BlCP3 −→ P3 be the blow up of the conic C in P3

with exceptional divisor E. Denote Λ′ = ε∗−1(Λ), P
′ = ε∗−1(P ), Q

′ =
ε∗−1(Q) ∈ Λ

′ the strict transforms of Λ, P , Q respectively. We have that
Λ′ = ε∗Λ − E = ε∗OP3(2) − E, P ′ = ε∗P − E and KX = ε∗KP3 + E =
ε∗OP3(−4) + E.

Consider a line l ⊂ P , then l meets C in two points. Let l′ be the
strict transform of l with respect to the blow up of C. We have that
P ′ · l′ = (ε∗P − E) · l′ = 1 − 2 = −1. Then P ′ = (P2,OP2(−1)) and
we can contract P ′. Since C is a complete intersection of Q and P ,
then P ′ ∩ Q′ = ∅ and Λ′ is a base points free linear system. Hence,
Λ′ defines a morphism ϕ : X → Pk−1, which is the contraction of P ′,
where k = dim |Λ′| = dim |Λ| = 5. Then the contraction of P ′ is a
morphism ϕ : X → P4 such that ϕ(X) = Q, where Q is a quadric
hypersurface of P4. Hence, there exists a birational map ψ : P3 99K Q,

where ψ = ϕ|Q ◦ ε−1, such that ψ(Q) = OQ(1), i.e. ψ(Q) is a section of

Q. We denote Q′′ = ψ(Q), then Q′′ is a quadric surface in Q.
Let p be a general point ofQ′′ and let πp : P4 99K P3 be the projection

from the point p. Since p ∈ Q′′ ⊂ Q, then we get a birational map
πp|Q : Q 99K P3 such that πp|Q(Q

′′) = P2.

Then there exists a birational map φ : P3 99K P3, where φ = πp|Q◦ψ,

such that φ(Q) = P2. �

Remark 3.5.3. We can also prove that an irreducible and reduced
quadric surface Q is Cremona equivalent to a plane thanks to the exi-
stence of the Cremona transformation T(2,3).

5.2. Cubic surfaces. Let S ⊂ P3 be a rational, irreducible and
reduced cubic surface having only rational double points as singularities.
First of all, we prove two preliminary lemmas.

Lemma 3.5.4. Let S ⊂ P3 be a rational, irreducible and reduced
cubic surface having only rational double points as singularities. Then
there exists Γ ⊂ S, where Γ is a twisted cubic.
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Proof. It is well known that any rational, irreducible and reduced

cubic surface S having only rational double points is the image of P̂ in

P3 via an immersion ϕ : P̂ → P3 determined by δ, where P̂ = Blp1,...,p6P
2

is the surface of the blow up of P2 in six points p1, . . . , p6 and δ is the
linear system of plane cubic curves with assigned base points p1, . . . , p6,
having not fixed components.

Since δ is without fixed components, i.e. there not exist four collinear
points, then we can always assume that there are three not collinear
points. Suppose that p1, p2, p3 are not collinear points. We have two
cases:

- if p4, p5, p6 are not collinear points, then we consider C1 ⊂ P2 a
smooth conic passing through p1, p2, p3. Let π : S → P2 be the
projection and let E1, . . . , E6 ⊆ S be the exceptional curves,
then we have that π∗C1 = Γ1 + E1 + E2 + E3, where Γ1 ⊂ S
is a rational curve of degree 3. Since p4, p5, p6 are not collinear
points, then there not exists a line L1 such that C1 ∪ L1 ∈ δ,
hence Γ1 is not plane, i.e. Γ1 ⊂ S is a twisted cubic.

- If p4, p5, p6 are collinear points, then we consider the two triples
of points {p1, p2, p4} and {p3, p5, p6}. We have that p1, p2, p4
are not collinear points, otherwise p1, p2, p4, p5, p6 are collinear
points, which is a contradiction. On the other hand, we have
that p3, p5, p6 are not collinear points, otherwise p3, p4, p5, p6
are collinear points, which is a contradiction. Consider C2 ⊂ P2

a smooth conic passing through p1, p2, p4, then we have that
π∗C2 = Γ2+E1+E2+E4, where Γ2 ⊂ S is a rational curve of
degree 3. Since p3, p5, p6 are not collinear points, then there not
exists a line L2 such that C2 ∪ L2 ∈ δ, hence Γ2 is not plane,
i.e. Γ2 ⊂ S is a twisted cubic.

