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Abstract: Beta thalassemia is an inherited hematologic disorder 

caused by various mutations of the β-globin gene, thus resulting in a 

significant decrease of adult hemoglobin (HbA) production. The 

increase of fetal hemoglobin (HbF) levels by drug molecules is 

considered of great potential in β-thalassemia treatment, being 

expected to counterbalance the impaired production of HbA. In this 

work, based on a set of 129 experimentally tested biological inhibitors, 

we have developed and validated a computational model for the 

prediction of K562 functional inhibition, possibly associated with HbF 

induction. To facilitate future advancements in the field, we have 

incorporated our model into Enalos Cloud Platform that enabled 

online access to our computational scheme 

(http://enalos.insilicotox.com/K562) through a user-friendly interface. 

This web service is offered to the wider community to promote the in 

silico drug discovery through fast and reliable predictions.  

Introduction 

The occurrence of several mutations of the β-globin gene 

drastically reduces the production of adult β-globin, causing at the 

same time an unbalanced accumulation of free α-globin chains in 

animal cells.[1-2] This results in diminished production of adult 

hemoglobin (HbA)[3] and causes the development of important 

hereditary hematologic diseases, which are known as β-

thalassemias.[4-7] It is estimated that 1 out of 100,000 individuals 

is affected worldwide every year,[3] with populations in the 

Mediterranean region to be most vulnerable to the development 

of β-thalassemia. Currently, there is no definitive cure of β-

thalassemia and clinical practices usually involve continuing 

blood transfusions along with chelation therapy,[8] and, less 

frequently, bone marrow transplantation.[9] Alternative therapeutic 

options are DNA-based treatments of β-thalassemia,[5, 10-12] 

however, improved therapeutic approaches are eagerly needed 

since present treatments are accompanied by unwanted side 

effects and severe limitations.[5]  

It has been suggested that efficient treatment of β-

thalassemia can be obtained by fetal hemoglobin (HbF) 

induction.[5, 11, 13-14] This was based on the HbF-inducing ability of 

hydroxyurea, which significantly improves the clinical parameters 

of β-thalassemia patients.[11] However, due to important adverse 

effects associated with hydroxyurea treatment, research efforts 

have been focused on the discovery of other HbF inducers for the 

development of new medications against β-thalassemia.[15-18] 

Over the years, several proteins have been identified to 

either directly or indirectly repress the transcription of the γ-globin 

gene.[19-26] These transcription-repressing proteins can be 

selectively inhibited by pharmaceutical molecules, which may 

lead to HbF production through de novo activation of γ-globin 

gene transcription.[27-28] Genetic experiments identified the zinc 

finger transcription factor B-cell lymphoma/leukemia 11A 

(BCL11A) as the most important inhibitor of HbF expression, and 
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resulted in the discovery of an HbF-related position on 

chromosome 2 (found in BCL11A gene).[28] The prevalent isoform 

of BCL11A in adult erythroid progenitor cells is BCL11A-XL.[21-22] 

It has been shown that HbF induction occurs from transgenic 

deactivation of BCL11A in mouse and human cells.[27, 29-31] To 

progress from the general mechanism of HbF induction to 

potential therapeutic approaches, controlled and stable HbF 

induction through BCL11A inhibition based on shRNAs has been 

achieved with clinically relevant efficiency.[32] Such an approach 

is of major significance, because it may recognize potential 

pharmacologic inducers of γ-globin gene repressors. Since low 

levels of BCL11A-XL are expressed by human erythroleukemia 

K562 cells, the significance of K562 as an intermediate route to 

identify pharmaceutical inducers of HbF becomes apparent.   

In an early publication, Samid et al. studied the effect of 

phenylacetate on human K562 cells and they observed that 

time/dose-dependent erythroid differentiation occurred, followed 

by HbF accumulation.[33] In 2003, Witt et al. identified a series of 

histone deacetylase compounds as HbF inducers through their 

inhibitory actions (including anti-proliferative effects) against 

human K562 cells.[34] Macari and colleagues discovered three 

activators of the NRF2-antioxidant response element signaling 

pathway that induced γ-globin gene expression and HbF 

production in K562 cells.[35] Also, He et al. identified a methyl 

transferase inhibitor (Adox) as HbF inducer in K562 cultures.[36] 

