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Abstract

In the first part of this thesis, the possible realization of Bose-Einstein con-
densates in the early universe is analyzed. It is shown that, in the broken
phase of the electroweak theory, W bosons may condense and form a fer-
romagnetic state with aligned spins. In this case the primeval plasma may
be spontaneously magnetized inside macroscopically large domains and form
magnetic fields which may act as seeds for the observed today galactic and
intergalactic fields. Screening effects, due to the dense and hot primeval
plasma, may turn the system into an antiferromagnetic one. To analyze the
medium impact, electrodynamics of charged condensed bosons and spin 1/2
fermions is studied at non-zero temperature and chemical potentials. The
Debye screening length, the plasma frequency, and the photon dispersion
relation are calculated.

In the second part of this thesis a general formalism, that provides a sys-
tematic computation of the linear and non-linear perturbations for an ar-
bitrary number of cosmological fluids in the early Universe, is presented.
Various transitions are considered, in particular the decay of some species.
Using this formalism, the question of isocurvature non-Gaussianities in the
mixed inflaton-curvaton scenario is revisited. It is shown that one can ob-
tain significant non-Gaussianities dominated by the isocurvature mode while
satisfying the present constraints on the isocurvature contribution in the ob-
served power spectrum. Two-curvaton scenarios are also studied, taking
into account the production of dark matter. Cases in which significant non-
Gaussianities can be produced are investigated.



Abstract

Nella prima parte di questa tesi viene analizzata la possibilità che si formino
dei condensati di Bose-Einstein nell’universo primordiale. Viene dimostrato
che, nella fase rotta della teoria elettro-debole, i bosoni W possono conden-
sare e formare uno stato ferromagnetico con spin allineati. Di conseguenza,
il plasma primordiale potrebbe magnetizzarsi spontaneamente all’interno di
domini di dimensione macroscopica. Questo meccanismo permette di gener-
are in maniera spontanea dei campi magnetici primordiali che potrebbero
essere all’origine di quelli che vengono osservati oggi su scala galattica e
intergalattica.

Dal momento che il plasma primordiale ha temperatura e densità elevate, gli
effetti di screening nel mezzo potrebbero mutare la natura del sistema ren-
dendolo anti-ferromagnetico. In questa tesi viene presentata l’analisi degli
effetti legati alla presenza del mezzo in elettrodinamica in presenza di un
condensato di bosoni scalari carichi e fermioni con spin 1/2. Vengono in-
clusi temperatura finita e potenziali chimici non nulli per le specie in esame.
In particolare, vengono calcolate la lunghezza di screening di Debye, la fre-
quenza di plasma e in generale la relazione di dispersione del fotone.

Nella seconda parte di questa tesi viene presentato un formalismo generale
che permette di calcolare in maniera sistematica le perturbazioni lineari e
non lineari per un numero arbitrario di fluidi cosmologici nell’universo pri-
mordiale. Vengono prese in esame diversi tipi di transizione, con particolare
riferimento al decadimento di diverse specie. Con l’aiuto di questo formal-
ismo vengono analizzate le non-Gaussianità di isocurvatura prodotte in un
modello misto inflatone-curvatone. Viene dimostrato che si possono ottenere
non-Gaussianità significative dominate dal modo di isocurvatura e nel con-
tempo soddisfare i limiti attuali sullo spettro di isocurvatura. Vengono anche
considerati modelli con due curvatoni e produzione di materia oscura. Ven-
gono infine analizzati i casi in cui si ottengono non-Gaussianità significative.



Abstract

Dans la première partie de cette thèse, nous analysons la possible réalisation
de condensats de Bose-Einstein dans l’univers primordial. Nous montrons
que, dans la phase brisée de la théorie électrofaible, les bosons W peuvent
condenser et former un état ferromagnétique où les spins sont alignés. Dans
ce cas, le plasma primitif peut devenir spontanément magnétique dans des
régions macroscopiques et donner lieu à des champs magnétiques qui pour-
raient tre à l’origine de ceux galactiques et extragalactiques observés au-
jourd’hui. Des effets d’écrantage, dus au plasma primitif chaud et dense,
peuvent transformer le système en un système antiferromagnétique. Afin
d’analyser l’impact moyen, nous étudions l’électrodynamique des conden-
sats de bosons chargés et des fermions de spin 1/2 à température et à po-
tentiels chimiques finis. La longueur de Debye, la fréquence du plasma et
la relation de dispersion des photons sont calculées. Dans la seconde partie
de cette thèse, nous présentons un formalisme général permettant un cal-
cul systématique des perturbations linéaires et non linéaires pour un nombre
arbitraire de fluides cosmologiques dans l’univers primordial. Plusieurs tran-
sitions, et en particulier la désintégration de certaines espèces, sont prises
en compte. A l’aide de ce formalisme, nous revisitions la question des non-
gaussianités d’isocourbure dans le scénario mixte inflaton-curvaton. Nous
montrons qu’il est possible d’obtenir des non-gaussianités non négligeables
dominées par le mode isocourbe tout en respectant les contraintes actuelles
sur la contribution de l’isocourbure au spectre de puissance observé. Nous
étudions également des scénarios mettant en jeu deux curvatons en prenant
en compte la production de matière noire. Les cas où des non-gaussianités
non négligeables peuvent tre produites sont examinés.
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Introduction

Introduction

In the 1960s and 1970s, the standard model of particle physics (SM) was developed.

With the only exclusion of gravity, it describes successfully all the low-energy interac-

tions between elementary particles, which are represented in terms of gauge interactions

mediated by bosons, such as photon, W± and Z0. The predictions of the SM have been

tested experimentally and have resulted consistent with data to very high precision (e.g.

within one part in 108 for electron-photon interactions).

In spite of its amazing successes, the SM is far to be an exhaustive theory. First of

all, as we have said, it does not include gravity, while it would be highly desirable to have

a complete theory including all the interactions. Second, although it is theoretically self-

consistent and renormalizable, it has several unnatural properties giving rise to puzzles.

For instance, there is no experimental evidence of CP breaking in chromodynamics

(QCD), although there are natural terms in the QCD Lagrangian which are able to

break the CP symmetry (strong CP problem). Another puzzle is the so called hierarchy

problem. That is, there are quadratic divergences in the Higgs mass arising from loop

computations, which can be cancelled by a very precise fine tuning of the fermion-

Yukawa and the quartic scalar coupling constants. But such a precise fine tuning (up to

one part in 1017) does not seem very natural. Finally, it should be mentioned that the

SM has a high number of free parameters (19 without considering neutrino interactions),

which are chosen to fit the experimental data but can not be derived from first principles.

Besides theoretical problems, the SM has a phenomenological shortcoming, since it does

not predict neutrino oscillations, which are now well established and are related to

non-vanishing masses of neutrinos.

At the beginning of the 1970s, when the SM was being developed with the invaluable

help of data from accelerators, I. B. Zeldovich used to say that the universe is the poor

man’s accelerator. There, experiments do not need to be funded and built: all we have

to do is to observe, take data and interpret them. Actually, the universe is the only

possible ”laboratory” where energies as high as 1010 GeV can be reached. Hence, it is

the only place where we can study very high energy phenomena.

In the last years, the basic features of the universe have been determined: it is

spatially flat, accelerating and its composition has been determined with high accuracy.

It was found that ordinary matter (baryons) only constitutes a small fraction of the

total energy content, about 4, 5%. Concerning the rest, about 23% is made of some

form of matter which is revealed through gravitational effects, but is undetectable by

emitted or scattered electromagnetic radiation. This is the so called dark matter. The
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Introduction

largest part of the energy content of our universe, about 72%, is accounted for in terms

of a hypothetical form of energy, which makes the universe accelerating. This is the so

called dark energy.

In this sense, cosmology shows another limit of the SM, since the latter does not con-

tain any viable dark matter candidate, which should possess all the properties deduced

from observational cosmology.

As we have said, the universe is very flat and homogeneous, at least on large scales.

Together with some other striking properties, these features find a natural explanation

within a theory which became one of the fundamental ingredients of modern cosmology:

inflation. Inflation is a phase of rapid and accelerated expansion which took place in the

very early stages of the universe evolution. Besides solving the flatness and the homo-

geneity puzzles, inflation naturally enables the production of primordial perturbations,

which can act as seeds for the observed cosmic structures. In spite of the simplicity

of the basic models, the details of inflation and of the related production of primordial

perturbations are still unclear and a lot of models have been proposed and studied. The

primordial perturbations left an imprint on the cosmic microwave background of photons

in the form of tiny temperature fluctuations, which are being observed today. A lot of

data are being collected, which are helping to discriminate among the plenty of possible

models. This is why inflation and the related production of primordial perturbations

are hot topics in modern cosmology.

Another open issue in particle physics, which requires some help from cosmology and

vice versa, is the formation of the baryon asymmetry which we observe today and that

enables our world to exist. Since there is no baryon number violation at low energy, what

we think today is that the excess of baryons over anti-baryons was produced at some

point in the early universe evolution. A lot of possible solutions have been proposed,

which are often based on the extensions of the SM (e.g. SUSY theories) and sometimes

implement the physics of massive neutrinos or of the early universe (e.g. the inflaton,

that is a scalar field which is supposed to drive inflation). Nevertheless, none of them is

universally accepted as ”the” one and, how it is commonly said, having a lot of solutions

to a single problem means that the problem has not been solved.

For all the reasons listed above, it is evident that we need models for physics going

beyond the standard one and that one of the best places to test such models is the early

universe. On the other hand, to deal with the early universe, we need to understand the

high energy behavior of particles and their interactions. This is why it is interesting to

merge informations and ideas from the two fields.

This thesis is devoted to the study of some problems for which the combination of

informations from cosmology and particle physics is important. Emphasis is given to the

original results achieved rather than to a complete pedagogical review on the subjects.

2
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Being a student of the International Doctorate on AstroParticle Physics (IDAPP)

program, I had the occasion to work in two different institutes: the University of Ferrara

and the APC (AstroParticule et Cosmologie) center of the University of Paris 7 D.

Diderot. As a consequence, this thesis is divided in two parts corresponding to the two

different research projects.

The first part deals with Bose-Einstein condensates and their possible formation in

the early universe, in particular around the electro-weak phase transition epoch. Bose-

Einstein condensation is the quantum phenomenon of accumulation of identical bosons

in their lowest energy state. Under these conditions they behave as a single macroscopic

entity described by a coherent wave function rather than a collection of separate in-

dependent particles. In this thesis the impact of such a condensate on quantum field

theories is analyzed in the framework of the SM.

An introduction to Bose-Einstein condensation is presented in chapter 1. There, it is

shown that a condensate of W bosons could be formed in the early universe, around the

electroweak symmetry breaking epoch. This would happen in the presence of a large

lepton asymmetry. The conditions necessary for condensation are discussed together

with their compatibility with the observational bounds.

Chapters 2 and 3 are devoted to the original results obtained in collaboration with

A. Dolgov and G. Piccinelli. In chapter 2 it is shown that the condensed W s act as

a ferromagnet, that is, it is energetically favorable for them to align their spins. This

behavior results from the competition of two terms. The first of them is determined by

the direct magnetic interaction of the spins and which favors their alignment, while the

second arises from the local quartic interaction of W s and goes in the opposite direction.

As a consequence, this ferromagnetic system may be changed into an anti-ferromagnetic

one, where the spins are anti-aligned, when the relative strength of the two terms is

changed. This could happen, for instance, due to medium effects or in non standard

theories. If realized, the ferromagnetic state may lead to the spontaneous magnetization

of the early universe.

In chapter 3 a Bose-Einstein condensate of scalar particles is considered as one of

the components of a medium in which an electromagnetic interaction takes place. It is

well known that the medium can have relevant effects on the interactions, especially in

the presence of high temperatures and densities, such as the ones realized in the early

universe. It is shown that the presence of the condensate has a dramatic impact on the

photon polarization tensor, that becomes infrared singular. A detailed analysis of the

singularities is performed and the impact on the electrostatic interactions is studied. It

is shown that the Coulomb potential is changed into an oscillating and exponentially

damped one, having several unusual properties.

The second part of this thesis deals with cosmological perturbations and the related

3
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production of non-Gaussianities. A general introduction to the subject is presented

in chapter 4, where theoretical tools as well as the present observational bounds are

reviewed.

Chapter 5 deals with the results of the work done in collaboration with D. Langlois.

There a unified treatment of linear and nonlinear perturbations is presented, which

enables to compute their evolution through one or several cosmological transitions such

as the decay of some particle species. Various decay products and their branching ratio

are taken into account. A a consequence, this formalism can be applied to a large

class of early Universe scenarios, in order to compute automatically their predictions for

adiabatic and isocurvature perturbations, and their non-Gaussianities. As input, one

simply needs parameters that depend on the homogeneous evolution. This provides a

simple way to confront an early Universe scenario, and its underlying particle physics

model, with the present and future cosmological data. As applications, scenarios with

one or two curvatons are considered. In both examples, the results that have been

obtained in previous works are generalized, allowing the curvaton to decay into several

species.

4



Part I

Bose-Einstein condensates at the

electro-weak phase transition.
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Chapter 1

Bose-Einstein condensation

1.1 Introduction

Bose-Einstein condensation is the quantum phenomenon of accumulation of identical

bosons in the same state, which is their lowest energy (ideally zero momentum) state.

It corresponds, at the macroscopic level, to the appearance of superfluidity. One of

the striking features of condensed bosons is that they behave as a single macroscopic

entity described by a coherent wave function rather than as a collection of separate

independent particles.

The existence of Bose-Einstein condensation was predicted by Satyendra Nath Bose

and Albert Einstein in 1924-25. Nevertheless, it took seventy years to make the first

experimental observation, which was performed in a vapor of rubidium-87 atoms [1] and

was awarded the 2001 Nobel Prize in Physics. Difficulties in performing this observation

were created by the extremal conditions necessary for the condensation. Roughly, the

Bose-Einstein condensate is realized when the inter-particle separation d is smaller than

their de Broglie wavelength:

d < λdB ∼ 2π/
√

2mT . (1.1)

Such a condition can be satisfied by cooling the system down to a very low temperature,

as it is done in laboratory experiments, or making the boson states ”crowded”, since

d ∼ n−1/3, where n is the number density. The latter condition can be realized, for

instance, when a large chemical potential is associated to the boson species.

Given the requirement of crowded quantum states, it is clear that bosons condense

as long as their particle number is conserved. This is true independently of their spin.

For instance, in this thesis we analyze in detail the condensation of the vector W boson

as well as a generic scalar particle, having respectively spins 1 and 0. It is even possible

to make photons condense in photon-number conserving systems, as it was recently

6
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experimentally proven [2].

The peculiar features of BEC give rise to a lot of interesting physical phenomena.

This is why, in the recent years, the study of BEC became an active area of research in

different fields of physics, for instance plasma and statistical physics, for a review see

book [3] and references therein. It is also possible that matter in the form of a BEC

is present in astrophysical environments, for instance a condensate of scalar 4He nuclei

may be realized in white dwarf cores [4]. BECs could be also realized in the early phases

of the universe evolution, as it is discussed below for W bosons.

W bosons may condense in the early universe both below and above the electro-

weak phase transition if the cosmological lepton asymmetry happened to be sufficiently

high, i.e. if the chemical potential of neutrinos was larger than the W boson mass at

this temperature [5]. The condensation of vector bosons differs from the theoretically

simpler case of scalar bosons, such as the 4He nuclei, due to the presence of an additional

degree of freedom, their spin states. In both cases, scalar and vector, the condensed

bosons are in the zero momentum state but in the latter case the spins of the individual

vector bosons can be either aligned or anti-aligned. These states are called respectively

ferromagnetic and anti-ferromagnetic ones. In [6] the magnetic properties of a W -boson

condensate are analyzed in detail and it is shown that the condensed W-bosons form a

ferromagnetic state with aligned spins. This phenomenon may spontaneously generate

primordial magnetic fields, which may act as seeds for the observed today galactic and

intergalactic fields.

A recent application of vector BEC to astrophysics was studied in reference [7],

where the condensation of deuterium nuclei was considered. The authors argue that the

interaction between deuterium nuclei forces them into the lowest spin antiferromagnetic

state. A detailed analysis of the phases of deuterium at densities higher than atomic, but

lower than nuclear can be found in [8]. The authors found that, at very high densities,

nuclear interactions dominate favoring a ferromagnetic state, while at lower densities a

new phase is realized.

It is well known that the presence of a medium, instead of the vacuum, can have

important consequences on the particle interactions. For instance, the screening of a

test charge is a typical medium effect. If BECs are realized in the primordial plasma or

in star cores, it is important to understand how they affect the interactions in such an

environment. As an example, medium effects may change the ferromagnetic W boson

system, that is discussed above, into an antiferromagnetic one.

Surprisingly, while medium effects have been extensively studied since the formu-

lation of gauge field theories, the consequences of having a BEC component in such a

medium were not considered till very recent times [9; 10; 11; 12; 13; 14]. In these papers

the problem of electrodynamics of charged fermions and condensed scalar bosons was

7
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considered. Condensation is induced through an asymmetry in the leptonic sector: if

a lepton asymmetry resides on charged particles (e.g. the electrons), there must be a

corresponding boson asymmetry to preserve the global electric charge neutrality of the

system. When the fermion asymmetry reaches a certain critical value, such that the

boson chemical potential has to be equal to the boson mass, the bosons condense.

In references [9; 10; 11] both the effects of condensate and finite temperature were

considered in electrodynamics plus BEC of scalar particles. A perturbative approach

was used to calculate the photon polarization tensor in such a plasma. As a result, it

was found that the screening of impurities is essentially different from the case when

the condensate is absent.

In [4; 12; 13; 14; 15] a similar problem was considered in the framework of an effective

field theory. This formalism is complementary to the perturbative one and the results

agree in overlaping areas. The authors focused on the applications to the astrophysics of

the helium white dwarfs discussing possible condensation of helium nuclei and analyzing

the thermodynamical properties of the system and possible observational signatures. A

similar study, but generalized to the case when two different nuclei (Helium and Carbon)

coexist in the same star, was done in [16].

1.2 Formation of the Bose-Einstein condensate.

In gauge field theories, it is convenient to describe formation of BEC using the kinetic

theory approach. Let us consider a system of bosons and fermions in thermal equilibrium

at temperature T . As is known, the equilibrium distribution functions of bosons (B)

and fermions (F ), up to the spin counting factor, are equal to:

fF,B =
1

exp[(E − μF,B)/T ]± 1
, (1.2)

where the signs plus and minus stand respectively for fermions and bosons and μF,B are

the chemical potentials of particles. Evidently, the chemical potential of bosons cannot

exceed their mass, μB ≤ mB, otherwise their distribution would not be positive definite.

This upper bound on μB enforces a phase transition when the asymmetry between bosons

and anti-bosons is so high that even maximally large chemical potential, μB = mB, is

not sufficient to provide for such a high asymmetry. At the microscopic level this phase

transition coincides with the formation of a BEC. Hence the boson distribution function

takes the form:

fB = Cδ(3)(p) +
1

exp[(E −mB)/T ]− 1
, (1.3)

8
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where the first delta-function term describes the condensate and a new constant param-

eter C is its amplitude. The second term, which is the usual Bose distribution, describes

non-condensed particles and vanishes at T = 0. As it is evident from equation (1.3),

the kinetic approach naturally enables to take finite temperature effects into account.

The fact that the boson distribution takes the form given in (1.3) can be demon-

strated, for instance, by using the Heisenberg formalism for quantum operators - see

[17]. Here we adopt an a posteriori approach: we assume the distribution (1.3) as given

and demonstrate that it is an equilibrium one by using kinetic theory, that is, showing

that it annihilates the collision integral.

The distribution in equation (1.3) is the stationary solution of the kinetic equation

if and only if μB = mB (or μB̄ = mB). When C �= 0, it describes non-vanishing number

density of bosons in a vanishingly small momentum interval near q = 0. In this sense, it

can be interpreted as a classical field configuration φ(t) = φ0 exp(imBt), where the field

amplitude is related to the condensate amplitude as 2φ2
0m = C/(2π)3. On the other

hand, it evidently can be interpreted as a collection of particles at rest.

Once the boson charge density JB0 is fixed, it is possible to calculate the critical

temperature TC , when the phase transition takes place and the Bose condensate is

formed. This temperature can be calculated imposing

JB0 (μB = mB, C = 0) = JB0 (TC) , (1.4)

where J0(TC) ≡ eΔn(TC), being Δn the number density of particles minus antiparticles.

In the limit μ� T and m = 0, one finds, for fermion and boson species having g degrees

of freedom:

ΔnF =
g

6
T 3

[
μF
T

+
1

π2

(μF
T

)3
]
, (FERMIONS)

ΔnB =
g

3
T 3

[
μB
T
− 3

2π2

(μB
T

)3
]
, (BOSONS) (1.5)

that gives, at first order:

JB0 (TC) � e

3
μBT

2
C . (1.6)

It follows that

TC �
√

3JB0 (μB = mB, C = 0)

emB
(1.7)

which coincides with what is presented in the literature - see e.g. reference [18].
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Chapter 1. Bose-Einstein condensation

1.2.1 Kinetic approach

To verify that the distributions fF and fB written above are the equilibrium ones, one

can use a kinetic approach. The kinetic equation has the form:

df1

dt
= Icoll[f ] , (1.8)

where the collision integral Icoll is equal to

Icoll = −(2π)4

2E1

∫
dτ ′indτfinδ

(4)
(∑

pin −
∑

pfin

)
|Aif |2F [f ], (1.9)

and

F [f ] = Πfin(1± ffin)−Πffin(1± fin) . (1.10)

In equation (1.9) dτ ′in is the phase space of all initial particles except for particle under

scrutiny, i.e. the initial particle 1, dτfin is the phase space of all final particles, Aif is the

amplitude of the transition from an initial to a final state. The product is taken over all

initial (in) and final (fin) states and signs plus or minus stand for bosons and fermions

respectively. It is straightforward to check that F [f ] vanishes on distributions (1.2) for

arbitrary μF and μB ≤ mB satisfying the usual condition of chemical equilibrium:

∑
μin =

∑
μfin . (1.11)

If μB = mB, there arises an additional freedom that F [f ] vanishes for distribution (1.3)

with an arbitrary C. The value of the latter is determined by the magnitude of the

asymmetry between bosons and anti-bosons - see below. Notice that, in equilibrium,

the chemical potentials of particles and antiparticles are opposite, μ̄ = −μ. Hence, if

bosons condense with μB = mB, the anti-bosons cannot condense because μB̄ = −mB .

We assume above that the collision amplitude is T-invariant, but even if this restric-

tion is lifted, the collision integral is still annihilated by functions (1.2) or (1.3) due to

S-matrix unitarity [19].

Concerning the formation of the Bose-Einstein condensate, it is essential that the

particles in question possess a conserved quantum number that forces their chemical

potential to be non-vanishing, if the number of particles is not equal to the number

of antiparticles. The amplitude C is then calculated from the known difference of the

number densities of particles and antiparticles.

For the models discussed in this thesis, the conserved quantum number is the electric

charge, since we consider electrically charged bosons and induce their condensation

through an asymmetry in the leptonic sector. When this asymmetry resides on charged

10



Chapter 1. Bose-Einstein condensation

leptons, bosons must have a non vanishing chemical potential to preserve the global

electric charge neutrality of the system. Hence, if the asymmetry in the fermion sector

is large enough, bosons condense.

We can express the amplitude of the condensate through the electric charge density

of the plasma. We impose the condition that the total electric charge density of all the

present species is zero. The condition of vanishing electric charge density may be not

fulfilled e.g. in cosmology [20], but we postpone this case for future consideration. So

we assume that the total electric charge is vanishing: J0 = 0. Expressed through the

particle occupation numbers fB,F this condition reads:

∫
d3q

[∑
B

gBQB

(
fB − f̄B

)
+
∑
F

gFQF

(
fF − f̄F

)]
= 0, (1.12)

which is valid for any plasma made of bosons (B) and fermions (F ) having gB,F spin de-

grees of freedom and particle charges QB,F (of course, antiparticles have charges −QB,F ).

Here we skipped the arguments of fF,B.

To conclude, the amplitude of the Bose condensate C for globally neutral plasma is

equal to:

C = −4π

∫
dq q2

[∑
B

gBQB

(
fB(EB, μB, T )− f̄B(EB,−μB, T )

)

+
∑
F

gFQF

(
fF (EF , μF , T )− f̄F (EF ,−μF , T )

)]
(1.13)

Here EB,F =
√
m2
B,F + q2 and μB = mB for the condensed bosonic species. The mag-

nitude of the fermionic chemical potential, μF , is determined by the charge density of

fermions. For instance, for a model containing one scalar boson with charge +1 and one

spinor fermion having charge −1, we have:

C = −4π

∫
dq q2

[
fB(EB, mB, T )− f̄B(EB,−mB, T )

− 2fF (EF , μF , T ) + 2f̄F (EF , μF , T )

]
. (1.14)

The fermion chemical potential is assumed as a free parameter in the models considered

in chapters 2 and 3. Nevertheless, when considering the realistic SU(2) × U(1) model

in cosmology, the cosmological bounds on the lepton asymmetry of the universe must

be taken into account - see discussion in section 1.4.1.

11



Chapter 1. Bose-Einstein condensation

1.3 The electro-weak symmetry

The standard model of particle physics (SM) successfully describes the interactions be-

tween elementary particles with the exclusion of gravity. Dynamics, that is, interactions,

naturally arise when using a locally symmetric lagrangian, that is, in gauge field theo-

ries. In particular, the SM lagrangian is invariant under the non-abelian symmetry group

SU(3) × SU(2) × U(1), where SU(3) accounts for strong forces, while SU(2) × U(1)

constitutes the weak sector. For a complete review on the subjects which are introduced

in this section see [21; 22] and references therein.

Let us recall that the generators Tj (with j = 1, ..., NG) of a non-abelian group G

obey, by definition, the commutation relations:

[Ti, Tj ] = ifijkTk , (1.15)

where fijk are called the structure constants of the group and are antisymmetric under

interchange of any pair of indices. Let us consider the transformation of fields according

to some representation of G. The generators Tj will be represented by n × n matrices

Lj and the field transformation is specified by NG parameters which we call θj and can

be written as:

φ→ φ′ = exp−iL·θ φ , (1.16)

where φ is a multiplet of fields

φ =

⎛
⎜⎜⎜⎜⎝

φ1

φ2

...

φn

⎞
⎟⎟⎟⎟⎠ . (1.17)

Let us assume that the lagrangian is invariant under a global transformation U(θj). If

the parameters θj depend on the position x, the gradients contained in the lagrangian

break the invariance at local level. This problem can be solved by substituting the

standard derivatives with a covariant derivative having the property:

Dμφ(x)→ D′
μφ

′(x) = U(θ)Dμφ(x) . (1.18)

As long as all the gradients of the lagrangian are contained in the covariant derivative,

the invariance under local non-abelian gauge transformations is ensured. If we introduce

one vector field W j
μ(x) for each generator of the group, we can write the covariant

12



Chapter 1. Bose-Einstein condensation

derivative as:

Dμφ(x) = [∂μ + ig L ·Wμ(x)]φ(x) , (1.19)

where g plays the role of a coupling constant. Evidently this procedure introduces, in

the free particle lagrangian, interactions mediated by the gauge boson W j
μ(x).

1.3.1 Spontaneous symmetry breaking

The SM is a gauge theory based on the group SU(3)× SU(2)× U(1). As it is clear by

the number of generators of such a group, the SM contains twelve gauge bosons: the

photon, the W±, the Z0 and eight gluons respectively for the electromagnetic, weak and

strong interactions. But, while photons and gluons are massless, the weak bosons W±

and Z0 have almost degenerate masses of order of 100 GeV. If we introduce such masses

explicitly in the lagrangian, e.g. we break the symmetry of the model by an explicit

mass term, the renormalizability of the theory is spoiled, since the high momentum limit

of the propagator tends to a constant:

kμkν/m
2

k2 −m2
→ const , (1.20)

which leads to divergent terms. The way to generate the required masses while avoiding

such a undesirable feature passes through the spontaneous breaking of the symmetry

of the electro-weak gauge group, SU(2) × U(1). In spontaneously broken systems the

ground state does not possess the same symmetry properties of the lagrangian. The

spontaneous breakdown of a continuous symmetry in field theory implies the existence

of massless spin-less particles (Nambu-Goldstone bosons), whose number is equal to the

number of the broken generators [23]. It comes out that, when SSB occurs in a gauge

theory involving massless vector fields and scalar fields, the Goldstone bosons disappear

and re-emerge as the longitudinal mode of the vector fields, which therefore behave

become massive particles (Higgs phenomenon). By using this mechanism it is possible

to generate masses for the W and Z bosons without spoling renormalizability.

As an example, let us consider a simple lagrangian locally invariant under U(1):

L = −1

4
FμνF

μν + [(∂μ − ieAμ)φ∗] [(∂μ + ieAμ)φ]− μ2φφ∗ − λ(φφ∗)2 . (1.21)

Clearly, if we assume λ > 0 and μ2 < 0 there is a ring of degenerate ground states. The

lagrangian (1.21) has in total four degrees of freedom (DOFs), two from the massless

13
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vector boson and two from the scalar complex field. If we redefine the scalar field as:

φ(x) =
1√
2

[v + ξ(x) + iχ(x)] v =

√
−μ2

λ
(1.22)

and substitute it in the lagrangian (1.21) we get:

L = −1

4
FμνF

μν +
e2v2

2
AμA

μ +
1

2
(∂μξ)

2 +
1

2
(∂μχ)2 − λv2ξ2 + . . . , (1.23)

which seems to describe the interactions of a massive vector field and two scalars. Since

this lagrangian contains apparently five DOFs, one of them is clearly spurious and can

be eliminated by choosing a particular gauge called the U gauge, in which the unphysical

DOF is absorbed in the arbitrary field phase. In practice and for a U(1) gauge theory,

since the parameter θ(x) can be arbitrarly chosen, we can set it equal to the phase of

φ(x) at each space-time point, so that:

φ′(x) = exp−iθ(x) φ(x) =
1√
2

[v + η(x)] (1.24)

This way both φ′ and η are real and the lagrangian becomes

L = −1

4
F ′
μνF

′μν +
e2v2

2
A′
μA

′μ +
1

2
(∂μη)

2 − λv2η2 + . . . , (1.25)

where

A′
μ(x) = Aμ(x) +

1

e
∂μθ(x) F ′

μν = ∂μA
′
ν − ∂νA′

μ . (1.26)

This way L describes the interactions of a massive vector boson A′
μ and a real scalar

field η, called the Higgs boson with mass

m2
η = 2λv2 = −2μ2 (1.27)

In conclusion, when a symmetry is spontaneously broken the gauge boson acquires a

mass while the Goldstone boson disappears, leaving the Higgs boson as the only scalar

field. The same mechanism is applied to the whole electro-weak group in the Yang-Mills

theories.