This conclude our proof. �

Lemma 3.5.5. Let p ∈ S be an An point and D1 a smooth curve
through p. Let L be a linear system of Cartier divisors with BslL = D1

and D ∈ L a general element. Let D = D1+D2, then D2 is smooth and
DiffpD1 = DiffpD2, where DiffpDi denote the different of Di at p ∈ S,
for i = 1, 2, see [Co].

Proof. We prove the lemma by induction on n.
Initial cases. If n = 0, i.e. p ∈ S is a smooth point, then DiffpD1 =
DiffpD2 = 0 and D2 is smooth.
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Let ε : S → S be the blow up of p with exceptional divisor E and
D1, D2 the strict transforms of D1, D2 respectively.

If n = 1, i.e. if E is smooth, then it is immediately that DiffpD1 =
DiffpD2 =

1
2 and D2 is smooth.

Induction step. Assume that the lemma holds for any i ≤ n− 1. Let
p ∈ S be an An point and let E = E1+E2 be a pair of (−2)–curves. We
have two cases:

i) if D1 6∋ E1 ∩ E2, then we can assume that D1 ∩ E1 6= ∅ and
D2 ∩E2 6= ∅. We have that ε∗Dj = Dj +

1
2Ej + δjE3−j , for some δj

and for j = 1, 2. Since

ε∗(KS +Dj) ·Dj = 2g(Dj)− 2 + DiffpDj ,

for j = 1, 2, we obtain that

ε∗(KS +Dj) ·Dj = (KS +Dj +
1

2
Ej + δjE3−j) ·Dj =

(KS +Dj) ·Dj +
1

2
= 2g(Dj)− 2 +

1

2
,

for j = 1, 2. Hence DiffpD1 = DiffpD2 =
1
2 and D2 is smooth.

ii) If D1 ∋ E1 ∩ E2, then D2 ∋ E1 ∩ E2. Since E1 ∩ E2 is an An−2
point, by induction step, we have that DiffpD1 = DiffpD2 and D2 is
smooth.

These arguments conclude our proof. �

We are ready to prove the following:

Proposition 3.5.6. Let S ⊂ P3 be a rational, irreducible and re-
duced cubic surface having only rational double points as singularities.
Let Γ ⊂ S ⊂ P3 be a twisted cubic and let S′ ∈ |IΓ(3)| be general.
Let S ∩ S′ = Γ ∪ R, then R ⊂ P3 is a smooth curve of degree 6 and
genus 3. Moreover, there exists a birational map φ : P3 99K P3 such that
φ(S) = H, where H is a plane.

Proof. By hypothesis Γ ⊂ S ∩ S′, then S · S′ = S|S′ = Γ + R. Since
degS|S′ = 9 and deg Γ = 3, we have that degR = 6.

The surface S′ ∈ |IΓ(3)| is general, then S
′ is a smooth cubic surface

containing Γ. By [BW], we have that S has only An singular points
with n ≤ 5, moreover Bsl|IΓ(3)| = Γ, therefore the general intersection
S ∩ S′ is singular only along Γ. By Lemma 3.5.5, with D1 = Γ, D2 = R
and L = |IΓ(3)|, we have that Diff Γ = Diff R at any singular points of
S and R is smooth.
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We have to compute the genus g of R. By adjunction formula, we get

(3.5.1) 2g − 2 = (KS +R) ·R−Diff R = KS ·R+R2 −Diff R

and

(3.5.2) −2 = (KS + Γ) · Γ−Diff Γ = KS · Γ + Γ2 −Diff Γ.

Consider KS ·R = OS(−1) ·R = −6 and KS ·Γ = OS(−1) ·Γ = −3,
hence, by (3.5.1) and by (3.5.2) respectively, we obtain that 2g − 2 =
−6 +R2 −Diff R and Γ2 = 1 + Diff Γ.

