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Abstract 

The Voltage-dependent anion channel (VDAC) is the most abundant protein of the outer 

mitochondrial membrane (OMM) and mediates the flow of ions and metabolites between the 

cytoplasm and the mitochondrial network. Here we reveal novel and unexpected roles of this 

protein in the regulation of Ca2+ signaling, cell death and autophagy, throwing light on the 

differential contribution of the three mammalian isoforms in these cellular processes. In particular, 

we show that: i) VDAC is physically linked to the endoplasmic reticulum Ca2+ release channel 

inositol-1,4,5-trisphosphate receptor (IP3R), through the molecular chaperone grp75 and the 

functional coupling of these channel directly enhances Ca2+ accumulation in mitochondria; ii) the 

different VDAC isoforms share common Ca2+ channelling properties in living cells but VDAC1 is 

the only isotype selectively coupled to the ER Ca2+ releasing machinery, thus laying the foundations 

for a preferential route specifically transmitting Ca2+-mediated cell death signals between the two 

organelles; iii) VDAC2 is selectively required for the induction of the autophagic process through 

the establishment of specific protein-protein interactions and the consequent assembly of 

macromolecular complexes at the OMM level involved in nutrient sensing mediated by the 

mammalian Target Of Rapamycin (mTOR) signaling pathway. These data highlight the pleiotropic 

functions of VDAC and its role as central regulator of cell patho-physiology. 
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Abstract (italiano) 

Il Voltage-dependent Anion Channel (VDAC) è la proteina più espressa a livello della 

membrana mitocondriale esterna dove regola il flusso di ioni e piccoli metaboliti fra il citoplasma e 

lo spazio intermembrana. In questo lavoro vengono svelati nuovi ed inattesi ruoli di questa proteina 

nella regolazione del segnale Ca2+, della morte cellulare e dell’ autofagia, ed in particolare sul ruolo 

specifico che le tre diverse isoforme di questo canale giocano in questi processi. In particolare 

abbiamo dimostrato che: i) VDAC è in grado di interagire fisicamente con il canale di rilascio per il 

Ca2+ sensibile all’inositolo-1,4,5-trifosfato (IP3R) del reticolo endoplasmatico attraverso la proteina 

adattatrice grp75 e che l’accoppiamento funzionale fra questi due canali stimola direttamente 

l’accumulo di Ca2+ nella matrice mitocondriale; ii) nonostante tutte le diverse isoforme di VDAC 

condividano simili proprietà canale nei confronti dello ione Ca2+, VDAC1 è l’unica isoforma 

associata in modo specifico ai siti di rilascio del reticolo endoplasmatico e che questa interazione è 

probabilmente alla base della trasmissione di segnali specifici fra un organello e l’altro che mediano 

la morte cellulare; iii) VDAC2 è selettivamente coinvolto nell’induzione del processo autofagico 

grazie a specifiche interazioni proteiche e all’assemblaggio di complessi molecolari a livello della 

membrana mitocondriale esterna coinvolti nella dalla via di segnalazione del sensore di nutrienti 

mTOR (mammalian Target Of Rapamycin). Questi dati evidenziano le molteplici funzioni della 

proteina VDAC e il suo ruolo di fondamentale regolatore di processi sia patologici che fisiologici.
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Introduction 

The mitochondrion represents a unique organelle within the complex endomembrane 

systems that characterize any eukaryotic cell. Complex life on earth has been made possible through 

the “acquisition” of mitochondria which provide an adequate supply of substrates for energy-

expensive tasks. Higher multicellular organisms have indeed high energy requirements necessary to 

carry out complex functions, such as muscle contraction, hormones and neurotransmitters synthesis 

and secretion, in addition to basal cellular metabolism (biomolecules synthesis and transformation, 

maintenance of ionic gradients across membrane, cell division). Mitochondria can fulfill this huge 

energy demand thanks to their extraordinary biosynthetic capacities: every day, mitochondria of a 

single human being can recycle up to 50 Kg of ATP. To further underline the relevance of these 

subcellular structures, one can also consider how these organelles have affected the physiology of 

the whole organism: lungs, heart and circulatory system have evolved essentially to provide 

molecular oxygen to mitochondria, which consume about 98% of the total O2 we breathe. However, 

beyond the pivotal role they play in ATP production, a whole new mitochondrial biology has 

emerged in the last few decades: mitochondria have been shown to participate in many other 

aspects of cell physiology such as amino-acid synthesis, iron-sulphur clusters assembly, lipid 

metabolism, Ca2+ signaling, reactive oxygen species (ROS) production and cell death regulation. 

Hence, it is consequent that any mitochondrial dysfunction will inevitably lead to disease. Indeed, 

many pathological conditions are associated with organelle failure, including neurodegenerative 

diseases (Alzheimer’s, Parkinson’s, Hungtinton’s), motoneuron disorders (amyotrophic lateral 

sclerosis, type 2A Charcot-Marie-Tooth neuropathy), autosomal dominant optic atrophy, ischemia-

reperfusion injury, diabetes, ageing and cancer. 
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Understanding how mitochondria can sense, handle and decode various signals from the 

cytosol and other subcellular compartments represents a new exciting challenge in biomedical 

sciences.  

 

Mitochondria: the basics 

The mitochondrion is a double membrane-bounded organelle thought to be derived from an 

-proteobacterium-like ancestor, presumably due to a single ancient invasion occurred more than 

1.5 billion years ago. The basic evidence of this endosymbiont theory (Dyall et al., 2004) is the 

existence of the mitochondrial DNA (mtDNA), a 16.6 Kb circular double-stranded DNA molecule 

with structural and functional analogies to bacterial genomes (gene structure, ribosome). This 

mitochondrial genome encodes only 13 proteins (in addition to 22 tRNAs and 2 rRNAs necessary 

for their translation), all of which are components of the electron transport chain (mETC) 

complexes (I, III and IV), while the whole mitochondrial proteome consists of more than 1000 gene 

products. Thus, one critical step in the transition from autonomous endosymbiont to organelle has 

been the transfer of genes from the mtDNA to the nuclear genome. At the same time, eukaryotes 

had to evolve an efficient transport system to deliver nuclear-encoded peptides inside mitochondria: 

TIM (Transporters of the Inner Membrane), TOM (Transporters of the Outer Membrane) and 

mitochondrial chaperones (such as hsp60 and mthsp70) build up the molecular machinery that 

allows the newly-synthesized unfolded proteins to enter mitochondrial matrix (Mokranjac and 

Neupert, 2005).  

Mitochondria are defined by two structurally and functionally different membranes: the 

plain outer membrane, mostly soluble to ions and metabolites up to 5000 Da, and the highly 

selective inner membrane, characterized by invaginations called cristae which enclose the 

mitochondria matrix. The space between these two structures is traditionally called intermembrane 
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space (IMS), but recent advances in electron microscopy techniques shed new light on the complex 

topology of the inner membrane. Cristae indeed are not simply random folds but rather internal 

compartments formed by profound invaginations originating from very tiny “point-like structures” 

in the inner membrane (Mannella, 2006). These narrow tubular structures, called cristae junctions, 

can limit the diffusion of molecule from the intra-cristae space towards the IMS, thus creating a 

micro-environment where mETC complexes (as well as other proteins) are hosted and protected 

from random diffusion. 

As mentioned before, mitochondria are the main site of ATP production. When glucose is 

converted to pyruvate by glycolysis, only a small fraction of the available chemical energy has been 

stored in ATP molecules: mitochondria can “release” the remaining amount of energy with an 

outstanding efficiency (from a single glucose molecule mitochondria produce 15 times more ATP 

than glycolysis). The main enzymatic systems involved in this process are the tricarboxylic acid 

(TCA) cycle and the mETC. Products from glycolysis and fatty acid metabolism are converted to 

acetyl-CoA which enters the TCA cycle where it is fully degraded to CO2. More importantly, these 

enzymatic reactions generate NADH and FADH2 which provide reducing equivalents and trigger 

the electron transport chain. mETC consists of five different protein complexes: complex I (NADH 

dehydrogenase), complex II (succinate dehydrogenase), complex III (ubiquinol cytochrome c 

reductase), complex IV (cytochrome c oxidase) and complex V that constitutes the F1F0-ATP 

synthase. Electrons are transferred from NADH and FADH2 through these complexes in a stepwise 

fashion: as electrons move along the respiratory chain, energy is stored as an electrochemical H+ 

gradient across the inner membrane, thus creating a negative mitochondrial membrane potential 

(estimated around -180 mV against the cytosol). H+ are forced to reenter the matrix mainly through 

complex V which couples this proton driving force to the phosphorylation of ADP into ATP, 

according to the chemiosmotic principle. ATP is then released to IMS through the electrogenic 

Adenine Nucleotide Translocase (ANT) which exchange ATP with ADP to provide new substrate 
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for ATP synthesis. Finally, ATP can easily escape the IMS thanks to the mitochondrial porin of the 

outer membrane, VDAC (voltage dependent anion channel) (Duchen, 2004). However, in the last 

two decades interest in mitochondrial biology has literally revamped, since the discovery of their 

prominent role in triggering cell death through apoptosis (Liu et al., 1996). 

Calcium signaling: the general framework 

In all eukaryotic cells, the cytosolic concentration of Ca2+ ([Ca2+]c) is tightly controlled by 

complex interactions among pumps, channels, exchangers and binding proteins, and relatively small 

and/or local changes in its concentration modulate a wide range of intracellular actions. [Ca2+]c in 

resting condition is maintained around the value of 100nM, significantly lower than extracellular 

[Ca2+]  (1mM). This condition is guaranteed by the low permeability of the plasma membrane to 

ions and by the activity of the Plasma Membrane Ca2+-ATPase (PMCA, which pumps Ca2+ outside 

the cells) and of the Na+/Ca2+ exchanger (NCX). This fine regulation of [Ca2+] allows this ion to act 

as one of the most important second messenger in signal transduction pathways.  (Hajnoczky et al., 

2000; Hajnoczky et al., 2002) 

The increase of intracellular [Ca2+] can be elicited through two fundamental mechanisms: i) 

the Ca2+ mobilization from intracellular stores, mainly the  endoplasmic reticulum (ER) and Golgi 

apparatus, or ii) the entry from the extracellular milieu. The main route inducing Ca2+ release from 

intracellular stores involves the IP3 Receptor (IP3R), a transmembrane protein located on the ER 

and Golgi membrane, which exposes on the cytosolic face the IP3 binding site, while it forms a Ca2+ 

channel in the transmembrane domain. When extracellular soluble agonists binds a G-coupled 

protein receptor, different isoforms of phospholipase C (PLC) are activated producing inositol-

1,4,5-trisphosphate (IP3) from the hydrolysis of phosphatidylinositol 4,5 bisphosphate (PIP2). The 

binding of IP3 to its receptor induces its opening and the release of Ca2+ from ER and Golgi. IP3R is 

not the only protein involved in Ca2+ release: ryanodine Receptor (RyR), for example,  is a 
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transmembrane protein located on the ER membrane and it is activated by the alchaloid ryanodine 

and by Ca2+ itself, while Sphingolipid Ca2+ release-mediating protein of the ER (SCaMPER) is 

activated by sphingosine-1-phosphate (Mao et al., 1996). Intracellular store depletion consequent to 

the opening of the IP3R triggers the activation of an inward rectifying Ca2+ current from the 

extracellular spece named capacitative Ca2+ entry (CCE). The molecular determinants of CCE have 

been identified in the very last few years and include an ER Ca2+ sensing protein (STIM) and 

specialized Ca2+ channels in the plasma membrane (Ora, for a recent review (Oh-hora and Rao, 

2008)). The second mechanism inducing intracellular Ca2+ increases involves the opening of the 

plasma membrane Ca2+ channels, which are traditionally grouped into three classes: the Voltage 

Operated Ca2+ channels (VOCs) which open following a decrease of membrane potential (Bertolino 

and Llinas, 1992), the Receptor Operated Ca2+ channels (ROCs), also called ligand gated channels, 

which open following the binding of an external ligand (McFadzean and Gibson, 2002) and  the 

Second Messenger Operated Channels (SMOCs) which open following the binding of a second 

messenger on the inner surface of the membrane (Meldolesi and Pozzan, 1987). Once activated its 

downstream targets, Ca2+ has to be rapidly removed from cytosol to restore the resting conditions. 

So, the Ca2+ signal is terminated by the combined activity of Ca2+ extrusion mechanisms, such as 

PMCA and NCX, and mechanisms refilling the intracellular stores, like Sarco-Endoplasmic 

Reticulum Ca2+ ATPases (SERCAs). It has long been known that mitochondria can rapidly 

accumulate Ca2+ down the electrochemical gradient established by the translocation of protons 

across the inner mitochondrial membrane (IMM), which is expressed as a membrane potential 

difference (m) of -180mV (negative inside) under physiological conditions (Mitchell, 1966). 

However, the accurate measurements of  [Ca2+] in resting cells revealed values well below the 

affinity of the mitochondrial transporters. Thus, the role of mitochondria in Ca2+ homeostasis was 

considered marginal (i.e. limited to conditions of cellular Ca2+ overload), till the development of 

specific and reliable probes directly reported major swings of mitochondrial [Ca2+] (Rizzuto et al., 
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1992b). While enlivening the interest in mitochondrial Ca2+ homeostasis, these data raised an 

apparent contradiction between the prompt response of the organelle and the low affinity of the 

transporter. Based on a large body of experimental evidence, it is now generally accepted that the 

key to the rapid Ca2+ accumulation rests in the strategic location of a subset of mitochondria, close 

to the opening Ca2+ channel. While, based on cell morphology, such proximity is expected, and 

indeed often observed, in neuronal prolongings, a close proximity between ER-resident Ca2+ 

channels and mitochondria in non-excitable cells implies the assembly of a dedicated signaling unit 

at the organelle interphase.  

 ER/mitochondria crosstalk: local microdomains support mitochondrial Ca2+ 

uptake 

Mitochondrial Ca2+ transport: general concepts 

The capacity of isolated mitochondria to rapidly accumulate Ca2+ across their membranes 

was a relatively early notion in bioenergetics and cell biology, already established in the 1960s 

(deluca vasington) when research carried out by various groups demonstrated that energized 

mitochondria can rapidly take up Ca2+ from the medium (for reviews, see (Saris and Carafoli, 

2005)). Indeed, based on the chemiosmotic theory, the translocation by protein complexes of H+ 

across an ion-impermeable inner membrane generates a very large H+ electrochemical gradient and 

mitochondria employ the dissipation of this proton gradient not only to run the endoergonic reaction 

of ATP synthesis by the H+-ATPase but also to accumulate cations into the matrix. Ca2+ fluxes 

across the ion-impermeable inner membrane is, in fact, not mediated by pumps or exchangers, but 

by a “uniporter” (possibly a gated channel, although the molecular identity and nature of the 

uniporter remains unknown) that  provides a pathway for the accumulation of Ca2+ into the 

mitochondrial matrix, driven by the electrochemical potential gradient across the inner 

mitochondrial membrane, usually estimated at ~180 mV negative to the cytosol (Gunter et al., 
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1998). If Ca2+ accumulation were governed solely by thermodynamic parameters, equilibrium, 

according to the Nernst equation, would be reached only when Ca2+ in the matrix reaches values 106 

higher than in the extramitochondrial space, i.e. in the cytosol. As a consequence, most researchers 

by the end of 70’s were convinced that these organelles comprised the key intracellular Ca2+ stores 

in living cells. The scenario changed dramatically at the beginning of the 1980s, when it was not 

only discovered that the total Ca2+ content of mitochondria in situ was negligibly low, but also that 

the Ca2+ mobilization from internal compartments elicited by receptor activation involved another 

cellular organelle, the endoplasmic reticulum (ER) (Streb et al., 1983).   

In those years, while Ca2+ emerged as the ubiquitous, fundamental second messenger known 

to every biology student, it became immediately evident that mitochondria were not the active store 

in these signaling pathways. Indeed, the messenger shown to be produced upon stimulation of G 

protein coupled or growth factor receptors, IP3, acts on ion channels located in the ER (Prentki et 

al., 1984). Moreover, the latter organelle (and not mitochondria) was shown to contain the 

molecular elements of a Ca2+ store: a pump (to accumulate Ca2+ against electrochemical gradient), a 

channel (to rapidly release it), and buffering proteins (to increase the total amount of ion that can be 

stored). For this reason, the concept of mitochondria as cellular Ca2+  stores was largely dismissed. 

In support of the notion that mitochondria cannot act as intracellular Ca2+ store, it should be noted 

that both resting and stimulated values of [Ca2+]c appeared to be well below the affinity of the 

mitochondrial uniporter for Ca2+ (an apparent Kd of 20 to 30 M under conditions thought to mimic 

the cytoplasm, estimated in the earlier work with isolated organelles). Indeed, the availability of 

indicators that could be easily loaded into most cell types and calibrated into accurate [Ca2+] 

estimates allowed us to verify that in living cells not only resting values (~0.1 M), but also those 

briefly reached after physiological stimulation (1–3 M), mitochondria could not, at least in 

principle, accumulate significant amounts of Ca2+. The general consensus thus became that the well 
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established capacity of mitochondria to accumulate Ca2+ would be significant only in conditions of 

high-amplitude, prolonged [Ca2+]c increases, i.e. in the Ca2+ overload that is observed in various 

pathological conditions (such as, for example, excitotoxic glutamate stimulation of neurons), 

convinced the majority of specialists that these organelles had little to do with physiological Ca2+ 

handling (Schinder et al., 1996). In contrast with this view, biochemical work demonstrated that 

three important mitochondrial enzymes intervening in key steps of  intermediate metabolism (the 

pyruvate-, -ketoglutarate- and isocitrate-dehydrogenases) are regulated by Ca2+, a notion that 

would imply that [Ca2+]m should vary in the physiological life cycle of a cell (Hansford, 1994; 

McCormack et al., 1990). However, given that no direct experimental evidence could support the 

notion that the Ca2+ concentration in the mitochondrial matrix rapidly changes upon cell 

stimulation, this observation did not modify the general perception of mitochondria as relatively 

inactive bystanders in the complex scene of cellular Ca2+ homeostasis. 

This situation was completely reversed by the direct demonstration, at the beginning of the 

last decade, that mitochondria can rapidly accumulate Ca2+ under physiological conditions in living 

cells (Rizzuto et al., 1992a), and that Ca2+ accumulation modulates mitochondrial metabolic 

efficiency (Jouaville et al., 1999b), affects calcium signaling (Tinel et al., 1999), and can be a key 

factor in the activation o programmed cell death, matter of course a revitalized interest in this 

process. 

Measurement of [Ca2+]m in living cells lay the foundation of the “Hotspot Hypothesis” 

The concept that mitochondria undergo major changes in matrix [Ca2+] also in physiological 

conditions awaited the direct, reliable measurement of this parameter in intact living cells. This was 

first achieved in the 1990s, by targeting to mitochondria a Ca2+-sensitive photoprotein, aequorin 

(Rizzuto et al., 1992a), and allowed us to demonstrate that in a broad variety of systems that rely on 

different Ca2+ signalling machineries (i.e. IP3Rs for HeLa cells, hepatocytes or astrocytes, RyRs for 

cardiac and skeletal muscle cells, plasma membrane channels for neurons and chromaffin cells), 
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[Ca2+]c rises evoked by physiological stimulations are always paralleled by rapid [Ca2+]m increases, 

which reach values well above those of the bulk cytosol (up to the millimolar range in chromaffin 

cells (Montero et al., 2000)). These studies showed that mitochondria in situ are much more 

efficient at taking up Ca2+ than predicted from their apparently low Ca2+ affinity, a notion that now 

is widely accepted. Similar conclusions could be reached also with fluorescent indicators, such as 

the positively charged Ca2+  indicator rhod-2 (that accumulates within the organelle) (Csordas et al., 

1999) and the more recently developed GFP-based fluorescent indicators. With the latter probes, 

endowed with a much stronger signal than the photoprotein, single-cell imaging of organelle Ca2+  

can be carried out. Thus it is possible to match the accurate estimates of [Ca2+]m values, obtained 

with the photoprotein, with detailed spatiotemporal analyses of [Ca2+]m transients. With these tools 

in hands, not only the notion was confirmed that mitochondria promptly respond to cytosolic [Ca2+] 

rises, but also that the [Ca2+]c oscillations, the typical response to agonists of many cell types, are 

paralleled by rapid spiking of [Ca2+]m, thus providing a frequency-mediated signal specifically 

decoded within the mitochondria, as clearly shown in hepatocytes (Thomas et al., 1995), 

cardiomyocytes (Robert et al., 2001), and HeLa cells. 

The obvious discrepancy between the low affinity of mitochondrial Ca2+ uptake mechanisms 

(expected based on the properties of their Ca2+ transporters established in vitro) together with the 

low concentration of global Ca2+ signals observed in cytoplasm (where Ca2+ elevations rarely 

exceed 2–3 M), and the efficiency of mitochondrial Ca2+ uptake in intact cells (where[Ca2+] rise, 

in a few seconds, to values above 10 M, and in some cell types up to 500 M) led to the 

formulation of the “hotspot hypothesis”. This hypothesis proposes that mitochondria preferentially 

accumulate Ca2+ at microdomains of high [Ca2+] that largely exceed the values reported in the bulk 

cytosol and meet the low affinity of the uniporter. This is achieved through a close interaction 

between the mitochondria and the ER, the intracellular Ca2+ store. 
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The key experiment that gave rise to the Ca2+ “hotspot” hypothesis was published in 1993 

(Rizzuto et al., 1993). This experiment showed that  perfusion of permeabilized cells with buffered 

[Ca2+] similar to those measured in the cytoplasm of stimulated (through activation of G protein-

coupled receptors) intact cells induced a relatively inefficient Ca2+ loading of mitochondria, thus 

confirming the notion of a low-affinity uptake system. Conversely, discharge of Ca2+ from the ER 

triggered by the direct perfusion of IP3 (thus causing the opening of the physiological Ca2+ release 

pathway also in permeabilized cells) induce mitochondrial Ca2+ uptake almost as efficiently as in 

intact stimulated cells. Because IP3 itself had no effect on isolated mitochondria, this experiment 

(repeated later in many cell types and with different protocols) suggested that release of Ca2+ 

through the IP3-gated ER channel created a microenvironment of [Ca2+] close to the mitochondria 

that was much higher than that measured in the bulk cytosol and high enough to activate the low 

affinity Ca2+ uniporter. In other words, “privileged,” local signaling between the Ca2+ store (the ER) 

and mitochondria appeared to be the key to the participation of this organelle in intracellular Ca2+ 

homeostasis. It is important to underlines that the rapid dissipation of the local gradients by simple 

diffusion ensures a decrease in the rate of mitochondrial Ca2+ uptake and thus prevents excessive 

Ca2+ accumulation and mitochondrial damage. Additional strong evidence in support of the hotspot 

model is the relative insensitivity of the mitochondrial Ca2+ uptake rate, at least in some cell types, 

to cytoplasmic Ca2+ buffering. In cardiac cells, for example, concentrations of the Ca2+ chelator 

EGTA sufficient to practically abolish the cytosolic Ca2+ transient in response to caffeine are much 

less effective at inhibiting Ca2+ increases within mitochondria (Griffiths et al., 1998), which 

suggests that the distance is so small that Ca2+ diffuses from ER release channels into the 

mitochondria more rapidly than it can be buffered by EGTA. 