It is worth stressing that symmetry breaking is one of the crucial points of the SM:

weak and electromagnetic interactions are made different by the Higgs field, which breaks

the symmetry among them. Without the Higgs, weak and electromagnetic interactions

would be indistinguishable and the weak bosons, W and Z, would be massless.
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1.3.2 The electro-weak phase transition

The idea of spontaneous symmetry breaking was extensively used in solid state physics

before than in particle physics. For instance, such phenomena as ferromagnetism, super-

fluidity, superconductivity etc. can be described by a spontaneous symmetry breaking.

In this sense, knowing the properties of solid state physics systems turned out very

useful to study particle physics by analogy.

 

V( ) - V(0) V( ) - V(0) 

Figure 1.1: Behavior of the effective potential V (φ)− V (0) as a function of the order
parameter φ in theories in which phase transitions are first order (left side) or second
order (right side).

For instance, we know from our everyday life that thermodynamical conditions, such

as temperature and pressure, can affect the properties of a physical system. Systems

with spontaneously broken symmetries are not an exception. In solid state physics it

was observed that heat can lead to the restoration of a broken symmetry. The associated

phase transition can be first or second order, see figure 1.1. In the first case, during the

phase transition, the effective potential has two local minima separated by a barrier,

one corresponding to a stable state of the system and another to an unstable state. The

phase transition happens through formation of bubbles of the new (stable) phase, which

expand in the unstable one, as in boiling water. In a second order phase transition,

instead, the order parameter φ decreases continuously to zero with rising temperature.

Analogously, as it was shown by Kirzhnits and Linde [25], the vacuum expectation

value of the Higgs field, which is responsible for the E-W symmetry breaking, should

disappear at high enough temperature, see [26] for a complete review. As a consequence,

the electro-weak symmetry would be restored in the early universe, when such high

temperatures were realized. This is called electro-weak phase transition.
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In the SM framework, the critical temperature of the phase transition, Tc, is of order

100 GeV, and the transition should be second order for Higgs masses above 80 GeV [27].

In analogy with superconductivity, which can be destroyed by external fields and

currents, the EW phase transition can be influenced by charge densities and currents.

For instance, raising density of matter can lead to symmetry restoration in theories with

only charged currents [28], see also [26], in analogy with superconductive phenomena.

Roughly, this happens because, if we consider a fermion ψ interacting with a scalar field

φ, the energy of the fermion is proportional to φ〈ψ̄ψ〉. As a consequence, increasing the

density of fermions, 〈ψ̄γ0ψ〉, makes the states with φ �= 0 energetically unfavorable.

On the contrary, in the presence of neutral currents, symmetry restoration is inhib-

ited in the presence of sufficiently high fermion densities [5]. This point is discussed in

detail in section 1.4 for the EW sector of the SM.

1.3.3 Sphalerons

Baryon and lepton numbers are conserved in the SM at the classical level, that is, the

associated classical currents Jμ are conserved:

∂μ J
μ
B = ∂μ J

μ
L = 0 . (1.28)

The conservation law written above is violated at the quantum level for global symme-

tries as a consequence of the Adler-Bell-Jackiw (ABJ) anomaly [29]. An anomaly is the

failure of a classical symmetry of the lagrangian L to survive the process of quantization

and regularization. If we have a classic symmetry, the transformation φ → φ + δφ will

leave the action S(φ) invariant, while, if we have a quantum symmetry, the same trans-

formation will leave the path integral
∫
DφeiS(φ) invariant, where Dφ is the measure.

Therefore it looks reasonable that some classic symmetries may be not valid in quantum

theories. On the other hand, local gauge symmetries are always associated to conserved

quantities, think for instance of the electric charge.

Because of quantum corrections, the divergence of both the baryon and lepton cur-

rents is non vanishing in the SM, at least for for some field configurations.

By making explicit calculations, it comes out that the two divergences are equal

besides a numerical factor: the divergence of the baryon (fermion) current is proportional

to the number of quark (lepton) families [30]. As a consequence, as long as the model

contains the same number of quark and lepton families (e.g. the SM has three of both)

B−L is conserved rather than B and L separately. Of course, this is true as long as the

special field configurations, which make the divergence of the currents non vanishing,

are realized. Otherwise, the two currents would be automatically conserved.

An example of such a special field configuration is the SU(2) instanton at low tem-
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perature. In the broken phase of non-Abelian gauge theories there are topologically

different vacua separated by a barrier. If the temperature is smaller than the height

of the potential barrier, there may be transitions via tunneling from a vacuum state to

another, characterized by different baryon numbers. The field configuration in this case

is called instanton.

It was shown by ’t Hooft that the rate of baryon number violation by instanton effects

is suppressed by a factor exp(−16π2/g2) � 10−170, where g = 0.637 [31]. This leads

to practically unobservable effects, for instance the proton lifetime for decay through

instanton channel has been estimated to be larger than the age of the universe by orders

of magnitude.

However, the situation is different at high enough temperature, when thermal fluctu-

ations can take the field over the barrier, making it pass from one state to another in a

classic way, without tunneling [32]. In this case the static solution of the field equations

is called a sphaleron. The latter is a classical field configuration, in the sense that its

Compton wavelength is much smaller than its size.

The energy of such a sphaleron, corresponding to the height of the barrier between

the vacuum states, is given by:

Es =
2mW (T )

αW
f(c.c.) , (1.29)

where mW is the mass of the W boson, αW = α/ sin2 θW � 1/30, f is a function of the

coupling constants (c.c.) of the SM and takes values of order unity in the model with

the doublet Higgs field. At T → 0, when mW ∼ 80 GeV, it follows that Es ∼ 10 TeV.

If sphalerons are in thermal equilibrium, their number density, that is related to the

probability of baryon number violating transitions, is proportional to the Boltzmann

suppression factor exp(−Es/T ). The latter decreases with increasing temperatures be-

cause of the 1/T factor in the exponential and the reduction in mW due to the decrease

of the Higgs condensate. Formally, above the EW symmetry restoration, Es = 0 because

the Higgs condensate disappears. Actually, due to the medium effects, the W boson

acquires a temperature dependent magnetic mass ∼ αWT , that is anyway not sufficient

to suppress the equilibrium sphaleron rate at high temperature.

As a consequence, the processes with baryon number non-conservation would not be

suppressed at very high temperature and consequently any B +L asymmetry would be

erased. Actually, the rate of production of coherent classical field states in the collisions

of elementary particles is a complicated problem. For the symmetric phase, the rate of

the transitions is not calculable by any perturbative method. The only way to address

such a problem is to use parametrical estimates and numerical lattice calculations, for

a detailed discussion on this point see e.g [33].
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1.4 The condensation of W bosons in the primordial

universe

In this section the conditions for the condensation of bosons are analyzed and their

possible realization in the primordial universe is discussed.

We focus in particular on the condensation of W -bosons, that was first considered

in the pioneering papers [5], where the broken electroweak sector was studied at zero

temperature. In the cited papers it was argued that, at sufficiently high leptonic chemical

potential, a classical Wj boson field could be created in the early universe.

In what follows we consider a simple example of electrically neutral plasma where

charged W -bosons condense because of a large asymmetry between leptons and antilep-

tons. For simplicity we confine ourselves to only one family of leptons. This simplifi-

cation does not influence the essential features of the result. A more detailed analysis

with all the particles included can be found in reference [34]. Quarks may be essential

for the imposing of the condition of vanishing of all the gauge charge densities in plasma

and for the related cancellation of the axial anomaly but we work in the lowest order of

the perturbation theory where the anomaly is absent.

The plasma is supposed to be electrically neutral, with zero baryonic number density

but with a high leptonic one. The essential reactions are the direct and inverse decays

of W :

W+ ↔ e+ + ν . (1.30)

The equilibrium with respect to these processes imposes the equality between the chem-

ical potentials:

μW = μν − μe (1.31)

The condition of electroneutrality reads:

nW+ − nW− − ne− + ne+ = 0 , (1.32)

while the leptonic number density is equal to

nL = nν − nν̄ + ne− − ne+ . (1.33)

Here n = gs
∫
d3p/(2π)3f is the number density of the corresponding particles and

gs is the spin counting factor. One should remember that only left-handed electrons

participate in reaction (1.30), chirality is conserved in reactions with Z-bosons and
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photons, while chirality flip may take place only in reactions with Higgs bosons.

Leptonic number is supposed to be conserved, so nL is constant in the comoving

volume and is a fixed parameter of the scenario. (B+L)-nonconservation induced by

sphalerons is neglected because temperature is mostly assumed to be below the elec-

troweak phase transition.

It is evident that for sufficiently high nL the chemical potential of W should reach

its maximum value, μW = mW , and with further rising nL, W-bosons must condense.

In particular, the condensate is formed when the critical lepton number density, ncν , is

reached.

As we wrote in section 1.1, the formation of a Bose condensate takes place when the

de Broglie wavelength λdB ∼ 2π/
√

2mT is equal or larger than the inter-particle sepa-

ration. Hence we can use this simple criterion to roughly check whether the conditions

to create a condensate are realized or not.

Let us first assume that the density of leptonic charge is very large, nL > T 3.

Correspondingly the amplitude of the condensate must also be large, nCW ≈ C/(2π)3 >

T 3. In this case μe,ν > mW and equations (1.31–1.33) can be easily solved:

μν ≈ μe nL ≈ μ3
ν

2π2
, and nCW ≈

2

3
nL . (1.34)

According to the equilibrium distribution (1.3) the plasma would consist of two parts,

the condensate with zero momentum and the high temperature plasma over the conden-

sate. Interparticle separation of the non condensed W -bosons under these conditions

is d ∼ n
−1/3
L < T−1, while the de Broglie wave length of the condensed W ’s with zero

momentum is formally infinitely large. In the realistic condensate the particle momen-

tum is not precisely zero but is of the order of the inverse size, r−1, of the region where

W -bosons condense. The de Broglie wave length of W -bosons above the condensate,

λdB ∼ 2π/
√

2mT is thus larger than d as long as T < mW/2π
2.

For instance, nL � T 3, could be created in the Affleck-Dine scenario, see section

1.4.2. In this model the universe could be quite cold. Later, when nL ∼ 1/a3 is diluted

by the cosmological expansion down to the value when μW becomes smaller than mW

the condensate would evaporate and the universe would be reheated.

Though the possibility of a huge lepton asymmetry is quite interesting, the condensa-

tion of W -bosons could take place even with much smaller nL ∼ m3
W . The interparticle

separation of W-bosons under these conditions is d ∼ n
−1/3
L ∼ m−1

W . The de Broglie

wavelength of the high temperature plasma would be again λdB ∼ 2π/
√

2mT , that is

larger than d as long as T < 2π2mW . As is argued above, the de Broglie wave length of

the condensed W-bosons even in this case is much larger than the interparticle distance.

At T ∼ mW the charged weak bosons, W , condense if all the relevant quantities are
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close by an order of magnitude to the W -boson mass to a proper power, i.e. μν ∼ μe ∼
mW , nL ∼ m3

W . They rise with rising temperature, as can be found from numerical

solution of equations (1.31–1.33).

More rigorous calculations of the critical number density necessary for condensation

can be found in the literature, see [35; 36; 37; 38] where the general equations are

presented, together with some critical discussion on the approximations used. It is also

shown that an analytic solution is possible only in some special limits and that the

approximations used are not valid in some regions of parameters.

For instance, the critical total leptonic chemical potential below the EW symmetry

breaking in the low temperature limit, T → 0, is [35; 36]:

μcL � mW +
T 2

65 GeV
. (1.35)

At high temperature, that is T much larger than masses and chemical potentials but

smaller than the EW breaking value, W -bosons would condense at

μcL = 0.3
√
T 2 − T 2

c , (1.36)

where Tc ∼ 200 GeV [36].

The W -boson mass, mW , approaches its usual vacuum value created by the Higgs

condensate when T → 0. But when the temperature rises, it changes because of two

opposite effects. The first one is the usual positive temperature correction δmW ∼
eT . The second effect is negative and is related to a decrease of the amplitude of the

Higgs condensate. As a result, at temperatures above the electroweak phase transition,

when the Higgs condensate disappears [25], the sole contribution to W -mass comes from

the temperature corrections [39] and mW may be much smaller than its vacuum value

determined by the Higgs condensate.

Hence the W mass in the electroweak symmetric phase might be lower than in the

broken phase and a lower lepton asymmetry would be required for the condensation.

In this thesis we mostly assume that the temperature is below the electroweak phase

transition and thus the plasma consists of massive W and Z bosons, neutral Higgs

bosons, quarks, leptons, and their antiparticles. Nevertheless the interesting possibility

of W condensation at lower lepton asymmetry should be kept in mind.

1.4.1 Lepton asymmetry - cosmological bounds

As we have seen, a large lepton asymmetry is required to make W bosons condense in

the early universe. Given the electrical neutrality of the universe, if such an asymmetry

exists, it must necessarily reside in neutrinos.
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Even though cosmological lepton asymmetry can not be directly measurable, its

impact on big bang nucleosynthesis (BBN), CMB and large scale structure formation

can be used to calculate constraints.

The most stringent bounds today come from BBN, since an asymmetry in the elec-

tronic neutrino is reflected into the primordial elements production through the weak

reactions:

νen←→ e−p ν̄e p←→ e+n. (1.37)

The other two neutrino species, muonic and tauonic, directly participate only through

their impact on the universe cooling rate, that is typically parametrized through the

effective number of neutrinos. Nevertheless, neutrinos are known to mix. Hence all

flavors must have similar asymmetries at the BBN epoch [40; 41]:

− 0.04 ≤ ξν =
μν
T
≤ 0.07. (1.38)

It should be noted that the entropy release from the electroweak epoch down to the

BBN epoch diminishes the lepton asymmetry, nL/nγ, by the ratio of the particle species

present in the cosmological plasma at these two epochs, which is approximately 10.

Hence the original lepton asymmetry, (nL/nγ)EW could be of order unity and still com-

patible with BBN.

Nevertheless it should be noted that the stringent bounds at the BBN epoch given

in equation (1.38) can not exclude a large primordial lepton asymmetry. It was shown

in [42] that the previously quoted bounds apply when all initial asymmetries have the

same sign. In this case there would be an approximate flavor equipartition. But, if

two flavors have opposite asymmetries, the total impact on BBN would vanish. In this

case the primordial lepton asymmetry would leave an imprint on the number of effective

neutrinos, which may be detectable in future precision cosmological observations.

It should be also noted that in the early universe there could be mechanisms active to

block neutrino oscillations, for instance the coupling to a hypothetical pseudogoldstone

boson, Majoron [43].

To conclude, the formation of the W boson condensate is consistent with the present

cosmological bounds on lepton asymmetry even in the broken phase of the EW sector,

when an asymmetry as large as nL ≥ m3
W is required.

At high temperatures, when the Higgs condensate is underdeveloped, the W -boson

mass may be noticeably smaller than the plasma temperature and W could condense

even at |μ/T | � 1, corresponding to |μ/T | � 0.07 at BBN. If W s condensed above

the electroweak phase transition, the magnitude of the chemical potential necessary for

the condensation was much smaller than temperature, μW ∼ gT , as explained above.
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Chapter 1. Bose-Einstein condensation

As we see, in this case the chemical potentials of electrons and neutrinos would be also

much smaller than temperature. In this limit the differences between number densities of

fermions and anti-fermions, at first order in μ/T , are twice larger than the corresponding

for bosons, as one can see from equations (1.5):

nF − nF̄ =
1

6
gFμFT

2, (1.39)

where gF is the number of the spin degrees of freedom, ge = 2, gν = 1.

Substituting this expression into equations (1.31–1.33) and assuming an arbitrary

chemical potential μW < T , we find that the condensate would be formed if approxi-

mately nL ≥ gT 3 and that all the chemical potentials are of the order of gT . Corre-

spondingly the necessary lepton asymmetry could be as small as nL/nγ ∼ g. We see

that even without the entropy release such lepton asymmetry is not dangerous for BBN.

If the lepton asymmetry was generated above the EW phase transition, it might be

transformed into the baryonic one by the sphaleron processes, creating unacceptably

large baryon asymmetry. Nevertheless, lepton asymmetry could be generated in the

broken EW phase. It should be noted that a mechanism to avoid the generation of

too large baryon asymmetry is triggered by a large lepton asymmetry itself. This is

discussed with some details in the following section.

1.4.2 Generation of a large lepton asymmetry

Baryogenesis is one of the open issues of modern cosmology. It is commonly believed

that our universe is matter asymmetric, in the sense that there exists a tiny excess of

matter over anti-matter. BBN [44] and CMB [45] data consistently indicate a local

excess of baryons (B) over anti-baryons (B̄), which is quantified as:

η =
nB − nB̄

nγ
� 6 · 10−10 , (1.40)

where ni are number densities of baryons, anti-baryons and photons (γ). Still, the details

of how such an asymmetry was generated are not fully understood yet.

The SM contains all the ingredients required to produce a baryon asymmetry, that

are the three Sakharov conditions: B and CP violating interactions and departure from

thermal equilibrium [46]. Nevertheless, the amount of the CP violation is insufficient to

account for the observed value of η.

Given that in several theoretical models, e.g. the SM at high temperature (see section

1.3.3) and most of Grand Unified Theories (GUTs), B − L is conserved rather than B

and L separately, one popular way to produce the baryon asymmetry is through partial

or total conversion of a lepton asymmetry.
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Chapter 1. Bose-Einstein condensation

The usual theoretical attitude towards lepton asymmetry is that, since sphalerons

should be effective before the EW phase transition, lepton and baryon cosmic asymme-

tries would be the same. Nevertheless, in theories with neutral currents, such as the

SM, the presence of a large lepton asymmetry suppresses the EW symmetry restoration

at high temperatures. This phenomenon was pointed out in reference [5] and confirmed

in several subsequent papers [47; 48], see also [26].

As a consequence, sphalerons could be not fully efficient even in the early universe.

Hence, even though the lepton asymmetry was generated at very high temperatures,

when the EW symmetry would be normally restored, the baryon and lepton asymmetries

equipartition could be not realized.

A lot of viable baryogenesis models have been proposed, for a review see e.g. [49]

and references therein. Among them, models of generation of large lepton asymmetry

were considered in references [47; 50; 51; 52].

One possibility to naturally produce lepton (or baryon) asymmetry of order unity

is given by the popular Affleck-Dine (AD) mechanism [53]. The latter is based on the

existence of flat directions in the potential of supersymmetric theories (SUSY), e.g.

directions in which the potential vanishes. In SUSY ordinary quarks and leptons have

boson partners, hence several scalar fields are naturally present. These scalar fields carry

baryon and lepton number. A coherent field, i.e., a large classical value of such a field,

can in principle carry a large amount of baryon or lepton number.

In the primordial universe, when H ≥ 100 GeV, e.g. during inflation, the finite

energy density breaks SUSY. Such a breaking can lift the flat directions from zero to

finite energy. The superpotential for the scalar field φ in the minimal SUSY extension

of the SM takes the form:

V (φ) =
(
m2

3/2 − cH2
) |φ|2 +

|λ|2
M2(n−3)

|φ|2(n−1) +

(
Aλ+ aH

nMn−3
φn + h.c.

)
. (1.41)

where M is some large mass, generally assumed equal to the Planck or the GUT mass

and m3/2 ∼ 102−103 GeV. The A term is responsible for the baryon (or lepton) number

violation. The parameters n, λ and A depend on the model and on which flat direction

is lifted.

After the decay of both the condensate φ and the inflaton, an asymmetry for the U(1)

number carried by φ could be created, where the amount of the produced asymmetry

is only slightly dependent on the model parameters. The baryon (or lepton) to entropy

ratio can be roughly estimated as:

nB
s
� nB TR

ρI
� nB
nφ

TR
mφ

ρφ
ρI
, (1.42)
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where TR is the reheating temperature after the inflaton decay, while the fractional

baryon number nB/nφ ∼ 1 must be calculated numerically. The ratio ρφ/ρI can be

estimated analytically as:

ρφ
ρI
�
(
m3/2M

n−3

λMn−2
P l

)2/(n−2)

, (1.43)

see the references quoted above for the details. Typically, the AD mechanism produces

nB(L)/s of order 1, that would permit the condensation ofW bosons in the early universe.

1.5 Screening in plasma

Being interested in applications to cosmology, when the primordial universe was dense

and hot, it is important to consider the effects of medium in the physical problems

addressed.

A typical and well known medium effect is screening of a an electric charge, Q. In

plasma, the long-ranged Coulomb field generated by some test charge Q is transformed

into the Yukawa type potential (see e.g. [39; 54]):

U(r) =
Q

4πr
→ Q exp(−mDr)

4πr
, (1.44)

where the Debye screening mass, mD, is expressed through plasma temperature and

chemical potentials of the charged particles. Physical interpretation of this result is

evident: test charge polarizes plasma around, attracting opposite charge particles. As

a consequence, the electrostatic field drops down exponentially faster than in vacuum.

Formally, Debye screening appears from a pole at purely imaginary k in the photon

propagator in plasma, (k2+Π00)
−1, where Π00 is the time-time component of the photon

polarization operator.

More generally, the photon equation of motion in momentum space can be written

as - see section 3.1:

[kρkρg
μν − kμkν + Πμν(k)]Aν(k) = Jμ(k), (1.45)

where Πμν(k) is the photon polarization tensor. In vacuum, Πμν is made of null com-

ponents, while in medium it is non vanishing and gives rise to the modifications with

respect to the standard electro-magnetic interactions.

In the electrostatic case, when ω = 0, it follows from equation (1.45) that:

(|k|2 −Π00)A0 = −q, (1.46)
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where q is the (small) charge of the test particle. When Π00 is independent on the

photon momentum k, equation (1.46) becomes the usual equation for a scalar field with

mass m =
√−Π00. In this case, which is usually realized at least for small |k|, the Debye

mass mD is equal to
√−Π00 and the electrostatic potential turns from the Coulomb to

the Yukawa one. Clearly, in this case the Debye mass coincides with the inverse of the

screening length.

In the presence of a BEC, the simple relation mD =
√
−Π00(ω = 0) becomes invalid

and a more general definition is needed. Hence, the Debye mass is defined as the position

of the poles of the inverse operator (|k|2 − Π00)
−1.

By an evident reason the screening effects were studied historically first in fermionic

i.e. in electron-proton and in electron-positron plasma, taking into account finite tem-

perature T and non vanishing chemical potential μ effects [39]. Some examples that can

be found in the literature are plasma consisting of:

• Relativistic fermions with mF � T, μF : m2
D = e2 (T 2/3 + μ2

F/π
2).

• Non relativistic fermions: m2
D = e2nF/T where

nF =
exp(μ/T )

π2

∫
dqq2e−q

2/2mF T .

• Massless scalars without chemical potential: m2
D = e2T 2/3.

For degenerate fermionic plasma another and quite striking behavior was found.

Namely the screened potential drops down as a power of distance, 1/r3 in non-relativistic

case and 1/r4 in relativistic case multiplied by an oscillating function, cos(kF r) or

sin(kF r), where kF is the Fermi momentum. This phenomenon is called Friedel oscilla-

tions [55; 56]. It is prescribed to a sharp (non-analytic) cut-off of the Fermi distribution

of degenerate electronic plasma at T = 0 combined with the logarithmic singularity of

the photon polarization operator Π00(ω = 0, k).

Plasma with charged bosons attracted attention much later, both for pure scalar

electrodynamics, for a review see e.g. reference [57], and for quark-gluon plasma [39; 58].

Surprisingly until very recently the impact of possible Bose condensate of charged fields

on the photon polarization operator was not considered. Only recently an investigation

of plasma with Bose condensate of charged scalars was initiated, see chapter 2 of this

thesis and references [4; 9; 10; 11; 12; 13; 14; 15; 59; 60]. It was found that in the presence

of Bose condensate the screened potential behaves similarly to that in the degenerate

fermionic case, i.e. the potential oscillates, exponentially decreasing with distance [4;

9]. This effect, however, in contrast to Friedel oscillations, does not come from the

logarithmic branch point singularity in Π00 but from the pole in the photon propagator at
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complex (not purely imaginary) value of k. It was shown that the polarization operator

contains infrared singular term Π00 ∼ 1/k2 [9; 12] which shifts the pole position from

imaginary axis (as in Debye case) to a point with non-zero real and imaginary parts.

At non-zero temperature the polarization operator has another infrared singular term

∼ 1/k. This term is odd with respect to the parity transformation, k → −k and, as a

result, the potential acquires a term which decreases as a power of distance but does

not oscillate [9; 10]. Finally, the polarization operator has logarithmic singularity as in

the fermionic case and this singularity also generates an oscillating potential similar to

the Friedel one. It is interesting that the screened potential is a non-analytic function

of the electric charge e. In particular in certain limit it may be inversely proportional

to e, despite being calculated in the lowest order in e2.

Another oscillatory and exponentially damped behavior of the potential between

static charges has been reported in the literature: it was argued [61] that in nuclear

matter at high densities and low temperatures, the Debye pole acquires a non-zero real

part and so the screened potential oscillates (see also [62]). These Yukawa oscillations

are short-ranged oscillations and fade away with distance faster, as compared to the

Friedel oscillations.

Screening of color charges in QCD in the presence of uncharged pion condensate was

considered recently in [63]. Since the condensate is uncharged, its effect is quite different

from what is discussed above.

Another quantity of interest is the plasma frequency ωp, which enters the dispersion

relation of electromagnetic waves propagating in plasma. It is defined as the limit

of k → 0 of certain space-space components Πij . Using the transversality condition,

kμΠμν = 0, we can decompose the photon polarization operator in a medium in terms

of two scalar functions, a(ω, |k|) and b(ω, |k|):

Πij = a

(
δij − kikj

k2

)
+ b

kikj
k2

, Π0j =
kj
ω
b, Π00 =

k2

ω2
b. (1.47)

We have assumed here that the medium is isotropic and so a and b depend only on the

absolute value of the photon momentum. In the limit Πij ∼ δij , a = b, that is, plasma

frequency is determined by the equation:

ω2
p = b(ω, |k = 0|) = a(ω, |k = 0|). (1.48)

26



Chapter 2

Ferromagnetic properties of vector

boson condensate

This chapter of the thesis is mostly based on reference [6]. The Bose-Einstein condensa-

tion of the charged weak bosons, W± is analyzed in the electroweak sector SU(2)×U(1).

Such condensation might occur in the early universe if the cosmological lepton asym-

metry was sufficiently large, as it is discussed in section 1.4. The primeval plasma is

supposed to be electrically neutral and to have zero density of weak hypercharge.

In general a Bose-Einstein condensate of vector fields may form either a scalar state,

when the average value of vector Wj is microscopically small, or a classical vector state

when all the individual spins of the condensed vector bosons are aligned at a macro-

scopically large scale.

It is shown that, as long as we neglect screening effects, a ferromagnetic state, where

all the spins are aligned, is realized. This is due to the competition of the dominant direct

spin-spin interactions with the subdominant local quartic interaction of W s. Screening

effects are finally discussed and it is shown how they may affect the previous results.

Screening is not relevant in the broken phase, nevertheless it may turn the system into

an antiferromagnetic one when the symmetry is restored.

2.1 Equations of motion of gauge bosons and their

condensation.

In this chapter we consider the evolution of the gauge bosons of SU(2)×U(1) electroweak

model. As it is discussed in section 2.3, since W bosons are free particles, their magnetic

properties are essentially determined by the direct spin-spin interactions. The latter can

be analyzed by considering the equations of motion of the boson fields in the E-W sector

of the SM. The Lagrangian of the minimal electroweak model has the well known form
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Chapter 2. Ferromagnetic properties of vector boson condensate

[21]:

L = Lgb + Lsp + Lsc + LY uk, (2.1)

which are respectively the gauge boson, the spinor, the scalar, and the Yukawa contri-

butions. Explicitly we have:

Lgb = −1

4
Gi
μνG

i μν − 1

4
fμνf

μν , (2.2)

Gi
μν = ∂μA

i
ν − ∂νAiμ + gεijkAjμA

k
ν , fμν = ∂μBν − ∂νBμ,

Lsp = Ψ̄iD/ Ψ, DμΨ =

(
∂μ − i

2
g σjAjμ −

i

2
g′Y Bμ

)
Ψ,

Lsc =
1

2
(DμΦ)† (DμΦ) +

1

2
μ2Φ†Φ− 1

4
λ(Φ†Φ)2,

DμΦ =

(
∂μ − i

2
g σjAjμ −

i

2
g′Bμ

)
Φ,

where i = 1, 2, 3 and the Yukawa Lagrangian describes interactions of fermions with the

Higgs field.

In the expressions above Aiμ and Bμ are the gauge boson potentials of the SU(2)

and U(1) groups respectively, g and g′ are their gauge coupling constants, Y is the

hypercharge operator corresponding to the U(1) group and σj are the Pauli matrices

operating in SU(2) space. As usually, the repeated indices imply summation.

In the broken phase the physical massive gauge boson fields are obtained through

the Weinberg rotation:

W±
μ =

A1
μ ∓ iA2

μ√
2

, Zμ = cWA
3
μ − sWBμ , Aμ = sWA

3
μ + cWBμ, (2.3)

where cW and sW stand respectively for cos θW and sin θW and θW is the Weinberg

angle. The other fields involved in the Lagrangians presented above are the spinor Ψ

and the Higgs field Φ = [φ+, φ0]T . The latter, after symmetry breaking, acquires non-

zero vacuum expectation value, v, and takes the form Φ = (1/
√

2)[0, v+φ0
1]
T , where the

upper index T means transposition and φ0
1 describes excitations in the broken symmetry

phase, i.e. neutral massive Higgs particle. We are considering here one lepton family

but the results can be easily generalized to the three family model. We use the unitary
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Chapter 2. Ferromagnetic properties of vector boson condensate

gauge in which the particle content is explicit, for example physical gauge bosons have

three polarization states and only one physical neutral Higgs field, φ1 is present.

From the equations that we presented above, one can conclude that, in addition to

the usual kinetic and mass terms, vector boson interactions contain cubic and quartic

couplings, see e.g. reference [64]. The explicit lagrangian terms, respectively L3 and L4,

are presented in Appendix A, see equations (A.1) and (A.2). Given the lagrangians, one

can easily calculate the equations of motion for the gauge bosons, which are explicitly

written in Appendix A, see equations (A.4) and (A.5).

It should be noted that equations of motion (A.4,A.5), as they are written in the

appendix, describe classical fields in the tree approximation and do not include the

effects of W and Z instability. The latter can be taken into account by perturbative

iteration of these equations. The effects of instability are discussed at the end of this

section.

In what follows we assume that the total electric charge density of the plasma is zero

and the average three-vector current vanishes as well. We will consider the case when

the electric charge density of fermions, Jψ0 , is non-vanishing and homogeneous. It is

usually assumed that the primeval plasma is electrically neutral and thus the non-zero

charge density of fermions must be compensated by the opposite sign charge density of

W . To study such a system it is convenient to use the electromagnetic gauge freedom

and to impose the condition Aμ = 0. We also assume that the average value of Zμ = 0.

