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ABSTRACT 

  

In the Main Ethiopian Rift (MER), the supply of drinking water principally relies on groundwater wells, 

springs (including some hot springs), and rivers, and is characterized by a significant problem of 

fluoride (F¯) contamination. New analyses reveal that the F− geochemical anomaly is sometimes 

associated with hazardous content of other potentially toxic elements such as As, B, Mo, U, Al, Fe, and 

Mn. The F¯ content exceeds the permissible limit for drinking prescribed by the World Health 

Organization (WHO; 1.5 mg/L) in many important wells (up to 20 mg/L), with even more extreme F 

concentration in hot springs and alkaline lakes (up to 97 mg/L and 384 mg/L respectively) and is 

causing prevalent endemic fluorosis disease in the region. 

87 % of the groundwater wells, 38 % of rivers and 100 % of hot springs and lakes show F¯ content 

above 1.5 mg/L. The groundwater and surface water from the highlands, typically characterized by low 

Total Dissolved Solids (TDS) and Ca2+ (Mg2+)-HCO3¯ hydrochemical facies, do not show high F¯ 

content. The subsequent interaction of these waters with the various rocks of the rift valley induces a 

general increase of the TDS and a variation of the chemical signature towards Na+-HCO3¯ 

compositions, with a parallel enrichment of F¯. The interacting matrixes are mainly rhyolites consisting 

of volcanic glass and only rare F-bearing accessory minerals (such as alkali amphibole).  

Comparing the abundance and the composition of the glassy groundmass with other mineral phases, it 

appears that the former stores most of the total F¯ budget. This glassy material is extremely reactive, 

and its weathering products (i.e. fluvio/volcano-lacustrine sediments) further concentrate the fluoride. 

The interaction of these “weathered/reworked” volcanic products with water and carbon dioxide at high 

pH causes the release of fluoride into the interacting water. This mainly occurs by a process of base-

exchange softening with the neo-formed clay minerals (i.e. Ca-Mg uptake by the aquifer matrix, with 

release of Na+ into the groundwater).  This is plausibly the main enrichment mechanism that explains 

the high F¯ content of the local groundwater, as evidenced by positive correlation between F¯, pH, and 

Na+, and inverse correlation between F¯  and Ca2+ (Mg2+). Saturation indices (SI) were calculated (using 

PHREEQC-2) for the different water groups, highlighting that the studied waters are undersaturated in 

fluorite. In these conditions, fluoride can not precipitate as CaF2, and so F¯ mobilizes freely without 

forming other complexes.  
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On the other hand, 35 % of the 23 investigated groundwater wells and 70 % of the 12 hot springs (and 

deep geothermal wells) show Arsenic concentration above the recommended limit of 10µg/L (WHO 

2006). The average concentration of Arsenic is 0.9µg/L in rivers, 39µg/L in hot springs, 236µg/L in 

deep geothermal wells, 21.4µg/L in groundwater wells, 77µg/L in lakes, whereas maximum 

concentrations reach up to 3µg/L, 156µg/L, 278µg/L, 157µg/L and 405 µg/L respectively. Arsenic in 

groundwater wells shows positive correlations with Na+ (R2=0.63) and HCO3
− (R2=0.70) as well as with 

other trace elements such as Mo (R2=0.79), U (R2=0.70), V (R2=0.68) whereas no correlations are 

observed with Fe and Mn. PHREEQC speciation modelling indicates that Fe and Al oxides and 

hydroxides are stable in the water systems, suggesting that Fe and Al mineral phases are potential 

adsorbents and thus influence the mobility of As. The oxidizing, high pH condition combined with Na+-

HCO3¯  hydrochemical facies (competing effect of HCO3
− for adsorption sites) of the MER waters play 

an important role in the mobilization of arsenic. 

Chemical analyses of leachates from MER rhyolitic rocks and their weathered and reworked fluvio-

lacustrine sediments were performed in order to evaluate their contribution as a source of the mentioned 

geochemical anomalies. The leachates were obtained from a one-year leaching experiment on powdered 

rocks and sediments mixed with distilled water (10g:50ml). The sediment leachates contain as much as 

7.6 mg/L of F¯, 220 µg/L of As, 181 µg/L of Mo, 64 µg/L of U and 254 µg/L of V suggesting that the 

local sediments represent the main source and reservoir of toxic elements. Laboratory column 

experiment was also conducted in volcanic ash sample using synthetic rain water flushing, and the result 

showed that significant amount of F¯ were leached out over the duration of the experiments.  

This showed that these elements were originally present in the glassy portion of the MER rhyolitic 

rocks, were progressively concentrated in weathered and redeposited products. It further confirms that 

the pyroclastic materials are the major source and reservoir of many of the chemical elements (e.g. F¯, 

As). Therefore, together with the renowned F¯ problem, the possible presence of geochemical 

anomalies in As, B, Mo, V, U, Al, Fe, and Mn have to be taken into consideration in water quality issues 

and future works has to investigate their possible health impact on the population of MER and other 

sectors of the east African rift. 

 

The stable δ18O, δD and radiogenic (87Sr/86Sr) isotopic composition of waters and representative 

volcanic rocks (Ignimbrite and basalt) were carried out during this study. Different ranges of isotopic 

values were recorded for different water groups: 10 hot spring samples show δ18O value with in the 
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range of (-3.36‰ – 3.69‰) and δD (-0.95‰ – 24.23‰) (VSMOW), 12 groundwater wells δ18O (-

3.99‰ – 5.14‰) and δD (-19.69‰ – 32.27‰) in contrast to the 5 Lakes δ18O (3.98‰ – 7.92‰) and δD 

(26.19‰ – 45.71‰). The 2 deep geothermal wells and 1 of the 2 river samples are depleted in stable 

isotopic values. 87Sr/86Sr values range from 0.7045 to 0.7076 in the hot springs, and the two deep 

geothermal wells have 0.7043 and 0.7054 values. These signatures are typical of water interacted with 

mantle derived materials (with a minor crustal contamination), similar to the rocks widely covering the 

study area. The Sr isotope values of the basalt and ignimbrite samples are 0.7063 and 0.7071 

respectively. Generally, the result shows that there exists a complex surface water and groundwater 

interactions that is reflected on a diversity of the stable and Sr isotopic signature in waters.  

The preliminary results of the study has showed that there is a need for future extended works on the 

geochemistry of solid samples (rocks, sediments and soils) as well as in waters that investigate all the 

spectrum of chemical elements that are potentially detrimental to human health and environment. 

Furthermore, from water resource point of view, the following works must focus on a comprehensive 

study of various isotopes and geochemical data to constrain groundwater age dating, water-rock 

interaction and flow path and thus help to model and systematize the hydrologic cycles in the basin. 

 
Key words: aqueous geochemistry, major and trace elements, toxic elements, leaching experiment, 

δ18O, δD and  87Sr/86Sr isotopes and MER (Main Ethiopian Rift). 
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RIASSUNTO 

 

Nella “Main Ethiopian Rift” (MER) l’approvigionamento idropotabile avviene sfruttando 

principalmente acqua di falda e subordinatamente attraverso acque delle sorgenti (alcune di queste 

termali) e acque dei fiumi.  Tali acque sono spesso caratterizzate da una significativa contaminazione da 

fluoro (F¯). Le analisi presentate in questa tesi rivelano che tale anomalia geochimica è talvolta 

associata con alte concentrazioni di altri elementi potenzialmente tossici come As, B, Mo, U, Al, Fe e 

Mn.  

Il contenuto di F¯ in queste acque spesso eccede la concentrazione massima ammissibile (1.5 mg/L) 

prescritta dall’organizzazione mondiale delle sanità (WHO)  in molti importanti pozzi della zona dove 

talvolta si osservano sino a 20 mg/L, e concentrazioni ancora più estreme si rinvengono nelle acque 

delle sorgenti termali (sino a 97 mg/L) e nelle acque dei laghi (sino a 384 mg/L), causando fluorosi 

come malattia endemica nelle popolazioni locali. 

87% delle acque dei pozzi, 38% delle acque dei fiumi e 100% delle acque termali e dei laghi sono 

contraddistinte da tale problema avendo concentrazione in F¯ superiore ad 1.5 mg/L. 

Le acque superficiali e sotterranee degli adiacenti altopiani, tipicamente caratterizzate basse 

concentrazioni di sali disciolti (TDS) e da una facies idrochimica carbonato-calcica non mostrano invece 

tali arricchimenti in F¯. La successiva interazione di tali acque che provengono dagli altopiani con le 

varie litologie che si rinvengono nella rift valley induce un generale incremento della TDS, una 

variazione della facies idrochimica verso composizioni carbonato-sodiche, e un arricchimento parallelo 

in F¯. Le principali litologie che si rinvengono in tali acquiferi della rift valley sono rocce vulcaniche di 

natura riolitica principalmente costituite da vetro e solo subordinatamente da fasi accessorie contenenti 

fluoro (es.: anfibolo). Ne deriva che il vetro vulcanico sembra essere la fase che contiene quasi la totalità 

del fluoro. Tale fase vetrosa è molto reattiva durante i processi di weathering, e i relativi prodotti di 

alterazione, ri-depositati come sedimenti fluviali e lacustri, tendono a concentrare ulteriormente il 

fluoro. Successivamente l’interazione fra questi depositi e le acque di falda in presenza di CO2, e ad alti 

pH, causa il rilascio del F¯. Avvengono quindi dei processi di scambio fra le acque e i minerali argillosi 

di neo-formazione presenti nei depositi fluvio-lacustri che acquisiscono Ca2+ e Mg2+ rilasciando Na+. 

Tali processi portano ad un parallelo arricchimento in F¯, come evidenziato dalla correlazione positiva 

fra F¯, Na+, e pH, e dalla correlazione inversa fra F¯ e Ca2+ (Mg2+). Il calcolo degli indici di saturazione 
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(SI) calcolati con PHREEQC-2 mostra inoltre sottosaturazione rispetto alla fluorite che non precipitando 

consente la permanenza del F- libero in soluzione. 

La presenza di As sembra essere un ulteriore problema che induce seria preoccupazione in quanto 35% 

dei pozzi e 70% delle sorgenti termali sono caratterizzati da acque con contenuti che eccedono la 

concentrazione massima ammissibile delineata dalla WHO (10 μg/L). In particolare, la concentrazione 

di As è 0.9 μg/L nelle acque dei fiumi, 39μg/L nelle acque delle sorgenti termali, 236 μg/L nelle acque 

di alcuni pozzi geotermici, 21.4 μg/L nelle acque dei pozzi ad uso idropotabile, 77μg/L nelle acque dei 

laghi, con concentrazioni massime che raggiungono 3 μg/L, 156 μg/L, 278 μg/L, 157 μg/L e 405 μg/L, 

rispettivamente. As esibisce correlazioni positive con Na+ (R2=0,63) e con HCO3¯ (R2=0,70) e con altri 

elementi in traccia come Mo (R2=0.79), U (R2=0.70), V (R2=0.68). ma non con elementi quali Fe e Mn. 

Le condizioni ossidanti, la presenza di alti pH e la generale facies idrochimica carbonato-sodica giocano 

evidentemente un significativo ruolo alla mobilizzazione dell’arsenico. 

Sono stati effettuati tests di lisciviazione sui principali litotipi che caratterizzano gli acquiferi oggetto di 

studio al fine di evidenziare il loro ruolo e il possibile contributo alla genesi dell’anomalia in fluoro 

riscontrata nelle acque. Tali tests sono stati ottenuti mettendo 10 g di polvere di ogni campione a 

contatto con acqua distillata (50 ml) per un periodo di 1 anno. Fra i vari campioni investigati, le 

soluzioni ottenute lisciviando i depositi fluvio-lacustri contengono sino a 7.6 mg/L di F¯, 220 μg/L di 

As, 181 μg/L di Mo, 64 μg/L di U e 254 μg/L di V, suggerendo che tali litotipi  rappresentano la 

principale sorgente di elementi potenzialmente tossici. Esperimenti simili sono stati inoltre effettuati per 

tempi più brevi su “colonne” opportunamente riempite con litotipi rappresentativi, campionando nel 

tempo l’acqua che vi fuoriusciva. 

Riassumendo, si suggerisce che tali elementi tossici originariamente presenti nella fase vetrosa che 

costituisce le rocce riolitiche estremamente diffuse nella MER siano progressivamente concentrati nelle 

coltri di alterazione o nei sedimenti da queste prodottisi. Si suggerisce inoltre che oltre al conosciuto 

problema della contaminazione da F¯ anche altre anomalie geochimiche relative ad elementi come As, 

B, Mo, U, Al, Fe e Mn dovrebbero essere prese in serie considerazione in quanto possono indurre un 

ulteriore impatto sanitario alla popolazione della MER e di altri settori del rift east-africano. 

In tale tesi vengono vengono inoltre riportati dati degli isotopi stabili dell’ossigeno e dell’idrogeno  

(δ18O, δD) effettuati sulle acque oggetto di studio e dati degli isotopi radiogenici dello stronzio 

(87Sr/86Sr) effettuati sia sulle acque che sui litotipi più rappresentativi. Le acque delle sorgenti termali 

mostrano δ18O fra – 3.36 e -3.69 e δD fra -0.95 e -24.23; le acque dei pozzi mostrano δ18O fra – 3.99 e -
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5.14 e δD fra -19.69 e -32.27; in contrasto le acque dei laghi mostrano δ18O fra 3.98 e -7.92 e δD fra 

26.19 e -45.71. 
87Sr/86Sr varia fra 0.7045 e 0.7076 nelle acque delle sorgenti termali, e fra 0.7043 e 0.7054 nelle acque 

di pozzi profondi di natura geotermica. Tale segnatura isotopica è comparabile con quella che si è 

rinvenuta nelle rocce affioranti nell’area, in quanto l’analisi di roccia basaltica e di una roccia 

ignimbritica ha fornito valori di 0.7063 e 0.7071 rispettivamente. Tali analisi isotopiche contribuiranno 

ad una miglior interpretazione della situazione idrogeologica caratterizzata da un complessa interazione 

fra acque superficiali ed acque sotterranee. 

Più in generale si sottolinea l’esigenza di ulteriori studi che coinvolgano oltre alle acque anche la 

geochimica delle matrici solide che tengano in considerazione un ampio spettro di elementi 

potenzialmente tossici, nonché di ulteriori studi isotopici che potrebbero fornire informazioni sulle 

direzioni dei flussi sotterranei, sulle litologie con le quali le acque interagiscono e sui tempi di 

circolazione di dette acque nei relativi acquiferi. 

 

Parole chiavi: Geochemica delle acque, elementi maggiori e in traccia, test di estrazione, isotopi 

dell’ossigeno, dell’idrogeno, dello stronzio  e MER (Main Ethiopian Rift). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 21

1. General introduction 

 

In the MER system, groundwater resources from wells and springs as well as from rivers are a very 

important supply of drinking water for millions of people living in the area. The MER is part of the East 

African Rift, located within the central part of the Ethiopia Rift system and characterized by semi-arid to 

arid climate conditions where water scarcity is often associated with water quality problems. The natural 

waters of this region are characterized by geochemical anomalies of high fluoride concentration (Kilham 

and Hecky, 1973; Chernet, 1982; Calderoni et al., 1993; Gizaw, 1996; Darling et al., 1996) often 

exceeding the 1.5 mg/L tolerance limit for drinking water (WHO, 2006). Above this threshold, the high 

fluoride concentration causes dental fluorosis (above 1.5mg/L), skeletal fluorosis (above 4 mg/L) and 

crippling fluorosis (above 10 mg/L; Dissanayaka, 1991). The local population is affected by diseases 

such as mottled teeth and skeletal fluorosis (Tekle-Haimanot et al., 1987, Kloos and Tekle-Haimanot, 

1999) which are linked to the high fluoride concentration observed in the rift’s waters (Figure 1) 

 

 
 
Figure 1.1: Dental fluorosis in the main Ethiopian rift (photo: January 2007) 
  
In the past few decades, many geochemical studies have addressed the fluoride problem in order to 

elucidate its origin (Chernet and Travi, 1993; Gizaw, 1996; Yirgu et al., 1999; Chernet  et al., 2001;  

Ayenew, 2005; Rango et al., 2008) and to investigate the associated health problems (Lester, 1974; 

Olsson, 1979; Tekle-Haimanot et al., 1987; Tekle-Haimanot, 1990; Shiferaw and Teklehaimanot, 1999; 

Kloos and Tekle-Haimanot, 1999). Although the health related impact of fluorine is well known, the 
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hydrogeochemistry of fluorine, with respect to the controlling phases (minerals and/or amorphous), and 

the processes that induce its enrichment are not extensively studied in the Ethiopian rift system. 

Similarly, geochemical studies on trace elements are also not yet well investigated in the region. 

A proper water quality assessment requires the investigation of a more complete spectrum of potentially 

toxic elements in order to foresee possible negative health effects in the short or long term. Such kind of 

studies are extremely important especially in active volcanic areas which are characterized by extremely 

reactive lithotypes (that can release their chemical budget into the interacting water) and by persisting 

geothermal manifestations (possibly including juvenile fluids) that can pollute the shallow aquifers. This 

is the case of the Main Ethiopian rift (MER), where the presence of felsic-volcanic rocks (ashes, tuffs, 

rhyolitic ignimbrites) and their weathered and re-deposited fluvio-volcano lacustrine sediments, as well 

as the presence of active geothermal activities, could contribute to the existence of multiple geochemical 

anomalies with detrimental effects on human health.  

  

This study mainly deals with the natural occurrence of these trace elements, particularly fluoride and 

arsenic. Occurrence (Kilham and Hecky, 1973; Calderoni et al., 1993; Ashely and Burley, 1994; Gizaw, 

1996; Darling et al., 1996) and health problems related to the first element are well known in East Africa 

(Smith et al., 1953; Grech, 1966; Ocherse, 1953; Moller et al., 1970), whereas geochemistry and related 

health risks of the latter (together with other associated trace elements) have not yet been documented or 

are poorly understood. This study highlights the presence of these toxic elements in the MER waters, 

and discusses their origin, distribution and speciation.  

The determination of potentially harmful inorganic substance concentrations in natural water and in the 

aquifer lithologies is essential. Leaching procedures on the latter are also important as they provide an 

estimate of the bioavailable elemental budget. The results will provide information on the potential 

inorganic trace element contaminants harmful to humans and the environment. In addition, fundamental 

data for further detailed geochemical studies concerning sources, occurrences and speciation of toxic 

trace elements in the hydrological cycle will be provided. Policy makers could then use this information 

for planning strategies for water exploitation and consumption.  

The other aspect addressed in this study is the isotopic composition of natural waters δD, δ18O and  

strontium isotope (87Sr/86Sr) in order to understand surface water and groundwater circulation and their 

interactions and water-rock interactions in the region.  
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Therefore, the objectives of this study can be summarized into three parts:  

 

 The principal objective of the study is to gain a better knowledge and understanding of fluoride 

problem with respect to its sources, genesis and distribution in order to support water quality 

management issues in the central sector of Main Ethiopian Rift (MER) floor.  

In this framework we performed an integrated study of both waters and coexisting representative 

solid aquifer matrixes in the Ziway-Shala lakes basin of the central MER, in order to unravel the 

water-rock/sediment interactions that ultimately lead to the peculiar geochemical features of the 

Ethiopian rift waters. Therefore, the hydrochemical investigation was coupled with the 

mineralogical/geochemical characterization of the lithologies outcropping in the area. Moreover, 

laboratory leaching tests (batch and column) were also carried out to evaluate the potential release 

of fluoride from the various rock/sediment types. These approaches serve to understand the 

lithologic sources and the enrichment mechanisms controlling the anomalous fluoride content in 

the waters.  

 

 The second objective is to perform water quality assessment in order to identify other potentially 

toxic trace elements and to make a future plan for detail geochemical investigations in solid phases 

and natural waters of the region, and 

 

 The third objective is to investigate the origin of waters, water/rock interactions and mixings 

processes (among surface waters and groundwaters) in the basin using stable isotopes δD, δ18O 

and radiogenic isotopes (87Sr/86Sr) in waters and lithotypes. 
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2. Description of the central Main Ethiopian Rift (MER) 

 

2.1. Morphology and Hydrology 

 

The Ethiopian rift system represents the northern half of the East African Rift that consists of three 

zones with distinct volcanic assemblages and tectonic features. These are the Afar Rift system to the 

north, the Main Ethiopian Rift (MER) valley at the central and the south western part. The central sector 

is more than 200 km long and about 75 km wide. The afar rift forms a triangular depression formed by 

triple tectonic interactions of the Red Sea and Gulf of Aden oceanic rifts with the continental MER. 

Rift extension in the MER is generally NW-SE (Mohr and Wood, 1976; Korme et al., 1997) and it is 

strongly affected by NNE-SSW oriented active normal faults of the Wonji Fault Belt (WFB) on the east 

and the Silti–Debre Zeyt Fault Zone (SDZFZ) on the west, with a large displacement of about 1500–

2000 m between the rift floor and the plateau (Mohr 1962, Di Paola, 1972; Woldegabriel et al., 1990) 

(Figure 2.1).  

From geomorphological point of view Ziway-Shala basin divided into three zones: the rift, the 

transitional escarpment and the highlands. The rift zone is characterized by an average altitude of 1600 

m above sea level (m.a.s.l), is bordered by the Ethiopian plateau to the east and west, having an average 

altitude of 2500 m.a.s.l) (cross-section AB, Figure 2.1).  

In the basin the lowest elevation is at Lake Shala (1550 m.a.s.l). The large Pliocene trachytic shield 

volcanoes of Mount Chilalo (4006 m), Mount Badda (4170 m), Mount Kubsa (3760 m) overlook the 

Ziway–Shala basin from the east. Several dormant silicic caldera volcanoes rise above the rift floor: 

Mount Bora (2293 m), the Alutu Caldera (2328 m), the O’a Caldera (1960 m), and the Corbetti Caldera 

(2320 m) (Figure 2.1). Quaternary calderas of Aluto, Gademotta and Shala are present in the basin. 

South west of Ziway–Shala basin, Awasa caldera forms a closed basin. 
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Figure 2.1: Tectonic map of the central MER in Ziway-Shala basin.  

 

The Ziway–Shala basin (7–8º30`N lat.; 38º–39º30`E long.) of the central MER comprises a rift-bounded 

chain of lakes (Ziway-Langano-Abijata-Shala), chemically characterized by fresh (e.g Lake Ziway) to 

alkaline lakes (e.g Lake Shala and Abijata). These lakes are hydrologically closed. The three 

northernmost lakes, Ziway, Langano, and Abijata are connected by a surface network. Ziway Lake 

drains into Abijata via the Bulbula River and Langano overflows seasonally into Abijata via the 

Horakelo River, whereas the Lake Shala, the deepest lake (266m) in Ethiopia lies on a caldera and forms 

a separate basin. The shallowest and most northerly, Lake Ziway receives surface inflows from the west 
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by Meki and from southeast by Ketar Rivers that draining the western and eastern highlands of the 

basin. Lake Langano is fed by small streams from southeast. Lake Shala receives water from Gidu River 

from the west and Adabat River from the southeast. It partly fed by groundwater seepage from the other 

lakes (Street, 1979; Chernet, 1982). Lake Chitu is a small crater lake southeast of Lake Shala. Lake 

Awasa found south of Ziway-Shala basin, where its main tributary is Tikur Wuha River which drains 

swampy Lake Shallo. Ziway-Shala basin is bordered by Lake Awasa basin to the south, the Bilate River 

basin to the west, the Awash River basin to the north and the Wabishebelle River basin to the east.  

 

Photos below are taken from Lake Langano and Lake Chitu (Figure 2.2 and Figure 2.3). 

 

 
 

Figure 2.2: Partial view of Lake Langano (photo: January 2007) 
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Figure 2.3: Partial view of Chitu Crater Lake with flamingos (photo: January 2007) 

 

Each of the three lakes (Ziway-Langano-Abijata) has an elongate shape parallel to the main trend of the 

MER and can be defined as tectonically controlled lakes. Due to differences in the geomorphological 

setting they vary in depth, shape and size (Table 1.1). 

 

Lakes 
Altitude  
(m.a.s.l) 

Surface 
area 

(km2) 

Catchement 
area (km2) 

Maximum 
depth (m) 

Mean depth 
(m) 

Volume 
(106m3) 

Salinity 
(g/L) 

Ziway 1636 440 7380 8.9 2.5 1466 0.349 

Langano 1585 230 2000 47.9 17 3800 1.88 

Abijata 1580 180 10740 14.2 7.6 957 16.2 

Shala 1550 370 2300 266 8.6 37000 21.5 

 

Table 2.1: Basic hydrological data of the lakes (Wood and Talling, 1988; Chernet, 1982 and Ayenew, 

1998) 
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2.2. Geothermal activities 

 

The Ethiopian rift system is an area known for its significant geothermal resources. These resources are 

found scattered throughout the Main Ethiopian Rift valley and in the Afar Depression.  

It is characterized by circulation of geothermal fluids which are manifested as geothermal wells, hot 

springs, fumerols and geysers. This could be due to the persistence of magma at shallow depth, 

generating heat that induces geothermal and fumarolic activities (e.g. at Aluto-Langano volcanic center; 

Figure 2.4) and high temperature thermal fluids outpouring as springs bordering the lakes (Langano, 

Shala and Chitu). Hydrothermal fields exist on the Tulu Gudu Island of Lake Ziway, along the northern 

and eastern shores of Lake Langano (North Bay and Edo Laki Island, Bole, and O-itu Bay) and on the 

east, southeast and southwest shores of Lake Shala (UNDP, 1973; Chernet, 1982) and hot springs 

bordering Lake Chitu (Figure 2.5) 

 

 
 

Figure 2.4: Deep (>2 kms) geothermal well at Aluto-Langano geothermal field (photo: January 2007) 
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Figure 2.5: Hot spring close to Lake Chitu with the local community taking water for domestic use 

(photo: January 2007) 

 

2.3. Climate and vegetation 

 

The modern climate of the Ziway–Shala region is mainly characterized by alternating wet and dry 

seasons following the annual movements of the Intertropical Convergence Zone (ITCZ) which separates 

the air streams of the northeast and southeast monsoons (Nicholson, 1996). Different climatic conditions 

characterize the highlands, the escarpment and the rift valley. Annual rainfall ranges from around 650 

mm in the rift valley to 1100 mm in the highlands (Ayenew, 1998). Mean annual temperature is less 

than 15ºC in the highlands and more than 20ºC in the lowlands and evaporation ranges from more than 

2500 mm on the rift floor to less than 1000 mm in the highlands (Le Turdu et al., 1999). Highland areas 

west of Butajira and east of Asela and Shashemene are humid to dry sub-humid. Because evaporation 
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exceeds rainfall, the rift valley suffers water deficit, as a result surface water and groundwater resources 

can be constrained.  