The capacity of mitochondria to sense the microenvironment at the mouth of the IP3-

sensitive channel, and thus the high [Ca2+] generated by their opening upon cell stimulation is 

achieved through a close interaction between the mitochondria and the ER, that could be directly 
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demonstrated using targeted chimeras of green fluorescent recombinant protein (GFP) and a high-

resolution imaging system. By imaging green fluorescent protein (GFP) constructs targeted to the it 

was estimated that 5-20% of the mitochondrial surface is in close apposition to ER in living HeLa 

cells. In keeping with the idea of “local” Ca2+ cross-talk between the mitochondria and the ER, it 

was recently demonstrated, through fast single-cell imaging of mitochondrial [Ca2+]m with targeted 

Ca2+-sensitive GFPs (pericams and cameleons), that [Ca2+]m increases originate from a discrete 

number of sites and rapidly diffuse through the mitochondrial network (Szabadkai et al., 2004). 

This concept, originally put forward through experiments carried out in HeLa cells, was confirmed 

in many cell systems, ranging from hepatocytes (in which this morpho-functional arrangement was 

shown to participate in the regulation of Ca2+ release through the IP3Rs) to neurons, in which 

mitochondria were shown to be strategically placed to sense, and modulate, defined plasma 

membrane Ca2+ microdomains (e.g. those generated in synaptic regions). 

The molecular and cellular definition of the ER/mitochondria contacts 

Close appositions between ER and mitochondria have been observed in electron 

micrographs (EM) of fixed samples in many different cell types while experiments performed by 

our group had eventually confirmed the physical and functional coupling of these two organelles in 

living cells, by labelling the two organelles with targeted spectral variants of GFP (mtBFP and 

erGFP) (Rizzuto et al., 1998a). These experiments revealed the presence of overlapping regions of 

the two organelles (thus establishing an upper limit of 100 nm for their distance) and allowed to 

estimate the area of the contact sites as 5-20% of total mitochondrial surface. More recently, 

electron tomography techniques allowed to estimate an even smaller distance (10-25 nm) as well as 

the presence of trypsin-sensitive (hence proteinaceous) tethers between the two membranes 

(Csordas et al., 2006). 

Unfortunately, very few of the relevant scaffolding or signaling proteins of the 

ER/mitochondria contacts have been identified, despite the growing interest on the topic. 
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Nevertheless, novel candidates are rapidly being isolated and it can be envisaged that the molecular 

characterization will rapidly proceed, thanks to the validation of biochemical approaches in the 

isolation of a subcellular fraction containing the putative ER/mitochondria contacts. Indeed one of 

the major apparent known technical pitfall of subcellular fractionation, i.e. the “contamination” of 

the mitochondrial fraction with ER vesicles, has been demonstrated to be due to the actual co-

segregation of stably associated mitochondrial and ER membranes. This has led to a more accurate 

separation, through density gradient centrifugations, of pure mitochondria from the so-called 

“mitochondria-associated membrane” (MAM), which have been originally shown to be enriched in 

enzymes involved in lipid transfer between ER and mitochondrial membranes (e.g. the import of 

phosphatidylserine (PS) into mitochondria) (Stone et al., 2008; Vance, 1990, 2008). The shaping of 

the ER-mitochondrial network can be affected by binding proteins and physiological ligands; 

recently Hajnoczky and coworkers demonstrated that exposure to TGFβ affects Ca2+  transfer to the 

mitochondria through an impairment of the ER-mitochondrial coupling, thus supporting the notion 

of a highly dynamic regulation of inter-organelle communication (Pacher et al., 2008). 

This actively adapting interconnection stems also from the observation that these organelles 

are intrinsically highly dynamic structures continuously moving (Saotome et al., 2008; Yi et al., 

2004a) and remodelling in their shape. As a consequence, the molecular determinants of this 

dynamism, such as for example, the family of “mitochondria-shaping proteins” (Drp1, 

mitofusins, Opa1 etc.) constitute potential modulators of ER/mitochondria crosstalk. Along this 

line, Scorrano and coworkers have recently pointed out the crucial role of the mitofusin (MFN 1 

and 2 ), in particular the isoform 2 is thought to be important for ER-mitochondrial interactions 

engaging them in both homo and etero-complexes(de Brito and Scorrano, 2008). They also showed 

that genetic ablation of MFN2 causes an increase in the distance between the two organelles with a 

consequent impairment of mitochondrial  Ca2+ uptake, thus further supporting the high [Ca2+] 

microdomains theory. Moreover the ER-mitochondrial apposition performed by MFN 2 predispose 
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mitochondria to high  Ca2+ microdomains and to the consequent overloading, leading eventually to 

apoptosis by excessive Ca2+ transfer.   

Mitochondrial Ca2+ channels of the inner mitochondrial membrane 

The molecular machinery of mitochondrial Ca2+ transport is still largely obscure. Indeed, 

accumulation into the matrix, and consequent release, occur via the activity of transport 

mechanisms that were functionally characterized in the 70s but were never molecularly identified 

despite the extensive efforts in this direction. We and other groups extensively worked on this topic 

and what emerged was that the outer mitochondrial membrane membrane (OMM, although 

traditionally considered freely permeable) is a critical determinant of the mitochondrial Ca2+ 

accumulation (Csordas et al., 2002; Rapizzi et al., 2002a). Thus, the mitochondrial Ca2+ uptake 

machinery will be brefly discussed, concentrating on the influx and efflux mechanism of the IMM. 

 

 The Mitochondrial Calcium Uniporter (MCU) 

Mitochondrial Ca2+ uptake plays a key role in the regulation of many cell functions, ranging 

from ATP production to cell death. However,  the molecular mechanism underlying this 

phenomenon has not yet been completely explaned, indeed, while the contribution of OMM Ca2+ 

channels (VDAC) has been well characterized, little is known about the so called Mitochondrial 

Ca2+ Uniporter (MCU). MCU is an highly selective ion channel located in the mitochondrial inner 

membrane, with a dissociation constant ≤ 2nM over monovalent cations, reaching saturation only at 

supraphysiological [Ca2+]c. Ca2+ crosses the inner mitochondrial membrane through the MCU 

thanks to the considerable driving force represented by the negative transmembrane potential. Also 

Sr2+ and Mn2+ are conducted by MCU and the relative ion conductance can be resumed as follows: 

Ca2+ ≈ Sr2+ ≥ Mn2+ ≈ Ba2+ . Studies performed on isolated mitochondria allowed the identification 

of some regulatory molecules acting on MCU, in particular the most effective inhibitors are the 
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hexavalent cation Rutenium Red (RuR) and its related compound RuR360; MCU is also modulated 

by aliphatic polyamines, such as spermine and aminoglycosides, and by the adenine nucleotides, in 

the order of effectiveness ATP>ADP>AMP (whereas the nucleoside adenosine is ineffective) 

(Litsky and Pfeiffer, 1997) as well as several plant-derived flavonoids (Montero et al., 2004). RuR 

could represent a potentially important tool for the MCU identification, but it showed some major 

drawbacks: indeed, it binds a broad array of glycoproteins and it is completely cell-impermeant so 

that, even at high concentrations (50mM), it is almost ineffective in reducing the mitochondrial Ca2+ 

transients elicited by cell stimulation. Another important regulator of MCU is Ca2+ itself. As 

demonstrated by Moreau and its group, in fact, MCU has a biphasic dependence on cytosolic Ca2+ 

concentration ([Ca2+]c): [Ca2+]c increase can both activate or inactivate mitochondrial Ca2+ uptake. 

MCU activation by Ca2+ is mediated by the Ca2+-dependent Calmodulin activation and by the 

following activation of its effector, Calmodulin-dependent Protein KinaseII (CaM kinaseII), as 

demonstrated by the impairment of mitochondrial Ca2+ uptake induced by KN-62, an inhibitor of 

CaM kinaseII. On the other hand, [Ca2+]c  increase then inactivates the uptake pathway. These two 

processes follow an accurate kinetic: the uptake induction occurs with a time constant of 6 seconds, 

while the inactivation occurs with a time constant of 17 seconds. This mechanism allows the 

mitochondrial Ca2+ oscillation, but it prevents an excessive mitochondrial Ca2+ accumulation when 

intracellular Ca2+ elevation is prolonged (Moreau et al., 2006). Further studies performed to clarify 

the mechanisms regulating Ca2+ homeostasis, suggest a role of the kinase- mediated network in the 

regulation of Ca2+ uptake: in particular, the different isoforms of protein kinase C (PKC), when 

overexpressed in HeLa cells, showed different effects on global Ca2+ signaling (e.g. PKC, possibly 

through the previously reported PKC-mediated phosphorylation of IP3Rs, reduces ER Ca2+ release 

(Ferris et al., 1991),while the other PKC isoforms act on mitochondrial homeostasis: PKC reduces 

mitochondrial Ca2+ transients, whereas PKC potentiates them) (Pinton et al., 2004). A recent paper 
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by Graier and coworkers suggested that the uncoupling proteins 2 and 3 (UCP2 and UCP3) of the 

IMM are essential for mitochondrial Ca2+ uptake since isolated liver mitochondria from UCP2 KO 

mice show no RuR-sensitive Ca2+ uniporter acivity (Trenker et al., 2007). However, attempts from 

other groups to reproduce these data failed (Brookes et al., 2008), thus the role of UCPs in 

mitochondrial Ca2+ uptake should be regarded with caution. Finally, circumventing the low affinity 

of the MCU, another mode of Ca2+ influx into mitochondria was described by Sparagna et al. 

(Sparagna et al., 1995), defined rapid mode of uptake or RaM. This route should allow 

mitochondria to uptake large amounts of Ca2+ in short pulses, at least 300 times faster than through 

the MCU. It should transport Ca2+ only for a brief period during the initial part of the pulse and then 

be inactivated by Ca2+ binding to an external binding site. These prerogatives thus imply a marginal 

role in the total uptake of Ca2+ in the matrix, but could possibly generate local [Ca2+]m 

microdomains near the site of the transporter, that could represent hotspots for the regulation of 

Ca2+-sensitive matrix processes. This work was not followed up, and thus the molecular identity, 

and even the existence, of RaM is even more elusive than MCU. Indeed, it is sensitive to the same 

regulatory mechanisms (e.g. it is also inhibited by RuR), so the possibility remains open that it is 

simply a different functional state of the MCU (Gunter et al., 2000). 

Calcium extrusion pathways  

The efflux pathways were extensively studied in isolated organelles, and their functional 

properties are fairly well characterized. The mitochondrial Na+/ Ca2+  exchanger (mNCX) is similar 

to that found in the plasma membrane; it allows Ca2+ efflux and it is inhibited by Sr2+, Ba2+, Mg2+ or 

Mn2+, and by a variety of compounds of pharmacological interest such as diltiazem, verapamil and 

other blockers of the voltage-dependent calcium channels, and more specifically by CGP37157 

[30]. As to the stechiometry of the exchange, Ca2+  was reported to be transported out of 

mitochondria against values greater than those predicted for passive leak, and thus a Ca2+ /3Na+ was 

postulated (Baysal et al., 1994). The H+/ Ca2+  exchanger (mHCX) is prevalent in non-excitable 
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cells, and it extrudes Ca2+ against a gradient that is much higher than what thermodynamic 

parameters permit for an electroneutral H+/Ca2+ exchanger (Jung et al., 1996; Pfeiffer et al., 2001). 

These efflux pathways can become saturated with high matrix Ca2+ load, such that sustained and 

rapid Ca2+ influx can still lead to mitochondrial Ca2+ overload.  

Calcium release from cellular store: structure and function of the IP3R 

Many extracellular stimuli, such as hormones, growth factors, neurotransmitters, 

neutrophins, odorants, and light, function generating IP3 through the phospholipase C isoforms, 

activated in different manners: G-protein coupled receptors (PLCβ), tyrosine-kinase coupled 

receptors (PLCγ), an increase in Ca2+ concentration (PLCδ) or activated by Ras (PLCε) (Litjens et 

al., 2007; Rebecchi and Pentyala, 2000). The final effector is the inositol 1,4,5 trisphosphate IP3-

sensitive receptor, a member of a superfamily of ion channels with six transmembrane domains, 

residing on the ER membrane. The opening of the channel is under dual control, by IP3 and by Ca2+ 

itself, as will be discussed in more detail later.  

From the structural point of view, several domains are recognized in the protein sequence, 

with different functions. These include the IP3-binding domain (IP3BD), i.e. the minimal sequence 

sufficient for IP3 binding, located near the N-terminus of the protein (aa 226-578). Interestingly, this 

protein domain contains armadillo-repeat protein structures that are engaged in protein-protein 

interactions, and mediates intramolecular interactions with other IP3R domains as well as the 

association with other regulatory proteins. N-terminally to the IP3BD, i.e. within aa 1-222, a 

suppressor region is located that inhibits ligand binding and thus lowers the global receptor IP3 

affinity in the physiological range. In the C-terminal portion, hydrophobic residues form the C-

terminal transmembrane/channel-forming domain (Furuichi et al., 1989; Mignery and Sudhof, 

1990), and, between them, an internal coupling domain assures the signal of IP3 binding is 

transferred to the channel-forming region, hence triggering its opening (Mikoshiba, 2007). Finally, 
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in their coupling/suppressor domains, the IP3Rs possess consensus sequences for phosphorylation 

by numerous kinases, including Protein Kinase A (cAMP-dependent) (Bugrim, 1999), Protein 

Kinase B (Akt/PKB) (Khan et al., 2006), Protein Kinase G (cGMP-dependent) (Murthy and Zhou, 

2003), calmodulin-dependent protein kinase II (CaMKII) (Bagni et al., 2000), protein kinase C 

(PKC) (Vermassen et al., 2004), and various protein tyrosine kinases (PTK) (Jayaraman et al., 

1996). 

Three isoforms of IP3R encoded by different genes have been identified with different 

agonist affinities and tissue distribution (Furuichi et al., 1994; Iwai et al., 2005; Wojcikiewicz, 

1995). Given that the affinity of the IP3-binding core to its ligand is similar for the three isoforms, 

the tuning of the whole receptor’s affinity appears to be due to the isotype-specific properties of the 

N-terminal suppressor domain (Iwai et al., 2007). 

Ca2+ regulates channel activity in a biphasic manner, depending on Ca2+ concentration: at 

[Ca2+] < 300nM, the ion exerts an activatory role, while it has an opposite inhibitory effect at [Ca2+] 

> 300nM [44], thus allowing a fine dynamic feedback regulation during Ca2+ release (Iino and 

Endo, 1992). This biphasic regulation is particular evident for isoform 1, while the IP3R-2 has a 

moderate Ca2+ sensitivity, and IP3R-3 works at low cytosolic Ca2+ levels and it is not inhibited by 

high Ca2+ concentrations. In addition, also the ER Ca2+ content retains the capability to regulate the 

channel opening: in permeabilized hepatocytes, an increase in [Ca2+]er enhances the sensitivity of 

IP3R for its ligand, promoting also spontaneous Ca2+ release, but the nature of this direct regulation 

and the protein involved are still a matter of debate (Missiaen et al., 1992; Nunn and Taylor, 1992). 

In this context, the tight spatial relationship between ER and mitochondria, and the capacity of the 

latter to rapidly clear the high [Ca2+] microdomain generated at the mouth of the IP3R, makes 

mitochondria an active player in the control of IP3R function. The first clear demonstration of this 

concept came from the fine work of Lechleiter and coworkers, who demonstrated that energized 

mitochondria, by regulating the kinetics of ER Ca2+  release, finely tune the spatio-temporal 
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patterning of Ca2+  waves in Xenopus oocytes (Jouaville et al., 1999a). Then, the observation that 

Ca2+ uptake by mitochondria controls the [Ca2+] microdomain at the ER/mitochondrial contacts and 

thus the kinetics of IP3R activation/inactivation was extended to a variety of mammalian cell lines, 

e.g. hepatocytes (Hajnoczky et al., 1999), astrocytes (Boitier et al., 1999) and BHK-21 cells 

(Landolfi et al., 1998), thus highlighting its general relevance. 

Whereas IP3 and Ca2+ are essential for IP3R channel activation, other physiological ligands, 

such as ATP, are not necessary but can finely modulate the Ca2+-sensitivity of the channel (Smith et 

al., 1985). As for Ca2+, the modulation of IP3R by ATP is biphasic: at micromolar concentrations, 

ATP exerts a stimulatory effect, while inhibiting channel opening in the millimolar range 

(Bezprozvanny and Ehrlich, 1993; Iino, 1991).  

Upon IP3 production, IP3Rs have been shown to cluster at the ER membranes: the size and 

composition of these clusters depend on the isoform involved, while the global IP3 binding affinity 

is shared among the different isoforms (Iwai et al., 2005; Tateishi et al., 2005). Spontaneous 

clustering of IP3Rs (in particular of IP3R-2, due to its higher IP3 affinity) have been proposed to be 

the underlying mechanism responsible for Ca2+ puffs observed in the cytoplasm (Mikoshiba, 2007). 

The merging of discrete and localized [Ca2+]c increases, due to the opening of clustered IP3Rs 

(Parker and Ivorra, 1990), are called “Ca2+ puffs” (Yao et al., 1995). Recruitment of neighboring 

IP3Rs and combination of Ca2+ puffs results in Ca2+ waves, ensuring that the Ca2+ signal propagates 

to the entire cell (Rooney and Thomas, 1993), or limited to specific subcellular regions (Allbritton 

and Meyer, 1993). The effects triggered by tightly controlling the diffusion of a [Ca2+]c signal 

elicited by IP3R opening is well illustrated by pancreatic acinar cells. In this polarized cell type, the 

Ca2+ wave originates in the apical pole and may spread through the entire cell reaching the nucleus, 

determining gene transcription or cell death. Alternatively, the [Ca2+]c signal can remain localized 

near the source, i.e. the apical pole, activating short-term effects such as secretion of enzyme-

containing granules (Lee et al., 1997a; Lee et al., 1997b; Petersen et al., 1999; Thorn et al., 1993). 
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The fate of the [Ca2+] signal (remaining localized in the apical region, or reaching the basal region) 

depends on, at first, the effectiveness of the stimulus and the further action of different second 

messengers, and secondly, on the “firewall” effect given by mitochondria. Indeed, in this case 

mitochondria were shown to cluster between the apical and basal pole of the cell, thus forming a 

fixed “Ca2+  buffer” that must be overwhelmed by robust Ca2+  wave in order to reach the 

basolateral area. This occurs in case of supramaximal stimulations, but also when pathological 

challenges (e.g. alcohol or bile acids) synergistically act on the cells.. 

 

Enhancing ATP production or killing the cell: the yin/yang of mitochondrial calcium 

The main physiological role of Ca2+ uptake was assessed to be the control of metabolic 

activity of the mitochondria, in terms of ATP production rate. Indeed, important metabolic enzymes 

localized in the matrix, the pyruvate-, α-ketoglutarate- and isocitrate-dehydrogenases (collectively 

called the Ca2+-sensitive mitochondrial dehydrogenases, CSMDHs) are activated by Ca2+, with 

different mechanisms: the first through a Ca2+-dependent dephosphorylation step, the others via 

direct binding to a regulatory site (McCormack et al., 1990). Those three enzymes represent rate-

limiting steps of the Krebs cycle thus controlling the feeding of electrons into the respiratory chain 

and the generation of the proton gradient across the inner membrane, in turn necessary for Ca2+ 

uptake and ATP production. These events were directly visualized in intact, living cells using a 

molecularly engineered luciferase probe (a chimeric photoprotein including the mitochondrial 

targeting sequence derived from subunit VIII of citochrome c oxidase). The probe revealed an 

increase in the [ATP] of the mitochondrial matrix following agonist stimulation and mitochondrial 

Ca2+ uptake (Jouaville et al., 1999a). Subsequent work revealed that this important example is only 

one of the mechanism controlling mitochondrial metabolism. Indeed, metabolite carriers of the 

inner membrane, such as aralar1 and citrin, possess a Ca2+ binding site in the portion of the protein 
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protruding in the intermembrane space, which is responsible for stimulation-dependent 

enhancement of substrate accumulation into the matrix (Lasorsa et al., 2003). This effect is lost if 

the Ca2+-binding site is deleted from the carrier. Overall, these data indicate that a complex Ca2+-

sensing machinery, localized in different mitochondrial domains, underlies the coupling of aerobic 

metabolism to Ca2+-mediated signals in the cytosol. 

The interest in the process of mitochondrial Ca2+ homeostasis dramatically increased when it 

became apparent that also cell death is causally linked to organelle Ca2+ loading. On the one hand, it 

was clear that cellular Ca2+ overload, such as that caused by hyperstimulation of ionotropic 

glutamate receptors, leads to Ca2+ cycling across the mitochondrial membranes, collapse of the 

proton gradient and bioenergetic catastrophe, thus leading to cell death by necrosis. On the other 

hand, Ca2+ proved to sensitize cells to apoptotic challenges, acting on the mitochondrial checkpoint. 

This notion, subsequently confirmed by the study of other anti- and pro-apoptotic proteins, emerged 

from the analysis of the effect of Bcl-2 on Ca2+ signaling, as discussed later in this review. As 

discussed above Ca2+ binding to cyclophilin D positively regulates PTP opening (Basso et al., 

2005a) and in turn cell death (Krieger and Duchen, 2002). Once opened, PTP allows the release in 

the cytosol of intermembrane-residing apoptotic factors, such as cytochrome c, AIF (apoptosis-

inducing factor) and Smac/DIABLO, which can trigger apoptosis by both a caspase-dependent and 

a caspase-independent pathway (Giorgi et al., 2008). Physiological [Ca2+]m oscillations do not 

induce PTP opening, but become effective with the synergistic action of pro-apoptotic challenges 

(such as ceramide or staurosporin) (Pinton et al., 2001b; Szalai et al., 1999). 

As to differential effects of specific molecular effort, a deeper insight has been obtained for 

the IP3R. The involvement of IP3R in triggering apoptosis has been demonstrated in different cell 

types through IP3R isoform-specific silencing in response to many apoptotic stimuli. In this intense 

research effort, type I and III isoforms were preferentially studied, while the role of IP3R-2 in 

apoptosis, due to its low expression, limited to few human tissues, has not been clarified yet. In 
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CHO cells, that expressed all three IP3R isoforms, IP3R-3 was shown to strongly co-localize with 

mitochondria and its silencing depressed agonist-dependent mitochondrial Ca2+ signals and 

apoptosis, triggered by different activators of the extrinsic or intrinsic pathway. Altogether, these 

data suggested that, at least in this cell type, this isoform could be primarily involved in transferring 

Ca2+ to mitochondria in apoptosis (Mendes et al., 2005). In other cell types, the experimental 

evidence calls for a preferential role of type I IP3R. In Jurkat T lymphoma cells, ablation of IP3R-1 

protects cells from apoptosis induced by different apoptotic stimuli (Jayaraman and Marks, 1997). 

Moreover, in this cell type the death ligand Fas-dependent killing by SW620 colon cancer cells, 

requires Ca2+ transmission from IP3R to mitochondria: silencing of IP3R-1 completely inhibited 

lymphocyte apoptosis, blocking apoptotic Ca2+ release (Steinmann et al., 2008). Thus, it appears 

reasonable to conclude that, while IP3R-mediated release of Ca2+ from ER appears a key sensitizing 

step in various apoptotic routes, the precise molecular definition of this process awaits the fine 

clarification of the macromolecular complex assembled at the interphase between the two 

organelles, since significant differences may occur in various cell types and/or physiological 

conditions. 