In this case there exists a homogeneous solution of the equation of motion of the form:

Wμ = Cμ exp(−imW t), (2.4)

where we impose the condition ∂μW
μ = 0 to eliminate the non-physical spin degrees

of freedom. So Cμ is a constant vector with vanishing time component and mW is the

boson mass determined by the nonzero vacuum expectation value of the Higgs field 1. In

contrast, in some papers the gauge condition of time independent charged vector field is

taken: Wμ = Cμ, while the electromagnetic vector potential is non-zero: Aμ = δtμmW/e.

The latter gauge is used only in section 3.3.1 of this thesis in order to make a comparison

between the two. As it should be, the physical results are not affected by the gauge

choice.

In addition to the Higgs induced part, the mass of Wμ contains also the contributions

induced by the temperature effects [39] and by the impact of the W -condensate itself,

which are disregarded at this stage. The latter are the only ones which are present

above the E-W phase transition. The consequent possible condensation of W at lower

1We want to stress an important difference between Bose-Einstein condensate and Higgs condensate,

which is often overlooked. The equation of state of the former is simply P = 0, while for the latter

P = −ρ, where P and ρ are respectively pressure and energy densities.
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lepton asymmetry in section 1.4.

Solution (2.4) corresponds to the Bose condensate of W -bosons describing a collec-

tion of these particles at rest. This field configuration corresponds to the condensation

of the positively charged W+. The condensation of W− is described by the complex

conjugate expression. However, such a solution is not obligatory and depends upon the

kinetics of the system and the interactions between W -bosons at rest. In fact the only

condition which we have at this level is the condition of the electric neutrality and it

demands only that the average values of bilinear combinations of W must be non-zero,

while classical vector field Wμ may vanish on the average. A possible vanishing of the

classical vector field Wj, where j = 1, 2, 3 is the spatial vector index, is physically quite

evident. The condensate is a collection of W -bosons at rest with the charge density

which compensates the charge density of fermions. The most probable state of such

particles (the highest entropy state), if the spin-spin interaction is neglected, is the

state with chaotic distribution of the individual spins. It is natural to expect that the

average value of the total spin in such a state is zero or at least not macroscopically

large. The situation is opposite in the ferromagnetic case when the spin alignment is

energetically favorable and the classical vector field could be formed.

In the first paper of reference [5] a similar statement concerning the formation of a

classical vector field was done but without an analysis of the dynamics introduced by

the spin-spin interaction. In the quoted paper the mentioned above gauge, where W is

time independent:

Wμ = Cμ , A(0)
μ = (mB/e) δ

0
μ (2.5)

is used, but the physical results are of course gauge invariant. In this gauge the condition

of the charge neutrality becomes 2A0W
+
μ W

−
μ = −Jψ0 , which is again bilinear in W field

and from the condition of non-zero charge density of the condensed W ’s does not follow

that there exists the classical field Wj �= 0.

W instability The instability of W can be introduced in the usual way by adding

an imaginary part to the mass equal to the decay half-width. The introduction of such

a term into the equation of motion for W leads to the exponential decay of the field,

W ∼ exp(−Γt/2). However this description is valid only for the decay into vacuum.

For the decay into a dense medium the Fermi exclusion principle should be taken into

account. Hence, if neutrinos have sufficiently large chemical potential, such that all the

states where W could decay would be occupied, the decay rate would be exponentially

suppressed and solution (2.4) could be physically realized. This observation establishes

the equivalence between the kinetic approach of section 1.2.1 and that presented here.

In fact the absolute stability of the condensed W ’s is unnecessary. Even if W -
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bosons decay, the ferromagnetic condensate can be formed, if the time of the condensate

formation is shorter than the life-time of W -bosons in the plasma. The condensed W -

bosons are in the state of dynamical equilibrium: W ’s evaporating from the condensate

because of their decay or scattering of hot fermions, are compensated by W ’s coming

back by the inverse processes. In thermodynamical equilibrium the average number

of W -bosons in the zero momentum state remains constant. The decay rate of the

W -bosons in plasma is proportional to

Γ

Γ0

∼ [(e−(mW /2+μe)/T + 1
) (
e−(mW /2−μν)/T + 1

)]−1
, (2.6)

where Γ0 ∼ αmW is the decay rate of W in vacuum. The right hand side of equation

(2.6) comes from the Fermi suppression terms (1− fe+)(1− fν). We consider the decay

W+ → νe+ and take into account that in thermal equilibrium the chemical potentials

of electrons and positrons are equal by magnitude but have the opposite signs. In the

case of very large lepton asymmetry, nL, μν � T , the decay rate of W -bosons would

be exponentially suppressed and their life time can be longer than the time of the spin

alignment, τS. As we mentioned above, the cosmological generation of L� T 3 may be

realized in a version of the Affleck-Dine scenario [53] which leads to a cold universe with

non-relativistic W -bosons. Moreover, even in absence of the exponential suppression

and relatively small lepton asymmetry, L ∼ T 3, the life-time of W -bosons in the plasma

can be larger than τS. As is shown below, the Hamiltonian of spin-spin interaction

is given by equations (2.13,2.18). Correspondingly the characteristic time of the spin

alignment can be estimated as:

τS ∼ 1

Uspin
∼ m2

W

(nW e2S2)
, (2.7)

where S is the total spin of the condensed W -bosons, nW ≡ 1/d3 is their number density,

and d is the average distance between them. We approximated δ(r) as 1/d3 = nW .

Evidently τS can be considerably shorter than the life-time of W -bosons. The same

“stability” arguments are applicable to the decay of W into quarks.

2.2 Spin-spin interactions of W bosons

As we mentioned above, the form of the vector boson condensate depends upon the

interaction between the vector bosons at rest. If the latter favors the opposite spin

configuration, i.e. a pair of bosons “prefers” to be in the zero spin state, the condensate

would have zero total spin, i.e. W -bosons would form the scalar condensate (antiferro-

magnetic case). In the opposite situation of the favorable spin-two state, the spins of
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all vector bosons in the condensate would be aligned and the condensate would have

macroscopically large spin (ferromagnetic case).

In this section we discuss the interactions between the W boson spins, as they arise

from the EW lagrangian. We show that there are three different contributions to the

spin-spin coupling. The first is the spin-spin interaction induced by the electromagnetic

interactions of W -bosons, namely by the coupling of their magnetic moments. This

term favors a ferromagnetic configuration, where all the spins are aligned. The second

contribution arises from the local quartic self-coupling of W and goes in the opposite di-

rection, namely, it favors an anti-ferromagnetic configuration. Nevertheless, it is weaker

than the direct magnetic interaction. Finally, there is a contribution from the Z-boson

exchange between W ’s, which is negligible in the broken phase and analogous to the

electromagnetic one in the unbroken phase. As a result, on the whole, the W boson

condensate shows ferromagnetic properties.

2.2.1 Electromagnetic interactions

The essential particles in the system we study in this section are the chargedW bosons at

rest and charged relativistic fermions, which ensure the electric neutrality of the medium.

The latter are electrons (or positrons) and quarks but these details are not important.

For relativistic fermions helicity is conserved and hence the interaction of their spins with

the spins of W is not essential, because on the average the electron-positron medium is

not spin-polarized. Accordingly we take into account only the spin-spin interaction of

non-relativistic W -bosons and disregard the impact of the charged fermions.

The electromagnetic interaction between W -bosons is similar to the well known

interaction of nonrelativistic electrons, which is described by the Breit equation see

equation (2.30). The analogue of the Breit equation for W -bosons can be derived along

exactly the same lines as is done for electrons. The electromagnetic interaction between

two W bosons in the lowest order in the electric charge, e, is described by the usual

one-photon exchange diagram. In the Feynman gauge, where the photon propagator is

Dμν = gμν/q2, the amplitude corresponding to this diagram is:

M = − 1

(p1 − p2)2
W α′†W β′†Vα′αμ(p1, p2, q)Vβ′β

μ(p3, p4,−q)W αW β (2.8)

where Vαβμ is the most general CP invariant W †Wγ vertex [65]:

Vαβμ(p1, p2, q) = ie
[
pμgαβ + 2 (qβgαμ − qαgβμ)

+(1− kγ) (qβgαμ − qαgβμ) +

(
λγ

2m2
W

)
pμqαqβ

]
, (2.9)
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where p1 and p3 are the momenta of the incoming particles, p2 and p4 are the momenta

of the outgoing particles and p = p1 + p2, q = p2 − p1. This expression should be

symmetrized with respect to the interchange of W -bosons in the initial and/or in the

final states.

The vertex written above contains two anomalous coupling parameters kγ and λγ.

As we can see from equation (A.3), the standard electroweak model predicts, up to the

second order in the electromagnetic coupling constant e: kγ = 1, λγ = 0. In what follows

we mostly assume that these values are true, since they are compatible with the present

experimental data for triple gauge boson couplings [66]. In this case the amplitude (2.8)

reduces to:

M =
e2

q2
W α′†

1′ W
β′†
2′ [pμgαα′ + 2(qαgα′μ − qα′gαμ)] ·

[pμgββ′ − 2(qβgβ′
μ − qβ′gβ

μ)]W α
1 W

β
2 . (2.10)

The spin-spin interaction is contained in the product of the last two terms in the square

brackets in equation (2.10) i.e. the terms containing vector q. The spin operator of

vector particles is defined as the generator of the rotation group belonging to its adjoint

representation and is equal to the vector product:

S1 = −i W†
1′ ×W1 . (2.11)

Hence the scattering amplitude induced by the interaction between the magnetic mo-

ments of the charged vector bosons is equal to:

MS = − e2ρ2

m2
W q

2

[
q2 (S1 · S2)− (S1 · q) (S2 · q)

]
, (2.12)

where ρ is the ratio of the real magnetic moment of W to its value predicted by the

standard electroweak theory (e2/m2
W ) and we divided by 4m2

W for proper normalization

of the W -wave function, as is explained below, see section 2.2.2.

The potential which describes the electromagnetic spin-spin interaction is the Fourier

transform of amplitude (2.12) and is equal to:

Uspin
em (r) =

e2ρ2

4πm2
W

[
(S1 · S2)

r3
− 3

(S1 · r) (S2 · r)
r5

− 8π

3
(S1 · S2) δ

(3)(r)

]
. (2.13)

This potential has the same form as the corresponding one in the Breit’s equation for

electrons (2.30) but with different numerical coefficients.

To calculate the contribution of this potential into the energy of two W -bosons at

rest we have to average it over their wave function. In particular, in the condensate case,
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it is a S-wave function that is angle independent. Hence the contributions of the first

two terms in equation (2.13) mutually cancel out and only the third one remains, which

has negative coefficient. Thus the energy shift induced by the spin-spin interaction is

equal to:

δE =

∫
d3r

V
Uspin
em (r) = − 2 e2ρ2

3 V m2
W

(S1 · S2) , (2.14)

where V is the normalization volume.

Since S2
tot = (S1 + S2)

2 = 4 + 2S1S2, the average value of S1S2 is equal to:

S1S2 = S2
tot/2− 2 . (2.15)

For Stot = 2 this term is S1S2 = 1 > 0, while for Stot = 0 it is S1S2 = −2 < 0. Thus, if the

spin-spin interaction is dominated by the interactions between the magnetic moments

of W bosons, the state with their maximum total spin is more favorable energetically

and W -bosons should condense in the ferromagnetic state. This could lead to the

spontaneous magnetization in the early universe.

2.2.2 Quartic self-coupling of W

The contribution to the spin-spin interactions of W comes from the first term in La-

grangian (A.2) or from the third term in the r.h.s. of equation of motion (A.4). The

first term in Lagrangian (A.2) can be rewritten as:

L4W = − e2

2 sin2 θW

[
(W †

μW
μ)2 −W †

μW
μ†WνW

ν
]

=
e2

2 sin2 θW

(
W† ×W

)2
. (2.16)

It is assumed here that ∂μW
μ = 0 and thus only the spatial 3-vector W is non-vanishing,

while Wt = 0.

Since the corresponding Hamiltonian is obtained from L4W by changing sign and

since spin operator (2.11) contains imaginary unit factor, the sign of the Hamiltonian is

positive. It means that the low spin states are energetically favorable.

For the comparison of this Hamiltonian with potential energy (2.13) we need to

properly normalize the wave functions of W . In the Hamiltonian the usual relativistic

normalization is used, according to which the number density of W is equal to nW =

2mWW†W, while in the non-relativistic Schroedinger equation the wave function is

normalized to unity, ∫
d3r|ψ|2 = 1 . (2.17)
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Accordingly the Hamiltonian should be divided by 4m2
W . Its Fourier transform, pro-

ducing the spin-spin interaction potential, would be:

U
(spin)
4W =

e2

8m2
W sin2 θW

(S1S2) δ
(3)(r). (2.18)

Thus the quartic self-coupling of W contributes to the spin-spin favoring the formation

of an antiferromagnetic state.

The same result can be obtained from equation of motion (A.4) if one takes into

account that in the non-relativistic limit:

∂2
tW = (−E2 +m2

W )W ≈ 2mW εW, (2.19)

where ε = (E −mW ) is the non-relativistic energy.

2.2.3 Z-boson exchange

The contribution to the spin-spin potential between a pair of W from the Z-boson

exchange can be found from equation (A.4) where we substitute the expression for Zν

taken from equation (A.5) in the limit of vanishing four-momentum of Z. Indeed the

transferred momentum is much smaller than mZ , and so the diagram with Z-exchange

is effectively local with Z-boson propagator equal to 1/m2
Z . Hence the contribution from

the Z-exchange in the e2 order to equation (A.4) is:

∂μW
μ
i +m2

WWi + 4e2 cot2 θW (mW/mZ)2(W†W)Wi + ... = 0 , (2.20)

where j = 1, 2, 3 is the spatial vector index.

We see that the Z-boson exchange does not contribute to the spin-spin interactions

of W . However, it should be kept in mind that this result is true only for the non-

relativistic Z-bosons, while above the phase transition the contributions of Z bosons

and photons are similar.

2.2.4 Plasma screening

We have already introduced plasma screening in section 1.5. In plasma the time-time

component of the photon propagator is modified as 1/q2 → 1/[q2+Π00(q)], where Π00(q)

is the photon polarization operator in plasma and q is the photon momentum. Usually

Π00 = m2
D, where mD is the Debye screening mass, which is independent on q. So the

pole at q2 = 0 shifts to an imaginary q leading to the well known effects of the Debye

screening. As it was found recently [9; 10; 11; 12; 13; 14], the presence of the charged
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Bose condensate drastically changes the polarization operator leading to an explicit

dependence of Π00 on q which gives rise to infrared singular terms. The modification of

the propagator takes place already in the lowest order in the electromagnetic coupling,

e2, i.e. in the one loop approximation. This issue is discussed in detail in chapter 3.

On the other hand, the space-space component of the propagator remains massless,

Πij ∼ 1/q2. It is known to be true in pure Abelian electrodynamics in any order of

perturbation theory, while in non-Abelian theories the screening may occur in higher

orders of perturbation theory due to the infrared singularities [67]. Screening may

potentially change the relative strength of the electromagnetic spin-spin coupling, which

is affected by screening effects, with respect to local W 4 coupling which is not screened.

However, in the broken phase the system is reduced to the usual electrodynamics, where

screening is absent and W -bosons would condense in the ferromagnetic state. In the

unbroken phase of the electroweak theory the answer is not yet known. Perturbative

calculations are impossible because of the violent infrared singularities. Maybe lattice

calculations analogous to those done in QCD would help.

The potential describing the magnetic spin-spin interaction is related to amplitude

(2.12) with a modified photon propagator. Thus it can be written as:

U (spin)
em (r) = −e

2ρ2

m2
W

∫
d3q

(2π)3

exp (iqr)

(q2 + Πss(q))

[
q2 (S1 · S2)− (S1 · q) (S2 · q)

]
, (2.21)

where Πss is the plasma correction to the space-space component of the photon propa-

gator.

If, as above, we assume that the wave function ofW -bosons is space independent and

average this potential over space, we obtain the following expression for the spin-spin

part of the energy shift:

δE =

∫
d3r

V
U (spin)
em (r)

= − e2ρ2

V m2
W

∫
d3q

(2π)3
δ(3)(q)

q2(S1 · S2)− (q · S1)(q · S2)

q2 + Πss(q)
(2.22)

Clearly δE vanishes if Πss is non-zero at q = 0. Of course, this is an unphysical

conclusion, because the integration over r should be done with some finite upper limit,

rmax = l, presumably equal to the average distance between the W bosons. So instead

of the delta-function, δ(3)(q), we obtain:

∫ l

0

d3r exp(iqr) =
4π

q3
[sin(ql)− ql cos(ql)] . (2.23)
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The energy shift is given by the expression:

δE = −4π
e2ρ2

V m2
W

Si1S
j
2

∫
d3q

(2π)3

[sin(ql)− ql cos(ql)] [q2δij − qiqj]
q3 [q2 + Πss(q)]

, (2.24)

where V = 4πl3/3.

When we average over an angle independent wave function, e.g. S-wave for the

condensate, the non-vanishing part of the integral in equation (2.24) is proportional to

the Kronecker delta, hence:

δE = Si1S
j
2Aδ

ij, (2.25)

where the coefficient A can be calculated by taking trace of equation (2.24):

Tr(Aδij) = 3A = −8π
e2ρ2

m2
W

∫
d3q

(2π)3

[q sin(ql)− q2l cos(ql)]

q2 [q2 + Πss(q)]
. (2.26)

Hence the energy shift of a pair of W -bosons in S-wave state due to the spin-spin

interaction is:

δE = − (S1 · S2)
8πe2ρ2

3V m2
W

∫
d3q

(2π)3

[sin(ql)− ql cos(ql)]

q [q2 + Πss(q)]
, (2.27)

Introducing the new integration variable x = ql we can rewrite it as:

δE = −(S1 · S2)
4e2ρ2

3πVm2
W

∫ ∞

0

dx

x2 + l2Πss(x/l)

[
x sin x+ l2Πss(x/l) cosx

]
, (2.28)

We used here the usual regularization of divergent integrals: exp(±iql)→ exp(±iql−εq)
with ε→ 0. With such regularization

∫∞
0
dx cos(x) = 0.

Evidently, if Πss = 0, we obtain the same result as that found in section 2.2.1. In

fact the necessary condition for obtaining the “unscreened” result is l2Πss(x/l)� 1, but

for a large l2Πss the electromagnetic part of the spin-spin interaction can be suppressed

enough to change the ferromagnetic behaviour into the antiferromagnetic one. This

might take place at high temperatures above the EW phase transition when the Higgs

condensate is destroyed and the masses of W and Z appear only as a result of temper-

ature and density corrections and thus are relatively small. The quantitative statement

depends upon the modification of the space-space part of the photon propagator in pres-

ence of the Bose condensate of charged W . As far as we know, this modification has

not yet been found.
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2.3 Magnetic properties of BECs

Magnetic properties of matter are determined by the state of outer (unpaired) electrons.

For instance, let us consider an atomic system. Pairs of electrons belonging to different

atoms may be either in symmetric, Stot = 1, or antisymmetric, Stot = 0, spin state.

Since the total wave function of two electrons must be antisymmetric, their spin state

has opposite symmetry with respect to their orbital wave function. Symmetric and

antisymmetric electron states evidently have different energies, which we denote as Es

and Ea respectively. Accordingly, the spin Hamiltonian can be written as [68]:

Hspin = −J S1 · S2. (2.29)

The quantity J = (Es−Ea) is usually called the exchange energy. Its sign is determined

by the atomic ground state structure. Evidently J > 0 favors parallel spins, while J < 0

favors antiparallel spins.

Besides exchange energy, electrons have direct magnetic dipole (spin-spin) interac-

tions, which are described by the Breit equation [69]:

UM (r) =
e2

16πm2
e

[
(σ1 · σ2)

r3
− 3(σ1 · r)(σ2 · r)

r5
− 8π

3
(σ1 · σ2)δ

(3)(r)

]
, (2.30)

where σ1,2 are the spin operators of the electrons, i.e. the Pauli matrices averaged

respectively over the first and second electron wave functions, and e2 = 4πα = 4π/1371.

In atomic systems the exchange energy at small distances is typically of the order

of fractions of eV, that is about 103 times larger than the typical spin-spin interac-

tion between electrons. Hence the exchange interaction may force the magnetic dipoles

of electrons to be aligned or anti-aligned independently on their direct magnetic in-

teraction. The situation changes at large distances, since the exchange energy decays

exponentially, while the magnetic interaction behaves like r−3. Thus the latter domi-

nates on macroscopic scales, leading to the breaking of the system into domains with

different directions of the magnetic field and consequently to zero net macroscopic mag-

netization. Nevertheless, the ferromagnetic nature emerges when an external magnetic

field is applied to the system.

Let us consider now W bosons in the early universe. Fortunately this system is

simpler than solid state physics ones. In the primordial plasma all the condensed W-

bosons, which are in symmetric orbital state, would be in the same state with zero

momentum and not binded into a complicated atomic system. Evidently the exchange

forces are not essential in this case. Hence their spin wave function should also be

1To avoid confusion let us note that sometimes in the bibliography - see e.g reference [69] - the

notation is different, namely e2 = α

38



Chapter 2. Ferromagnetic properties of vector boson condensate

symmetric and both the allowed spin states of W , the scalar, S = 0, and the tensor,

S = 2, ones are also symmetric.

The realization of one or the other state is thus determined by the direct spin-spin

interaction between the bosons. In the lowest angular momentum state, l = 0, a pair

of bosons may have either spin 0 or 2. Depending on the sign of the spin-spin coupling,

one of those states would be energetically more favorable and would be realized at the

condensation. In the case of the energetically favorable higher spin state, S = 2, the

vector bosons condense with macroscopically large value of their vector wave function

〈Wj〉. In the opposite case of the favorable S = 0 state the vector bosons form the scalar

condensate with pairs of vector bosons making a scalar “particle”.

In principle, electrons and positrons could distort the spin-spin interactions of W

by their spin or orbital motion and thus destroy the attraction of parallel spins of W .

However, it looks hardly possible because electrons are predominantly ultra-relativistic

and they cannot be attached to any single W boson to counterweight its spin. The low

energy electrons cannot be long in such a state because of fast energy exchange with the

energetic electrons. The scattering of electrons (and quarks) on W -bosons may lead to

the spin flip of the latter, but in thermal equilibrium this process does not change the

average value of the spin of the condensate.

The formation of ferro- or antiferromagnetic states in spin 1 condensates is observed

in solid state physics with such spin-1 bosons as 23Na, 39K, and 87Rb nuclei, see refs. [3],

[70]-[72]. Usually experimental studies of the properties of the spin-1 condensate are

performed in external magnetic fields. Under such conditions the spins of the vector

bosons are aligned (frozen) due to the interactions of their magnetic moments with

the external field. However, in optical traps an external magnetic field is absent and

spin alignment or de-alignment depends upon the internal dynamics of the system.

Correspondingly either ferromagnetic or scalar ground state would be formed depending

on the scattering length of vector bosons in different angular momentum channels [70].

Due to macroscopically large value of the total spin in the ferromagnetic spin state

the system can be accurately described by the mean field approximation, as is argued

e.g. in section 12.2 of book [3] or refs. [71; 72]. Indeed, the validity of the mean field

approximation is determined by the relative magnitude of the fluctuations near the

ground state. The fluctuations are induced by the particle scattering which can change

the spin value in a single reaction by ±1. It is clear that for a large value of the total

spin the relative fluctuations δS/S ∼ δN/N ∼ 1/
√
N � 1, while for a small total spin

value δS/S ∼ 1.

In presence of sufficiently strong external magnetic field all the vector boson spins

condense in the same direction and thus the whole body forms a single magnetic domain

independently on the spin-spin interactions of the vector bosons, ferromagnetic or not.
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On the contrary, when an external magnetic field is absent, several magnetic domains

would be formed in the ferromagnetic case, due to dynamical instability, and none in

the antiferromagnetic case. The discussion of this phenomenon in solid state physics

and the list of references can be found e.g. in reference [73].

A different mechanism of formation of W -boson spin condensate by chaotic mag-

netic fields, which might exist in the early universe, was considered in reference [74].

If such fields were sufficiently strong, this mechanism could operate independently on

the spin-spin interaction of W -bosons and would align their spins in the domains with

the size of the order of that of the original cosmic magnetic field, which are normally

microscopically small. To this end a magnetic field with the strength B > αm2
W would

be necessary. Such fields might be generated at the electro-weak phase transition. The

alignment of the W spins reminds the alignment of vector fields in magnetic traps men-

tioned above. Moreover, such an alignment under the influence of a sufficiently strong

external magnetic field would take place in both ferromagnetic and antiferromagnetic

cases. However when the external magnetic field is switched-off or redshifted, the spins

of the “antiferromagnetic” W -bosons would be dis-aligned making scalar condensate,

while in the ferromagnetic case macroscopically large domains with aligned spins would

be created. The mechanism of formation of such domains is different from the normal

ferromagnets due to an absence of the exchange forces. So probably the size of the

domains is not determined by the usual competition between the volume and surface

energies but by the causality effects.

As we have shown, charged vector bosons would condense in maximum spin states

and form classical vector field, if only electromagnetic interactions analogous to (2.30)

between their spins are taken into account. In such a case the spontaneous magneti-

zation at macroscopically large scales would take place. On the other hand, the local

self-interaction of W creates the spin-spin coupling of the opposite sign. In the standard

theory the magnitude of this coupling is smaller than that induced by the photon ex-

change, while the exchange of heavy Z-boson does not contribute at all into the spin-spin

interactions of W -bosons. Thus the spin-spin coupling is dominated by the interactions

of the magnetic moments of W . It should be noted that the expression for potential

(2.30) created by the one photon exchange is true for virtual photons propagating in

vacuum. The presence of plasma changes the propagator and could modify the spin-spin

potential - see section 1.5. This is also true for non abelian theories, while the quartic

local interaction is not screened. Hence one should check whether screening changes or

not the system into an antiferromagnetic one. In pure electrodynamics magnetic fields

are not screened and so one may expect that the plasma effects would not eliminate the

dominance of the interactions between the magnetic moments. However, the situation

is not clear in non-Abelian theories [75] and in principle the screening might inhibit the
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spin-spin magnetic interaction, see section 2.2.4. If this is realized, the local quartic

selfcoupling of W would dominate over the electromagnetic one and W bosons should

condense in antiferromagnetic state and form a scalar condensate. Hence a classical

vector field would not be created.

Our results are similar to that of reference [5] as long as the ferromagnetic case is

realized. In this case the spins of W add up coherently creating classically large average

vector Wj boson field. In the hypothetical situation of a stronger quartic self-coupling

of W we arrive to an opposite conclusion of vanishingly small classical W field but with

macroscopically large number density of W -bosons at rest, which is given by the bilinear

product nW = i(∂tW
†
jWj −W †

j ∂tWj) (as we see in what follows, this expression for the

number density of W is true in the gauge where the electromagnetic potential is zero).

2.4 Discussion of the results

In the case of W bosons the choice between ferromagnetic or antiferromagnetic state

is determined by the spin-spin interaction of the individual W -bosons, realized through

the interactions of their magnetic moments and their quartic self-coupling.

The total spin-spin interaction potential for W is the sum of two terms (2.13) and

(2.18). As we have discussed below equation (2.13), the first two terms in the interaction

of the magnetic moments cancel each other after averaging over a S-wave function.

Thus only the δ-function term survives. In the standard electroweak model ρ = 1 and

thus the absolute value of the coefficient in front of S1S2δ
(3)(r) in equation (2.13) is

2e2/(3m2
W ) which is larger than the corresponding term in equation (2.18). Hence the

former dominates and the energetically favored configuration of a multi-W state should

have a macroscopically large total spin. However, as we have pointed out in section

2.2.4, the plasma screening of the interaction between the magnetic moments may be

dangerous for the W-ferromagnetism. In the broken phase the problem is reduced to

that of pure QED, where it is known that magnetic forces are not screened. However,

in non-Abelian gauge theories the absence of screening is known only in the lowest

order in perturbation theory, while higher order calculations suffer from strong infrared

divergences and are not reliable. For the resolution of this problem non-perturbative

methods, as e.g. lattice calculations, are necessary. At the moment the problem remains

unsolved.

It should be also noted that, even though equations (2.30) and (2.13) are calculated

for electrons and W bosons, they are valid respectively for any spin-(1/2) and spin-1

species having the usual electromagnetic interactions. So they may be applied to other

particles, including the ones present in the extensions of the standard model. If these

particles are in a S-wave state, on the average the only delta term survives and hence
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they may form ferromagnetic states. Indeed, as one can see from equation (2.15), the

lowest energy state for a S-wave function is the one with the maximum S2
tot.

It is clear from equations (2.13) and (2.18) that the condensate of W -bosons would

be antiferromagnetic if the bosons have a negative non-standard contribution into the

magnetic moment, such that ρ < 3/(16 sin2 θW ). The ferromagnetism of W can be

destroyed also in a model with a smaller value of the Weinberg angle. All that demands

a strong deviation from the standard model and most probably is excluded, but these

effects may be important in applications to extensions of the standard model, e.g. SUSY.

If a ferromagnetic state is formed, we would expect that the primeval plasma, where

such bosons condensed (maybe due to a large cosmological lepton asymmetry), can be

spontaneously magnetized. The typical size of the magnetic domains is determined by

the cosmological horizon at the moment of the condensate evaporation. The latter takes

place when the neutrino chemical potential, which scales as temperature in the course

of cosmological cooling down, becomes smaller than the W mass at this temperature.

However, if during the electroweak phase transition a very strong chaotic magnetic field

was generated, the alignment of the spins of W -bosons and the domain size would be

determined by this magnetic field. In the course of the cosmological expansion such field

would drop down as the cosmological scale factor squared and the spins of W -bosons

would behave as considered above. That is, their dynamics would be determined by

the spin-spin interactions and microscopically small magnetic domains would rearrange

themselves into macroscopically large ones in the same way as it happens in the usual

ferromagnets.

Large scale magnetic field created by the ferromagnetism of W -bosons might survive

after the decay of the condensate due to the conservation of the magnetic flux in plasma

with high electric conductivity. Such magnetic fields at macroscopically large scales may

be the seeds of the observed larger scale galactic or intergalactic magnetic fields. This

problem will be studied elsewhere, we only note here that the mechanism of generation

of galactic or intergalactic magnetic fields is unknown and presents a long standing cos-

mological problem, for reviews see e.g. reference [76]. Seed magnetic fields generated

during inflation could be quite easily uniform at galactic or intergalactic scales, but

they are too weak, hence a huge galactic dynamo is necessary to amplify them up to

the observed magnitude. However, it is impossible in this way to explain the existence

of intergalactic fields. On the other hand, seed fields generated at later stages of cosmo-

logical evolution could be quite large (e.g. magnetic fields created at some cosmological

phase transitions), but the characteristic scale of such fields is by far smaller than the

galactic one. The mechanism suggested here may generate large magnetic fields and at

scales which are of the order of cosmological horizon at the electroweak temperatures.

In this sense the mechanism is unique. Still even after the cosmological stretching up of
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the characteristic wave length of the field, it remains smaller than the galactic radius.