The vegetation types ranges from tropical woodland to bushed grassland on the rift floor. Rift shoulders 

are characterized by bushed grassland, then remnants of dry, montane forest and, from 3200 to 3500 m, 

ericaceous scrub and Afroalpine moorland (Makin et al., 1975). 

 

2.4. Soils 

 

Generally, the soils of the Ethiopian Rift Valley divided into thirteen major soil mapping units and a 

further six sub-units based on the FAO/UNESCO soil classification. The major soil units in terms of 

area covered are: Vertisols (19.2%), Cambisols (17.9%), Fluvisols (16.2%), Regosols (15.8%), Lithosols 

(9.5%), Andosols (7.1%) and Acrisols (6.1%) (King and Birchall., 1975; FAO/UNESCO, 1977). 

The soils of the Rift Valley are largely derived from recent volcanic rocks and, by comparison with 

many areas of east Africa; their base status is generally good. The main parent materials of the Rift 

Valley soils are: basalt, ignimbrites, lava, gneiss, volcanic ash, alluvium and pumice. Some of the soil 

problems include, low phosphorus levels, micronutrient imbalances and in some cases poor physical 

structure (Makin et al., 1975). Fertile volcanic soils prevail in wide areas of the highlands, where mean 

annual rainfall exceeds 800 mm (Ethiopian Mapping Authority, 1988). 

 

2.5. Settlements and water supply 

 

The rift and the bordering highlands in the study area is one of the most populated regions of the 

country. The main towns in the basin are Ziway, Meki, Awassa, Shashemene, Arsi-Negele, Butajira, 

Silte, Bekoji, Asela and Kofele. People live also in scattered villages across the basin. The water supply 

source in the region is mainly from groundwater wells (dug wells and boreholes), unprotected springs 

(cold springs and sometimes hot springs) and rivers (Figure 2.6). Majority of the population depend on 

agriculture. Irrigation is practiced by diverting rivers and abstracting from Lake Ziway. 
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Figure 2.6: Community water supply well from the study area (photo: January 2007) 

 

2.6. Significance of the Ethiopian rift system 

 

The Ethiopian rift system has a great geological significance to study the processes and evolution of 

volcanism and rifting. It is also abundant in natural resources such as fertile volcanic soils, industrial 

minerals, geothermal energy, surface and groundwater and scenic landscape formed by volcanic and 

tectonic processes. The presence of lakes (such as Ziway and Langano) and hot springs throughout the 

rift are known as touristic destinations for foreigners and local populations. Moreover, the rift 

sedimentary basins are rich in paleoanthropological, paleontological, and archeological heritages for 

understanding human origin and evolution and use of tools (Woldegabriel et al., 2000). The MER 

especially the central section is a well-known reference area for palaeoclimatical studies (Street, 1979; 

Chalié and Gasse, 2002). Despite the great benefit provided by volcanic products and tectonic features, 

natural hazards and risks associated to volcanoes and tectonics pose potentially destructive threats to the 

society and environment. As a matter of this fact, the surface and groundwater resources of the rift are 

contaminated by some toxic elements (such as widely recognized Fluorine).  
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2.7. Geological settings 

 

The present day geologic and geomorphic features of the region are built by Cenozoic volcano-tectonic 

and sedimentation processes. Geographic distribution and compositional diversity among the rock units 

of the Ethiopian volcanic province indicate that there has been a relationship between magma 

composition and rifting (woldegabriel and Aronson, 1986; Hart et al., 1989). The initial phase of 

development of the MER is attributed to the influence of a mantle plume beneath the Ethiopian Plateau 

resulting in widespread flood-basalt volcanism and plateau uplift with two main episodes dated at 45–30 

Ma and 18–14 Ma (Davidson and Rex, 1980; Mohr, 1983; Hart et al., 1989; WoldeGabriel et al., 1991; 

Ebinger et al., 1993; Hofmann et al., 1997). In the southern and central sectors of the MER, volcanism 

started as early as in Eocene time with important basaltic eruptions, associated with an early stage of 

rifting characterized by uplift and faulting (WoldeGabriel et al., 1990, 1991; Ebinger et al., 1993). From 

Late Oligocene to Early Miocene times, the first major phase of rifting within the MER resulted in a 

series of asymmetric half-grabens with alternating polarity. By mid-Late Miocene time, the eastern and 

western faulted margins of the MER had formed (Davidson and Rex, 1980; WoldeGabriel et al., 1990) 

The most important volcano–tectonic event in the central sector of the MER occurred in Early Pliocene, 

with the eruption of voluminous flows of rhyolitic ignimbrites and the collapse of very large calderas 

(Di Paola, 1972; Woldegabriel et al., 1990). From early Pleistocene to the present, tectonic and volcanic 

activity was concentrated along the Wonji Fault Belt (WFB) to the east, and along the Silti Debre Zeit 

Fault Zone (SDZFZ) to the west (Mohr, 1962; Di Paola, 1972). 

The MER divides the volcanic province of Ethiopia into northwestern and southeastern plateau during 

the Miocene. Despite the occurance of widespread faulting, subsidence and uplifting related to the 

formation of the MER, the pre-rift geology is barely exposed along the rift system (Woldegabriel et al., 

2002). The boundary faults expose crystalline basement rocks beneath tertiary volcanic rocks in the 

southern sector of the MER, whereas in the central and the northern sectors, the rift margins are tertiary 

mafic and silicic rocks. Pre-Tertiary crystalline basement and Mesozoic sedimentary rocks that are 

unconformably overlain by Oligocene to Pliocene basalt flows and silicic tephra are exposed in the 

western margin of the central sector at the Gurage Mountains (Woldegabriel et al., 1990). 

As in many parts of the Afro-Arabian rift system, the Ethiopian volcanic terrain was constructed by 

several episodes of eruptions representing diverse volcanic sequences. The volcanic products in places 
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were fissural basaltic lava flows, stacked one over the other, alternating with volcanoclastic deposits 

derived from tuff, ignimbrite and volcanic ash. 

In the rift recent continental type volcanism has developed, giving rise to lage silicic rocks from 

predominantly central type eruptions partly accompanied by fissural basaltic lava flows. The oldest 

flows are rarely exposed beneath thick younger flows, and the individual flows are only local (Barberi et 

al., 1975; Zanetti et al., 1978; Berhe et al., 1987). The basalts are now concealed by a cover of silicic 

stratoid volcanics (Di Paola, 1972). Subsequent volcanic activitity has been largely confined to the 

active Wenji Fault Belt running parallel to the rift axes (Mohr, 1967). 

The highlands are dominantly covered with basic volcanic rocks mainly of tertiary age. The oldest 

volcanic rocks (Plateau Trap Series or Volcanites of Plateau; Figure 2.7, Unit 1) are exposed in the 

western and eastern elevated areas.  The western escarpment consists of about 1000 m of basaltic lava 

flows, with inter-bedded ignimbritic horizons, overlain by massive rhyolites, tuffs and basalts (Di Paola, 

1972; Merla et al., 1979; Woldegabriel et al., 1990). Radiometric ages range from 40 to 25 Ma in the 

basalts and from 37 to 27 Ma in the rhyolites (Merla et al., 1979; Woldegabriel et al., 1990). Middle 

Miocene to Pliocene (15–3 Ma) basalt flows, rhyolites and tuffs unconformably cap the early Tertiary 

volcanic units (Merla et al., 1979; Woldegabriel et al., 1990). The eastern plateau is characterized by 

shield volcanoes of Pliocene to early Pleistocene (4.6–1.6 Ma) consisting of mainly trachytes with 

subordinate basalts, mugearites and phonolites (Di Paola, 1972) (Arusi Shield Volcanoes; Figure 2.7, 

Unit 2). 

In the central sector of the MER, the outcropping lithologies consist of plio-pleistocene volcanites 

(pyroclastic products of felsic composition and subordinate basaltic lava flows) and sediments 

(Benvenuti et al., 2002); and the sediments in large consists of lacustrine deposits (Figure 2.7, Unit 3) 

and volcano-clastic and fluvial sediments (Figure 2.7, Unit 4). They are characterized by upper 

quaternary fluvio-volcano lacustrine facies, and colluvial deposits that represent weathered/remobilized 

volcanic rocks and silicic tephra. Figure 2.8 shows fluvio-lacustrine sediments outcrop, east of Lake 

Shala.  The sediments occupy the rift floor where in the past it was covered by a wide lake. The four 

present day lakes had once been a single fresh water lake (Nilsson, 1940). 

In particular, most of the MER rift floor is covered by silicic pyroclastic materials (rift floor ignimbrites; 

Figure 2.7, Unit 5), Early to Middle Pliocene (4.2–3 Ma, Woldegabriel et al., 1990) mainly consisting 

of peralkaline rhyolitic ignimbrites, interlayered with basalts and tuffs, associated with layered and 
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unwelded pumices (Di Paola, 1972; Woldegabriel et al., 1990). Ashes are frequently found inter-bedded 

with ignimbrites and pumice layers.  

Some outcrops of alkaline and peralkaline rhyolitic lava flows and domes associated with pumice and 

ash (with in unit 3) represent the late silicic volcanic events (Di Paola, 1972). These lavas were erupted 

from Late Pliocene to Middle Pleistocene and, in some places; crop out as remnants of large calderas. 

The Gademota Ridge, dated 1.30–1.27Ma (Laury and Albritton, 1975; Mohr et al., 1980; Woldegabriel 

et al., 1990) is one such remnant. It rises in an arc structure, 25–30 km in diameter, up to 400 m above 

the plain west of Lake Ziway. 

 

A more recent volcanic unit, (basaltic lava flows; Figure 2.7, Unit 6), crops out along the SDZFZ and 

the WFB (Di Paola, 1972; Kazmin et al., 1980); it is made up of basaltic lava flows, associated with 

hyaloclastites and scoria cones. It is very recent with a radiometric age of 0.13 Ma (Woldegabriel et al., 

1990).  

Young volcanoes and calderas, such as the Alutu volcano, and Corbetti calderas, are made up of 

rhyolitic lava flows, unwelded pumice flows, pumice falls and ashes (rhyolite lava flow; Figure 2.7, 

Unit 7). Obsidian flows represent the final product of the volcanic activity (Di Paola, 1972; Mohr et al., 

1980). Figure 2.9 shows pumice falls at NE of Lake Ziway. 

 

These recent volcanoes started to be active from the Middle Pleistocene (about 0.25 Ma, Di Paola, 1972; 

Mohr et al., 1980; Woldegabriel et al., 1990) with intermittent Late Holocene activity; obsidian flows 

and pumices were dated 2000 yBP (Gianelli and Teklemariam, 1993) and very recent ash deposits 1500 

and 230 y BP (Haynes and Haas, 1974). Many of these volcanoes are presently in a fumarolic stage (Di 

Paola, 1972). 
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Figure 2.7: Simplified geologic map of the study area (Ziway-shala lakes basin) modified  

from (Dainelli et al., 2001). 
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Figure 2.8: Fluvio-lacustrine sediment, east of         Figure 2.9: Pumice deposit, northeast of Lake Ziway  

                Lake Shala (photo: January 2007)         (photo: January 2007) 
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3. Geochemistry of rocks and sediments from the central MER 

 

3.1. Rock/sediment sampling and analytical techniques 

 

Representative rock and sediment samples were collected during the field campaign. Rock samples were 

preliminary characterized by studying thin-sections at the transmitted light microscope. Whole-rock 

analysis of selected samples were performed by X-ray fluorescence spectrometry (XRF) on pressed 

powder pellets using wavelength-dispersive automated ARL Advant'X spectrometer at the Department 

of Earth Sciences of the University of Ferrara. Accuracy and precision, based on the analysis of certified 

international standards, are estimated as better than 3% for Si, Ti, Fe, Ca and K, and 7% for Mg, Al, Mn, 

Na, and 10% for trace elements at ppm level. Representative samples that reflect the main lithotypes 

were subsequently selected for leaching experiments.  

In these experiments, powdered samples were mixed with distilled water having a pH of about 5.5, at a 

ratio of 1 to 5 (10g/50ml; room temperature), and shaken for 12 months at a frequency of 100 rev/min. 

The experiment was carried out in closed system, i.e. utilizing closed plastic bottles which did not allow 

interaction with atmospheric gases (such as CO2). The test simulates the potential extractability 

(leachability) of soluble components during water-rock/sediment interaction processes. Analysis of 

major and trace elements on leachates were done, with the above mentioned analytical techniques, after 

separation from the residue and filtering through (0.45µm membrane filters). 

In situ analyses of the constituent phases (minerals and volcanic glasses) were carried out with a Cameca 

SX 50 microprobe (CNR-IGG Institute of Padova) using natural silicates and oxides as standards. 

 

3.2. Chemical and mineralogical composition of rocks 

 

Bulk rock XRF analyses of the aquifer solid matrixes are reported in Table 3.1. The results is reported 

in an alkali-silica classification diagram (Figure 3.1), indicate that the prevalent volcanic rocks are 

rhyolites (i.e. felsic magmas) and that some of the fluvio-volcano lacustrine sediments represent the 

weathered - redeposited  products of the above mentioned volcanic rocks (Table 3.1). These rocks are 

also further characterized by their high oxides of SiO2 and incompatible elements like Zr, Ce, La, Nb, Y, 

Rb and lower concentration of compatible elements Co, Ni, Cr, V, and Sc.  
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 TW9 TW11 Ted3 Ted4 Ted5 Ted25 Ted47 Ted48 Ted51 Ted52 Ted53 Ted6 Ted21 

 Rhyolites Basalt Sediments 

SiO2 74.21 67.04 73.03 71.34 72.12 75.81 73.46 69.81 71.86 74.68 50.63 71.78 64.63 

TiO2 0.33 0.45 0.34 0.36 0.40 0.27 0.68 0.60 0.36 0.38 2.49 0.37 0.64 

Al2O3 9.96 16.02 10.38 9.33 9.73 9.32 9.40 11.10 9.35 9.87 16.67 8.75 8.23 

Fe2O3 5.02 4.68 5.61 5.93 5.74 4.62 5.06 6.31 5.48 5.26 12.13 6.66 5.09 

MnO 0.23 0.18 0.20 0.20 0.21 0.21 0.11 0.20 0.21 0.20 0.17 0.23 0.19 

MgO 0.01 0.13 0.01 0.14 0.18 0.00 1.33 0.51 0.23 0.05 3.44 0.12 3.88 

CaO 0.26 0.60 0.24 0.24 0.36 0.19 0.99 0.72 0.86 0.27 9.05 0.29 4.53 

Na2O 5.78 4.47 5.63 2.89 4.58 5.26 0.97 3.67 4.36 4.88 3.70 2.87 1.88 

K2O 4.04 4.37 4.38 4.67 4.33 4.09 2.31 4.12 4.00 4.17 1.33 4.28 2.58 

P2O5 0.00 0.03 nd nd 0.02 nd 0.02 0.14 nd nd 0.41 nd 0.07 

LOI 0.15 2.04 0.18 0.34 2.34 0.23 5.67 2.83 3.29 0.24 0.00 4.64 8.26 

              

Ba 202 799 49 50 139 100 167 627 79 72 438 39 211 

Ce 278 108 267 256 192 696 120 187 243 263 nd 283 124 

Co nd nd nd nd nd nd 3.4 0.6 nd nd 33 nd 2.1 

Cr nd 1.0 nd nd nd nd 28 nd nd nd 36 nd 14 

La 133 166 168 159 150 238 130 197 143 136 88 166 110 

Nb 166 123 143 130 115 225 82 113 118 135 29 132 90 

Ni nd nd 3.7 6.2 3.9 5.9 21 7.9 2.0 nd 12 4.1 14 

Pb 5 0.3 18 17 18 24 17 12 17 20 5.3 19 12 

Rb 91 68 125 141 119 122 86 85 115 127 25 119 84 

Sr nd 112 0.7 3.9 16 1.9 103 38 14 3.4 473 5.4 250 

Th 19 15 19 24 19 21 18 16 18 19 4.1 20 14 

V 2.1 17 4.9 6.7 7.0 5.2 30 19 7.8 3.9 319 7.1 45 

Y 98 83 101 88 87 174 60 117 84 73 34 94 58 

Zn 251 166 225 212 219 395 166 244 219 242 99 234 162 

Zr 1076 812 1031 1000 910 1728 749 1016 942 1047 210 1023 709 

Cu nd 0.8 3.5 3.6 3.6 2.0 16 4.6 3.7 4.0 68 2.6 8.1 

Ga 21 22 26 31 28 28 28 36 32 26 21 31 31 

Nd 93 181 24 36 33 387 nd 148 28 nd nd 80 nd 

S nd nd nd nd nd nd nd nd nd nd nd nd nd 

Sc nd 8.4 4.7 5.5 6.7 5.2 11 8.2 5.1 5.1 29 4.3 11 

 

Table 3.1: Bulk rock XRF analyses of the MER rocks and sediments 
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Ted29 Ted38 Ted39 Ted45 TW14 TW15 TW22 TW29 TW30 TW31 TW34 TW39 TW43 

Sediments 

49.66 55.42 67.45 70.33 67.64 57.78 61.30 70.35 67.68 72.06 71.14 71.25 56.01 

0.33 0.58 0.39 0.36 0.46 0.46 0.59 0.65 0.61 0.60 0.40 0.40 0.20 

1.76 9.57 8.75 8.52 9.55 8.97 7.96 10.46 12.00 10.74 9.08 9.40 7.28 

1.01 6.68 5.32 8.05 5.29 6.63 4.80 6.09 7.33 5.66 6.35 6.53 5.35 

0.05 0.21 0.21 0.24 0.22 0.26 0.21 0.19 0.34 0.28 0.47 0.25 0.26 

24.68 3.04 1.14 0.41 1.36 2.53 5.34 0.77 0.47 0.31 0.32 0.13 0.47 

3.36 10.34 4.19 0.24 4.17 8.17 5.92 0.96 0.38 0.27 0.41 0.33 0.35 

3.81 1.84 3.16 3.88 2.54 2.98 1.36 4.02 3.95 5.41 3.62 2.66 4.82 

0.62 3.15 2.84 4.68 3.12 3.38 2.27 4.20 4.13 4.16 4.31 4.29 2.47 

0.05 0.04 0.07 nd 0.08 0.04 0.07 0.16 0.03 0.02 0.02 0.01 0.01 

14.67 9.12 6.46 3.29 5.58 8.80 10.18 2.15 3.08 0.48 3.89 4.76 22.78 

             

85 260 253 46 289 380 207 596 360 271 70 45 349 

nd 30 258 233 200 155 148 197 227 198 222 243 153 

3.3 3.7 2.4 nd nd nd nd nd nd nd nd nd nd 

nd 14 8.6 nd 12 10 17 1.9 1.1 nd nd 1.3 nd 

7.9 128 152 167 109 109 82 103 141 133 131 137 113 

nd 96 139 131 123 103 72 101 153 149 169 124 nd 

6.2 10 11 2.4 0.9 nd 4.9 nd nd nd nd 0.9 2.9 

2.9 13 13 15 5.3 1.7 0.4 4.7 2.2 4.8 6.1 7.4 1.7 

10 87 81 132 83 67 68 86 84 77 109 106 14 

791 261 116 5.9 113 256 278 47 12 4.3 15 5.3 31 

3.6 11 14 16 14 10 12 14 15 17 19 17 29 

249 33 33 6.8 27 20 52 26 10 6.7 5.2 6.2 4.6 

5.4 67 81 101 73 65 51 87 94 78 97 89 nd 

17 133 238 240 175 152 134 216 233 228 230 216 126 

1.2 662 944 1055 849 666 601 931 872 848 1131 988 337 

14 8.2 7.5 3.4 2.1 2.3 6.7 1.8 nd nd 0.7 nd nd 

0.2 32.8 29 35 21 25 18 26 28 24 29 25 47 

97 nd 44 62 86 80 63 88 107 99 93 106 120 

953 nd nd nd nd nd 145 nd nd nd nd nd nd 

8.9 9.9 10 5.8 5.8 4.9 10 4.4 11 9.7 1.0 0.2 0.4 

 

Table 3.1: continued from the previous page 
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Figure 3.1: TAS diagram of volcanic rocks from the central MER. 

 

The petrographic investigation of representative thin sections shows that they are characterized by a few 

crystals of quartz, alkali-feldspar, orthopyroxene and amphibole within a prevalent glassy groundmass. 

Potential F-bearing minerals such as fluorite and apatite have not been observed. 

Microprobe analyses have been carried out on the main mineral phases and on the glassy matrix (Table 

3.2). The results revealed that the concentration of F is as high as 180 ppm in the glassy groundmass and 

up to 260 ppm in accessory phases such as alkali amphibole (riebeckite composition) (Table 3.3). 

Therefore, considering the modal proportions of the investigated rocks (hydrous mineral phases are 

extremely rare); we assume that most of the fluorine budget is concentrated in the glassy matrix. 

This glassy matrix is reactive and easily affected by weathering processes that induce the neo-formation 

of clay minerals that can potentially trap fluorine (as F ¯can replace OH¯ in phyllosilicates). 

This implies that the weathering products of these volcanic rocks, i.e. the clay-rich fluvio/volcano 

lacustrine sediments, are enriched in F ¯ with respect to the original mother rocks. Coherently, the 

higher concentrations of F in groundwater have been recorded in those wells drilled on the 

fluvio/volcano lacustrine sediments. 
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Label TW30 (Ignimbrite) TW31 (Ignimbrite) TW29(Ignimbrite) 

 Amphiboles Glass Amphiboles Glass 

SiO2 50.98 50.39 50.56 51.21 50.78 71.12 66.20 68.66 51.54 51.09 51.10 50.93 50.60 51.01 73.68 72.76 72.05 

TiO2 2.26 2.29 2.18 2.18 2.23 0.55 0.48 0.52 2.11 2.15 2.18 2.38 2.17 2.19 0.34 0.33 0.27 

Al2O3 1.85 1.29 1.23 1.43 1.45 9.23 8.80 9.02 1.17 1.17 1.15 1.22 1.28 1.19 9.67 9.75 9.98 

FeO 17.01 21.24 21.23 19.71 19.80 6.66 5.60 6.13 21.73 21.33 21.78 21.65 20.86 21.46 4.83 4.70 5.01 

MnO 1.01 1.49 1.40 1.20 1.27 0.31 0.31 0.31 1.40 1.39 1.35 1.39 1.37 1.38 0.20 0.21 0.25 

MgO 11.83 8.69 9.19 10.74 10.11 0.24 0.21 0.22 9.17 9.01 9.17 9.00 9.28 9.12 0.04 0.03 0.00 

CaO 6.03 4.94 4.92 5.32 5.30 0.22 0.13 0.18 4.66 4.73 4.91 4.66 4.88 4.77 0.21 0.20 0.23 

Na2O 5.02 5.50 5.37 5.02 5.23 3.85 5.39 4.62 5.71 5.67 5.45 5.66 5.61 5.59 3.95 3.72 3.79 

K2O 0.79 0.93 0.82 0.86 0.85 4.50 4.34 4.42 0.87 0.97 0.94 0.94 0.90 0.92 4.06 4.04 3.98 

NiO 0.032 0.005 0.000 0.074 0.028 0.000 0.014 0.007 0.037 0.000 0.000 0.000 0.079 0.019 0.076 0.028 0.066 

Wt%(F)  0.023 0.022 0.024 0.016 0.021 0.006 0.017 0.012 0.026 0.026 0.016 0.022 0.018 0.019 0.018 0.011 0.008 

Wt%(S)  0.017 0.007 0.011 0.000 0.009 0.000 0.079 0.040 0.000 0.011 0.000 0.024 0.002 0.009 0.002 0.025 0.029 

Wt%(Cl)  0.046 0.002 0.000 0.010 0.015 0.150 0.282 0.216 0.012 0.000 0.002 0.000 0.002 0.005 0.159 0.155 0.142 

 

Table 3.2: Microprobe analyses on amphibole and volcanic glass of rhyolitic ignimbrites 

 
Rock type Rift floor Ignimbrites 

Label TW29 TW30 TW31 

Phases Glass Glass Amphibole Amphibole 

No of analysis points  4 2 5 6 

SiO2 72.63 68.66 50.78 51.01 

TiO2 0.31 0.52 2.23 2.19 

Al2O3 9.84 9.02 1.45 1.19 

FeO 4.82 6.13 19.80 21.46 

MnO 0.19 0.31 1.28 1.39 

MgO 0.02 0.23 10.11 9.12 

CaO 0.22 0.18 5.30 4.77 

Na2O 4.10 4.62 5.23 5.6 

K2O 4.03 4.42 0.85 0.92 

NiO 0.055 0.007 0.03 0.019 

Average Wt% (F )  0.011 0.012 0.021 0.019 

average PPM (F) 110 120 210 190 

Maximum PPM (F) 180 170 240 260 

Average Wt%(S )  0.024 0.040 0.009 0.009 

Average Wt%(Cl)  0.143 0.216 0.015 0.005 

 

Table 3.3: Summerized (average and maximum) concentrations from microprobe analyses on amphibole 

and volcanic glass of rhyolitic ignimbrites 
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4. Hydrogeochemistry of MER waters 

 

4.1. Introduction 

 

The geochemistry of natural waters involves the study of the composition and sources of chemical 

elements as well as the understanding of processes that control the composition of geochemical 

anomalies in waters. This chapter provides a brief discussion on the lithologic and hydrochemical 

controls on the chemical composition of waters. Considering that in the study area people principally 

relies on groundwater wells and springs for portable water resources, the investigation mainly focuses 

on toxic elements (such as F¯) which is negatively affecting the health of millions of  the local 

populations. 