Voltage-dependent anion channels (VDAC) 

Voltage-dependent anion channels (also known as mitochondrial porins) are the most 

abundant proteins of the outer mitochondrial membrane, and they are thus key players in many 

cellular processes, ranging from metabolism regulation to cell death. Indeed, every eukaryotic cell 

requires an efficient exchange of ions and metabolites between cytoplasm and mitochondria, and 

porins are the key molecular components that mediate this trafficking. VDAC is traditionally 

considered as a large, high-conductance, weakly  anion-selective channel, fully opened at low 

potential (<20-30 mV), but switching to cation selectivity and lower conductance at higher 

potentials (the so called “closed” state) (Schein et al., 1976). Over the years, the physiological role 
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of the voltage-gating of VDAC has been quite controversial. How could a membrane that is so 

permeable as the outer mitochondrial membrane, maintain a membrane potential? Some have 

assumed that such a potential was not possible. Others have proposed a variety of ways to generate 

a potential. One of these, the existence of a Donnan potential, is a natural consequence of the 

presence of charged macromolecules in the intermembrane space and cytosol (Colombini, 1979). 

Since VDAC is not permeable to these, the free motion of their counterions will result in a potential 

across the outer membrane that depends on the ionic strength of the medium and the concentration 

of net charge carried by the macromolecules in the two compartments. Another proposal takes into 

account the motion of charged substrates associated with mitochondrial metabolism. Differential 

permeability of VDAC to metabolites would result in a transmembrane potential. Theoretically, 

sizable potentials could be generated (tens of millivolts) and this would depend on the level of 

mitochondrial metabolism. This would be a negative feedback process as an increase in metabolic 

rate would increase the potential resulting in channel closure and decrease access to metabolites. 

The fundamental question is: is there experimental evidence for such a potential? Cortese et al. 

measured the pH of the intermembrane space in isolated mitochondria and found that it was more 

acidic than the medium (Cortese et al., 1992). The difference was 0.4–0.5 pH units in the condensed 

form (large intermembrane space) and 0–0.2 pH units in the orthodox state (small intermembrane 

space). These values did not vary much with medium pH. Since protons are highly mobile a pH 

gradient could only be maintained by a potential across the outer membrane. A pH difference of 

0.4–0.5 corresponds to a 20–30 mV potential negative in the intermembrane space. Our group have 

used pH-sensitive Yellow Fluorescent protein (YFP) targeted to mitochondrial intermembrane 

space in order to measure the pH within this region and in the cytosol of intact cultured mammalian 

cells (Porcelli et al., 2005). They find a pH difference: the cytosol was pH 7.4 and the 

intermembrane space 7.1. A pH difference of 0.3 corresponds to a 15–20 mV potential negative in 

the intermembrane space. These estimates are within the switching region of the channels when 
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reconstituted in phospholipid membranes (V0 is about 25 mV). Moreover, a number of reports show 

that numerous cytosolic components can significantly modulate VDAC gating properties, including 

NADH (Lee et al., 1996), members of Bcl-2 protein family (Vander Heiden et al., 2001), metabolic 

enzymes (Pastorino and Hoek, 2008), chaperones (Schwarzer et al., 2002a) and cytoskeletal 

elements (Rostovtseva et al., 2008).  An important question is whether this potential varies in vivo 

with changes in metabolic conditions. Jonas et al. measured the state of the VDAC channel in living 

cells: they found in the nerve terminal very little conductance in patch recordings likely made on the 

outer membrane of mitochondria (Jonas et al., 1999). This indicates that the channels are mainly 

closed and is consistent with measurements made of the permeability of the outer membrane of 

isolated mitochondria. The effects they report for the action of NADH and Bcl-xL on these patches 

shows that the conductances are sensitive to these agents as are VDAC channels (Lee et al., 1994; 

Malia and Wagner, 2007; Shimizu et al., 2000). 

Yeast possesses only one channel forming isoform (but has also another VDAC gene that 

correctly inserts into OMM showing no channel activity), while higher multicellular organisms and 

mammals have three distinct VDAC genes (VDAC1, VDAC2 and VDAC3), with VDAC1 

representing the best characterized one. These three isoforms show a good sequence homology 

(about 65 to 75% in similarity) and similar structure, with the only exception of VDAC2 that has a 

longer (11 aminoacids) N-terminal tail. Yeasts lacking VDAC gene cannot grow on non-

fermentable medium, thus highlighting the relevance of this channel in mitochondrial function.  

Reintroduction of any of the mammalian VDAC genes in this yeast strain  can promptly restore 

growth defects (Xu et al., 1999). Moreover, when reconstituted into liposomes, each isoform 

induced a permeability with a similar molecular weight cutoff (between 3,400 and 6,800 daltons 

based on permeability to polyethylene glycol). However, electrophysiological studies on purified 

proteins showed slight differences in channel properties. VDAC1 is the “prototypic” version whose 

properties are highly conserved among other species. VDAC2 also has normal gating activity but 
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may exist in 2 forms, one with a lower conductance and selectivity. VDAC3 can also form channels 

in planar phospholipid membranes but inserts very difficult in artificial membranes.  

Very recently three different groups independently solved the 3D-structure of VDAC1 

through X-ray crystallography or NMR studies. These data indicate that VDAC1 is -barrel 

membrane protein composed of 19 -strands with an a-helix N-terminal domain residing inside the 

pore (≈ 3 nm): this segment most likely represents the voltage sensor since it is ideally positioned to 

regulate the conductance of ions and metabolites passing through the VDAC pore (Bayrhuber et al., 

2008; Hiller et al., 2008; Ujwal et al., 2008).  VDAC can potentially regulate every aspect of 

mitochondrial physiopathology, since all metabolites entering and leaving mitochondria have to 

cross the OMM through this channel. Indeed, over the years VDAC has been shown to participate 

in a huge amount of cellular processes, ranging from the regulation of cellular metabolism, through 

its physical interaction with different hexokinase isoforms (HKI and HKII), a molecular event 

thought to underpin the aerobic glycolysis phenomenon in cancer cells (Pastorino and Hoek, 2008). 

Moreover, VDAC has been considered a master regulator of the apoptotic process: on one hand it 

was thought to be one of the main component of the mitochondrial Permeability Transition Pore 

(mPTP), the megachannel mediating the collapse of mitochondrial membrane potential (m) 

during apoptosis; on the other side it has long been believed  a key mediator of Bax-mediated 

release of cytochrome c. However, despite the huge amount of work carried out on this protein, 

several recent papers have raised serious doubt about our functional understandings of this channel. 

Indeed, new approaches mainly based on mice knockout models failed to clearly confirm any of the 

above mentioned functions (Baines et al., 2007; Basso et al., 2005b; Bellot et al., 2007; Chiara et 

al., 2008; Galluzzi and Kroemer, 2007; Krauskopf et al., 2006; Rostovtseva et al., 2004) and rather 

suggest that a whole rethinking of VDAC roles is needed. 
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Autophagy 

Autophagy, or cellular self-degradation, is a cellular pathway involved in protein and 

organelle degradation. This phenomenon was firstly described by Christian de Duve in the late 60’s 

(Deter and De Duve, 1967), who also initiated the first experiments that provided the clear 

biochemical proof of the involvement of lysosomes in this process. However, a clear molecular 

understanding of this cellular event remained unresolved until the isolation of the first autophagy-

deficient yeast mutants (Tsukada and Ohsumi, 1993) and the consequent genetic dissection of the 

pool of regulatory genes (the so-called ATG genes), thus ascribing autophagy among the tightly 

regulated and genetically programmed cellular processes. There are three primary forms of 

autophagy: chaperone-mediated autophagy (CMA), microautophagy and macroautophagy. CMA is 

a secondary response to starvation and, unlike the other two processes, involves direct translocation 

of the targeted proteins across the lysosomal membrane (Massey et al., 2006). Microautophagy is 

the least-characterized process but is used to sequester cytoplasm by invagination and/or septation 

of the lysosomal/vacuolar membrane (Wang and Klionsky, 2003). By contrast, the most prevalent 

form, macroautophagy, involves the formation of cytosolic double-membrane vesicles that 

sequester portions of the cytoplasm (Klionsky and Ohsumi, 1999). During macroautophagy, the 

sequestering vesicles, termed autophagosomes, are not derived from the lysosome/vacuole 

membrane. Fusion of the completed autophagosome with the lysosome or vacuole results in the 

delivery of an inner vesicle (autophagic body) into the lumen of the degradative compartment. 

Subsequent breakdown of the vesicle membrane allows the degradation of its cargo and eventual 

recycling of the amino acids and other nutrients. Although autophagy and autophagy-related 

processes are dynamic, they can be broken down into several discrete steps for the purpose of 

discussion: (1) induction; (2) cargo selection and packaging; (3) nucleation of vesicle formation; (4) 

vesicle expansion and completion; (5) retrieval; (6) targeting, docking and fusion of the completed 
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vesicle with the lysosome; and (7) breakdown of the intralumenal vesicle and its cargo and 

recycling of the macromolecular constituents. Briefly, one of the major regulatory components for 

sensing the extracellular milieu and transducing an appropriate signal to elements that allow 

autophagy to be induced is the mammalian Target of Rapamycin (mTOR), a highly conserved 

serine/threonine kinase that causes hyper phosphorylation of the Atg13 protein (Funakoshi et al., 

1997). This form of Atg13 has a lower affinity for the kinase with which it interacts, Atg1, and the 

reduced interaction might inhibit autophagy (Kamada et al., 2000). Inhibition of Tor through 

starvation or treatment with rapamycin results in partial dephosphorylation of Atg13 and allows 

autophagic induction (Noda and Ohsumi, 1998). The mTOR signaling pathway regulation will be 

discussed in more details later. Then, bulk cytoplasm is randomly sequestered into the cytosolic 

autophagosomes, even if some reports show a specificity in the cargo selection (Onodera and 

Ohsumi, 2004). The subsequent vesicles nucleation process represents probably the least 

understood step in autophagy, but likely originates from a pre-autophagosomal structure (PAS) 

already present in the cytoplasm. Vesicle expansion and completion require an ubiquitin-like 

system mediating protein lipidation through the Atg8 protein (also known as LC3) (Ichimura et al., 

2000). Only two proteins are known to remain associated with the completed autophagosomes, the 

specific receptor Atg19 and Atg8; other proteins that are involved in vesicle formation presumably 

recycle from the PAS or the vesicles during formation, thus enabling the retrieval of autophagy 

components. Of course, the timing of vesicle fusion with the lysosome must be tightly regulated, 

otherwise if the fusion process begins prior to completion of the double-membrane vesicle, the 

cargo will remain in the cytosol. The molecular machinery mediating this complex process however 

remains in part still obscure, even if several members of the SNARE protein family have been 

demonstrate to be necessary (Darsow et al., 1997). Lastly, the whole process must break down the 

single-membrane subvacuolar vesicles that result from fusion of the autophagosome with the 

lysosome, a step that mainly depends on the acidic pH of the organelle (Nakamura et al., 1997). 
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Autophagy covers several physiological functions, ranging from a basal housekeeping role 

to response to metabolic stress and regulation of cell death. Moreover, the relevance of this cellular 

process at whole organism level is underlined by the observation that the genetic ablation of many 

Atg genes often lead to organism death due to impaired cell differentiation (Sandoval et al., 2008), 

embryonic lethality or  reduction in survival during neonatal starvation (Kuma et al., 2004). The 

repertoire of routine housekeeping functions performed by autophagy includes the elimination of 

defective or damaged proteins and organelles, the prevention of abnormal protein aggregate 

accumulation, and the removal of intracellular pathogens (Mizushima and Klionsky, 2007). Such 

functions are likely critical for autophagy-mediated protection against aging, cancer, 

neurodegenerative diseases, and infection. Although some of these functions overlap with those of 

the ubiquitin-proteosome system (the other major cellular proteolytic system) the autophagy 

pathway is uniquely capable of degrading entire organelles such as mitochondria, peroxisomes, and 

ER as well as intact intracellular microorganisms (Kim et al., 2007; Zhang et al., 2007). Further, the 

relative role of the autophagy-lysosome system in protein quality control (i.e. the prevention of the 

intracellular accumulation of altered and misfolded proteins) may be greater than previously 

thought. Moreover, autophagy is activated as an adaptive catabolic process in response to different 

forms of metabolic stress, including nutrient deprivation, growth factor depletion, and hypoxia. This 

bulk form of degradation generates free amino and fatty acids that can be recycled in a cell-

autonomous fashion or delivered systemically to distant sites within the organism. Presumably, the 

amino acids generated are used for the de novo synthesis of proteins that are essential for stress 

adaptation. It is presumed that the recycling function of autophagy is conserved in mammals and 

other higher organisms, although direct data proving this concept are lacking. The amino acids 

liberated from autophagic degradation can be further processed and, together with the fatty acids, 

used by the tricarboxylic acid cycle (TCA) to maintain cellular ATP production. The importance of 

autophagy in fueling the TCA cycle is supported by studies showing that certain phenotypes of 
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autophagy-deficient cells can be reversed by supplying them with a TCA substrate such as pyruvate 

(or its membrane-permeable derivative methylpyruvate). For example, methylpyruvate can maintain 

ATP production and survival in growth factor-deprived autophagy-deficient cells that would 

otherwise quickly die (Lum et al., 2005). It can also restore ATP production, the generation of 

engulfment signals, and effective corpse removal in autophagy-deficient cells during embryonic 

development (Qu et al., 2007). 

The mammalian Target of Rapamycin (mTOR) 

mTOR is a highly conserved 289 kDa serine/threonine kinase that represents the main 

cellular nutrient sensor and regulates cell growth, cell cycle progression, nutrient import, protein 

synthesis and autophagy. The discovery of this kinase is rooted in a soil sample from Easter Island 

containing a bacterium (Streptomyces hygroscopicus) that produces the antifungal metabolite, 

rapamycin (from “Rapa Nui”, the local name for Easter Island). Rapamycin binds to the FKBP12 

protein to form a complex that interacts and inhibits several functions regulated by TOR 

(Wullschleger et al., 2006). Apart from yeast, where two TOR genes, TOR1 and TOR2, have been 

identified, all eukaryotic genomes examined so far contain a single TOR gene. TOR belongs to a 

group of kinases known as the phosphatidylinositol-related kinases (PIKK) (Bhaskar and Hay, 

2007). Members of the PIKK family contain a catalytic carboxy-terminal domain that has 

similarities with the catalytic domains of phosphatidylinositol-3 and phosphatidylinositol-4 kinases. 

Four functional domains are conserved in TOR proteins including the central FAT (FRAP, ATM, 

TTRAP) domain, the FRB (FKBP12-rapamycin binding domain) domain, the kinase domain and at 

the most C-terminal part of the protein the FATC domain. It has been suggested that these two 

domains may interact to expose the catalytic domain. The FATC domain is absolutely essential for 

TOR kinase activity. TOR exists in two different complexes TORC1 and TORC2 (Sarbassov et al., 

2005a). In yeast, only TOR2 can form TORC2 and TORC1 is sensitive to rapamycin (Jacinto et al., 
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2004). In other species, these two complexes are structurally and functionally conserved. 

Mammalian TORC1 (mTORC1) is composed of mLST8 (GβL) and raptor, and is sensitive to 

rapamycin (Hara et al., 2002; Kim et al., 2002; Kim et al., 2003). The rapamycin-insensitive 

complex mTORC2 is composed of mTOR, mLST8 (GβL), rictor, SIN1 and protor (Jacinto et al., 

2006; Sarbassov et al., 2004). mTORC1 controls protein synthesis, nutrient import and autophagy 

(Hay and Sonenberg, 2004). Studies in Drosophila and mammalian cells have shown that two 

proteins, S6 kinase and 4E-BP1, link mTORC1 to the control of mRNA translation and two 

proteins, Atg1 and S6K, to the control of autophagy. The downstream functions of mTORC2 are 

less known than those of mTORC1. mTORC2 appears to be involved in actin cytoskeleton 

regulation and Akt/PKB regulation through a phosphorylation at serine 473 (Sarbassov et al., 

2005b). As Akt/PKB acts upstream of mTORC1, it has been suggested that mTORC2 could be 

located upstream of mTORC1. However, recent studies have shown that in vivo the phosphorylation 

at Ser473 is not required for the phosphorylation at Thr308, and the phosphorylation of TSC2, an 

Akt/PKB target in the mTORC1 signaling pathway. These findings strongly suggest that mTORC2 

is not in fact located upstream of mTORC1. Interestingly, recent knockout studies of raptor and 

rictor and have shown that the contributions of mTORC1 and mTORC2 are critical in the early 

stages of embryogenesis and at midgestation, respectively (Guertin et al., 2006; Shiota et al., 2006). 

The first evidence that TOR has a role in regulating autophagy came from experiments 

involving rat hepatocytes that showed that rapamycin partially reverses the inhibitory effects of 

amino acids on autophagic proteolysis (Blommaart et al., 1995). The stimulatory effect of 

rapamycin on autophagy has been confirmed in different models. This would give credence to the 

observation that TORC2 is not directly involved in the regulation of autophagy. However, the 

possible relevance of this complex in autophagy remains to be established because TORC2 is 

sensitized to long-term treatment with rapamycin (Sarbassov et al., 2006). 



 

32 

 

The first genetic evidence for the role of TOR in autophagy came from studies in yeast 

demonstrating that a temperature-sensitive TOR mutant induces autophagy at a permissive 

temperature (Noda and Ohsumi, 1998). Following on from these data, and some of the findings 

discussed in the preceding section, several studies have shown that signaling pathways that activate 

TOR also inhibit autophagy, whereas signaling pathways that inhibit TOR stimulate autophagy 

(Arsham and Neufeld, 2006; Codogno and Meijer, 2005). 

Autophagy and cell death  

Although strictly speaking, the term autophagy simply means “self-eating”, many presume 

that this cellular self-eating is inevitably a form of cellular self-destruction. Indeed, within the cell 

death research field, the visualization of autophagosomes in dying cells has led to the belief that 

autophagy is a form of non-apoptotic, or type II, programmed cell death. However, this concept has 

been recently challenged by numerous studies evaluating cells and organisms lacking the autophagy 

genes. Most evidence linking autophagy to cell death is circumstantial and rather indicates that, at 

least in cells with intact apoptotic machinery, autophagy is primarily a pro-survival rather than a 

pro-death mechanism. Actually, there are only two in vivo examples in model organisms where the 

ablation of autophagy genes retards cell death: in the involuting Drosophila melanogaster salivary 

gland (Berry and Baehrecke, 2007) and in nematodes with hyperactive ion channels that undergo 

necrotic neuronal cell death (Toth et al., 2007). Direct induction of autophagy by overexpression of 

the Atg1 kinase has also been shown to be sufficient to kill fat and salivary gland cells in 

Drosophila. In cultured mammalian cells, cell death by canonical autophagy (defined as death that 

is reduced by genetic inactivation of autophagy genes including beclin-1) has been reported 

primarily (but not exclusively) in cells that are deficient in apoptosis, either by the virtue of 

Bax/Bak deletion or caspase inhibition. RNA interference directed against 2 autophagy genes, atg7 

and beclin 1, blocked cell death in mouse L929 cells treated with the caspase inhibitor zVAD (Yu et 
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al., 2004). Further, RNAi against autophagy genes atg5 and beclin 1 blocked death of  Bax/Bak 

double knockout murine embryonic fibroblasts (MEFs) treated with staurosporine or etoposide  

(Shimizu et al., 2004). Notably, in both of these studies, Atg gene silencing blocked the death of 

cells whose apoptotic pathway had been crippled. Although these findings exclude the possibility 

that autophagy is triggering death through apoptosis induction, they raise the question of whether 

autophagy is a death mechanism in cells whose apoptotic machinery is intact. In addition, in 

etoposide-treated wild-type MEFs (which die by apoptosis), only minimal autophagic activity and 

no inhibition of death by 3-MA is seen, indicating that autophagy is not involved in the death 

process unless apoptosis is blocked. On the other side, the number of works demonstrating the pro-

survival function of autophagy, both in vitro and in vivo, is continuously growing. Indeed, most 

evidence shows that autophagy suppression by genetic knockout/knockdown of essential autophagy 

genes increases cell death (Kourtis and Tavernarakis, 2009; Maiuri et al., 2007b; Scarlatti et al., 

2009). Further, the evidence for cell death by autophagy remains to be demonstrated in mammals; 

in fact, embryonic mice lacking autophagy genes, including ambra1, beclin-1, and atg5, have been 

shown to have increased, not decreased, numbers of apoptotic cells. 
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Aims 

Mitochondria are unique organelles within the complex system of subcellular compartments. 

They are engaged in the regulation of several physiological as well as pathological conditions and 

the number of cellular processes they are involved in is continuously growing over the years. The 

outer mitochondrial membrane (OMM) represents the primary interface towards the other cellular 

structures and should thus be considered a key site for the whole organelle regulation. The Voltage-

dependent anion channel (VDAC) is far the most abundant protein located at OMM level and 

embodies the ideal candidate for understanding the complexity of the mitochondrial regulation of 

the cell fate. Despite the huge amount of scientific literature covering this topic, many of the long 

standing notions about this protein have been questioned by several recent works. This project 

propose to investigate the role of the different VDAC isoforms in the regulation of some 

fundamental cellular events. In particular we will take advantage from the long standing experience 

of our group in the analysis of cellular Ca2+ signaling in order to precisely characterize the 

contribution of these proteins to global cellular Ca2+ homeostasis. By using the most modern 

technologies based on both fluorescent and bioluminescent Ca2+-probes, we will also correlate the 

effects on Ca2+ signaling to the their consequences on cell death through apoptosis. Moreover we 

will also investigates the yet unidentified involvement of mitochondria on novel stress-sensing 

signaling pathway leading to autophagy. 
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Materials and Methods 

Yeast two-hybrid screening 

Yeast two-hybrid screening was carried using the pLexA system according to the protocol of 

Golemis, E. A. et al. (Gyuris et al., 1993). The full ORF cDNA of rat VDAC-1 (NM_031353) was 

cloned into the pGilda yeast inducible expression vector fused with the pLexA DNA binding 

domain. The EGY48 (leu -/-) yeast strain was transformed with the pGilda/VDAC-1 vector using 

the lithium acetate method. The expression of the full length VDAC-1 protein was verified by 

immunoblotting, while its nuclear localization was shown by the negative repression test (data not 

shown). Following the validation of the method, the pGilda/VDAC containing yeasts were 

transformed with the lacZ reporter gene plasmid pSH18-34, followed by transformation of 

approximately 5x106 yeast cells with the pJG4-5 pLexA activation domain fusion vector cDNA 

libraries (from human embryonic kidney and adult liver, Origene). Positive clones were selected in 

two runs: first for their ability to grow on plates lacking leucine; second, the remaining clones were 

assayed for β-galactosidase activity on medium supplemented with 5-bromo-4-chloro-3-indolyl-β-

D-galactopyranoside (X-gal). 372 and 104 positive clones were obtained from the kidney and brain 

cDNA libraries, respectively. The positive clones were first amplified by PCR using yeast stocks 

homogenized by 3 freeze/thaw cycles as template and primers annealing to the pJG4-5 vector 

(forward: 5’-CGT AGT GGA GAT GCC TCC-3’; reverse: 5’-CTG GCA AGG TAG ACA AGC 

CG-3’). The PCR reaction was performed using the Long term PCR kit (Roche). PCR products 

were first characterized by restriction enzyme mapping using the frequent cutter HaeIII enzyme. 