We have

(3.5.3) 27 = (S · S)|S′ = (Γ +R)2 = Γ2 +R2 + 2Γ ·R,

then we have 27 = R2 + 1 + Diff Γ + 2Γ ·R, i.e.

(3.5.4) R2 = 26− 2Γ ·R−Diff Γ.

Hence, we get

2g − 2 = −6 + 26− 2Γ ·R−Diff Γ−Diff R = 20− 2Γ ·R− 2Diff Γ,

i.e. g = 11− Γ ·R−Diff Γ.
On the other hand, we can write

R2 + 2Γ ·R = R · (R+ 2Γ) = R · (R+ Γ) +R · Γ = R · S|S′ +R · Γ,

where, by (3.5.4), R · S|S′ + R · Γ = 26 − Diff Γ and, since R ⊂ S|S′ ,
R·S|S′ = 18. Therefore, we have that R·Γ = 26−Diff Γ−18 = 8−Diff Γ,
hence g = 11− 8 + Diff Γ−Diff Γ = 3.

Since R is a smooth curve of degree 6 contained in a cubic surface
S, then R is not a plane curve.

Let prove that R is not contained in a quadric surface Q ⊂ P3.
Assume the curve R contained in a nonsingular quadric surface Q ⊂ P3,
then R is of type (2, 4), see [Ha, chapter IV, Remark 6.4.1]. On the
other hand, we have that R is a complete intersection of Q and the cubic
surface S, then R is of type (3, 3) on Q, which is a contradiction. If R is
contained in a quadric cone Q ⊂ P3, then R is a complete intersection
of Q with the cubic surface S and, in this case, the genus of R is 4, see
[Ha, chapter IV, Remark 6.4.1, p. 352], which is a contradiction. Hence
R is not contained in a quadric surface of P3, therefore we have that
H0(P3, IR(2)) = 0.

Consider the exact sequence

0→ IR → OP3 → OR → 0,
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twisting by OP3(2), we obtain

0→ IR(2)→ OP3(2)→ OR(2)→ 0.

Taking cohomology we get

0→ H0(IR(2))→ H0(OP3(2))→ H0(OR(2))→ H1(IR(2))→ 0.

Since H0(IR(2)) = 0, we have that H0(OP3(2)) = H0(OR(2)), then
H1(IR(2)) = 0. Hence R ⊂ P3 is a smooth irreducible curve such that
H1(P3, IR(2)) = 0, i.e. R is 2–normal, see [ACGH, chapter III, ex. D-1,
p. 140]. Moreover, we have that OR(1) is non special. In fact, consider
D a divisor of degree 6 on R, then L(D) = OR(1). Since degD =
6 > 2g − 2 = 4, we have that deg(KR − D) < 0, where KR is the
canonical divisor on R, and then l(KR −D) = dimH1(OR(1)) = 0, i.e.
H1(OR(1)) = 0, hence OR(1) is non special.

Since R ⊂ P3 is a smooth, irreducible and 2–normal curve, by
[ACGH, chapter III, ex. D-5, p. 140], we have that R is 3–normal,
i.e. H1(P3, IR(3)) = 0. In particular, R is k–normal, for k ≥ 3.

Consider Λ = |IR(3)| the linear system of cubic surface in P3 con-
taining the smooth curve R of degree 6 and genus 3. We have to prove
that dimΛ = 3.

Consider the ideal IR of R, we have that H1(IR(2)) = 0,
H2(IR(1)) = H1(OR(1)) = 0 and H3(IR) = H2(OR) = 0, then
Hj(P3, IR(3 − j)) = 0, for any j > 0, hence IR is 3–regular. It im-
plies that we can consider a resolution of IR given by Hilbert–Burch
Theorem, see [Do, Theorem 9.3.6, p. 247] and [Ei, Theorem 20.15, p.
502]:

0→ OP3(−4)3 → OP3(−3)4 → IR → 0.

Twisting by OP3(3), we obtain

0→ OP3(−1)3 → O4
P3 → IR(3)→ 0

and taking cohomology we get

0→ H0(OP3(−1))3 → H0(OP3)4 → H0(IR(3))→ H1(OP3(−1))3

→ H1(OP3)4 → H1(IR(3))→ H2(OP3(−1))3 → . . . .