Nonetheless, with the “Brownian motion” reconnection of the field lines, the charac-

teristic scale can be enlarged up to the galactic scale, though by an expense of their

magnitude. Nevertheless with rather mild galactic dynamo the observed magnetic field

may be generated.
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Condensate in plasma: medium

effects

This chapter of the thesis is based on [9; 10; 11]. Here we discuss in detail the prob-

lem of screening for electromagnetic interactions taking place in plasma with a BEC

component. Scalar condensate is considered for simplicity.

There are two standard approaches to field theory at nonzero temperature and

chemical potentials: either imaginary time method (Matsubara formalism) or real time

method (Schwinger-Keldysh formalism). The former is applicable only to the case of

systems in thermal equilibrium, while the latter is valid for any state of the medium.

For a review of these methods, see e.g. reference [77] or books [39]. In this chapter we

calculate the photon Green’s function for arbitrary medium in a physically transparent

and simple way taking the expectation values of relevant operators not only over vac-

uum but over any state of the system, either it is a collection of particles with arbitrary

occupation numbers or a coherent field state (the latter is possible for bosons only). We

calculate the photon polarization operator in the medium and derive from it the elec-

trostatic (Debye) screening length, the plasma frequency and more generally the photon

dispersion relation. In all previously studied cases our results coincide with the known

ones.

There may be some ambiguities in definition of the screening potential at higher

orders in electric charge, e4 and higher, and in non-Abelian gauge theories where the

result may violate gauge invariance, as discussed in reference [78]. However, as long

as we consider only Abelian U(1) theory, as we do in this chapter and in the lowest, e2

order, these ambiguities do not arise. Moreover, as one can see below, we have calculated

the asymptotics of the screening potential at large distance in a self-consistent way by

the location of the singularities in the complex k–plane, which are situated at non-zero

k.

It is found that the screened electrostatic potential in the presence of BEC has an
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oscillating behavior superimposed on the standard exponential decrease (Debye screen-

ing). The Debye screening length becomes parametrically shorter than in plasma of

charged fermions and depends non-analytically on the electromagnetic coupling e. The

electrostatic potential has also an other oscillating term analogous to Friedel oscillations

for fermions and a power-law term. A power-law decreasing term appears also in the

critical regime μB = mB, immediately before the formation of the condensate.

3.1 Perturbative calculations of the photon polar-

ization operator

The Lagrangian of interacting electromagnetic field and charged scalar and fermion

fields with masses mB and mF respectively and with opposite electric charges ±e has

the form:

L = −1

4
FμνF

μν −m2
B|φ|2 + |(∂μ + i eAμ)φ|2 + ψ̄(i∂/− eA/−mF )ψ. (3.1)

The Lagrangian is symmetric under the gauge transformations:

φ(x)→ exp[ieα(x)] φ(x), ψ(x)→ exp[ieβ(x)] ψ(x),

Aμ(x)→ Aμ(x)− ∂μ(α + β) (3.2)

This implies the existence of two conserved currents and charges, which we can choose

as the scalar and the fermion number. The Lagrangian (3.1) leads to the following

equations of motion for the involved fields:

(i∂/−m)ψ(x) = eA/ψ(x) (3.3)

(∂μ∂
μ +m2)φ(x) = Jφ(x) (3.4)

∂νF
μν(x) = Jμ(x) (3.5)

where the currents J are defined as

Jφ(x) = −i e
[
∂μA

μ(x) + 2Aμ(x)∂
μ
]
φ(x) + e2Aμ(x)Aμ(x)φ(x) (3.6)
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Jμ(x) = −i e
[
(φ†(x)∂μφ(x))− (∂μφ†(x))φ(x)

]

+ 2e2Aμ(x)|φ(x)|2 − eψ̄(x)γμψ(x). (3.7)

Here Fμν = ∂μAν −∂νAμ and Jμ (3.7) is the total electromagnetic current of bosons and

fermions in the coordinate space.

The key quantity which determines the photon propagation in plasma is the photon

polarization tensor Πμν which we will calculate perturbatively. When doing this kind of

calculations for massless fields, infrared singularities may arise and to regularize them

one should use the resummation techniques - see e.g. [39] and references therein. Never-

theless it is safe to use the standard perturbative solution when the scalar and fermion

field masses are not negligible as in the case we are considering. Moreover, the infrared

singularities in Abelian theories are much milder than those in non-Abelian ones where

the correspondence between the order of the perturbative series and the power of the

coupling constant e is lost, see e.g. discussion in reference [26; 67]. Here we consider

only Abelian QED and since it is not infrared dangerous, we neglect the resummation.

To derive the Maxwell equations with the account of the impact of medium on the

photon propagator we have to average operators φ and ψ over the medium. The products

of creation-annihilation operators averaged over the medium have the standard form:

〈a†(q)a(q′)〉 = fB(Eq)δ
(3)(q− q′),

〈a(q)a†(q′)〉 = [1 + fB(Ep)]δ
(3)(q− q′),

〈c†(q)c(q′)〉 = fF (Ep)δ
(3)(q− q′),

〈c(q)c†(q′)〉 = [1− fF (Ep)]δ
(3)(q− q′), (3.8)

where fF,B(Eq) are the energy dependent fermion/boson distribution functions, which

may be arbitrary since we assumed only that the medium is homogeneous and isotropic.

We also assumed, as it is usually done, that non-diagonal matrix elements of creation-

annihilation operators vanish on the average due to decoherence. For the vacuum case

fF,B(E) = 0 and we obtain the usual vacuum average values of aa† and a†a, which from

now on will be neglected because we are interested only in the matter effects.

We formally solve operator equations (3.3) and (3.4) as:

φ(x) = φ0(x) +

∫
d4y GB(x− y)Jφ(y)
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ψ(x) = ψ0(x) +

∫
d4y GF (x− y)eA/(y)ψ(y) (3.9)

where the zeroth order fields satisfy the free equations of motion:

(∂μ∂
μ +m2

B)φ0(x) = 0, (i∂/−mF )ψ0(x) = 0 (3.10)

and are quantized in the usual way

φ0(x) =

∫
d3q√

(2π)32E

[
a(q) exp−iqx +b†(q) expiqx

]

ψ0(x) =

∫
d3q√
(2π)3

√
mF

E

[
cr(q)ur(q) exp−iqx +d†r(q)vr(q) expiqx

]
. (3.11)

In equation (3.11) a(†), b(†), c(†) and d(†) are the annihilation (creation) operators for

scalar and spinor particles and antiparticles. The Green functions in equations (3.9) are

the usual Feynman Green functions having the integral representation:

GB,F (x− y) =

∫
d4k

(2π)4
exp−ik(x−y)GB,F (k) (3.12)

where

GB(k) =
1

k2 −m2
B + iε

, and GF (k) =
k/+mF

k2 −m2
F + iε

. (3.13)

Now we can substitute equations (3.9) into equation (3.5) with the currents given by

equations (3.6) and (3.7). For the calculations up to the second order in the coupling

constant e, i.e. up to e2, it is sufficient to include into Jφ in equation (3.6) only terms

of the first order in e, that is

Jφ(x) = +i e
[
∂μA

μ(x) + 2Aμ(x)∂
μ
]
φ0(x). (3.14)

As a result we obtain:

∂νF
μν(x) = −i e

[
(φ†

0(x)∂
μφ0(x))− (∂μφ†

0(x))φ0(x)
]
− eψ̄0(x)γ

μψ0(x)

− ie φ†
0(x)∂

μ

[∫
d4y GB(x− y)Jφ0

(y)

]
− ie

[∫
d4y GB(x− y)Jφ0

(y)

]†
∂μφ0(x)

+ ie ∂μφ†
0(x)

[∫
d4y GB(x− y)Jφ0

(y)

]
+ ie ∂μ

[∫
d4y GB(x− y)Jφ0

(y)

]†
φ0(x)

− eψ̄0(x)γ
μ

∫
d4y GF (x− y)eA/(y)ψ(y)− e

[∫
d4y ψ̄0(y)A/(y)G

∗
F(x− y)

]
γμψ0(x)
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+ 2e2Aμ(x)|φ0(x)|2. (3.15)

The first term on the right hand side in equation (3.15), linear in e, is non-zero if the

medium is either electrically charged or possesses an electric current. It is convenient

to perform the Fourier transform:

Aμ(k) =

∫
d4x

(2π)3
exp−ikxAμ(x). (3.16)

Finally we find that the field Aμ(k) satisfies the equation

[kρkρg
μν − kμkν + Πμν(k)]Aν(k) = Jμ(k), (3.17)

which is equivalent to the photon equation of motion (3.5) but in momentum space.

Thus the photon polarization tensor which contains contributions from charged

bosons and fermions, Πμν(k) = ΠB
μν(k) + ΠF

μν(k), and the electromagnetic current Jμ

involved in equation (3.17) are explicitly found in the lowest order:

ΠB
μν(k) = e2

∫
d3q

(2π)3E

(
fB + f̄B

) ·
[
1

2

(2q − k)μ(2q − k)ν
(q − k)2 −m2

B

+
1

2

(2q + k)μ(2q + k)ν
(q + k)2 −m2

B

− gμν
]
, (3.18)

ΠF
μν(k)= 2e2

∫
d3q

(2π)3E

(
fF + f̄F

) · [qν(k + q)μ − qρkρgμν + qμ(k + q)ν
(k + q)2 −m2

F

+
qν(q − k)μ + qρkρgμν + qμ(q − k)ν

(k − q)2 −m2
F

]
, (3.19)

Jμ = −e
∫

d4x

(2π)4
exp−ikx

∫
d3q

(2π)3

qμ
E

[
fB − f̄B − 2

(
fF − f̄F

)]
, (3.20)

where the arguments of the distribution functions, E and μ, are omitted. In equa-

tions (3.18) - (3.20) kμ ≡ (ω,k) and qμ ≡ (E,q) are respectively the photon and the

scalar/spinor four momenta, fq and fq̄ are the particle (antiparticle) distribution func-

tions and gμν = (+ − −−). We assume the following charge convention: the bosons

have electric charge +e, while fermions have electric charge −e. Of course the charge

of antiparticles has the opposite sign. It is worth to stress that the total Πμν as well

as its bosonic and fermionic components separately satisfy the transversality condition

kμΠμν = 0. The last term in equation (3.18) describes the contribution from the tadpole
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diagram and coincides with that found in reference [79]. Evidently without this term

the tranversality condition would be violated.

3.2 Photon propagation in plasma

The screening of test charge in the static case is determined by the zero frequency value

of Π00(0, k). We assume that plasma is homogeneous and isotropic, so the polarization

tensor depends only upon the magnitude of vector k but not on its direction. Since

the distribution functions depend only upon the energy, the integral over angles in

equations(3.18) and (3.19) can be taken. In particular for time-time component of the

polarization tensor in the limit of ω = 0 we find 1:

ΠB
00 = − e2

2π2

∫ ∞

0

dqq2

E
(fB + f̄B)

(
1 +

E2

kq
ln
∣∣∣2q + k

2q − k
∣∣∣) , (3.21)

ΠF
00 = − e

2

π2

∫ ∞

0

dqq2

E
(fF + f̄F )

(
1 +

E2

kq
ln
∣∣∣2q + k

2q − k
∣∣∣) . (3.22)

Here and in what follows k and q are respectively the absolute values of the spatial

component of the photon and charged particle momenta and we omit the arguments

in the polarization tensor, i.e. write Π00(0, k) ≡ Π00. The argument of the logarithm

comes in absolute value because the Green’s functions in the perturbative expansion

appear in the combinations G(q + k) +G∗(q − k). So the imaginary part of Π00 in the

considered limit vanishes.

It is even simpler to calculate the space-space components, Πij in the limit of zero

photon momentum, k = 0:

ΠB
ij =

e2

2π2
δij

∫
dqq2

E

(
1− 4

3

q2

4E2 − ω2

)
(fB + f̄B), (3.23)

ΠF
ij =

4e2

π2
δij

∫
dqq2

E

E2 − q2/3

4E2 − ω2
(fF + f̄F ). (3.24)

It is clear from these expressions that, in the limit k = 0, the functions a and b defined

in (1.47) are equal.

At ω = 2m the polarization operator acquires a non-zero imaginary part which corre-

sponds to the threshold of two charged particles production by the photon. For massless

charged particles the threshold is at ω = 0 and one has to take into account that the

effective photon mass in plasma is non-zero (it is essentially the plasma frequency). This

1It should be noted that two different sign conventions are used in the literature for Π00. We follow

here the notation of [9]. Of course the physical results, such as the potential, do not depend on the

sign choice.
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can be done using resummation technique. Accordingly the position of the threshold

moves a little, as ∼ eT . This is not essential for our consideration. Moreover electrody-

namics with massless charged particles has serious infrared problems.

Let us now apply these results for the calculation of the plasma frequency and the

Debye mass in some special cases which have been considered in the literature.

Massless SpQED and SQED with vanishing chemical potentials and high

temperature, T � mB,F : In thermal equilibrium the distributions of bosons and

fermions and their antiparticles with zero chemical potentials have the usual Bose-

Einstein or Fermi-Dirac form:

fB(E, T ) = f̄B(E, T ) =
1

exp(E/T )− 1
,

fF (E, T ) = f̄F (E, T ) =
1

exp(E/T ) + 1
, (3.25)

where in high temperature limit we can neglect the particle mass i.e. we can assume

E = |q|. In this special case Π00 does not depend on the photon momentum k and so

mD =
√−Π00. The integrals in equations (3.18) and (3.19) can be easily taken and we

find for the contributions from bosons and fermions respectively:

m2
DB(mB = 0) = m2

DF (mF = 0) =
1

3
e2T 2,

ω2
P B(mB = 0) = ω2

P F (mF = 0) =
1

9
e2T 2. (3.26)

Hence the total Debye mass and the plasma frequency for the Lagrangian (3.1) are

m2
D(mB = mF = 0) =

2

3
e2T 2, (3.27)

ω2
P (mB = mF = 0) =

2

9
e2T 2 (3.28)

These expressions coincide with the published results in the lowest order in the electro-

magnetic coupling, e2, see e.g. [39; 57].

In the case of relativistic fermions with non-zero chemical potential μ we obtain:

m2
D(mF = 0) = e2

(
T 2

3
+
μ2

π2

)
. (3.29)

This is the result found in reference [80].
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Massive SpQED with non-zero chemical potential and low temperature, T →
0 . In thermal equilibrium the distributions of fermions and their antiparticles are in

this case the Boltzmann distributions:

fF (E, μ, T ) = e(μ−E)/T , f̄F (E, μ, T ) = e−(μ+E)/T (3.30)

and once again Π00 does not depend on k, so it coincides with the Debye mass squared.

Hence in the case of relatively small chemical potentials, μ < m, we obtain:

Π00 =
4e2

T

(
mT

2π

)3/2

e−m/T cosh(μ/T ). (3.31)

In the case of strongly degenerate, μ ≥ m, nonrelativistic fermionic plasma, the contri-

bution of anti-fermions may be neglected, while the fermion distribution function has

the form:

fF = exp

(
μ

T
− q2

2mFT

)
(3.32)

The chemical potential can be expressed through the number density of the fermions:

nF =
exp(μ/T )

π2

∫
dqq2e−q

2/2mF T (3.33)

There is a factor 2 in the above expression which counts two spin degrees of freedom.

Correspondingly the Debye screening mass for nonrelativistic fermions is

m2
D =

e2nF
T

, (3.34)

which coincides with the classical result, see e.g. book [54].

Analogously we find from equation (3.24) the plasma frequency for nonrelativistic

fermions:

ω2
p =

e2nF
mF

(3.35)

which is also the classical result.

We have done these simple exercises to check the validity of our results for Πμν

comparing it to the known cases. Now we will turn to the calculations of the photon

polarization tensor in the medium with Bose condensate of charged scalars.
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3.3 Electrodynamics with BEC

Let us use now the first of equations (3.18) together with (3.21) and (3.22) to calculate

Π00(ω = 0, k → 0) which is needed to work out the electrostatic potential of a test

charge in the plasma with Bose condensate. The distribution functions for condensed

particles and their antiparticles are:

f
(C)
B (E,C, T ) =

1

exp[(E −mB)/T ]− 1
+ C δ(q)

≡ fB(E,mB, T ) + C δ(q), (3.36)

f̄B(E,−mB, T ) =
1

exp[(E +mB)/T ]− 1
, (3.37)

- see section 1.2. Hence:

Π00 (ω = 0, |k| → 0) =

− e2

2π2

∫ ∞

0

dq q2

E

[
fB(EB, mB, T ) + f̄B(EB,−mB, T )

] [
1 +

E2
B

kq
ln
∣∣∣2q + k

2q − k
∣∣∣]

− e2

2π2

∫ ∞

0

dq q2

E

[
fF (EF , μF , T ) + f̄F (EF ,−μF , T )

] [
2 +

(4E2
F − k2)

2kq
ln
∣∣∣2q + k

2q − k
∣∣∣]

− e2

(2π)3

C

mB

(
1 +

4m2
B

k2

)
(3.38)

Evidently the last (condensate) term in fB gives rise to the quadratic infrared sin-

gularity Π00 ∼ 1/k2, as found in refs. [9; 12].

At non-zero temperature the pole singularity of the Bose distribution at q = 0

leads to an additional infrared pole ∼ 1/k in the polarization tensor of photons. This

contribution arises from the bosonic (but not anti-bosonic) contribution to Π00 when

μ = mB even in the absence of the condensate and appears from the integration region

where q is smaller or comparable to k. For small q the distribution function is infrared

singular,

fB(EB, mB, T ) ≈ 2mBT/q
2. (3.39)

Usually this singularity is not dangerous because it is canceled by the integration mea-

sure, ∼ q2. Instead in our case the logarithmic term behaves as k/q for q > k and as

q/k for q < k. So the integral is finite but has 1/k singularity. Indeed we can separate

the integral into two parts 0 < q < k/2 and k/2 < q <∞. It is convenient to introduce

for the first part the new integration variable x = 2q/k, so 0 < x < 1. For the second
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part we introduce y = k/2q, so y runs in the same limits, 0 < y < 1. In the limit of

small k we can expand E ≈ m+ k2x2/8mB. Correspondingly:

exp

[
E −mB

T

]
− 1 ≈ k2x2/8mBT. (3.40)

So the integral is reduced to

∫ 1

0

dx

x
ln

(
1 + x

1− x
)

=
π2

4
. (3.41)

The same contribution comes from the second part of the integral. So finally we obtain

for the singular in k part of the photon polarization tensor in the case of μ = mB and

C = 0:

Π00 =
e2m2

BT

2k
(3.42)

Numerical calculations without expansion of the energy and the exponent gives a very

close result.

Thus at low values of the photon momentum Π00 can be expanded as:

ΠB
00(0, k) = −e2

[
h(T ) +

m2
BT

2k
+

1

(2π)3

C

mB

(
1 +

4m2
B

k2

)]
, (3.43)

where the function h(T ) is independent of k and has the limiting values:

h(T ) =

{
T 2/3 (high T)

ζ(3/2)(mBT
3)1/2/(2π)3/2 (low T)

. (3.44)

The low T limit of the function h(T ) is however always sub-dominant with respect to

the second term in equation (3.43) which comes from the logarithmic term in equation

(3.21).

In the expression of the photon polarization tensor written above the singularities

of Π00 due to pinching of the integration contour by the poles of fB(EB, mB) and the

logarithmic branch point in the integrand of equation (3.21) are not taken into account.

It will be done below in section 3.5.

The contribution of fermions into the polarization tensor is not infrared singular, so

it is convenient to present the latter as

ΠF
00(k) = ΠF

00(0) +
[
ΠF

00(k)−ΠF
00(0)

]
, (3.45)
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where

ΠF
00(0) = − e

2

π2

∫
dq

E
(f + f̄)(q2 + E2) . (3.46)

The potential of a test charge, Q, modified by the plasma screening effects is given

by the Fourier transform of the photon propagator in plasma:

U(r) =
Q

(2π)3

∫
d3k exp(ikr)

k2 −Π00(k)
=

Q

2π2

∫ ∞

0

dkk2

k2 − Π00(k)

sin(kr)

kr

=
Q

2π2r
Im

∫ ∞

0

dkk eikr

k2 − Π00(k)
. (3.47)

Usually the integrand in equation (3.47) is an even function on k and the integration

along the line of positive real k can be transformed into the contour integral in the upper

complex k-plane. However, in the case of bosons with μB = mB the polarization operator

contains and odd term m2
BT/2k, equation (3.43), and the usual contour transformation

is not applicable. So we express integral (3.47) through the integral along imaginary

upper k-axis plus contribution of singularities in the upper k-plane. If Π00 is an even

function of k and (k2−Π00)
−1 is regular on the imaginary k-axis, the imaginary part of

the integral along the imaginary axis vanishes. If the integrand has a pole at positive

imaginary k = ikD, i.e.

k2
D + Π00(ikD) = 0, (3.48)

this poles contributes into the integral as iπδ(k − ikD) and gives rise to the usual

exponential Debye screening. If Π00 contains an odd part, the integral along imaginary

k axis gives a contribution to the potential which decreases only as power of distance [9].

For plasma with charged Bose condensate [4; 9] there are also poles at complex

k = kp, when both real and imaginary parts of kp are non-zero. They produce oscillating

behavior superimposed on the exponential decrease of the potential. It was argued [61]

that complex poles also exist in plasma of strongly interacting particles (pions and

nucleons) and in QCD plasma.

There are also logarithmic singularities of Π00(k) at some non-zero Imk and the

integrals along the corresponding cuts also produce oscillations in the screened potential

but the exponential cut-off is much weaker, it is proportional to temperature and for

zero T it becomes a power law one. For fermions this effect, called Friedel oscillations,

was discovered long time ago [55; 56]. The potential is calculated and discussed in detail

in section 3.4. For bosons, a similar phenomenon was found in [10] and is discussed in

section 3.5.
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3.3.1 Calculations in another gauge

Though our result is gauge invariant and for the calculation of the Debye screening length

we do not need to fix the gauge, still it may be instructive to make the calculations in

the gauge used in reference [5]. The homogeneous state of charged scalars with non-zero

charge density was described in this paper as

φ = φ0 = const, (3.49)

A(0)
μ = (mB/e) δ

0
μ. (3.50)

It can be easily seen that this solution is a gauge transform of the zeroth order state (in

coupling e) used in the present paper:

φ = φ0 exp(imBt), (3.51)

Aμ = 0. (3.52)

Evidently such a state of φ describes a collection of bosons at rest i.e. of a Bose conden-

sate. The electric charge density of the condensate can be read off equation (3.7) and

is equal to:

J
(C)
0 = 2emB|φ0|2. (3.53)

Expressions (3.49,3.50) and (3.51,3.52) lead to the same result for the electric charge

density. Comparing it with the charge density described by the equilibrium distribution

(3.36) we find that we have to identify:

C/(2π)3 = 2mB|φ0|2. (3.54)

Perturbation theory is less convenient in gauge (3.49,3.50) because of large value of

the background potential A
(0)
0 ∼ 1/e. We need to make the expansion:

Aμ → mB

e
δ0
μ + Aμ, (3.55)

φ = φ0 + φq, (3.56)

where Aμ is the potential of the physical electromagnetic field in the plasma. It may

describe e.g. Coulomb-like field around test charge when we discuss Debye screening or

propagating waves in plasma when we talk about plasma frequency. This Aμ is equal to

Aμ considered above when we worked in the gauge defined by equations (3.51,3.52). The

quantum deviation from the condensed state of the scalar field, φq, is supposed to be

zero on the average. Moreover, we assume for simplicity that the plasma temperature is
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zero and thus 〈φ2
q〉 vanishes as well (if the vacuum quantum fluctuations are subtracted).

So φ enters only into description of virtual particles through the Green’s function.

The equation of motion of φq has the form:

(∂2 − 2imB∂0)φq = 2emBA0φ0 + e2(Aμ)
2(φ0 + φq) + ie [2Aμ∂μ + (∂μA

μ)]φq. (3.57)

Only the first term in the r.h.s. of this equation will be essential in what follows.

It is straightforward to write down the equation for Aμ:

∂2Aμ − ∂μ (∂νAν) = J (F )
μ − 2emBδ

0
μ

[
φ2

0 − 2φ0Reφq
]
+ ... (3.58)

Here we retained only terms which are essential for the calculation of the condensate

impact on the photon propagation in plasma. The missing terms can be easily found

from equation (3.15). The first term in equation (3.58) is the fermionic current. Together

with the second term they make the total current in the plasma, which we assume as

above to be zero, J
(F )
μ − 2emBδ

0
μφ

2
0 = 0. The remaining term in the r.h.s. can be found

by perturbative solution of equation (3.57):

φq = 2emB

∫
G(x− y) [φ0A0(y) + ...] (3.59)

As above, we make the Fourier transformation (3.16) and obtain the correction to the

time-time component of the polarization operator from the field φ0:

δΠ00 = e2m2
Bφ

2
0/k

2 (3.60)

Keeping in mind identification (3.54) we find that it is exactly the same result which we

have found above working in terms of equilibrium distribution with Bose condensate.

This finalizes the argument that both descriptions (in both gauges) are equivalent and

both states φ = φ0 exp(imt) and A0 = 0 and φ = φ0 and A0 = mB/e describe the same

collection of particles at rest.

3.4 Friedel oscillations in fermionic plasma

We consider here the Friedel oscillations in fermionic plasma. The non-relativistic case

is discussed in reference [55; 56; 81], both at zero and non-zero temperatures. The rela-

tivistic case was studied in [81]. In what follows all four cases are presented, considered

in somewhat different way.

Singularities of Π00(k) in the complex k-plane appear when the singular points of the

integrand in equation (3.22) in the complex q-plane pinch the contour of integration or
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coincide with the integration limit at q = 0. The usual calculation is done at zero tem-

perature when the fermion distribution tends to theta-function and hence the integral

over dq goes from zero to the Fermi momentum, qf . The singularity in ΠF
00 appears when

the branch points of the logarithm at k = ±2q move to the integration limit at q = qF .

In more general case of arbitrary temperature the integrand is a smooth function of q

and integration goes up to infinity. The integrand has two kinds of singularities. First,

there are poles in the distribution function fF which are situated at

q2
n = [μ± iπT (2n+ 1)]2 −m2

F , (3.61)

where n runs from 0 to infinity.

The second type of singularities are branch points of the logarithm at

qb = ±k/2 . (3.62)

The singularities of Π00(k) are situated at such kn for which qn and qb coincide, qn = qb

and the poles, qn, and branch points, qb approach the integration contour in q-plane

from the opposite sides. Since, according to the discussion in the previous section and

equation (3.47), we consider k in the first quadrant of the complex k-plane, only the

singularities with Rek ≥ 0 and Imk ≥ 0 contribute to the asymptotics of the potential,

i.e.

kn = 2qn =
[
(μ+ iπT (2n+ 1))2 −m2

F

]1/2
. (3.63)

Symbolically the integral in the r.h.s. of equation (3.47) can be written as a sum of

three contributions:

I0 =

∫ ∞

0

[idk] + 2πi
∑

[Res] +
∑
n

∫ kn+i∞

kn

Δ , (3.64)

where the first integral goes along the positive imaginary axis in k-plane, the second one

is the sum of the residues of the poles on the integrand (if the poles are on the imaginary

axis, only a half of the residue is to be taken), and the third term is the integral of

the discontinuity over the branch line of the logarithmic singularity of Π00(k). The

integration contour in complex k-plane is schematically depicted in figure 3.1, where

only one pole and one branch-cut are included.

Before calculating the singular part of Π00 let us first note that we are interested

only in singularities in the first quadrant in k-plane and thus only contribution from

− ln |2q − k| should be taken. Since the absolute value of the argument can be written

as the limit of ε→ 0 of |2q − k| = [(2q − k)2 + ε2]1/2, the logarithmic contribution into
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k

Figure 3.1: Contour of integration in complex k-plane.

U(r) is given by

ln
∣∣∣k + 2q

k − 2q

∣∣∣→ − ln
∣∣∣k − 2q

∣∣∣ = − [ln(k − 2q + iε) + ln(k − 2q − iε)] /2

→ − ln(k − 2q − iε)/2. (3.65)

The singular part Π
(n)
00 near kn can be determined as follows. The integral along the

contour squeezed between qn and qb is equal to the residue of the integrand at the pole

multiplied by 2πi plus a regular part at k = kn. The pole term near q = qn + z is equal

to

1

exp [(En − μ)/T ] + 1
= −EnT

zqn
. (3.66)

The residue in the pole gives the singular term in Π00 equal to:

Π
(n)
00 (k) = −ie

2T

4πk
(4E2

n − k2) ln(k − 2qn − iε) , (3.67)

where qn is the pole position given by equation (3.63) and En =
√
q2
n +m2. We have

neglected here the contributions of antiparticles assuming that the chemical potential

is sufficiently large. The discontinuity of Π00 at the branch line k = 2qn + iy, where y
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runs from zero to infinity, is equal to

ΔΠ
(n)
00 = −Π

(n)+
00 + Π

(n)−
00 =

e2T (4E2
n − k2)

2k
, (3.68)

where upper index ” + ” or ”− ” indicate that the value of Π00 is taken on the right or

the left hand side of the cut.

The contribution of this discontinuity into the asymptotic behavior of U(r), equa-

tion (3.47), is equal to:

Un(r) =
Q

2π2r
Im

∫ ∞

0

idy k exp(−yr + 2iqnr) (ΔΠ00)[
k2 − Π

(n)+
00 (k)

] [
k2 − Π

(n)−
00 (k)

] . (3.69)

Here k = 2qn+ iy. For fermionic plasma we can neglect y in comparison with qn because

in the limit of large distances y ∼ 1/r. However in the bosonic case a non-vanishing

contribution comes from sub-dominant in y terms, see below.

Below we consider separately relativistic and non-relativistic cases. In relativistic

limit En = qn and the factor in front of logarithm, equation (3.67), and discontinuity

(3.68) vanish at the branch point and the discontinuity becomes purely imaginary in the

leading order, ΔΠ
(n)
00 = −ie2Ty. This leads to a faster decrease of the screened potential

in comparison with non-relativistic case, 1/r4 instead of 1/r3, and to the change of

phase, sin(2μr) instead of cos(2μr).

Relativistic limit In relativistic case, when m � T but μ may be large, the poles

are situated at:

En = qn = μ± iπT (2n+ 1) . (3.70)

Since |k|2 > 4|qn|2 > 4(μ2 −m2
F ), then for sufficiently large μ, μ > mF , and low T we

can neglect Π00 ∼ e2μ2 in the denominator in comparison with 4q2
n and obtain:

Un(r) =
Qe2T

16π2q3
nr

3
Ime2iqnr =

Qe2T

16π2q3
nr

3
sin(2μr)e−2π(2n+1)Tr. (3.71)

For non negligible T the dominant term is that with n = 0 and though it decreases

exponentially, the power of the exponent may be much smaller than the standard one,

equation (1.44) with mD = eμ/π, as follows from equation (3.29).