Clones were grouped according to their digestion patterns, verified by agarose gel electrophoresis, 

and one clone from each group was bi-directionally sequenced using the primers applied in the PCR 

reaction. About 90% of the clones contained a subsequence of the ER resident chaperone heat-
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shock 70-kd protein 5 (HSPA5, grp-78, see table), most probable reflecting the requirement of 

efficient folding of the VDAC-1 protein. The results of sequencing of the remaining clones are 

shown in the table. One group of the putative interacting proteins were found to be cytoskeletal and 

signaling elements (shown in bold), while another group (shown in normal) were found to be 

folding intermediates, presumably underlying the proper function of the VDAC OMM channel. In 

order to verify the interaction of VDAC-1 with grp-75 (heat-shock 70-kd protein 9b; HSPA9B, 

shown in bold/italics), the plasmid containing the positive cDNA was isolated from yeast. Cells of 

the positive clone were resuspended in 1M sorbitol and 50 mM EDTA with the yeast lytic enzyme 

(2 mg/ml; MP Biomedicals). After 30 min at 37 °C, the yeast cells were centrifuged, and the pellet 

was dissolved in Hirt’s solution (10 mM Tris-HCl (pH 7.5), 50 mM EDTA, and 0.2% SDS) with 

0.5 mg/ml proteinase K (Invitrogen) and incubated at 50°C for 6 h. The plasmid DNA was 

extracted with phenol/chloroform/isoamyl alcohol (25:24:1). The aqueous phase was precipitated 

with the same volume of 20% polyethylene glycol and 2.5 M NaCl, and the plasmid DNA was 

pelleted, washed with 70% ethanol, and resuspended in 10 l of 10mM Tris-HCl (pH 7.5) and 1mM 

EDTA. The plasmid obtained was transformed into Escherichia coli strain DH5α and purified. The 

isolated PJG4-5/grp-75(aa 471-681) plasmid was then co-transformed with the pGilda/VDAC-1 to 

the EGY48 (leu -/-)/pSH18-34 yeast strain and verified to interact with VDAC-1 by survival on leu 

– medium and by induced galactosidase activity on X-gal plates. 

Subcellular fractionation and proteomic analysis 

HeLa cells and rat liver were homogenized, and crude mitochondrial fraction (8,000g pellet) 

was subjected to separation on a 30% self-generated Percoll gradient as described previously 

(Vance, 1990). A low-density band (denoted as MAM fraction) was collected and analysed by 

immunoblotting and Blue-Native/SDS-PAGE 2D separation. For SDS-PAGE analysis of MAM 

fraction proteins 10 μg proteins were loaded on 10% SDS-polyacrilamyde gels. The antibodies used 
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were: αIP3R, non isotype specific monoclonal antibody, 1:200, Calbiochem; #407140, recognizing 

all three isoforms; αVDAC1, 1:5 000; Calbiochem, monoclonal anti-porin 31HLHuman, #529534); 

αgrp-75, 1:500, rabbit polyclonal, Santa Cruz Biotechnology, H-155, sc-13967) and was also 

present in the MAM, while it was free of contamination from inner membrane proteins (see 

Supplementary Fig. 1) For coimmunoprecipitation of grp-75 with IP3R and VDAC-1 total cellular 

proteins were precipitated with a monoclonal grp-75 antibody (3 μg, Affinity Bioreagents, MA3-

028) and protein-G-Sepharose™ (Amersham, GE Healthcare), washed with 50 mM Tris-HCl, 1% 

Nonidet-P40 1% (for the IP3R) or 50 mM Tris-HCl (for VDAC-1) according to the manufacturer’s 

instructions. The precipitated protein fraction was separated on 7 or 10% SDS- polyacrilamyde gels 

and immunoblotted against IP3R-3 (1:200; goat polyclonal, Santa Cruz Biotechnology, C-20; sc-

7277), grp-75 and VDAC-1, as described above. For blue-native and SDS-PAGE two-dimensional 

separation of the MAM fraction proteins the native MAM fraction was solubilized with 1M 

aminocaproic acid, and 2% dodecylmaltoside, combined with 5% Serva Blue G and separated on a 

4% acrylamide capillary gel in the first dimension. The capillary gel was incubated with a 

dissociating solution (1% SDS and 1% mercaptoethanol), stacked over a 10 % SDS-PA gel, 

separated, then the proteins were immunoblotted against the IP3Rs, grp-75 and VDAC-1 using the 

antibodies described above. 

IP3R and grp75 expression constructs 

Mouse grp75, cloned into the expression vector pTOPO (Invitrogen) was used (Wadhwa et 

al., 1993). The constructs encoding the fusion proteins of the PH domain of the p130 (GenBank 

D45920; residues 95-233) protein and the IP3R-LBD domain (residues 224–605) of the human 

IP3R-1 with monomeric red (mRFP1), green, or yellow fluorescent proteins, as well as the strategies 

for ER targeting have been described previously (Lin et al., 2005; Varnai et al., 2005). For OMM 

tethering, the N-terminal mitochondrial localization sequence of the mouse AKAP1 protein 
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(GenBank V84389, residues 34-63) was fused to the N-termini of the IP3R-LBD  and p130PH 

constructs through a short linker (DPTRSR). The OMM-IP3-LBD1-604-mRFP1 construct was 

obtained by amplification of the 1-604 fragment of IP3R-1 cDNA and insertion into the 

AKAP1/mRFP1 vector. Transient transfection was done by the Ca2+-phosphate precipitation 

technique. Experiments were carried out 24-36 hours after transfection.  

Imaging techniques 

For 3D morphological image acquisition the cells were transfected with mRFP1 fused IP3R-

LBD224-605 constructs and loaded with 50 nM mitoTracker Green (Molecular Probes, Leiden, 

Netherlands) for 20 min at 37°C. Kinetic imaging of [Ca2+]c transients were performed as 

previously described (Szabadkai et al., 2004). All imaging experiments were carried out on Zeiss 

Axiovert 200 inverted microscopes, equipped with cooled CCD digital cameras. Z-series of images 

were acquired at 0.5 μm distance, deconvolved using a custom-made algorithm and 3D 

reconstructed as described previously (Carrington et al., 1995; Rizzuto et al., 1998b). 

Aequorin as a Ca2+ indicator  

Aequorin is a 21 KDa protein isolated from jellyfish of the genus Aequorea which emits 

blue light in the presence of calcium. The aequorin originally purified from the jellyfish is a mixture 

of different isoforms called “heterogeneous aequorin” (Shimomura, 1986). In its active form the 

photoprotein includes an apoprotein and a covalently bound prosthetic group, coelenterazine. When 

calcium ions bind to the three high affinity EF hand sites, coelenterazine is oxidized to 

coelenteramide, with a concomitant release of carbon dioxide and emission of light. Although this 

reaction is irreversible, in vitro an active aequorin can be obtained by incubating the apoprotein 

with coelenterazine in the presence of oxygen and 2-mercaptoethanol. Reconstitution of an active 

aequorin (expressed recombinantly) can be obtained also in living cells by simple addition of 



 

39 

 

coelenterazine to the medium. Coelenterazine is highly hydrophobic and has been shown to 

permeate cell membranes of various cell types, ranging from the slime mold Dictyostelium 

discoideum to mammalian cells and plants. 

Different coelenterazine analogues have been synthesized that confer to the reconstituted 

protein specific luminescence properties (Shimomura et al., 1993). A few synthetic analogues of 

coelenterazine are now commercially available from Molecular Probes.  

The possibility of using aequorin as a calcium indicator is based on the existence of a well-

characterized relationship between the rate of photon emission and the free Ca2+ concentration. For 

physiological conditions of pH, temperature and ionic strength, this relationship is more than 

quadratic in the range of [Ca2+] 10-5-10-7 M. The presence of 3 Ca2+ binding sites in aequorin is 

responsible for the high degree of cooperativity, and thus for the steep relationship between photon 

emission rate and [Ca2+]. The [Ca2+] can be calculated from the formula L/Lmax where L is the rate 

of photon emission at any instant during the experiment and Lmax is the maximal rate of photon 

emission at saturating [Ca2+]. The rate of aequorin luminescence is independent of [Ca2+] at very 

high (>10-4 M) and very low [Ca2+] (< 10-7 M). However, as described below in more details, it is 

possible to expand the range of [Ca2+] that can be monitored with aequorin. Although aequorin 

luminescence is not influenced either by K+ or Mg2+ (which are the most abundant cations in the 

intracellular environment and thus the most likely source of interference in physiological 

experiments) both ions are competitive inhibitors of Ca2+ activated luminescence. Aequorin photon 

emission can be also triggered by Sr2+ but its affinity is about 100 fold lower than that of Ca2+, 

while lanthanides have high affinity for the photoprotein (e.g. are a potential source of artifacts in 

experiments where they are used to block Ca2+ channels). pH was also shown to affect aequorin 

luminescence but at values below 7. Due to the characteristics described above, experiments with 

aequorin need to be done in well-controlled conditions of pH and ionic concentrations, notably of 

Mg2+.  
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Recombinant aequorins. For a long time the only reliable way of introducing aequorin into 

living cells has been that of microinjecting the purified protein. This procedure is time consuming 

and laborious and requires special care in handling of the purified photoprotein. Alternative 

approaches (scrape loading, reversible permeabilization, etc.) have been rather unsuccessful. The 

cloning of the aequorin gene has opened the way to recombinant expression and thus has largely 

expanded the applications of this tool for investigating Ca2+ handling in living cells. In particular, 

recombinant aequorin can be expressed not only in the cytoplasm, but also in specific cellular 

locations by including specific targeting sequencing in the engineered cDNAs.  

Extensive manipulations of the N-terminal of aequorin have been shown not to alter the 

chemiluminescence properties of the photoprotein and its Ca2+ affinity. On the other hand, even 

marginal alterations of the C-terminal either abolish luminescence altogether or drastically increase 

Ca2+ independent photon emission. As demonstrated by Watkins and Campbell, the C-terminal 

proline residue of aequorin is essential for the long-term stability of the bound coelenterazine 

(Watkins and Campbell, 1993). For these reasons, all targeted aequorins synthesized in our 

laboratory include modifications of the photoprotein N-terminal. Three targeting strategies have 

been adopted:  

1.Inclusion of a minimal targeting signal sequence to the photoprotein cDNA. This strategy 

was initially used to design the mitochondrial aequorin and was followed also to synthesize an 

aequorin localized in the nucleus and in the lumen of the Golgi apparatus.  

2. Fusion of the cDNA encoding aequorin to that of a resident protein of the compartments 

of interest. This approach has been used to engineer aequorins localized in the sarcoplasmic 

reticulum (SR), in the nucleoplasm and cytoplasm (shuttling between the two compartments 

depending on the concentration of steroid hormones), on the cytoplasmic surface of the 

endoplasmic reticulum (ER) and Golgi and in the subplasmalemma cytoplasmic rim. 
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3. Addition to the aequorin cDNA of sequences that code for polypeptides that bind to 

endogenous proteins. This strategy was adopted to localize aequorin in the ER lumen.  

We routinely included in all the recombinant aequorins the HA1 epitope-tag that facilitates 

the immunocytochemical localization of the recombinant protein in the cell. 

Chimeric Aequorin cDNAs Below we briefly describe the constructs produced in our 

laboratory. A few other constructs have been produced in other laboratories and will not be dealt 

with in detail here.  

Cytoplasm (cytAEQ): an unmodified aequorin cDNA encodes a protein that, in mammalian 

cells is located in the cytoplasm and, given its small size, also diffuses into the nucleus. An 

alternative construct is also available that is located on the outer surface of the ER and of the Golgi 

apparatus. This construct was intended to drive the localization of aequorin to the inner surface of 

the plasma membrane given that it derives from the fusion of the aequorin cDNA with that 

encoding a truncated metabotropic glutamate receptor (mgluR1). The encoded chimeric protein, 

however, remains trapped on the surface of the ER and Golgi apparatus, with the aequorin 

polypeptide facing the cytoplasmic surface of these organelles. The cytoplasmic signal revealed by 

this chimeric aequorin is indistinguishable from that of a cytoplasmic aequorin, but it has the 

advantage of being membrane bound and excluded from the nucleus. 

Mitochondria (mtAEQ): mtAEQ was the first targeted aequorin generated in the laboratory, 

which has been successfully employed to measure the [Ca2+] of the mitochondrial matrix of various 

cell types. This construct includes the targeting presequence of subunit VIII of human cytochrome c 

oxidase fused to the aequorin cDNA.  

Endoplasmic Reticulum (erAEQ):The erAEQ includes the leader (L), the VDJ and Ch1 

domains of an Ig2b heavy chain fused at the N-terminus of aequorin. Retention in the ER depends 

on the presence of the Ch1 domain that is known to interact with high affinity with the luminal ER 

protein BiP. 
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To expand the range of Ca2+ sensitivity that can be monitored with the different targeted 

aequorins we have also employed in many of our constructs a mutated form of the photoprotein 

(asp119 → ala). This point mutation affects specifically the second EF hand motive of wild type 

aequorin. The affinity for Ca2+ of this mutated aequorin is about 20 fold lower than that of the wild 

type photoprotein. Chimeric aequorins with the mutated isoform are presently available for the 

cytoplasm, the mitochondrial matrix, the ER and SR, the Golgi apparatus and the sub 

plasmamembrane region. 

Cell preparation and transfection 

Although in a few cases the aequorin cDNA has been microinjected, the most commonly 

employed method to obtain expression of the recombinant protein is transfection. Different 

expression plasmids have been employed, some commercially available (pMT2, pcDNAI and 3) 

other have been kindly provided by colleagues. The calcium phosphate procedure is by far the 

simplest and less expensive and it has been used successfully to transfect a number of cell lines, 

including HeLa, L929, L cells, Cos 7, A7r5 and PC12 cells, as well as primary cultures of neurons 

and skeletal muscle myotubes. Other transfection procedures have been also employed, such as 

liposomes, the “gene gun” and electroporation. Viral constructs for some aequorins are also 

available (Alonso et al., 1998; Rembold et al., 1997). In this section we briefly describe the calcium 

phosphate procedure, a simple and convenient transfection method for HeLa or Hek293 cells. 

One day before the transfection step (two days for Hek293), HeLa cells in Dulbecco 

Modified Eagle’s Medium (DMEM) supplemented with 10% Fetal Calf serum (FCS) are plated on 

a 13 mm round coverslip (poly-D-lysine coated in the case of Hek293) at 30-50% confluence. Just 

before the transfection procedure, cells are washed with 1 ml of fresh medium. 

Calcium-Phosphate transfection procedure 

The following stock solutions need to be prepared and conserved at -20°C until used. 

 CaCl2 2.5 M. 
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 HEPES Buffered Solution (HBS): NaCl 280mM, Hepes 50 mM, Na2HPO4 

1.5 mM, pH 7.12. 

 Tris-EDTA (TE): Trizma-base 10mM, EDTA 1mM, pH 8. 

All solutions are sterilized by filtration using 0.22 m filters. For 1 coverslip, 5 l of CaCl2 

2.5 M are added to the DNA disolved in 45 l of TE. Routinely, 4 g of DNA are used to transfect 

1 coverslip. The solution is then mixed under vortex with 50 l of HBS and incubated for 20 to 30 

minutes at room temperature. The cloudy soultion is then added directly to the cell monolayer. 18-

24 hours after addition of the DNA, the cells are washed with PBS (2 or 3 times until the excess 

precipitate is completely removed). Using this protocol the transfected cells are usually between 30 

and 50 %. Although an optimal transfection is obtained after an overnight incubation, we found that 

a substantial aequorin expression, sufficient for most experimental conditions, is obtained also with 

an incubation of only 6 hours with the Ca2+-phosphate-DNA complex. Stable clones has be also 

obtained by cotransfecting with the aequorin cDNA another plasmid encoding the resistance to 

neomycin and then selecting the cells with 1 mg/ml of neomycin.    

Reconstitution of functional aequorin 

Once expressed the recombinant aequorin must be reconstituted into the functional 

photoprotein. This is accomplished by incubating cells with the synthetic coelenterazine for variable 

periods of time (usually 1-3 hours) and under conditions of temperature and [Ca2+] that depend on 

the compartment investigated. Practically, coelenterazine is dissolved at 0.5 mM in pure methanol 

as a 100X stock solution kept at - 80°C. This solution tolerates several freeze-thaw cycles. 

However, we recommend the supply of coelenterazine solution to be split into small aliquots (50 

l). Coelenterazine must be protected from light.  

For compartments with low [Ca2+] under resting conditions (cytosol and mitochondria the 

cells transfected with the appropriate recombinant aequorins are simply incubated at 37°C in fresh 
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DMEM medium supplemented with 1% FCS and 5 M coelenterazine. Higher or lower 

coelenterazine concentrations can be also used, if necessary. Good reconstitution is achieved with 1 

hour incubation, but an optimal reconstitution requires 2 hours.  

For compartments endowed with high [Ca2+] under resting conditions (ER), to obtain good 

reconstitution and interpretable data it is first necessary to reduce the [Ca2+] in the organelle. 

Otherwise aequorin is immediately consumed after reconstitution and in steady state little functional 

photoprotein is present in cells. Depletion of Ca2+ from the organelles has been (and can be) 

achieved in different ways. here we describe a simple protocols: cells are incubated at 37°C for 5 

minutes in KRB solution (Krebs-Ringer modified buffer: 125 mM NaCl, 5mM KCl, 1mM Na3PO4, 

1mM MgSO4, 5.5 mM glucose, 20 mM Hepes, pH 7.4) supplemented with 600 M EGTA, 10 M 

ionomycin). After washing with KRB containing 100 M EGTA, 5% bovine serum albumin, cells 

are further incubated in the same medium supplemented with 5 M coelenterazine for 1 hour, but at 

4°C.  

Slight variations in these depletion protocols have been used both by our group and other 

investigators. Here it is necessary to stress a few general aspect of the procedure: i) the more 

efficient the Ca2+ depletion, the better the reconstitution; ii) some compartments (e.g. the Golgi and 

in part the ER) can be grossly altered morphologically by the Ca2+ depletion protocol. The 

incubation at 4°C largely prevents these morphological changes, without altering the efficacy of the 

reconstitution; iii) if ionophores or SERCA inhibitors are employed for depletion they must be 

removed completely before starting the experiment. For this reason extensive washing of the cell 

monolayer with Bovine Serum Albumin (BSA) is recommended at the end of the reconstitution 

procedure. 

Luminescence detection 

The aequorin detection system is derived from that described by Cobbold and Lee and is based on 
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the use of a low noise photomultiplier placed in close proximity (2-3 mm) of aequorin expressing 

cells. The cell chamber, which is on the top of a hollow cylinder, is adapted to fit 13-mm diameter 

coverslip. The volume of the perfusing chamber is kept to a minimum (about 200 l). The chamber 

is sealed on the top with a coverslip, held in place with a thin layer of silicon. Cells are continuously 

perfused via a peristaltic pump with medium thermostated via a water jacket at 37°C. The 

photomultiplier (EMI 9789 with amplifier-discriminator) is kept in a dark box and cooled at 4°C. 

During manipulations on the cell chamber, the photomultiplier is protected from light by a shutter. 

During aequorin experiments, the shutter is opened and the chamber with cells is placed in close 

proximity of the photomultiplier. The output of the amplifier-discriminator is captured by an 

EMIC600 photon-counting board in an IBM compatible microcomputer and stored for further 

analysis. 

Ca2+ measurement 

For the cells transfected with cytosolic, mitochondria or nuclear aequorins, the coverslip 

with the transfected cells is transferred to the luminometer chamber and it is perfused with KRB 

saline solution in presence of 1 mM CaCl2 to remove the excess coelenterazine. The stimuli or 

drugs to test are added to the perfusing medium and reach the cells with a lag time that depends on 

the rate of the flux and the length of the tubes. In order to make the stimulation more rapid and 

homogeneous the rate of the peristaltic pump is set to its maximum speed. Under these conditions 

we calculated that the whole monolayer is homogeneously exposed to the stimuli in 2 sec. At the 

end of the experiments, all the aequorin is discharged by permeabilizing the cells using a hypotonic 

solution containing digitonin (100 M) and CaCl2 (10 mM). 

For erAEQ transfected cells, unreacted coelenterazine and drugs are removed by prolonged 

perfusion (3-6 min) with a saline solution containing 600 M EGTA and 2% BSA. BSA is then 
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removed from the perfusion buffer and the refilling of the compartments is started by perfusing the 

medium containing either 1mM CaCl2. To note that BSA increases luminescence background level. 

 We found that, despite the depletion protocol and the use of a low Ca2+ affinity aequorin 

mutant, the rate of aequorin consumption upon Ca2+ refilling is so rapid that most aequorin is 

consumed in 30 sec and the calibration of the signal in terms of [Ca2+] becomes unreliable. Two 

alternative solutions to this problem have been developed, i) the use of Sr2+ as a Ca2+ surrogate and 

ii) the reconstitution not with the wild type coelenterazine, but with the analogue coelenterazine n 

that reduces the rate of aequorin photon emission at high [Ca2+]. In the latter case [Ca2+] between 

10-4 and 10-3 M can be reliably calibrated (Robert et al., 1998).  

Conversion of the luminescent signal into [Ca2+] 

To transform luminescence values into [Ca2+] values, we have used the method described by 

Allen and Blink. The method relies on the relationship between [Ca2+] and the ratio between the 

light intensity recorded in physiological conditions (L, counts/s) and that which would have been 

reported if all the aequorin was instantaneously exposed to saturating [Ca2+] (Lmax). Given that the 

rate constant of aequorin consumption at saturating [Ca2+] is 1.0 s-1, a good estimate of Lmax can be 

obtained from the total aequorin light output recorded from the cells after discharging all the 

aequorin. This usually requires the addition of excess Ca2+ and detergents as shown in the preceding 

section. As aequorin is being consumed continuously, it must be stressed that, for calibration 

purposes, the value of Lmax is not constant and decreases steadily during the experiment. The value 

of Lmax to be used for [Ca2+] calculations at every time point along the experiment should be 

calculated as the total light output of the whole experiment minus the light output recorded before 

that point.  

The relationship between the ratio (L/Lmax) and [Ca2+] has been modeled mathematically. 

The model postulates that each of the Ca2+ binding sites has two possible states, T and R and that 

light is emitted when all the sites are in the R state. Ca2+ is assumed to bind only in the R state. This 
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model contains three parameters: KR, the Ca2+ association constant, KTR= [T]/[R], and n, the 

number of Ca2+ binding sites. The values we obtained for the recombinantly expressed recombinant 

aequorin for each parameter are KR = 7.23 106 M-1, KTR = 120, n=3. The equation for the model 

provides the algorithm we used to calculate the [Ca2+] values at each point where ratio 

=(L/Lmax)1/n. 
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Results 

Chaperone mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ 

channels 

Mitochondria and ER of eukaryotic cells form two entwined endomembrane networks, and 

their dynamic interaction controls metabolic flow, protein transport, intracellular Ca2+ signaling, 

and cell death (Brough et al., 2005; Ferri and Kroemer, 2001; Levine and Rabouille, 2005; 

Szabadkai and Rizzuto, 2004). Vast knowledge on ER-mitochondrial interaction stems from the 

analysis of Ca2+ signal transmission between these organelles. Ca2+ mobilizing hormones and 

neurotransmitters, as well as proapoptotic stimuli, induce Ca2+ release from the ER Ca2+ store 

through the IP3R Ca2+ release channel (Berridge et al., 2003; Patterson et al., 2004). Consequent 

mitochondrial Ca2+ uptake, via a yet unidentified Ca2+ channel of the inner mitochondrial 

membrane (the mitochondrial Ca2+ uniporter, MCU), regulates processes as diverse as aerobic 

metabolism (Hajnoczky et al., 1995), release of caspase cofactors (Pinton et al., 2001a) and 

feedback control of neighbouring ER or plasma membrane Ca2+ channels (Gilabert and Parekh, 

2000; Hajnoczky et al., 1999). A corollary of the efficient mitochondrial Ca2+ uptake during IP3 

induced Ca2+ release is the close apposition of ER and outer mitochondrial membranes (OMM) as 

demonstrated in a wide variety of cell types using light and electron microscopy studies (Frey et al., 

2002; Mannella et al., 1998; Marsh et al., 2001; Rizzuto et al., 1998b). The molecular determinants 

of this crosstalk, however, are still largely unknown (discussed in (Hajnoczky et al., 2002)). 