More recently, Ng et al. reviewed the status of current agents that 

stimulate the production of HbF and concluded that human K562 

cells are extensively used as screening platforms for HbF-

inducing compounds.[37-39] 

 The in vitro cytotoxicity of new (E)-α-benzylthio chalcones 

against K562 cells was evaluated by Reddy et al.[40] Several of the 

organic molecules profoundly inhibited proliferation of K562 cells 

and exhibited satisfactory toxicity profiles. K562 cells are also 

commonly used for the screening of various inhibitors,[41-43] 

including Bcr-Abl kinase inhibitor-candidates,[44] and antitumor 

compounds that induce cell differentiation.[45-46] Differentiation 

treatment is an advanced strategy for neoplasia therapies, based 

on the identification and use of pharmaceutical agents that act as 

differentiation promoters.[47] 

 Augmented expression of embryo-fetal γ-, ε-, and ζ-globin 

genes is directly related to K562 erythroid differentiation.[48] This 

feature makes K562 cells a useful model system for the study of 

compounds that are effective γ-globin inducers, and possibly act 

against sickle cell disease (SCD) and β–thalassemia.[49] 

Enhanced γ–globin gene production restricts the polymerization 

of sickle Hb (HbS) in SCD, and partially substitutes the biological 

activity of the non-functional β–globin gene in β–thalassemia.[50] It 

is known that several HbF inducers studied using the K562 cell 

system inhibit cells proliferation. In addition, it has been indicated 

that compounds, which act as erythroid-differentiation promoters 

in K562 cells may activate the expression of γ-globin in primary 

erythroid cells taken from β–thalassemia or SCD patients.[5]  

Several cheminformatics approaches to medicinal 

chemistry applications have been proposed in the literature.[51] 

Currently, few molecular modeling studies based on the use of 

QSAR techniques for the identification of K562 inhibitors have 

been reported. In a recent article, Vrontaki et al. developed 

pharmacophore and 3D-QSAR models based on a set of 

previously synthesized non-ATP-targeting Bcr-Abl inhibitors[40] to 

design a new strategy against chronic myelogenous leukemia 

(CML).[52] Bcr-Abl is a kinase, which is directly implicated in cancer 

development. The authors constructed a robust QSAR model that 

reliably predicted the cytotoxic effects of the above molecules on 

K562 cells. Vrontaki and colleagues stressed the appropriateness 

of the predictive model to assist successful drug design against 

β-thalassemia based on the fact that Bcr-Abl inhibitors are known 

to induce erythroid differentiation and γ-globin expression in CML 

cell lines and primary erythroid cells.  

 In 2017, Rivera et al. used biological binding assays 

to assess the activity of 16 quinoxaline analogs against K562 

cells.[53] Quinoxalines were selected because they are known to 

have antitumor action. The authors employed flow cytometry to 

elucidate the mechanism by which cell death was induced and 

they developed a QSAR model to evaluate molecular descriptors 

for the quinoxaline analogs. Therefore, they were able to classify 

the compounds based on their IC50 values and also successfully 

explained the cell death mechanism as dictated by the action of 

the most active compound. 

 In another work, Monga et al. developed predictive 

3D-QSAR models based on validated 3D-pharmacophore 

hypotheses via a selected list of K562 inhibitors.[54] Finally, the 

cytotoxicity of ent-kauranoids against K562 cells was also 

modeled through 3D-QSAR CoMFA approaches by Yi et al.[55]  

Conclusively, the compensation of the clinically relevant 

unbalance of α-globin genes production to non-α-globin genes in 

normal hemoglobin could be obtained by boosting the expression 

of γ-globin genes.[56] Cytotoxic drugs, growth factors, and 

erythroid differentiation inducing compounds might increase the 

generation of fetal hemoglobin in humans.[57] The great diversity 

of pharmacological inducing compounds (such as, hydroxyurea, 

5-azacytidine, erythropoietin, cytosine arabinoside, and sodium 

butyrate) enables their classification into various groups 

depending on their chemical structure and putative mechanism(s) 

of action.[50, 57-59] Hydroxyurea is the most commonly used 
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compound for the production of γ-globin genes, and is considered 

a first-choice drug for sickle cell anemia. Despite this, it has been 

demonstrated that long term use of hydroxyurea may cause side 

effects and also presents significantly diminished beneficial 

action.[60] Moreover, increased HbF production is obtained 

through short-chain fatty acids consumption; similar results were 

observed with 5-azacytidine and thalidomide.[57, 61-63] Examples of 

erythropoietic growth factors employed for further activation of 

erythropoiesis include erythropoietin and darvopoietin.[59, 64-65] 