Since H1(IR(3)) = 0, then

dimH0(IR(3)) = 4 dimH0(OP3)− 3 dimH0(OP3(−1)) = 4.

Moreover, we can prove that R is projectively normal and, by Castel-
nuovo–Mumford Theorem, see [Ei, section 20.5, p. 504], we have that
IR is generated by cubic forms, hence Bsl(Λ) = R.
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Let D ∈ Λ be general. Since there exists S′ ∈ Λ, where S′ is a smooth
cubic surface, then the general cubic surface D ∈ Λ is smooth.

We have to prove that |OD(3H − R)| ia a linear system of rational
normal cubic curves of self–intersection 1. More precisely |3H−R| defines
the contraction σ : D → P2 of six lines of D to P2. It is enough to prove
that two normal rational cubic curves intersect in an unique point in
S \ Sing(S).

Let D1, D2 ∈ Λ be general cubic surfaces. We have that D1|S′
=

Γ1 +R and D2|S′
= Γ2 +R, then

Γ1 · Γ2 = (D1|S′
−R) · (D2|S′

−R) =

= D1|S′
·D2|S′

− 2R ·D1|S′
+R2 = 27− 36 + 10 = 1.

Therefore, we obtain a birational map φ : P3 99K P3, which is a
cubo–cubic Cremona transformation with base locus R, see [Ve, section
0.3.2, pp. 30–34], such that φ(S) = H, where H is a plane in P3, i.e. S
is Cremona equivalent to a plane. �

Let S ⊂ P3 be a rational, irreducible and reduced cubic surface with
a double line L and which is not a cone. We have the following:

Proposition 3.5.7. Let S ⊂ P3 be a rational, irreducible and re-
duced cubic surface with a double line L and which is not a cone. Then
there exists a birational map φ : P3 99K P3 such that φ(S) = H, where
H is a plane.

Proof. Let S′ ⊂ P4 be a cubic scroll and let p ∈ P4 \ S′ be a general
point. Since S′ is a minimal degree surface, then the ideal IS′ of S

′ is
generated by quadric forms, hence there exists a quadric hypersurface
Q ⊂ P4 such that Q ∈ |IS′(2)⊗Ip|. Let πp : P4 99K P3 be the projection
from the point p, then we have a birational map πp|Q : Q 99K P3 such

that πp|Q(S
′) = S, where S is a cubic surface in P3. Consider the conic

C ⊂ S′ such that p ∈ 〈C〉, then πp|Q(C) = L ⊂ S is a double line.

Therefore, S ⊂ P3 is a rational, irreducible and reduced cubic surface
such that Sing(S) = L, where L is a double line.

Let p′ ∈ S′ be a general point and let πp′ : P4 99K P3 be the projection
from p′. Hence we have a birational map πp′ |Q : Q 99K P3 such that

πp′ |Q(S
′) = Q̃, where Q̃ is a quadric surface in P3.

By Proposition 3.5.2, we have that there exists a birational map

φ′ : P3 99K P3 such that φ′(Q̃) = H, where H is a plane.
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Hence, there exists a birational map φ : P3 99K P3, where

φ = φ′ ◦ πp′ |Q ◦ (πp|Q)
−1,

such that φ(S) = H, where H is a plane. �

Remark 3.5.8. Thanks to Propositions 3.5.2, 3.5.6 and 3.5.7, we
have that if S ⊂ P3 is a rational, irreducible and reduced surface of
degree d ≤ 3 which is not a cone, then S is Cremona equivalent to a
plane.

5.3. Cones. Let T be a 3–dimensional scroll on P2, i.e. there exists
E a locally free sheaf of rank 2 on P2 such that T = PP2(E), and let
ϕ : T → P2 be the projection.

Consider ω : P2 99K P2 a standard Cremona transformation, we
have that ω induces a birational transformation on the scroll T in the
following way:

T = P(E)

ϕ

��

Φ // T̃ = P(E ′)

 ϕ

��
P2

ω // P2

We obtain a birational map Φ : T 99K T̃ , where T̃ is a scroll on
P2, i.e. there exists E ′ a locally free sheaf of rank 2 on P2 such that

T̃ = PP2(E ′), and where ϕ̃ : T̃ → P2 is the projection.