Recently PACS2, an ER-associated vesicular sorting protein was proposed to link the ER to 

mitochondria (Simmen et al., 2005). The knockdown of PACS2 led to stress-mediated uncoupling 

of the organelles, reflected also by the inhibition of Ca2+ signal transmission.  

On the other side, VDAC1, the abundant OMM channel, was also suggested to participate in 

the interaction. It was shown to be present at ER-mitochondrial contacts and to mediate Ca2+ 
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channeling to the intermembrane space (IMS) from the high [Ca2+] microdomain generated by the 

opening of the IP3R (Gincel et al., 2001; Rapizzi et al., 2002b). In addition, VDAC1 mediates 

metabolic flow through the OMM, forming an ATP microdomain close to the ER and sarcoplasmic 

reticulum Ca2+ ATPases (SERCAs) (Vendelin et al., 2004; Ventura-Clapier et al., 2004), and both 

VDAC1 and VDAC2 take part in metabolic and apoptotic protein complexes (Cheng et al., 2003; 

Colombini, 2004; Lemasters and Holmuhamedov, 2006).  

The transfer and assembly of components of cellular protein complexes were shown to be 

assisted by molecular chaperones, adding a novel function to their role in nascent protein folding 

(Soti et al., 2005; Young et al., 2003). Accordingly, Ca2+ binding- , heat shock- , and glucose 

regulated chaperone family members are abundantly present along the Ca2+ transfer axis, linking the 

ER and mitochondrial networks. Well known examples are the Ca2+ binding chaperones of the ER 

lumen (Michalak et al., 2002), immunophilins interacting with ER Ca2+ release channels and the 

mitochondrial permeability transition (MPT) pore (Bultynck et al., 2001; Forte and Bernardi, 2005), 

and several heat shock family members localized at the mitochondrial membranes, proposed to 

interact with the components of the MPT pore, such as VDAC (Gupta and Knowlton, 2005; He and 

Lemasters, 2003; Wadhwa et al., 2005). Still their exact role at the ER-mitochondria interface is not 

well known, although recently weak links by chaperones were proposed to stabilize signaling and 

organellar cellular networks (Csermely, 2004; Soti et al., 2005). 

Considering the above outlined central position of VDAC at the ER-mitochondrial interface, 

we used VDAC1 as a starting point for protein biochemical studies, in order to explore molecular 

interaction pathways between the ER and mitochondrial networks. We found that through the OMM 

associated fraction of the grp75 chaperone (Zahedi et al., 2006), VDAC1 interacts with the ER Ca2+ 

release channel IP3R. Organellar Ca2+ measurements, using targeted recombinant Ca2+ probes, 

confirmed a functional interaction between the IP3R and the mitochondrial Ca2+ uptake machinery, 

which was abolished by grp75 knockdown.  
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VDAC1, grp75 and IP3Rs are present in a macromolecular complex at the ER 

mitochondria interface 

We carried out yeast two-hybrid screens of human liver and kidney LexA-AD fused 

libraries, using a rat VDAC1-LexA-DNA-BD fusion protein as bait. Among the putative 

interactors, we have found cytoskeletal elements, previously thought to participate in sorting of 

VDAC or in mitochondrial dynamics (Schwarzer et al., 2002b; Varadi and Rutter, 2004) and a 

group of chaperone proteins (Table 1).  

Name  Accession 
number 

DnaJ (Hsp40) homolog, subfamily A, member 1; 
DNAJA1 

NM_001539 

filamin B, beta (actin binding protein 278); FLNB NM_001457 

heat-shock 70-kd protein 5; HSPA5 NM_005347 

heat-shock 70-kd protein 9b; HSPA9B  BC024034 

protein phosphatase 1g (formerly 2c), magnesium-
dependent, gamma isoform; PPM1G 

NM_002707 

t complex-associated testis-expressed 1-like 1; TCTEL1 D50663 

tetratricopeptide repeat domain 1; TCC1 NM_0033114 

thioredoxin-like 1; TXNL1 AF052659 

tubulin-specific chaperone c; TBCC BC020170 

zinc-finger like protein 9; ZPR9  AY046059 

Table 1 VDAC-1 interactors found by yeast two-hybrid screening. Yeast two-hybrid screening was carried using the pLexA system 
according to the protocol of Gyuris et al. (1993). For details see Supplementary materials and methods. Approximately 90% of the 
clones contained a sub-sequence of the ER-resident chaperone heat shock 70-kD protein 5 (HSPA5, grp-78), most probably 
reflecting the requirement of efficient folding of the VDAC1 protein in yeast. The results of sequencing of the remaining clones are 
shown in the table. One group of the putative interacting proteins were found to be cytoskeletal and signaling elements (underlined); 
another group (shown in normal) were found to be folding intermediates, presumably underlying the proper function of VDAC1. 

In order to investigate whether the chaperones may participate in mediating organelle 

interactions, we focused our attention on the human heat shock 70kD protein 9B/grp75 (nt 1456-

2089, aa 471-681; GenBank ID: BC000478). This chaperone was known to reside in the 

mitochondrial matrix, taking part of the protein import motor associated with TIM23 (Neupert and 

Brunner, 2002), but it was also found in the cytosol and in mitochondria-associated high molecular 

weight protein complexes (Danial et al., 2003; Ran et al., 2000). A recent meticulous proteomic 
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approach has found grp75 as a member of a conserved matrix protein cluster at the OMM (Zahedi 

et al., 2006). In addition, two further findings indicated that grp75 may be involved in ER-

mitochondria Ca2+ transfer: first, its C-terminal domain reduced the voltage dependence and cation 

selectivity of VDAC1 (Schwarzer et al., 2002), and grp75 overexpression was shown to promote 

cell proliferation and protect against Ca2+ mediated cell death (Liu et al., 2005; Wadhwa et al., 

2002). 

Based on these findings, we used further biochemical approaches to investigate the role of 

grp75 at the ER-mitochondria contact sites. We took advantage of a previously developed method 

to purify a mitochondria-associated ER subfraction (mitochondria associated membrane fraction, 

denoted as MAM (Vance, 1990)). The MAM was formerly shown to be enriched in lipid synthases 

and transferases (Vance, 2003), and its potential role in ER-mitochondrial Ca2+ transfer was also 

proposed (Filippin et al., 2003; Szabadkai and Rizzuto, 2004; Yi et al., 2004b). Indeed, immunoblot 

screening of the MAM fraction, purified from rat liver and HeLa cells, revealed the presence of 

grp75, as well as Ca2+ channels both from the OMM (VDAC1) and the ER (IP3R, Fig. 1A). Then 

we applied two dimensional blue native - SDS-PAGE protein separation to identify the specific 

localization of VDAC1, grp75 and the IP3R in higher order protein complexes of the MAM 

fraction. Samples were separated under non-denaturing conditions on a blue native acrylamide gel 

(1st dimension), then pulled out into individual protein components by SDS-PAGE (2nd 

dimension), and screened for the presence of VDAC1, IP3Rs and grp75 by immunoblotting (Fig. 

1C). While VDAC1 was present in different amounts in complexes of a wide MW range, we found 

a specific complex characterized by the presence of both the IP3R and grp75, suggesting their 

interaction in the native state. The specificity of the complex formation of IP3R and grp75 was 

corroborated by the finding that SERCA2 showed a different localization in the 2D separation (data 

not shown).  

In order to confirm the existence of a subpopulation of grp75 beyond the abundant matrix 

content of the protein we applied two approaches. First, 2D separation of the purified, high density  
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Figure 1 IP3R, VDAC1 and grp75 colocalize on the mitochondria associated membrane fraction. (A) Immunoblot analysis of 
protein components of subcellular fractions prepared from rat liver and HeLa cells. Mito: mitochondria; MAM: light mitochondrial 
fraction, mitochondria-associated membranes; P: heavy mitochondrial fraction, enriched in matrix components; C: crude 
mitochondrial fraction prior to Percoll gradient separation. 10 μg proteins were loaded on 10% SDS-polyacrilamyde gels. The 
presence of IP3Rs was shown by using a non isotype specific monoclonal antibody. VDAC1 and grp75 were both present in the 
MAM, while it was free of contamination from inner membrane (Cox-II) and matrix (MnSOD, data not shown, see B.) proteins. 
Different preparations are separated by the dotted line. Blots represent >5 experiments. (B)Blue-native and SDS-PAGE two-
dimensional separation of the MAM fraction (below BN) and Mito-P proteins (above BN; for preparation of native subcellular 
fractions see Materials and Methods and A.).The native fractions were solubilized and separated on an acrylamide capillary gel in 
the first dimension. The capillary gel was stacked over a 10 % SDS-PA gel, separated, and then the proteins were immunoblotted 
against the IP3Rs, grp75 and VDAC1. A typical result of an immunoblot from 3 separate experiments is shown. (C) The MAM and 
Mito P fractions (50 μg proteins) were subjected to proteinase-K digestion (50 μg/ml) then the presence of grp75 and MnSOD was 
revealed by immunoblotting. Hypoosmotic shock (50 mM mannitol, Hepes 5mM, EGTA 0.1 mM; 30 min 37ºC) was applied to the 
mito P fraction in order to induce release of matrix proteins.D-F. Co-immunoprecipitation of grp75 with IP3R and VDAC1. Total 
cellular proteins were used for immunoprecipitation with a monoclonal IP3R-1 (D), a polyclonal VDAC (E) and a monoclonal grp75 
(F) antibody and the precipitated protein fractions was separated on 10% SDS-polyacrilamyde gels and immunoblotted against 
IP3R-3, grp75 and VDAC1. The input homogenate fractions, the IgG controls and the immunoprecipitates are shown.   
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mitochondrial fraction (containing matrix proteins, Mito P, Fig. 1B), devoid of IP3Rs (see Fig. 1A), 

revealed a different pattern of grp75 distribution with respect to the 2D separation pattern of the 

MAM fraction. In Mito P grp75 was found in lower molecular weight complexes (< 400 kD), 

similarly to previous data in yeast (Dekker and Pfanner, 1997), and confirming that grp75 is 

involved in specific protein-protein interactions in the MAM. Second, we showed that while the 

matrix localized grp75 was resistant to proteinase K digestion (similarly to the matrix enzyme 

MnSOD, Fig. 1C), grp75 was digested by the enzyme in the MAM fraction, confirming its 

association with the mitochondrial surface. 

To further investigate the arrangement of the grp75/VDAC/IP3R complex, we utilized co-

immunoprecipitation studies of all three proteins implied. Immunoprecipitation of both VDAC1 and 

IP3R1 led to the co-precipitation of grp75 (Fig.1D and E, respectively), but no IP3R was found in 

the VDAC1 precipitate as well as no VDAC1 was detectable in the IP3R1 precipitate. However, 

immunoprecipitation of grp75 led to the co-purification of both VDAC and the IP3R3, the most 

abundant subtype of the receptor in HeLa cells (Fig. 1F). These results strongly suggest that grp75 

have a central role in setting up the protein complex with VDAC1 and the IP3R. Moreover, the 

interactions were detected both in the presence and absence of Mg2+-ATP (data not shown), further 

suggesting the scaffolding rather than chaperoning function of grp75 in the complex. 

 

Direct regulation of mitochondrial Ca2+ uptake by the IP3R ligand binding domain 

If the ER Ca2+ release channel IP3R is directly or indirectly is in physical contact with OMM 

VDAC channel, we assumed that the mitochondrial Ca2+ uptake machinery might be regulated by 

the large cytoplasmic domain of the IP3R. This scheme was also supported by previous reports, 

showing that its ligand binding domain (aa 224-605, denoted as IP3R-LBD224-605), located on the 

surface of the bulky cytoplasmic N-terminal part of the receptor, participates in intramolecular 

interactions with other IP3R domains (Boehning and Joseph, 2000) as well as in linking the receptor 



 

54 

 

with other protein partners (Bosanac et al., 2004). To assess a direct role of the IP3R on 

mitochondrial Ca2+ uptake we co-expressed in HeLa cells mRFP1-tagged IP3R-LBD224-605 with 

cytosolic (cytAEQ) or mitochondrially targeted (mtAEQmut) aequorin-based Ca2+ probes, and 

evaluated global and organellar Ca2+ responses to agonist stimulation. After reconstitution with the 

aequorin co-factor coelenterazine, cells were challenged with histamine (in incrementing doses 

from 1 to 100 µM) and luminescence was measured and converted to [Ca2+]. Recombinant 

expression of the IP3R-LBD224-605 caused a marked increase in mitochondrial Ca2+ uptake at each 

agonist concentration applied, in spite of reduced cytoplasmic Ca2+ response ([Ca2+]c), due to IP3 

buffering  and consequent reduction of IP3-induced Ca2+ release from the ER (Fig. 3A & B). The 

effect of the IP3R-LBD224-605 was presumably exerted on the mitochondrial outer membrane 

(OMM), since targeting the IP3R-LBD224-605 to the OMM surface (by fusing to an N-terminal 

AKAP1 domain), apparently augmented its stimulatory effect (See Fig. 2 for intracellular 

localization of the mRFP1 tagged construct and Fig. 3B for the effect on [Ca2+]m). Morphological 

imaging and mitochondrial loading with the potential sensitive dye teramethyl-rhodamine-

methylester (TMRM) showed that the effect was not due to changes in mitochondrial morphology 

(Fig. 3) or to the modification of mitochondrial membrane potential (data not shown). 

In order to confirm that activation of mitochondrial Ca2+ uptake can be exerted from the 

original site of the IP3R, i.e. from the ER membrane, we expressed IP3R-LBD224-605, fused to a C- 

 

Figure 2 Intracellular localization of OMM-(A) and ER-(B) targeted IP3R-LBD224-605, fused with mRFP1 at its C-terminal. Cells 
were transfected with the respective constructs and loaded with the mitochondrial dye mitoTracker Green (Molecular Probes, 
Invitrogen). Left panels show mitochondrial structure, middle panels show images of IP3R-LBD224-605-mRFP1 fluorescence and right 
panels show colocalization of the green and red signals (bars=10 μm). Insets show magnified images of the mitochondrial and ER 
networks (bars=2 μm). 
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terminal ER-targeting sequence derived from the yeast UBC6 protein (denoted as ER-IP3R-LBD224-

605) (Varnai et al., 2005). Expression of this construct reduced the steady state ER [Ca2+] ([Ca2+]er) 

and IP3-induced Ca2+ release (Fig. 3C), probably due to direct activation of the IP3R, as has been in 

COS-7 cells (Varnai et al., 2005), although store depletion was incomplete in the HeLa cells at the 

expression levels used in this study. Still, most importantly, expression of the ER targeted IP3R-

LBD224-605 augmented mitochondrial Ca2+ accumulation following cellular stimulation by histamine 

similarly as was observed expressing the OMM targeted IP3R-LBD domain (Fig. 2 shows 

intracellular localization of ER-IP3R-LBD224-605; Fig. 3B shows the stimulatory effect of ER-IP3R-

LBD224-605 on [Ca2+]m).  These results strongly suggested that the IP3R, acting from the ER surface 

regulates mitochondrial Ca2+ uptake at an OMM site, independently of its Ca2+ channelling 

function. 

 

Regulation of mitochondrial uptake by the IP3R-LBD is a result of specific protein 

interactions at the ER-OMM interface 

Based on the above conclusions, we further investigated whether the effect of the N-terminal 

cytosolic domain of the IP3R reflects the specific protein-protein interactions at the 

ER/mitochondrial contacts. We showed (i) that the K508A mutant of the IP3R-LBD224-605, which is 

unable to bind IP3, increased similarly the [Ca2+]m rise, but, as expected, did not modify the [Ca2+]c 

response (Fig. 3C, D). This suggested that the stimulatory effect, albeit less efficient in the case of 

the mutant LBD, is independent of IP3 buffering. The reduced efficiency of the OMM targeted 

mutant LBD was also shown in digitonin permeabilized HeLa cells. In these cells, co-transfected 

with mtAEQmut and OMM-IP3R-LBD224-605 or OMM-IP3R-LBD224-605-K508A the Ca2+uptake was 

measured in the presence of 1 μM extramitochondrial Ca2+. Under these conditions, where the 

interactions were most probably unbalanced by the application of digitonin, the wild type OMM-

IP3R-LBD224-605 still exerted a 14.71 ± 4.66 % increase (n = 25, p < 0.01) in Ca2+ uptake while the 
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K508A mutant did not cause a significant increase (6.58±4.23 % increase, n=25, p > 0.05) (ii) The 

IP3R-LBD224-605 was shown to play an important role in the regulation of IP3R channel activity by  

 

Figure 3 Effect of the IP3R ligand binding domain on mitochondrial Ca2+ uptake. (A,C) HeLa cells were transfected with 
mitochondrially targeted (upper panel) and cytosolic aequorin (lower panel). Control traces are shown in black; traces from cells 
co-transfected with the IP3R-LBD224-605 (A) and the IP3R-LBD224-605 K508 mutant (C) are shown in red. Traces are representative of 
>15 experiments from >5 preparations.  (B) Effect of the cytosolic, OMM and ER targeted IP3R-LBD224-605  (controls, black bar; 
IP3R-LBD224-605, red bar; OMM-IP3R-LBD224-605, green bar; IP3R-LBD224-605, blue bar; respectively) on peak mitochondrial and 
cytosolic Ca2+ responses (upper and lower panels, respectively). (D) Effect of the OMM-IP3R-LBD224-605(K508A), red bar; the OMM 
targeted N-terminal (1-604 aa) part of the IP3R (OMM-IP3R-LBD1-604), green bar; and the IP3 binding PH domain of the p130 PLC-
like protein (OMM-p130-PH), blue bar; on mitochondrial (upper panel) and cytoplasmic Ca2+ responses (lower panel) following 
100 μM histamine stimulation. Data in B and D were normalized to mean of the control group, % increase is shown. Cells were 
transfected and [Ca2+] was measured as described in the Materials and Methods section. Mean ± S.E.M of values are shown. 
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interacting with the N-terminal repressor domain (aa 1-223)(Boehning and Joseph, 2000; Varnai et 

al., 2005). Still, expressing the whole N-terminal surface domain of the IP3R, targeted to the 

exterior of the OMM (OMM-IP3R1-604) increased mitochondrial Ca2+ (see Fig. 3D). These results 

exclude that the stimulatory effect of the IP3R-LBD224-605 was exerted through unmasking this 

intramolecular interaction in the endogenous IP3R, but they rather support a model in which the 

whole N-terminal IP3R exerts direct activation on the mitochondrial Ca2+ uptake machinery. (iii) 

Lastly, we found that a structurally unrelated IP3-binding protein domain, the PH domain of the 

PLC-like protein, p130 (p130PH)(Lin et al., 2005), targeted to the OMM, reduced both the [Ca2+]m 

and [Ca2+]c responses (Fig. 3D), proving that the stimulatory effect is a specific property of the 

IP3R-LBD224-605, and further confirming that the effect is independent of IP3 binding.  

An apparent drawback of the use of the IP3R-LBD224-605 is its local IP3 buffering activity 

when exploring its effect on mitochondrial Ca2+ uptake during IP3-induced Ca2+ release. Indeed, as 

shown on Fig. 3A and B, the OMM or ER targeted LBD did not appear to be more efficient in 

stimulating mitochondrial Ca2+ uptake as compared to the non-targeted, cytosolic domain, 

considering that this construct more efficiently blocked the bulk cytosolic Ca2+ response (Fig. 3A 

and B, lower panels), rendering the ratio of [Ca2+]m:[Ca2+]c after histamine stimulation identical in 

IP3R-LBD224-605 and OMM/ER-IP3R-LBD224-605 expressing cells. Since the expression level of the 

constructs did not differ significantly (data not shown), we assumed that the lack of higher 

efficiency reflects higher local IP3 buffering at the ER-mitochondrial interface, not sensed by the 

bulky cytosolic [Ca2+]c sensor cytAEQ. Two additional approaches sorted out this complexity. (i) 

The further use of the p130PH domain, which had no direct effect on the mitochondrial Ca2+ uptake 

machinery (see above), confirmed the assumption of higher local buffering on the OMM surface. 

Indeed, as shown on (Fig.4A and B), its targeting to the OMM led to significantly higher reduction 

of mitochondrial Ca2+ uptake as compared to its non-targeted, cytosolic counterpart, but equally 

reduced the [Ca2+]c response to histamine. (ii) In order to investigate the IP3 independent uptake of 

Ca2+ into mitochondria, we measured [Ca2+]m after the emptying of the ER Ca2+ pool using the 
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SERCA blocker tert-butylhydroquinone (tBHQ) and re-addition of CaCl2 to the extracellular 

medium. 

 

Figure 4 The effect of IP3R-LBD and p130PH domain on the cytosolic Ca2+ responses and mitochondrial Ca2+ uptake. [Ca2+] 
measurements in HeLa cells, transfected with mitochondrially targeted (upper panels) and cytosolic aequorin (lower panels) are 
shown. (A) Representative [Ca2+]c and [Ca2+]m measurements of control (black traces), cytosolic and OMM targeted p130-PH 
domain expressing HeLa cells. (B) Comparison of the efficiency of non-targeted and OMM targeted p130-PH on mitochondrial and 
cytosolic Ca2+ responses (normalized to mean of the control group, data are expressed in % increase).  (C, D) [Ca2+]c (upper 
panels) and [Ca2+]m (lower panels) were measured after induction of capacitative Ca2+ influx, following ER depletion in Ca2+ free 
medium (KRB-EGTA [100 μM], 4 min) and re-addition of 1mM CaCl2. Representative traces of control (black traces) and OMM-
IP3R-LBD224-605 co-transfected cells (red traces) are shown. ([Ca2+]m peak in controls: 12.1 ± 2.11 μM, in OMM-IP3R-LBD224-605 
expressing cells: 21.2 ± 4.00 μM; p = 0.05; [Ca2+]c peak in controls: 0.96 ± 0.04 μM, in OMM-IP3R-LBD224-605 expressing cells: 
1.04 ± 0.03 μM). On D, data normalized to the mean of the control group are shown. 
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This protocol induces capacitative Ca2+ entry and consequent mitochondrial Ca2+ uptake from the 

cytoplasm without IP3 induced Ca2+ release. As shown on Fig. 4C and D, IP3R-LBD224-605 

expressing cells showed an ~ 60% increase in the capacitative influx induced [Ca2+]m response 

(upper panels), even if the [Ca2+]c response to Ca2+ re-addition remained unaltered (lower panels). 

