

 Università degli Studi di Ferrara

DOTTORATO DI RICERCA IN
"INGEGNERIA ELETTRONICA"

CICLO XXI

COORDINATORE Prof. Bertozzi Davide

Driving the Network-on-Chip Revolution
to Remove the Interconnect Bottleneck

in Nanoscale Multi-Processor Systems-on-Chip.

Settore Scientifico Disciplinare ING-INF/01

Dottorando Tutore
Dott. Medardoni Simone Prof. Bertozzi Davide

 _______________________________ _____________________________
 (firma) (firma)

Anni 2006/2008

2

ABSTRACT

The sustained demand for faster, more powerful chips has been met by the
availability of chip manufacturing processes allowing for the integration of in-
creasing numbers of computation units onto a single die. The resulting outcome,
especially in the embedded domain, has often been called SYSTEM-ON-CHIP
(SoC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MP-SoC).

MPSoC design brings to the foreground a large number of challenges, one of
the most prominent of which is the design of the chip interconnection. With a
number of on-chip blocks presently ranging in the tens, and quickly approaching
the hundreds, the novel issue of how to best provide on-chip communication
resources is clearly felt.

NETWORKS-ON-CHIPS (NoCs) are the most comprehensive and scalable
answer to this design concern. By bringing large-scale networking concepts to
the on-chip domain, they guarantee a structured answer to present and future
communication requirements. The point-to-point connection and packet switch-
ing paradigms they involve are also of great help in minimizing wiring overhead
and physical routing issues. However, as with any technology of recent incep-
tion, NoC design is still an evolving discipline. Several main areas of interest
require deep investigation for NoCs to become viable solutions:

• The design of the NoC architecture needs to strike the best tradeoff among
performance, features and the tight area and power constraints of the on-
chip domain.

• Simulation and verification infrastructure must be put in place to explore,
validate and optimize the NoC performance.

• NoCs offer a huge design space, thanks to their extreme customizability in
terms of topology and architectural parameters. Design tools are needed
to prune this space and pick the best solutions.

• Even more so given their global, distributed nature, it is essential to eval-
uate the physical implementation of NoCs to evaluate their suitability for
next-generation designs and their area and power costs.

This dissertation performs a design space exploration of network-on-chip ar-
chitectures, in order to point-out the trade-offs associated with the design of
each individual network building blocks and with the design of network topol-
ogy overall. The design space exploration is preceded by a comparative analysis
of state-of-the-art interconnect fabrics with themselves and with early network-
on-chip prototypes. The ultimate objective is to point out the key advantages
that NoC realizations provide with respect to state-of-the-art communication
infrastructures and to point out the challenges that lie ahead in order to make
this new interconnect technology come true. Among these latter, technology-
related challenges are emerging that call for dedicated design techniques at all
levels of the design hierarchy. In particular, leakage power dissipation, contain-
ment of process variations and of their effects. The achievement of the above
objectives was enabled by means of a NoC simulation environment for cycle-
accurate modelling and simulation and by means of a back-end facility for the
study of NoC physical implementation effects. Overall, all the results provided
by this work have been validated on actual silicon layout.

i

ii

Contents

1 Introduction 1

2 State of the Art SoC Communication Architecture 5
2.1 Introduction . 5
2.2 AMBA Bus . 6

2.2.1 AMBA System Bus . 7
2.2.2 AMBA AHB Basic Operation 8
2.2.3 Advanced Peripheral Bus (APB) 8
2.2.4 Advanced AMBA Evolutions 9

2.3 CoreConnect Bus . 12
2.3.1 Processor Local Bus (PLB) 13
2.3.2 On-Chip Peripheral Bus (OPB) 14
2.3.3 Device Control Register Bus (DCR) 15

2.4 STBus . 15
2.4.1 Bus topologies . 17

2.5 WishBone . 17
2.5.1 The Wishbone Bus Transactions 18

2.6 SiliconBackplane MicroNetwork 18
2.6.1 System Interconnect Bandwidth 20
2.6.2 Configuration Resources 20

2.7 Other On-Chip Interconnects . 20
2.7.1 Peripheral Interconnect Bus (PI-Bus) 20
2.7.2 AVALON . 21
2.7.3 CoreFrame . 22

2.8 Conclusions . 23

3 Analysing the communication in a memory-centric industrial
MPSoC platforms 27
3.1 Introduction . 27
3.2 MPSIM, a SystemC Platform Simulation 28
3.3 MPSoC platform modelling . 30

3.3.1 STBus platform component models 32
3.3.2 Architectural variants . 34

3.4 Interaction between communication and memory sub-systems . . 36
3.4.1 Single-layer architecture 36
3.4.2 Multi-layer architecture 37