We have to describe the birational transformation Φ : T 99K T̃
induced by ω. Since a Cremona transformation is the composition of
blow ups of points with contractions of (−1)–curves, we can factor Φ by
elementary links in the Sarkisov category. The links are described in the
following:

Claim. i) Let p ∈ P2 be a point and let f = ϕ−1(p) be the fibre of

the scroll T at p. Let εp : P̂ → P2 be the blow up of p in P2. Then, the
blow up of a point p ∈ P2 corresponds to the blow up of the fibre f ⊂ T .

We have εf : T̂ → T the blow up of f ⊂ T , where T̂ is a scroll on P̂ and

ϕ̂ : T̂ → P̂ is the projection.

ii) Let B ⊂ P̂ be a (−1)–curve, then D = ϕ̂∗(B) ≃ Fa, for some a ≥ 0.
We have two cases:

- if D ≃ F0, then the contraction of the (−1)–curve B corre-
sponds to the blow down of D;

- if D ≃ F1, then the contraction of the (−1)–curve B corre-
sponds to the flop of D.
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We have the following:

Lemma 3.5.9. Let T, T̃ be two rational scrolls on P2, i.e.

T = PP2(E), T̃ = PP2(E ′), where E , E ′ are locally free sheaves of rank 2

on P2. Consider Φ : T 99K T̃ the birational map induced by a standard
Cremona transformation on P2. We have the following statements:

i) if E = O ⊕O(−1), then E ′ = O ⊕O;
ii) if E = O ⊕O, then E ′ = O ⊕O.

Proof. We prove both statements at the same time.
Consider the scroll T = PP2(E). Let ϕ : T → P2 be the projection

and let f be a general fibre of the scroll T .
Let E ⊂ T be a section, then we have two different cases:

i) if E = O ⊕ O(−1), we have that (E,E|E) = (P2,O(−1)) and
E · f = 1;

ii) if E = O ⊕O, we have that (E,E|E) = (P2,O) and E · f = 1.

Consider a standard Cremona transformation ω : P2 99K P2 with
center p1, p2, p3 ∈ P2. Let fi = ϕ−1(pi) be the fibre of the scroll T at pi,
for i = 1, 2, 3.

We have that ω induces a Cremona transformation ω̃ : E 99K Ẽ with
center x1, x2, x3, where xi = fi ∩ E, for i = 1, 2, 3.

Therefore, we obtain a birational map Φ : T 99K T̃ , where T̃ =

PP2(E ′). Let ϕ̃ : T̃ → P2 be the projection.

E ⊂ T = P(E)

ϕ

��

Φ // T̃ = P(E ′) ⊃ Ẽ

 ϕ

��
P2

ω // P2

To know T̃ , we have to factor the birational map Φ by elementary
links in the Sarkisov category. The links are described in the following
way:

E ⊂ T

ϕ

��

T̂ ⊃ Ê

!ϕ
��

!εoo ξ // T̃ ⊃ Ẽ

 ϕ

��
P2 P̂

εoo ψ // P2

Let ε : P̂ → P2 be the blow up of P2 at p1, p2, p3. Note that in

P̂ there are six (−1)–curves: A1, A2, A3 the exceptional divisors of the
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blow up ε and B1, B2, B3 the strict transforms of the lines l1 = 〈p2, p3〉,
l2 = 〈p1, p3〉, l3 = 〈p1, p2〉 respectively.

By the claim, the blow up ε : P̂ → P2 corresponds to ε̂ : T̂ → T ,

which is the blow up of the fibers f1, f2, f3 ⊂ T . We have that T̂ is a scroll

on P̂ and let ϕ̂ : T̂ → P̂ be the projection. In particular, ε̂
|  E
: Ê → E is

the blow up of E at x1, x2, x3.

Consider the (−1)–curves A1, A2, A3 ⊂ P̂. Since Nfi|T
∼ O ⊕O, we

have that ϕ̂∗(Ai) ≃ F0, for i = 1, 2, 3.

Consider the (−1)–curves B1, B2, B3 ⊂ P̂. Let ϕ̂∗(Bi) = Di and let

Gi = Di ∩ Ê be the exceptional section of the rational scroll Di, for
i = 1, 2, 3.