 

4.2. Water sampling and analytical techniques  

 

Water samples were collected during dry seasons in January 2006 and 2007 from 53 sites including 12 

hot springs, 2 cold springs, 23 groundwater wells, 8 rivers, and 6 lakes in the Ziway-Shala basin of the 

MER valley, for the analysis of major ions (Na+, K+, Ca2+, Mg2+, F¯, Cl¯, NO3
−, SO4

2−
 and HCO3

−) and 

trace elements (Li, Be, B, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sb, Te, Ba, 

Hg, Tl, Pb, Bi, U). Samples were stored in 100 ml polyethylene bottles after filtering through 0.45 µm 

membrane filters. For trace element analysis, samples were filtered and acidified with ultra-pure 

concentrated nitric acid. pH, electrical conductivity, and temperature were measured in situ. 

Analyses were carried out at the Department of Earth Sciences of the University of Ferrara using AA 

spectrometry for cations (Na+, K+, Ca2+, Mg2+), ion chromatography and spectral photometry for anions 

(F¯, Cl¯, NO3
−, SO4

2−). Titration techniques were used to analyze total alkalinity (CO3
2− + HCO3

−). 

Analytical precision and accuracy are estimated as better than 5% (10% at sub-ppm levels) for both 

anions and cations on the basis of repeated analysis of samples and standards. The reproducibility of the 

data has been also cross-checked in the external laboratories of the Technical-Industrial Institute (ITI) of 

Ferrara. 

 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analyses were done using Thermo Electron 

series X Spectrometer. Quantitative determinations were performed by external calibration with multi-
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element standards in aqueous matrices using Rh, In and Re as internal standard to correct instrumental 

drifts. Precision based on replicate analyses are estimated on average better than 4 % for As, B, Cr, V, 

Co, Fe, Zn, Cu, Ga, Pb, Ni, Cd, Mo, Sb, Al, Ba and about 15 % for the rest (Li, Be, Mn, Rb, Sr, Te, Hg, 

Bi and U). Accuracy, based on analysis’s results of certified reference material (CRM) is on average 

better than 12% for all elements.  

 

4.3. Geochemical composition of the MER waters. 

 

4.3.1. Major ion compositions 

 

The major ions geochemical analyses of the different MER water types are reported in Table 4.1, show 

extremely variable composition, ranging from low TDS (and e.g. low F¯) in rivers to very high TDS 

(and e.g. high F¯) in the rift groundwater wells, hot springs and lakes (see sampling points on Figure 

4.1).  

 
ID TYPE X Y T(OC) EC pH TDS Na+ K+ Mg2+ Ca2+ F− Cl− HCO3

− SO4
2− NO3

− 

1 RI 38.651 7.726 22.2 500 8.4 425 64 15 9.4 25.9 2.2 15 287 7 3.8 

2 RI 38.822 8.153 23.3 530 8.7 583 56 12 20.9 42 1.5 16 409 25 2.0 

3 RI 39.003 8.046 21.5 180 7.8 174 15 5 5.2 16.8 1.6 4 125 1 2.6 

4 RI 39.054 7.801 18.7 90 8.3 98 5 2 2.7 18.5 0.2 1 67 0.8 2.0 

5 RI 38.892 7.521 10.6 60 7.9 73 5 3 1.4 10.7 0.1 2 49 1.5 6.2 

6 RI 38.863 7.465 11.5 40 7.8 53 3 2 1.2 8.4 0.1 1 37 0.2 1.8 

7 RI 38.743 7.487 16.9 150 7.9 118 13 5 2.3 17.9 0.5 3 73 2.3 11.9 

8 RI 38.657 7.262 14.0 150 7.9 156 16 7 2.2 40.7 0.3 7 79 4.1 10.2 

9 HS 38.628 7.489 48.5 2750 8.9 1600 593 18 bdl 0.9 19.6 279 988 3.3 bdl 

10 HS 38.634 7.477 93.4 14440 8.2 7919 2288 25 bdl 0.3 97 1462 3434 612 43.3 

11 HS 38.634 7.477 57.3 10570 7.8 7501 2416 26 bdl 1.4 64 1324 3642 28 bdl 

12 HS 38.634 7.477 91.4 13190 8.0 6589 2109 1 bdl 1.9 55 1148 3251 22 bdl 

13 HS 38.637 7.477 52.6 1780 8.2 1141 346 26 bdl 3.2 8.4 196 561 bdl bdl 

14 HS 38.423 7.402 59.3 4630 7.3 3600 969 66 8 8.8 17.5 321 2141 68.8 bdl 

15 HS 38.436 7.422 51.8 4870 8.2 3896 1122 64 0.6 1.7 17.6 356 2267 66 bdl 

16 HS 38.811 7.664 38.8 630 7.3 499 105 11 5.5 22 1.9 27 293 32.6 0.3 

17 HS 38.773 7.712 62.0 3900 7.0 2766 802 60 0.7 13.9 23.4 435 1407 23 bdl 

18 HS 38.773 7.690 96.0 4530 8.4 1830 170 39 bdl 0.9 23.5 429 915 253 34.4 

19 HS 38.628 7.447 45.0 4665 9.1 3679 945 47 0.2 0.9 45.9 488 2098 54 bdl 

20 HS 38.853 7.934 78.0 2040 6.8 1728 398 29 3.3 11 13 128 1110 35 bdl 

21 GWL 38.798 7.793 82.0 2160 7.4 1297 306 110 bdl 0.5 13.6 162 653 52.9 bdl 

22 GWL 38.796 7.788 85.6 4600 8.2 3051 771 152 bdl 0.8 40 207 1842 37.7 bdl 

23 LW 38.684 7.538 24.2 1730 9.0 1377 387 21 0.5 9.7 12.5 131 769 46.5 4.7 
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24 LW 38.448 7.127 22.1 800 8.8 715 161 27 6 13.5 7.4 24 476 0.6 1 

25 LW 38.424 7.403 24.6 >20000 10.1 64267 17725 1109 bdl bdl 233 6330 38583 288 bdl 

26 LW 38.435 7.423 25.8 >20000 9.6 11563 3426 125 0.6 4.5 90 1326 6497 95 bdl 

27 LW 38.595 7.671 27.6 >20000 9.7 52725 15212 619 bdl 0.2 384 5361 30596 553 bdl 

28 LW 38.736 7.919 25.2 420 8.6 379 61 11 7.6 27.3 1.5 10 253 6.6 2.4 

29 WL 38.689 7.875 24.6 840 8.1 876 180 67 5.7 7.8 4.2 9 598 4 0.4 

30 WL 38.724 7.841 26.0 1160 8.3 1164 241 33 4.9 4.4 2.8 16 857 5 1.6 

31 WL 38.800 7.542 24.5 210 8.3 188 31 5 0.8 7.3 1.2 1 140 1 0.2 

32 WL 38.772 7.520 21.5 340 7.6 323 18 6 7.7 45.7 0.4 2 244 bdl 0.5 

33 WL 38.699 7.926 28.2 1020 8.3 1013 232 18 3.1 6.7 2.1 12 738 2 1.3 

34 WL 38.834 8.159 24.4 640 7.7 623 90 11 11.5 33.4 3.6 20 448 6 4.3 

35 WL 38.812 8.145 25.1 2750 7.8 2227 565 25 6.7 20.8 20 176 958 456 104 

36 WL 38.999 8.053 25.3 300 7.8 267 50 5 2.7 10.2 1.8 2 195 bdl 1 

37 WL 38.709 7.976 28.3 3360 8.2 3564 858 31 4.2 3.7 13.6 106 2547 7 bdl 

38 WL 38.680 7.991 27.3 2180 8.8 1884 467 17 bdl 1.6 21.4 167 1025 186 29.5 

39 WL 38.934 8.145 25.6 470 7.6 367 81 8 2.4 22.5 2.4 4 183 63.5 6.4 

40 WL 38.966 8.120 24.6 350 7.5 871 61 9 2.3 27.7 3.1 145 226 397.7 15 

41 WL 39.015 8.038 22.6 200 7.6 204 30 14 1.9 13.5 0.8 1 140 2 1.6 

42 WL 38.749 7.482 22.5 220 8.3 211 33 2 1.1 24.7 1.5 1 146 0.8 0.4 

43 WL 38.706 7.331 24.0 220 7.3 266 30 4 2.6 25 2 1 201 0.5 0.7 

44 WL 38.395 7.152 23.2 1320 8.1 1252 307 12 5.6 17 13.1 17 872 7.8 bdl 

45 WL 38.854 7.841 30.6 520 7.6 501 86 10 10.4 34 4.1 11 342 4 0.2 

46 WL 38.838 7.821 32.3 2260 7.6 1952 480 28 30.5 30.7 7.1 266 1077 33.5 2.7 

47 WL 38.637 7.833 36.0 2390 8.1 1949 557 26 0.1 29 14.3 153 1092 107 bdl 

48 WL 38.648 7.720 23.6 460 7.1 420 69 12 4.6 41 1.7 11 271 8.7 bdl 

49 WL 38.822 8.159 25.2 490 7.8 489 55 2 11.2 68 0.9 4 342 5.8 0.1 

50 WL 38.742 8.066 23.7 1770 8.7 1735 443 21 1.9 7.2 10 19 1229 3.7 bdl 

51 WL 38.532 7.006 36.4 730 7.9 668 140 15 3.2 18.9 3.1 7 475 6.4 bdl 

52 CS 38.743 7.487 22.5 180 6.6 137 17 5 2.1 22.7 0.7 5 79 4.8 24 

53 CS 38.869 7.891 27.6 280 7.8 258 40 6 4.2 22 1.3 2 180 2.2 bdl 

 

Table 4.1: Major ion hydrochemical compositions (in mg/L) of MER waters from  rivers, hot springs, 

geothermal wells, groundwater wells, cold springs, and lakes in the Ziway-Shala basin. WL=Groundwater 

wells, HS=Hot springs, CS=Cold springs, GWL=Geothermal wells, LW= Lakes (ID: 23=Langano, 

24=Awasa, 25=Chitu, 26=Shala, 27=Abijata, 28=Ziway), RI= Rivers (ID: 1=Bulbula, 2=Meki, 3=Ketar); 

bdl = below detection limit; X and Y are geographic coordinates expressed in degree decimal. 

 

The average TDS values in the groundwater wells and hot springs (39-96 oC) are 1050 and 3610 mg/L 

respectively. TDS is even more variable in lake waters, with values which vary from the fresh water 

Ziway lake (379 mg/L), brackish water Langano lake (1377 mg/L) to the saline Shala, Abijata and Chitu 

lakes (11563, 52725 and 64267 mg/l respectively). pH ranges between neutral to alkaline (6.8-9.1) in 



 45

groundwater wells, thermal springs and rivers whereas the lakes have pH range of 8.6-10, with the highest 

value recorded in the alkaline lake Chitu.  

 

 
 

Figure 4.1:  Simplified geologic map of the study area (Ziway-Shala lakes basin) modified  

from (Dainelli et al., 2001) reporting the localities of water sampling. 
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Comparing the relative concentration of major ions in the waters from the central MER valley, Na+ is 

always higher than K+, since Na is more abundant than K in the host rocks, and K-minerals in primary 

volcanic parageneses are more resistant to weathering than Na-minerals (i.e. plagioclase is more 

alterable than K-feldspar); moreover K+ is easily stabilized in neo-formation minerals (clay minerals). 

Mg2+ is lower in concentration than Ca2+, probably due to the low abundance of Mg2+in the outcropping 

rocks. Depletion of Ca2+ and Mg2+ and enrichment in Na+ and K+ is observed along the groundwater 

flow paths, moving from the highlands to the rift axial zone. The high concentration of bicarbonate is 

not related to calcite dissolution (carbonates are not present in the studied area) and therefore it is 

induced by magmatic outgassing (CO2 can upraise along the many faults still active in the rift). CO2 also 

increases the water aggressivity, i.e. its capability to trigger water/rock interaction processes thus 

explaining a close geochemical link between HCO3
− and other parameters such as Na+, Cl¯, and F¯.  A 

few groundwater samples were identified with high concentration of NO3
− and SO4

2− reaching up to 104 

mg/L and 456 mg/L respectively, which is most probably caused by anthropogenic pollutions 

(agricultural and human activities). 

 

Different hydrochemical facies were identified on the basis of the (Langelier and Ludwig, 1942) 

diagram reported in Figure 4.2. In this diagram the different water types, i.e. groundwater wells (in the 

rift and highlands), geothermal wells, hot springs, rivers and lakes are represented by distinct symbols. 

Groundwater from the highlands (Ayenew, 2005) typically show a Ca2+(Mg2+)- HCO3
− hydrochemical 

facies similar to that of rivers and cold springs where the sum of Ca2+ and Mg2+ exceeds Na+ and K+. 

On the contrary hot springs and most groundwater in the rift display a Na+- HCO3
− fingerprint, with Na+ 

and HCO3
−

 proportions constituting more than 80 % of all the ionic species in the solution.  
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Figure 4.2: Langelier and Ludwig, 1942 diagram showing compositions of different water types of the 

central MER in Ziway-Shala basin. 

 

Therefore, it can be concluded that there is a general compositional change from a Ca2+-Mg2+/HCO3¯ to 

a Na+-HCO3¯ hydrochemical facies along the groundwater flow path from the highlands to the rift floor. 

This result is consistent with other hydrochemical studies of the area (Darling et al., 1996; Chernet et al., 

2001; Ayenew, 2005). Fluoride concentration increases during this evolution displaying low values in 

Ca2+-Mg2+/HCO3¯ waters from the highlands and higher values in the Na+-HCO3¯waters from the rift. 

The average concentration of fluoride is 0.8 mg/L in rivers, 32 mg/L in thermal springs, 27 mg/L in deep 

(>2 kms) geothermal wells, 6 mg/L in groundwater wells, and 121 mg/L in lakes. 38% of rivers, 87 % of 

the groundwater wells and 100 % of lakes, thermal and geothermal waters have fluoride value beyond 

the safe drinking water limit (WHO, 2006). 
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4.4. Source of fluoride 

 

4.4.1. Chemical and mineralogical composition of rocks 

 

In chapter 3, the chemical and mineralogical composition rocks were briefly described and the result 

indicated that the prevalent volcanic rocks are rhyolites (i.e. felsic magmas) and that the fluvio-volcano 

lacustrine sediments represent the weathered (re-deposited) products of the above mentioned volcanic 

rocks. The microprope result also showed that most of the fluorine budget is concentrated in the glassy 

matrix. This glassy matrix is reactive and easily affected by weathering processes that induce the neo-

formation of clay minerals that can potentially trap fluorine (as F¯ can replace OH¯ in phyllosilicates). 

This implies that the weathering products of these volcanic rocks, i.e. the clay-rich fluvio-volcano 

lacustrine sediments, are enriched in F¯with respect to the original mother rocks. 

 

A plausible hypothesis is that during explosive volcanic eruption, volcanic gases such as H2O, CO2, 

SO2, HCl, H2S and HF may have been trapped within the tephra (Giggenback, 1996). The adsorption 

process is effective on smaller particles having large surface area (Oskarsson, 1980) such as ash particles 

(<2 mm). Since fluorine is highly soluble in water, it can be subsequently transferred in the water system 

if the volcanic deposits are leached by water (Gregory, 1996) during water-rock interactions. In this 

hypothesis, the anomalous F¯ concentration recorded in thermal water may not reflect a direct magmatic 

contribution (presence of juvenile F¯-rich fluids), but it probably simply means that hot water is more 

aggressive and capable to leach the aquifer matrix. 

To verify the mentioned process we performed laboratory leaching-tests on representative lithotypes 

outcropping in the rift valley. The powdered samples were mixed with distilled water having a pH of 

about 5.5, at a ratio of 1:5 (10 g/50 ml; room temperature), and shaken for 12 months at a frequency of 

100 rev/min. The experiment was carried out in closed system, i.e. utilizing closed plastic bottles which 

did not allow interaction with atmospheric gases (such as CO2). 

The concentration of F¯ in the real natural water can be higher than those recorded in the experimental 

leachates, as the resulting F¯ concentration in experimental leachates is expected to increase with the 

increase of time. Higher temperature and introduction of CO2 have to be considered as additional factors 

favouring high fluoride in the natural waters of the rift. These tests, that simulate the water–
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rock/sediment interaction processes, highlight the potential contribution (i.e. the leachability) of each 

investigated lithotype to the release of fluorine in the water system. 

The result highlights a clear relationship between high pH and high fluoride concentration. In particular, 

relevant increases in pH and F¯ (up to 7.6 mg/l) have been recorded in the leaching tests of the fluvio-

volcano lacustrine sediments. Therefore, these data confirm that the fluvio-volcano lacustrine sediments 

are the main reservoir of fluorine in the area and that they can release it into the water system. The 

water–sediment interaction is also reflected in higher TDS and EC (Table 4.2). Accordingly, high 

fluoride concentration is found in leachates characterized by high pH, Na+ and HCO3¯ (Figure. 4.3 a, b, 

c, d). The rock/sediment leachates are generally characterized by a Na+/HCO3¯ hydrochemical facies 

with high pH values (near neutral to alkaline) similar to natural waters of the study area (Figure 4.4). 

The major ions chemical composition of the silicic volcanic rock and sediment leachtes is displayed on 

Table 4.2. 
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Figure 4.3:  Leaching test results: a) Na+ versus pH; b) F¯ versus pH c) F¯ versus Na+ d) F¯ versus 
HCO3¯. 
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Rhyolites Fluvio-volcano lacustrine sediments 

In 

mg/L TW9    TW11   TW29  TW30  TW31  TW14   TW15   TW22   TW34  TW39  TW43   

Na+ 31.9 31.0 10.6 8.75 14.2 33.4 108 88.0 33.5 12.9 60.5 

K+ 1.90 17.34 10.44 4.71 4.40 4.22 34.00 25.53 7.24 4.24 9.08 

Ca2+ 13.3 118 9.27 6.42 8.77 20.2 9.47 18.0 18.6 5.48 15.6 

Mg2+ 1.20 3.76 0.28 0.26 0.21 1.20 2.02 2.43 3.53 0.14 0.66 

F− 2.55 2.47 3.74 2.72 2.44 3.20 6.98 7.03 1.06 2.08 7.63 

Cl− 1.45 69.15 1.72 2.09 1.50 2.28 14.4 13.3 28.9 6.69 1.81 

HCO3
− 140 67.0 55.0 61.0 79.3 165 634 384 49.0 49.0 244 

NO3
− bdl 212.5 5.49 0.15 0.53 8.33 44.7 6.49 64.3 16.7 bdl 

SO4
2− 0.98 16.9 5.60 2.51 1.23 5.19 21.5 16.2 16.2 2.94 1.45 

TDS 53 472 48 28 33 78 244 177 174 51 97 

EC 230 770 140 120 120 290 1140 840 360 130 380 

pH 7.5 6.4 6.5 6.5 6.7 7 8 8 6.5 6 8.7 

 
 
Table 4.2: Major ion chemical compositions of the leachates with TDS, EC and pH values. 

 

 
 

Figure 4.4: Average elemental concentrations of the leachates: Sediment leachates are more enriched by 

Na+ and HCO3
− than the rock leachates (Values are expressed in mg/L). 
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Similar trends of high F¯ is associated with high pH, Na+, and HCO3¯ values, whereas  F¯ is inversely 

related to Ca2+ and Mg2+ in the groundwater wells, hot springs and geothermal wells of the Main 

Ethiopian Rift (Figure 4.5).  

 

 
 

Figure 4.5: Relationship between pH, F¯, Na+, HCO3¯, Ca2+ and Mg2+ in waters of the central MER in 

Ziway-Shala basin. 
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The variation of pH (the original distilled water had pH 5.5) towards alkaline values observed in the 

experiments, shows that the system consumes H+ (probably during hydrolysis reactions), and that the 

resulting alkaline conditions favours the substitution of OH¯ with exchangeable F¯ in fluoride-rich 

minerals (Guo et al., 2007). 

The chemistry of the lake water appears even more complicated due to evaporation processes, which 

ultimately lead to very extreme compositions such as those of Lake Abijata. In this framework, further 

input of fluorine can be attributed to peculiar minerals included in the relative sediments, such as trona 

(Na2CO3–NaHCO3–2H2O) which usually contains trace amounts of fluoride.  

 
4.5. Fluoride enrichment mechanism 

 

4.5.1. Base-exchange softening 

 

Base-exchange softening is an adsorption phenomenon. A substrate that possesses negative charges on 

its surface will have cations adsorbed. Different cations have different affinities for adsorption (Ca2+ 

more than Na+). Higher affinity ions will replace lower affinity ions; the concentration of the high 

affinity ion decreases and the low affinity ion increases. Because of this, Ca2+ can be removed from 

solution and the dissolution calcium-containing minerals (such as CaF2) will increase. Moreover, pH 

increases, and hydroxyl ions can replace fluoride. In both cases, fluoride concentration increases in 

solution. 

 

Fluorine occurrence is associated with the presence of silicic rocks and their weathering products. The 

fluoride activity in the solution is controlled by the solubility product, Kfluorite: (Edmunds and Smedley, 

2005) as expressed below: 

 

CaF2 = Ca2+ + 2F- 

Kfluorite:   (Ca2+) (F-)2 = 10-10.57 at 25ºC 

 

This suggests that the fluoride concentration in natural waters is inversely related to Ca2+. This permits 

free mobility of the fluoride ion into the solution at lower Ca2+ content. Such conditions are sometimes 

recorded in aquifers constituted by volcanic rocks (Kilham and Hecky, 1973; Ashley and Burley, 1994).  
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This effect (Ca2+ deficiency) is magnified in the rift (MER) where cation exchange took place within the 

sediments (fluvio-lacustrine, volcano-lacustrine) causing the removal of ions from the solution (mainly 

Ca2+) by replacement with Na+ ions from the clay exchange sites. Such hydrogeochemical processes are 

responsible for the evolution of Ca2+-Mg2+/HCO3¯ to Na+/HCO3¯ types of groundwater and thermal 

water.  

 

During this study the software package (PHREEQC-2) (Parkhurst and Appelo, 1999) was used to 

calculate the saturation indices of the major mineral phases. Generally, the saturation indices are used to 

express the water tendency towards precipitation or dissolution. The degree of water saturation with 

respect to a mineral is given by: 

 

SI = log ( KIAP / Ksp ) 

 

Where:  KIAP is the ionic activity product,  

Ksp is the solubility product, and  

SI is the saturation index of the concerned mineral.  

 

When SI is equal to zero then the water is at equilibrium with the mineral phase, whereas SI values less 

than zero (negative values) indicate under-saturation and that the mineral phase tends to dissolve, while 

SI values over zero (positive values) indicate super-saturation and that the mineral phases tends to 

precipitate.  
 
Saturation indices (SI) of fluorite (CaF2) and calcite (CaCO3) were calculated to constrain the observed 

chemical evolution (Appelo and Postma, 2005). Calculations were carried out using the standard 

PHREEQC, WATEQ4F database (Ball and Nordstrom, 1991), and a database derived from MINTEQA2 

(Allison et al., 1990). The saturation indices of fluorite obtained with the different databases show only 

5–8% of variations, and the result showed that: river samples and groundwater samples from highlands 

have the more negative SI (average values of -2.06 and -1.92 respectively); geothermal wells have an 

average value of -1.12, and hot springs have an average value of -0.48; groundwater from rift floor have 

an average value of -0.69; lakes have an average value of -0.42. Therefore, although a slight increase of 

fluorite SI can be observed along the flow path, fluorite precipitation is unlikely. The Calcite SI of all 

groups oscillates around zero, suggesting conditions close to equilibrium for this mineral phase and 
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calcite precipitation is unlikely, and can not be considered the major cause of calcium depletion. This 

means that the observed hydrochemical evolution of groundwater from the highlands to the rift cannot 

be related to significant calcite precipitation. This in turn implies that cation exchange is the most 

probable process which leads to increase of F¯ concentration in the local groundwater. The saturation 

indices of various water types are showed on (Figure 4.6 and Appendix 4.1 and 4.2). 

 

 
 

Figure 4.6: Fluorite and calcite Saturation indices of various water types of the central MER in Ziway-

Shala basin. 

 

Fluoride ion is a strong ligand; it could form a number of complexes with cations such as Al, Mg, Fe, 

(Nodstrome and Jenne, 1977). However, the higher pH of the rift waters does not allow the formation of 

these complexes and the fluoride persists freely in solution.  
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An investigation of the Na+/HCO3
− ratio (expressed in mmoles/L) was carried out in order to support the 

existence of Base Exchange softening processes.  

Weathering of primary feldspar-rich volcanic parageneses in clay-rich saprolites can be idealized by the 

subsequent reaction (Deer et al. 1992): 

 

NaAlSi3O8 (s)  + H2CO3 + 4.5H2O → Na+ + HCO3
− + 2H4SiO4 + 0.5Al2Si2O5(OH)4 (s)  

 

The stoichiometry suggests a Na+/ HCO3
−

  ratio close to 1 in the interacting water.  

Therefore, Na+/ HCO3
− ratio higher than one, indicates that the incongruent dissolution of feldspars 

(important constituent minerals of volcanic rocks) by interaction with carbonic acid is not the only 

controlling hydrogeochemical process.  

It is interesting to note that F¯ rich waters are those affected by base exchange and thus typically 

characterized by a high Na+/ HCO3
− ratio exceeding unity (Figure 4.7 and Appendix 4.3). This water 

groups are also characterized with TDS values above ~1000mg/L. 
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Figure 4.7: a) HCO3¯versus Na+ and, b) F¯ versus TDS in waters of the Ziway–Shala basin.  Note the 

different behaviour of samples characterized by Na+/ HCO3¯ ratio above and below unity 
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It is plausible to assume that ion exchange (base exchange softening) hydrogeochemical processes are 

the main controlling mechanisms for the elevated content of fluoride in the rift waters; this mainly takes 

place where water is hosted in the fluvio/volcano lacustrine sediments. The higher Ca and Mg content of 

the original low TDS groundwater is affected by a base exchange softening reaction: 

 

Na+-clay + (Ca2+ +Mg2+) groundwater = (Ca2+ +Mg2+) clay + (Na+) groundwater  

 

This reaction would decrease the concentrations of Ca2+ and Mg and increase the concentration of Na in 

groundwater (Hidalgo and Cruz-Sanjulian, 2001). This is supported by the enrichment of fluoride in 

waters characterized by high Na+ and low Ca2+ (Mg2+) concentrations, with the parallel increase of pH 

(the competition of OH¯ ions at high pH permits the release of F¯ from the clay-minerals sites). 