At small T the result is proportional to the temperature and thus formally vanishes

at T = 0. However, at small T the total contributions of the branch points diverges as
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1/T , so summing up all Un we find

Ucut =

∞∑
n=0

Un =
e2QT

16π2r3μ3

sin(2μr) exp(−2πrT )

1− exp(−4πrT )
. (3.72)

For T → 0 and large r we can take qn = μ because the effective n’s are of the order of

neff ∼ 1/(4πrT ) and nT ∼ 1/r� μ.

For very small T such that rT � 1 we obtain:

Ucut =
e2Q

64π3

sin(2μr)

r4μ3
, (3.73)

in agreement with reference [81]. However, if rT ≥ 1, then, as we mentioned above,

the screened potential decays exponentially similar to normal Debye screening with

an important difference that the screening mass does not contain the electromagnetic

coupling, e. On the other hand, the magnitude of the screened potential is proportional

to e2. So formally for e = 0 the oscillating potential vanishes, while the Debye one tends

to the vacuum Coulomb expression.

The ratio of the main term in the potential at T �= 0 to that at T = 0 is equal to:

U(r, T )

U(r, T = 0)
=

4πrTe−2πrT

1− e−4πrT
. (3.74)

It is always smaller than unity. i.e. the screening is weakest at T = 0.

Non relativistic limit Let us turn now to non relativistic limit, when mF � T ,

μ−mF � mF , and for simplicity μ̃ = μ−mF � T . The calculations go along the same

lines with evident modifications. The poles of the distribution function f are located at

qn =
[
(μ2 −m2

F ) + 2iπμT (1 + 2n)
]1/2 ≈√2mF μ̃

[
1 +

iπμT (1 + 2n)

μ2 −m2
F

]
, (3.75)

The logarithmic singular part of Π00 corresponding to this pole is given by the

same equation (3.67) and the discontinuity on the cut is given by equation (3.68). An

essential difference now is that the discontinuity does not vanish near the branch point,

(4E2
n − 4q2

n) = 4m2
F �= 0:

ΔΠ00 ≈ −e2Tm2
F/k. (3.76)
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Thus the contribution of the n-th pole into the screened potential is equal to:

Un(r) =
e2QTm2

F

π2r
Im

∫ ∞

0

idy exp(2iqnr − yr)[
k2 −Π

(n)+
00 (k)

] [
k2 − Π

(n)−
00 (k)

] . (3.77)

Here, as in the relativistic case above, k = 2qn + iy. Neglecting k2 in comparison with

Π00, see equation (3.29) and discussion below equation (3.70), we obtain:

Un(r) =
Qe2Tm2

F

16π2q4
nr

2
Im

[
ie2iqnr

]

=
Qe2T

64π2r2μ̃2
cos(2

√
2mF μ̃r) exp

[
−2π(2n+ 1)

rTμ√
2mF μ̃

]
. (3.78)

If temperature is not extremely small, the term with n = 0 gives the slowest decreasing

part of the potential, but for T → 0 we need to take into account the whole sum

Ucut(r) =
∑
Un(r):

Ucut(r) =
Qe2Tm2

F

64π2r2μ̃2
cos

(
2
√

2mF μ̃ r
) exp

(
−πrT√2mF/μ̃

)
1− exp

(
−2πrT

√
2mF/μ̃

) . (3.79)

Asymptotically for large r but 2πrT
√

2m/μ̃ < 1 the potential tends to

Ucut(r) =
Qe2mF cos(2qF r)

64π3r3q3
F

, (3.80)

where qF =
√

2μ̃mF . The result agrees with that presented in reference [81]. The

potential in equation (3.79) is plotted in figure 3.2 as a function of distance r and

temperature T for mF = 0.5 MeV and μF = 0.55 MeV. Temperatures vary from 10−4

MeV and 10−2 MeV, which corresponds to (1.16 ·106−1.16 ·108) K. Distances vary from

1 MeV−1 to 100 MeV−1, corresponding to (2 · 10−11 − 2 · 10−9) cm. The main features

for the plot in the relativistic case are similar to the non-relativistic one.

Note in conclusion that above we have neglected Π00 in comparison with 4q2
n. It

is justified for sufficiently small e2. Otherwise one has to calculate the integral more

accurately taking into account the mild logarithmic singularity in Π00 which goes to

infinity at the branch point for non-relativistic fermions and goes to zero for relativistic

ones.
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Figure 3.2: Friedel oscillations for massive fermions - see equation (3.79) - with mF =
0.5 MeV, μF = 0.55 MeV. Temperatures are in MeV and distances in MeV−1. The
exponential damping at large distance and/or temperature, as well as oscillations as a
function of the distance r, can be seen.

3.5 Screening in bosonic plasma

As we have already mentioned the photon polarization tensor in presence of Bose con-

densate is infrared singular, having at small k form (3.43). The terms ∼ 1/k2 have

been found in refs. [9; 12], while 1/k-term, which vanishes at T = 0, has been found in

reference [9]. Because of 1/k2 term the pole of the photon Green’s function shifts from

imaginary axis in contrast to the usual Debye case when the pole is purely imaginary.

Due to its real part the screened potential acquires an oscillating factor superimposed

on the exponential decrease [4; 9]. The position of poles in integral (3.47) are given by

the equation k2 −Π00(k) = 0, which is convenient to write as:

k2 + e2
(
m2

0 +
m3

1

k
+
m4

2

k2

)
= 0, (3.81)

where

m2
0 =

C

(2π3)mB
+ h(T ) +m

(F )2
D (T, μF ), (3.82)

m3
1 =

m2
BT

2
, (3.83)
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m4
2 =

4mBC

(2π)3
, (3.84)

where h(T ) is defined in equation (3.44) and m
(F )
D is the fermionic Debye mass. For

relativistic fermions it is given by equation (3.29) and for non-relativistic ones by equa-

tion (3.34). If plasma is electrically neutral because of the mutual compensation of

bosons and fermions, the chemical potential of fermions is expressed through the am-

plitude of Bose condensate and μB = mB. However, one can imagine the case when

there are two types of charged bosons and neutrality is achieved by the opposite charge

densities of these bosons. In such plasma the fermionic Debye mass is zero.

In what follows we analyze different contributions to the electrostatic potential U(r)

for different limiting values of the parameters. In particular, we consider the contribu-

tions from the poles in integral (3.47), from the imaginary axis, which arises when the

integrand in equation (3.47) is not an even function of k and from integration along the

branch cuts of the logarithmic terms in Π00, see equation (3.38). The integration con-

tour is similar to that for fermions, figure 3.1 but the positions of the poles are evidently

shifted, see the following subsection.

3.5.1 Contribution from poles

At low temperatures the four roots of equation (3.81) are given by:

k1,2,3,4 = ± i√
2

[
e2m2

0 ±
√
e4m4

0 − 4e2m4
2

]1/2

. (3.85)

As is mentioned above, we are interested only in the poles in the first quadrant in the

complex k-plane. If e4m4
0 > 4e2m4

2, all the poles are purely imaginary and the Coulomb

potential is screened exponentially, similar to the usual Debye situation. The poles on

the positive imaginary axis are situated at

k1,2 =
iem0√

2

(
1±

√
1− 4m4

2/e
2m4

0

)1/2

. (3.86)

The contribution of these poles into the potential is

U(r) =
Q

4πr

k2
1e
ik1r − k2

2e
ik2r

k2
1 − k2

2

. (3.87)

In the limit of small ratio m2
2/em

2
0 the potential becomes:

U(r)pole ≈ Q

4πr

[
exp

(
−em0r

(
1− m4

2

2e2m4
0

))
− m4

2

e2m4
0

exp
(−m2

2r/m0

)]
. (3.88)
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Thus for a small m2 the screening, though exponential, can be much weaker than the

usual Debye one.

In the opposite case, e4m4
0 < 4e2m4

2, the poles acquire real part and now only one

pole is situated in the first quadrant. The potential oscillates around the exponentially

decreasing envelope [4; 9]. The result is especially simple in the limit of large m2:

U(r)pole =
Q

4πr
exp

(
−
√
e/2m2r

)
cos

(√
e/2m2r

)
. (3.89)

More interesting situation is realized at larger temperatures, when the term m3
1/k in

the polarization operator, equation (3.81) is non-negligible. The contribution of the

poles into the asymptotics of the screened potential is similar to the above considered

case of low T if m2 dominates in Π00, but for a small m2, e.g. if C = 0, the poles are

situated at k = e2/3(−1)1/3(m2
BT/2)1/3. The potential exponentially decreases at large

distances but the power of the exponent is proportional to temperature and at small T

the decrease of U(r) may be rather weak.

3.5.2 Contribution from the integral along the imaginary axis

Because of the odd term, m3
1/k, in the polarization operator the imaginary part of

integral (3.47) along the imaginary axis in the complex k-plane is non-zero and the

screened potential drops as a power of r:

U(r) = −Qe
2m3

1

2π2r2

∫ ∞

0

dz exp(−z)
[−(z/r)2 + e2(m2

0 −m4
2r

2/z2)]
2
+ e4m6

1r
2/z2

. (3.90)

The previous expression has been obtained by substituting k = iy and then z = yr. If

m2 �= 0 the dominant term at large r behaves as

U(r) = − 12Qm3
1

π2e2r6m8
2

. (3.91)

However, if the temperature is not zero and the bosonic chemical potential reaches

its upper limit, μ = mB, but the condensate is not yet formed, the term proportional

to m1 dominates and the asymptotic decrease of the potential becomes much slower:

U(r) = − Q

π2e2r4m3
1

= − 2Q

π2e2r4m2
BT

. (3.92)

So the formation of the condensate manifests itself by a strong decrease of screening.

This effect may be a signal of formation of Bose condensate.

It is interesting that the screened potential is inversely proportional to the fine struc-
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ture constant α = e2/4π.

3.5.3 Contribution from the logarithmic branch cuts

Let us estimate now the effects of the logarithmic singularities of Π00 on the asymptotics

of the screened potential (analogue of the Friedel oscillations). Technically the calcula-

tions are similar to those made in section 3.4 but the results are noticeably different. We

assume here that the chemical potential of bosons reaches its maximum value, μ = mB.

For smaller μ there is not much difference between bosons and non-degenerate fermions,

while for μ = mB new phenomena arise, which are absent for fermions.

The poles in the integrand of equation (3.38), which lead to the singularities of Π00(k)

in the first quadrant of the complex k-plane, are situated at

qn = (4iπnTmB)1/2 (1 + iπnT/mB)1/2 . (3.93)

Here n runs from 1 to infinity, because there is no pole at q = 0 since the numerator of

the integrand is proportional to q2.

The singularities in Π00(k) are situated at such k where the singularities of the

integrand in equation (3.38) pinch the integration contour, i.e. as above, at kn = 2qn.

The singular part of Π00 is calculated in the same way as it has been done for fermions

and is equal to the residue of the integrand:

Π
(n)B
00 =

ie2TE2
n

2πk
ln

(
k − 2qn − iε
k + 2qn + iε

)
, (3.94)

where En =
√
q2
n +m2

B.

The discontinuity of this term across the logarithmic cut is ΔΠ
(n)B
00 = e2TE2

n/k.

Correspondingly the contribution of this singularity into the asymptotics of U(r) is

given by:

UB
n (r) =

Qe2T

2π2r
Re

∫ ∞

0

dyE2
ne

2iqnre−ry[
k2 + Π

(+)
00

] [
k2 + Π

(−)
00

] , (3.95)

where k = 2qn + iy and E2
n = q2

n +m2
B, and Π±

00 are the values of the polarization tensor

on right and left banks of the cut. Note that at r →∞ the effective y is small, y ∼ 1/r.

An important difference between bosonic and fermionic cases is that the position of

the pole for fermions, equations (3.70,3.75), does not move to zero when T → 0, while

for bosons q2
n ∼ T . Correspondingly one can neglect ΠF

00 in comparison with k2
n, while

it may be an invalid approximation for bosons.

Let us first consider the case of low temperatures when Π00 is dominated by the
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constant fermionic contribution, ΠF
00 ≈ −m2

D, where m2
D is given, for instance, by equa-

tion (3.29). At large r and non-zero T the logarithmic contribution into the screened

potential is essentially given by the first term with n = 1:

U1(r) = −Qπ
2

2e2
Tm2

B

r2μ4
F

exp
(
−2
√

2πmBTr
)

cos
(
2
√

2πmBTr
)
. (3.96)

Here we took the relativistic limit for ΠF
00. The result is easy to rewrite in non-relativistic

case. The potential in equation (3.96) is plotted in figure 3.3. The bosonic chemical

potential is taken to be equal to its limiting value, μB = mB, and the boson mass is

assumed to be the same as the fermion mass in figure 3.2, mB = mF = 0.5 MeV. Such

a low mass of bosons is chosen simply for illustration. In realistic case charged bosons

are much heavier than the charged fermions, though it is not excluded that there exists

an unknown gauge symmetry with charged bosons lighter than fermions.

The temperature in figure 3.3 varies from 10−4 MeV to 0.1 MeV, corresponding to

(1.16·108−1.16·109) K, while distances vary from 1 MeV−1 to 100 MeV−1, corresponding

to (2 · 10−11 − 2 · 10−9) cm.

Figure 3.4 shows the same potential but with higher mass for bosons, mB = 100

MeV, that is of the order of the pion mass. The fermion mass and chemical potential

are taken the same as above. The temperature varies in the range 10−6 − 5 · 10−2 MeV

or 1.16 · 104 − 5.8 · 108 K and the distance in 10−2 < r(MeV)−1 < 10 corresponding to

2 ·10−13 < r(cm) < 2 ·10−10. We can see from these figures that if we increase the boson

mass, the bosonic potential fades away faster.

In the limit of T → 0 (analogous to the discussed above Friedel case) we should

take the sum
∑∞

n=1 Un because all the terms are of the same order of magnitude and

neff ∼ 1/(4πmBTr
2). So we could expect that the sum is inversely proportional to T and

the potential is non-vanishing at T = 0, the same as in the fermionic case. However, the

summation is not so simple as previously because we do not deal now with geometric

progression, exp(−an) but with more complicated function, exp(−b√n). Since the

effective values of n are big, we can express the sum as an integral and obtain, in the

leading approximation Π00 = m2
D, that the potential is proportional to the temperature

T and hence vanishes:

U(r)B = − QTπ2

2e2r2μ4
F

Re

∞∑
n=1

E2
ne

2iqnr ≈ − QTπ2

2e2r2μ4
F

Re

∫ ∞

1

dnE2
ne

2iqnr ∼ T. (3.97)

The real part of the integral
∫∞
1
dn e2iqnr written above is equal to:

exp(−2
√

2πTmr)

4r

[√
2

πmT

(
cos(2

√
2πTmr)− sin(2

√
2πTmr)

)
− 1

2πmrT
sin(2

√
2πTmr)

]
,
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Figure 3.3: Oscillation of the electrostatic potential in presence of bosonic plasma,
see equation (3.96). The boson mass is equal to the fermion one in Figure 3.2,
mB = 0.5MeV and the chemical potential is μB = mB. Temperatures are in MeV
and distances in MeV −1.
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Figure 3.4: Oscillation of the electrostatic potential in presence of bosonic plasma - see
equation (3.96). The boson chemical potential is equal to its mass, μB = mB = 100MeV .
Temperatures are in MeV and distances in MeV −1. In the picture are evident the
oscillations due to both the temperature T and the distance r as well as the exponential
damping in both the directions.
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that goes to the constant value −1 in the T → 0 limit. So the whole expression in

equation (3.97) is proportional to T .

It is important to stress that the previous result is valid in the limit TmBr
2 � 1,

which means that it is applicable at small distances rB � 1/
√
mBT . On the other hand

at large distances r and non vanishing T one should consider the expression in equation

(3.96) which is similar to the fermionic Friedel term in equation (3.79) but has different

dependence on the coupling constant e since it goes like e−2, while Friedel oscillations go

like e2. Hence we have non analytic dependence on the coupling constant e in presence

of bosons. Similar dependence on e−2 was found in section 3.5.2.

There are also differences arising from the fact that in the limit T → 0 the poles of

the boson distribution function go to zero, see equation (3.93), while the poles of the

fermion distribution function tend to the non vanishing value qF , see equation (3.61).

Hence Friedel oscillations for fermions start from their maximum amplitude at T = 0

and then exponentially decrease with temperature, while for bosons the effect vanishes

at T = 0, then linearly increases with T and finally exponentially decreases. Another

consequence is that the argument of the oscillating cosine function depend on T for

bosons but not for fermions. Hence the boson potential does not oscillate at small

temperatures.

At high fermionic chemical potential μF and small temperature T , the boson oscilla-

tions typically go to 0 at smaller distances than the fermionic ones, which are observable

at distances r ≤ T . On the other hand lowering the boson mass mB the exponential

damping is weaker but at the same time oscillations fade away.

If the condensate is formed, Π00 would be dominated by the singular term e2m4
2/k

2

and according to equation (3.95) the contribution of n-th branch point into the screened

potential becomes:

UB
n (r) = − QTm2

B

2π2e2m8
2r

2
Re

[
k4
ne
iknr

]
. (3.98)

Again, at large r and non zero T the n = 1 term is dominant. It oscillates and exponen-

tially decreases according to equation (3.96). However, the sum Re
∑

n U
B
n vanishes as

above, equation (3.97). Probably the vanishing of UB(r) at small T in the leading order

is a more general feature. At least the sub-leading (at small T ) terms in kn and in Π00

vanish as well. If we take into account the imaginary part of Π00 due to the logarithmic

cut, the result still remains proportional to a power of temperature after summation.

On the other hand, as we see below, in absence of condensate the potential not only

survives at T → 0 but rises as an inverse power of T .

Let us turn now to a more interesting though probably less realistic case when

fermions are absent in the plasma, chemical potential of bosons is maximally allowed,
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μB = mB but the condensate is not formed. In the standard model a neutral system has

necessarily a fermionic component because fermions are lighter then bosons. Anyway

we can imagine systems where the electric charge is compensated by other heavier

bosons which do not condense or models with extra U(1) sector and different particle

content. In this situation fermions may be absent. Under these conditions Π00 vanishes

when T → 0. The position of the branch points of the logarithm kn = 2qn also tend

to zero and the screening due to logarithmic discontinuity may be non-vanishing at

T = 0. Indeed, let us turn again to equation (3.95). The integral goes along the

contour k = kn + iy and y ∼ 1/r is very small. We assume that r > 1/
√
TmB. Thus

k2 ≈ k2
n = 16iπnTmB. Let us now estimate Π00 at k = kn. At small temperatures,

when z2 ≡ (EB −mB)/T ≈ q2/(2mBT ), Π00 can be presented as:

Π00(k) = −e
2m2

BT

π2k

∫
dzz

exp(z2)− 1
ln
∣∣∣√8mBTz + k√

8mBTz − k
∣∣∣. (3.99)

Notice in passing that if k <
√

8mBT , then Π00 behaves as m3
1/k in agreement with

equations (3.81,3.83), while at large k, k >
√

8mBT , it has the following asymptotic

behavior:

Π00(k) ≈ −
√

2e2m
5/2
B T 3/2ζ(3/2)

π3/2k2
, (3.100)

where ζ(3/2) ≈ 2.6. The singular part of Π00, equation (3.94), at k = kn+ iy is equal to

Π
(+)
00 (kn + iy) =

i1/2e2T 1/2m
3/2
B

8π3/2n1/2

[
ln(y/8

√
πnmBT ) + iπ/2

]
. (3.101)

For Π
(−)
00 the last factor is changed to

(
ln y/8

√
πnmBT − 3iπ/2

)
. The factor in the

denominator of the logarithm comes from |k + 2qn| = 4|qn| in equation (3.94).

The screened potential (3.95) at large distances, i.e. for 8πTmBr
2 > 1, is dominated

by n = 1. One can check that |Π00(k1)| > |k2
1|, so the latter can be neglected in the

denominator of equation (3.95). Keeping in mind that we will use the result below for

arbitrary n for which |Π00(k1)| > |k2
1|, we write:

Un(r) ≈ 32πQn

e2mBr2
Re

[
ie2iqnr

∫ ∞

0

dxe−x

ln2(x/8
√
mBπnTr)− iπ ln(x/8

√
mBπnTr) + 3π2/4

]
,(3.102)

where x = yr. For large logarithm the leading part of the integral can be approximately

evaluated leading to the result:

U1(r) = − 32πQ

e2mBr2

e−2
√

2πTmBr

ln2(8
√
πmBTr)

sin(2
√

2πTmBr) . (3.103)
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Note that U1(r) is inversely proportional to the electric charge and formally vanishes at

T → 0, but remains finite if
√
TmBr is not zero.

For smaller distances, or such small temperatures that 8πTmBr
2 � 1, all n up to

nmax ∼ 1/(8πTmBr
2) make comparable contributions. Thus we have to sum over n. If

nmax � 1 the sum can be evaluated as an integral over n. Now, for large n, k2
n ∼ n and

may be comparable to Π00(kn) which, according to equation (3.101), drops as 1/
√
n.

Π00(kn) would be smaller by magnitude than k2
n for

n > n0 ≈ 10−3 (mB/T )1/3 ln2/3
(√

8mBTr2
)
. (3.104)

This condition makes sense if n0 < nmax or r ln1/3(
√

8mBTr2) < 5/(Tm2
B)1/3. For larger

r we return to domination of Π00. We should check that the condition

r ln1/3(
√

8mBTr2) > 5/(Tm2
B)1/3 (3.105)

does not contradict the condition of large nmax. The latter reads

r < 1/
√

8πTmB. (3.106)

If we neglect the logarithmic factor, both conditions would be compatible for T/mB <

4 · 10−9. Thus both cases of dominant Π00(kn) or k2
n can be realized depending upon

relation between r, T , and mB.
Let us consider smaller temperatures when |Π00(kn)| > |k2

n|. The potential in the
limit of small πTmBr

2 is equal to

U(r) =
32πQ

e2mBr2
Im

[∑
n

ne2iqnr ln2(
√

8mBTr) + iπ ln(
√

8mBTr) + 3π2/4(
ln2(
√

8mBTr) + 3π2/4
)2

+ π2 ln2(
√

8mBTr)

]
. (3.107)

Since the sum

∑
n

ne2iqnr ≈ 2

∫
dη η3e4i

√
iπTmBrη ≈ − 12

256π2T 2m2
Br

4
, (3.108)

where η =
√
n, is real in leading order in 1/(16πTmBr

2), a non-vanishing contribution

comes from the imaginary part of the numerator of the integrand and we obtain for the

analogue of Friedel oscillations in purely bosonic case:

U(r) ≈ − 3Q

2e2T 2m3
Br

6 ln3
(√

8mBTr
) . (3.109)

The result has some unusual features. First, the potential decreases monotonically

without any oscillations. Second, it is inversely proportional to the temperature, so the
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smaller is T , the larger is the potential. However, the effect exists for sufficiently small

r, r � 1/
√

16πTmB, i.e. if T = 0.1K and mB = 1GeV the distance should be bounded

from above as r � 3·10−8 cm. Another obstacle to realization of such screening behavior

is that with fixed charge asymmetry Bose particle should condense and the dominant

term in Π00 becomes 4mBC/(2π)3. In this conditions we arrive to potential (3.98) which

vanishes at T = 0.

3.6 Discussion of the results

In this chapter of the thesis we have analyzed electromagnetic interactions in plasma

with charged scalar bosons and spin one half fermions. In particular, medium effects in

the presence of a BEC have been considered.

The calculations have been done in the lowest order in the electromagnetic coupling

constant, e, using a slightly different technique with respect to the standard ones, that

is either imaginary time method or real time method. Instead, we simply solved per-

turbatively the operator equations of motion for the charged fields Φ. This approach is

safe for abelian massive theories, where the usual infrared singularities do not appear.

The solution in the lowest order has the form

Φ1(x) =

∫
dy G(x− y)J(Φ0), (3.110)

where Φ0,1 are the charged fields in zeroth and first approximation in e respectively and

J is the current entering the equation of motion. This solution was substituted into the

Maxwell equation for the quantum electromagnetic field and the average of quantum

operators Φ0 was taken over the medium. In this way the effect of medium for arbitrary

occupation numbers of the charged particles (not necessary equilibrium) can be taken

into account. We checked our results comparing them with the known cases of Debye

screening and the plasma frequency at low and high T and nonzero chemical potentials.

Then, we considered the polarization operator in the presence of a BEC of charged

scalar particles. Physically such a condensate can be formed if there is a significant

asymmetry between charged fermions (electrons and positrons). Assuming that the

global charge of the plasma is zero (though it is not necessarily so) we can find the

number density of charged scalars in the condensate. To this end the charge asymmetry

between fermions must be sufficiently large so that the maximum allowed chemical

potential of bosons, μB = mB is not enough to secure the vanishing of total charge.

The necessary neutralization can be achieved by the charge density of the condensate,

having the distribution fc = Cδ(q).

The corresponding correction to the polarization operator has a singularity, i.e. a
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pole at zero three-momentum of photon, ∼ 1/k2. Probably the origin of this singularity

is a large mobility of particles with zero momentum under the influence of an external

electric field. Energetic particles are much less “eager” to screen the test charge.

Because of these infrared singular terms, the Debye screening length becomes para-

metrically shorter, λD ∼ 1/
√
e (if C �= 0), instead of the standard one λD ∼ 1/e which

is true for the plasma of charged fermions and/or bosons with μB < mB. It is note-

worthy that the Debye screening is now a non-analytic function of the electromagnetic

coupling e. The screened electrostatic potential in the presence of Bose condensate of

charged scalars has an oscillating behavior superimposed on the exponential decrease,

equation (3.89).

At non-zero temperature and μ = mB the polarization operator obtains an odd

contribution with respect to the transformation k → −k. As a consequence, the integral

along the imaginary axis in the complex k-plane, which determines the asymptotic

behavior of U(r), becomes non-vanishing. It leads to a weaker, power law, decrease of

the screened potential, which is inversely proportional to the electromagnetic coupling

constant squared, equation (3.90). When the condensate has not yet been formed, there

is a monotonic power law screening U ∼ 1/r6, equation (3.91). Such a change in the

screening may be a signal of the condensate formation.

We have also considered the BEC analogue of the fermionic Friedel oscillations.

Friedel oscillations arise from the pinching of the integration contour in the complex k-

plane by the logarithmic branch point of Π00 and the poles of the distribution functions.

For bosons, the origin of the phenomenon is the same but the resulting potential is quite

different because the poles of the bosonic distribution move to zero when temperature

tends to zero, while the fermionic ones keep a finite value. This leads to completely

different behavior of the potential as a function of temperature.

The potential vanishes when T goes to zero for mixed bosonic and fermionic plasma.

In the case that it is dominated by the first pole, for large r and non-zero T , it goes as

in equation (3.96) and at small T the exponential screening is quite mild. For purely

bosonic plasma the “Friedel” part of the screening is given by equations (3.102) and

(3.109). If TmBr
2 is not small the potential oscillates and exponentially decreases,

while for smaller T it does not oscillates and is proportional to 1/(e2T 2). The 1/e2

behavior looks puzzling but one should remember that it is an asymptotic result for large

distances. However, if we take the formal limit e → 0 the screening would disappear

together with e. Similar reasoning is applicable to 1/T 2 behavior: this is true only for

large but simultaneously sufficiently small distances r < 1/
√

16πmBT , when the k2 part

of the photon Green’s function is sub-dominant.

The system considered in this chapter is standard electrodynamics plus BEC. The

screening effects we described here can be produced, of course, in the framework of the
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standard model of particle physics as long as the EW symmetry is broken. A possible

realization of this system is in the early universe after the EW symmetry breaking epoch,

as we argued in chapter 2. A system analogous to our model may be also realized in

white dwarfs, as it was argued in [4; 16]. Finally, it is not excluded that an extension of

the minimal standard model will demand stable charged Bose fields. If this is the case,

the calculated photon dispersion relation may be of interest in cosmology or in dense

stellar environment. For example, we may expect condensation of di-quarks in quark

stars. On the other hand, stability of scalars may be irrelevant because even unstable

particles may condense in a dynamical equilibrium state.

Bose condensation of charged scalars can possibly be realized also in the following

situation. Let there be high temperature plasma of e±, ν, and ν̄ with a considerable

excess of e− over e+ and of ν over ν̄, i.e. there are large lepton and electric charge

asymmetries. We assume that there are also charged pions (or some other scalar par-

ticles) in the plasma to ensure zero total electric charge. The condensed scalars may

be stabilized by large chemical potentials of neutrinos, such that the decay π+ → e+ν

is not allowed because the Fermi states with E = mπ/2 are already occupied. Such a

state might possibly exist in exotic stars.
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Part II

Primordial perturbations and

non-Gaussianities.
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Chapter 4

Perturbations: the state of the art

4.1 Introduction

It is nowadays clear that cosmology and high energy physics are strictly connected. Any

progress in one of the two fields has a large impact on the other. For instance, particle

physics can provide models for the early universe, while cosmology provides invaluable

informations and constraints on these models.

The earliest direct cosmological probe nowadays available is the primordial nucle-

osynthesis (BBN), which constrains the properties of the universe when it was at the

temperature ∼ 1 MeV, that is a few seconds of age - for a review see [44]. BBN is one of

the observational pillars of the hot Big Bang model and provides detailed informations

on the homogeneous universe.

In the homogeneous approximation it is possible to successfully describe the average

expansion of the universe on large scales and its cooling down from a hot, radiation-

dominated epoch to the present days. But matter and energy are not actually smoothly

distributed in the universe. There are complex structures, such as stars, galaxies, clus-

ters of galaxies etc. which are not taken into account in a homogeneous model. Struc-

tures were generated by the amplification of small density perturbations in the primeval

plasma after the universe became matter dominated.

Informations on the inhomogeneities of the early universe can be extracted from the

temperature fluctuations that we observe today in the cosmic microwave background

(CMB) radiation. The spectrum of CMB photons is consistent with a black body at

T = 2.7K with tiny fluctuations of order ΔT/T ∼ 10−5. It is well known that CMB

photons have propagated almost freely since matter-radiation equality, that is when

the universe was about 380.000 years old, or equivalently, from redshift z = 1100.

Hence their present distribution is determined by the properties they had on the last

scattering surface. CMB temperature fluctuations are closely related to perturbations
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in the primeval plasma, hence their properties can be used to test and constrain models

of the early universe which produce such perturbations.

Small curvature perturbations can be generated by a very simple mechanism, that

is, the stretching to super-Hubble scales of vacuum fluctuations of light scalar fields

during a phase of accelerated expansion called inflation. Nevertheless, the details of the

generation of perturbations and the corresponding CMB fluctuations in the primordial

universe are sill unknown.

Although the simplest early Universe models are based on inflation driven by a single

scalar field, many models consider additional scalar fields, which can play a dynamical

role during inflation or simply be spectactor fields (see e.g. [82] for introductory lec-

tures). A strong motivation for considering many fields comes from particle physics,

since models beyond the standard one (e.g. SUSY models) typically include a large

number of extra fields.

The existence of several degrees of freedom opens up the possibility of isocurvature

perturbations, i.e. perturbations in the particle density ratio between two fluids. Since

primordial isocurvature perturbations leave distinctive features of the CMB acoustic

peaks, they can be in principle disentangled from the usual adiabatic mode.