Despite the widely-known pharmacological action of 

HbF inducers against β-thalassemia, current medications present 

low efficacy and are associated with several unwanted side 

effects, such as high cytotoxicity, which eventually might lead to 

cancer development. Therefore, ongoing research efforts 

necessitate the discovery of novel pharmaceutical molecules that 

could act as efficient HbF inducers without causing toxic effects. 

Since it has been shown that K562 cell regulators may 

induce therapeutic effects on β–thalassemia patients, we have 

been motivated to computationally explore a pool of 129 available 

compounds that have been experimentally evaluated as K562 

biological inhibitors. Based on this large dataset, we have 

combined several cheminformatics techniques to afford the 

structural features that modulate the cytotoxicity of the 129 

compounds in the K562 cell line and to develop and deliver a 

robust and validated model. On top of that, we have made the 

model available online through a user-friendly interface for fast 

and accurate virtual screening of newly proposed structures. 

Overall, the objective of this work was to develop a 

cheminformatics strategy for the identification of potential HbF 

inducers through K562 inhibition, and subsequently to facilitate 

the use of our developed tool by releasing the model online via 

the Enalos Cloud Platform.[66-67]      

Results and Discussion 

A cheminformatics workflow was first designed and then 

implemented within KNIME for the development of an accurate 

and robust model for the prediction of human K562 cell growth 

inhibition. The main steps included in this workflow are briefly 

described below: data curation and preprocessing, descriptors 

calculation, variable selection, model development and validation, 

and domain of applicability determination.   

 

Figure 1. Cheminformatics workflow for the development of the K562 cell 

growth inhibition predictive model. 

 

The proposed workflow was built in KNIME by 

combining existing nodes with NovaMechanics proprietary Enalos 

KNIME nodes[68] that implement several significant tasks, 

essential for model development. Based on the procedure 

described, a validated model was developed and was 

subsequently incorporated within Enalos Cloud Platform to build 

a new web service dedicated to the prediction of K562 cell growth 

inhibition with a user-friendly interface 

[http://enalos.insilicotox.com/K562/].  

The PubChem Enalos+ KNIME node was used to 

search and retrieve data available in PubChem.[69] This step 

afforded a set of 129 diverse small molecules, which have been 

tested as potential K562 inhibitors based on a functional K562 

assay that was performed in vitro (in biochemical assays) and in 

cell-based assays using human erythroleukemia cells for each 

compound. More details on the bioassay used and data collected 

can be retrieved from PubChem under the AID742260 record 

(https://pubchem.ncbi.nlm.nih.gov/bioassay/742260). This 

dataset was used as the starting point to initiate our model 

development since it satisfies the following requirements: 

sufficient number of compounds, balance between the active and 

inactive class, wide range of structural features, and experimental 

evaluation using the same protocol across all molecules 

(inhibition of human K-562 cell growth in a cell viability assay). 

The above are crucial factors for the development of a robust, 

reliable and accurate predictive model.  

Among the tested compounds, those that have 

exhibited an activity of ≤ 50 μM were reported as active while all 

remaining compounds were reported as inactive. In total, among 

available compounds, 67 and 62 compounds were classified as 

active and inactive, respectively. The compounds were divided 

into a training and a test set in a ratio of 80:20 to be used for model 

development and validation, respectively. Among the 129 

compounds, 104 were included in the training set and 25 in the 

test set using the Random Partitioning node in KNIME analytics 

platform.[70]  

The Enalos Mold2 KNIME node[71] was subsequently 

used for the calculation of a wide range of molecular descriptors 

as proposed within Mold2 software.[72] For each compound 

included in the dataset, 777 descriptors were calculated 

accounting for structural, geometric, and topological features of 

the compounds. After an initial screening, many descriptors were 

removed because of their low discrimination power and for this 

purpose, the Low Variance Filter node was employed.[70]  
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Throughout the model development process, additional 

descriptors were eliminated by applying different variable 

selection techniques to identify the most relevant descriptors for 

predicting K562 inhibition. Our cheminformatics workflow allowed 

a fast experimentation with a wide range of variable selection 

techniques combined with different modeling methodologies. 