This increase in [Ca2+]m was almost double as compared to the effect following histamine/IP3 

induced Ca2+ release from the ER (see Fig. 3B), thus we concluded that local IP3 buffering masks 

the stimulatory effect of the IP3R-LBD224-605 during Ca2+ release induced mitochondrial Ca2+ 

uptake, and indeed, the effect of the IP3R-LBD is established at the ER-mitochondrial contacts. 

 

Down-regulation of grp75 abolishes the functional coupling between the IP3R and 

mitochondria 

Since our proteomic studies suggested that the interaction of the VDAC and IP3R channels 

is mediated by grp75, we then investigated whether the stimulatory effect of the OMM targeted 

IP3R-LBD224-605 on mitochondrial Ca2+ uptake requires the presence of grp75. Our preliminary 

experiments shown that strong inhibition of grp75 expression (48 h hours after transfection) in itself 

strongly reduced mitochondrial Ca2+ uptake, most probably due alterations of mitochondrial 

function due to inhibition of protein import and Δψm loss. Thus in the next set of experiments we 

choose a minor silencing efficiency by conducting experiments after 24h of transfection (see inset 

of Fig. 5A). We expressed control and grp75 siRNAs in HeLa cells, co-transfecting them with the 

IP3R-LBD224-605 construct and the mtAEQmut Ca2+ probe. As shown on Fig. 5A and B, grp75 

siRNA had no significant effect on the [Ca2+]m response to histamine stimulation. However, the 

down-regulation of grp75 prevented the stimulatory effect of the IP3R-LBD224-605 on mitochondrial 

Ca2+ uptake, expressed both on the OMM and the ER surface (Fig. 5B). Thus we concluded that the 

chaperone protein is not only physically associated with the IP3R/VDAC1 complex, but is also 
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necessary for functional coupling between these proteins. These results also show that while 

moderate knock-down of grp75 does not interfere with its function in the mitochondrial matrix, in  

 

Figure 5 Coupling of the ER and mitochondrial Ca2+ channels depends on the presence of grp75. (A) Mitochondrial Ca2+ uptake 
was measured in control siRNA transfected HeLa cells (grey trace); after siRNA driven down-regulation of grp75 (siRNA-grp75, 
black trace); control siRNA and OMM-IP3R-LBD224-605 transfected cells (red trace); siRNA-grp75 and OMM-IP3R-LBD224-605 co-
transfected cells (dark red trace). Cells were also co-transfected with the mtAEQmut probe and mitochondrial Ca2+ response to 100 
μM histamine was measured as described in the Materials and Methods section. (B) Silencing of grp75 reverts the stimulatory effect 
of IP3R-LBD224-605 targeted both to the OMM and ER surface. The percent increase of [Ca2+]m peaks normalized to the mean of 
controls are shown in cells co-transfected with mtAEQmut and control siRNA (siRNA-grp75 -; grey bar) and OMM-IP3R-LBD224-605 
(red bar) or ER-IP3R-LBD224-605 (green bar) after stimulation with 100 μM histamine. The stimulatory effect of both the OMM and 
ER targeted the IP3R-LBD224-605 was inhibited after the co-transfection with siRNA-grp75 (+ signs, dark red and dark green bars, 
respectively), while the control Ca2+ peaks remained unaffected (grey bar). (The absolute values find in Supplementary Table 1.) 
Inset shows immunoblot of grp75 in control siRNA and siRNA-grp75 transfected cells. 

accordance with previous results on mitochondrial protein import (Sanjuan Szklarz et al., 2005), the 

low amount of grp75 at the ER-mitochondrial contacts is a limiting factor for the stimulatory effect 

of the IP3R-LBD.  

In the final set of experiments we further investigated the role of grp75 in mitochondrial 

Ca2+ uptake regulation by overexpressing the protein. Most likely due to its differentially localized 

pools, grp75 appeared to modify mitochondrial Ca2+ uptake following IP3-induced Ca2+ release 

through diverse mechanisms. Indeed, as shown on Fig. 6A, overexpression of the whole protein led 

to reduced histamine induced [Ca2+]m response. However, at the same time, it decreased also the 

steady state [Ca2+]er level (Fig. 6B), decreasing the driving force for IP3 induced Ca2+ release, which 

in turn might be responsible for the dampened mitochondrial Ca2+ accumulation. This parallel 

reduction of [Ca2+]er and [Ca2+]m may reflect two different effects of grp75: (i) OMM localized 

grp75 presumably through the interaction with the IP3R or other members of the ER Ca2+ handling  
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Figure 6 Effect of grp75 overexpression on mitochondrial Ca2+ responses and steady state [Ca2+]er. (A, B) HeLa cells were co-
transfected with mtAEQmut or erAEQmut probes (controls, black trace and bars) and mouse grp75 (blue trace and bars). [Ca2+]m 
was measured as described above, after stimulation with histamine (100 μM), as indicated on the panel on A. The percent increase (± 
SEM) of [Ca2+]m peaks normalized to the mean of controls are shown on B (left panel), while the effect of grp75 on steady state 
[Ca2+]er is shown on the right panel. Steady state [Ca2+]er was measured after refilling of the ER in the presence of 1 mM CaCl2 in 
the extracellular medium (n=10, from 4 separate experiments). Prior to measurements, erAEQmut transfected cells were 
reconstituted with coelenterazine n, following ER Ca2+ depletion in a solution containing 0 [Ca2+], 600 μM EGTA, 1 μM ionomycin, 
as previously described (Chiesa et al., 2001). (For [Ca2+]m values see Supplementary Table 1. [Ca2+]er in controls: 416 ± 19.3 μM, 
in grp75 overexpressing cells: 334 ± 13.6 μM; p < 0.05).(C, D) [Ca2+]c (upper panels) and [Ca2+]m (lower panels) were measured in 
control and grp75cyt expressing cells, after induction of capacitative Ca2+ influx, following ER depletion in Ca2+ free medium (KRB-
EGTA [100 μM], 4 min) and re-addition of 1mM CaCl2. Representative traces of control (black traces), co-transfected with OMM-
IP3R-LBD224-605 (red traces), grp75cyt (blue) or both (violet traces) are shown. The percent increase (± SEM) of [Ca2+]m peaks 
normalized to the mean of controls are shown on D. [Ca2+]m peak in controls: 12.1 ± 2.11 μM, in OMM-IP3R-LBD224-605 expressing 
cells: 21.2 ± 4.00 μM; p = 0.05; [Ca2+]c peak in controls: 0.96 ± 0.04 μM, in OMM-IP3R-LBD224-605 expressing cells: 1.04 ± 0.03 
μM). 
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machinery induces Ca2+ leak from the ER through the IP3R, as previously shown for Bcl-2  (Pinton 

et al., 2000; Bassik et al., 2004). (ii) Matrix localized grp75 may modify mitochondrial parameters 

(pH, Δψm) or import of Ca2+ handling proteins leading to altered mitochondrial Ca2+ uptake as well 

as the ATP supply for ER Ca2+ accumulation through the SERCA pumps. In order to dissect these 

effects we again used the approach of measuring IP3 independent mitochondrial Ca2+uptake 

following capacitative Ca2+ influx. In addition, to distinguish OMM based effects from that of the 

ones in the mitochondrial matrix we expressed a truncated grp75 lacking the N-terminal 51 aa 

mitochondrial targeting sequence, thus unable to enter into mitochondrial matrix. Ca2+ influx was 

induced by depleting the ER Ca2+ store with tBHQ in the absence of extracellular Ca2+, as described 

in the previous section (see Fig. 4). This ‘cytosolic’ form of grp75 (grp75cyt) did not change the 

bulk cytosolic [Ca2+] response to re-addition of Ca2+ in the extracellular medium, but significantly 

increased mitochondrial Ca2+ accumulation (Fig.6C and D). Moreover, grp75cyt further potentiated 

the stimulatory effect of IP3R-LBD224-605 (Fig. 6C and D), confirming the results obtained with 

siRNA grp75, proving that the amount of grp75 present at the OMM in the VDAC/grp75/IP3R 

complex is a limiting factor of the positive effect of the IP3R-LBD on mitochondrial Ca2+ uptake. 

Lastly, by using the co-expression of grp75cyt and IP3R-LBD224-605, we obtained a very high 

stimulation of mitochondrial Ca2+ uptake rate during capacitative Ca2+influx, which leads to a bulk 

1 μM [Ca2+]c, we concluded that the VDAC/grp75/IP3R complex renders mitochondria more 

sensible at low extramitochondrial [Ca2+], as compared to higher local [Ca2+]c increases during IP3 

induced Ca2+ release (compare the effect of IP3R-LBD224-605 on [Ca2+]m on Fig.2 and Fig.4 or 6). 

Indeed, by overexpression of grp75cyt we were not able to observe significant increase in histamine 

induced [Ca2+]m responses even if the steady state [Ca2+]er remained unaltered (data not shown). 
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Effect of different VDAC isoforms on mitochondrial Ca2+ homeostasis 

The above data and previous work by our group (Rapizzi et al., 2002b) demonstrate that 

VDAC1 is an essential component of the mitochondrial uptake machinery by modulating OMM 

permeability to Ca2+ ions. In parallel, strong experimental evidences support the notion that 

mitochondrial Ca2+ signals participate in a variety of cellular events, ranging from stimulation of 

energy production (by maximizing the activity of key enzymes of the Krebs cycle and thus ATP 

production) to the initiation of the apoptotic process (through the release of caspase cofactors). In 

this view, investigating the contribution of the different molecular actors mediating mitochondrial 

Ca2+ accumulation could potentially give new insights in the comprehension of how this unique 

signalling ion can mediate such different cellular outcomes.  

In order to dissect the role of Ca2+ in apoptosis, many works have examined the influence of 

intracellular stores on the generation of Ca2+ signals leading to cell death. It has been widely 

demonstrated in many cell types that the Ca2+ content of the endoplasmic reticulum is the main 

determinant of cell sensitivity to many (but not all) apoptotic stimuli. Our group have indeed 

showed that the overexpression of the anti-apoptotic oncogene Bcl-2 lead to a reduced ER steady 

state [Ca2+]; as a direct consequence, the [Ca2+] increases caused by inositol-1,4,5-trisphosphate 

(IP3)-generating agonists or by capacitative Ca2+ influx were reduced in amplitude in both the 

cytosoplasm and the mitochondria (Pinton et al., 2000). Moreover, mimicking the Bcl-2 effect on 

[Ca2+]er through different pharmacological or molecular approaches indicates that all conditions that 

lowered [Ca2+] in the ER protected HeLa cells from the Ca2+-dependent apoptotic stimulus C2-

ceramide, while treatments that increased [Ca2+]er has the opposite effect (Pinton et al., 2001a). In 

parallel, Scorrano and Korsmeyer  also observed that the genetic ablation of the two pro-apoptotic 

Bcl-2 family proteins Bax and Bak in mouse fibroblasts causes a reduction in the resting 

concentration of ER calcium and Bax/Bak double knockout (DKO) cells were resistant to induction 

of apoptosis by various stimulants, including C2-ceramide and oxidative stress (Scorrano et al., 

2003). However, the filling state of the ER only influences the releasable quantity of Ca2+ and it is 
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thus to be considered “upstream” to the real effectors of the apoptotic machinery. The real 

subcellular compartment responsible for triggering apoptosis is the mitochondrion and in particular 

its potentially lethal weapons normally residing in the intermembrane space (such as cytochrome C, 

AIF, Smac/Diablo, HtrA2/Omi and EndoG) (Ravagnan et al., 2002). The activation of the intrinsic 

apoptotic pathway requires indeed the involvement of this organelle and, in particular, the 

permeabilization of the outer mitochondrial membrane (OMM) with the consequent release of the 

above mentioned apoptosis regulators as well as the aperture of the mitochondrial permeability 

transition pore (mPTP) along with the loss of mitochondrial membrane potential. This permeability 

transition is controlled by a number of factors (including pH, adenine nucleotides, reactive oxygen 

species, etc.), suggesting that mitochondria can sense, integrate and decode several different cellular 

signals and consequently address cell fate. One of the best known mPTP inducers is Ca2+: many 

experimental works carried out in both isolated mitochondria and living cells clearly show that 

mitochondrial matrix calcium overload is a key event that precedes the release of caspase cofactors 

and apoptosome assembly. As a consequence, conditions that enhance mitochondrial Ca2+ uptake, 

generally sensitize cells to several apoptotic stimuli. This is fully supported by our studies about 

VDAC1, where we showed that it is direct coupled to ER Ca2+ releasing channels, thus directly 

tunneling the cation from one compartment to the other; in parallel, VDAC1 overexpression confers 

a higher susceptibility to C2-ceramide treatment.  

However,  in higher multicellular organisms, VDAC exists in three different isoforms that 

share similar electrophysiological properties (molecular weight cutoff, voltage dependence, etc., see 

Introduction section) (Xu et al., 1999). In this view, one would expect that all three VDAC isoforms 

exert the same effect on apoptosis, i.e. enhancing cell death by increasing mitochondrial Ca2+ 

uptake. Unfortunately, this simple model is contradicted by previous work: indeed, Cheng and 

colleagues demonstrate that VDAC2 is a potent anti-apoptotic protein, and proposed a molecular 

mechanism where VDAC2 prevents Bak activation by inhibiting its oligomerization and OMM 

permeability (Cheng et al., 2003). Thus, two different VDAC isoforms are reported to act on 
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apoptosis in the opposite direction, with VDAC1 being a pro-apoptotic and VDAC2 exerting a 

protective role against cell death. The notion that these different isoforms are not simply redundant 

but could potentially being involved in radical different functions is supported by some 

observations. First of all, the presence of one single archetypical mitochondrial porin in simpler 

organisms (such as yeasts or Neurospora Crassa) and several different isoforms in more complex 

organisms (ranging from plants to mammals) suggests that gene duplication and divergent evolution 

likely occurred, conferring specific functions to different isoforms. Moreover, gene ablation of the 

different isoforms in mice lead to different phenotypes. VDAC1, VDAC3 KO, as well as VDAC1/3 

DKO, are viable but with variable defects (see Introduction), while the ablation of VDAC2 is 

embryonic lethal (Wu et al., 1999). In any case, apart from these clues, a serious and rigorous 

assessment of the role of the different VDAC isoforms is still missing. We thus exploit the apparent 

difference in the role of VDAC1 and VDAC2 in the control of cell death through apoptosis as a 

starting point to study the contribution of mitochondrial porin isoforms. Given the relevance that 

mitochondrial Ca2+ plays in triggering apoptosis we test whether these differences are due to a 

diverse channeling capacities toward this cation in living cells. We took advantage of the 

engineered aequorin-based Ca2+ probes and carried out an extensive analysis of Ca2+ transients in 

the main intracellular compartments in cells where the levels of VDAC isoforms were selectively 

modulated through overexpression or RNA interference. 

Intracellular localization of VDAC constructs 

In collaboration with Prof. Vito De Pinto, we generated several different VDAC chimeras in 

order to efficiently overexpress the desired isoform. In the previous work by our group we 

overexpressed  rat VDAC1 isoform by introducing in HeLa cells a VDAC1-EGFP chimera, in order 

to check the correct protein sorting (Rapizzi et al., 2002b). However, this chimera demonstrated to 

be at least in part missorted, localizing not only in the mitochondrial compartment but also in other 

subcellular structure. First of all, we thus generate similar DNA constructs by in-frame fusing the 
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cDNA coding for the three different human VDAC isoforms (hVDAC1, hVDAC2 and hVDAC3) 

with an enhanced yellow fluorescent protein (EYFP), generating as a result three different chimeras: 

hVDAC1-EYFP, hVDAC2-EYFP and hVDAC3-EYFP. We then transftected HeLa cells with the 

above vectors and check the localization of protein through high resolution fluorescence 

microscopy. As shown in figure 7B, VDAC-EYFP chimeras only partially colocalize with 

mitochondria (here marked with the MitoTracker Red dye), with a pattern very similar to our 

previous data about rat VDAC1.

 

Figure 7 Intracellular localization of VDAC constructs. HeLa cells have been transfected with the different VDAC-encoding vectors 
and visualized by confocal fluorescence microscopy. (A) Intracellular localization of hVDAC1-HA, hVDAC2-6His and hVDAC3-
6His constructs revealed by immunofluorescence: transfected cells can be seen in the green (thanks to the use of a bicistronic vector 
encoding for a EGFP) while the subcellular localization of the fusion protein in shown in red. (B) Localization of hVDAC1-EYFP, 
hVDAC2-EYFP and hVDAC3-EYFP: fluorescence coming from the EYFP fusion proteins is shown in green, while the mitochondrial 
network was stained with the MitoTracker Red dye. Colocalization analysis reveals that about 30 to 40% of the EYFP signal 
colocalize with mitochondria (data not shown). 

To solve the relatively poor localization of these EYFP fusion proteins, which is likely to be 

due to the generous dimension of the fluorescent protein causing a hindrance for the correct 

insertion into membranes, we tried to generate different construct with VDAC cDNA fused to a 

smaller tag. We used the bicistronic vector which encodes an EGFP separated from the construct of 
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interest and we cloned into it the hVDAC1 with a HA-tag (YPYDVPDYA, thus generating 

hVDAC1-HA) and hVDAC2 or hVDAC3 together with a polyhistidine tag (hVDAC2-6His and 

hVDAC3-6His). We then checked the localization of these fusion proteins and we thus performed 

an immunolocalization of the exogenous expressed protein by using a mouse monoclonal antibody 

against HA-tag (in the case of hVDAC1-HA) or the 6His tag (in the other two cases). The signal 

was then revealed by using an anti-mouse AlexaFluor594-conjugated antibody and visualized by 

fluorescence microscopy. As shown in figure 7A, these constructs specifically localize in the 

mitochondrial compartment, displaying a well-defined mitochondrial network with negligible 

background. We thus concluded that the fusion of VDAC with a cumbersome fluorescent tag 

disturbs the correct protein sorting; on the other side, a slighter molecular tag such as HA or 6His 

do not affect the proper localization. Moreover, none of the fusion proteins used in this work alters 

mitochondrial overall morphology (which is an important parameter influencing mitochondrial Ca2+ 

uptake). 

However, massive protein overexpression, especially at the membrane level, could 

potentially lead to non-specific toxicity. In addition, several reports shows that VDAC 

overexpression is per se toxic, leading to cell death (Abu-Hamad et al., 2006; De Pinto et al., 2007; 

Zaid et al., 2005). In particular, VDAC1 overexpression has been demonstrated to induce 

mitochondrial depolarization. In order to exclude these potentially non-specific effects, we decided 

to test the effect of VDAC constructs we generated on mitochondrial depolarization. We use the 

mitochondrial potential-sensitive dye tetramethyl rhodamine methyl ester (TMRM) to count cells 

with depolarized mitochondria. We expressed the different VDAC-fusion proteins in HeLa cells 

loaded with TMRM and calculated the percentage of VDAC-overexpressing cells with depolarized 

mitochondrial (i.e. cells showing no staining with TMRM) under a confocal microscope. Figure 8 

shows that hVDA1-HA, hVDAC2-6His and hVDAC3-6His expression causes mitochondrial 

depolarization to a similar extent (at least 30% of cells), irrespective of what VDAC isoform is 

overexpressed. Surprisingly, this effect could not be seen when EYFP VDAC-fusion proteins are 
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expressed or when we downregulate VDACs expression through RNA interference (data not 

shown). We thus suggest that this effect on mitochondrial membrane potential is non-specific, 

simply due to the massive expression of the proteins at the outer mitochondrial membrane. Indeed, 

we propose that the non-perfect VDACs-EYFP localization has the “positive” side effect to cause a 

milder overexpression at the OMM level when compared to the better localizing VDAC-tagged 

proteins. 

 

Figure 8 Effect of the different VDAC chimeras on mitochondrial membrane potential. HeLa cells were transfected with vectors 
encoding for the different VDAC fusion proteins, loaded with the potential sensitive dye TMRM and visualized by confocal 
microscopy. At least the 30% of cells expressing hVDAC1-HA, hVDAC2-6His and hVDAC3-6His show an undetectable 
mitochondrial membrane potential. 

Therefore, VDACs-EYFP fusion proteins, although not perfectly sorted, do not reach toxic 

expression levels in the OMM, and should be considered a better tool to assess the precise role of 

the different VDAC isoforms in cellular Ca2+ homeostasis and cell death. We decided to use EYFP-

VDAC fusion proteins for subsequent experiments. 

All VDAC isoforms enhance mitochondrial Ca2+ uptake 

In order to assess the role of mitochondrial porins on mitochondrial Ca2+ homeostasis we co-

expressed the various VDAC isoforms with the low affinity mutant of the mitochondrial targeted 

aequorin Ca2+-probe (mtAeqMut) in HeLa cells and evaluated organellar Ca2+ responses to agonist 

stimulation. . All data have also been confirmed in HEK293 cell line (transfected with the wild-type 
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probe, mtAeqWT). After reconstitution with the aequorin co-factor coelenterazine, cells were 

challenged with maximal dose (100 µM) of histamine (or ATP in the case of HEK293) and 

luminescence was measured and converted to [Ca2+]. As shown in figure 9A, VDAC1 

overexpression lead to a higher increase of mitochondrial Ca2+ transient compared to control, in 

agreement with our previous published work. In addition, to further demonstrate the specificity of 

the effect we developed specific siRNA against hVDAC1 and hVDAC2 (siRNA-hVDAC1 and 

siRNA-hVDAC2 respectively) to downregulate protein level. Accordingly, silencing of VDAC1 

exert the opposite effect on mitochondrial Ca2+ uptake. We applied than the same experimental 

setup to investigate the effect of VDAC2 and VDAC3. Surprisingly, VDAC2 (fig 9B) and VDAC3 

(fig 9C) demonstrate to have the same effect on mitochondrial Ca2+ uptake, i.e. they enhance the 

 

Figure 9 Effect of VDAC isoforms on mitochondrial Ca2+ uptake. (A,B,C and D) Effects of the modulation of hVDAC1 (A), 
hVDAC2 (B) and hVDAC3 (C) protein levels on mitochondrial Ca2+ uptake. VDAC isoforms were overexpressed through 
transfection with EYFP fusion proteins and cause the enhancement of mitochondrial Ca2+ transients after histamine stimulation 
compared to control, regardless of the VDAC isoform introduced ([Ca2+]mt peak values are: in controls 88.6±2.7 M; in hVADC1-
EYFP 97.7±3.3 M; in hVADC2-EYFP102.7±4.2 M; in hVADC3-EYFP 112.8±5.5 M). In parallel, agonist induced mitochondrial 
response in cells where hVDAC1 or hVDAC2 were reduced by RNA interference were decreased when compared to control 
([Ca2+]mt peak values are: in siRNA-hVDAC1 75.6±3.2 M; in siRNA-hVDAC2 64.9±3.5 M ). (D) Data are presented as mean 
values ± S.E.M. 
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amplitude of the agonist-dependent increases in mitochondrial matrix Ca2+ concentration. 

The effect of all VDAC isoforms is thus qualitatively equivalent, suggesting that they share the 

same Ca2+ channeling properties. However, there are minor differences in the extent of the 

enhancement of mitochondrial Ca2+ uptake (hVDAC1 +10%, hVDAC2 +15% and hVDAC3 +25% 

over control): however, this differences could be due to minor variations in the amount of protein 

locating at the OMM level. Given that the exact protein quantity actually present in the outer 

mitochondrial membrane is quite difficult to assess, no conclusions about the Ca2+ affinity of the 

different isoforms can be reached. 