Since the primordial cosmological perturbations are tiny, they can be studied using a

perturbative approach. At first order, linear perturbation theory can be used to analyze

the generation and the evolution of fluctuations at a very good level of approximation.

The observed power spectrum of linear perturbations can be used to constrain models

of the early universe.

It is commonly assumed that the primordial density perturbations have a gaussian

distribution, that is, their Fourier components are uncorrelated and have random phases.

Under this hypothesis the properties of the distribution function are completely specified

by the two-point correlation function, or equivalently, by the power spectrum in Fourier

space.

Whether the perturbations are actually fully gaussian or not is still unclear. Single

field models of inflation, which are theoretically appealing for their simplicity, produce

nearly Gaussian distributions. On the other hand, more complicated inflationary mod-

els, such as multi-field models, predict pretty large non-Gaussianities (NG), which are

still allowed by observational constraints.

The three-point correlation function, that is the first probe beyond the linear order,

can be used to test the second order of perturbation theory and, consequently, NG.

It is predicted to be very small in simple one-field inflationary models, but it can be

large in more complicated models. The possible existence of non-Gaussian features

in the CMB spectrum has received increasing attention in the latest years. A non-

vanishing detection of three-point correlation function would be a strong evidence in
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support of theoretical models predicting non-Gaussian features in the CMB sky. Hence

non-Gaussianity is considered as a key observable to discriminate among competing

scenarios for the generation of cosmological perturbations and is one of the primary

targets of present and future Cosmic Microwave Background satellite missions.

Given the WMAP data [45], we can conservatively say that present bounds are

consistent with vanishing non-Gaussianity. Nevertheless the current CMB data seem

to favour a non-zero amount of so-called local NG. This feature may be a hint of non-

Gaussian behavior to be further investigated by experiments, such as the European

satellite Planck [83]. The upper bounds on primordial NG can be used to constrain

early Universe scenarios and, if they will be detected, the amplitude and shape of non-

Gaussianities would provide informations on the primordial perturbations.

4.2 Inflation

The word inflation is commonly used to indicate a phase of acceleration which took place

in the very early universe, before the beginning of the standard radiation-dominated

epoch. Such an accelerated phase was introduced to solve some shortcomings of the

standard cosmological model, such as the horizon and flatness problems - for a review

see [82; 84; 85; 86]. All these problems can be solved if a phase of acceleration, ä > 0,

was realized in the early universe, during which the causal size was decoupled from the

Hubble radius H−1.

From one of the Friedmann equations

ä

a
= −4πG

3
(ρ+ 3P ) , (4.1)

it follows that the cosmic acceleration is realized when (ρ+ 3P ) < 0. Such a condition

is, for instance, satisfied by the equation of state of a cosmological constant (P = −ρ)
but not by radiation (P = ρ/3) nor matter (P = 0).

The condition (ρ + 3P ) < 0 can be also realized by using a scalar field φ, which

enables the accelerating phase to have a finite duration. This is one of the reasons why

inflation is typically assumed to be driven by a scalar field, which is dubbed the inflaton.

It is possible to demonstrate - see the references quoted above for the details - that φ

can give rise to a period of inflation as long as its energy is dominant in the universe

and its kinetic energy is negligible with respect to its potential energy. Quantitatively,

inflation is realized as long as the slow-roll conditions:

ε ≡ − Ḣ

H2
� 1 η ≡ M2

P

V ′′

V
� 1 (4.2)
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are satisfied, where V is the potential of the scalar field and a prime denotes its derivative

with respect to φ.

4.2.1 Generation of cosmological perturbations

Inflation is a fundamental ingredient to make the universe as homogeneous and isotropic

as we observe it today. Nevertheless, inflation is of crucial importance also for solving

another cosmological problem: the generation of primordial perturbations, which were

amplified because of the attractive nature of gravity and grew to form all the structures

that we observe today. Amplification takes place when the attractive gravitational

interaction is stronger than the repulsive pressure in a given system. This is called

Jeans instability. The expansion of the universe makes more difficult for perturbations

to grow and, clearly, matter dominated regime (MD) is more favorable to this end than

the faster expanding radiation dominated (RD) regime. In particular it can be shown

- see [82; 84; 85; 86] for the details - that δ ≡ δρ/ρ is approximately constant in RD

(actually, it logarithmically grows), while it grows like the scale factor (δ ∝ a) in MD. Of

course, the amplification mechanism can only act on pre-existing perturbations. Such

primordial perturbations are naturally produced during a period of inflation, while they

should be added by hand in the standard cosmological model.

It is well known that each quantum field has quantum fluctuations. The exponential

growth of the scale factor that occurred during inflation stretched the wavelengths of

the quantum fluctuations up to cosmological scales. When this wavelenght becomes

larger than the Hubble radius H−1, the amplitude of the perturbation is frozen due to

the large friction term ∝ Hφ̇, which is present in the equation of motion of scalar fields:

φ̈+ 3Hφ̇+ V ′ = 0 . (4.3)

After the end of inflation, the fluctuations can eventually re-enter the Hubble radius

and have wavelengths accessible to the present observations.

Let us discuss now the generation during inflation of primordial perturbations for

a generic massless scalar field1. Let us consider the evolution of this field during a de

Sitter stage and analyze how its fluctuations behave. In this section the symbol φ is

used to simplify the notation, but the fluctuation of the scalar field δφ is actually meant.

Let us first recall that in a de Sitter epoch the Hubble rate H is a constant and the

expansion is approximately exponential: a(t) = exp(Ht). The metric can be written in

the simple form:

ds2 = a2(τ)[−dτ 2 + dx2] (4.4)

1The inflaton is somehow special, as it is discussed briefly at the end of this section.
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where we used the conformal time:

τ =

∫
dt

a(t)
, τ = − 1

aH
(de Sitter) . (4.5)

The action for a massless scalar field is given by:

S =

∫
d4x
√−g

(
−1

2
∂μφ∂

μφ

)
=

∫
dτ d3x a4

[
1

2a2
φ′2 − 1

2a2
�∇φ2

]
, (4.6)

where a prime denotes a derivative with respect to the conformal time τ and g ≡
det(gμν). By defining a new function

u = aφ , (4.7)

the action can be rewritten as:

S =
1

2

∫
dτ d3x

[
u′2 − �∇u2

+
a′′

a
u2

]
. (4.8)

This action is very close to the one for a Klein-Gordon scalar field in Minkowski space-

time, but there appears a negative time-dependent effective mass

m2
eff = −a

′′

a
= − 2

τ 2
. (4.9)

The field u can be quantized according to the standard procedure of quantum field

theory. Hence, the quantum field û can be expanded in Fourier modes:

û(τ, �x) =
1

(2π)3/2

∫
d3k

{
â�kuk(τ)e

i�k.�x + â†�ku
∗
k(τ)e

−i�k.�x
}
, (4.10)

where â† and â are the creation and annihilation operators. The equation of motion for

u in Fourier space is again of Klein-Gordon type with a time-dependent mass:

u′′k +

(
k2 − a′′

a

)
uk = 0 (4.11)

and its solution in de Sitter can be chosen as:

uk =

√
1

2k
e−ikτ

(
1− i

kτ

)
, (4.12)

where we are using the natural units � = 1. It is now possible to calculate the two point
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correlation function and the related spectrum P of the produced perturbations as:

〈0|φ̂(�x1)φ̂(�x2)|0〉 =

∫
d3k

(2π)3
ei
�k·(�x1−�x2)

|uk|2
a2
≡
∫
d3k ei

�k·(�x1−�x2)Pφ(k)

4πk3
. (4.13)

It follows that, in the limit k|τ | � 1, i.e. when the wavelength is larger than the Hubble

radius,

Pφ(k) �
(
H

2π

)2

(k � aH) . (4.14)

In the analysis above we have assumed that the geometry is fixed, while inhomo-

geneities in the energy density may be present. Evidently, in general relativity, this is

not very consistent. As a consequence, while equation (4.14) still describes the spectrum

of the perturbations of any massless scalar field subdominant during inflation, e.g. a

curvaton, see section 4.7, the perturbations of the inflaton behave differently.

The inflaton is assumed to dominate the energy density of the universe during infla-

tion, hence any perturbation in the inflaton is reflected on the total energy momentum

tensor, and, due to the Einstein’s equations, on the metric as well. On the other hand,

any perturbation in the metric generates a back-reaction on the inflaton field. To con-

clude, the perturbations in the metric and in the inflaton field must be necessarily

studied together. A complete analysis of this problem can be found in the references

quoted above. We only report here the final spectrum for the inflaton perturbations,

that is:

Pinf � 1

2M2
P ε∗

(
H∗
2π

)2

, (4.15)

where the subscript ∗means that the quantity is evaluated at Hubble crossing (k = aH).

We also used the slow-roll parameter ε - see equations (4.2) - which takes into account

the fact that the Hubble parameter H is not actually a constant, but slowly changes

according to: Ḣ = −εH2

4.3 Non linear perturbations

As we have discussed in section 4.2, most probably primordial perturbations were gen-

erated in the very early universe, during inflation. But the earliest probe we have to

study them is the CMB radiation, which represents the universe at much later times.

It is then necessary to study the evolution of the perturbations from their production

to the beginning of the standard radiation dominated epoch, when the initial conditions

for the ”standard model” of the universe are set. In principle this is not a easy task,
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since we do not know the details of the physical processes that happened in between,

such as reheating, dark matter production, energy transfer from the inflaton and other

eventual particles to radiation etc.

In spite of these uncertainties, we are able to make predictions because the wave-

lengths of the perturbations were outside the Hubble radius H−1 from before the end of

inflation to recent times. As long as the perturbations are outside the Hubble radius,

they can be parametrized by using some quantities that are conserved on large scales.

These quantities allow us to study the evolution of perturbations from their origin to the

CMB decoupling without taking into account the details of the physical processes which

took place in the meanwhile. To this end we introduce below the curvature, isocurvature

and number density perturbations.

Several definitions, which turn out to be equivalent on large scales, have been pro-

posed for these quantities. In the following we adopt the fully non-linear and covariant

approach introduced in [87; 88], and reviewed in [89]. For an alternative approach see

[90].

The idea is to generalize in a geometric way the traditional quantities used to study

linear perturbations, which are useful because conserved on large scales. The generalized

quantities are covectors and it is possible to calculate their evolution equations in a fully

non-linear and covariant form. Finally, these quantities can be expanded in a specific

coordinate system to make quantitative calculations.

4.3.1 Curvature perturbation

We consider a perfect fluid characterized by the energy density ρ, the pressure P and

the comoving four-velocity ua, such that uaua = −1. In the following we will always

consider non-interacting fluids. Nevertheless it should be noted that this formalism can

be extended to dissipative and interacting fluids [91]. The energy-momentum tensor

associated with a perfect fluid is given by:

Tab = (ρ+ P )uaub + Pgab . (4.16)

Let us define the expansion along the fluid world-lines and the integrated expansion as:

Θ ≡ ∇au
a, N ≡ 1

3

∫
dτ Θ , (4.17)

where τ is the proper time defined along the fluid world-lines. In a FLRW space-time

the volume expansion Θ reduces to the Hubble parameter, Θ = 3H . Hence, in the

general case, Θ/3 can be interpreted as the local Hubble parameter and eN as a local

scale factor. N can be interpreted as the number of e-folds of the local scale factor
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associated with an observer following the fluid.

The conservation of the energy-momentum tensor, ∇aT
a
b = 0, implies that the cov-

ector

ζa ≡ ∇aN − Ṅ

ρ̇
∇aρ (4.18)

satisfies the relation

ζ̇a ≡ Luζa = − Θ

3(ρ+ p)
Γa , Γa = ∇ap− ṗ

ρ̇
∇aρ , (4.19)

where a dot denotes a Lie derivative along ua, which is equivalent to an ordinary deriva-

tive for scalar quantities (e.g. ρ̇ ≡ ua∇aρ), while for a covector:

Luχa ≡ uc∇cχa + χc∇au
c . (4.20)

The covector ζa can be defined for the global cosmological fluid or for any of the indi-

vidual cosmological fluids, as we will discuss below.

The quantity Γa is a non-linear generalization of the non-adiabatic pressure. It

vanishes for purely adiabatic perturbations, e.g. when P is solely a function of ρ or,

more generally, when the adiabatic condition

∇ap =
ṗ

ρ̇
∇aρ (4.21)

is satisfied.

Hence, equation (4.19) represents a conservation law for ζa. It is valid for any geom-

etry and describes the evolution of the covector ζ in a exact and fully-nonperturbative

way, valid at all scales. It should be noted that it directly derives from the conserva-

tion of the energy-momentum tensor and is independent of the underlying theory of

gravitation.

Even though ζa and Γa in equations (4.18) and (4.19) are defined using covariant

gradients, for all practical purposes they can be replaced by ordinary gradients. This

is always true for combinations of the form ∇aχ− (χ̇/η̇)∇aη since for scalar quantities

∇aχ = ∂aχ+ uaχ̇. Hence:

ζa = ∂aN − Ṅ

ρ̇
∂aρ , Γa = ∂ap− ṗ

ρ̇
∂aρ . (4.22)

Using the non-linear conservation equation

ρ̇ = −3Ṅ(ρ+ P ) , (4.23)
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which follows from ub∇aT
a
b = 0, one can re-express ζa in the form

ζa = ∂aN +
∂aρ

3(ρ+ P )
. (4.24)

If w ≡ P/ρ is constant, the above covector is a total gradient and can be written as

ζa = ∂a

[
N +

1

3(1 + w)
ln ρ

]
. (4.25)

On scales larger than the Hubble radius, the above definitions are equivalent to the

non-linear curvature perturbation on uniform density hypersurfaces as defined in [92],

ζ = δN −
∫ ρ

ρ̄

H
dρ̃
˙̃ρ

= δN +
1

3

∫ ρ

ρ̄

dρ̃

(1 + w)ρ̃
, (4.26)

where H = ȧ/a is the Hubble parameter.

The procedure defined above can be applied to construct a covector associated to any

quantity satisfying a local conservation law. This covector would then obey a fully non-

linear conservation law valid at all scales. In the following we apply this procedure to

some cases which are of interest for cosmology and high energy physics. In particular, we

will consider as examples the conservation of energy and number densities for individual

fluids.

4.3.2 Adiabatic, isocurvature and number perturbations

The initial conditions for the standard cosmological era are set at the BBN epoch,

when the universe is radiation dominated and the cosmic plasma consists mainly of four

species: photons, baryons (B), cold dark matter (CDM) and neutrinos (ν).

When several species are present it is useful to distinguish the non-linear curvature

perturbation ζ of the total fluid from the individual non-linear perturbation ζA that

describes the cosmological fluid A.

The curvature perturbation for a single non-interacting fluid A is defined as:

ζ
A

= δN +
1

3(1 + w
A
)
ln

(
ρ

A

ρ̄
A

)
, (4.27)

where a bar denotes a homogeneous quantity and wA ≡ PA/ρA = 0 for a pressureless

fluid or wA = 1/3 for a relativistic fluid.

Inverting this relation yields the expression of the inhomogeneous energy density as
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a function of the background energy density and of the curvature perturbation ζ
A
,

ρ
A

= ρ̄
A
e3(1+wA

)(ζ
A
−δN) , (4.28)

which we will use many times in chapter 5.

In the presence of N fluids, the primordial perturbations can be decomposed into an

adiabatic or curvature mode and N − 1 relative perturbations, or isocurvature modes1.

For the adiabatic mode, the curvature perturbation is the same for all the present fluids,

independently of their equation of state:

ζA = ζB (adiabatic mode) , (4.29)

while the non-linear isocurvature (or entropy) perturbation between two fluids A and B

is defined as:

SA,B ≡ 3(ζA − ζB) (isocurvature modes) . (4.30)

In the following we will always define the isocurvature perturbations with respect to the

radiation fluid, so that our definition for the isocurvature perturbation of the fluid A

will be

SA ≡ 3(ζA − ζr), (4.31)

where ζr is the uniform-density curvature perturbation of the radiation fluid.

It should be noted that Equation (4.29) implies at the linear level and for adiabatic

perturbations the relation among the energy density perturbations for radiation type

(r) and matter type (m) fluids:

1

4

δρr
ρr

=
1

3

δρm
ρm

. (4.32)

Number density perturbations An other possible application of the general pro-

cedure introduced above concerns the particle number density n. In the contexts where

it is conserved, n obeys the continuity equation ∇a(nu
a) = 0, which yields to the con-

servation law: ṅ + Θn = 0. By the spatial projection of this equation one can define

the covector:

ζ (n)
a = ∂aN − Ṅ

ṅ
∂an . (4.33)

This conserved covector can be used to study problems related to CDM or baryon

asymmetry in the primordial universe.

1To be more precise, there may be more than one isocurvature mode associated to a single species,

see [93]. Nevertheless, we neglect this possibility in the remainder of this thesis.
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4.4 From theory towards observations

The temperature anisotropies that we observe in the CMB sky were produced by several

physical effects. For instance, some of them are due to events that happened in the recent

universe, such as the scattering of light by intergalactic electrons in clusters of galaxies

along the line of sight (Sunyaev-Zel’dovich effect [94]). An other example is our peculiar

velocity with respect to the cosmic rest frame, which produces the so-called dipole

anisotropy. Anisotropies arise also from intrinsic temperature and velocity fluctuations

in plasma at last scattering surface (the latter is known as Doppler effect) and from the

evolution of time-dependent perturbations from the last scattering surface to present

(integrated Sachs-Wolfe effect [95]).

We are interested in the so called primary anisotropies, which were originated in

the very early universe. In particular, fluctuations in the gravitational potential at last

scattering surface induce an energy shift in the CMB photons, a phenomenon known

as Sachs-Wolfe effect [95]. Together with the integrated Sachs-Wolfe effect, it gives the

dominant contribution at large angular scales, θ > 1◦, corresponding to low multipole

index, l < 40. These scales were larger than the horizon at last scattering, hence they

provide informations on the primordial perturbations produced during inflation.

In this section we analyze how the primordial perturbations affect temperature

anisotropies. This topic can be found in several books, e.g. [84; 85] as well as in

rewiev papers, e.g. [86].

Let us consider the difference between the temperature observed in a direction n̂ and

the present average temperature T0 (in the following we will always omit the subscript

0):

ΔT (n̂)

T0

≡ T (n̂)− T0

T0

, T0 =
1

4π

∫
d2n̂ T (n̂) , (4.34)

where a hat denotes a unit vector. It is convenient to expand temperature fluctuations

in spherical harmonics Ylm(n̂):

alm ≡
∫
d2n̂

ΔT (n̂)

T
Y ∗
lm(n̂),

ΔT (n̂)

T
=
∑
lm

almYlm(n̂) , (4.35)

where as usual l runs over all positive-definite integers and m over integers from −l to

l.

By expanding the temperature anisotropies in Fourier space and by using the Leg-

endre expansion of the exponential, one finds:

ΔT (n̂)

T
=

∫
d3k

(2π)3

∑
l

(i)l(2l + 1)gl(k) ζ�k Pl(k̂ · n̂) , (4.36)
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where Pl (k̂ ·n̂) are the Legendre polynomials and gl(k) are the photon transfer functions.

The equation written above was calculated for the case of one adiabatic perturbation

ζ�k. The case with several perturbations is considered in Appendix B.

By substituting the expression above in the first of (4.35), one finds:

alm = 4π il
∫

d3k

(2π)3
gl(k) ζ�k Y

∗
lm(�k) . (4.37)

The coefficients alm depend on the physical phenomena we have discussed at the

beginning of this section as well as on the position of the observer in the universe.

For this reason, cosmologically significant quantities must be averaged over the possible

observer positions. The ergodic theorem assures that, under reasonable assumptions,

the average over the observer positions and the averages over the historical accidents are

the same. This is why in what follows we analyze the (lowest orders of the) correlation

functions of the temperature anisotropies, which we denote as 〈. . .〉.

4.4.1 Power spectrum

If temperature anisotropies obey a Gaussian statistics, only the even correlation func-

tions are non-vanishing and the all of them can be expressed in terms of the two-point

correlation function. As a consequence, all the statistical properties of the temperature

anisotropies can be extracted by a single function of multipole index l.

The rotational invariance of the universe requires that:

〈alma∗l′m′〉 = δll′δmm′ Cl , (4.38)

where Cl are the multipole moments. It follows that the angular two-point correlation

function is:

〈ΔT (n̂1)

T

ΔT (n̂2)

T

〉
=
∑
l

2l + 1

4π
Cl Pl(n̂1 · n̂2) . (4.39)

This is why Cl is also called the temperature power spectrum.

The coefficient Cl can be related to the spectrum of the primordial perturbations,

by using equation (4.37). Let us consider the simple case of a single perturbation ζ�k,

whose power spectrum Pζ is defined from:

〈ζ�k1ζ�k2〉 = (2π)3 δ(�k1 + �k2)Pζ(k1) . (4.40)
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By using equations (4.38) and (4.37), one finds

Cl =
2

π

∫ ∞

0

dk k2|gl(k)|2Pζ(k) . (4.41)

In conclusion, in the Gaussian hypothesis, the two-point correlation functions Cl fully

characterize the CMB sky. At the same time, the Cl are related to the spectra of the

perturbations, as it is shown in (4.41). Hence, by measuring the present spectrum of

the CMB anisotropies, we can extract informations on the spectrum of the primordial

perturbations.

4.4.2 Bispectrum

If the perturbations are not fully Gaussian, this feature will appear, at lowest order, in

the three-point correlation function, which is predicted to be vanishing in the Gaussian

hypothesis.

The CMB angular bispectrum is defined as:

Bm1m2m3

l1l2l3
≡ 〈al1m1

al2m2
al3m3

〉 , (4.42)

where the triangle conditions and selection rules: m1 +m2 +m3 = 0, l1 + l2 + l3 = even,

and |li − lj | ≤ lk ≤ li + lj for all permutations of indices must be satisfied.

Given the rotational invariance of the universe, Bm1m2m3

l1l2l3
can be written in the form

[96; 97]

Bm1m2m3

l1l2l3
= G

m1m2m3

l1l2l3
bl1l2l3 , (4.43)

where bl1l2l3 is the reduced bispectrum and

G
m1m2m3

l1l2l3
=

∫
d2n̂ Yl1m1

(n̂) Yl2m2
(n̂) Yl3m3

(n̂) (4.44)

is the Gaunt integral. It is important to note that the reduced bispectrum contains all

the physical informations on the angular bispectrum. Hence in what follows we will

always refer to bl1l2l3 .

Let us assume, as we did above, that there is only one curvature perturbation gener-

ated by the fluctuations of one Gaussian scalar field, φ, whose power spectrum is defined

as:

〈φ(�k)φ(�k′)〉 = (2π)3 Pφ(k) δ(�k + �k′) . (4.45)
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Up to second order we can write:

ζ = N1φ+
1

2
N2φ

2 + . . . (4.46)

By using equation (4.37) in the definitions (4.42) and (4.43) the reduced bispectrum can

be calculated as [96; 97]:

bl1l2l3 = 3N2N1N1

∫ ∞

0

r2drβ̃(l1(r)βl2(r)βl3)(r), (4.47)

where (l1l2l3) ≡ [l1l2l3 + 5 perms]/3! and

β̃l(r) ≡ 2

π

∫
k2dkjl(kr)gl(k), βl(r) ≡ 2

π

∫
k2dkjl(kr)gl(k)Pφ(k) . (4.48)

The equations presented in this section can be easily generalized to include several

independent observational quantities XI
�k
, such as ζ�k and S�k. The equations for the

general case are presented in Appendix B.

4.5 Observational bounds on non-Adiabaticity

In a universe filled with photons, CDM, baryons and neutrinos we can decompose the

primordial perturbations into four modes, see section 4.3.2. The power spectrum of the

CMB anisotropies will then depend on the amplitude of the different modes as well as

on their correlations, which are strongly model-dependent.

The adiabatic condition (4.29) is satisfied if all the fluids were in thermal equilibrium

before the creation of any conserved and non-vanishing number, such as the baryon

number, or when there is only one degree of freedom in the system, that means that

all the cosmological fluids were created from the decay products of the same field,

which also responsible for creating the primordial perturbations. As a consequence,

detection of non-adiabaticity would imply that both the conditions written above were

violated, hence there were multiple fields during inflation and some species remained

out of thermal equilibrium with radiation for all the time or some conserved number

was created before the era of thermal equilibrium.

Let us focus in particular on the case when non-adiabatic fluctuations between pho-

tons and dark matter are present. As combined adiabatic and isocurvature perturbations

lead to a distortion of the acoustic peaks, which depends on their correlation [98], it

is in principle possible to distinguish, in the observed fluctuations, the adiabatic and

isocurvature contributions. Given the entropy perturbation Sc, the correlation is defined
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as:

CS,ζ =
PS,ζ√
PSc

Pζr

, (4.49)

where the power spectrum of the non-adiabatic perturbation is given by:

〈Sc(�k)Sc(�k′)〉 = (2π)3 2π2

k3
PSc

(k) δ(�k + �k′)

and the power spectrum of the adiabatic perturbation Pζr and the hybrid one PS,ζ are

straightforwardly defined. For instance, one good candidate for dark matter, the axion,

may produce dark matter isocurvature perturbation independent of curvature pertur-

bations, hence C = 0 for this case. A different case of CDM isocurvature perturbation

having C = 1 can be produced by the curvaton decay, see section 4.7. Here and in the

following we omit the subscripts S, ζ and write simply C to indicate the correlation.

So far, there is no detection of any isocurvature component, but only an upper bound

on the ratio between isocurvature and adiabatic power spectra, which, in our case, is

given by

α ≡ PSc

Pζr

. (4.50)

The observational constraints on α depend on the correlation. Writing α ≡ a/(1 − a)
(note that α � a if α is small), the constraints (WMAP+BAO+SN) given in [45] are

a0 < 0.064 (95%CL), a1 < 0.0037 (95%CL) (4.51)

respectively for the uncorrelated case and for the fully correlated case 1. When con-

sidering multi-field models, the present upper bound on the isocurvature contribution

to the power spectrum provides a stringent constraint. In sections 5.2 and 5.3 of this

thesis, this constraint is applied in the framework of the curvaton scenario [99] where

large residual isocurvature perturbations (for CDM or baryons) can be generated, de-

pending on how and when CDM or baryons are produced [100; 101] (see also [102; 103]

for more detailed scenarios). The same constraints apply to moduli that are light during

inflation, and thus acquire super-Hubble fluctuations, as discussed recently in [104].

Isocurvature modes introduce significant degeneracies with other cosmological pa-

rameters. As a consequence, the effects of isocurvature modes cannot be distinguished

from the variations in the cosmological parameters yet. This result may be achieved by

measures of the CMB polarization performed by the Planck satellite [105].

1Our notations differ from those of [45]. Our a corresponds to their α and our fully correlated

limit corresponds to their fully anti-correlated limit, because their definition of the correlation has the

opposite sign.
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4.6 Non-Gaussianities

As we have already said, the amount of non-Gaussianity in the CMB sky represents one

of the crucial measures for differentiating models of the early universe [106; 107].

Perturbations generated by single slow-rolling inflaton field result in (almost) scale-

invariant and adiabatic primordial fluctuations, which have negligible NG. On the other

hand, several models produce non negligible non-Gaussian features which would be

detectable in the three-point correlation function.

The degrees of non-Gaussianity are often represented by the so-called non-linearity

parameters fNL, which characterize the size of bispectrum of the curvature perturbation.

The latter is defined as:

〈ζ�k1ζ�k2ζ�k3〉 = (2π)3δ(Σi
�ki)B(k1, k2, k3) . (4.52)

Depending on the momentum distribution of the bispectrum or the shape of three point

function, it is possible to identify different types of NG.

Several models produce a bispectrum of the form:

B(local)(k1, k2, k3) =
6

5
f

(local)
NL [Pζ(k1)Pζ(k2) + 2 perms]

=
6

5
f

(local)
NL A2

[
1

k4−ns

1 k4−ns

2

+ 2 perms

]
, (4.53)

where we used the power spectrum of ζ , Pζ(k) = A/k4−ns, ns is the power-law index

of the primordial power spectrum1 and A is a normalization factor. As it is clear from

the expression above, B(local)(k1, k2, k3) has its maximum amplitude for the squeezed

configuration k3 � k2 � k1.

This is called local non-Gaussianity because the characteristic shape of the bispec-

trum can arise from a curvature perturbation of the kind:

ζ = φ+ (3/5)f
(local)
NL φ2 , (4.54)

where both sides are evaluated at the same location in space and φ is a linear Gaussian

fluctuation.

The present constraints on f
(local)
NL , calculated from WMAP data by assuming purely

adiabatic perturbations, are [45]:

− 10 ≤ f
(local)
NL ≤ 74. (4.55)

1ns = 0.968± 0.012 at 68% C.L. [45]
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Evidently, there is no detection of local NG so far. Nevertheless the bounds are centered

on a value different from zero and it is possible that more precise observations, such as

the ones performed by Planck [83], will detect some non-Gaussian feature in the CMB

sky.

A curvature perturbation of the local kind (4.54) is realized in several models, see

e.g. [108; 109] for recent reviews. Some possibilities are: multiple field inflation (during

inflation or at the end of inflation: see e.g. [110]), modulated reheating [111; 112],

curvaton (see section 4.7), modulated trapping [113], etc.

The parameter f
(local)
NL can be large in some of these models, while the amount of

f
(local)
NL produced in single-field slow-roll inflation is much smaller than 1. In particular,

in the squeezed limit k1 → 0, the simplest single-field slow-roll inflationary models with

canonical kinetic term give [114]:

B(local)(k1 → 0, k2, k3) = (1− ns)Pζ(k1)Pζ(k3) . (4.56)

The local bispectrum has special significance because all the inflationary models

predict the bispectrum in the form given in equation (4.56) irrespectively of the inflaton

dynamics, as long as the inflaton is the only dynamical field [115]. Of course the previous

statement is not valid when the curvature perturbation is partially or totally produced by

fields other than the inflaton, such as the curvaton - see section 4.7. As a consequence,

detecting a significant f
(local)
NL would rule out all the simplest single-field inflationary

models.

It is interesting to combine the constraints on isocurvature modes and non-Gaussianity

to explore the early Universe physics, as has been done recently in various scenarios

[116; 117; 118; 119; 120; 121; 122; 123]. This is done in sections 5.2 and 5.3 of this thesis

in the framework of the curvaton scenario.

Other types of NG can be generated by different physical mechanisms. For instance,

inflationary models where scalar fields have non-canonical kinetic terms produce the

so-called equilateral bispectrum, which has the maximum for the configuration k1 =

k2 = k3 [124]. An other possibility is the so-called orthogonal non-Gaussianity, which

is approximately produced from a linear combination of higher-derivative scalar-field

interaction terms [125].

4.7 The curvaton scenario

Usually models of high-energy physics beyond the standard one (e.g. SUSY theories)

contain a large number of extra fields. Besides being motivated from particle physics,

this kind of scenario is interesting from the cosmological point of view because extra fields
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may contribute to the primordial curvature perturbations. This way the generation of

the primordial perturbations can be disentangled from inflation, which therefore would

be less constrained from the observations.