Thus, we have experimented with a great variety of variable 

selection and modeling techniques to select those that would 

better describe the relationship between our descriptors and 

inhibition activity. Among different combinations, we have 

resulted in three models that were validated as robust and 

accurate.  

These models (I–III) included a combination of two 

different feature selection techniques, namely the Gain Attribute 

evaluator and the InfoGain Attribute Ratio Feature evaluator, with 

three modeling methodologies, namely Random Tree, Random 

Forest and kNN. In particular, Model I was developed based on 

Information Gain Ranking Filter and Random Tree, Model II was 

developed based on Information Gain Ranking Filter and kNN and 

Model III was developed based on Gain Attribute evaluator and 

Random Forest. The selected descriptors for each different model 

and their definition within Mold2 are summarized in Table 1. 

Table 1. Selected molecular descriptors for each of the three validated 

predictive models. 

Model I:  Information Gain Ranking Filter with Random Tree  

Variable Description 

D188 

D189 

D193 

D187 

D192 

 

D190 

Balaban mass weighted index 

Balaban van der Waals weighted index 

Balaban-type polarizability weighted index 

Balaban heteroatoms bonds weighted index 

Balaban electronegativity weighted with Allred-Rochow-Scale 

index 

Balaban electronegativity weighted with Pauling-Scale index 

Model II: Information Gain Ranking Filter with kNN  

Variable  Description 

D188 

D189 

D193 

 Balaban mass weighted index 

 Balaban van der Waals weighted index 

 Balaban-type polarizability weighted index 

Model III: Gain Ratio with Random Forest  

Variable Description 

D392 

D658 

D714 

D596 

D599 

D189 

D188 

D193 

 sum of topological distance between the vertices F and F 

 number of group nitriles (aromatic) 

 number of group CH3R and CH4 

 number of total primary C-sp3 

 number of total quaternary C-sp3 

 Balaban van der Waals weighted index 

 Balaban mass weighted index 

 Balaban-type polarizability weighted index 

 

More information on the Balaban and Balaban-related 

molecular descriptors that were predominantly selected, including 

extended or modified formulas, can be found in two 

comprehensive books by Todeschini and Consonni.[73-74] 

In addition to these three models, a consensus model 

based on the majority vote approach was also compared with 

each of the individual models. This approach considers the 

prediction output from each of the three validated models and 

makes a final assessment based on the class assigned by the 

majority of the individual models (Figure 2).

 

Figure 2. Consensus modeling based on classification majority vote.  

 

The proposed models were fully validated based on 

OECD principles, following the validation process described in the 

Experimental Section. The confusion matrix as well as specificity, 

sensitivity, precision and accuracy for all three proposed models, 

and the consensus model for the test set are presented below 

(Tables 2-3): 

 

Table 2. Confusion matrix (test set). 

Model I - Random Tree  Active Inactive 

Active  11 4 

Inactive  4 6 

Model II - kNN  Active Inactive 

Active  11 1 

Inactive  5 5 

Model III - Random Forest  Active Inactive 

Active  11 4 

Inactive  3 7 

Consensus Model Active Inactive 

Active  14 1 

Inactive  3 7 

 

 

Table 3. Model validation results (test set). 

 Specificity Sensitivity Precision Accuracy 
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Model I - Random 

Tree 
0.6 0.733 0.733 0.68 

Model II - kNN 0.5 0.933 0.737 0.76 

Model III - Random 

Forest 
0.7 0.733 0.786 0.72 

Consensus Model 0.7 0.933 0.824 0.84 

As it can be seen from the validation results, the 

consensus model based on the majority vote was proven to 

outperform all others, having the higher accuracy (84%). Thus, 

this model was finally proposed for the prediction of K562 cell 

growth inhibition and was used for further exploitation through the 

Enalos Cloud Platform.  