This hypothesis is supported by the spatial distribution of the different water types, with the occurrence 

of the Ca2+ (Mg2+)- HCO3¯ hydrochemical facies in the highlands (and the escarpment) and the presence 

of Na+/ HCO3¯ water signature in the rift, where ion exchange with sediments occurs. 
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5. Geochemistry of elements in waters and experimental leachates 
 
5.1. Trace (and Major) elements composition in natural waters. 
 
Water quality evaluation of the various water types were done based on comparison with the currently 

existing drinking water guidelines. The main parameters of concern were the major and trace elements. 

In order to sort out potentially hazardous geochemical anomalies, the measured concentrations of major 

ions (Na+, K+, Ca2+, Mg2+, F−, Cl−, NO3
−, SO4

2−
 and HCO3

−; Table 4.1 in chapter 4) and trace elements 

(As, Mo, Sb, U, Li, Al, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Rb, Sr, Mo, Sn, Be, Bi, Te, Ba, Hg, Tl, Ag, Cd, 

Pb, Ni, Cd; Table 5.1) in MER natural waters were compared with existing drinking water standards 

recommended by the authorities (WHO 2006; EU directives, 1998 and USEPA, 2003).  

 
ID Type As V B Al Fe Mn Cr U Li Mo Rb Sr Ba DF 

LOD  0.1 0.05 0.5 0.1 0.15 0.05 0.03 0.01 0.01 0.07 0.02 0.02 0.15  

1  R I  3.39 10.1 114 nm 135 2.00 17.4 1.30 2.73 5.27 9.82 185 6.55 10 

2  R I  3.36 13.3 11.1 nm 67.0 7.10 1.91 5.40 5.08 8.86 8.53 210 34.8 10 

3  R I  bdl 3.31 Bdl nm 276 146 4.57 0.50 3.73 1.30 5.90 86.2 10.3 10 

4  R I  bdl 1.71 5.62 322 308 16.7 1.18 bdl bdl 0.40 1.21 56.2 10.5 5 

5  R I  bdl 0.63 1.04 307 416 9.40 1.18 bdl 0.14 0.35 3.33 37.3 10.1 5 

6  R I  bdl 0.29 Bdl 90.0 353 6.70 1.13 bdl bdl bdl 2.12 33.1 7.59 5 

7  R I  bdl 1.32 2.50 472 398 10.9 1.71 0.10 2.02 0.46 5.03 53.5 6.69 5 

8  R I  bdl 0.59 3.86 96.0 76.0 bdl 2.10 0.10 1.78 0.63 7.24 62.7 10.9 5 

9  HS  5.63 2.94 906 48.0 137 bdl 22.6 bdl 20.2 87.6 7.62 25.8 bdl 50 

10  HS  13.6 14.9 4635 114 356 bdl 51.7 bdl 388 96.4 107 179 18.0 100 

11  HS  14.8 16.3 4975 131 320 bdl 47.7 bdl 416 103 115 201 bdl 100 

12  HS  12.8 13.8 4356 182 463 6.10 57.3 bdl 365 95.1 101 254 27.8 100 

13  HS  5.00 2.50 612 23.0 110 bdl 20.2 bdl 73.0 52.5 14.4 44.2 bdl 50 

14  HS  16.3 2.96 762 38.0 186 26.3 24.8 0.90 6.42 314 58.2 124 9.9 50 

15  HS  7.96 4.46 930 16.0 114 bdl 25.4 bdl bdl 304 37.7 54.9 bdl 50 

16  HS  2.34 8.38 200 249 180 0.50 3.49 0.60 23.9 16.9 20.6 72.2 6.14 10 

17  HS  72.1 2.57 2099 192 376 128 20.3 bdl 427 58.8 53.0 66.3 14.5 50 

18  HS  156 4.80 3084 1382 688 207 21.4 bdl 84.1 2.44 264 23.8 4.90 20 

19  HS  109 15.9 3391 1157 415 34.0 22.1 bdl 716 12.4 382 32.4 bdl 50 

20  HS  52.8 34.8 4250 nm 373 16.0 91.6 bdl 567 70.4 203 445 212 10 

21  GWL 195 4.05 2888 nm 506 9.10 Bdl 2.90 91.4 128 68.1 92.5 bdl 50 

22  GWL 278 0.89 1253 nm 188 106 3.90 0.50 451 3.50 146 267 195 50 

23  LW 7.85 8.10 560 72.0 159 bdl 10.8 1.70 3.53 32.0 5.60 35.7 7.50 20 

24  LW 1.35 0.95 107 72.0 34.0 bdl 5.70 0.20 81.1 6.98 30.1 79.3 15.7 10 

25  LW 405 89.1 14770 42.0 503 bdl 202 73.5 bdl 6927 974 156 22.1 100 

26  LW 23.2 15.8 3861 16.0 332 bdl 67.9 9.20 14.0 425 53.7 57.2 11.3 100 

27  LW 21.4 20.6 513 1364 1752 2939 45.4 6.50 72.9 65.0 62.6 1402 162 100 

28  LW 0.91 4.61 45.4 184 117 bdl 4.38 0.80 0.22 2.84 3.40 123 21.6 10 

29  WL 30.1 87.1 302 nm 240 2.60 bdl 5.70 26.4 5.76 13.4 115 bdl 10 
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30  WL 8.96 147 286 nm 483 4.40 13.9 2.50 15.47 6.94 10.0 67.4 bdl 10 

31  WL 1.29 7.39 14.4 nm 2.00 0.80 bdl 0.20 17.2 3.31 8.76 25.7 bdl 10 

32  WL 1.96 0.71 20.4 nm bdl 210 bdl 0.40 8.49 2.00 2.77 219 51.4 10 

33  WL 50.9 36.1 332 nm bdl 2.50 bdl 6.40 41.8 11.1 16.9 121 bdl 10 

34  WL 6.23 3.51 23.3 nm 9.00 5.20 bdl 12.5 58.7 2.76 17.3 273 bdl 10 

35  WL 61.4 148 423 nm bdl bdl bdl 49.9 49.1 61.6 26.9 149 4.72 20 

36  WL 1.27 1.34 Bdl nm 219 268 3.71 bdl 13.4 3.85 7.21 53.6 6.13 10 

37  WL 157 40.7 5408 nm 104 3.30 104 43.9 0.56 446 73.8 33.2 51.4 20 

38  WL 81.0 91.1 20.9 nm 12.0 2.10 4.26 41.7 67.0 96.2 7.95 37.8 bdl 10 

39  WL bdl 2.64 10.6 77.0 72.0 5.60 3.04 0.40 20.0 6.72 11.3 49.3 1.91 10 

40  WL 1.00 3.12 9.44 89.0 105 2.30 3.24 0.90 21.5 3.49 8.02 14.4 5.50 10 

41  WL 1.24 3.62 6.05 19.0 17.0 25.6 1.36 0.40 9.06 1.80 9.28 4.63 bdl 5 

42  WL 1.23 1.07 7.12 6.00 13.0 0.25 1.56 0.20 13.4 2.55 0.84 45.8 1.91 5 

43  WL 1.00 8.78 5.00 76.0 76.0 0.50 3.89 0.20 5.94 2.43 2.00 37.6 3.97 10 

44  WL bdl Bdl 29.4 5.00 30.0 26.0 2.06 0.70 27.5 1.97 2.24 20.0 bdl 20 

45  WL 1.77 1.22 55.2 186 99.0 162 3.94 bdl 16.4 12.9 5.29 82.5 13.5 10 

46  WL 9.83 52.5 664 Bdl 145 51.6 20.4 8.80 55.7 51.0 11.6 122 12.7 50 

47  WL 21.5 37.7 492 382 372 bdl 24.6 21.2 58.3 47.1 4.80 57.3 bdl 50 

48  WL 23.8 5.59 1707 6.00 45.0 bdl 17.1 8.30 bdl 105 13.0 14.2 2.62 10 

49  WL bdl 1.03 26.7 127 61.0 1.40 6.24 0.90 14.9 1.01 1.23 188 3.01 10 

50  WL 26.3 38.5 359 273 232 8.70 9.89 11.2 32.4 5.53 8.69 101 9.85 20 

51  WL 2.48 2.00 57.9 214 115 0.50 4.35 1.50 33.6 5.10 9.91 64.2 14.1 10 

52  CS  0.83 2.38 42.2 3339 2023 12.8 4.06 0.90 5.57 0.53 9.71 35.8 2.35 5 

53  CS  1.18 12.4 14.3 189 93.0 bdl 4.13 0.80 6.91 4.38 5.11 63.1 2.89 10 

 
ID Type Be Co Ni Zn Cu Ga Ag Cd Sb Te Tl Pb Bi DF 

LOD  0.04 0.2 0.1 0.25 0.1 0.02 0.03 0.04 0.02 0.06 0.01 0.01 0.03  

1 R I  bdl 0.18 0.99 bdl bdl 0.29 bdl bdl 0.94 bdl 0.33 bdl bdl 10 

2 R I  bdl 0.39 9.36 bdl 1.14 1.93 bdl bdl bdl bdl bdl bdl bdl 10 

3 R I  bdl 0.26 3.39 7.87 bdl 0.52 bdl bdl bdl bdl bdl 0.44 bdl 10 

4 R I  bdl 0.08 bdl bdl bdl 0.32 bdl bdl 1.24 bdl 0.06 bdl bdl 5 

5 R I  bdl bdl bdl bdl bdl 0.30 bdl bdl 1.1 bdl bdl bdl bdl 5 

6 R I  bdl bdl bdl bdl bdl 0.14 bdl bdl bdl bdl bdl bdl bdl 5 

7 R I  bdl bdl bdl bdl bdl 0.26 bdl bdl 0.78 bdl bdl bdl bdl 5 

8 R I  bdl bdl bdl 8.25 bdl 0.26 bdl bdl 0.1 bdl bdl bdl bdl 5 

9 HS  bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 50 

10 HS  9.92 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 100 

11 HS  14.7 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 100 

12 HS  7.75 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 100 

13 HS  bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 50 

14 HS  bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 50 

15 HS  bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 50 

16 HS  0.54 bdl bdl 19.3 bdl bdl bdl bdl bdl bdl bdl 4.79 bdl 10 

17 HS  2 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 50 

18 HS  8.26 bdl bdl bdl bdl 1.51 bdl bdl 0.29 bdl 0.77 bdl bdl 20 

19 HS  9.89 bdl bdl bdl bdl 3.58 bdl bdl 6.31 bdl bdl bdl bdl 50 

20 HS  2.38 1.33 3.77 49.4 10.1 6.28 0.35 5 22.6 3.43 3.46 35 bdl 10 
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21 GWL bdl bdl 0.97 54.1 5.87 bdl bdl bdl 1.35 bdl bdl 71.7 0.54 50 

22 GWL bdl 0.12 3.64 6.26 bdl 11.5 bdl bdl 5.09 bdl bdl 0.94 bdl 50 

23 LW bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 0.05 bdl bdl 20 

24 LW bdl bdl bdl 84.1 bdl 0.22 bdl bdl bdl bdl bdl 2.12 bdl 10 

25 LW bdl bdl bdl bdl bdl bdl bdl 9.67 bdl bdl bdl bdl bdl 100 

26 LW bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 100 

27 LW bdl bdl bdl 1901 bdl bdl bdl bdl bdl bdl bdl 39.4 bdl 100 

28 LW 0.000 0.000 bdl 20.3 bdl 0.31 bdl bdl bdl bdl bdl 3.19 bdl 10 

29 WL bdl 0.030 bdl 160 bdl bdl bdl bdl 0.33 bdl 0.2 bdl bdl 10 

30 WL bdl bdl 0.79 102 21.5 bdl bdl bdl 0.2 bdl 0.22 1.47 bdl 10 

31 WL bdl bdl 2.32 398 bdl bdl bdl bdl bdl bdl bdl 9.26 bdl 10 

32 WL bdl 0.194 1.69 211 bdl 2.83 bdl bdl bdl bdl bdl bdl bdl 10 

33 WL bdl bdl bdl 10.8 bdl bdl bdl bdl 0.61 bdl bdl bdl bdl 10 

34 WL bdl bdl 0.73 63.6 3.20 bdl bdl bdl bdl bdl bdl bdl bdl 10 

35 WL bdl bdl bdl 20.9 5.79 bdl bdl bdl bdl bdl bdl bdl bdl 20 

36 WL bdl 0.350 3.7 832 3.89 0.2 bdl bdl bdl bdl 0.03 17.7 bdl 10 

37 WL bdl bdl bdl 5.14 bdl 2.3 bdl 0.79 bdl 1.89 bdl 10.2 bdl 20 

38 WL bdl bdl bdl 8.8 bdl bdl bdl bdl 0.62 bdl bdl 0.84 bdl 10 

39 WL bdl bdl bdl 16.1 bdl bdl bdl bdl bdl bdl bdl 0.31 bdl 10 

40 WL bdl bdl bdl 230 bdl bdl bdl bdl bdl bdl bdl 3.06 bdl 10 

41 WL bdl bdl bdl 870 bdl bdl bdl bdl bdl bdl bdl 0.98 bdl 5 

42 WL bdl bdl bdl 104 bdl bdl bdl bdl bdl bdl bdl bdl bdl 5 

43 WL bdl bdl bdl 12.5 bdl bdl bdl bdl bdl bdl bdl 2.80 bdl 10 

44 WL 0.036 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 20 

45 WL bdl bdl bdl 91.6 1.49 0.09 bdl bdl bdl bdl bdl 6.98 bdl 10 

46 WL bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 50 

47 WL bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 50 

48 WL bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 10 

49 WL bdl bdl bdl 78.8 bdl bdl bdl bdl bdl bdl bdl 1.93 bdl 10 

50 WL bdl bdl bdl 77.5 bdl bdl bdl bdl bdl bdl bdl 5.89 bdl 20 

51 WL bdl bdl bdl 37 bdl 0.07 bdl bdl bdl bdl bdl 3.01 bdl 10 

52 CS  0.878 0.074 1.17 1.76 bdl 1.08 0.11 bdl 1.43 bdl 0.10 0.22 bdl 5 

53 CS  0.013 0.000 bdl 38.4 bdl bdl bdl bdl bdl bdl bdl 6.17 bdl 10 

 
Table 5.1: Trace elements hydrochemical composition (in µg/L) of MER waters from rivers, hot springs, 

geothermal wells, groundwater wells, cold springs, and lakes in Ziway-Shala basin. WL= Groundwater 

wells, HS=Hot springs, CS=Cold springs GWL= Geothermal wells, LW= Lakes, RI= Rivers, nm= not 

measured, LOD= Limit of Detection in diluited samples, DF= Dilution Factor applied in each samples, bdl 

= below detection limit. The geographic coordinate from major elements (Table 4.1) is applicable for the 

trace elements as well. 

 
This comparison between the international quality standards, and the major ions and trace elements of 

different MER water groups (groundwater wells, geothermal wells, hot springs, lakes, and rivers) show 

that major ions (F−, Na+, Cl−, SO4
2− and NO3

−) and trace elements such as As, B, Mo, U, Fe, Al, Cr and 
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Mn often exceed the tolerance limit of drinking water fixed by the authorities (Table 5.2). Other trace 

elements such as Co, Bi, Tl, Te, Ag, Cd, Ni, Cu, Ga, Sb, Be, Zn and Pb were undetected or measured in 

extremely low concentrations and are not expected to cause harm to the local people.  

 
Drinking water  

quality standards,  

in ppm F As Fe Al B Mo Cr Mn U         Na+ Cl SO4
2− NO3

− 

WHO guidelines, 2006 1.5 0.01 NG 0.2 0.5 0.07 0.05 0.4 0.015 NG NM NG 50 

EU directives, 1998 1.5 0.01 0.2 0.2 1 NM 0.05 0.05 NM 200 250 250 50 

USEPA, 2003 4 0.01 0.3 0.05-0.2 NM NM 0.10 0.05 NM 200 250 250 10 

% exceeding the 

minimum 

standard 

within each water 

groups              

Out of 23 WL  87 35 38 27 13 13 0 9 17 39 4 9 13 

Out of 14 HS  

(plus 2 GWL) 100 70 57 27 93 50 21 14 0 86 75 17 17 

Out of 6 LW 100 17 50 20 67 33 33 17 17 67 50 33 0 

Out of 8 RI 38 0 63 60 0 0 0 13 0 0 0 0 25 

 

Table 5.2: International water quality standards of drinking water, and percentage of MER water 

samples exceeding the minimum threshold defined by the authorities. Note: WL= Groundwater wells, 

HS=Thermal springs, GWL= Geothermal wells, LW= Lakes, RI= Rivers NG (no guidelines), NM (not 

mentioned), Bold font: (the minimum standard considered). 

 

As showed in Table 5.2, the fluoride anomaly consists of high level in all water groups including even 

38% of the rivers, and is often coupled with an arsenic anomaly. 

Al, Mn, Fe, Cl− and SO4
2−, although not considered as poisoning components, may cause water to 

become undrinkable due to odour, metallic taste and dark colour, and are regulated by secondary (non-

enforceable) guidelines (USEPA, 2003). In this light, MER Rivers often contain high level of Fe, Al, F 

and Mn that do not meet these drinking water quality standards. High level of Al in drinking waters has 

reported linked to Alzheimer’s disease (Martyn et al., 1989). V also appears in considerable amount in 

the waters though their drinking water limits has not been determined in any of the authorities although 

it can induce genotoxicity and irritation of the respiratory tract (Costigan et al., 2001). 



 64

Therefore, these new analyses demonstrate that the problem of F¯ in the MER waters is potentially 

coupled with high content of other toxic elements (e.g.: As, B, Mo, V, U, Al, Cr, Fe, Mn), and as far as 

we know the possible health impact related to the latter elements is not studied and understood yet. 

Concentrations are generally higher in thermal waters. Unfortunately, the limited availability of drinking 

water in the rift forces the people to consume any existing water resources including cooling of hot 

springs (local people, personal communication) 

The average concentration of fluoride is 0.8mg/L in rivers, 32 mg/L in thermal springs, 27 mg/L in deep 

(>2 kms) geothermal wells, 6 mg/L in groundwater wells, and 121 mg/L in lakes. Some 38% of rivers, 

87 % of the groundwater wells and 100 % of lakes, thermal and geothermal waters have fluoride values 

beyond the safe drinking water limit (WHO, 2006).  

The result showed that among trace elements, arsenic represent another geochemical anomaly, as the 

natural Na-HCO3 type of waters in MER often show high concentrations of this element. The average 

concentration of arsenic is 0.9µg/L in rivers, 39µg/L in thermal springs, 236µg/L in deep geothermal 

wells, 21.4µg/L in groundwater wells and 77µg/L in lakes, with maximum values of 3µg/L, 156µg/L, 

278µg/L, 157µg/L and 405 µg/L respectively. It has to be noted that 35 % of the MER groundwater 

wells (the main source of potable water) contain more than the safe limit 10 µg/L (WHO, 2006).  

In chapter 4,  the F¯ geochemistry is discussed in detail and  F¯ correlations with pH, Na+, HCO3¯ and 

Ca2+ in all water types of MER is displayed in (chapter 4; Figure 4.5). 

Here F¯ and As relationship with some major and trace elements were investigated in the groundwater 

wells. F¯ in MER groundwater wells positively correlated with Na+ (R2 =0.7), HCO3
−

 (R2=0.5), TDS 

(R2=0.64) and EC (R2=0.73) and similarly arsenic shows a positive correlation with Na+ (R2=0.63), 

HCO3
−

 (R2=0.7), TDS (R2=0.6) and EC (R2=0.67) (Figure 5.1). Arsenic also correlates with some trace 

elements such as Mo (R2=0.79), V (R2=0.68), and U (R2=0.70), whereas no correlation with Fe and Mn 

(Figure 5.2) were observed. F¯ and As distribution map is showed on Figure 5.3 and 5.4 respectively. 

The lack of positive correlation between As and Fe, supports the theory that As origin is likely to be 

unrelated to sulphide minerals but is principally linked to volcanic glass. 
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Figure 5.1: As and F¯ relationships with Na+, HCO3
−

, TDS and EC in the MER groundwater wells. 
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Figure 5.2: Arsenic relationships with F¯, Mo, V, U, Rb, Fe and Mn in the MER groundwater wells. 
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Figure 5.3: Map of  F¯ distribution in the MER natural waters. 
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Figure 5.4: Map of As distribution in the MER natural waters. 

 

Higher level of F¯, As, but also Li, B and Mo concentration were mainly observed in thermal springs. 

This doesn’t necessarily imply the involvement of juvenile fluids, and is possibly related to higher 

reactivity of hot waters in contact with the aquifer solid matrixes.   

The chemistry of the lake water appears even more complicated than the other water types due to high 

evaporation processes, which ultimately lead to very extreme concentrations of F¯ and As on highly 

alkaline Lakes of Chitu, Abijata and Shala.  
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5.2. Trace (and major) elements composition in the experimental leachates 
 

Laboratory leaching test experiments for major ion were discussed in chapter 4 in order to particlarly 

investigate the sources of the fluoride. Here the discussion will give emphasis on trace elements (e.g. 

As) geochemistry on the same representative lithotype leachates and the geochemistry of As is discussed 

with F¯.  

These experiments simulate the potential extractability (leachability) of water soluble components 

during water-rock/sediment interaction processes. From this point of view, the approach is more 

appropriate than the direct bulk-analysis of rock and sediments, as the leachates composition give a 

more realistic idea on the chemical budget that can be extracted by the aquifer matrixes during water-

rock interaction, i.e. the bioavailable fraction. 

Coherently, the risk of water contamination is related to such mobile fractions rather than the total 

rock/sediment concentration (Adriano, 1980). Trace elements analysis result of the leachates is 

displayed on (Table 5.3). 

The comparison with the tolerance limits indicated by international guidelines has been extended to the 

experimental leachates, showing that the concentration of elements potentially affecting human health 

such as F, As, Fe, Al, Mo, and U are often beyond the admissible limits (Table 5.4 and Figure 5.5). See 

also for Li, Sr and V in Figure 5.6. The concentration of major and trace elements in the rock and 

sediment leachates and the water quality guidelines are displayed on Appendix 5.1 and 5.2. 

 
 Rhyolites Fluvio-volcano lacustrine sediments 

In 

µg/L TW9    TW11  TW29  TW30  TW31  TW14  TW15  TW22  TW34  TW39   TW43  

Li 22.4 2.93 27.6 1.76 5.11 9.41 23.6 165 12.5 1.24 15.1 

B 24.8 13.6 bdl bdl bdl 15.1 427 220 17.7 bdl 5.75 

Al 68.3 bdl 192 78.1 1862 bdl 2.15 8.42 bdl 323 257 

V 6.50 2.12 15.6 17.2 8.21 29.7 26.5 254 5.58 9.74 15.5 

Cr 2.60 3.14 3.42 2.61 3.06 4.67 7.29 6.95 3.22 1.91 4.09 

Mn 6.62 bdl 8.33 3.33 190 bdl bdl 0.11 bdl 5.51 38.9 

Fe 73.3 bdl 378 108 5223 bdl bdl bdl 1.98 624 1154 

Co 0.59 0.57 0.20 0.39 0.15 0.35 0.45 1.52 1.53 0.07 0.17 

Ni 2.64 2.28 1.68 1.57 1.96 1.72 2.49 5.57 2.61 1.31 2.37 

Cu 1.58 1.56 1.51 0.29 1.12 0.83 2.10 4.79 1.52 0.45 1.49 

Zn 3.37 13.6 11.9 12.9 41.1 16.9 8.77 10.5 35.5 6.78 34.8 

Ga 4.08 0.01 0.31 0.11 2.65 0.05 0.05 0.02 0.10 0.37 1.14 
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As 2.21 1.72 2.70 0.25 4.91 11.8 17.4 220 1.23 1.96 6.62 

Rb 1.66 13.8 9.55 4.12 5.64 2.58 15.3 21.8 5.03 6.83 10.2 

Sr bdl 252 4.10 4.61 5.43 62.3 107 65.5 58.4 1.92 15.3 

Mo 9.61 16.3 8.59 10.4 4.44 7.86 11.3 181 6.09 5.34 2.52 

Sb 0.19 0.01 0.13 bdl 0.16 0.10 0.82 5.03 4.62 0.1 0.44 

Pb 0.14 0.13 0.17 0.05 3.42 0.18 0.35 0.04 bdl 0.43 0.57 

U 0.95 0.24 0.05 bdl 0.36 0.75 5.04 63.6 0.05 0.17 0.83 

Be bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 

Bi bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 

Te bdl 0.13 bdl bdl 0.19 bdl bdl bdl bdl bdl 0.07 

Ba bdl 97.1 bdl bdl bdl bdl bdl bdl bdl bdl bdl 

Hg bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 

Tl 0.49 0.20 bdl bdl bdl 0.02 0.05 bdl bdl bdl bdl 

Ag bdl bdl bdl bdl 0.03 bdl bdl bdl bdl bdl bdl 

Cd bdl 0.17 0.13 0.06 3.25 0.02 bdl bdl 0.05 0.25 0.49 

 

Table 5.3: Concentrations of trace elements in the leachates  

 

Elements  Drinking 

 water quality 

 standards (in µg/L) 

Number of samples 

 beyond standard, out 

of 6 sediment leachates 

Number of samples 

beyond standard, out of 

5 rock leachates 

Fluorine (F) 1500  6 4 

Arsenic (As) 10  3 0 

Aluminium (Al) 200  2 2 

Iron (Fe) 

Uranium (U) 

200  

15  

2 

1 

2 

0 

Molybdenum (Mo) 70  1 0 

Manganese (Mn) 50  0 1 

 

Table 5.4: Elements found in the leachates exceeding the concentration limit set by (WHO, 2006) 

applied for F¯, As, Al, U and Mo, and (EU directives, 1998) for Fe and Mn. 
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Figure 5.5: Concentrations of F¯, As, Fe, Al, Mn, Mo and U in leachates compared with WHO (EU 

directives, 1998 for Fe and Mn) guideline values (dotted lines). Note that all concentrations are 

expressed in μg/L except for F¯ (in mg/L). TW9, TW11, TW29, TW30 and TW31 are rocks and TW14, 

TW15, TW22, TW34, TW39 and TW43 are sediments. -: below detection limit. 
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Figure 5.6: Concentrations of Li, Sr and V in leachates. Note that all concentrations are expressed in 

μg/L TW9, TW11, TW29, TW30 and TW31 are rocks and TW14, TW15, TW22, TW34, TW39 and 

TW43 are sediments.  