If such extra fields are displaced from the minima of their potentials by an amount of

the order of the Planck scale, they may give rise to a period of extra-inflation. Otherwise,

during inflation, they acquire random fluctuations of order Hinf/2. In the latter case,

when the Hubble rate drops below their effective mass, they start to oscillate about the

minima of their potentials and, if we average over several oscillations, they obey the

equation of state of a massive pressure-less field. When they decay, they can generate

primordial perturbations.

The energy density of a matter-like fluid decreases as a−3, while for radiation it goes

as a−4. Hence, after the decay of the inflaton into radiation, matter-like fluids may end

up dominating the energy density of the universe. They may eventually give relevant

contributions to the primordial perturbations.

Late oscillating matter-like fields contributing to the curvature perturbation are usu-

ally called curvatons [99]. A recent review considering the particle theory origin of in-

flation and curvaton mechanisms for generating large scale structures and the observed

temperature anisotropy in the cosmic microwave background radiation can be found in

[126].

In the first version of the model, the curvature perturbation was solely generated

by the curvaton, which was strictly dominating the energy of the universe at its decay

epoch [99]. It should be noted that inflation is anyway necessary in this picture because

it is the source of the quantum fluctuations of the curvaton, besides solving some issues

of the standard cosmological model, such as the horizon and the flatness problems.

When the inflaton decays, a first radiation dominated era begins, which is followed

by a second radiation era after the curvaton decays. It should be kept in mind that

the energy content and the number of species present at the BBN epoch, that is at

T ≤ 1MeV, is strongly constrained. Hence, if any hypothetical field is present in the

early universe, it should decay into ordinary radiation before BBN.

Let us dub the curvaton σ and its potential V . Being weakly coupled and light

during inflation, the curvaton acquires perturbations with almost scale-invariant power

spectrum P = (H/2π)2. The equation of motion for the unperturbed field reads:

σ̈ + 3Hσ̇ + Vσ = 0 , (4.57)

where the σ in subscript indicates a first derivative. The curvaton perturbation obeys

the equation of motion:

δ̈σ + 3H ˙δσ + Vσσ δσ = 0 , (4.58)
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where we have used the first order approximation δ(Vσ) � Vσσ δσ.

Clearly, as long as H � m, the friction term dominates and the curvaton is effec-

tively frozen. This regime is for instance realized during inflation, when the curvaton

is subdominant and its effective mass is much smaller than the inflationary Hubble

parameter. After the end of inflation, H decreases and the value H ∼ m, when the cur-

vaton starts oscillating, may be reached. Hence the curvaton behaves like matter having

an isocurvature density perturbation, which is converted into a curvature perturbation

when the curvaton decays.

The curvaton perturbation Before its decay, the oscillating curvaton (with mass

m� H) is described by a pressureless, non-interacting fluid with energy density

ρσ = m2σ2 , (4.59)

where σ is the rms amplitude of the curvaton field. As we have argued above, it may

represent a significant fraction of the energy density of the universe or even dominate

it.

The fractional field perturbation is then δσ/σ = δσ∗/σ∗, where the star denotes the

epoch of horizon exit, and its spectrum is:

Pδσ/σ =

(
H∗

2πσ∗

)2

, (4.60)

while the energy density perturbation is:

δρσ
ρσ

= 2
δσ∗
σ∗

+

(
δσ∗
σ∗

)2

. (4.61)

On large scales and on unperturbed hypersurfaces the curvaton perturbation and its

spectrum are given by - see section 4.3:

ζσ =
1

3

δρσ
ρσ

, Pζσ =

(
H∗

3πσ∗

)2

, (4.62)

where the density perturbation is defined on the flat slicing of spacetime. When it decays

into radiation, the curvaton converts its fluctuations into the curvature perturbations of

the radiation fluid. If it decays only in photons and no CDM has been produced before

the decay, no isocurvature mode survives.

Let us now relate the perturbation of the curvaton fluid with the fluctuations of the

curvaton scalar field during inflation. Making use of equation (4.28), the inhomogeneous
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energy density of the curvaton can be reexpressed as

ρσ = ρ̄σe
3(ζσ−δN) . (4.63)

In the post-inflation era where the curvaton is still subdominant, the spatially flat

hypersurfaces are characterized by δN = ζr (since CDM is also subdominant). On

such a hypersurface, the curvaton energy density can be written as

ρ̄σe
3(ζσ−ζr) = ρ̄σe

Sσ = m2 (σ̄ + δσ)2 , (4.64)

where we used the energy density (4.59).

Expanding this expression up to second order, and using the conservation of δσ/σ

in a quadratic potential, we obtain

Sσ = 2
δσ∗
σ̄∗
−
(
δσ∗
σ̄∗

)2

, (4.65)

where the initial curvaton field perturbation, δσ∗, is assumed to be Gaussian, as would

be expected for a weakly coupled field. The curvaton entropy perturbation (4.65) thus

contains a linear part Ŝ which is Gaussian and a second order part which is quadratic

in Ŝ:

Sσ = Ŝ − 1

4
Ŝ2 , with Ŝ ≡ 2

δσ∗
σ̄∗

(4.66)

where the power spectrum of Ŝ, generated during inflation, is given by

〈Ŝ(�k)Ŝ(�k′)〉 = (2π)3 2π2

k3
PŜ(k) δ(

�k + �k′), PŜ(k) =
4

σ2∗

(
H∗
2π

)2

. (4.67)

The subscript ∗means that the quantity is evaluated at the time when the corresponding

scale crossed out the Hubble radius during inflation.

Beyond the simplest model The basic curvaton mechanism can be enriched in

several ways. For instance, it is possible to generate isocurvature perturbations from

the curvaton decay, e.g. in the baryon or CDM components [101]. In the latter case,

the power spectrum should satisfy the bound (4.51), that is, it should be dominated by

the adiabatic component1.

An other interesting possibility is a hybrid model, where both the inflaton and the

curvaton generate non-negligible perturbations [127]. If the inflaton decay generated a

perturbation of the radiation fluid, indicated by ζinf , the total curvature perturbations

1When the curvature perturbation is fully generated by the curvaton, the perturbations are fully

correlated, CS,ζ = 1.
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is given by [100]:

ζ =
4ρrζinf + 3ρσζσ

4ρr + 3ρσ
= rσζσ + (1− rσ)ζinf rσ =

3ρσ
4ρr + 3ρσ

, (4.68)

where the energy densities are calculated at the decay of the curvaton.

If the curvature perturbation is mostly generated by the curvaton, that means that

ζinf is negligible, it follows that:

ζ =
ρσ

4ρr + 3ρσ

δρσ
ρσ

=
rσ
3

δρσ
ρσ

. (4.69)

If the curvaton energy density dominates over radiation, then ζ = (1/3)δρσ/ρσ. In the

most general case the power spectrum of the primordial curvature perturbation is given

by

Pζ = Pζinf
+ r2

σPζσ = (1 + λ)Pζinf
,

where Pζinf
is the spectrum of the perturbation generated by the inflaton decay and λ

is the the ratio between the curvaton and inflaton contributions.

One can also consider models with several curvatons [128], which are well motivated

from particle physics, as stated at the beginning of this section. The CDM isocurvature

generation in models with one or two curvatons was discussed in [129].
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Evolution of perturbations

This chapter of the thesis is mostly based on [129]. In section 5.1 a unified treatment of

linear and nonlinear perturbations is presented. Such a treatment enables to compute

the evolution of perturbations through one or several cosmological transitions, such as

the decay of some particle species. The various decay products and their branching

ratio are taken into account. This formalism can thus be applied to a large class of early

Universe scenarios, in order to compute automatically their predictions for adiabatic

and isocurvature perturbations, and their non-Gaussianities. As input, one simply needs

parameters that depend on the homogeneous evolution. This thus provides a simple way

to confront an early Universe scenario, and its underlying particle physics model, with

the present and future cosmological data. The explicit expressions for perturbations are

given up to the second order.

As applications of the proposed general formalism, two specific examples are con-

sidered. The first example, presented in section 5.2, is a more refined treatment of the

isocurvature perturbations and their non-Gaussianity in the mixed curvaton-inflation

scenario [127; 130; 131]. The second example, presented in section 5.3, deals with a

multiple-curvaton scenario [128; 132; 133; 134]. In both examples, the results that have

been obtained in previous works are generalized, since the curvaton is allowed to decay

into several species.

The extension of the presented formalism up to the third order can be found in [135].

There the general expressions for the perturbations at the third order are presented and

the calculation of the trispectrum for the two examples considered in this thesis is

performed.
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5.1 Decay

Let us consider a cosmological transition associated with the decay of some species of

particles, which we will call σ.

In the sudden decay approximation, the decay takes place on the hypersurface char-

acterized by the condition

Hd = Γσ . (5.1)

Therefore, since H depends only on the total energy density, the decay hypersurface

is a hypersurface of uniform total energy density, with δNd = ζ , where ζ is the global

curvature perturbation. Using (4.28), the equality between the total energy densities,

respectively before and after the decay, thus reads

∑
A

ρ̄A−e
3(1+wA)(ζA−−ζ) = ρ̄decay =

∑
B

ρ̄B+e
3(1+wB)(ζB+−ζ), (5.2)

where the subscripts − and + label quantities defined, respectively, before and after the

transition.

5.1.1 Before the decay

The first equality in (5.2) leads to

∑
A

ΩAe
3(1+wA)(ζA−−ζ) = 1, (5.3)

where we have defined ΩA ≡ ρ̄A−/ρ̄decay (to avoid confusion, the ΩA are always defined

just before the decay). The above relation determines ζ as a function of the ζA−.

At linear order, this gives

ζ =
1

Ω̃

∑
A

Ω̃A ζA− (first order) (5.4)

with the notation

Ω̃A ≡ (1 + wA)ΩA, Ω̃ ≡
∑
A

Ω̃A . (5.5)

Expanding (5.3) up to second order, one finds

ζ =
1

Ω̃

∑
A

Ω̃A

[
ζA− +

3

2
(1 + wA) (ζA− − ζ)2

]
(second order) (5.6)

where, on the right hand side, ζ is to be replaced by its first order expression (5.4).
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5.1.2 After the decay

We now consider the outcome of the decay. In general, the species σ decays into various

species A, with respective decay widths ΓAσ. Defining the relative branching ratios

γAσ ≡ ΓAσ
Γσ

, Γσ ≡
∑
A

ΓAσ , (5.7)

one can write the energy density of the fluid A after the decay in terms of the energy

densities of A and of σ before the decay as

ρA+ = ρA− + γAσρσ− . (5.8)

Using (4.28), one can rewrite this nonlinear equation in terms of the curvature pertur-

bations ζA+, ζA− and ζσ−, which yields

e3(1+wA)(ζA+−ζ) =
ρ̄A−e3(1+wA)(ζA−−ζ) + γAσρ̄σ−e3(1+wσ)(ζσ−−ζ)

ρ̄A− + γAσρ̄σ−
. (5.9)

This expression thus gives ζA+ as a function of ζA−, ζσ and of the global ζ . Substituting

ζ in terms of all the ζB−, one finally obtains ζA+ as a function of all the ζB−.

Following this procedure, one finds that the linear curvature perturbation for any

given fluid A is given by

ζA+ =
∑
B

T B
A ζB− (first order) (5.10)

with

T A
A = 1− fA + fA

(wA − wσ)Ω̃A

(1 + wA)Ω̃
(5.11)

T σ
A = fA

1 + wσ
1 + wA

+ fA
(wA − wσ)Ω̃σ

(1 + wA)Ω̃
(5.12)

T C
A = fA

(wA − wσ)Ω̃C

(1 + wA)Ω̃
, C �= A, σ . (5.13)

In the above expressions, we have introduced the parameter

fA ≡ γAσΩσ

ΩA + γAσΩσ
, (5.14)

which represents the fraction of the fluid A that has been created by the decay. If A

does not belong to the decay products of σ, then fA = 0. The opposite limit, fA = 1,

occurs when all the fluid A is produced by the decay. For the intermediate values of fA,
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part of A is produced by the decay while the other part is preexistent.

In the following, we will assume that the decaying species behaves like non-relativistic

matter (this is the case for a curvaton or modulus field that oscillates in a quadratic

potential) and we will thus always use wσ = 0.

From the above expressions (5.11-5.13), it is straightforward to check that

∑
B

T B
A = 1. (5.15)

The post-decay perturbation ζA+ can thus be seen as the barycenter of the pre-decay

perturbations ζB− with the weights T B
A (all these coefficients satisfy 0 ≤ T B

A ≤ 1 for

wσ = 0). Note that if the fluid A is not produced in the decay (i.e. fA = 0), then the

transfer coefficients are trivial: T B
A = δ B

A .

Since it is convenient to use the same range of species indices before and after the

transition, we also introduce the coefficients T B
σ = 0, which imply that ζσ+ = 0. This

convention will be especially useful when one needs to combine several transitions, as

we will discuss soon.

At second order, expanding (5.9) and substituting the first order expression (5.4) for

ζ , one obtains

ζA+ =
∑
B

T B
A ζB− +

∑
B,C

UBC
A ζB−ζC−, (second order) (5.16)

with

UBC
A ≡ 3

2

[
TAB(1 + wB)δBC + 2

Ω̃C

Ω̃
(wA − wB)TAB − (1 + wA)TABTAC

−Ω̃BΩ̃C

Ω̃2

(
1 + wA −

∑
D

TAD(1 + wD)

)]
. (5.17)

The change of the various isocurvature perturbations, defined in (4.31), can also be

determined by using the above expressions. In particular, at linear order, one finds,

using the property (5.15), the simple expression

SA+ =
∑
B

(
T B
A − T B

r

)
SB− (first order). (5.18)

5.1.3 Several transitions

If the early Universe scenario involves several cosmological transitions, for example sev-

eral particle decays, one can use the above expressions successively to determine the

final “primordial” perturbations, i.e. the initial conditions at the onset of the standard
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cosmological era.

For linear perturbations, the expression of the final perturbations as a function of

the initial ones, is simply given by

ζ
(f)
A =

∑
B

T B
A ζ

(i)
B , T =

∏
k

T[k] (5.19)

where T is the matricial product of all transfer matrices T[k], which describe the succes-

sive transitions.

The cosmological transitions can result from the decay of some particle species but

they can be of other types. For example, if CDM consists of WIMPs (Weakly Interacting

Massive Particles), the freeze-out can be treated as a cosmological transition. If radiation

is the dominant species at freeze-out, then ζc+ = ζr. But, if other species are significant

in the energy budget of the universe at the time of freeze-out, any entropy perturbation

between the extra species and radiation will modify the above relation. The presence of

a pressureless component, like a curvaton, leads to [101]

ζc+ = ζr− +
(αf − 3)Ωσ

2(αf − 2) + Ωσ
(ζσ− − ζr−) , αf ≡ mc

Tf
+

3

2
(5.20)

at linear order, while the other ζA remain unchanged. The symbol “σ” denotes here the

conglomerate of all pressureless matter at the time of freeze-out, except of course the

CDM species that is freezing out.

5.2 Scenario with a single curvaton

Let us now apply our formalism to a simple scenario with only three initial species:

radiation (r), CDM (c) and a curvaton (σ), considered in e.g. [136]. After the decay of

the curvaton, the radiation and CDM perturbations remain unchanged and provide the

initial conditions for the perturbations at the onset of the standard cosmological phase

(let us say around T ∼ 1 MeV).

5.2.1 Perturbations after the decay

Linear order According to the expressions (5.11-5.13), the linear transfer matrix TAB

is given in this case by

T =

⎛
⎜⎝

1− xr xc xr − xc
0 1− fc fc

0 0 0

⎞
⎟⎠ , xr ≡ fr

Ω̃
, xc ≡ 1

4
Ωc xr (5.21)
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where the order of the species is (r, c, σ). This means that the linear curvature per-

turbations for radiation and for CDM, after the curvaton decay, are given respectively

by

ζr+ = (1− xr) ζr− + xc ζc− + (xr − xc) ζσ− (5.22)

and

ζc+ = (1− fc) ζc− + fc ζσ−. (5.23)

The entropy perturbation after the decay is thus

1

3
Sc+ ≡ ζc+ − ζr+ = (1− fc − xc)ζc− + (xr − 1)ζr− + (fc + xc − xr)ζσ− , (5.24)

which can also be expressed directly in terms of the pre-decay entropy perturbations,

following (5.18),

Sc+ = (1− fc − xc)Sc− + (fc + xc − xr)Sσ− . (5.25)

Note that, if many CDM particles are created by the decay of the curvaton, a significant

fraction of them could annihilate, leading to an effective suppression of the final isocur-

vature perturbation. This effect has been studied in [102] and can easily be incorporated

in our formalism.

In practice, we will need the above expressions only in the limit xc = 0 since Ωc is

usually negligible when the decay occurs. The coefficient xr, which we will shorten into

r from now on, can then be expressed as

r ≡ xr =
fr
Ωσ

(
3Ωσ

4− Ωσ

)
≡ ξ r̃. (5.26)

The first factor,

ξ ≡ fr
Ωσ

=
γr σ

1− (1− γr σ)Ωσ

(5.27)

can be interpreted as the transfer efficiency between the curvaton and radiation. Its

maximal value, ξ = 1, is reached when all the energy stored in the curvaton is converted

into radiation, i.e. when γr σ = 1, as usually assumed in most works on the curvaton.

However, if a fraction of the curvaton energy goes into species other than radiation, then

the transfer efficiency ξ is reduced. The second factor,

r̃ ≡ 3 Ωσ

4− Ωσ

, (5.28)

is the familiar coefficient that appears in the literature on the curvaton, which coincides

with our r only if ξ = 1.
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Second order The expressions for the curvature perturbations up to second order are

obtained from the general expression (5.16-5.17), using the transfer matrix (5.21). The

expression for CDM is relatively simple:

ζc+ = (1− fc)ζc− + fcζσ− +
3

2
fc(1− fc) (ζc− − ζσ−)2 . (5.29)

The expression for radiation is much more complicated in general, but in the limit

xc = 0, which is of interest to us, the radiation perturbation reduces to

ζr+ = ζr− +
r

3
Sσ− +

r

18

[
3− 4r +

2r

ξ
− r2

ξ2

]
S2
σ− . (5.30)

In the limit γrσ = 1, i.e. ξ = 1, one recovers the usual expression.

Note that, although Ωc is assumed to be very small, it cannot be neglected in the

expression for fc [see (5.14)] because γcσ or Ωσ can be very small, and fc can thus take

any value between 0 and 1.

5.2.2 Primordial adiabatic and isocurvature perturbations

For simplicity, we now assume that the post-inflation perturbations for dark matter and

radiation, i.e. before the curvaton decay, are the same and depend only on the inflaton

fluctuations,

ζc− = ζr− = ζinf , (5.31)

so that there are only two independent degrees of freedom from the inflationary epoch,

ζinf and Ŝ.

Substituting (4.66) and (5.31) into (5.30) and (5.29) yields

ζr = ζinf +
r

3
Ŝ +

r

36

[
3− 8r +

4r

ξ
− 2

r2

ξ2

]
Ŝ2 (5.32)

and

Sc = (fc − r)Ŝ +
1

12

[
3fc(1− 2fc)− r

(
3− 8r +

4r

ξ
− 2

r2

ξ2

)]
Ŝ2, (5.33)

where Ŝ is the Gaussian perturbation produced by the curvaton. In the limit γrσ = 1,

i.e. ξ = 1, one recovers the well-known expression for ζr.

Considering only the linear part of (5.32), one finds that the power spectrum for the

primordial adiabatic perturbation ζr can be expressed as

Pζr = Pζinf
+
r2

9
PŜ ≡ (1 + λ)Pζinf

≡ Ξ−1 r
2

9
PŜ (5.34)
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where λ is defined as the ratio between the curvaton and inflaton contributions and Ξ =

(1+λ−1)−1 as the ratio between the curvaton contribution and the total curvature power

spectrum. The limit λ � 1, or Ξ � 1, corresponds to the standard curvaton scenario,

where the inflaton perturbation is ignored. The cases where the inflaton contribution is

not negligible correspond to the mixed inflaton-curvaton scenario [127]. The curvaton

contribution is subdominant when λ� 1, i.e. Ξ� 1.

Let us now turn to the primordial isocurvature perturbation. As can be read from

the linear part of (5.33), its power spectrum is given by

PSc
= (fc − r)2PŜ . (5.35)

and the correlation between adiabatic and isocurvature fluctuations is

C ≡ PSc,ζr√
PSc

Pζr

= εf Ξ1/2 , εf ≡ sgn(fc − r) . (5.36)

In the pure curvaton limit (Ξ � 1), adiabatic and isocurvature perturbations are either

fully correlated, if εf > 0, or fully anti-correlated, if εf < 0. In the opposite limit

(Ξ � 1), the correlation vanishes. For intermediate values of Ξ, the correlation is only

partial, as can be also obtained in multifield inflation [137].

The ratio between isocurvature and adiabatic power spectra, in our case, is given by

α ≡ PSc

Pζr

= 9

(
1− fc

r

)2

Ξ . (5.37)

As we have seen in section 4.5, the observational constraints on α depend on the corre-

lation. Anyway, the observational constraint α� 1 can be satisfied in only two cases:

• |fc−r| � r, i.e. a fine-tuning between the two parameters fc and r. This includes

the case fc = 1 with r � 1, considered in [116].

• Ξ � 1, i.e. the curvaton contribution to the observed power spectrum is very

small.

5.2.3 Non-Gaussianities

Let us now examine the amplitude of the non-Gaussianities that can be generated in

our model. We recall that our observable quantities ζ and S are of the form

ζ = ζinf + z1 Ŝ +
1

2
z2 Ŝ

2, S = s1 Ŝ +
1

2
s2 Ŝ

2, (5.38)
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where ζinf and Ŝ are two independent Gaussian fields and where the coefficients can be

read explicitly from (5.32) and (5.33).

Applying the general results of Appendix B to the present situation, we can easily

compute for our model the “reduced” angular bispectrum, which is of direct interest for

a comparison with CMB observations and which generalizes the analysis of [96] in the

purely adiabatic case. Specializing (B.14) to our case, one finds

bl1l2l3 = 3
∑
I,J,K

bI,JKNL

∫ ∞

0

r2drβ̃I(l1(r)β
J
l2(r)β

K
l3)(r) (5.39)

with

bI,JKNL ≡ N I
(2)N

J
(1)N

K
(1), (5.40)

where N ζ
(2) = z2, N

S
(2) = s2, N

ζ
(1) = z1, N

S
(1) = s1, respectively, and

β̃Il (r) ≡
2

π

∫
k2dk jl(kr)g

I
l (k), βIl (r) ≡

2

π

∫
k2dk jl(kr)g

I
l (k)PŜ(k) , (5.41)

where the gIl (k) denote the adiabatic (I = ζ) and isocurvature (I = S) transfer func-

tions. Because of the symmetry under exchange of the last two indices, the reduced

bispectrum contains six different contributions, whose amplitude is parametrized by the

six coefficients bI,JKNL .

In order to compare these coefficients with the usual parameter fNL defined in the

purely adiabatic case - see section 4.6, one must recall that fNL is proportional to the

bispectrum of ζ divided by the square of its power spectrum. By noting that the βIl (r)

introduced in (5.41) involve PŜ, this implies that the analogs of fNL can be defined

by dividing the coefficient bI,JKNL by the square of the ratio Pζ/PŜ = z2
1Ξ

−1. We thus

introduce the parameters

f̃ I,JKNL ≡ 6

5
f I,JKNL ≡ Ξ2

z4
1

bI,JKNL , (5.42)

explicitly given by the expressions

f̃ ζ,ζζNL = z2
z2
1

Ξ2, f̃ ζ,ζSNL = s1z2
z3
1

Ξ2, f̃ ζ,SSNL =
s21z2
z4
1

Ξ2, (5.43)

f̃S,ζζNL = s2
z2
1

Ξ2, f̃S,ζSNL = s1s2
z3
1

Ξ2, f̃S,SSNL =
s21s2
z4
1

Ξ2 . (5.44)

In the absence of isocurvature perturbations, the above non-linear parameters vanish
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except the first one, yielding

f ζ,ζζNL =
5

6

(
3

2r
+

2

ξ
− 4− r

ξ2

)
Ξ2 , (5.45)

which exactly coincides with the familiar parameter fNL. The amplitude of the non-

Gaussianities is determined by the three parameters r, ξ and Ξ (note that one recovers

the usual prediction of the pure curvaton scenario for ξ = 1 and Ξ = 1), which take

values between 0 and 1. A sufficiently small r, or even ξ, leads to a significant non-

Gaussianity from the adiabatic component, whereas a small Ξ tends to suppress it.

If isocurvature modes are present, however, the five other terms in the reduced

bispectrum (5.39) will also contribute in general. Interestingly, the six functions on

the right hand side of (5.39) have distinct dependences on the li, because they involve

different combinations of the adiabatic and isocurvature transfer functions. Therefore,

this allows in principle to measure, or constrain, independently the corresponding six

non-linear parameters from the CMB data. The precise determination of constraints on

the f I,JKNL is beyond the scope of the present work, but since all the functions multiplying

the bI,JKNL in (5.39) are of similar amplitude, one can a priori expect the constraints on

the f I,JKNL to be of the same order of magnitude as those on fNL
1.

Let us now explore the amplitude of the non-linear parameters in our model. First

of all, let us stress that finding significant non-Gaussianities (typically fNL ∼ 10− 100)

requires, in all cases, a small denominator z1, i.e. r � 1, which will thus be assumed

below. Second, it is worth noting that all the coefficients are related via the two rules

f I,JSNL =
s1

z1
f I,JζNL (R1), fS,IJNL =

s2

z2
f ζ,IJNL , (R2) . (5.46)

Therefore, the hierarchy between the parameters can be deduced from the value of the

first order ratio

s1

z1
= 3

(
fc
r
− 1

)
= εf

√
α

Ξ
, εf ≡ sgn(fc − r), (5.47)

where we have used (5.37), as well as the second order ratio s2/z2, which is a more

complicated expression in general.

We now consider successively the two limits for which the isocurvature bound is

satisfied.

1Observational constraints on isocurvature non-Gaussianities are given in [117] , for an isocurvature

perturbation of the form S = SL + f
(iso)
NL S2

L, where SL is Gaussian. Their non-linear parameter f
(iso)
NL

is related to ours according to f̃S,SS
NL = 2f

(iso)
NL α2, f̃S,ζS

NL = 2f
(iso)
NL α3/2|C| and f̃S,ζζ

NL = 2f
(iso)
NL α C2, where

C is the correlation defined in (5.36).
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Limit |fc − r| � r, with Ξ � 1 (pure curvaton scenario) In this case, as long

as fc > r, the isocurvature-adiabatic ratio α must satisfy the observational constraint

α � a1 ≤ 0.0037, since we are in the fully correlated case. The relevant ratios are given

here by
s1

z1
� εf
√
α,

s2

z2
� εf

√
α− 2r̃(2− r̃)

1 + 2 r̃ (2− r̃) /3 (5.48)

where we have taken the limit r = ξ r̃ � 1 (although r cannot be smaller than 10−2, to

be compatible with observational constraint on fNL). If r is small because r̃ � 1, then

the denominator in the expression for s2/z2 reduces to 1. However, if ξ � 1 while r̃ is

of order 1, the full expression for s2/z2 is needed.

The value of the first ratio implies that, with respect to f ζ,ζζNL , the coefficients f ζ,ζSNL and

f ζ,SSNL are suppressed with factors
√
α and α, respectively, according to (R1). Analogously

the coefficients fS,ζSNL and fS,SSNL are suppressed, respectively with factors
√
α and α, with

respect to fS,ζζNL . By contrast, using (R2), one sees that fS,ζζNL could be of the same order

of magnitude as f ζ,ζζNL , if r̃ ∼ 1, or suppressed if r̃ is small.

To conclude, in the pure curvaton scenario, it is possible to satisfy the isocurvature

constraint and to get measurable non-Gaussianities only by assuming a fine-tuning be-

tween fc and r at the percent level. In this situation, only the purely adiabatic parameter

is significant, while the other parameters are suppressed, with increasing powers of α.

Limit Ξ� 1 In this limit α must satisfy the constraint α � a0 < 0.064 (uncorrelated

case).

In the regime fc � r � 1, one finds that both ratios s1/z1 and s2/z2 reduce to

(-3), independently of the value of r̃. Therefore, the relation between the non-linear

parameters is simply

f̃ ζ,ζζNL �
α2

54r
, f̃ I,JKNL � (−3)IS f̃ ζ,ζζNL (fc � r � 1) (5.49)

where IS is the number of S among the indices (I, JK). This is the result obtained

in [116] for fc = 0. For α close to its present upper bound, one sees that detectable

non-Gaussianity can be generated with r ∼ 10−5.

By contrast, in the regime fc � r, the purely adiabatic coefficient is strongly sup-

pressed since

f̃ ζ,ζζNL �
α2r3

54f 4
c

. (5.50)

However, the other coefficients are now enhanced with respect to the purely adiabatic
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coefficient, via the large factors

s1

z1
� 3

fc
r
,

s2

z2
� 3

fc
r

(1− 2fc) . (5.51)

where, for simplicity, we have assumed r̃ � 1 (the other possibility ξ � 1 yields a more

complicated expression for the second ratio, with a dependence on r̃). The dominant

term is therefore the purely isocurvature term

f̃S,SSNL � α2 1− 2fc
2fc

(5.52)

If fc ∼ 1, this purely isocurvature non-Gaussianity, although enhanced with respect to

all the other contributions, remains negligible since it is suppressed by the very small

factor α2. This was the conclusion reached in [116] (for fc = 1).

However, we now see that this suppression can be compensated if fc is smaller than

α2. The purely isocurvature parameter and the other ones are then given by

f̃S,SSNL �
α2

2fc
, f̃ I,JKNL �

(
r

3fc

)Iζ
f̃S,SSNL (r � fc � 1) (5.53)

where Iζ is the number of ζ among the three indices. One can notice that the amplitude

of the purely isocurvature non-Gaussianity does not depend on the parameter r, but

only on α and fc. For instance, with α = 0.05 which satisfies the current observational

bound, a value fc = 10−5 yields f̃S,SSNL ∼ 100. In such a scenario, one gets observable

non-Gaussianity that comes essentially from isocurvature modes, even if the latter are

subdominant in the power spectrum.

5.3 Scenario with two curvatons

We now apply our formalism to the models where two curvatons are present in the early

Universe (see e.g. [128; 132; 133]). The curvaton σ will be assumed to decay first,

followed later by the curvaton denoted χ.