When proposing a validated model, it is very important 

to simultaneously define its limits so that a well-defined 

applicability domain indicates those predictions that can be 

considered reliable.[75-76] When the model is used to screen new 

compounds, it is important that structures falling out of the domain 

of applicability of the model are filtered, as the model cannot 

generate reliable predictions for these structures. Within this 

context, the domain of applicability of the proposed model was 

defined based on Euclidean distances using the Enalos Euclidean 

Domain KNIME node as described in the Experimental Section.[77]   

As it has been highlighted, the development of a 

predictive model could end up being useless, unless it is delivered 

as a user-friendly tool to ensure sustainability. Based on this, we 

have designed and implemented our proposed strategy in KNIME 

that allowed us to easily incorporate the proposed model into 

Enalos Cloud Platform. Enalos Cloub Platform was developed 

with the purpose to make our models available to the interested 

user wishing to generate evidence on potential effects in a 

decision-making framework. For this work, and based on the final 

consensus model that was proposed, we have created a web 

service dedicated to the prediction of K562 cell growth inhibition 

and is accessible through http://enalos.insilicotox.com/K562/. A 

simple and user-friendly interface was developed (Figure 3) that 

allowed the interested user to submit and virtually screen one or 

several compounds. 

Three different options are available for submitting a 

structure that include: (i) Drawing a structure with the available 

sketcher;[78] compounds can be easily generated and modified to 

create a set of structures that can be first visualized and then 

submitted, (ii) Submitting the SMILES notation for one or many 

compounds at the form available, (iii) Submitting an .sdf file 

including a batch of compounds. These different options are 

indicated with an arrow (Figure 3). 

 

Figure 3. A web service dedicated to the prediction of human K562 cell growth 

inhibition through Enalos Cloud Platform. 

 

After importing the structures with one of the options 

described, the workflow of interest must be selected among the 

workflows available and the submit button must be pressed. This 

step is indicated in Figure 3 with a dashed arrow. When structures 

are submitted the results page will appear within seconds. Results 

page includes a class prediction for each of the structures 

submitted and an indication of whether this prediction can be 

considered as reliable or not based on the domain of applicability.  

As an example, for a set of structures included in our 

initial dataset, the input, processing, and results page are shown 

in Figures 4 and 5.

 

Figure 4. Compounds included in the initial dataset are (a) submitted in the web 

service, and (b) processed. 
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Figure 5. Results page including prediction and domain of applicability 

assessment for structures included in the dataset. 

 

This web service dedicated to the proposed model can 

easily facilitate the virtual screening of new structures that fall 

within its domain of applicability.  

Overall, we have computationally explored an extensive 

dataset of 129 compounds that were experimentally evaluated as 

human K562 cell growth inhibitors. Within a systematic in silico 

exploitation of this endpoint, we succeeded to afford three robust 

and validated predictive models. Moreover, a consensus 

approach based on the majority vote concept was applied to 

deliver a fourth model that outperformed all others. Our 

cheminformatics workflow was implemented within KNIME that 

provided a flexible framework allowing fast and easy 

experimentation with a wide range of computational techniques. 

This was significantly facilitated using Enalos and Enalos+ KNIME 

nodes that performed several critical tasks for data retrieval and 

exploitation.  

The final consensus model was released online as a 

web service through Enalos Cloud Platform. This facilitated the 

dissemination of the model to the wider scientific community and 

allowed fast predictions of K562 cell growth inhibition.[79-80] The 

web service was designed with a user-friendly interface so that 

non-experts could easily assess predictions with no prior 

computational knowledge required. Compounds can be submitted 

in different formats and results can be obtained very fast and for 

a large number of compounds. This dedicated web service 

ensured the model’s sustainability and made the high throughput 

virtual screening of new compounds feasible. Moreover, 

considering the fact that several erythroid differentiation and HbF 

inducers also display anti-proliferative effects on the K562 cells 

system, this approach might be considered as a first screening of 

potential molecules for further validation using as final 

experimental system erythroid precursor cells isolated from β–

thalassemia patients.   

Conclusions 

Within this work, we have developed a robust model for the 

prediction of K562 cell growth inhibition that has been implicated 

to β-thalassemia disease. First, we have collected and curated a 

comprehensive dataset of 129 compounds available through 

PubChem and then we have built a cheminformatics workflow 

based on KNIME to deliver a fully validated predictive model. To 

achieve that, we have employed our in house Enalos and Enalos+ 

KNIME nodes that perform several important tasks essential for 

data retrieval and exploitation. Our final model was based on a 

consensus approach considering the prediction results from three 

individual predictive models. The proposed consensus model was 

subsequently made available online through Enalos Cloud 

Platform. For this purpose, a dedicated web service with a user-

friendly interface was built to ensure the model’s sustainability and 

to allow the high throughput virtual screening of any given set of 

untested compounds that fall within its domain of applicability.  