At this point, we have two different cases:

i) if E = O⊕O(−1), we have that E|L ∼ O⊕O(−1), where L is a

general line in P2. Since (Gi ·Gi)|Di
= −1 and (Gi ·Gi)|  E = 2,

then NGi|  T
∼ O(−1)⊕O(−1) and henceDi ≃ F1, for i = 1, 2, 3.

Let r ⊂ E be a general line passing through x1 such that
x2, x3 /∈ r. Since (E,E|E) = (P2,O(−1)), then E · r = −1. Let

r̂ ⊂ Ê be the strict transform of r with respect to the blow up
ε̂. We have that

Ê · r̂ = ε̂∗E · ε̂∗r = E · r = −1.

Let ψ : P̂ → P2 be the contraction of (−1)–curvesB1, B2, B3.

By the claim, the contraction ψ corresponds to ξ : T̂ 99K T̃ the
flops of the rational scrolls D1, D2, D3.

Let Ẽ, r̃ be the strict transforms of Ê, r̂, respectively, with
respect to ψ. Since the flops of the rational scroll Di is the
composition of the blow up of Gi with the contraction of the

residual D̂i ≃ P2, where D̂i is the strict transform of Di after

the blow up of Gi, for i = 1, 2, 3, then we have Ẽ = ψ∗−1Ê +
F1+F2+F3 and r̃ = ψ∗−1r̂, where Fi is the exceptional divisor
of the blow up of Gi, for i = 1, 2, 3. Hence

Ẽ · r̃ = (ψ∗−1Ê + F1 + F2 + F3) · (ψ
∗
−1r̂) =

ψ∗−1Ê · ψ
∗
−1r̂ + F1 · r̃ + F2 · r̃ + F3 · r̃.

Since r̂∩G2 = ∅ = r̂∩G3 and r̂∩G1 6= ∅, we get F2·r̃ = 0 = F3·r̃
and F1 · r̃ = 1. Therefore,

Ẽ · r̃ = ψ∗−1Ê · ψ
∗
−1r̂ + F1 · r̃ = Ê · r̂ + 1 = −1 + 1 = 0.
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ii) if E = O ⊕O, we have that E|L ∼ O ⊕O, where L is a general

line in P2. Then NGi|  T
∼ O(−1) ⊕ O and hence Di ≃ F0, for

i = 1, 2, 3.
Let r ⊂ E be a general line passing through x1 such that

x2, x3 /∈ r. Since (E,E|E) = (P2,O), then E · r = 0. Let r̂ ⊂ Ê
be the strict transform of r with respect to the blow up ε̂. We
have that

Ê · r̂ = ε̂∗E · ε̂∗r = E · r = 0.

Let ψ : P̂ → P2 be the contraction of (−1)–curvesB1, B2, B3.

By the claim, the contraction ψ corresponds to ξ : T̂ 99K T̃ the
blows down of the rational scrolls D1, D2, D3.

Let Ẽ, r̃ be the strict transforms of Ê, r̂, respectively, with
respect to ψ. Therefore,

Ẽ · r̃ = ψ∗−1Ê · ψ
∗
−1r̂ = Ê · r̂ = 0.

Consider the scroll T̃ = PP2(E ′). Since r ⊂ E is a general line passing

through x1, then ω̃(r) = r̃ is a general line in Ẽ ⊂ T̃ . We have that

Ẽ ≃ P2 and Ẽ ·r̃ = 0. Hence Ẽ
|  E
∼ O and, by the theory of deformations,

h0(Ẽ) > 1. Let Ẽ1, Ẽ2 ∈ H
0(Ẽ), then Ẽ1 ∩ Ẽ2 = ∅, i.e. Ẽ1 · Ẽ2 ∼ O.

Therefore, since T̃ is a scroll on P2, there exists a morphism T̃ → P2,

where the fibers are P1 and there exists a morphism T̃ → P1, where the

fibers are P2, given by a pencil in the base point free linear systemH0(Ẽ).