5.3.1 First order

At linear order, the decay of the first curvaton can be characterized by the transfer

matrix

T[1] =

⎛
⎜⎜⎜⎝

1− xr1 xc1 xχ1 xr1 − xc1 − xχ1

0 1− fc1 0 fc1

0 0 1− fχ1 fχ1

0 0 0 0

⎞
⎟⎟⎟⎠ , (5.54)
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where the order of the species is (r, c, χ, σ), while the decay of the second curvaton is

characterized by the transfer matrix

T[2] =

⎛
⎜⎜⎜⎝

1− xr2 xc2 xr2 − xc2 0

0 1− fc2 fc2 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ . (5.55)

In the above matrices, the definitions of the parameters are analogous to the definitions

introduced in (5.21), i.e. xr1 ≡ fr1/Ω̃1, xc1 ≡ Ωc1 xr1/4, xχ1 ≡ Ωχ1 xr1/4, etc, and the

indices 1 and 2 refer respectively to the first and second decays. We have also allowed

the possibility that the first curvaton σ decays into the second curvaton χ, hence the

presence of the parameter fχ1.

The expression of the perturbations for radiation and CDM, after the two transitions,

are expressed in terms of the initial perturbations ζB0 via the product of the two transfer

matrices given above, i.e.

ζA =
∑
B

(
T[2] · T[1]

) B

A
ζB0. (5.56)

At first order, the radiation curvature perturbation, after the second curvaton decay,

reads

ζr = ζr0 + zσ Sσ0 + zχ Sχ0 + zc Sc0, (5.57)

with

3zσ = (1− xr2)(xr1 − xc1 − xχ1) + fc1xc2 + fχ1(xr2 − xc2), (5.58)

3zχ = (1− fχ1)(xr2 − xc2) + (1− xr2)xχ1, (5.59)

3zc = (1− fc1)xc2 + (1− xr2)xc1 . (5.60)

Combining this expression with that of the CDM curvature perturbation, according to

(4.31), we find that the CDM entropy perturbation is given by

Sc = sσ Sσ0 + sχ Sχ0 + sc Sc0, (5.61)

with

sσ = −3zσ + fc1(1− fc2) + fc2fχ1, (5.62)

sχ = −3zχ + fc2(1− fχ1), (5.63)

sc = −3zc + (1− fc1)(1− fc2). (5.64)

For simplicity, we will restrict ourselves, from now on, to the case where Sc0 = 0.
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Defining Λ as the ratio between the two curvaton power spectra, such that

PSχ0
≡ ΛPSσ0

, (5.65)

one easily finds that the ratio between the isocurvature and the adiabatic spectra is

given by

α =
PSc

Pζr
=
s2
σ + Λs2

χ

z2
σ + Λz2

χ

Ξ , Ξ ≡ λχ + λσ
1 + λχ + λσ

(5.66)

where λχ and λσ are defined as in (5.34), i.e.

Pζr = Pζr0
+ z2

σPSσ0
+ z2

χPSχ0
≡ (1 + λσ + λχ)Pζr0

. (5.67)

The correlation between ζr and Sc can be expressed as

C =
zσsσ + Λzχsχ√

(s2
σ + Λs2

χ)(z
2
σ + Λz2

χ)

√
Ξ . (5.68)

The observational constraints on α impose that at least one of the following condi-

tions must be satisfied:

Ξ� 1 or s2
σ + Λs2

χ � z2
σ + Λz2

χ . (5.69)

The first possibility, Ξ� 1, corresponds to a power spectrum dominated by the inflaton,

whereas the second possibility requires special cancellations in (5.62-5.63) so that sσ and

sχ are suppressed.

5.3.2 Second order

We now consider the perturbations up to the second order, in order to compute the

non-Gaussianities. First, let us decompose the curvaton entropy perturbations as in

(4.66), so that

Sσ0 = Ŝσ − 1

4
Ŝ2
σ Sχ0 = Ŝχ − 1

4
Ŝ2
χ, (5.70)

where Ŝσ and Ŝχ are two independent Gaussian quantities.

The radiation curvature perturbation and the dark matter entropy perturbation after

the second decay, up to second order, are given in our notation by

ζr = ζr0 + zσŜσ + zχŜχ + zσχŜσŜχ +
1

2
zσσŜ

2
σ +

1

2
zχχŜ

2
χ (5.71)
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Sc = sσŜσ + sχŜχ + sσχŜσŜχ +
1

2
sσσŜ

2
σ +

1

2
sχχŜ

2
χ (5.72)

where the coefficients zσ, zχ, sσ and sχ have already been defined in (5.58-5.59) and

(5.62-5.63), respectively. The expressions for the second order coefficients are given in

Appendix C.

Let us calculate the reduced bispectrum by using the general expression given in

the Appendix. In our model, ignoring the inflaton which does not produce significant

non-Gaussianities, the relevant power spectra are independent so that

P ab(k) =

(
1 0

0 Λ

)
PŜ σ

, (5.73)

where we furthermore assume that Λ is strictly independent of k (this is indeed the case

if the masses of both curvatons are negligible with respect to H during inflation).

As a consequence, the reduced bispectrum can be reduced to the same expression as

that already given in equation (5.39) with

βIl (r) ≡
2

π

∫
k2dkjl(kr)g

I
l (k)PŜ σ

(k) (5.74)

and the six parameters

bI,JKNL ≡ N I
σσN

J
σN

K
σ + ΛN I

σχ

(
NJ
σN

K
χ +NJ

χN
K
σ

)
+ Λ2N I

χχN
J
χN

K
χ , (5.75)

where the coefficients N I
ab, which are defined as in (B.1), can be read off directly from

(5.71) and (5.72). In complete analogy with the model with one curvaton, to be com-

pared with the standard fNL, these coefficients must be divided by the square of the

ratio Pζ/PSσ0
= (z2

σ + Λz2
χ)/Ξ, hence:

f̃ I,JKNL ≡
(

Ξ

z2
σ + Λz2

χ

)2

bI,JKNL . (5.76)

The six non-linearity coefficients are thus given by

f̃ ζ,ζζNL =

(
Ξ

z2
σ + Λz2

χ

)2 [
zσσz

2
σ + 2Λzσχzσzχ + Λ2zχχz

2
χ

]
,

f̃ ζ,ζSNL =

(
Ξ

z2
σ + Λz2

χ

)2 [
zσσzσsσ + Λ zσχ(zσsχ + zχsσ) + Λ2zχχzχsχ

]
,

f̃ ζ,SSNL =

(
Ξ

z2
σ + Λz2

χ

)2 [
zσσs

2
σ + 2Λ zσχsσsχ + Λ2zχχs

2
χ

]
,
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f̃S,ζζNL =

(
Ξ

z2
σ + Λz2

χ

)2 [
sσσz

2
σ + 2Λsσχzσzχ + Λ2sχχz

2
χ

]
,

f̃S,SζNL =

(
Ξ

z2
σ + Λz2

χ

)2 [
sσσzσsσ + Λsσχ(sσzχ + sχzσ) + Λ2sχχsχzχ

]
,

f̃S,SSNL =

(
Ξ

z2
σ + Λz2

χ

)2 [
sσσs

2
σ + 2Λsσχsσsχ + Λ2sχχs

2
χ

]
. (5.77)

In the following we analyze explicitly some limiting cases in order to explore the parame-

ter space. The goal is to see whether it is possible to obtain significant non-Gaussianities

while satisfying the bound on the isocurvature spectrum.

5.3.3 Limit Λ� 1

Let us first mention that we have checked that our results agree with those of [128] in

the limit where the curvatons decay only into radiation (i.e. fc1 = fc2 = fχ1 = 0), the

dark matter abundance is neglected (i.e. xc1 = xc2 = 0) and the inflaton contribution is

ignored (i.e. Ξ = 1).

In this limit where the contributions from the second curvaton are negligible, one

finds

α � Ξ
s2
σ

z2
σ

, f̃ ζζζNL � Ξ2 zσσ
z2
σ

, (5.78)

while the other five non-linear coefficients can be deduced from f̃ ζζζNL according to the

relations

f I,JSNL �
sσ
zσ
f I,JζNL fS,IJNL �

sσσ
zσσ

f ζ,IJNL . (5.79)

The quantity α is constrained by observations to be small, which requires either

Ξ� 1 or |sσ| � |zσ|.

First possibility: Ξ� 1, while |zσ| ∼ |sσ|.
This leads to a suppression of all the non-Gaussianity coefficients by a factor Ξ2.

However, the coefficients f̃ ζ,JKNL can still be significant if the ratio zσσ/z
2
σ can compensate

the Ξ2 suppression (similarly for the fS,JKNL if sσσ/z
2
σ compensates the Ξ2 suppression).

Let us consider a specific example, with the simplifying assumptions

xc1 = xc2 = fχ1 = xχ1 = 0 , (5.80)

that is, we neglect the energy fraction of dark matter and assume that the curvaton

σ does not decay into χ and that χ is subdominant when σ decays. Under these

assumptions, zσ = xr1(1 − xr2)/3 and we further assume fc1 � zσ so that sσ � −3zσ.
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In the two limits xr1 = r̃1ξ1 � 1 and (1 − xr2) � 1, zσ is small and the adiabatic

non-Gaussianity behaves as

f̃ ζ,ζζNL =
1

1− xr2

[
f̃ ζ,ζζNL 1 +

xr2
1− xr2

(
3

2
+ xr2 f̃

ζ,ζζ
NL 2

)]
, (5.81)

where f̃ ζ,ζζNL 1,2 correspond to single-curvaton coefficient, equation (5.45), but calculated

with the parameters ξ1,2 and xr1,r2 respectively.

If we assume xr2 � 1, the above equation corresponds to the single-curvaton result

(5.49). The other coefficients also follow the relations given in (5.49), since sσσ/zσσ = −3

with the assumptions (5.80) and fc1 � 1, and are thus of comparable magnitude.

Second possibility: |sσ| � |zσ|
When a small α is the consequence of |sσ| � |zσ|, one sees from the first relation in

(5.79) that all the f I,JSNL are strongly suppressed with respect to f I,JζNL . However, the two

coefficients f I,ζζNL can still be important if |zσ| is sufficiently small. By examining (5.58)

and (5.62), one sees that getting |sσ| � |zσ| � 1 requires some fine-tuning between the

coefficients, which we now discuss.

In order to get |zσ| � 1, the first possibility is that the first curvaton is subdominant,

i.e. xr1 = O(ε), where ε is some small number (we neglect xc2 which must be small

because we are deep in the radiation era), which then requires either xr2 = O(ε) or

fχ1 = O(ε). The second possibility is that the second curvaton dominates at decay, i.e.

xr2 = 1 − O(ε), which also requires that fχ1 = O(ε). Then, to obtain |sσ| � |zσ|, the

terms of the right hand side of (5.62), which are of order ε must compensate each other

so that their sum is at most of order O(α ε), which necessitates some special relation

between the fA and the xA.

If we consider again the assumptions (5.80) and neglect fc2, one finds that the fine-

tuning condition to get |sσ| � |zσ| is

fc1 − xr1(1− xr2) ≤ O(αε) . (5.82)

The adiabatic parameter f̃ ζ,ζζNL is given in equation (5.81), with now Ξ ∼ 1, and its value

is of order 10 when ε ∼ xr1(1 − xr2) ∼ 0.1. Since sσσ/zσσ � −3 + O(fc1/xr1(1− xr2)),
we also have f̃S,ζζNL ∼ f̃ ζ,ζζNL .

Note that a significant non-Gaussianity generated by a dominant curvaton (xr2 =

1 − O(ε)) has already been pointed out in [128], but we see here that satisfying the

isocurvature bound requires additional constraints on the branching ratios of the curva-

tons.
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5.3.4 Other limits

Limit Λ� 1 In this limit, one obtains

α ∼ Ξ
s2
χ

z2
χ

, f̃ ζζζNL ∼ Ξ2 zχχ
z2
χ

, f I,JSNL �
sχ
zχ
f I,JζNL , fS,IJNL �

sχχ
zχχ

f ζ,IJNL . (5.83)

By comparing with (5.78) and (5.79), one sees that the analysis is analogous to the

previous case, by replacing zσ, zσσ, sσ and sσσ by zχ, zχχ, sχ and sχχ, respectively.

When the curvaton contribution to the power spectrum is not negligible, signifi-

cant non-Gaussianity, while satisfying the isocurvature bound, is obtained when |sχ| �
|zχ| � 1. This constraint is satisfied if one assumes fχ1 = 1− O(ε), which means that

the second curvaton is created mainly by the decay of the first, while xr2 = 1 − O(ε),

xχ1 � O(ε) and fc2 = 1 − O(ε). Other possibilities exist but require some fine-tuning

between the parameters, in analogy with the previous analysis in the case Λ� 1.

Intermediate values of Λ In this case, one must satisfy simultaneously the con-

straints |sσ| � |zσ| and |sχ| � |zχ|, due to the isocurvature bound. The relative

strength of the different f̃NL coefficients cannot be expressed in such a simple form as in

(5.79), but it will be determined again by the ratios sσ/zσ, sχ/zχ, sσσ/zσσ and sχχ/zχχ.

In order to get also a significant non-Gaussianity, we look for parameter values such

that

zσ, zχ ∼ O(ε), sσ, sχ � O(α ε). (5.84)

These constraints can be satisfied by fine-tuning the parameters. Solving sσ � 0 and

sχ � 0 for the two parameters fc1 and fc2 yields

fc1 � (xr1 − xc1)(1− fχ1)− xχ1

1− fχ1 − xχ1
, fc2 � xr2 − xc2 +

1− xr2
1− fχ1

xχ1 . (5.85)

The observational constraint on the isocurvature power spectrum is satisfied if these

two fine-tuning relations hold simultaneously, at the level O(α ε). Using these relations,

one finds interesting non-Gaussianity for the following set of parameters: xr1 = O(ε),

xr2 = O(ε), xχ1 = O(α ε), fc1 = xr1 − xc1 + O(α ε), fc2 = xr2 + O(α ε), with negligible

values for xc2. In this scenario, both curvatons are subdominant at their decay and the

fraction of produced dark matter is fine-tuned.

5.4 Discussion of the results

In this chapter of the thesis we have introduced a systematic treatment in order to

compute the evolution of linear and non-linear cosmological perturbations in a cosmo-
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logical transition due to the decay of some particle species. Our main results can be

summarized as follows.

At the linear level, the evolution of all individual curvature perturbations can be

expressed in terms of a transfer matrix, whose coefficients depend on background quan-

tities, such as the relative abundances of the fluids at the decay, their equation of state

parameters and the relative decay branching ratios [see Eqs (5.10-5.14)]. At the non-

linear level, the post-decay curvature perturbations can also be given in terms of the

pre-decay perturbations quite generally, and we have presented explicitly these relations

at second order [see Eqs (5.16-5.17)]. We have then applied our general formalism to

two specific examples.

The first example is the mixed curvaton-inflaton scenario in which we allow the

dark matter to be created both before and during the curvaton decay. We find, in

particular, the remarkable result that it is possible to obtain isocurvature dominated

non-Gaussianities with, as required by the CMB measurements, an adiabatic dominated

power spectrum.

In the second example, we have studied scenarios with several curvaton-like fields and

obtained results that generalize previous works on two-curvaton scenarios by taking into

account the various decay products of the curvatons. We have explored the parameter

space to see whether it is possible to find significant non-Gaussianity while satisfying

the isocurvature bound in the power spectrum. We have found that several such regions

exist, but often at the price of a fine-tuning between the parameters.

In the presence of isocurvature modes, which can be correlated with the adiabatic

modes, non-Gaussianity of the local type is much richer than in the purely adiabatic

case and we have shown that the angular bispectrum is the sum of six different contri-

butions. As a consequence, in addition to the traditional fNL (adiabatic) parameter,

we have identified five new non-linear parameters that must be taken into account: one

purely isocurvature parameter and four correlated parameters. We have computed these

parameters in the two models we have investigated.

Beyond the two examples considered in this thesis, this formalism can be used as

a general toolbox to study systematically the cosmological constraints, arising from

linear perturbations and from non-Gaussianities, for particle physics models and their

associated cosmological scenarios.
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Conclusions

In spite of the great progresses made in its understanding, the early universe is a

source of unsolved and fascinating problems. In many cases, the road to comprehension

requires putting together informations and ideas from cosmology and particle physics.

In this thesis two problems of cosmo-particle physics are considered. The first deals

with the possibility that W bosons formed a special quantum state of matter, the Bose-

Einstein condensate, in the early universe. Such a system could be realized near the

electro-weak (EW) phase transition epoch in the presence of a large lepton asymmetry.

The interactions of the spins of the condensed W bosons were studied in the EW sector of

the standard model of particle physics, finding that it is energetically favorable for them

to be aligned. In this sense, a ferromagnetic state could be formed in the early universe,

leading to the spontaneous macroscopic magnetization of the primordial plasma.

Nevertheless, since the universe was hot and dense, screening phenomena, acting on

the magnetic interactions, may change this behavior. Because of the screening effects,

the system may be turned into an antiferromagnetic one, where it is energetically fa-

vored for the spins to be anti-aligned. In the standard QED without condensates, it

is known that the magnetic interactions are not screened, while the electric ones decay

exponentially faster than in vacuum with the distance (Debye screening). Neverthe-

less, medium effects in the presence of a Bose-Einstein condensate have started to be

considered only very recently.

To analyze them, it is necessary to calculate the photon polarization operator in

the medium, that is done in this thesis for a U(1) gauge theory (QED) with scalar

condensate. A perturbative technique was used, which is physically transparent and

at the same time safe in abelian theories with massive particles. It is found that, in

the presence of a condensate, infrared singular terms arise in the photon polarization

operator. As a consequence, the screened electrostatic potential shows quite striking

behavior. Namely, it decays parametrically faster than in the absence of the condensate,

it is not analytic in the coupling constant e, at finite temperature it has a a power-law

decreasing contribution and the leading term at large distance oscillates.

The second topic considered in this thesis is the study of primordial perturbations

and the calculation of experimentally observable quantities. A general formalism is

presented, which enables the computation of linear and non-linear perturbations through

the cosmic evolution, focusing in particular on the decay of some particle species. The

evolution is parametrized in terms of evolution matrices whose coefficients depend only

on the homogeneous background parameters. Two specific examples of cosmological
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interest are presented as applications, namely models in which the perturbations are

produced from combined contributions of several fluids, the inflaton plus one or two

curvatons. The isocurvature perturbation in the dark matter component, produced

from the decay of the curvaton(s) or before, has been considered as well. The parameter

space has been explored to find the regions where relevant non-Gaussianities can be

produced while satisfying the stringent bound on the isocurvature modes.

The work presented in this thesis has several interesting developments.

Concerning the first part, the proposed mechanism of spontaneous magnetization

can be used in connection to the long standing cosmological problem of generation of

galactic and intergalactic magnetic fields. It would be interesting to proceed further to

check whether it can generate realistic patterns of primordial magnetic fields at large

scales.

Another open issue concerns the impact of the condensate on the interactions. In

this thesis an abelian theory, electrodynamics, has been considered. Nevertheless, the

impact of the condensate on non-abelian gauge theories is still unknown. It would be

interesting to study such effects in the non-abelian case, such as the EW group before

the symmetry breaking. Such a problem is of cosmological interest, since it is thought

that the EW symmetry was restored in the early universe. In such a case, the W

condensation would be easier, since it could be induced by lower values of the lepton

asymmetry with respect to the broken phase.

Finally, concerning the primordial perturbations, the formalism which has been de-

veloped can be applied to a wide range of models to calculate the impact on them of

the cosmic transitions. In particular, the proposed evolution matrices are valid for any

adiabatic equation of state and several subsequent transitions can be easily taken into

account by iteration. As a consequence, this formalism can be naturally used to cal-

culate the evolution of the perturbations from their production to the last scattering

surface. This kind of problem can be studied in many models of physics beyond the

standard one, which typically involve several extra particle species.
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Appendix A

Equations of motion for the SM

gauge bosons

Cubic and quartic couplings of gauge bosons are present in the lagrangian of the Stan-

dard Model. Explicitly, these terms take the form:

L3 = ie cot θW

[
W μνW †

μZν − (W μν)†WμZν +WμW
†
νZ

μν
]

+ ie
[
W μνW †

μAν − (W μν)†WμAν +WμW
†
νF

μν
]

(A.1)

and

L4 = − e2

2 sin2 θW

[(
W †
μW

μ
)2 −W †

μW
μ†WνW

ν
]

− e2 cot2 θW
[
W †
μW

μZνZ
ν −W †

μZ
μWνZ

ν
]

− e2 cot θW
[
2W †

μW
μZνA

ν −W †
μZ

μWνA
ν −W †

μA
μWνZ

ν
]

− e2 [W †
μW

μAνA
ν −W †

μA
μWνA

ν
]
. (A.2)

where we have used Vμν ≡ ∂μVν − ∂νVμ for the vectors Vμ = Wμ, Zμ, while Aμ is the

electromagnetic potential and Fμν = ∂μAν − ∂νAμ is the Maxwell tensor. To avoid

confusion it is worth noting that the field strength Gμν defined after equation (2.2)

includes the gauge boson self-coupling, while it is not included into Vμν .

Using the standard Euler-Lagrange procedure we can obtain the following Maxwell
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equations for the electromagnetic field:

∂μF
μ
ν = Jψν + ie

[
W †
μ∂νW

μ −W μ ∂νW
†
μ +W †

ν ∂μW
μ

−Wν ∂μW
μ† + 2W μ∂μW

†
ν − 2W μ†∂μWν

]

+ e2
[
2AνW

†
μW

μ − Aμ (W †
μWν +WμW

†
ν

)]
+ e2 cot θW

[
2ZνW

†
μW

μ − Zμ
(
W †
μWν +WμW

†
ν

)]
, (A.3)

where Jψν is the electromagnetic current of the charged fermions. All the rest in the

right hand side of (A.3) can be understood as the electromagnetic current of W bosons,

JWμ .

Equations of motion for the other vector fields , W± and Z, can be obtained from

the Lagrangians (A.1, A.2) plus the contributions from the kinetic and mass terms.

Explicitly we have:

∂μW
μ
ν +m2

WWν = ie [AμWμν − ∂μ(W μAν) + ∂μ(WνA
μ)−W μFμν ]

+ ie cot θW [ZμWμν + ∂μ(Z
μWν)− ∂μ(W μZν) +W νZνμ]

+
(
e2/sin2 θW

) [
Wν(W

†
μWμ)−W †

ν (W
μWμ)

]
+ e2 cot2 θW (WνZμZ

μ − ZνZμW μ)

+ e2 cot θW (2WνZμA
μ − ZνWμA

μ −AνWμZμ)

+ e2(WνA
μAμ − AνWμAμ), (A.4)

∂μZ
μ
ν +m2

ZZν = ie cot θW

[
W μW †

μν −W μ†Wμν + ∂μ(W
μW †

ν )− ∂μ(W μ†Wν)
]

+ e2 cot2 θW
(
2ZνW

†
μW

μ −W †
νWμW

μ −WνW
†
μZ

μ
)

+ e2 cot θW
(
2AνW

†
μW

μ −W †
νWμA

μ −WνW
†
μAμ

)
. (A.5)
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Appendix B

Correlation functions for several

perturbations

In this Appendix we introduce spectrum and bispectrum for several perturbations. A

similar problem was considered in [118] for a mixture of curvature and isocurvature

perturbations.

We consider several observable quantities XI , like ζ and S, which depend on “pri-

mordial” scalar fields φa, whose perturbations are generated during inflation. Up to

second order, one can formally write

XI = N I
aφ

a +
1

2
N I
abφ

aφb + . . . (B.1)

We assume that the φa are Gaussian random fields, with the two-point correlation

functions

〈φa(�k)φb(�k′)〉 = (2π)3 P ab(k) δ(�k + �k′) . (B.2)

In analogy with the case considered in section 4.4, we can expand the temperature

fluctuations in spherical harmonics:

alm ≡
∫
d2n̂

ΔT (n̂)

T
Y ∗
lm(n̂),

ΔT (n̂)

T
=
∑
lm

almYlm(n̂) . (B.3)

In the multi-perturbation case, the total temperature anisotropy and the corresponding

spherical harmonics coefficients can be written as a sum over the individual contribu-

tions:

ΔT (n̂)

T
=
∑
I

ΔT (n̂)I

T
, alm =

∑
I

aIlm . (B.4)
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Appendix B. Correlation functions for several perturbations

As for the case of one perturbation, the temperature anisotropies can be Fourier ex-

panded and, by using the Legendre expansion of the exponential, one finds:

ΔT I(n̂)

T
=

∫
d3k

(2π)3

∑
l

(i)l(2l + 1)gIl (k)X
I(�k) Pl(k̂ · n̂) , (B.5)

where Pl (k̂·n̂) are the Legendre polynomials and gIl (k) are the photon transfer functions.

As a consequence,

aIlm = 4π il
∫

d3k

(2π)3
gIl (k)X

I(�k) Y ∗
lm(�k) (B.6)

where we have used the addition theorem:

l∑
m=−l

Y ∗
lm(n̂)Ylm(n̂′) =

2l + 1

4π
Pl(n̂ · n̂′) (B.7)

and the orthonormality of spherical harmonics,
∫
YlmY

∗
l′m′dΩ = δll′δmm′ .

Two-point correlation functions The total temperature spectrum is given by:

〈almal′m′∗〉 =
∑
IJ

CIJ
l δll′δmm′ , (B.8)

where

CIJ
l =

2

π

∫ ∞

0

dk k2gIl (k)g
J
l (k)P IJ(k) . (B.9)

and P IJ(k) are the spectra of the XI , defined as:

〈XI(�k)XJ(�k′)〉 = (2π)3 PIJ(k)δ(�k + �k′) . (B.10)

Three-point correlation functions We define the bispectra of the XI by

〈XI
�k1
XJ
�k2
XK
�k3
〉 = (2π)3δ(Σi

�ki)B
IJK(k1, k2, k3) . (B.11)

Substituting the decomposition (B.1) into the left hand side, and using (B.2), one finds

BIJK(k1, k2, k3) = N I
aN

J
b N

K
cdP

ac(k1)P
bd(k2) +N I

aN
J
bcN

K
d P

ab(k1)P
cd(k3)

+N I
abN

J
c N

K
d P

ac(k2)P
bd(k3). (B.12)

As shown in [96; 97], the angular bispectrum can be expressed in terms of the
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Appendix B. Correlation functions for several perturbations

”reduced bispectrum” bl1l2l3 , according to equation (4.43):

〈al1m1
al2m2

al3m3
〉 = G

m1m2m3

l1l2l3
bl1l2l3 , (B.13)

where G
m1m2m3

l1l2l3
is the Gaunt integral. Substituting (B.6) in the left hand side of (B.13),

one finally obtains

bl1l2l3 = 3
∑
I,J,K

N I
abN

J
c N

K
d

∫ ∞

0

r2drβ̃I(l1(r)β
J,ac
l2

(r)βK,bdl3)
(r), (B.14)

with

β̃Il (r) ≡
2

π

∫
k2dkjl(kr)g

I
l (k), βI,abl (r) ≡ 2

π

∫
k2dkjl(kr)g

I
l (k)P

ab(k) . (B.15)

Note that the “reduced” bispectrum is symmetric with respect to permutations of the

indices l1, l2 and l3 (we use the standard notation: (l1l2l3) ≡ [l1l2l3 + 5 perms]/3!).

In the simplest case, one considers only the adiabatic mode, ζ (or the gravitational

potential Φ), which is assumed to depend on a single “primordial” Gaussian field. In

this case, where both the indices I and a take a single value, one recovers immediately

the familiar result of [96], which we presented in section 4.4. Our general expression

also includes the particular situation considered in [117], where ζ = φ+(3/5)fNLφ
2 and

S = η + f iso
NLη

2, φ and η being Gaussian variables.
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Appendix C

Second order coefficients for the

model with two curvatons

In this appendix we give the expressions for the second order coefficients of curvature

and isocurvature perturbations for the model with two curvatons. Since they are lengthy

and it is physically reasonable to have small energy fraction of dark matter at both the

decay epochs, the assumption xc1 = xc2 = 0 is done for simplicity.

9 zσχ = 3fχ1 xr2(fχ1 − 1) + xχ1(1− xr2)(r̃1 − 4xr1 + 4xχ1)

+ xr2F1(4xr2 − 2r̃2 + r̃2
2 − 3) (C.1)

18 zσσ = −2f 2
χ1xr2(4xr2 + r̃2

2 − 2r̃2)− 2x2
r1[4 + xr2(−7 + 4xr2 + r̃2

2 − 2r̃2)]

+fχ1xr2[3− 4xχ1(−3 + 4xr2 + r̃2
2 − 2r̃2)]

+xχ1{(3 + 4r̃1)(−1 + xr2)− 2xχ1[4 + xr2(−7 + 4xr2 + r̃2
2 − 2r̃2)]}

+xr1{3 + 2r̃1(1− xr2)(2− r̃1) + xr2[−3 + 4fχ1(−3 + 4xr2 + r̃2
2 − 2r̃2)]

+16xχ1 + 4xr2xχ1(−7 + 4xr2 + r̃2
2 − 2r̃2)} (C.2)

18 zχχ = xχ1 (3− 8xχ1)− 8x2
r2 (1− fχ1 − xχ1)

2

+xr2

{
(1− fχ1) [3− 2 r̃2(−2 + r̃2)(1− fχ1)] + 2x2

χ1[7− r̃2(−2 + r̃2)]
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−xχ1 [15− 12fχ1 − 4 r̃2(−2 + r̃2)(1− fχ1)]
}

(C.3)

3 sσχ = −3fc1fc2(1− fχ1)(1− fc2)− 3f 2
c2 fχ1(1− fχ1)

−xr2[−3fχ1(1− fχ1) + F1(−3 + 4xr2 + r̃2
2 − 2r̃2)]

+xχ1(4xr1 − r̃1)(1− xr2)− 4x2
χ1(1− xr2) (C.4)

sσσ = −6f 2
c1(1− fc2)2 + 3fχ1fc2 − 6f 2

c2f
2
χ1 + 3fc1(1− fc2)(1− 4fc2fχ1)

+fχ1xr2[−3 + 2fχ1(4xr2 + r̃2
2 − 2r̃2)] + xr1[−3 + 2r̃1(−2 + r̃1) + 8xr1]

+xr1xr2[3− 2r̃1(−2 + r̃1)− 4fχ1(−3 + 4xr2 + r̃2
2 − 2r̃2)

+2xr1(−7 + 4xr2 + r̃2
2 − 2r̃2)] + 2x2

χ1[4 + xr2(−7 + 4xr2 + r̃2
2 − 2r̃2)]

+xχ1{3 + 4r̃1(1− xr2)− xr2[3− 4fχ1(−3 + 4xr2 + r̃2
2 − 2r̃2)]

−4xr1[4 + xr2(−7 + 4xr2 + r̃2
2 − 2r̃2)]} (C.5)

6 sχχ = 3fc2(1− fχ1)− 6f 2
c2(1− fχ1)

2 + 8x2
r2(1− fχ1 − xχ1)

2 + xχ1(−3 + 8xχ1)

+xr2{−[3− 2 r̃2(−2 + r̃2)(1− fχ1)](1− fχ1) + 2x2
χ1[−7 + r̃2(−2 + r̃2)]

+xχ1[15− 4r̃2(−2 + r̃2) + 4fχ1(−3 + r̃2)(1 + r̃2)]} , (C.6)

where F1 ≡ (1− fχ1 − xχ1)(xr1 − fχ1 − xχ1) was used.
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