 

For instance, fluoride concentrations exceeded the drinking water standard of 1.5 mg/L in 10 out of 11 

leachates, arsenic concentrations exceeded the standard of 10 µg/L in 3 out of 11 leachates, iron 

concentrations exceeded the standard of 200 µg/L in 4 out of 11 leachates and aluminium concentrations 

exceeded the standard of 200 µg/L in 3 out of 11 leachates (Table 5.4). It is also very interesting to note 

that leachates from sediments display higher concentration of toxic elements with respect to those 

obtained from volcanic rocks. This indicates that the sediments are the major reservoir and source of 

toxic elements. Relatively higher level of Sr, Rb, Li and V were also measured on leachates and on some 

MER natural waters 

The percentage proportion of trace elements extracted in all leachates (rocks and sediments) is showed 

on Figure 5.7.   
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Figure 5.7: Percentage proportion of trace elements extracted in leachates (average of all the available 

rocks and sediments leachates). 

 

F¯ and As concentrations in natural water can be higher than those recorded in experimental leachates, 

as the resulting F and As concentrations in experimental leachates are expected to increase with time. 

Higher temperature and the introduction of CO2 have also to be considered as additional factors 

favouring high fluoride and arsenic concentrations in the natural waters of the rift. These tests, that 

simulate water-rock/sediment interaction processes, simply highlight the potential contribution (i.e. the 

leachability) of each investigated lithotype to the release of fluorine and arsenic in the water system. 

 

The results highlight a clear relationship between high pH and high arsenic and fluoride concentration. 

The highest As (220µg/L) and F¯ (7.6 mg/L) were recorded at pH of 8 and 8.7 respectively from 

fluvio/volcano-lacustrine sediment leachates. The highest measured As was found associated with the 

sediment sample TW22, which contains high level of sulphur (145 ppm; Table 4) suggesting the local 

presence of most likely coprecipitated sulphides (e.g. arsenopyrite; Edenborn et al., 1986;  Rittle et al., 

1995 and Morse and Luther, 1999) 
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Therefore, these data confirm that the fluvio-volcano lacustrine sediments are the main reservoir of As 

and F¯ in the area and that they can release it into the water system. Accordingly, high arsenic and 

fluoride concentration is found in leachates characterized by high pH, Na+, and HCO3
− (Figure 5.8).  

 

 
 

Figure 5.8: Leaching test results: Relationship between of As and F with pH, Na, and HCO3. Note  that 

the extreme As value (220µg/L) from the TW22 sediment leachate is excluded. 

 

Leaching tests using a NaHCO3 solution under alkaline conditions were found to be even more effective 

in extracting arsenic from sediments (Anawar et al., 2003; 2004; Bhattacharya, 2006). Appelo et al., 

2002; Kim et al., 2000; 2003, studied the displacing (competing) effect of  HCO3
− which induces higher 
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mobility of As. This geochemical condition is mirrored by the positive correlation between As and 

HCO3
− in the groundwater wells of the MER (Figure 5.1). 
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6. Origin and genesis of the geochemical anomalies observed in the MER waters 

 

6.1. Origin of fluoride and arsenic 

 

The process that accounts for the genesis of the MER felsic rocks is fractional crystallization of basalts 

with a minor interaction with crustal lithologies (Peccerillo et al., 2007). This magma evolution 

ultimately led to a progressive concentration of the incompatible elements (halogens and arsenic 

included) in the residual melt fractions, and thus elements such as F, Cl and As, already present in the 

primitive MER basalts, were subsequently enriched in the more differentiated volcanic products, i.e. the 

MER rhyolites. 

During explosive volcanic eruptions, gases such as HCl(Cl), HF(F), and other elements showing affinity 

for the volatile phases (i.e. As) may probably have been released and trapped within the tephra (Taylor 

and Stoiber, 1973; Thomas et al., 1982; Varekamp et al., 1984;  Giggenback, 1996; Allard et al., 2000; 

Armienti et al., 1998, 2002). This process is effective especially on the smaller particles having large 

surface area (Oskarsson, 1980) such as ash particles (<2 mm).  

Therefore, the pristine source of fluorine and arsenic is plausibly linked to the nature of the MER 

magmas and their mode of emplacement.  

As concerns arsenic, considering that in the MER region there are no sulphide deposits, its presence in 

the local water possibly implies that the described volcanic products and their re-worked  products (i.e. 

the fluvio-volcano lacustrine sediments) can release appreciable amounts of As. 

This is supported by literature studies on felsic volcanic rocks highlighting significant content of arsenic; 

examples are provided by pyroclastic rocks, containing over 90% of rhyolitic glass, that have As 

concentrations in the range 6–10 mg/kg (Nicolli et al., 1989; Castro et al., 1998; Smedley et al., 1998; 

2002; Bundschuh et al., 2004). 

These felsic volcanics under oxidizing and high pH conditions release high concentrations of As in 

water system (Nicolli et al., 2001; Smedley et al. 2002; and Claesson and Fagerberg, 2003).  

It is plausibly to assume that during the weathering of these volcanic rocks arsenic is adsorbed to and/or 

coprecipitated with metal (Fe, Mn and Al) oxides, especially with iron oxides, and in minor amount 

adsorbed to clay-mineral surfaces, and/or associated with organic carbon (Welch et al., 1988; Claesson 

and Fagerberg, 2003). The occurrence of these weathering processes and their influence on the water 

composition are testified by the high SiO2 concentration (on average more than 80 mg/L) reported by 
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(Gashaw, 1999) in the MER groundwaters. Appendix 6.1 shows the composition of major ions and SiO2 

in the groundwater wells, east and northeast of Lake Ziway.   

 

6.2 Genesis 

 

6.2.1 Clues on the enrichment mechanism of fluoride and arsenic 

 

The acidic volcanic material (tephra) is very reactive and volatile elements (such as fluorine and arsenic) 

can subsequently be transferred into the water system (Gregory, 1996) during water-rock interactions. 

Thus, fluorine and arsenic occurrence is plausibly associated with the presence of silicic rocks and their 

weathering products. Weathering of primary feldspar-bearing volcanic parageneses (important 

constituent minerals of volcanic rocks in MER in clay-rich saprolites is responsible for the formation of 

Na+ rich clays and increasing pH of natural water. This reaction can be idealized as (Deer et al., 1992): 

 

NaAlSi3O8 (s)  + H2CO3 + 4.5H2O → Na+ + HCO3
− + 2H4SiO4 + 0.5Al2Si2O5(OH)4 (s)  

 

Together with devitrification of volcanic glass (Di Paola, 1972; AG consult, 2006), weathering of silicic 

volcanic rocks is responsible for the formation of clays and metal oxides (such as Fe, Al,) that 

respectively trap fluorine and arsenic. Arsenic is known to be associated with volcanic glass of rhyolitic 

rocks (Nicolli et al., 1989; Hinkle and  Polette,  1999; Bundschuh et al., 2004) and sorbed by metal 

oxides (Cullen et al., 1989; Nicolli et al., 1989, 2001; Smedley et al., 2002; Ladeira and Ciminelli, 2004) 

and in minor amounts by clays (Goldberg and Glaubig, 1988; Mohapatra  et al., 2007;  Smedley et al., 

2002; Ladeira and Ciminelli, 2004). Sun and Doner, 1996; Waychunas et al., 1993; Foster, 2003 studied 

the important role of iron hydroxides (such as goethite and ferrihydrite) in aquifer sediments in 

controlling the mobility of arsenic. 

In the MER, the volcanic glasses in rhyolites are the main sources of fluoride that is progressively 

enriched in the weathering products of these rocks, as progressively incorporated in clay minerals. The 

source and enrichment mechanism of fluoride is briefly discussed in chapter 4. 

The concomitant presence of As anomalies possibly means that during weathering the As budget is 

directly released by the glassy rich volcanic rocks, trapped in As-bearing phases such as iron-

aluminium-manganese oxides and hydro-oxides, and progressively concentrated  within the fluvio-
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lacustrine sediments. These phases are very sensitive to Eh-pH changes and if destabilized can release 

their chemical constituents within the interacting water. During water-rock interaction, the weathering of 

silicic materials (ash, pumice, tuff, rhyolitic ignimbrites) give rise to Na+-HCO3¯ rich high-pH waters 

that  favour high mobility of As. As a result As correlated with Na+ (R2=0.63) and HCO3
− (R2=0.7) in 

groundwater wells.  

Taking into account the speciation of arsenic, hydrogeochemical modelling was performed in order to 

constrain its behaviour and mobility.  Saturation indices with respect to arsenic adsorbing Fe, Al and Mn 

oxy hydroxide minerals were computed using database of WATEQ4F (Ball and Nordstrom, 1991) of the 

PHREEQC software. The modeling revealed supersaturation with respect to ferric oxides and 

hydroxides (hematite, magnetite and goethite) and aluminium hydroxide species (boehmite and gibbsite) 

indicating that these mineral phases are stable (do not dissolve) in water and could be assumed as 

potential As adsorbents (Table 6.1). Saturation is not reached with repect to Mn oxy-hydroxide phases. 

The results also showed that arsenate oxyanions, (As (v)) are predominant over arsenite (As (III)) in the 

water types. This probably indicates an oxidizing aquifers/environment. 

Under oxidizing and high pH conditions (caused by the processes of dissolution of silicates and cation 

exchange) combined with Na+-HCO3¯ hydrochemical facies can induce local destabilization of these 

oxide and hydroxides, with concomitant release of arsenic in the interacting water.  

Further work of sequential chemical extraction would be required to quantify the metal content 

associated with different phases (oxides, organic matter, clays) and to clearly determine the origin of the 

mentioned geochemical anomalies in the MER natural waters. 
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Water types 
Ted8 
(RI) 

Ted18 
(HS) 

Ted20 
(HS) 

Ted36 
(HS) 

TW26 
(HS) 

Ted43 
(GWL) 

Ted46 
(WL) 

Ted41 
(WL) 

Ted37 
(WL) 

pH 8.3 7.8 8.2 7 9.1 8.2 8.7 7.1 8.1 

As(tot)=As(V)+As(III) 
 in µg/L 0.14 14.8 4.4 72 109.4 277 26.3 23.8 21.5 

mineral phases SI SI SI SI SI SI SI SI SI 

Fe2O3    8.84 4.5 3.91 4.16 5 0.95 7.77 5.09 6.9 

Fe3O4    19.18 16.74 15.06 17.4 15.14 13.16 17.69 15.25 18.17 

FeOOH         8.38 7.48 7.05 7.45 7.36 6.46 8.03 6.69 8.02 

Fe(OH)3(a)           2.72 0.55 0.26 0.38 0.8 -1.22 2.19 0.85 1.75 

Fe3(OH)8              3.49 -3.37 -4.56 -3.17 -3.67 -9.57 1.37 -1.06 0.37 

Fe(OH)2.7Cl.3          6.84 5.68 5.03 5.61 5.42 3.56 6.51 5.58 6.52 

FeAsO4:2H2O        -10.44 -8.44 -9.87 -6.35 -9.9 -9.33 -10.45 -6.8 -7.68 

Al(OH)3 1.62 -0.04 -0.96 0.69 0.12 -3.23 0.86 0.76 1.03 

AlOOH 2.82 1.33 0.39 2.08 1.44 -1.76 2.09 1.98 2.31 

Al(OH)3(a)       -1.13 -2.46 -3.42 -1.7 -2.4 -5.46 -1.84 -1.95 -1.56 

MnO2           -8 -11.61 -9.23 -6.47 -2.27 0.28 -7.1 -17.24 -12.09 

Mn(OH)2      -5.39 -13.69 -11.5 -7.56 -5.29 -5.94 -6.11 -13.04 -11.81 

MnOOH       -3.23 -12.03 -9.44 -6.7 -2.33 -3.91 -3.55 -12.08 -9.85 

Calcite    -0.08 -0.1 0.19 0.05 0.32 0.03 0.88 -0.32 1.04 

Fluorite    -2.75 0.02 -0.9 0.42 -0.48 -0.74 -0.22 -0.72 0.56 

 

Table 6.1: PHREEQC calculations of saturation indices for selected mineral phases and selected water 

samples. WL= Groundwater wells, HS=Hot springs, CS=Cold springs, GWL= Geothermal wells, LW= 

Lakes, RI= Rivers and (a): amorphous phase, SI=saturation index. 
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7. Column experiment on volcanic ash 

 

7.1. Introduction 

 
Most of the rift floor is covered by silicic pyroclastic materials mainly consisting of rhyolitic 

ignimbrites, interlayered with basalts and tuffs, associated with layered and unwelded pumices. Ashes 

are frequently found inter-bedded with ignimbrites and pumice layers. This pyroclastic material (tephra) 

is the result of explosive volcanic eruptions. These volcanic products are the natural persistent source of 

toxic elements in the rift environment. During eruptive volcanism, fluorine forming gases can adsorb on 

to the tephra. Linked to these volcanic products, the natural waters of the Ethiopian Rift are 

characterized by anomalous concentration of fluoride. 

In order to further understand the geochemical processes controlling the elevated fluoride concentration,   

leaching experiments were performed on columns filled by a pyroclastic ash. These experiments aim to 

simulate the elemental extractability of water soluble ions with particular emphasis on the leaching 

(dissolution/desorption) behaviour of fluoride during the water-ash interaction. The comparison between 

the amounts of fluoride leached from different grain size fractions of the same sample also provides 

further fundamental information in the understanding of sources and geochemical behaviour of fluoride 

in the waters of the MER.  To characterize the flow and transport properties at the field or at the 

laboratory scale, tracer tests are employed (Ptak et al., 2004) and flow interruption techniques are 

employed to access physical non-equilibrium behaviour (Brusseau et al., 1989, 1997). Moreover, the 

numerical transport modelling of the above mentioned tracer tests can help to discern dilution and 

dispersion processes from reactions between the water and the solid phase (Appelo et al., 1990). Thus, 

both tracer tests with flow interruption and modelling were used to obtain information on the mobility of 

selected reactive and non reactive species.  

 

7.2. Sampling and analytical techniques 

 

The sampling location of the pyroclastic fall deposit (TW39) consisting of vitric ash (consisting pumice 

fragments) are indicated on Figure 7.1.  

After a preliminary drying of the sample at 110 oC for 12 hours, the bulk rock chemical composition was 

characterized by X-ray fluorescence spectrometry (XRF) analysis (on pressed powder pellets) using 
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wavelength-dispersive automated ARL Advant'X spectrometer with accuracy and precision (based on 

the analysis of certified international standards) better than 3% for Si, Ti, Fe, Ca, K, and 7% for Mg, Al, 

Mn, Na. 

The mineralogical characterization was performed by X-ray diffraction (XRD) investigation and by in 

situ analyses of single grains obtained with a Zeiss EVO 50 SEM in conjunction with an Oxford 

Instruments INCA microanalysis suite. 

The sample was also sieved to obtain different grain size fractions, i.e. <63µm (fine grain ash), 63µm-

2mm (coarse grain ash). These different grain fractions (raw, coarse and fine) were later used in the 

column experiments simulating the water-rock interaction. Online parameters on the leaching solutions 

were determined with the multi-parameter instrument HANNA Multi 340i which includes: a HIcell-31 

pH combined electrode with a built-in temperature sensor for pH measurement and a HIcell-21 electrode 

conductivity cell for EC measurements. Leaching solutions were filtered through a 0.22 μm Dionex vials 

caps. The major cations and anions (Na+, K+, Ca2+, Mg2+, F−, Cl−, NO3
−, SO4

2−, NH4
+)  were determined 

by isocratic dual pump ion chromatography ICS-1000 Dionex equipped with an AS9-HC 4 x 250 mm 

high capacity column and ASRS-ULTRA 4mm self-suppressor for anions and CS12A 4 x 250 mm high 

capacity column and CSRS-ULTRA 4mm self-suppressor for anions. An AS-40 Dionex auto-sampler 

was employed to run analyses, Quality Control (QC) samples were run every 10 samples. The standard 

deviation for all QC samples run was better than 4% whereas the accuracy is reported as the average of 

the relative differences between the measured and known standards and those were about 5% for cations 

and anions.  Charge balance errors in all analyses were less than 5% and typically less than 3%. The 

maximum detection limit was 2 µg/l for Fluoride, Chloride, Nitrate; and 6 µg/l for Sulphate. 
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Figure 7.1: Simplified geologic map of the study area modified from (Dainelli et al., 2001) with 

volcanic ash sampling location. 

 

7.3. Column transport experiments 

 

Column experiments were conducted using polyethylene (PE) columns with internal diameter of 1.35 

cm and a length of 20 cm, equipped with PE pre and post-chambers consisting of uniformly packed 

quartz gravel and a 50 μm NITEX mesh in contact with sediments.  

Packing of air-dried sediment took place in 15–20 increments and each increment was lightly packed 

before the next one was placed on top.  
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During the experiments involving the raw ash (unsieved sample) and the coarse ash (grain size 63µm-

2mm) columns were filled entirely with natural ash, while during the experiment involving the fine ash 

(<63µm) the column was filled with a 1:3 mixture of natural fine ash particles and inert quartz sand with 

well sorted grain size 0.1±0.05 mm (Merck, Germany). The latter column was filled in this way to avoid 

clogging of column filters and excessive entry pressure in the column due to low permeability of fine 

fraction. Elution experiments consisted in slowly saturating every column with synthetic rain water 

(pH=5.5), CaCl2 0.005 M in double deionised water (Carlo Erba, Italy), and equilibrating the ash and the 

pore water for approximately 1 hour. After the equilibration period, a peristaltic pump with a constant 

flow rate of 100 ml/h was employed to pump the synthetic rain water in each column. An effluent tube 

was fixed to a fraction collector (RediFrac Pharmacia LKB Biotechnology) to collect continuous 

effluent fractions of 2 mL. These fractions were then divided in two 1 mL aliquots for the analysis of 

cations and anions. After approximately 100 pore volumes, the pump was stopped and turned on again 

after 1 day to evaluate the amount of cation and anions leached after flow interruption. The schematic 

diagram of the column experiment is shown in Figure 7.2. 

 

 
 

Figure 7.2: Schematic diagram of the column experimental set-up 

 

Extra column volume was taken into account when the experimental elution curves were constructed by 

correcting the arrival volumes of the effluents. Tracer tests were performed on every column after 

elution experiments. A solution of 1 g/L of KCl dissolved in synthetic rain water was injected for 0.8 

minutes into the column and immediately afterward the synthetic rain water reservoir was turned on. A 

small flow through cell was used to monitor KCl concentration via electrical conductivity (EC) at the 
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column outflow and KCl concentration (mg/L) of the effluent was obtained from the measurement of 

EC for a series of known concentrations of KCl solutions. An additional tracer test with flow 

interruption was performed on every column to examine the effect of diffusive mass transfer on solute 

transport (Brusseau et al., 1989, 1997). 

 

7.3. Moment analysis and numerical modelling 

 

The breakthrough curves of saline tracer KCl were analysed with the method of moments (Eriksson et 

al., 1997). The zeroth normalized moment, μ0, quantifies the fraction of tracer mass recovered in the 

effluent. The normalized first moment μ1, which is the mean arrival time, gives the linear retardation 

factor R; the normalized central second μ2 and third moments μ3, measure the spreading around the 

centre of mass and the degree of asymmetry or skewness of the breakthrough curve, with S given by the 

ratio μ3/(μ2)1.5 (Vincent et al., 2007).  

The finite difference USGS numerical code MODFLOW-2000 (Harbaugh et al., 2000) was employed  to 

simulate saturated groundwater flow within the column experiments. The flow model domain consisted 

of a single column and a single row with extents of 12 mm × 12 mm and of 50 layers 4 mm thick for a 

total column length of 200 mm. Flow boundary conditions consisted in an injection well placed in the 

first cell with a constant flow rate of 100 ml/hour and a constant head in the last cell, to maintain a 

constant flux within the column. The solute transport model MT3DMS (Zheng and Wang, 1999) was 

employed in order to simulate tracer test breakthrough curves and elution of conservative species. The 

classical formulation of the advection dispersion equation (ADE) was solved by the TVD (third-order 

total-variation-diminishing method) scheme, which is mass conservative. The TVD scheme solves the 

advection component independent of the other terms in the transport equation. The only adjustable 

parameter in the TVD scheme is the Courant number which represents the number of cells a particle will 

be allowed to move through in any direction, in one transport step, this was set equal to 0.1 to ensure 

stability during the calculation process (Zheng and Bennet 2005). 

The injection of the tracer was simulated with a constant concentration boundary applied to the first cell 

for 0.8 minutes with KCl concentration of 1000 mg/L. To simulate the elution of conservative species, a 

flow and transport model was implemented with the same boundary conditions and parameters of the 

one calibrated for tracer test. The only changes were the removal of the constant concentration boundary 

and the imposed initial concentration of F¯, set as the initial concentration observed in the first sample 
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collected from the effluent of each column. The comparison of the calculated conservative F¯ elution 

curve and the observed one from different particle fractions, allowed the distinction between the readily 

water soluble F¯ and the sorbed F¯ which was slowly released from the porous matrix (Appelo et al., 

1990). 

 
7.4. Geochemistry of pyroclastic ash  
 
The XRF analysis was plotted on an alkali silica diagram in order to characterize the geochemical 

composition. The result showed that the sample is rhyolitic in composition (Table 7.1 and 7.2). 

Moreover, XRD analysis was carried out on the raw, fine and coarse grain fraction of the ash to identify 

the mineral phases and to compare the different grain sizes. Both the raw (unsieved) and coarse ash 

fractions contain glassy particles and subordinate crystals of quartz, sanidine, aegirina pyroxene and 

extremely rare F-rich apatite crystals which are nearly absent in the fine fraction that is dominated by the 

glassy grains (Figure 7.3 and 7.4). This suggested the dominant role of the vitric phase in providing the 

soluble components in the leachate during the column experiments.  

 

TW39 (wt 
%) Raw 

Coarse grained 
(63mm-2mm) 

Fine grained 
(<63mm) 

SiO2 71.25 71.11 71.70 
TiO2 0.40 0.39 0.36 
Al2O3 9.40 9.17 9.09 
Fe2O3 6.53 7.06 7.05 
MnO 0.25 0.26 0.28 
MgO 0.13 0.16 0.16 
CaO 0.33 0.31 0.35 
Na2O 2.66 2.62 2.03 
K2O 4.29 4.27 4.33 
P2O5 0.01 0.01 0.01 
LOI 4.76 4.64 4.64 

 

Table 7.1:  Bulk XRF analysis of major oxides (wt%) of the pyroclastic ash. Note: the detection limit 

for all major oxides ~0.01 wt%. 

 
TW39 SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O F Cl 
wt % 74.21 0.31 8.30 6.63 0.24 0.00 0.23 2.40 3.27 0.33 0.20

 

Table 7.2: Average (wt%) composition of the glass phase carried out by in-situ SEM microanalysis of 

glass particles. 
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Figure 7.3: Backscattered SEM image of the studied ash.  Light grey represents both the glass phase 

and alkaline feldspar, whereas white grains are aegirina pyroxene crystals.  Note the vesicles that 

characterize the pumice fragments. 

 
Figure 7.4: XRD analysis results for the three grain fractions (raw, coarse and fine) showing the 

dominant glassy phase and a few peaks dominated by quartz. 
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7.5. Geochemical composition of leachates 

 

The composition of the leachates in the column experiments were predominantly controlled by the 

dissolution of volcanic glass and surface coatings on the glass particles. The reaction kinetics in the 

column is characterized by a rapid increase of pH (5.5 to alkaline) at the very beginning of the 

experiment. The consumption of H+ ions is accompanied by the release of high level major ions. This 

suggests the rapid dissolution of volcanic glass and possible occurrence of cation-exchange processes. 

 Petrographic, XRD and SEM investigation revealed the presence of only few subordinate crystals of 

quartz and sanidine and pyroxene and thus, dissolution of mineral phases in controlling leachate 

composition can be assumed negligible. Generally, high levels of Na+, Ca2+, Mg2+, SO4
2−, NO3

−, Cl−, F− 

are released during the leaching experiments whereas K+ is leached at very low level (Table 7.3).  