VDAC isoforms do not affect cytosolic Ca2+ transients 

VDAC localization at the OMM level postulate that its effect on Ca2+ homeostasis should 

affect only the mitochondrial compartment, without changing ion homeostasis in the other  

 

Figure 10 Effect of VDAC isoforms on cytosolic Ca2+ transients. (A,B,C and D) Effects of the modulation of hVDAC1 (A), hVDAC2 
(B) and hVDAC3 (C) protein levels on cytosolic Ca2+ transients. None of the conditions shows any differences compared to control 
([Ca2+]cyt peak values are: in controls 3.06±0.05 M; in hVADC1-EYFP 2.94±0.06 M; in siRNA-hVDAC1 2.85±0.06 M; in 
hVADC2-EYFP 2.97±0.07 M; in siRNA-hVDAC2 2.71±0.07 M; in hVADC3-EYFP 3.12±0.04 M). ). (D) Data are presented as 
mean values ± S.E.M. 
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subcellular locations. We test this hypothesis by performing the previous experiments using the 

cytosolic localizing aequorin Ca2+-probe (CytAeq). Figure 10 demonstrate that both overexpression 

and silencing of any VDAC isoforms cannot influence Ca2+ transients elicited by agonist 

stimulation. 

This data strongly suggest that VDAC effects on Ca2+ homeostasis is restricted to the 

mitochondrial compartment. 

VDAC has no effect on ER Ca2+ content and IP3 induced Ca2+ release 

Given that cytosolic and mitochondrial Ca2+ transients elicited by IP3-mobilizing hormones 

profoundly depend on endoplasmic reticulum Ca2+ homeostasis, we finally test the effect of the 

different VDAC isoforms on ER Ca2+ content. To this purpose, we co-transfeted HeLa cells with a 

low affinity ER targeted aequorin based Ca2+-probe.  

 

Figure 11 Effect of VDAC isoforms on [Ca2+]er. (A,B,C and D) Effects of the modulation of hVDAC1 (A), hVDAC2 (B) and 
hVDAC3 (C) protein levels on ER Ca2+ steady state levels and IP3 induced release. None of the conditions shows any differences 
compared to control ([Ca2+]er steady state values are: in controls 360.1±10.6 M; in hVADC1-EYFP 368±15.6 M; in siRNA-
hVDAC1 351.9±10.6 M; in hVADC2-EYFP 364.5±14.4 M; in siRNA-hVDAC2 351.3±12.3 M; in hVADC3-EYFP 353.6±16.6 
M). ). (D) Data are presented as mean values ± S.E.M. 
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The experimental protocol for measuring ER [Ca2+] schedule the pre-emptive emptying of 

the compartment during the reconstitution with a modified coelenterazine to prevent aequorin 

reaction (by treating cells with the Ca2+ ionophore ionomycin in the presence of extracellular 

EGTA). After reconstitution of the probe, a solution containing 1mM Ca2+ is perfused causing an 

increase in [Ca2+]er until a steady state which represents the filling state of this compartment. After 

stimulation with histamine [Ca2+]er undergoes to a rapid drop due to the opening of the IP3R, as 

shown in figure 11. However, as expected from the above data, any of the VDAC isoforms can in 

any way influence neither ER steady state Ca2+ content nor IP3 induced Ca2+ release from the ER. 

In conclusion, these data demonstrate that VDAC is a fundamental and specific molecular 

modulator of the mitochondrial Ca2+ uptake machinery. Moreover, in our experimental system all 

the different VDAC isoforms show very similar Ca2+ channeling properties. However, these results 

cannot explain the notion that VDAC1 and VDAC2 differentially regulate sensitivity to apoptotic 

stimuli. Several consideration can be made about this discrepancy; one possibility is that Ca2+ is not 

an obligatory cell death signal and, at the same time, it isn’t the only stimulus acting on 

mitochondria. Consequently, higher mitochondrial Ca2+ uptake capacities does not necessarily 

result in a higher sensitivity to apoptosis. On the other hand, the experimental system used could 

not be elegant enough to appreciate subtle diversities in VDAC isoforms functions. To test the latter 

hypothesis we wonder if the above demonstrated coupling between IP3Rs and VDAC channels 

could be isoform specific, thus determining a preferential signaling pathway to transfer apoptotic 

signals. 

VDAC isoforms differentially regulate cellular sensitivity to apoptotic stimuli 

As a starting point, we first validated previous data published by our group and others in our 

actual experimental system. To test if the different VDAC isoforms exert a different effect on 

apoptosis we used a simple bet sensitive assay, the so-called apoptotic counts. In this experiments 

cells are co-transfected with a reporter gene (such as EGFP) and the constructs of interest: here we 
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decided to downregulate each isoform through RNA interference techniques in order to get rid of 

any possible non-specific effect due to overexpression. For each condition (Control, siRNA-

hVDAC1, siRNA-hVDAC2, siRNA-hVDAC3) the percentage of GFP-positive cells in the total 

population is calculated before and after apoptosis induced by C2-ceramide. In the ideal case, 

although the total number of cells is reduced after cell death induction, the apparent transaction 

efficiency will be maintained (i.e. transected and non-transfected cells has the same sensitivity to 

the apoptotic stimulus and will thus die to the same extent). However, when GFP-positive cells are 

co-transfected with a construct influencing their sensitivity to apoptosis, this will be reflected by a 

change in the apparent transfection efficiency  (i.e. the percentage of fluorescent cells is different 

before and after treatment with an apoptotic agent). In particular, an increase of transfection 

efficiency means that fluorescent cells are protected from apoptosis induction (e.g. when an anti-

apoptotic protein such as Bcl-2 is overexpressed).  

 

Figure 12 VDAC isoform-specific regulation of apoptosis. Changes in the apparent number of fluorescent cells reflect different 
sensitivity to apoptotic stimuli. Data are presented as the percentage difference between transfection efficiencies before and after 
treatment with 60 M C2-ceramide for 3h (Control -4±5.3%; siRNA-hVDAC1 +23.7±4.9%; siRNA-hVDAC2 -50.5±8.8%; siRNA-
hVDAC3 +7.4±2.9%) . 
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Conversely, a decrease in fluorescent cells reflects a higher sensitivity to apoptosis. By using 

this approach, we test the effect of the selective silencing of the different VDAC. As shown in 

figure 12, hVDAC1 and hVDAC2 have opposite effects on apoptosis sensitivity. 

As already reported in literature, VDAC1 is a pro-apoptotic protein (and of course, its 

silencing is protective), while VDAC2 exert a protective effect (and thus its silencing enhances cell 

death). The original finding here is that hVDAC3 do not modify in any way cells sensitivity to the 

apoptotic stimulus C2-ceramide. Therefore, we can conclude that mitochondrial porins, while 

sharing common Ca2+ channeling properties, have evolved different functions in the regulation of 

cell death. Still, these data do not explain the molecular mechanism through which these different 

isoforms regulate the decoding of death signals. We thus started from the above demonstrated 

coupling of ER and mitochondrial Ca2+ channels to test the existence of a preferential, isoforms-

specific signaling route transferring fine Ca2+ pulses from intracellular stores to the effector 

compartment (i.e. the mitochondria). 

VDAC1 specific coupling to ER Ca2+ releasing channels 

In the previous part of this work, we showed that mitochondria/ER crosstalk is not a merely 

consequence of physical neighborhood but relies on the existence of macromolecular complexes 

linking one organelle to the other and that this connection has a functional significance (Szabadkai 

et al., 2006). However, we didn’t investigate in details the fine molecular nature of these complexes, 

giving no information about the isoforms subtypes involved in this interaction. In the light of our 

next results, showing that the diverse VDACs differentially contribute to apoptosis while sharing 

the same Ca2+ channeling properties, we wonder whether the molecular basis of these differences 

could rely on the assembly of highly specialized proteins complexes. Indeed, the existence of a 

specialized macromolecular complex finely tuning the transfer of Ca2+ could account for the 

selective transmission of certain types of stimuli over others. The emerging picture on the role of 

mitochondrial Ca2+ in the induction of apoptosis shows that the rapid, prompt, large and highly 
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spatial defined Ca2+ increases in the matrix can mediate the stimulation of organellar metabolism; 

on the other hand, apoptotic stimuli such as C2-ceramide cause instead a more subtle, slower, 

smaller but sustained Ca2+ transfer from the ER to the mitochondria. In this view, during the 

massive release of the cation occurring when maximal agonist stimulation is imposed, the existence 

of discrete signaling units can be overwhelmed and masked by the robustness of the response; 

conversely, when the apoptotic stimuli mobilize small quantities of the cation the existence of fine 

and preferential routes mediating the direct transfer of Ca2+ from one organelle to the other could 

become relevant. To test this hypothesis we investigated whether the IP3R is physically coupled to 

the mitochondrial Ca2+ channels in an isoform-specific fashion. We thus performed co-

immunoprecipitation experiments using IP3R type 3 (IP3R-3) as bait, since the this particular 

isoform has been shown to be the preferential IP3R subtype involved in the transmission of 

apoptotic stimuli (Mendes et al., 2005). We thus test what VDAC isoforms could co-

immunoprecipitate with IP3R-3. Strikingly, figure 13 shows that VDAC1 is the only isoform bound 

to the IP3R in stringent conditions. The specificity of the immunoprecipitated complex was assessed 

by looking for both positive and negative: -actin has never been shown to interact with ER Ca2+ 

releasing channels, and presumably isn’t associated with them; hexokinase-I instead is a known 

interactor of VDAC1 (Pastorino and Hoek, 2008), but it is not directly associated with IP3R, most 

likely making part of a different protein complex; finally, we used the above mentioned grp75 as 

positive control, since it is a key component of the signaling units responsible for the efficient 

transfer of Ca2+ from the endoplasmic reticulum to the mitochondria. Therefore, the experimental 

conditions used look strong enough to suggest a selective (or at least a preferential) coupling of 

IP3R-3 with VDAC1, since neither VDAC2 or VDAC3 can be found in the co-immunoprecipitate. 

These results establish the molecular basis for the explanation of the different role of VDAC 

isoforms in the regulation of cell death, suggesting that VDAC1 exerts its pro-apoptotic activity by 

transmitting of Ca2+ signals from the endoplasmic reticulum to mitochondria through a specific and 

highly defined macromolecular complex. 
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Figure 13 VDAC1 is selectively coupled to IP3R-3. IP3R-3 was immunoprecipitated from total HeLa cells homogenate with an 
isoform-specific mouse monoclonal antibody. The pre-cleared proteins were incubated overnight with the antibody at 4°C and then 
incubated with protein G-coated sepharose beads. After 3 washes with RIPA buffer (150 mM NaCl, 1% NP-40, 0.1% SDS, 50 mM 
Tris, pH 8.0) the immunoprecipitate was collected and all fractions were immunoblotted. -actin (not known to interact with IP3Rs) 
and HXKI (which is bound to VDAC1 but likely making part of a different protein complex, thus further enforcing the specificity of 
the immunoprecipitated complex) have been used as negative controls. Grp75, a known IP3R interactor have been used as positive 
control. In the co-immunoprecipitated fraction, VDAC1 is present in a large amount, while VDAC2 and VDAC3 (data not shown) 
cannot be revealed. 
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VDAC isoforms in the control of autophagy 

Data provided so far demonstrate that VDAC is something more than a simple channel, 

given that its functions isn’t limited to the passive and unregulated transit of metabolites from the 

cytosol to the IMS, but rather it actively participates in the assembly of macromolecular complexes 

finely shaping cellular signals. However, the existence of different isoforms cannot be explained by 

simple redundancy, otherwise it would be almost impossible to conciliate the clearly demonstrated 

opposite roles that VDAC1 and VDAC2 exert on cell death. We thus gave the molecular details 

about the peculiar pro-apoptotic activity of VDAC1, showing that it is part of a specialized 

signaling unit that mediate the efficient transfer of Ca2+ ions from the ER to mitochondria. Still, 

these data cannot in any case explain why VDAC2 has a diametrically opposite effect, suggesting 

that this isoform is involved in other different cellular processes. We thus tried to investigate other 

potential pathways in which mitochondrial porins could be involved that could help us to explain 

their role in cell death regulation. One obvious candidate is autophagy, a cellular process deeply 

involved in cell sensitivity to several kind of stresses (Lum et al., 2005). Indeed, cells evolved a 

complex intracellular signaling network integrating multiple and occasionally conflicting signals to 

coordinate the response. The paucity of growth factors, nutrients or the presence of stress stimuli 

can ultimately result in cell death; however, the primary cellular reaction to these conditions is a 

survival effort through autophagy, the major cellular catabolic pathway dedicated to self-digestion 

and recycling of metabolites. Thus, during starvation stimulating macroautophagy provides the fuel 

required to maintain an active metabolism and the production of ATP. When stress conditions are 

resolved, or nutrients are restored, cells can revert to normal situation. Conversely, when normal 

homeostasis cannot be re-established the cell has no other possibility but to die through apoptosis 

(type I cell death) or the so-called autophagic cell death (type II cell death) (Kroemer et al., 2009). 

As a consequence, these two processes  must be in some way coordinated to ensure the proper 

response to stress. Indeed, there is now mounting evidences that autophagy and apoptosis share 

several common regulatory elements (e.g. some Bcl-2 family proteins) (Codogno and Meijer, 2005; 
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Levine, 2005; Maiuri et al., 2007a; Pattingre and Levine, 2006; Pattingre et al., 2005). Hence, an 

apparent dysregulation  of apoptosis could be, at least in principal, subsequent to an impairment in 

the regulation of autophagy. We thus wonder if the diverse effects of mitochondrial porins, and in 

particular VDAC2, in apoptosis could be a consequence of a differential regulation of the 

autophagic process.  

Protein synthesis is a required component of growth and proliferation, and can consume a 

large amount of the total intracellular energy resources. The process must therefore be tightly 

regulated, and needs to integrate information from both nutrient abundance and growth factor 

signaling. This crucial function is carried out by the conserved protein Tor (and its orthologues 

mTOR in mammals and dTOR in Drosophila melanogaster), which functions downstream of PI3K 

and Akt in growth factor signaling (Hay and Sonenberg, 2004; Sarbassov et al., 2005a). The 

presence of growth factors or of abundant intracellular amino acids leads to the activation of mTOR 

and phosphorylation of its targets, ribosomal protein S6 kinase (p70S6K) and the eukaryotic 

initiation factor 4E binding protein-1 (4EBP-1). Phosphorylation of these targets facilitates cap-

dependent translation. mTOR is therefore a component of both growth factor signaling and nutrient-

sensing pathways, and induces protein synthesis when metabolic conditions (amino acid 

availability) are favourable and/or when stimulated by growth factors. In parallel, active mTOR is 

the main cellular signal that inhibits autophagy; thus, inactivation of mTOR by the removal of 

growth factor stimulation decreases nutrient use and allows cells to engage the autophagic survival 

programme. Given its central role as the main cellular nutrient sensor and the relevance that 

mitochondria play in energy production, we investigated VDAC isoforms as potential modulators of 

mTOR activity. 

VDAC2 is selectively required for mTOR dependent autophagy 

In order to study the contribution of the three VDAC isoforms to autophagy, we took 

advantage of a widely used assay based on LC3-GFP in both resting condition and after autophagy 
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induction (Kimura et al., 2009). LC3, also known as Atg8, is an essential component of the 

autophagic machinery and it is recruited to early autophagosomes after lipid-conjugation. Thus, 

LC3 exists in two forms: LC3-I which is spread in the whole cellular cytoplasm, and LC3-II which 

strictly associates to autophagosomes. As a consequence, the LC3-GFP chimera reflects this 

peculiar localization: cells in resting conditions display a pancytoplasmic staining when visualized 

on a fluorescence microscope; conversely, upon autophagy induction the cytoplasmic stain almost 

disappears (or at least, decreases), and small, punctuated highly fluorescent structures 

(corresponding to autophagosomes) become evident. The percentage of cells showing a vacuolar-

like distribution of LC3-GFP on the total fluorescent population is a reliable index of autophagy. In 

our experiments HEK293 cells were seeded onto 24mm glass coverslips and cotransfected with 

LC3-GFP and various vectors encoding for a specific siRNA against one of the VDAC isoforms 

(Control, siRNA-hVDAC1, siRNA-hVDAC2 and siRNA-hVDAC3); the percentage of cells with 

vacuolar LC3-GFP was calculated in resting condition and after autophagy induction. Three 

different stimuli were used: i) removal of growth factors through serum starvation, ii) rapamycin, 

the best known mTOR inhibitor and iii) lithium, which is reported to trigger autophagy through a 

yet unknown but mTOR-independent mechanism (Sarkar et al., 2005). Figure 14 shows that VDAC 

modulates both basal and induced autophagy in an isoform- and stimulus-dependent manner. 

Indeed, while VDAC3 knockdown doesn’t modify in any way the autophagic process, VDAC1 and 

VDAC2 exert different effects. RNA interference against VDAC1 indeed shows basal levels of 

autophagy similar to control cells. After starvation or pharmacological induction, autophagy 

induction does not increase at the same extent than in controls. This lower capacity of siRNA-

hVDAC1 transfected cells to trigger autophagy is however only apparent. We indeed further 

investigate this phenomenon by performing a time lapse analysis of autophagy induction kinetics by 

calculating the percentage of autophagic cells at different moments after autophagy induction. 

Hence, we saw that VDAC1 knockdown cells are perfectly capable to trigger the formation of new 

autophagosomes but with a much more rapid kinetics, with a significantly higher levels of 
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autophagic cells after shorter pharmacological treatment (data not shown). Considering that the 

LC3-GFP is an appropriate marker only of early autophagosomes (because fluorescence disappears 

during the maturation of the vesicles), the apparent lower levels of autophagic cells after starvation 

is only a consequence of an higher turnover of these cellular structure. In any case, the most striking 

effect is caused by the knockdown of VDAC2: these cells show an impressive low level of 

autophagy not only in resting conditions, but also after serum deprivation or rapamycin treatment. 

 

Figure 14 VDAC2 is selectively required for autophagy. (A) HEK293 cells were cotransfected with plasmids encoding for control, 
hVDAC1, hVDAC2 or hVDAC3 specific interfering sequences respectively together with LC3-GFP encoding plasmid. The 
knockdown efficiency has been tested by Western blot as shown in panel B. Cells were then serum starved for 16 h, treated with 
rapamycin 100 nM for 16 h or LiCl 10 mM for 26 h were indicated. (C) Representative fluorescence images of LC3-GFP in control 
and siRNA-hVDAC2 transfected cells subjected to the indicated treatment: no gross alteration in cell morphology or autophagic 
vacuoles can be seen. Data are presented as means ± S.E.M.. 
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Lithium can instead trigger significant autophagy (similar to control cells) indicating that VDAC2-

silenced cells are still autophagy-competent. These data suggest that VDAC2 is an important 

regulator rather than an essential component of the autophagic machinery. Moreover, VDAC2 

seems to be selectively engaged in signaling pathways  involving mTOR (such as serum deprivation 

or rapamycin treatment), being dispensable when other autophagy-inducing signals are activated (as 

evinced from lithium treatment). In order to further confirm autophagy inhibition in VDAC2 

silenced cells, we performed another assay based on the protein degradation: indeed, autophagy 

(together with the ubiquitin-proteasome system) represents one of the main cellular mechanism for 

protein quality control and proteolysis. Therefore, monitoring the expression levels of long-living 

proteins (such as many membrane or organellar proteins) is an indicative index of ongoing 

autophagy (Kawai et al., 2006). We co-transfected HEK293 with a mitochondrial targeted GFP 

(mtGFP) with the different VDAC siRNA-encoding plasmids (Control, siRNA-hVDAC1 and 

siRNA-hVDAC2) and then evaluated mtGFP expression through Western blot before and after 

autophagy induction by rapamycin. As shown in figure 15, VDAC2 downregulation virtually 

blocks protein degradation via the lysosomal pathway, thus confirming the strong autophagy 

inhibition previously detected with the LC3-GFP assay. 

 

Figure 15 VDAC2 silencing selectively impairs autophagy. (A) Variations of mtGFP expression levels in control, siRNA-hVDAC1 
or siRNA-hVDAC2 transfected cells induced by rapamycin treatment (100 nM for 16 h). Total cell lysate from treated and non-
treated cells was immunoblotted and the percentage difference in mtGFP intensity was calculated. (B) Intracellualr ATP decrease 
after glucose deprivation was monitored in living cells transfected with firely luciferase. Autophagy in control and siRNA-hVDAC1 
cells guarantees substrates recycling when glucose is removed for short time periods (up to 10 minutes), while siRNA-hVDAC2 cells 
undergo to a drop of ATP levels due to the inhibition of autophagy. 
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In addition, the VDAC1 silencing causes a slight increase in GFP degradation when 

compared to control (siRNA-hVDAC1 -25.02 ± 3.04% vs Control -15.16 ± 4.32%): considering 

that long-living protein degradation represents a late marker of the autophagic process, this data 

support the hypothesis of an higher turnover of autophagosomes mediated through a VDAC1 

dependent mechanism. Finally, in order to test the functional significance of the autophagy 

regulation by mitochondrial porins we measured intracellular changes in ATP levels under nutrient 

deprivation in living cells through the firefly luciferase assay (Tasdemir et al., 2008). In resting 

conditions, cellular ATP production is sustained mainly by glycolysis and mitochondrial respiratory 

chain through glucose catabolism. However, autophagy allows cells to maintain high ATP levels 

under conditions of starvation: indeed, in our control cells basal autophagy is sufficient to maintain 

the normal energy balance even when glucose is removed from the media at least for short periods 

(e.g. 10 minutes). The same phenomenon can be seen in siRNA-hVDAC1 transfected cells but not 

in cells where VDAC2 is downregulated, where a significant drop is ATP levels occurs upon 

glucose withdrawal which can thus be correlated with the absence of autophagy (see figure 15). 

Functional data presented so far suggest that VDAC2 can impair autophagy, and selectively 

mTOR signaling leading to this cellular self-digestion, since VDAC2 silencing inhibits rapamycin- 

but not lithium-induced formation of cytoplasmic vacuoles. We further confirm this hypothesis by 

directly measuring mTOR activity. This kinase exists in two main functional units: i) the so-called 

TORC1 (TOR Complex 1) where mTOR is directly bound to its partner Raptor and positively 

regulates both translation (by phosphorylating the p70 Ribosomal S6 Kinase, p70S6K) and 

transcription (through phosphorylation and consequent inactivation of the eukaryotic initiation 

factor 4E-binding protein 1, 4EBP-1); and ii) the newly identified TORC2 (TOR Complex 2) where 

mTOR interacts with Rictor and promotes cytoskeletal rearrangements and activates survival 

pathways by phosphorylating  the Akt kinase. Thus, the mTOR activity can be easily monitored by 

revealing the phosphorylation state of its substrates (p70S6K or 4EBP-1 for complex 1 and Akt for 

complex 2) through Western blot. Total homogenate where then extracted from cells with normal 
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(Control) or low (siRNA-hVDAC2) expression levels of VDAC2 under various stimuli and 

immunoblotted with a phosphorylation-specific antibody. As shown in figure 16, the 

downregulation of VDAC2 causes an hyper activation of mTORC1 and mTORC2 at resting 

conditions. Activity of TORC1 is blocked after serum deprivation in control but not in siRNA-

hVDAC2 cells (thus correlating with its activity in autophagy regulation), while, as expected, 

lithium does not cause any variation in its activity. Unfortunately, rapamycin completely blocked 

p70S6K phosphorylation in both control and VDAC2 silenced cells (that show in turn low levels of 

autophagy), thus suggesting that the p70S6K pathway is not directly connected with autophagy 

regulation, or at least that this two pathways can be pharmacologically impaired. Concerning the 

activity of TORC2, Akt shows a higher degree of phosphorylation in VDAC2-silenced cells in all 

conditions tested when compared to controls, except for the serum starvation which causes a 

situation undistinguishable from controls: even for TORC2 activity a strong correlation between its 

target’s phosphorylation and autophagy levels cannot be assessed. 