Experimental Section 

Cheminformatics Workflow—Enalos KNIME nodes  

Within this work, a cheminformatics workflow has been 

proposed to develop a predictive in silico model that would 

provide structural insights of molecules that inhibit the K562 cell 

growth, allow accurate classification of compounds among the 

active and inactive class and facilitate the virtual screening of any 

given set of structures. Our modelling strategy included the 

following steps: data preprocessing, descriptors calculation, 

variable selection, model development and validation and domain 

of applicability determination.  

To deliver a robust and validated model that would be 

easily expandable as a user-friendly tool for end users interested 

in K-562 cell growth evaluation, we have chosen to combine all 

various components essential for model development within 

KNIME platform.[70] Apart from the nodes already available in 

KNIME, we have also employed our Enalos KNIME nodes that 

offer a great variety of significant additional functionalities 

essential for model development.[68] 
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The Enalos family of KNIME nodes can facilitate several 

important tasks that are crucial within the cheminformatics 

framework. Enalos and Enalos+ nodes significantly contribute in 

data search and retrieval from various databases (among which 

the PubChem database), and also in predictive model 

development and validation. Enalos KNIME nodes are freely 

accessible through either NovaMechanics website or the KNIME 

platform,[81] and can be used for a wide range of applications 

including: Calculation of Mold2 molecular descriptors (Enalos 

Mold2 node), 2) Validation of the Quality-of-Fit and estimation of 

the predictive ability of a model (Enalos Model Acceptability 

Criteria node), and  3) Definition of the model’s domain of 

applicability (Enalos Domain–Similarity/Leverages nodes).   

Enalos+ KNIME nodes[68] offer additional functionalities 

including access and retrieval of data (i.e., within PubChem and 

UniChem) as well as more functionalities for model development 

and validation (i.e., separation of training and test set, and 

validation through Y-randomization). More information on the 

Enalos+ nodes can be found at 

http://enalosplus.novamechanics.com.  

 

Dataset 

A dataset of 129 diverse small molecules, which have 

been tested as potential K562 inhibitors was collected from 

PubChem (Table S1) to initiate model development. Data 

retrieved from PubChem database included the evaluation results 

of a functional K562 assay that was performed in vitro and in 

human erythroleukemia cells for each of the 129 small molecules 

(https://pubchem.ncbi.nlm.nih.gov/bioassay/742260). 

Compounds that were experimentally evaluated with an activity of 

≤ 50 μM were reported as active and all others were reported as 

inactive. Therefore, among compounds available, 67 and 62 

compounds were classified as active and inactive, respectively.  

 

Descriptors Calculation – Enalos Mold2 KNIME node 

Appropriate descriptors that determine the structural 

features of compounds are necessary components for a 

successful QSAR development. For this purpose, we employed 

the Mold2 software (National Center for Toxicological Research, 

FDA), which has been particularly successful in several 

applications.[72] Mold2 uses 2D structural information to calculate 

molecular descriptors very fast. Within our KNIME workflow, we 

have added the Enalos Mold2 KNIME node,[82] which enables the 

calculation of 777 descriptors that account for the structural, 

geometric, and topological features of the compounds.[83] The 

available data were curated and preprocessed and the initial data 

set was divided into training and test set. Data preprocessing 

included normalization as well as refinement of variables based 

on their discrimination power. After an initial screening, many 

descriptors were removed because of their low discrimination 

power; for this purpose, the ‘Low Variance Filter’ node was 

employed.[84]  

Among the descriptors selected from the different 

variable selection methodologies used in this work, the Balaban 

index and its variations were predominant and are briefly 

described below. One of the most widely used molecular 

descriptor is the Balaban distance connectivity index (J), which is 

practically invariant with small differences in molecule size. J is 

defined by the following equation: 

𝐽 =
𝐴

𝐵+1
∑ ∑ 𝑐𝑖𝑗(𝜎𝑖𝜎𝑗)

−
1

2𝐶
𝑗=𝑖+1

𝐶−1
𝑖=1                                                (1) 

where A is the number of graph edges, B is the number of rings 

in the molecule, (B+1 contributes to the normalization against the 

number of the rings), C is the number of graph vertices, σ i and σj 

are the vertex distance degrees (row sums of the distance matrix) 

of vertices yi and yj, respectively, and cij are the elements of the 

“adjacency matrix” (cij=1 for adjacent vertices pairs, and cij=0 for 

all other cases). 