 

a) Fine volcanic ash leachate major ions composition 
Time 

(minutes) Na+ K+ Mg2+ Ca2+ F− Cl− NO3
− SO4

2− 
1 50.9 0.43 9.92 23.0 9.18 33.1 58.8 67.9 
3 22.8 0.19 4.73 11.3 4.45 20.2 21.9 33.0 
6 10.7 0.09 3.73 3.68 2.44 10.7 5.62 16.1 
9 6.50 0.06 2.50 2.61 1.07 4.12 0.11 7.31 

12 4.88 0.04 2.20 2.32 0.51 2.20 0.02 3.67 
15 4.54 0.04 1.59 1.78 0.37 1.65 0.10 3.34 
18 3.86 0.03 0.80 1.66 0.30 1.65 0.53 6.33 
21 2.93 0.03 0.54 1.64 0.29 2.49 0.67 9.08 
24 2.71 0.03 1.04 2.22 0.27 2.76 7.64 12.0 
27 3.89 0.03 3.91 3.37 0.49 1.86 6.16 15.4 
30 3.75 0.02 4.20 5.01 0.23 0.96 0.73 15.8 
60 4.64 0.02 6.70 12.3 0.10 1.55 2.12 18.7 
90 6.46 0.04 7.80 26.2 0.09 1.30 3.06 20.9 

120 1.61 0.05 7.77 18.6 0.07 1.33 9.48 20.2 
150 1.26 0.01 8.60 9.45 0.04 1.67 6.36 13.3 
180 2.97 0.02 7.87 8.72 0.08 1.56 0.79 4.70 
210 1.99 0.04 4.28 4.20 0.04 1.60 0.81 1.92 
240 1.68 0.01 2.01 3.58 0.12 3.27 4.64 1.57 
270 1.00 <0.01 1.00 1.00 0.03 1.49 0.14 0.44 
300 0.10 - 0.20 0.50 0.07 1.65 <0.14 1.38 
330 0.10 - 0.20 0.50 0.06 0.63 - 0.99 
360 0.10 - 0.20 0.50 0.06 0.36 - 0.58 
390 0.10 - 0.20 0.50 0.06 0.39 - 0.24 
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b) Coarse -volcanic ash leachate major ions composition 
Time 

(minutes) Na+ K+ Mg2+ Ca2+ F− Cl− NO3
− SO4

2− 
3 64.0 1.19 7.32 21.5 2.31 66.4 105 45.9 
6 31.8 0.46 2.71 5.17 2.14 33.3 38.1 21.3 
9 9.79 0.21 1.74 2.58 1.66 10.9 8.64 7.26 

12 6.27 0.12 1.17 4.28 1.20 5.41 7.91 21.6 
15 5.37 0.10 7.76 16.3 0.95 2.69 1.58 15.6 
18 6.57 0.08 11.7 19.9 0.75 1.40 3.46 13.3 
21 3.04 0.07 10.5 9.19 0.85 3.86 3.81 4.26 
24 2.16 0.09 8.69 6.89 0.72 1.79 0.04 4.07 
27 3.85 0.05 6.79 5.44 0.40 8.68 1.72 6.24 
30 2.20 0.04 4.55 3.87 0.34 1.56 7.94 8.18 
60 2.57 0.04 2.90 2.41 0.26 1.47 2.83 6.50 
90 1.80 0.03 1.84 2.82 0.47 0.60 0.21 2.48 

120 1.88 0.03 1.85 3.42 0.10 0.78 1.22 7.14 
150 1.53 0.05 2.19 4.33 0.11 0.40 1.71 6.05 
180 1.55 0.03 1.75 2.15 0.10 1.58 3.36 4.69 
210 1.02 0.02 1.17 1.57 0.23 1.67 0.81 4.03 
240 0.70 0.03 0.45 1.70 0.18 1.21 1.27 4.21 
270 1.10 0.03 1.08 1.09 0.04 1.53 0.35 2.78 
330 1.00 0.03 0.30 1.00 0.01 0.75 <0.35 2.00 
390 1.00 0.03 0.30 1.00 0.01 0.53 - 2.40 

 
c) Raw -volcanic ash leachate major ions composition 

Time 
(minutes) Na+ K+ Mg2+  Ca2+ F− Cl− NO3

− SO4
2− 

1 36.3 6.51 5.02 14.8 2.65 45.1 60.9 16.8 
3 12.6 5.64 0.77 2.56 2.23 36.6 46.9 14.7 
6 6.61 3.17 0.27 1.36 1.22 18.5 23.9 9.12 
9 4.83 2.39 0.17 1.22 1.12 8.79 11.9 4.59 

12 4.08 2.03 0.17 1.01 0.80 3.76 4.96 2.14 
15 4.03 2.16 1.01 3.52 0.66 2.48 3.22 1.43 
18 3.41 1.70 0.33 2.40 0.53 1.87 2.39 1.09 
21 3.10 1.56 0.21 2.94 0.46 1.54 1.97 0.85 
24 3.72 1.60 0.58 3.67 0.44 1.29 1.65 0.79 
27 2.12 1.08 0.42 7.50 0.36 3.08 1.38 8.71 
30 2.27 1.11 0.67 5.45 0.35 2.98 1.08 5.57 
60 1.01 0.77 5.32 3.64 0.23 6.53 0.43 23.3 
90 0.21 0.27 0.12 0.45 0.19 0.43 0.18 0.24 

120 0.20 0.23 0.09 0.74 0.08 <0.43 <0.18 <0.24 
150 0.48 0.38 0.17 0.25 0.01 - - - 
180 0.23 0.22 0.12 0.24 0.01 - - - 
210 0.20 0.13 0.02 0.13 0.01 - - - 
240 0.11 0.09 <0.02 <0.13 0.01 - - - 
270 <0.11 <0.09 - - <0.01 - - - 
300 - - - - - - - - 
330 - - - - - - - - 
360 - - - - - - - - 
390 - - - - - - - - 
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Table 7.3:  Major ions compositions from the column experiment for a) fine ash b) coarse ash and c) 

raw ash. Note that: (-): indicates values lower than the above measured concentration (indicated in bold). 

  

The chemical analysis of leachates from the three grain size fractions (fine, coarse and raw) showed that 

the ions Na+, K+, F−, Cl−, and NO3
− were consistently decreased with increased flushing time, whereas 

Ca2+, Mg2+ and SO4
2− decreased at the beginning of the experiments and increased after a certain time, 

and finally decreased gradually (Figure 7.5). The geochemical behaviour of Ca2+ and Mg2+ mimics that 

of SO4
2− along with time series, particularly for the fine grained ash column (Figure 7.6). This probably 

suggests that the concentration of Ca2+, Mg2+ and SO4
2− on the leachates,  to a certain extent, have 

possibly resulted from dissolution of gypsum coatings on tephra particle surfaces. The occurrences of 

halogens (F−, Cl−) are controlled by the available volcanic gases HF, HCl, adsorbed to the surface of 

tephra. SO2 gas adsorbed on the tephra can also be another possible source of  SO4
2−. 

The leaching experiments showed a pronounced effect of volcanic ash in controlling chemical 

composition of the leachates which can mirror the leaching behaviour of the rift volcanic ash during 

rainfall and surface runoff. 

 

 
 

Figure 7.5: Plots of major ions concentration variation versus time series for the raw ash, coarse ash and 

fine ash leachates. 
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Figure 7.6: 3D-Column diagram showing Ca2+ and Mg2+ versus SO4
2− concentration variation along the 

time series. 
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Considering that F− is the most problematic water quality problem in the Ethiopian rift system, the 

performed column experiments give particular emphasis on the origin and the leaching behaviour of F− 

during water-rock interaction processes. The maximum concentration levels at the beginning of the 

experiment were 9.2 mg/L for fine, 2.3 mg/L for coarse and 2.7 mg/L for raw grain fractions and 

consistently decreased along the time series (Figure 7.7). During the experiment on the fine ash fraction, 

the column were filled with 6.6 g (¼th) fine ash and  20 g (3/4th) inert sand in order to facilitate the 

permeability unlike the other fractions. Even at ¼th ratios the fine fraction released 9.2 mg/L which is 

higher than the other fractions. This suggested that much of the fluoride is concentrated and released 

from the finer fractions. 

 

 
 

Figure 7.7: 3D-Column diagram showing the behaviour of F− leaching with time for the fine, coarse and 

raw ash leachates. 

 

 

 

 



 92

7.6. Tracer tests and model results 

 

The main objectives of these tests were to determine if the physical equilibrium approach described by 

the classical advection dispersion equation can be assumed, or if non equilibrium processes (preferential 

flows) were relevant for the column experiments. Once this issue was resolved, the main target was to 

quantify the physical parameters which deterministically describe the flow and transport process. 

The mass recovery was near 100% for all tracer tests, and the centre of the mass was recovered after 

approximately 1 pore volume confirming the assumption of conservative transport for KCl. Instead, the 

spreading around the centre of mass and the skewness were quite different. For instance, μ2 and S of the 

fine ash column were very low as the predominant grain size was the inert sand used to increase the 

column permeability; while μ2 and S of the other two columns were comparable. Overall, the moment 

analysis confirmed the conservative behaviour of the saline tracer used in the tests and the higher 

spreading and tailing in the raw and coarse columns could suggest possible preferential flow and 

diffusive mass transfer between mobile and immobile water zones. To quantify this possible mechanism, 

on every column an additional tracer test with flow interruption (not shown) was performed. The 

absence of concentration increase, after 30 minutes of flow interruption, lead to exclude the substantial 

contribution of physical non equilibrium processes in solute transport within the columns. Moreover, the 

total porosity measured gravimetrically and the effective porosity determined by means of tracer testing 

gave similar results, thus their ratio approached unity. This implies that there is no considerable partition 

between mobile and immobile water within the column and there are no indications of preferential flow 

and corresponding immobile water zones (Eriksson et al., 1997). 

 

 Parameter 

 μ0 μ1 μ2 S λL (cm) θ 

Raw column 99.7 1.01 0.09 0.97 2.5 0.40

Coarse grain column 99.8 1.01 0.12 0.99 3.0 0.49

Fine grain column 100.2 0.99 0.03 0.69 0.6 0.45

 

Table 7.4: Moment analysis results for the three columns. 
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Parameter Raw ash 

Coarse grained ash 

(63μm-2mm) 

Fine grained ash 

(<63 μm) 

Grain size (%) - 67 28 

Hydraulic conductivity (m/s) 1.90E-05 1.10E-04 1.10E-06 

Bulk density (Kg/m3) 1.18 1.68 1.61 

Total porosity 0.40 0.51 0.46 

 

Table 7.5: Lists of volcanic ash grain size distribution, hydraulic conductivity, bulk density and total 

porosity. 

 

The simulated and observed breakthrough curves of the non reactive tracer (KCl) injected in each of the 

three columns after the elution experiments are showed in Figure 7.8.  

 

 
 

Figure 7.8: Calculated and observed tracer concentration breakthrough curves for the raw column 

(black line and triangles); for the coarse ash column (light dark line and circles) and for the fine ash 

column (black dashed line and crosses). 
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The only parameter adjusted during model calibration process was longitudinal dispersivity (λL), as 

hydraulic conductivity was determined with constant head test and effective porosity (θ) was derived 

from:  

 

A
vQ

=θ  

 

Where Q is the flow rate, A is the cross sectional area of the column and v is the measured velocity of 

the tracer, calculated dividing the length of the column by the time required for the tracer centre of mass 

to pass through the column. The elevated value for λL of raw and coarse ash column is due to the high 

tortuosity pathway that tracer particles encompass through the ash, while for the fine ash column, the 

low value is representative of a homogeneous porous media, given by the inert quartz employed. The 

model fit was satisfactory for all the columns with a correlation coefficient (R2) of 0.998, 0.996 and 

0.997 for the raw, coarse and fine ash column respectively. 

With the calibrated model, it is possible to verify the amount of  F− adsorbed onto different grain size 

constituent of the ash, by integrating the area of the observed elution of F− and subtracting it to the 

integrated area of F− calculated conservative elution (Figure 7.9). 
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Figure 7.9: Calculated and observed tracer concentration breakthrough curve for the raw, coarse and 

fine ash column, drawn for F− and Cl−. 

 

The results of the column experiments were demonstrated that the pyroclastic deposits are an important 

reservoir and the ultimate source of F− in the water resource of the region. Leaching of F−  was 

significant particularly at start of the column experiments. The highest measured concentration of F− 

from the fine, coarse and raw grain fractions columns are 9.2, 2.3 and 2.7mg/L respectively and 

gradually decreased during the duration of the experiment. The column experiment on the volcanic ash 

using synthetic rain water has simulated the natural leaching behaviour of F− during water-rock 

interaction processes. The result has brought important implications regarding the understanding of the 

source and geochemical behaviour of F− in the natural waters of the rift.  
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8. Geochemistry of isotopes in waters and rocks 

 

8.1. Introduction 

 

Applications of isotope geochemistry are widely proven techniques that are used as tracers in various 

environmental problems related to hydrology. They provide important insights into the origin of waters, 

recharge conditions, water-rock interactions and water flow paths (Clark and Fritz, 1997; Cook and 

Herczeg, 2000).  

 

Stable isotope fractionation during evaporation of water from the oceans and open water surfaces as well 

as the reverse process (condensation and rain formation) is responsible for the most notable changes in 

the water isotopic pattern. These processes cause the depletion of meteoric water and enrichment within 

lakes, plants, and soil water of heavy isotopic species of H and O relative to the ocean (Clark and Fritz, 

1997). The stable isotope composition of groundwater relates these waters to the site of precipitation, 

infiltration or to their origin from surface water or fossil ground water (Gat and Dansgaard, 1972).  

 

The basis for the interpretation of variations in stable isotope in the hydrologic system is based on the 

vapour pressure of H2
16O which is higher than that of H2

18O. Due to this variability in isotopic vapour 

pressures, evaporation produces residual water enriched in the heavier isotopes relative to the initial 

isotopic composition. Comparison of the stable isotope data for surface water and groundwater samples 

relative to the global or local meteoric water lines can provide information on these processes. Therefore 

water that has undergone evaporation lies to the right of the local meteoric water line due to this 

enrichment (Coplen, 1993). Groundwater can be isotopically fractionated during water-rock interaction 

processes. 

 

On the other hand, 87Sr/86Sr isotopic fingerprint of water is depends on the weathering and a subsequent 

interaction of water with rock and to attain a specific Sr isotopic value of the parent rock. The ratio 

varies depending on the type, and age of the weathered rock (Faure, 1986).  

Groundwater acquires dissolved Sr: (i) in its recharge area, through infiltration and percolation 

processes; and (ii) along its flow path, through dissolution of or ion exchange with minerals. Hence, 
87Sr/86Sr isotope ratios give insight into water–rock interaction processes. Dissolved strontium isotope is 
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a useful tracer because it undergoes negligible isotopic fractionation and it can be considered 

representative the ratio of the source (Goldstein and Jacobsen, 1987; Drever, 1997; Stettler and Allegre, 

1978). Once strontium released in the hydrosphere, it retains its isotopic composition without significant 

fractionation by geologic and hydrologic processes. Any change in the measured 87Sr/86Sr value can 

only be described by the interaction with multiple rocks and by mixing with different fluids having 

different isotope ratios (Frape et al., 2003; Pande et al., 1994; Ben Othman et al., 1997). 

 

The purpose of this section is to investigate the application of isotope geochemistry on the origin of 

waters, water-rock interactions and mixings processes (among surface waters and groundwaters) using 

stable isotopes of O, H and radiogenic Sr isotopes. 87Sr/86Sr, δD and δ18O isotopes, in combination with 

major (Na+, K+, Ca2+, Mg2+, F−, Cl−, NO3
−, SO4

2−
 and HCO3

− ) and trace elements (Li, B, Sr, and Rb) 

were utilized.  

 

8.2. Sampling and analysis of δD, δ18O and 87Sr/86Sr isotopes. 

 

Stable isotopes of oxygen (δ18O) and hydrogen (δD) were analysed for 31 water samples (5 lakes, 12 

groundwater wells, 2 geothermal wells, 10 hot springs and 2 rivers), and strontium isotopes for 13 water 

samples (9 hot springs, 2 geothermal and 1 groundwater wells and 1 river) were analysed. 

Two separate samples were collected for oxygen, hydrogen, and strontium isotopic analysis. The 

samples were stored in 100ml polyethylene bottles on the site after filtration using 0.45 µm membrane 

filters. For O, H, and Sr isotope filtered and none acidified water samples were used.  

The determination of O and H isotope composition was conducted using the well established technique 

of CO2/H2 water equilibration by means of an automatic equilibration device on line with a mass 

spectrometer (Epstein and Mayeda, 1953; Horita et al., 1989). The results are reported as delta units (δ) 

per mil (‰) against the V-SMOW isotopic standard. The analytical precision of δ18O and δD 

measurements (where δ18O or δD = {[(18O /16O) sample/ (18O/16O) V-SMOW] -1} x 1000) are better than 

±0.05‰ and ±0.7‰ respectively. The δ18O and δD measurements were performed on the same water 

aliquot. 

Laboratory chemical separation and mass spectrometric analysis were done for strontium isotopes. 

100ml of filtered water sample was added to a cleaned vial and dried at 40 °C. About 1 ml of 2.5N 

ultrapure HCl was added to dissolve the remaining precipitate. Strontium was separated by ion-exchange 
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chromatography using AGW50 X-8 200-400 mesh Bio-Rad resins in H+ form. The labile Sr was 

extracted from the solid samples (ignimbrite and basalt) using CH3COONH4 at the proper concentration 

to extract most cations by adding 100 ml of solution to 25 g of crushed rock. The Sr isotopic 

composition was obtained by using a VG Micromass 54E single-collector mass spectrometer equipped 

with a TAU box and the software “Analyst” (Ludwig, 1994) for data acquisition and reduction. The 

measured 87Sr/86Sr ratio was fractionation-corrected to 86Sr/88Sr=0.1194; repeated analysis of the NBS 

987 standard gave averaged 87Sr/86Sr ratio of 0.71025+/-0.00002 (n=12), and no correction was applied 

to the measured isotopic ratio for instrumental bias.  

 

8.3. Delta Notation of Stable Isotope Data  

 
An isotopic ratio in a sample is measured with respect to a common standard. Ocean water is used as the 

standard for all H isotope analyses and for most O isotope analyses. It is reported as the deviation (δ) of 

the isotopic ratio of the sample (e.g. 18O/16O) from 18O/16O of a standard: 

 

δ18O = (Rsample/Rstandard - 1) x 1000 

 

Where: Rsample = 18O/16O in the sample 

 

            Rstandard = 18O/16O in the standard, and  

 

δ18O = relative difference in concentration, in units of parts per thousand (per mil). 

 

Delta 18O (δ18O) is referred to as delta notation and is the value reported by isotopic laboratories for 

stable isotope analysis. Delta 2H (δ2H) can be derived by analogy to δ18O where the ratio 2H/1H replaces 
18O/16O in Rsample and Rstandard. The standard used for determining δ18O and δ2H in water originally 

was standard mean ocean water (SMOW) as defined by (Craig, 1961). The standard used in this work is 

Vienna standard mean ocean water (VSMOW). If δ18O and δ2H samples contain more of the heavier 

isotopes (18O or 2H) than the reference material, the samples have positive per mil values and are 

referred to as heavier than the reference material or as being enriched in the heavier isotope. Conversely, 

if the samples contain more of the lighter isotopes (16O or H) than the reference material, the samples 
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have negative per mil values and are referred to as lighter than the reference material or as being 

depleted in the heavier isotope.  

 

8.4. Defining the local meteoric water line (LMWL) 

 

As a result of kinetic and equilibrium processes during evaporation from the ocean and subsequent 

condensation, the ratios of the stable isotopes of hydrogen (1H and 2H or deuterium) and oxygen (16O 

and 18O) in water within a particular air mass vary with temperature during condensation and with 

relative humidity during evaporation (Clark and Fritz, 1997). The stable isotope ratios of water vapor in 

an air mass reflect the origin of the air mass, and the ratios in the precipitation that evolves from the air 

mass reflect both the origin of the air mass and the conditions under which condensation occurs. As an 

air mass travels away from the ocean (or other source areas for water vapor) and precipitation occurs, 

precipitation that is enriched in the heavier isotopes leaves the air mass first. The remaining water vapor 

then is composed of lighter isotopes. Subsequent precipitation has an increasingly lighter stable isotope 

composition. 

 

This depletion effect has been called the "continental effect" and results in lighter stable isotope ratios 

farther away from the ocean. Furthermore, a strong linear correlation exists between mean annual 

isotopic composition of precipitation and mean annual surface air temperature. As a result, precipitation 

at higher latitudes has a lighter stable isotope composition than precipitation closer to the equator. This 

temperature effect also is seen as a result of elevation; cooler temperatures at higher elevations result in 

δ18O depletion that varies between -0.15 and -0.5 permil per 100 m rise in elevation (Clark and Fritz, 

1997). The relation between δ2H and δ18O in precipitation is described by the Global Meteoric Water 

Line (GMWL) developed by (Craig, 1961) and expressed by the equation:  

 

δ2H = 8 δ18O + 10 permil. 

 

This relation was developed as an average of many local water lines that differ from the GMWL as a 

result of climatic and geographic factors. Differential fractionation of δ2H and δ18O occurs as a function 

of humidity during primary evaporation of water vapor from the ocean and as a function of temperature 
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during secondary evaporation as rain falls from a cloud. These two factors affect the slope and intercept 

of the Local Meteoric Water Line (LMWL) and produce a different LMWL at different locations.  

 

In the study area the local meteoric water line (LMWL) is defined based on the interpretation of isotopic 

data (δ18O, δD) of rain in the basin (at Asela, Ziway, Silte, Butagera, and Awasa towns) that were 

collected by (Chernet, 1998) in the period of June-August 1994 and 1995 with precipitation varying 

from 2.5 to 75 mm. Generally, it appears that a variation in the isotopic values of the rain occur 

according to the quantity of rainfall. At higher precipitation quantity, the isotopic values are depleted as 

compared to at lower rainfall quantity.  

Considering all the data collected in the 5 towns the LMWL is defined as: 
 
 δD =6.08 δ18O+8.67 (R2=0.88) (Figure 8.1)  
 
All the data used to generate the LMWL are shown in Appendix 8.1. 
 

 
 

Figure 8.1: LMWL in Ziway-Shala basin, defined using all precipitation data (Appendix 8.1) 

 

The evaluation of the samples to determine whether they were affected by secondary processes of 

evaporation during collection and/or storage, deuterium-excess (δD-8 δ18O) values defined by 
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(Dansgaard, 1964) were used as an indicator of potential sample evaporation. D-excess remains 

unchanged during the air masses move across the continent and losses moisture by rainout. If 

evaporation exists from open surface bodies that return moisture to the air masses, the inherited d-excess 

values of the air masses can be altered (Gat et al., 1994; Machavaram and Krishnamurthy, 1995). D-

excess value of precipitation can also be changed when evaporation from rain drops passing through the 

air and/or from collector (Gat, 1996). Moisture exchange model of (Merlivat and Jouzel, 1979) showed 

that for reasonable ranges of temperature (20 to 30°C) and relative humidity (70 to 95 percent) over the 

ocean, the initial d-excess value of transported moisture should be between 3 and 15 per mil. Any 

sample with d-excess values less than 3 per mil has to be avoided since they may be affected by 

evaporation. Based on the above theory, d-excess values below 3 and above 15 per mil have been 

eliminated. This brings a better correlation (R2=0.97) with the equation of the: 

 

LMWL: δD =7.02 δ18O+9.1 (Figure 8.2) 

 

This equation (LMWL) is used in the basin to determine sources of ground-water recharge, to evaluate 

surface-water and groundwater interaction, and to analyze other geochemical and hydrologic problems. 
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Figure 8.2: LMWL in Ziway-Shala basin defined after excluding samples affected by evaporation. 

Excluded samples are indicated in Appendix 8.1. 

 

8.5. Stable δ18O, δD and radiogenic 87Sr/86Sr isotope composition of waters and rocks 

 
Table 8.1 displays major ions and Table 8.2 displays isotopic ratios of (δ18O and δD, N=31) and 

(87Sr/86Sr, N=13) and selected trace elements (Sr, Rb, Li and B) of waters including 87Sr/86Sr values of 2 

representative volcanic rocks (ignimbrite and basalt). Different ranges of isotopic values are recorded for 

different water groups: for 10 hot spring samples show δ18O (-3.36‰ – 3.69‰) and δD (-0.95‰ – 

24.23‰) (VSMOW), 12 groundwater wells δ18O (-3.99‰ – 5.14‰) and δD (-19.69‰ – 32.27‰) in 

contrast to the 5 Lakes δ18O (3.98‰ – 7.92‰) and δD (26.19‰ – 45.71‰). The 2 deep geothermal 

wells and 1 out of 2 river samples are depleted in stable isotopic values.  

Type T (oC) EC TDS  pH Na+ K+ Mg2+ Ca2+ F− Cl− HCO3
− SO42− 

HS1 96 4530 1830 8.36 170 39.1 0.0 0.9 23.5 429 915 253.0 
HS2 78 2040 1728 6.79 398 29.4 3.3 11.1 13.1 128 1110 35.0 
HS3 93.4 14440 7919 8.16 2288 24.6 0.0 0.3 97.3 1462 3434 612.1 
HS4 57.3 10570 7501 7.81 2416 25.9 0.0 1.4 63.9 1324 3642 28.3 
HS5 91.4 13190 6589 8 2109 1.5 0.0 1.9 55.0 1148 3251 22.3 
HS6 52.6 1780 958 8.15 346 26.4 0.0 3.2 4.5 17 561 0.0 
HS7 59.3 4630 3600 7.3 969 66.0 8.0 8.8 17.5 321 2141 68.8 
HS8 51.8 4870 3896 8.16 1122 64.1 0.6 1.7 17.6 356 2267 66.2 
HS9 38.8 630 499 7.33 105 11.5 5.5 22.1 1.9 27 293 32.6 
HS10 62 3900 2766 6.96 802 60.0 0.7 13.9 23.4 435 1407 23.1 
GW11 82 2160 1297 7.44 306 109.9 0.0 0.0 13.6 162 653 52.9 
GW12 85.6 4600 3051 8.17 771 152.2 0.0 0.8 40.2 207 1842 37.7 
WL13 28.3 3360 3564 8.16 858 31.2 4.2 3.7 13.6 106 2547 7.0 
WL14 24.6 350 871 7.48 61 9.4 2.3 27.7 3.1 145 226 397.7 
WL15 22.5 220 211 8.25 33 2.3 1.1 24.7 1.5 1 146 0.8 
WL16 24 220 266 7.31 30 3.6 2.6 25.0 2.0 1 201 0.5 
WL17 23.2 1320 1252 8.14 307 12.1 5.6 17.0 13.1 17 872 7.8 
WL18 25.2 490 489 7.82 55 2.5 11.2 68.0 0.9 4 342 5.8 
WL19 23.7 1770 12797 8.7 443 21.1 1.9 7.2 10.1 19 1229 3.7 
WL20 36.4 730 668 7.89 140 14.7 3.2 18.9 3.1 7 475 6.4 
WL21 32.3 2260 1952 7.64 480 27.6 30.5 30.7 7.1 266 1077 33.5 
WL22 36 2390 1949 8.08 557 25.9 0.1 28.7 14.3 153 1092 107.2 
WL23 25.1 2750 2227 7.81 565 25.1 6.7 20.8 20.0 176 958 456.0 
WL24 25.3 300 267 7.83 50 5.2 2.7 10.2 1.8 2 195 0.0 
LW25 24.2 1730 1377 9.03 387 21.0 0.5 9.7 12.5 131 769 46.5 
LW26 22.1 800 715 8.78 161 26.8 6.0 13.5 7.4 24 476 0.6 
LW27 25.8 20000 11563 9.6 3426 125.3 0.6 4.5 89.7 1326 6497 95.1 
LW28 27.6 20000 52725 9.67 15212 618.9 0.0 0.2 384.1 5361 29646 552.5 
LW29 25.2 420 379 8.6 61 10.9 7.6 27.3 1.5 10 253 6.6 
RI30 23.3 530 583 8.66 56 12.0 20.9 42.1 1.5 16 409 25.0 
RI31 21.5 180 174 7.83 15 4.8 5.2 16.8 1.6 4 125 1.0 



 103

 
 
Table 8.1: Major ions hydrochemical compositions (in mg/L) of the central MER waters from hot 

springs, geothermal wells, groundwater wells, lakes and rivers, in the Ziway-Shala basin. HS=Hot 

springs, WL=Groundwater wells, GW=Geothermal wells, LW= Lakes, RI= Rivers (ID: RI30=Meki, 

RI31=Ketar). 