 

Figure 16 VDAC2 impairs mTOR activity. (A) Effects of serum starvation (16 h), rapamycin (100 nM for 16 h) and LiCl (10 mM for 
26 h) on control and siRNA-hVDAC2 transfected cells. Total homogenate was immunoblotted against phospho-specific (Thr389) or 
tolal p70S6K, reflecting the activity of TORC1. (B) The same cellular extracts as in (A) were probed for phospho-specific (Ser473) or 
total AKT. 

 

VDAC2 controls mTOR association to mitochondria 

Data presented so far strongly argue for a mitochondria dependent regulation of mTOR 

activity. Despite the huge amount of work carried out on this protein, its relationship with this 
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organelle is poorly described (Desai et al., 2002; Schieke et al., 2006). Starting from our functional 

analysis on the role of various VDAC isoforms in controlling mTOR activity we started a 

biochemical study to understand the molecular foundations of this phenomenon. Initially we 

checked whether the VDAC2 regulation of mTOR was dependent on a specific protein-protein 

interaction (similar to what we have previously seen for VDAC1 coupling to IP3Rs). For this 

purpose, we immunoprecipitated mTOR from HEK293 total cell lysate and looked if the different 

VDAC isoforms could co-immunoprecipitate with it. Strikingly, we found that only VDAC2 can 

selectively interact with mTOR. To further confirm the specificity of the assay, we transfected our  

 

 

Figure 17 VDAC2 selectively interacts with mTOR and controls its association to mitochondria. (A,B) Characterization of 
mTOR/VDAC2 interaction through immunoprecipitation studies using mTOR (A) or VDAC2-6His (B) as bait. VDAC2 selectively 
interacts with mTOR and its associated protein Raptor. (C) Analysis of VDAC2 expression levels in Control and siRNA-hVDAC2 
clones. (D) mTOR/Raptor association to mitochondria in Control and siRNA-hVDAC2 clones in resting conditions and after serum 
deprivation. mTOR/Raptor translocate to mitochondria after serum withdrawal (16h) in control cells, while in VDAC2 deficient cells 
the mitochondria associated mTOR quantity is significant higher than in controls in resting conditions. 
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cells with a 6-histidine tagged VDAC2 (see above) and used an anti 6His antibody to 

immunoprecipitate the exogenously expressed chimera. Again, in the co-immunoprecipitated we 

were able to find mTOR and proteins associated within its signaling unit such as Raptor (figure 

17A,B).  

A corollary of this interaction must be at least a partial localization of mTOR and its 

partners at mitochondria. To test this possibility we performed cellular subfractionation experiments 

to isolate the mitochondrial fraction. We firstly generated a stable HEK293 clone where VDAC2 

levels were downregulated through RNA interference (figure 17C) and their respective controls. We 

then loaded total homogentates and mitochondrial proteins obtained by differential centrifugation 

on SDS-PAGE and revealed the presence of mTOR and Raptor. Figure 17D shows that in resting 

conditions a small fraction of both mTOR and Raptor is associated to mitochondria in control cells. 

Strikingly, after serum removal the quantity of mTOR and Raptor remains equal in the whole cell 

lysate but strongly increases the quota allocated in the mitochondrial fraction (in control cells this 

event is accompanied by an increase in the number of autophagic cells). This data strongly suggest 

a mitochondrial translocation of mTOR upon stress conditions. Even more remarkably, in VDAC2 

deficient cells, the mitochondria-associated mTOR quantity is curiously higher at resting condition 

when compared to control cells. In addition, serum starvation does not increase the already high 

organellar mTOR fraction. Unfortunately, these last data are difficult to conciliate with the effects 

we observed on autophagy. Hence, further studies will be necessary to better assess and clarify the 

significance of mTOR translocation to mitochondria. 
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Discussion 

Chaperone mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. 

Based on previous observations (Csordas et al., 2002; Gincel et al., 2001; Rapizzi et al., 2002b; 

Zaid et al., 2005), we used VDAC1 as the start point for proteomic search of interacting proteins 

and for unraveling the molecular basis of mitochondrial Ca2+ homeostasis. An unexpected, but 

intriguing, finding of our biochemical studies was the central location of the chaperone grp75 in the 

interaction between ER and mitochondrial Ca2+ channels. grp75, a conserved chaperone, has a well 

studied role in protein import through the IMM. Still, in yeast mitochondria, mtHsp70/Ssc1 was 

shown to be significantly more abundant than the translocase (TIM23 complex). Thus, only a small 

fraction of the protein appears to be involved directly in preprotein translocation (Dekker et al., 

1997; Sanjuan Szklarz et al., 2005), suggesting the existence of different pools of the protein. 

Previous work also reported extramitochondrial localization of grp75 (Ran et al., 2000), and its 

interaction with extramitochondrial proteins such as the cytosolic p53 or the ER luminal grp94 

(Takano et al., 2001; Wadhwa et al., 2002b), although the mechanisms that control the differential 

sorting of the protein are still completely unknown. According to our immunofluorescence and 

GFP-tagging studies in HeLa cells grp75 shows complete mitochondrial localization, but obviously 

cannot be discriminated from an OMM-associated pool. Biochemical studies, however, demonstrate 

that a matrix-localized pool participates in forming complexes in the 200–400-kDa range and 

represents the major fraction of the total mitochondrial grp75 content, whereas a minor grp75 pool 

resides in the low-density (MAM) mitochondrial fraction, participating in complexes in the 

megaDalton range and comprising OMM and ER membrane proteins. To further support an 

independent function of the nonmatrix pool, we constructed a grp75 mutant lacking the 

mitochondrial presequence, and thus incompetent for import in the matrix. This protein retained the 
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capacity to enhance mitochondrial Ca2+ accumulation, strongly arguing for the notion that this role 

of grp75 is not only independent from its chaperone activity in the matrix but also depends on a 

physically separated protein pool.  

How is the newly identified regulatory activity on mitochondrial Ca2+ uptake exerted? In 

principle, two different mechanisms can be envisioned. In the first, grp75 could be involved in 

scaffolding the ER–mitochondria contacts, and thus determines the number of sites in which 

mitochondria are exposed to the high [Ca2+] microdomains generated at the mouth of IP3Rs. 

Fluorescent labeling studies of the ER and mitochondria revealed a partial (5–20%) colocalization, 

reflecting these interactions. However, no increase in colocalization has been observed by 

overexpression of grp75 (or of the IP3R-LBD224-605; unpublished data), suggesting that they do not 

directly function as structural determinants of the contacts. In a second scenario, grp75 could 

control the interaction of ER and mitochondrial proteins at the existing organelle contacts, and thus 

allow crosstalk between signaling partners, e.g., the ion channels of the two membranes. Indeed, 

grp75, as shown by its knockdown and overexpression models, was necessary and sufficient for the 

stimulatory effect of the IP3R-LBD224-605 on mitochondrial Ca2+ uptake. Moreover, the proteomic 

data also highlight the central role of grp75 in this interaction. VDAC and IP3Rs coprecipitate with 

grp75, and the chaperone is coimmunoprecipitated by both anti-IP3R and -VDAC antibodies, 

indicating that it is the key assembling molecule in the loose interaction between the two ion 

channels.  

Within the IP3R–grp75–VDAC complex, potentiation of mitochondrial Ca2+ accumulation 

by the IP3R-LBD224-605 does not require IP3 binding, as demonstrated by the fact that it is retained 

by the K508A mutant, which is unable to bind IP3 (Varnai et al., 2005). Although the mutant shows 

the same stimulatory effect (Fig. 2), one should remember that wild-type IP3R-LBD224-605, because 

of IP3 buffering, reduces ER Ca2+ release, and thus conclude that the wild type is somewhat more 

effective than the mutant. To further confirm independence from IP3 buffering, we measured 
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mitochondrial Ca2+ uptake after capacitative influx through the plasma membrane (Figs. 4 and 6). 

Also, under those experimental conditions, the IP3R-LBD224-605 potently stimulated mitochondrial 

Ca2+ uptake.  

As for the molecular mechanism of the effect on the mitochondrial Ca2+ machinery, different 

scenarios could be envisioned. In the first, the recombinantly expressed IP3R-LBD, both from the 

OMM and ER side, could interact with the endogenous IP3R itself, and modify the probability of its 

interaction with grp75/VDAC. Indeed, it was previously shown that intramolecular interactions 

between different domains of the IP3R, such as the 224–605 minimal IP3-binding domain and the 1–

223 N-terminal repression domain, regulate IP3R channel opening upon IP3 binding. Thus, one 

could hypothesize that the high expression levels of IP3R-LBD224-605 represses an interaction 

between the extreme N-terminal of the endogenous receptor and grp75/VDAC. To clarify this issue, 

we expressed the whole (aa 1–604) IP3R-LBD, which is targeted to the OMM. The IP3RLBD1-604 

had the same effect as IP3R-LBD224-605, thus, excluding competition of these two cytoplasmic, N-

terminal domains of the IP3R. In the second, simpler scenario, the IP3R-LBD224-605 mimics the 

effect of the endogenous IP3R. Thus, it directly enhances mitochondrial Ca2+ uptake by maximizing, 

within the macromolecular complex, the interaction with the mitochondrial VDAC channel. Indeed, 

the density of the exogenous IP3R-LBD224-605, based on fluorescence labeling (Varnai et al., 2005) 

and Scatchard plot analysis of IP3 binding (Wibo and Godfraind, 1994), can be assumed to be at 

least one order of magnitude higher than the endogenous receptor, and indeed, high expression 

levels were necessary for the effect of IP3R on mitochondrial Ca2+ uptake.  

The central role of grp75 in the IP3R-LBD-induced augmentation of Ca2+ uptake was clearly 

shown by the siRNA driven silencing of the protein, leading to the abolition of the effect. 

Conversely, high-level expression of grp75 induced a compound effect involving at least three 

different locations, as follows: i) the ER, decreasing the steady [Ca2+]er level; ii) the OMM, 

interacting with VDAC, whose permeability/ion selectivity was shown to be modified by grp-75 
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binding (Schwarzer et al., 2002); and iii) the mitochondrial matrix, modifying mitochondrial 

parameters, such as pH or Ca2+ buffering capacity. Expression of the cytosolic grp75 and 

measurement of Ca2+ influx–induced mitochondrial Ca2+ uptake allowed us to eliminate the 

intramitochondrial effect and changes of ER Ca2+ handling. Importantly, mitochondrial Ca2+ uptake 

in this approach was markedly increased, and grp75cyt potentiated the effect of OMM-IP3R-LBD, 

clarifying the effect of the OMM-associated pool of grp75. 

In conclusion, we demonstrated that the IP3R is part of a signaling complex that directly 

controls Ca2+ uptake into mitochondria. Much remains to be understood, but by these results the 

concept of macromolecular assembly of signaling elements, previously put forward for several 

plasma membrane channels, can be extended to defined microdomains at the ER-mitochondrial 

interface. Such an arrangement highlights novel routes for pharmacological intervention that may 

be used for the modulation of downstream events such as metabolism and apoptosis. 

Effect of different VDAC isoforms on mitochondrial Ca2+ homeostasis. We thus go deeply in 

the understanding of the macromolecular complexes located at the ER/mitochondria contact sites. 

VDAC exists in three distinct isoforms showing similar electro-physiological properties according 

to several studies carried out in isolated mitochondria. In addition, every mammalian isoforms can, 

in vivo, restore the impaired growth capacities in yeasts lacking the endogenous VDAC gene. 

However, these kind of studies fail to precisely address the role of this protein in the complex 

context of the whole cell, thus underscoring other potential functions. Several observations support 

the notion that VDAC can finely tune diverse cellular processes in an isoform-specific way: i) 

selective genetic ablation of the three genes encoding for VDAC cause a diverse phenotype 

depending on both the isoforms and the genetic context (Graham and Craigen, 2004); ii) VDAC1 

and VDAC2 exert diametrically opposite effects on apoptosis (Cheng et al., 2003; Rapizzi et al., 

2002b); iii) transcriptional programs controlling the mitochondrial proteome, such as the one 

triggered by PGC1-, differentially regulate porins expression in an isoform-specific fashion 
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(unpublished observation); iv) VDAC1 is selectively upregulated at transcriptional level after some 

apoptotic stimuli and v) the new anticancer compound erastin, which is selectively active against 

tumor harboring RAS mutations, has been proposed to act through VDAC2-specific mechanism 

(Yagoda et al., 2007). We thus started an investigation about the molecular mechanism underlying 

the diverse role of VDAC1 and VDAC2 in apoptosis. The first, obvious explanation of this 

diversity can rely on different Ca2+ channeling capacities: indeed, given the central role Ca2+ plays 

as sensitizing factor for the release of caspase activators, a differential contribution towards this 

cation transport (i.e. VDAC1 enhancing mitochondrial Ca2+ uptake while VDAC2 not) could 

account for their opposite effect on apoptosis. Still, such an explanation cannot in any case clarify 

the anti-apoptotic activity of VDAC2, unless postulating an inhibition of Ca2+ uptake of this 

particular isoforms (which is, based on electro-physiological characteristic, quite unlikely). We thus 

decided to study IP3-dependent mitochondrial calcium uptake in living cells where the different 

isoforms were selectively overexpressed or silenced. Our results clearly shows that all VDAC 

isoforms share similar Ca2+ channeling properties, with some minor differences in the extent of the 

effect that cannot account for their differential cell death regulation. These minor differences (e.g. 

VDAC3 being the most effective in increasing Ca2+ responses, or VDAC2 knockdown being more 

effective in decreasing them when compared to VDAC1), could potentially be due to small 

variations in Ca2+ transport capacities. However, as in situ VDAC levels after overexpression or 

gene silencing are quite difficult to rigorously assess, any conclusion in this direction is at least 

hazardous. These data simply support the notion that all VDAC isoforms can similarly transport 

Ca2+ in living cells, and this is not correlated to their effect on apoptosis. 

How to solve this discrepancy between mitochondrial Ca2+ transport and apoptosis 

regulation? The spontaneous, obvious conclusion is the denial (or, at least the reconsideration) of 

the classic paradigm linking mitochondrial Ca2+ and apoptosis. However, the number of works 

showing that conditions that enhance (directly or indirectly) mitochondrial Ca2+ uptake also 
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sensitize cells towards cell death is decisively relevant and we are still collecting reports supporting 

this hypothesis. Moreover, Ca2+ in mitochondria represents an intrinsically pleiotropic signal, since 

the final outcome varies widely depending on the nature of the stimulus and other concomitant 

signaling pathways. Thus, the transmission and the decoding of cell death signals must be finely 

regulated in order to trigger the suitable effect. Experimental evidences show that while 

physiological stimuli regulating normal cellular metabolism causes a massive release of Ca2+ from 

the internal stores, and consequently origins a rapid mitochondrial Ca2+ uptake, cell death signals 

has been shown to induce only a modest (even if sustained) increase in [Ca2+] inside mitochondria. 

This latter event has been proposed to represent a sort of priming signal that conditions and 

sensitizes mitochondria to otherwise non-lethal stimuli. In this view, the local coupling between ER 

and mitochondrial Ca2+ channels becomes critically relevant: small Ca2+ microdomains elicited by 

apoptotic stimuli such as C2-ceramide strongly relies on the existence of a preferential route 

transmitting the signal from the ER to the mitochondrion; on the other side, during physiological 

signals large [Ca2+] microdomains are generated and the fine channels coupling could be potentially 

overwhelmed by the vigorous ER Ca2+  release. The notion that the accurate discrimination of Ca2+ 

signals mediating diverse effects relies on highly specialized molecular determinants is supported 

by the observation that the selective knockdown of IP3R-3 impairs cell death signals transmission 

while the silencing of the other two isoforms has almost no effect. Based on these observations we 

thus wonder whether a similar selectivity could exist at mitochondrial level, or, more precisely at 

ER/mitochondria contact sites. Strikingly, our co-immunoprecipitation studies show that IP3R-3 

selectively (or at least preferably) interacts with VDAC1, while VDAC2 or VDAC3 cannot be 

revealed in the same experimental conditions. Thus, data presented so far not only give fine details 

about the complex molecular insights underpinning VDAC Ca2+ channeling properties, but also 

suggest the possible molecular mechanism through which VDAC1 exerts its pro-apoptotic activity. 

We here propose a model where VDAC represents a fundamental player in mitochondria 
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physiology, with similar channeling properties shared among its different variants, but concurrently  

mediating diverse effects through isoform-specific protein-protein interactions and the assembly of 

highly specialized, higher order protein complexes: This view accounts for most of experimental 

data available and finally reconciles apparently contrasting evidences, shedding new light on 

mitochondrial regulation in cell life and death. 

VDAC isoforms in the control of autophagy. While VDAC1 effect on apoptosis is a direct 

consequence of its channeling properties and its selective coupling to ER Ca2+ releasing sites, we 

did not provide any insights on the molecular mechanism underlying the protective activity on cell 

death exerted by VDAC2. One mechanism has already been proposed, where VDAC2 selectively 

interacts with the pro-apoptotic Bcl-2 family member Bak and has a critical role in keeping Bak in 

its monomeric, inactive conformation in viable cells. However, this notion has been recently 

questioned by the demonstration that both wild-type and VDAC-deficient mitochondria and cells 

exhibited equivalent cytochrome c release, caspase cleavage and cell death in response to the pro-

death Bcl-2 family members Bax and Bid (Baines et al., 2007). Moreover we also observed that 

VDAC2 effect on apoptosis are still visible in Bax/Bak double knockout fibroblasts, suggesting a 

VDAC2 involvement in some other cellular pathway controlling cellular sensitivity to apoptosis. 

One obvious candidate is autophagy, considering that autophagy is the primary response to several 

patho-physiological stimuli and some of the well known apoptotic agents (including C2-ceramide 

and oxidative stress) have been reported to trigger autophagy before leading to cell death (Chen and 

Gibson, 2008; Guenther et al., 2008; Moore, 2008; Peralta and Edinger, 2009). In this view, 

differences in cell death sensitivity could be due, at least in principle, to an impairment in the 

primary survival cellular effort, i.e. cells where autophagy is inhibited can show an apparent 

increased sensitivity to several stimuli due to the impossibility to attempt the survival. In addition, 

considering that the role of mitochondria in this cellular process is abundantly underestimated, we 

tested the contribution of mitochondrial porins in the control of autophagy. We have thus drawn a 
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picture where the different VDAC isoforms exert diverse effects on this event, with VDAC3 that 

demonstrated to be dispensable while VDAC1 and VDAC2 both showed important regulatory 

functions. In particular, VDAC1-silenced cells seem to have a higher turnover in the formation of 

autophagic vesicles, apparently due to an increased “on” rate as can be evinced by the faster 

appearance of autophagosomes and the concomitant increase in long-living proteins degradation 

(figure 14, 15A and data not shown). However, this observed effect is unlike to place VDAC1 in a 

signaling pathway directly modulating autophagy, considering that every stimulus used has lead to 

the same result. Most likely, this outcome could be ascribed to a more general effect, e.g. some 

aspecific metabolic consequence. The most striking data remains the impressive effect of VDAC2 

downregulation, that virtually abolishes autophagy at both basal levels and after the activation of 

signaling pathway involving mTOR. In particular, serum deprivation and rapamycin treatment do 

not increase at any extent the number of autophagic cells, while lithium restores the cytoplasmic 

vacuolarization as observed in control cells, thus suggesting an almost complete inhibition of 

mTOR signaling that controls autophagy (figure 14 and 15). However, the examination of mTOR 

activity, through the measurements of its classical substrates (p70S6K or Akt), didn’t lead to any 

conclusive clarification of this phenomenon, since VDAC2 knockdown cells show no p70S6K 

phosphorylation while still having autophagy inhibited (see figure 16). However, the 

pharmacological treatment with rapamycin could potentially lead to some misleading artifacts. Due 

to its not complete inhibition of TORC1 signaling: indeed, despite the connections of TORC1 to the 

translational machinery, the effects of rapamycin on mammalian cell growth and proliferation are, 

oddly, less severe than its effects in yeast. In Saccharomyces cervisiae, rapamycin treatment 

induces a starvation-like state that includes a severe G1/S cell cycle arrest and suppression of 

translation initiation to levels below 20% of non-treated cells (Barbet et al., 1996). Moreover, in 

yeast rapamycin strongly promotes induction of autophagy (self-eating), a process by which cells 

consume cytoplasmic proteins, ribosomes and organelles, such as mitochondria, to maintain a 
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sufficient supply of amino acids and other nutrients (Noda and Ohsumi, 1998). The effects of 

rapamycin in mammalian cells are similar to those in yeast, but typically much less dramatic and 

highly dependent on cell type. For instance, rapamycin only causes cell cycle arrest in a limited 

number of cell types and has modest effects on protein synthesis (Neshat et al., 2001; Pedersen et 

al., 1997; Shor et al., 2008). Moreover, rapamycin is a relatively poor inducer of autophagy in many 

cells, and is often used in combination with LY294002, an inhibitor of PI3K and mTOR (Takeuchi 

et al., 2005). These inconsistent effects may also explain why, despite high expectations, rapamycin 

has had only limited success as a clinical anti-cancer therapeutic. 

VDAC2-dependent regulation of mTOR is likely to require its association with 

mitochondria. We thus start a biochemical work to find out the molecular mechanism underlying 

mitochondrial control of mTOR signaling. First we demonstrated a novel and unexpected physical 

interaction between these two proteins (see figure 17A,B). These data demonstrate that VDAC2 can 

form higher order macromolecular complexes with mTOR, Raptor and other protein of the TORC1 

signaling unit (such as GL), very similarly to what VDAC1 can do with Ca2+ channels. Moreover, 

we demonstrated through subcellular fractionation, that a small amount of mTOR is associated to 

mitochondria at resting conditions, and that this quota significantly increases upon autophagy 

induction, thus suggesting that mTOR mitochondrial translocation is necessary for its inhibition. 

However, the same experiment carried out in VDAC2 silenced cells strongly argues against this 

simple mechanism, showing that consistent amount of mTOR are present at mitochondrial levels 

even at basal conditions (as well as after growth factors withdrawal), when autophagy is virtually 

absent and mTOR is hyper-activated (figure 17). A possible explanation could rely on the fact the in 

VDAC2-knockdown cells, the upstream signaling pathway recruiting mTOR at mitochondrial level 

is still functioning, demonstrating that VDAC2 is not the mitochondrial anchor for mTOR; 

however, VDAC2 seems to be somewhat necessary for the downstream signaling events and thus 
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its absence keeps mTOR entrapped (and active) at organelle level. However, other experimental 

work will be necessary to support this hypothesis. 

In conclusion this work present some novel and unexpected findings about VDAC: indeed, 

we suggest  that the complexity of  the roles exerted through these channel probably relies on 

isoform-specific protein-protein interactions and on the assembly of highly specialized 

macromolecular complexes mediating a surprising array of different functions. 
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