 Balaban-like molecular descriptors can be calculated in a 

similar way as distance connectivity indices (J), by substituting σ i 

elements with row summations of “graph-theoretical matrices” 

(Vsi) or with “local vertex invariants” (Li). A Balaban-like index is 

then expressed:[73]  

𝐽(𝑵; 𝑤) =
𝐴

𝐵+1
∑ ∑ 𝑐𝑖𝑗(𝑉𝑠𝑖(𝑵; 𝑤) 𝑉𝑠𝑗(𝑵; 𝑤))

−
1

2𝐶
𝑗=𝑖+1

𝐶−1
𝑖=1               (2) 

where N is a graph-theoretical matrix, w is the “weighting scheme”, 

and Vsi is the “vertex sum operator”, which is applied on N.  

 Balaban-like indices can be more generally expressed 

according to local vertex invariants as follows: 

𝐽(𝐿) =
𝐴

𝐵+1
∑ ∑ 𝑐𝑖𝑗(𝐿𝑖𝐿𝑗)

−
1

2𝐶
𝑗=𝑖+1

𝐶−1
𝑖=1                 (3) 

 

Variable Selection and Model Development 

Initially, an attribute selection method based on the 

training data was employed to select the most important variables 

among the set of originally determined descriptors. The 

InfoGainAttributeEval and GainAttributeEval evaluators were 

used in combination with the Ranker search method (Ranker is a 
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method that produces a ranked list of attributes for attribute 

evaluators). More details on these methodologies can be found in 

the literature.[85-86] 

Subsequently, different modeling methodologies were 

used. Among the variety of combinations with the available 

attribute selection methods, three machine learning modeling 

methodologies were highlighted as most appropriate for the 

specific dataset, namely kNN, Random Forest, and Random Tree. 

All three methodologies have been incorporated into our KNIME 

workflow. 

The kNN approach is part of the instance-based (or 

lazy) learning, where objects are classified according to the 

closest training examples in the feature space. An object is 

categorized by the majority vote of its neighbors, and being 

assigned to the most common class amongst its k nearest 

neighbors (k is a positive integer, usually small). Here, we have 

considered an optimal k value and Euclidean distance, with all 

descriptors and contributions of neighbors weighted by the 

inverse of distance. 

The discrimination among different classes was also 

achieved with the Random Tree (RT) classification technique as 

implemented in WEKA66 program. A supervised approach to 

classification may be represented by decision trees, where a 

simple structure is composed of root, nodes, ranches and leaves. 

The first node corresponds to a root. Typically, a decision tree is 

constructed starting from the root downward. Nonterminal nodes 

stand for tests on attributes, and each node relates to a specific 

feature. Nodes are interconnected through two or more branches 

projecting from each node; each branch represents a range of 

values that divide the set of values of the selected feature. 

Terminal nodes are named leaves and denote decision outcomes. 

A Random Tree is generated from a set of possible trees using 

different characteristics at each node. The WEKA implementation 

of the random decision tree algorithm yields a decision RT without 

pruning and taking into account only the log2(N) at each node, 

where N is the number of available descriptors. Random Tree 

generation is an efficient process and the accumulation of large 

RT sets usually results in accurate models.[87] 

While trees constructed by Random Tree are taken from 

a set containing a group of random features at each node, 

Random Forests can be generated through bagged ensembles 

containing Random Trees.[86] Random Forest machine learning 

methodology combines the results provided by several individual 

decision trees that are grown based on samples from the initial 

dataset.[88] For each tree a random number of attributes, that form 

the nodes and leafs, are chosen. Random Forest was developed 

based on four variables for model development and predictions 

were made by averaging predicted activities over all trees in the 

final forest. In this work, the implementation of the random forest 

algorithm available in WEKA [25] was used.  