3.5 Fine-grain platform performance analysis 40
3.6 Summary . 41

iii

CONTENTS

3.7 Conclusion . 42

4 Network-on-Chip: An Interconnect Fabric For MPSoCs 49
4.1 Introduction . 49
4.2 Design Challenges For On-Chip Communication Architectures . . 51

4.2.1 Technology challenges . 51
4.2.2 Scalability challenges . 53
4.2.3 Design productivity challenges 55

4.3 Network-On-Chip Architecture 56
4.4 Network Interface . 56
4.5 Switch Architecture . 60

4.5.1 Æthereal . 62
4.5.2 Xpipes Lite . 63

4.6 Link Design . 64
4.6.1 Stall/Go . 65
4.6.2 T-Error . 65
4.6.3 Ack/Nack . 66

4.7 NoC design challenges . 67
4.8 Conclusion . 68

5 Switches: Architecture, Analysys and Optimization 73
5.1 Introduction . 73
5.2 Modelling and synthesis flow . 74
5.3 Basic switching fabric . 75
5.4 Control and datapath decoupling 76
5.5 Spanning the area-latency-power trade-off 78

5.5.1 Selection of switch architectures 78
5.5.2 Area comparative analysis 79
5.5.3 Performance comparative analysis 79
5.5.4 Power/energy comparative analysis 82

5.6 Conclusions . 84

6 Network Interface: Architecture, Analysys and Optimization 87
6.1 Design requirements . 88
6.2 NI sharing architectures . 90

6.2.1 Network interface architecture 90
6.2.2 Merger architecture . 91

6.3 Optimizations . 92
6.4 Synthesis results . 93
6.5 Basic performance tests . 94
6.6 System-level analysis . 96

6.6.1 Application-specific topology 96
6.6.2 General purpose topology 98

6.7 Conclusions . 100

7 Designing Regular Network-on-Chip Topologies under Technol-
ogy and Architecture Constraints 105
7.1 Backend synthesis flow . 107
7.2 Topology exploration . 108

7.2.1 NoC architecture . 108

iv

CONTENTS

7.2.2 Topologies under test: k-ary n-meshes 109
7.2.3 Topologies under test: k-ary n-Tree 111

7.3 Physical design: k-ary n-meshes 114
7.3.1 16 tile networks . 114
7.3.2 64 tile networks . 115

7.4 Physical design: k-ary n-Tree . 116
7.5 Post-Layout analysis: k-ary n-mesh 119

7.5.1 16 tile . 119
7.5.2 64 tile . 120

7.6 Post-Layout analysis: k-ary n-Tree 121
7.7 Conclusions . 124

7.7.1 k-ary n-meshes . 125
7.7.2 k-ary n-Tree . 125

8 Emerging Issue 133
8.1 Introduction . 133
8.2 Architectural Implications . 134

8.2.1 Routing Mechanisms and Algorithms 135
8.2.2 Modelling within-die variability 138
8.2.3 Evaluation . 140

8.3 Circuit Implications . 148
8.3.1 Self-correcting flip-flop . 149
8.3.2 Link Design . 151
8.3.3 Experimental results . 155

8.4 Conclusions . 157

9 Power-Optimal RTL Soft-Macro Selection Strategy for Leakage-
Sensitive Technologies 163
9.1 Introduction . 163
9.2 Synthesis methodology . 165

9.2.1 Performance-optimized synthesis flow 165
9.2.2 Power-optimized synthesis flow 165
9.2.3 Multi-Vth synthesis flow 167

9.3 Experimental results . 167
9.3.1 Energy characterization of adder units 167
9.3.2 The impact of power optimizations 171
9.3.3 The impact of multi-Vth design 172

9.4 Comparison with default DW selection strategy 175
9.5 Conclusions . 176

10 Conclusion and Future work 183
10.1 Conclusions . 183
10.2 Future Work . 184
10.3 Scientific Publication . 184

10.3.1 Proceedings . 185
10.3.2 Magazine . 188
10.3.3 Poster . 189
10.3.4 Patent . 189

v

Chapter 1

Introduction

Silicon vendors are constantly facing pressure to deliver feature-rich, high-
performance, low-power, low-cost chips, in as short a time as possible. Luckily,
silicon manufacturing techniques have been continuously perfected, following
the well-known Moore’s Law; this has provided the potential for answering cus-
tomer demands.

However, along the years, an increasing gap has been observed among the
number of available on-chip transistors and the capability of designers to make
good use of them. As a consequence, some trends in chip design have become
crystal clear:

• An increasing emphasis on modularity, reuse and parallelism is mandatory.
Redesign from scratch is too time-consuming. Also, deploying multiple
instances of existing computation blocks can be more efficient than devel-
oping more powerful blocks. Therefore, libraries of so-called INTELLEC-
TUAL PROPERTY (IP) cores are increasingly becoming the foundation
of platform development.