We can conclude that T̃ = P1 × P2, i.e. in both cases E ′ = O ⊕O.
These arguments conclude our proof. �

Proposition 3.5.10. Let S ⊂ P3 be a cone over C, where C ⊂
P2 is a rational, irreducible and reduced curve of degree d ≥ 3, which
is Cremona equivalent to a line. Then, there exists a birational map
Ψ : P3 99K P3 such that Ψ(S) = Π, where Π is a plane, i.e. S is Cremona
equivalent to a plane.

Proof. Let ν : T → P3 be the blow up of the vertex v ∈ S ⊂ P3

and let E be its exceptional divisor. We have that T is a scroll on P2,
i.e. T = PP2(E), where E is a locally free sheaf of rank 2 on P2. Let
ϕ : T → P2 be the projection and let f be a general fibre of the scroll T .

Consider the section E ⊂ T , we have that (E,E|E) = (P2,O(−1))

and E · f = 1, then there exists an invertible sheaf L on P2 such that
L ⊗ E = O ⊕O(−1). Hence T = PP2(O ⊕O(−1)).
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Since the curve C ⊂ P2 is Cremona equivalent to a line, there exists
a birational map ω : P2 99K P2 such that ω(C) = l, where l is a line.

By Noether–Castelnuovo theorem, we have that the birational map
ω on the projective plane is a composition of linear transformations and
of standard Cremona transformations.

Moreover, if we consider a scroll T ′ = PP2(O ⊕ O(−1)) or T ′ =
PP2(O⊕O), by Lemma 3.5.9, we get that a standard Cremona transfor-
mation induces a birational map T ′ 99K T ′′, where T ′′ = P1 × P2.

Therefore, the birational map ω : P2 99K P2 induces a birational map
Φ : PP2(O ⊕O(−1)) 99K P1 × P2 described in the following diagram:

E ⊂ P(O ⊕O(−1))

ϕ

��

Φ //
P1 × P2 ⊃ Ẽ

 ϕ

��
C ⊂ P2

ω // P2 ⊃ l

In the diagram above, ϕ̃ : P1 × P2 → P2 is the projection and Ẽ =

Φ(E), where (Ẽ, Ẽ
|  E
) = (P2,O).

Let Ŝ ⊂ PP2(O ⊕ O(−1)) be the strict transform of S with respect

to the blow up ν, in particular Ŝ = ϕ∗(C). Then, Φ(Ŝ) = S̃ ⊂ P1 × P2,

where S̃ = ϕ̃∗(l).

Consider T̃ = P1 × P2 = PP2(E ′). Since E ′|l ∼ O ⊕ O, we have that

NL
|  T
∼ O(−1) ⊕ O, where L = S̃ ∩ Ẽ is the exceptional section of S̃.

Hence S̃ ≃ F0.
Consider the Segre immersion P1×P2 →֒ P5, then P1×P2 is a smooth

3–fold of degree 3 in P5. Moreover, since there exists an embedding of

the rational ruled surface F0 ≃ S̃ as a rational scroll of degree 2 in P3,

we have that S̃ ⊂ P1 × P2 →֒ P5 is the non–singular quadric surface in
P3 →֒ P5, see [Ha, chapter V, Corollary 2.19, p. 381].

Let p ∈ S̃ ⊂ P1×P2 be a point and let πp : P5 → P4 be the projection
from p. We have that πp(P

1 × P2) = Q3, where Q3 is a quadric cone in

P4 of vertex w. Moreover, πp(S̃) = Π̃, with Π̃ a plane in Q3.
Let q ∈ Q3 be a point such that q 6= w. Let πq : P4 → P3 be the

projection in P3 from q. Since q is a smooth point of Q3, we have that

πq
|Q3

: Q3
99K P3 is a birational map. Hence πq(Π̃) = Π ⊂ P3 is a plane.

Therefore, we obtain a birational map Ψ : P3 99K P3, where Ψ =
πq
|Q3
◦ πp

|P1×P2
◦ Φ ◦ ν∗−1, such that Ψ(S) = Π, where Π is a plane.

These arguments conclude our proof. �
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Summarizing, we have the following:

Theorem 3.5.11. Let S ⊂ P3 be a rational, irreducible and reduced
cubic surface. Then, there exists a birational map φ : P3 99K P3 such
that φ(S) = H, where H is a plane, i.e. S is Cremona equivalent to a
plane.
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