In addition to the available models developed, a 

consensus approach was also used based on the “majority vote” 

among the results produced by each individual model. When a 

class, active or inactive, was predicted for a given compound from 

the majority (two or three) of the available models, then this class 

was considered as the final assessment from the consensus 

model.  

 

Model validation 

The predictive model was validated according to the 

criteria proposed by the Organization for Economic Cooperation 

and Development (OECD).[89] Specifically, goodness-of-fit, 

robustness and predictivity were considered to (internally and 

externally) validate the model. As described above, the dataset 

was split into training and validation sets. During model 

development, we considered compounds included in the 

validation set as a “blind set”.[90] 

To validate the performance of the model, the following 

criteria[91-92] were calculated: 

 

Precision = TP / (TP+FP)                       (4) 

Sensitivity = TP / (TP+FN)              (5) 

Specificity = TN / (TN+FP)              (6) 

Accuracy = (TP+TN) / (TP+FP+FN+TN)                   (7) 

where: TP = True Positive, FP = False Positive, TN = True 

Negative, FN = False Negative. 

Furthermore, a Y-randomization test was performed to 

validate the robustness and the statistical significance of the 

generated models using the Enalos+ KNIME nodes.[68] During this 

test, the dependent variable vector (rather than the independent 

matrix) is randomly shuffled to yield a new model. The procedure 

is repeated many times and the accuracy and other statistical 

parameters of the produced model are assessed and are 

expected to be diminished compared with those of the primary 

model. By applying this approach, the statistical significance of 

the model can be confirmed. If the model does not pass Y-

randomization test, this is an indication of poor statistical 

significance, and a robust predictive model cannot be generated 

by the particular modeling method and training set.  
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Definition of the applicability domain with the Enalos 

Domain–Similarity node  

Reliable predictions of a model fall within its domain of 

applicability, which is constructed using similarity measurements 

based on the Euclidean distances among all training molecules. 

The distance between a test molecule and its closest neighbor in 

the training set is compared to a predefined threshold (APD) and 

the prediction is considered reliable if the distance is lower than 

this value. The calculation of APD was based on the following 

relationship:  

APD = <d> +Zσ                           (8) 

The values of <d> and σ were estimated as follows: initially, the 

average of Euclidean distances between all pairs of training 

molecules was calculated. Next, the set of distances, which were 

below the average distance was formed. Finally, <d> and σ were 

calculated as the average and standard deviation, respectively, of 

all distances included in this set. Z is an empirical cutoff and its 

value was set to 0.5.[92-95] The Enalos+ Domain–Similarity node is 

included in our workflow and was used to assess the domain of 

applicability of the proposed model.[92-95]  

 

Enalos cloud platform 

The Enalos Cloud Platform[96-97] is a service that 

embraces a number of predictive models for drug discovery and 

risk assessment.[79] Above, we described the development of a 

predictive consensus model for K562 inhibition. To our knowledge, 

this is the first ligand-based model constructed from an extensive 

dataset of K562 inhibitors, and therefore we decided to release it 

as a free web service to facilitate the virtual screening and design 

of new effective small-molecule inhibitors of K562, by providing 

prompt access to the model's results. The model can be accessed 

through http://enalos.insilicotox.com/K562. One can apply the 

methodology through a user-friendly graphical interface following 

a minimum-step procedure. A structure can be submitted by using 

one of the following ways: (i) manually draw the structure of a 

molecule using the sketcher provided in the platform,[78] (ii) submit 

a SMILES file of a molecule, or (iii) upload a structure-data file 

(sdf). It is noted that more than one molecules can be 

simultaneously submitted. Next, the K562 workflow is selected 

from the menu, and a prediction is generated. The outcomes offer 

the predicted classification of selected molecules and an 

indication on whether this prediction is reliable or not based on 

the domain of applicability. Screenshots of the Enalos online tool 

for K562 inhibition prediction are presented in the Results and 

Discussion Section. 
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Enalos Cloud Platform: A large dataset of K562 biological inhibitors has beeen computationally treated to identify compounds that 
possibly have therapeutic action against β–thalassemia. A predictive computational model for K562 inhibition was developed and 
validated. The model facilitates fast and reliable virtual screening of new molecules and is freely available online. 

10.1002/cmdc.201700675

A
cc

ep
te

d 
M

an
us

cr
ip

t

ChemMedChem

This article is protected by copyright. All rights reserved.