 

Type T (oC) EC TDS  pH Sr Rb Li B δ18O δD 
d=δD -
8*δ18O 

87Sr/ 
86Sr 

HS1 96 4530 1830 8.36 0.445 0.203 0.506 2.890 -0.41 -0.95 2.33 0.7054 
HS2 78 2040 1728 6.79 0.267 0.146 0.451 1.253 -3.03 -15.65 8.59 0.7048 
HS3 93.4 14440 7919 8.16 0.179 0.107 0.388 4.635 2.49 20.65 0.73 0.7047 
HS4 57.3 10570 7501 7.81 0.201 0.115 0.416 4.975 3.69 24.23 -5.29 0.7065 
HS5 91.4 13190 6589 8 0.254 0.101 0.365 4.356 2.26 20.12 2.04 nm 
HS6 52.6 1780 958 8.15 0.044 0.014 0.073 0.614 -0.40 2.84 6.04 0.7076 
HS7 59.3 4630 3600 7.3 0.124 0.058 0.006 0.762 1.41 12.34 1.06 0.7046 
HS8 51.8 4870 3896 8.16 0.055 0.038 0.060 0.930 1.18 12.92 3.48 0.7045 
HS9 38.8 630 499 7.33 0.072 0.021 0.024 0.200 -3.36 -15.85 11.03 0.7058 
HS10 62 3900 2766 6.96 0.066 0.053 0.427 2.099 -1.15 -3.36 5.84 0.7065 
GW11 82 2160 1297 7.44 0.024 0.264 0.084 3.084 -4.65 -12.39 24.81 0.7054 
GW12 85.6 4600 3051 8.17 0.032 0.382 0.716 3.391 -1.24 -9.31 0.61 0.7043 
WL13 28.3 3360 3564 8.16 0.033 0.074 0.001 5.408 5.14 32.27 -8.85 nm 
WL14 24.6 350 871 7.48 0.014 0.008 0.021 0.009 -3.35 -13.7 13.10 nm 
WL15 22.5 220 211 8.25 0.046 0.001 0.013 0.007 -2.64 -9.13 11.99 nm 
WL16 24 220 266 7.31 0.038 0.002 0.006 0.005 -2.49 -8.11 11.81 nm 
WL17 23.2 1320 1252 8.14 0.020 0.002 0.028 0.029 3.21 23.1 -2.58 nm 
WL18 25.2 490 489 7.82 0.188 0.001 0.015 0.027 -2.68 -10.99 10.45 nm 
WL19 23.7 1770 12797 8.7 0.101 0.009 0.032 0.359 5.02 31.65 -8.51 nm 
WL20 36.4 730 668 7.89 0.064 0.010 0.034 0.058 -3.54 -19.69 8.63 nm 
WL21 32.3 2260 1952 7.64 0.122 0.012 0.056 0.664 -2.39 -12.01 7.11 nm 
WL22 36 2390 1949 8.08 0.057 0.005 0.058 0.492 1.45 6.92 -4.68 nm 
WL23 25.1 2750 2227 7.81 0.149 0.027 0.049 0.423 -2.1 -5.19 11.61 nm 
WL24 25.3 300 267 7.83 0.054 0.007 0.013 0.000 -3.99 -19.03 12.89 0.7062 
LW25 24.2 1730 1377 9.03 0.036 0.006 0.004 0.560 7.03 43.57 -12.67 nm 
LW26 22.1 800 715 8.78 0.079 0.030 0.081 0.107 6.99 42.78 -13.14 nm 
LW27 25.8 >20000 11563 9.6 0.057 0.054 0.014 3.861 3.98 26.19 -5.65 nm 
LW28 27.6 >20000 52725 9.67 0.140 0.063 0.073 0.513 7.92 45.71 -17.65 nm 
LW29 25.2 420 379 8.6 0.123 0.003 0.000 0.045 4.88 33.82 -5.22 nm 
RI30 23.3 530 583 8.66 0.210 0.009 0.005 0.011 1.67 6.14 -7.22 nm 
RI31 21.5 180 174 7.83 0.086 0.006 0.004 0.000 -2.76 -11.31 10.77 0.7063 

 

Table 8.2: δ18O, δD, 87Sr/86Sr isotopic signatures and trace elements (Sr, Rb, Li, and B) hydrochemical 

composition (in mg/L) of the central MER waters from hot springs, geothermal wells, groundwater 

wells, lakes and rivers, in Ziway-Shala basin. HS=Hot springs, WL=Groundwater wells, 

GW=Geothermal wells, LW= Lakes (LW25=Langano, LW26=Awasa, LW27=Shala, LW28=Abijata, 

LW29=Ziway), RI= Rivers (ID: RI30=Meki, RI31=Ketar), d is deuterium-excess= (δD -8*δ18O),  

nm=not measured. 
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The isotopic values of all water types are drown together with GMWL and LMWL (Figure 8.3). 

 

 
Figure 8.3: δD and δ18O of the various water types compared with GMWL and LMWL 

 

Dissolved strontium isotopic ratios (87Sr/86Sr) ranges from 0.7045 to 0.7076 in the hot springs, and the 

two deep geothermal wells have 0.7043 and 0.7054 values. The values are typical of water that has 

interacted with mantle derived materials (with a minor crustal contamination), similar to the rocks 

widely covering the study area. The Sr isotope values of the basalt and ignimbrite samples are 0.7063 

and 0.7071 respectively. Average Sr, Rb, Li and B concentrations for hot spring are (171, 86, 272, and 

2271 µg/L), for geothermal wells (28, 323, 400, and 3238 µg/L), for groundwater wells (76, 14, 28, and 

680 µg/L), for lakes (78, 38, 43, and 1260 µg/L) and for rivers (148, 7, 4, and 6 µg/L) respectively. 
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Figure 8.4 and 8.5 show regional groundwater flow directions at the upper and lower most part of the 

central MER, which is based on a brief discussion of the O, H, and Sr isotopic data below. 

 

 
Figure 8.4: Regional groundwater flow directions at the upper part of central MER in Ziway-Shala basin. 
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Figure 8.5: Regional groundwater flow directions at the lower part of the central MER in Ziway-Shala 

basin. 

 

 
 

? 
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Geochemical evolution of rift waters begins from eastern and western highlands following the regional 

groundwater flow direction, probably with less radiogenic (87Sr/86Sr) and depleted (δD, δ18O) isotopes 

that further interacted with more radiogenic rhyolites and their weathered and redeposited products.  

The Dissolved strontium isotopic ratios of the natural waters (87Sr/86Sr) lie in the ranges of Sr isotopic 

signatures of basaltic and rhyolitic rocks exposed in the area. 

All lake water samples lie below the LMWL. Abijata, Langano, and Awasa show extreme values as a 

result of substantial evaporation enrichments relative to the present day precipitation. The lakes plot 

along the line with the equation (δD = 4.9δ18O+8.3). 

The two main rivers feeding Lake Ziway from the west side (Meki River; RI30) and east side (Ketar 

River; RI31) have compositions of δ18O 1.67‰ and -2.76‰, and δD is 6.14‰ and -11.13‰ (VSMOW)   

respectively. The relative depletion of δ18O and δD on Ketar River is most probably caused by low 

evaporation effect of shorter drainage path relative to that of the Meki River. 

Sample HS1, the hottest spring emerging from a rhyolitic geyser at Edo Laki Island of Northern Bay of 

Lake Langano, is relatively less depleted in stable isotopes, and likely suggests a possible mixing with 

the lake. 

Hot spring HS2 at the shore of the Tulu Gudu island of Lake Ziway is depleted in δD and δ18O, showing 

a significant contribution of meteoric water, although mixing of Lake Ziway is certainly expected. The 

island is about 4 kilometers away from the active fault system, Wenji Fault Belt (WFB) at the eastern 

shore of the lake. This is the recharge zone for meteoric water coming from eastern plateau and the 

escarpment. The hot spring also shows high concentration of Ca2+ (11 mg/L) and Mg2+ (3.3 mg/L), 

which is typical characteristic of basaltic aquifer hosted groundwater from the highlands. The less 

radiogenic Sr isotope ratio (0.7048) probably offers an additional evidence of quick recharge from 

highland groundwater.  

(Trua, 1999) reported that the Sr isotopic values of basalt samples from rift floor and escarpments are 

(0.7039, 0.7045, 0.7046 and 0.7051) and highland (Chilalo volcanics; 0.7044, 0.7045 and 0.7047), 

which are variable and moderately radiogenic as it is mirrored by the hot spring (e.g HS2) and 

geothermal wells (GW11 and GW12). 

HS9 has the lowest temperature (39 oC), lowest TDS and fluoride, and highest Ca2+and Mg2+ content 22 

mg/L and 5.5 mg/L respectively, which show a significant contribution of meteoric water recharged 

through tectonic structures of the WFB. This hot spring has similar ionic characteristics and isotopic 

signatures with some shallow wells east of Lake Ziway. HS9 and HS2 have very similar δD and δ18O, 
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indicating the influence of tectonic controlled zone (WFB), areas of recharge and fast water circulations 

that are feeding the hot springs, groundwater and geothermal wells.  

North Langano hot springs (HS9, HS10, and HS1) have more radiogenic Sr isotopic signature, 0.7058 

0.7054, and 0.7065 respectively and one of the deep geothermal well GW11 (0.7054). 

Groundwater wells WL14, WL15, WL16, WL18, WL20, WL23, WL24, Ketar river (RI31), hot springs 

HS9 and HS2 lie on LMWL (meteoric recharge) whereas other groundwater wells, lakes and hot springs 

are deviated to the right side of LMWL. The δD and δ18O enrichments on WL13, WL19, WL22, WL17 

suggest a significant subsurface outflow and mixing of the near by evaporated lakes to the groundwater 

system (Figure 8.4). WL13, WL19, and WL22 are groundwater wells with almost the same (δD, δ18O) 

value as Lake Ziway (LW29). The isotopic values of WL17 show that there exists a possible northward 

subsurface migration of Lake Awasa. Enrichments of HS3, HS4 and HS5 also show a significant 

contribution from Lake Shala.  

WL23, WL18, WL14 and WL24, are wells found at the north and eastern side of Lake Ziway 

respectively. WL21 is located at northeast side of Aluto-Langano geothermal sites. WL24 and WL21 are 

located on fault zone where recharging and fast circulation of groundwater occur which in turn are 

reflected in the depleted isotopic signature of the wells. Depletion of WL14, WL23, and WL18 show 

that no subsurface migration of Lake Ziway to the North unlike to the western side.  

The regional groundwater, flows from the flanks of the rift to the rift floor and subsequently towards 

discharge areas at the alkaline Lake Shala (Ayenew, 1998). The elevation difference between Lake 

Ziway (~1636 m) and Langano (~1582m) creates potential groundwater flows between the two lakes, 

however, δD and δ18O signatures revealed that the Aluto volcanic complexes seems to act as a barrier 

for Lake Ziway  recharging into the geothermal system. Deep geothermal wells (GW11 and GW12) 

have δD and δ18O similar to the wells in the eastern side of Lake Ziway than highly evaporated and 

isotopically enriched Lake Ziway, and thus the contribution of Lake Ziway to the geothermal recharging 

is probably negligible. HS10 is the hot spring north of Lake Langano is relatively enriched and it can be 

due to flow of Lake Ziway around the western rim of the Aluto volcanics. WL21 which is at southern 

side of Lake Ziway has depleted δD and δ18O, further confirms the unlikely southward flow of the lake.  

HS7 (hot spring near Lake Chitu) and HS8 (hot spring at SW of Shala), both have similar δD, δ18O, and 

Sr isotope, suggest that they are emerging out from the same aquifer with  some level of mixing with the 

highly evaporated Chitu and Shala Lake. Both also show similar major anions and cations with the 

exception of different Ca2+ and Mg2+. The higher Ca2+ and Mg2+ of hot spring of the Chitu is likely 
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caused by an interaction with the near by basaltic lava flow. The interaction with the basalt is probably 

responsible for the less radiogenic Sr isotopic value (0.7046).  

The lithium content of the hot springs is controlled by the character of the adjacent rocks. Thermal 

springs emerging from basaltic environment are poor in Li (e.g at the Shore of Chitu (HS7; 6.4 µg/L)), 

whereas hot springs in contact with acidic rocks are enriched in Li, (from the northern shore of Lake 

Langano (HS1; 506 µg/L). 

Cl¯ is used as a tracer in the hydrologic system due to its conservative geochemical behavior in natural 

waters (Feth, 1981). Its concentration and variation is entirely source related. δD (also tend to be 

conservative) and δD and/or δ18O versus Cl¯ (Cl¯/B) ratio plot discriminate waters having similar 

behavior with their distinct geographic area (Figure 8.6, 8.7, 8.8). The asymmetrical grouping suggests 

different fluid reservoirs located at different spatial zone with a noticeable mixing with the lakes. K vs B 

(Figure 8.9) and Li vs F (figure not shown) also used similarly to discriminate the different groups of 

waters  

 

 
 

Figure 8.6: Delta 2H versus Cl¯ ratio in the hydrothermal waters of the central MER 
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Figure 8.7: Delta 18O versus Cl¯ in the hydrothermal waters of the central MER 

 
 

Figure 8.8: Delta 2H versus B/Cl ratio of hydrothermal waters of the central MER 
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Figure 8.9: K versus B in the hydrothermal waters of the central MER 

 

The K and Rb content of geothermal waters (GW11 and GW12) are significantly higher than the rest of 

the hot springs. It is probably caused by cation exchange reactions where Na fixated in the clay with the 

release of K in the fluids at higher temperature. The high K content is supposed to be accompanied by 

the release of Rb due to similar chemical behaviour. Figure 8.10 shows Sr isotopes of hot springs and 

geothermal wells versus Rb/Sr ratio. 

 

The inverse relation of Na and K at higher temperatures suggests that K is released from the rock while 

Na is fixed with silicate minerals through a cation exchange reaction:   

 

K-silicates + Na = Na-silicates + K 
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Figure 8.10: Sr isotope versus Rb/Sr ratio in the hydrothermal waters of the central MER 

 

GW11 and GW12 were drilled along NNE-SSW trending WFB (Wenji Fault Belts). The depleted δD 

and δ18O values on the geothermal wells are similar to those wells at eastern escarpment and highland 

that are of meteoric in origin. The lesser Sr isotope value of well GW12 (0.7043) and GW11 (0.7054) is 

probably controlled by the lesser radiogenic recharging water infiltrated from WFB. 

 

Generally, the result shows that there exist complex surface water and groundwater interactions that are 

reflected on the diversity of stable and Sr isotopic signatures in waters.  
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Conclusions and recommendations 

 

The geochemical composition on natural waters of the central MER in Ziway-Shala basin has been 

investigated in order to understand the source, genesis and distribution of chemical elements with 

particular emphases to fluoride.   

In this framework we performed an integrated study of both waters and coexisting representative solid 

aquifer matrixes in the Ziway-Shala lakes basin of the Ethiopian rift valley, in order to unravel the 

water-rock/sediment interactions that ultimately lead to the peculiar geochemical features of the 

Ethiopian rift waters. Therefore, the hydrochemical investigation was coupled with the 

mineralogical/geochemical characterization of the lithologies outcropping in the area. Moreover, 

laboratory leaching tests (batch and column) were also carried out to evaluate the potential release of 

fluoride from the various rock/sediment types. These approaches serve to understand the lithologic 

sources and the enrichment mechanisms controlling the anomalous fluoride content in the water.  

The geochemical anomalies in the studied natural waters are predominantly linked to the mode of 

emplacement of volcanism in the Ethiopian Rift system. The general hydrochemical evolution, in which 

Ca2+(Mg2+)-HCO3
− waters, typical of the highlands, are transformed along the flow path into alkaline 

pH and Na+-HCO3¯ waters (typical of the rift area), is clearly related to water-rock/sediment 

interactions, is probably triggered/favoured by the high geothermal gradient and the high activity of CO2 

that characterize the rift valley. In these interactions, the matrixes are mainly rhyolites consisting of 

volcanic glass (usually more than 95% in proportion). This glassy material is extremely reactive, and its 

weathering products (i.e. the fluvio-volcano lacustrine sediments) can further concentrate geochemical 

elements. Therefore, the interaction of these “reworked” volcanic products with water and carbon 

dioxide (juvenile?) that progressively converted into a “secondary” clay-bearing mineral assemblage and 

under high pH conditions can release some chemical species (e.g. F¯, As) into the interacting water.  

A comparison of major and trace element concentrations with standards set by three authorities (WHO, 

EU directives, USEPA), indicated that major ions (F−, Na+, Cl−, SO4
2− and NO3

−) and trace elements (F, 

As, B, Mo, U, Al, Fe, and Mn) partially failed the quality standards (in all water groups at different 

percent proportions). Likewise, the comparison was extended to the experimental leachates (from batch 

experiments on rocks and sediments), showing that the concentration of elements potentially affecting 

health such as F, As, Fe, Al, Mo, and U are often beyond the admissible limits.  
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Therefore, together with the renowned F− problem, the possible presence of geochemical anomalies in 

As, B, Mo, V, U, Al, Fe, and Mn have to be taken into consideration in water quality issues. 

Furthermore, future work has to be done to investigate their possible health impact on the population of 

MER and other sectors of the east African rift. 

Column experiments were also conducted on volcanic ash (vitric ash) materials after separating into 

different grain size fractions (fine ash, coarse ash and raw ash) to characterize the behaviour of fluoride 

under flushing of synthetic rain water. The result showed that high concentrations of fluoride were 

leached out particularly from the fine ash fraction which in turn suggests pyroclastic materials are the 

ultimate reservoir of fluoride. 

Understanding the distribution and geochemistry of fluorine, arsenic and related elements along with 

their tolerance thresholds is essential in identifying high-risk areas and for the development of adequate 

remediation technologies, particularly where people live in scattered villages across the basin. However, 

considering that water treatments are expensive and barely efficient, we suggest avoiding (as far as 

possible) the drilling of new wells especially a) in those areas characterized by the presence of fluvio-

lacustrine sediments b) close to the outpouring of hot springs. In any case activation of new wells should 

be preceded by chemical analysis including the above mentioned critical elements. 

Moreover, we suggest starting to plan new strategies for water exploitation in the highlands (where 

elemental concentrations (such as F¯ and As are typically low). This is mainly important for water 

supply of towns. These aqueduct infrastructures would imply an initial investment, but would be cost-

effective in the long-term.  

The stable δ18O, δD and radiogenic (87Sr/86Sr) isotopic composition of waters and representative 

volcanic rocks (Ignimbrite and basalt) were measured during this study. Different ranges of stable 

isotopic values were recorded for different water groups. The Sr isotope signatures are typical of water 

interacted with mantle derived materials (with a minor crustal contamination), similar to the rocks 

widely covering the study area. Generally, the result shows that there exists a complex surface water and 

groundwater interactions that is reflected on a diversity of the stable and Sr isotopic signature in waters.  

 
The preliminary results of the study has showed that there is a need for future extended works on the 

geochemistry of solid samples (rocks, sediments and soils) as well as in waters that investigate all the 

spectrum of chemical elements that are potentially detrimental to human health and environment. This 

study has investigated major and  some selected trace elements and future hydrogeochemical analysis 
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should comprise all the possible spectrum of trace elements (Ag, Al, As, B, Ba, Be, Bi, Br, Cd, Co, Cr, 

Cs, Cu, F, Fe, Ga, Ge, Hf, Hg, I, In,  Li, Mn, Mo, Nb, Ni, Pb, Rb, Sb, Se, Si, Sn, Sr, Ta, Tb, Te, Th, Ti, 

Tl,  U, V, W, Y, Zn, Zr) including rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, 

Yb, Lu). These studies would help to establish baseline geochemical atlases of the region. 

Furthermore, from a water resource point of view, the following work must focus on a comprehensive 

study of various isotopes and geochemical data to constrain groundwater age dating, water-rock 

interaction and flow path and thus help to model and systematize the hydrologic cycles in the basin. 
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APPENDICES 

 

Appendix 4.1: PHREEQC calculations of saturation indices for various water types (groundwater wells, 

hot springs, geothermal wells, rivers and lakes) in the central MER. 

 

TYPE RIVER 

Label  1 2 3 4 5 6 7 8 

EC 500 530 180 90 60 40 150 150 

TDS 425 583 174 98 73 53 118 156 

Temp 22.2 23.3 21.5 18.7 10.6 11.5 16.9 14 

pH 8.42 8.66 7.83 8.3 7.89 7.76 7.89 7.86  

Na+ 64.2 56.3 15.2 5 4.8 3.4 12.9 15.8 

K+ 15.1 12 4.8 2.1 3.4 2 5.1 7.3 

Mg2+ 9.4 20.9 5.2 2.7 1.4 1.2 2.3 2.2 

Ca2+ 25.9 42.1 16.8 18.5 10.7 8.4 17.9 40.7 

SO4
2− 7 25 1 0.8 1.5 0.2 2.3 4.1 

Cl− 15 16 4 1.4 2.2 1 3.4 6.8 

F− 2.2 1.5 1.6 0.2 0.1 0.1 0.5 0.3 

NO3
− 3.8 1.97 2.6 2 6.2 1.8 11.9 10.2 

Alkalinity 
as HCO3

− 286.7 408.7 125.1 67.1 48.8 36.6 73.2 79.3 

Calcite 0.77 1.3 -0.3 0 -0.95 -1.47 -0.48 -0.2 

Fluorite -0.7 -0.92 -1.06 -2.76 -3.46 -3.56 -1.96 -2.04 

 

Type HOT SPRINGS 

label  9 10 11 12 13 14 15 16 17 18 19 20 21 22 

EC 2750 14440 10570 13190 1780 4630 4870 630 3900 4530 4665 2040 2160 4600 

TDS 1600 7919 7501 6589 958 3600 3896 499 2766 1830 3679 1728 1297 3051 

Temp 48.5 93.4 57.3 91.4 52.6 59.3 51.8 38.8 62 96 45 78 82 85.6 

pH 8.88 8.16 7.81 8 8.15 7.3 8.16 7.33 6.96 8.36 9.11 6.79 7.44 8.17 

Na+ 593.1 2288.1 2415.5 2108.8 346.3 969.4 1122.3 105 802.2 169.9 944.9 397.7 305.9 770.9 

K+ 17.6 24.6 25.9 1.5 26.4 66 64.1 11.5 60 39.1 47.2 29.4 109.9 152.2 

Mg2+ 0 0 0 0 0 8 0.6 5.5 0.7 0 0.2 3.3 0 0 

Ca2+ 0.9 0.3 1.4 1.9 3.2 8.8 1.7 22.1 13.9 0.9 0.9 11.1 0 0.8 

SO4
2− 3.3 612.1 28.3 22.3 0 68.8 66.2 32.6 23.1 253 54 35 52.9 37.7 

Cl− 279 1462.2 1324.1 1147.8 16.5 320.9 356.2 27.3 435.3 429 488 128 162.3 207.4 

F− 19.6 97.3 63.9 55 4.5 17.5 17.6 1.9 23.4 23.5 45.9 13.1 13.6 40.2 

NO3
− 0 43 0 0 0 0 0 0.3 0 34.37 0 0 0 0 

Alkalinity 
as 

HCO3
− 988.2 3434.3 3641.7 3251.3 561.2 2141.1 2267.2 292.8 1407 915 2098.4 1110.2 652.7 1842.2 

Calcite 0.16 -0.39 -0.09 0.37 0.16 0.22 0.17 
-

0.14 0.01 0.11 0.32 -0.1 -2.66 0.03 

Fluorite -0.97 -0.73 0 -0.3 -1.41 -0.11 -86 
-

1.09 0.42 -1.16 -0.5 -0.18 -3.17 -0.74 
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Type Groundwater wells 

Label 28 29 30 31 32 33 34 35 36 37 38 39 40 41 

EC 840 1160 210 340 1020 640 2750 300 3360 2180 470 350 200 220 

TDS 876 1164 188 323 1013 623 2227 267 3564 1884 367 871 204 211 

Temp 24.6 26 24.5 21.5 28.2 24.4 25.1 25.3 28.3 27.3 25.6 24.6 22.6 22.5 

pH 8.09 8.29 8.3 7.57 8.27 7.69 7.81 7.83 8.16 8.78 7.64 7.48 7.56 8.25 

Na+ 180 241.3 31.2 17.6 231.5 90.1 564.8 49.8 858.2 466.9 81.4 60.9 30.4 32.7 

K+ 67.3 33 5.2 5.5 17.7 10.6 25.1 5.2 31.2 16.7 7.8 9.4 14.1 2.3 

Mg2+ 5.7 4.9 0.8 7.7 3.1 11.5 6.7 2.7 4.2 0 2.4 2.3 1.9 1.1 

Ca2+ 7.8 4.4 7.3 45.7 6.7 33.4 20.8 10.2 3.7 1.6 22.5 27.7 13.5 24.7 

SO4
2− 4 5 1 0 2 6 456 0 7 186 63.5 397.7 2 0.8 

Cl− 9 16 1 2 12 20 176 2 106 167 4.4 144.6 1.3 1 

F− 4.2 2.8 1.2 0.4 2.1 3.6 20 1.8 7.3 21.4 2.4 3.1 0.8 1.5 

NO3
− 0.42 1.6 0.22 0.47 1.3 4.3 104 1 0 29.5 6.4 15.2 1.6 0.4 

Alkalinity as 
HCO3

− 597.8 857.1 140.3 244 738.1 448.4 957.7 195.2 2546.8 1024.8 183 225.7 140.3 146.4 

Calcite 0.29 0.35 0 0.22 0.5 0.44 0.44 -0.2 0.45 0.21 -0.2 -0.35 -0.58 0.37 

Fluorite -0.78 -1.47 -1.71 -1.9 -1.54 -0.24 0.75 -1.25 -1 -0.033 -0.7 -0.58 -1.77 -0.97 
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Type  Lakes 

Label 23 24 25 26 27 

EC 1730 >20000 >20000 >20000 420 

TDS 1377 27228 11563 52725 379 

Temp 24.2 24.6 25.8 27.6 25.2 

pH 9.03 10.1 9.6 9.67 8.6 

Na+ 387 17724.8 3426.1 15211.5 61.2 

K+ 21 1108.8 125.3 618.9 10.9 

Mg2+ 0.5 0 0.6 0 7.6 

Ca2+ 9.7 0 4.5 0.2 27.3 

SO4
2− 46.5 287.8 95.1 552.5 6.6 

Cl− 130.9 6329.9 1325.6 5361.4 10.5 

F− 12.5 233.4 89.7 384.1 1.5 

NO3
− 4.7 0 0 0 2.4 

Alkalinity as 
HCO3

− 768.6 38583 6496.5 30596 253.2 

      

Calcite 1.1 -2 1.2 -0.07 0.95 

Fluorite 0.08 -1.03 0.57 0 -1.05 



 128

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Groundwater wells Cold springs 

42 43 44 45 46 47 48 49 50 51 52 

220 1320 520 2260 2390 460 490 1770 730 180 280 

266 1252 501 1952 1949 420 489 12797 668 137 258 

24 23.2 30.6 32.3 36 23.6 25.2 23.7 36.4 22.5 27.6 

7.31 8.14 7.6 7.64 8.08 7.1 7.82 8.7 7.89 6.6 7.8 

29.9 306.8 85.8 480 557.1 69.5 54.9 442.9 139.8 17 40 

3.6 12.1 10.2 27.6 25.9 12 2.5 21.1 14.7 5 6 

2.6 5.6 10.4 30.5 0.1 4.6 11.2 1.9 3.2 2.1 4.2 

25 17 34 30.7 28.6 41 68 7.2 18.9 22.7 22 

0.5 7.8 4 33.5 107.2 8.7 5.8 3.7 6.4 4.8 2.2 

1.5 16.9 10.8 266.3 152.8 11 4.4 19.4 7.3 5 2 

2 13.1 4.1 7.1 14.3 1.7 0.9 10.1 3.1 0.7 1.3 
0 0.65 0.24 2.7 0 0.01 0.05 0 0.03 24 0.01 

201.3 872.3 341.6 1076.7 1091.9 271 341.6 1229.12 474.8 79 180 

-0.41 0.7 0.27 0.61 1.02 -0.32 0.71 1.24 0.49 -1.57 0.03 

-0.75 0.52 -0.15 0.02 0.55 -0.72 -1.12 -0.93 -0.74 -1.65 
-

1.22 
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Appendix 4.2: PHREEQC calcultions of saturation indices for groundwater wells (1-14) and geothermal 

wells (15-21) in the Ziway-Shala basin (source: Ayenew, 2008) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

 

 

 

 

 

          Saturation indices 

Label TDS Na+ K+ Mg2+ Ca2+ F− Cl− 

Alkalinity 
as 

HCO3
− SO4

2− CaCO3 CaF2 

1 259 22 3.7 9.6 16.9 0.1 3.6 203 0 -0.17 -3.4 

2 179 15 4.3 8.3 10.8 1.1 5.3 134 0 -0.52 -1.48 

3 326 24 5.1 11.3 22.5 1.5 7.1 254 0 0.03 -0.94 

4 299 21.5 6 8.3 23 1.2 7.1 232 0 0.01 -1.11 

5 164 34 5.4 4.7 23 2.9 7 85.4 1.7 -0.31 -0.31 

6 133 10 5 8.5 14.5 0.3 3 89 3 0.48 -2.47 

7 209 23 12 12.3 20.5 0.3 3 135 2.5 -0.18 -2.36 

8 120 4 5 10.4 9 0.4 5 84.8 1.5 -0.78 -2.42 

9 407 45 10 14.2 18 0.2 8 305 6.5 0 -2.81 

10 245 12 6 11.4 15.5 0.3 8 189 3 -0.24 -2.48 

11 454 38 12 13.2 30.5 0.1 23 334 3.5 0.1 -3.2 

12 484 43 14 17 28 0.2 7 366 9 0.25 -2.65 

13 297 19.5 6.1 19.8 22.1 1.5 7.1 209 12.5 -0.007 -0.97 

14 416 34 6 11.5 36.1 1.5 2.4 323 0.9 0.32 -0.76 

15 2225 619 153 0.3 0.3 40.8 253 1006 153 -1.49 -0.23 

16 3078 563 50 0.5 1 26 51 2255 132 -0.67 -0.15 

17 2686 850 50 0.2 1 67 20 1544 154 -0.75 0.66 

18 3567 1015 138 0.4 1.9 27.8 671 1647 65.5 -0.53 0.16 

19 2093 725 48 0.9 1.5 23 611 604 80 -0.9 -0.01 

20 3016 854 47 0.6 1.3 27 302 1769 15.5 -0.64 0.01 

21 2904 820 125 0.2 0.5 48 402 1464 43.8 -1.13 0.1 
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Appendix 4.3: Na+, HCO3¯ (in mmoles/L) and Na+/ HCO3¯ ratios with the corresponding F¯ 

concentration variations in waters from Ziway–Shala basin. Note the different behaviour of samples 

characterized by Na+/ HCO3¯ ratio above and below unity. WL=Groundwater wells, HS=Hot springs, 

GWL=Geothermal wells, HGW=Highland groundwater wells (Source of samples in bold font: Ayenew 

2008). 

 

ID Type 
Na+ 

(mmoles/L) 
HCO3¯ 

(mmoles/L) Na+/HCO3¯ F¯ 

1 WL 24.6 15.7 1.56 20.0 

2 WL 20.3 16.8 1.21 21.4 

3 WL 24.2 17.9 1.35 14.3 

4 WL 13.3 14.3 0.93 13.1 

5 WL 19.3 20.2 0.96 10.1 

6 HS 34.9 23.1 1.51 23.4 

7 HS 99.5 56.3 1.77 97.3 

8 HS 105 59.7 1.76 63.9 

9 HS 41.1 34.4 1.19 45.9 

10 HS 91.7 53.3 1.72 55.0 

11 HS 42.2 35.1 1.20 17.5 

12 HS 48.8 37.2 1.31 17.6 

13 HS 25.8 16.2 1.59 19.6 

14 HS 15.1 9.20 1.64 4.50 

15 GWL 13.3 10.7 1.24 13.6 

16 GWL 33.5 30.2 1.11 40.2 

17 GWL 26.9 16.5 1.63 40.8 

18 GWL 36.9 25.3 1.46 67.0 

19 GWL 44.1 27.0 1.63 27.8 

20 GWL 31.5 9.90 3.18 23.0 

21 GWL 37.1 29.0 1.28 27.0 

22 GWL 35.7 24.0 1.49 48.0 

23 WL 37.3 41.8 0.89 7.30 

24 WL 7.82 9.80 0.80 4.22 

25 WL 10.5 14.1 0.75 2.79 

26 WL 11.1 17.7 0.63 7.13 

27 WL 10.1 12.1 0.83 2.10 

28 WL 1.36 2.30 0.59 1.15 

29 WL 0.76 4.00 0.19 0.40 

30 WL 3.92 7.35 0.53 3.60 

31 WL 2.17 3.20 0.68 1.80 

32 WL 2.65 3.70 0.72 3.08 

33 WL 1.42 2.40 0.59 1.46 

34 WL 1.30 3.30 0.39 1.98 

35 WL 2.39 5.60 0.43 0.89 

36 WL 6.08 7.78 0.78 3.05 

37 WL 1.32 2.30 0.57 0.81 



 131

38 WL 3.73 5.60 0.67 4.06 

39 WL 3.02 8.75 0.35 1.65 

40 RI 0.66 2.05 0.32 1.60 

41 RI 2.79 4.70 0.59 2.16 

42 RI 2.45 6.70 0.37 1.50 

43 RI 0.22 1.10 0.20 0.20 

44 RI 0.21 0.80 0.26 0.05 

45 RI 0.15 0.60 0.24 0.11 

46 RI 0.56 1.20 0.47 0.50 

47 RI 0.69 1.30 0.53 0.29 

48 HGW 0.96 3.32 0.29 0.10 

49 HGW 0.65 2.20 0.30 1.10 

50 HGW 1.04 4.16 0.25 1.50 

51 HGW 0.93 3.80 0.25 1.20 

52 HGW           1.48 1.40 1.06 2.90 

53 HGW           0.43 1.46 0.30 0.30 

54 HGW 1.00 2.21 0.45 0.30 

55 HGW           0.17 1.39 0.13 0.40 

56 HGW           1.96 5.00 0.39 0.20 

57 HGW           1.22 4.92 0.25 0.70 

58 HGW 0.52 3.10 0.17 0.30 

59 HGW           1.65 5.48 0.30 0.10 

60 HGW 1.87 6.00 0.31 0.20 

61 HGW 0.85 2.74 0.31 1.50 

62 HGW 1.47 4.80 0.31 1.50 
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Appendix 5.1: International quality standards for drinking water, and number of leachates from volcanic 

rocks exceeding the minimum threshold defined by the authorities. NG (no guidelines), NM (not 

mentioned), Bold font: (the minimum standard considered). 

 

 
 VOLCANIC ROCK LEACHATES        

mg/L TW9    TW11  TW29  TW30  TW31  MIN MAX MEDIAN 
WHO, 
2006 

EU Direc- 
tives,1998 

USEPA, 
2003 

No of 
samples 

exceeding 
the limit 

 

Na+ 31.9 31.0 10.6 8.75 14.2 8.75 31.9 14.2 NG 200 mg/L 200 mg/L 0 

K+ 1.90 17.34 10.44 4.71 4.40 1.90 17.34 4.7 NM NM NM - 

Ca2+ 13.3 118 9.27 6.42 8.77 6.42 118 9.3 NM NM NM - 

Mg2+ 1.20 3.76 0.28 0.26 0.21 0.21 3.76 0.3 NM NM NM - 

F− 2.55 2.47 3.74 2.72 2.44 2.44 3.74 2.6 1.5 mg/L 1.5 mg/L 4 mg/L 5 

Cl− 1.45 69.2 1.72 2.09 1.50 1.45 69.2 1.7 NM 250 mg/L 250 mg/L - 

HCO3
− 140 67.0 55.0 61.0 79.3 55.0 140 67.0 NM NM NM - 

NO3
− bdl 212.5 5.49 0.15 0.53 bdl 213 0.5 50 mg/L 50 mg/L 10 mg/L 1 

SO4
2− 0.98 16.9 5.60 2.51 1.23 0.98 17.0 2.5 NG 250 mg/L 250 mg/L - 

TDS 53 472 48 28 33 28 472 48.0     

pH 7.5 6.4 6.5 6.5 6.7 6.4 7.5 6.5     

             
Li 22.4 2.93 27.6 1.76 5.11 1.8 27.6 5.1 NM NM NM - 

B 24.8 13.6 bdl bdl bdl bdl 24.8 - 500 µg/L NM NM 0 

Al 68.3 bdl 192 78.1 1862 bdl 1862 78.1 200 µg/L 200 µg/L 50-200 µg/L 2 

V 6.50 2.12 15.6 17.2 8.21 2.12 17.2 8.2 NM NM NM - 

Cr 2.60 3.14 3.42 2.61 3.06 2.60 3.4 3.1 50 µg/L 50 µg/L 100 µg/L  

Mn 6.62 bdl 8.33 3.33 190 bdl 190.3 6.6 400 µg/L 50 µg/L 50 µg/L 1 

Fe 73.3 bdl 378 108 5223 bdl 5223.0 107.6 NG 200 µg/L 300 µg/L 2 

Co 0.59 0.57 0.20 0.39 0.15 0.15 0.59 0.4 NM NM NM - 

Ni 2.64 2.28 1.68 1.57 1.96 1.68 2.6 2.0 70 µg/L 70 µg/L NM       0 

Cu 1.58 1.56 1.51 0.29 1.12 0.29 1.58 1.5 2000 µg/L 2000 µg/L 1300 µg/L 0 

Zn 3.37 13.6 11.9 12.9 41.1 3.4 41.1 12.9 NG NM 5000 µg/L 0 

Ga 4.08 0.01 0.31 0.11 2.65 0.01 4.1 0.3 NM NM NM - 

As 2.21 1.72 2.70 0.25 4.91 0.25 4.9 2.2 10 µg/L 10 µg/L 10 µg/L - 

Rb 1.66 13.8 9.55 4.12 5.64 1.66 13.8 5.6 NM NM NM - 

Sr bdl 252 4.10 4.61 5.43 bdl 252 4.6 NM NM NM - 

Mo 9.61 16.3 8.59 10.4 4.44 4.44 16.3 9.6 70 µg/L NM NM 0 

Sb 0.19 0.01 0.13 bdl 0.16 bdl 0.2 0.1 20 µg/L 5 µg/L 6 µg/L - 

Pb 0.14 0.13 0.17 0.05 3.42 0.05 3.4 0.1 10 µg/L 10 µg/L 15 µg/L 0 

U 0.95 0.24 0.05 bdl 0.36 bdl 0.95 0.2 15 µg/L NM NM - 

Be bdl bdl bdl bdl bdl bdl bdl bdl NG NM 4 µg/L - 

Bi bdl bdl bdl bdl bdl bdl bdl bdl NM NM NM - 

Te bdl 0.13 bdl bdl 0.19 bdl 0.19 bdl NM NM NM - 

Ba bdl 97.1 bdl bdl bdl bdl 97.1 bdl 700 µg/L NM 2000 µg/L 0 
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Hg bdl bdl bdl bdl bdl bdl bdl bdl 6 µg/L 1 µg/L 2 µg/L - 

Tl 0.49 0.20 bdl bdl bdl bdl 0.49 bdl NM NM 2 µg/L 0 

Ag bdl bdl bdl bdl 0.03 bdl 0.03 bdl NG NM 100 µg/L 0 

Cd bdl 0.17 0.13 0.06 3.25 bdl 3.3 0.1 3 µg/L 5 µg/L 5 µg/L 1 

 

 

 

Appendix 5.2: International quality standards for drinking water, and number of leachates from sediments 

exceeding the minimum threshold defined by the authorities. NG (no guidelines), NM (not mentioned), Bold 

font: (the minimum standard considered). 

 

 SEDIMENT  LEACHATES        

mg/L TW14   TW15   TW22   TW34   TW39    TW43   MIN MAX 
MEDI
-AN 

WHO, 
2006 

EU Direc- 
tves,1998 

USEPA, 
2003 

No of 
samples 

exceeding 
the limit 

 

Na+ 33.4 108 88.0 33.5 12.9 60.5 12.9 108 47.0 NG 200 mg/L 200 mg/L - 

K+ 4.22 34.00 25.53 7.24 4.24 9.08 4.24 34.0 8.2 NM NM NM - 

Ca2+ 20.2 9.47 18.0 18.6 5.48 15.6 5.48 20.2 16.8 NM NM NM - 

Mg2+ 1.20 2.02 2.43 3.53 0.14 0.66 0.14 3.53 1.6 NM NM NM - 

F− 3.20 6.98 7.03 1.06 2.08 7.63 1.06 7.63 5.1 1.5 mg/L 1.5 mg/L 4 mg/L 5 

Cl− 2.28 14.4 13.3 28.9 6.69 1.81 1.81 28.9 10.0 NM 250 mg/L 250 mg/L - 

HCO3
− 165 634 384 49.0 49.0 244 49.0 634 204 NM NM NM - 

NO3
− 8.33 44.7 6.49 64.3 16.7 bdl bdl 64.3 12.5 50 mg/L 50 mg/L 10 mg/L 0 

SO4
2− 5.19 21.5 16.2 16.2 2.94 1.45 1.45 21.5 10.7 NG 250 mg/L 250 mg/L 0 

TDS 78 244 177 174 51 97 51 244 135     

pH 7 8 8 6.5 6 8.7 6.0 8.7 7.5     

              
Li 9.41 23.6 165 12.5 1.24 15.1 1.24 165 13.8 NM NM NM - 

B 15.1 427 220 17.7 bdl 5.75 bdl 427 16.4 500 µg/L NM NM - 

Al bdl 2.15 8.42 bdl 323 257 bdl 323 5.3 200 µg/L 200 µg/L 50-200 µg/L 2 

V 29.7 26.5 254 5.58 9.74 15.5 5.58 254 21.0 NM NM NM - 

Cr 4.67 7.29 6.95 3.22 1.91 4.09 1.91 7.29 4.4 50 µg/L 50 µg/L 100 µg/L - 

Mn bdl bdl 0.11 bdl 5.51 38.9 bdl 38.9 0.1 400 µg/L 50 µg/L 50 µg/L - 

Fe bdl bdl bdl 1.98 624 1154 bdl 1154 1.0 NG 200 µg/L 300 µg/L 2 

Co 0.35 0.45 1.52 1.53 0.07 0.17 0.07 1.53 0.4 NM NM NM - 

Ni 1.72 2.49 5.57 2.61 1.31 2.37 1.31 5.57 2.4 70 µg/L 70 µg/L NM - 

Cu 0.83 2.10 4.79 1.52 0.45 1.49 0.45 4.79 1.5 2000 µg/L 2000 µg/L 1300 µg/L - 

Zn 16.9 8.77 10.5 35.5 6.78 34.8 6.78 35.5 13.7 NG NM 5000 µg/L 0 

Ga 0.05 0.05 0.02 0.10 0.37 1.14 0.02 1.1 0.1 NM NM NM - 

As 11.8 17.4 220 1.23 1.96 6.62 1.23 220 9.2 10 µg/L 10 µg/L 10 µg/L 3 

Rb 2.58 15.3 21.8 5.03 6.83 10.2 2.58 21.8 8.5 NM NM NM - 

Sr 62.3 107 65.5 58.4 1.92 15.3 1.92 107 60.4 NM NM NM - 
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Mo 7.86 11.3 181 6.09 5.34 2.52 2.52 181 7.0 70 µg/L NM NM 1 

Sb 0.10 0.82 5.03 4.62 0.1 0.44 0.10 5.03 0.6 20 µg/L 5 µg/L 6 µg/L 1 

Pb 0.18 0.35 0.04 bdl 0.43 0.57 bdl 0.6 0.3 10 µg/L 10 µg/L 15 µg/L - 

U 0.75 5.04 63.6 0.05 0.17 0.83 0.05 63.6 0.8 15 µg/L NM NM 1 

Be bdl bdl bdl bdl bdl bdl bdl bdl bdl NG NM 4 µg/L 0 

Bi bdl bdl bdl bdl bdl bdl bdl bdl bdl NM NM NM - 

Te bdl bdl bdl bdl bdl 0.07 bdl 0.07 bdl NM NM NM - 

Ba bdl bdl bdl bdl bdl bdl bdl bdl bdl 700 µg/L NM 2000 µg/L - 

Hg bdl bdl bdl bdl bdl bdl bdl bdl bdl 6 µg/L 1 µg/L 2 µg/L - 

Tl 0.02 0.05 bdl bdl bdl bdl bdl 0.05 bdl NM NM 2 µg/L 0 

Ag bdl bdl bdl bdl bdl bdl bdl bdl bdl NG NM 100 µg/L 0 

Cd 0.02 bdl bdl 0.05 0.25 0.49 bdl 0.49 bdl 3 µg/L 5 µg/L 5 µg/L - 

 

 
 
 

Appendix 6.1: Compositions of major ions and SiO2 in the groundwater wells in Ziway and Meki area 

(Data collected from Meki and Ziway Catholic Mission offices, January 2007). 

 
ID X Y EC PH SiO2 Na+ K+ Ca2+ Mg2+ Cl− CO3

2 HCO3
− F− SO4

2− 

1 38.744 8.073 600 8.4 88 54 13 46.5 27.2 22 24 354 0.9 nil 

2 38.723 8.023 2162 8.5 84 578 25 4.8 2.9 64 48 1379 4.0 nil 

3 38.940 8.296 877 8.5 94 204 13 13.4 2.9 48 43 420 7.7 nil 

4 38.749 8.164 805 8.4 52 204 15 6.1 1.2 2 72 415 4.9 nil 

5 38.770 8.164 1008 8.1 89 228 14 6.4 5.8 12 nil 634 6.5 7.4 

6 38.726 8.060 2542 8.4 86 646 28 9.6 2.9 175 48 1244 6.9 107.8 

8 39.071 8.649 600 8.4 88 54 13 46.5 27.2 22 24 354 0.9 nil 

10 38.742 8.125 1258 8.4 88 299 17 11.2 1.0 64 24 610 5.6 54.0 

11 38.719 7.987 1654 8.6 83 394 18 12.8 10.7 86 24 952 3.9 nil 

12 38.714 8.008 1483 8.7 91 374 17 6.4 2.9 16 48 903 7.2 nil 

13 38.656 7.991 1550 8.9 45 415 11 3.2 2.0 54 48 805 14.0 77.0 

14 38.854 8.184 1688 8.5 76 400 20 9.7  122 108 744 7.7 nil 

15 38.752 8.082 1397 8.5 91 347 18 8.0 2.9 16 27 878 9.4 nil 

16 38.699 7.926 1127 8.6 91 269 17 6.4 4.9 16 24 683 5.1 nil 

17 38.770 8.223 430 8.1 82 65 6 28.9 6.8 4 nil 281 2.8 nil 

18 38.712 7.956 1270 8.0 95 179 15 75.4 32.0 70 nil 756 3.1 nil 

19 38.722 8.160 578 8.1 87 102 10 25.7 13.6 4 nil 415 3.5 nil 

20 38.717 8.043 2697 8.6 81 672 25 4.8 2.9 227 72 1122 6.3 127.6 

21 38.716 8.021 1494 8.8 89 388 15 3.2 1.0 34 48 586 7.8 nil 

22 38.819 8.167 483 8.6 59 68 3 36.9 1.0 9 12 256 0.5 nil 

23 38.680 8.018 2485 8.7 100 646 17 4.8 1.0 142 72 903 12.3 338.0 

24 38.813 8.196 464 8.6 78 78 7 20.8 4.9 6 12 268 1.0 nil 

25 38.674 7.836 1045 8.8 87 258 11 6.4 1.9 20 48 586 5.3 nil 

26 38.887 8.167 1983 8.7 74 485 36 17.6 7.8 69 36 1196 9.0 nil 

27 38.722 8.029 1917 8.7 86 496 20 4.8 1.0 60 72 1074 10.3 14.4 

28 38.691 7.920 1917 8.2 98 483 25 11.2 5.8 98 nil 1122 14.4 42.0 

29 38.639 7.835 2348 8.9 94 595 26 3.2 1.0 188 72 952 19.2 114.4 

30 38.887 8.204 716 8.7 78 156 10 9.6 2.0 8 24 390 3.6 nil 
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31 38.832 8.231 1330 8.7 65 315 12 17.6 4.9 22 24 793 16.0 nil 

32 38.700 7.936 1150 8.6 86 269 15 9.6 3.9 20 24 683 4.1 nil 

33 38.742 8.067 1696 8.4 97 442 26 6.4 2.9 34 96 964 9.0 nil 

34 38.679 8.018 2485 8.7 100 646 17 4.8 1.0 142 72 903 12.3 338.0 

 
 

 

 

Appendix 8.1: δ18O and δ2H precipitation data used to produce the LMWL of Ziway-Shala basin. Note 

that sample numbers 1, 2, 4, 7, 15, 20, 21, 28, 29, 31, 32, 33, 39, 44 are evaporated samples and excluded) 

 

No Date Area δ18O δ2H 
Deutrium excess 
=( δ2H -8 δ18O) 

1 06/01/1995 Asela 3.64 16.90 -12.22 
2 06/01/1995 Asela 0.65 20.60 15.40 
3 07/01/1995 Asela 0.44 12.20 8.68 
4 07/01/1995 Asela -2.56 -1.60 18.88 
5 07/01/1995 Asela 2.00 20.50 4.50 
6 07/01/1995 Asela -4.65 -24.30 12.90 
7 08/01/1995 Asela -3.54 -11.70 16.62 
8 08/01/1995 Asela 1.10 14.30 5.50 
9 08/01/1995 Asela 0.93 13.60 6.16 

10 08/01/1995 Asela -2.14 -5.40 11.72 
11 08/01/1995 Asela 3.49 26.90 -1.02 
12 09/01/1995 Asela -1.25 1.40 11.40 
13 09/01/1995 Asela 3.37 32.40 5.44 
14 07/01/1994 Asela -3.93 -19.80 11.64 
15 08/01/1994 Asela -4.25 -18.30 15.70 
16 08/01/1994 Asela -3.90 -18.10 13.10 
17 08/01/1994 Asela -0.79 -1.80 4.52 
18 09/01/1994 Asela -0.92 4.20 11.56 
19 09/01/1994 Asela -0.70 8.90 14.50 
20 07/01/1995 Ziway -0.77 11.80 17.96 
21 07/01/1995 Ziway -2.46 -4.10 15.58 
22 07/01/1995 Ziway -3.78 -16.90 13.34 
23 08/01/1995 Ziway -4.61 -29.70 7.18 
24 08/01/1995 Ziway -0.91 5.10 12.38 
25 08/01/1995 Ziway 0.06 12.00 11.52 
26 08/01/1995 Ziway -2.30 -3.90 14.50 
27 09/01/1995 Ziway -0.81 7.60 14.08 
28 09/01/1995 Ziway -2.05 2.00 18.40 
29 09/01/1995 Ziway 1.44 27.10 15.58 
30 09/01/1995 Ziway 2.95 31.00 7.40 
31 07/01/1995 Silte -2.68 -3.10 18.34 
32 08/01/1995 Silte -5.71 -27.40 18.28 
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33 08/01/1995 Silte -1.16 12.00 21.28 
34 08/01/1995 Silte -1.55 0.90 13.30 
35 09/01/1995 Silte 1.99 18.40 2.48 
36 09/01/1995 Silte -3.37 -12.70 14.26 
37 07/01/1995 Butajira -2.43 -6.80 12.64 
38 07/01/1995 Butajira -0.75 -6.40 -0.40 
39 07/01/1995 Butajira 4.35 22.50 -12.30 
40 08/01/1995 Butajira -2.05 -9.50 6.90 
41 08/01/1995 Butajira -1.09 2.10 10.82 
42 08/01/1995 Butajira -3.56 -17.10 11.38 
43 08/01/1995 Butajira -0.75 3.90 9.90 
44 07/01/1995 Awasa -1.05 10.30 18.70 
45 07/01/1995 Awasa -0.06 9.90 10.38 
46 08/01/1995 Awasa -1.32 0.50 11.06 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