• Also based on the previous item, complexity is nowadays shifting from the
development of functional units to the task of system integration. This is
exacerbated by the fact that full designs are nowadays almost impossible
to characterize in all possible operating conditions, leading to closure,
optimization and verification issues.

• Software tools devoted to design automation are key at all levels. This ap-
plies to performance characterization, platform assembly and validation,
physical implementation, etc.. Without efficient tools, the sheer complex-
ity of billion-transistor designs and deep-submicron lithographic processes
is impossible to tackle by designer teams of any size.

A typical outcome of these trends are today’s MULTI-PROCESSOR-
SYSTEMS-ON-CHIPS (MPSoCs). These are full-featured chips, composed of
a variety of functional blocks, to the point of integrating the foundation of a
whole system or device into a single die. MPSoCs are used in a variety of envi-
ronments, including multimedia gadgets, gaming stations, smartphones, auto-
motive equipment, healthcare devices, industrial machinery, aerospace control
units, and many more. MPSoCs are built upon assemblies of IP cores, and

1

CHAPTER 1. INTRODUCTION

rely extensively on COMPUTER AIDED DESIGN (CAD) tooling for initial
design space exploration, system optimization, system verification, and physical
implementation.

An increasingly critical piece of the MPSoC puzzle is the on-chip intercon-
nection infrastructure. Today, even MPSoCs used in mid-range mobile phones
can easily contain tens of IP cores, and new chips with more than a hundred
such internal units are appearing for various applications. The trend expressing
the number of IP cores that can be integrated on a chip is exponential, roughly
doubling every 18 months. How to effectively provide communication resources
among such a number of building blocks is clearly a challenge. In fact, it is
likely a key factor in determining the success or failure of upcoming MPSoCs
will be the ability to efficiently provide the communication backbone into which
to seamlessly plug a variety of IP cores.

A comprehensive solution to on-chip interconnection issues has been pro-
posed in the form of NETWORKS-ON-CHIPS (NoCs).

NoCs are packet-switching networks, brought to the on-chip level. The ra-
tionale is that, since the complexity of on-chip communication is rapidly ap-
proaching that of large area systems in terms of actors, it makes sense to reuse
some of the solutions devised in the latter space. Therefore, NoCs are based
upon topologies of switches (also called routers) distributing packets around,
over point-to-point links. Since existing IP cores do not normally communicate
by means of packets, NETWORK INTERFACES (NIs) (also called network
adapters) are in charge of protocol conversion; they convert commands appear-
ing on the pinout of IP cores into packets, and vice versa at the receiving end of
a transaction. NoCs have the potential to bring a large number of advantages
to on-chip communication, such as:

• Virtually unlimited architectural scalability. As known from wide area
networks, it is easy to comply with higher bandwidth requirements by
larger numbers of cores simply by deploying more switches and links.

• Much better electrical performance. All connections are point-to-point.
The length of inter-switch links is a design parameter that can be ad-
justed. The wire parallelism in links can be controlled at will, since packet
transmission can be serialized. All these factors imply faster propagation
times and total control over crosstalk issues.

• Also due to the possibility of having narrower links than in buses (e.g. 32
bits instead of 100), routing concerns are greatly alleviated, and wiring
overhead is dramatically reduced. This leads to higher wire utilization
and efficiency.

• Faster and easier design closure achievement. Physical design improve-
ments make NoCs, in general, more predictable than buses. Therefore, it
is more unlikely that costly respins will be required upon physical design
and performance qualification.

• Better performance under load. Since the operating frequency can be
higher than in buses, the data width is a parameter, and communica-
tion flows can be handled in parallel with suitable NoC topology design,
virtually any bandwidth load can be tackled.

2

• More modular, plug&play-oriented approach to system assembly. IP cores
are attached in point-to-point fashion to dedicated NIs; NIs can be spe-
cialized for any interface that may be needed, either industry standards
such as AMBA AHB or any custom protocol. Potentially any core may
be seamlessly attached to a NoC given the proper NI. Computation and
communication concerns are clearly decoupled at the NI level.

• Potential for the development of streamlined design flows. While hierar-
chical buses are often assembled by hand and therefore must be tuned and
validated with manual intervention, a network can be designed, optimized
and verified by automated means, leading to large savings in design times,
and getting a solution closer to optimality.

• A much larger design space. NoCs can be tuned in a variety of parameters
(topology, buffering, data widths, arbitrations, routing choices, etc.), lead-
ing to higher chances of optimally matching design requirements. Being
distibuted, modular structures, NoCs can also accommodate differently
tuned regions. For example, some portions of a NoC could be tuned stat-
ically for lower resource usage and lower performance (e.g. by reducing
the data width), or could dynamically adjust their mode of operation (e.g.
frequency, voltage scaling).

At the same time, NoCs are facing a completely different set of constraints
compared to wide area networks. While in the latter environment a switch is
implemented with at least one dedicated chip, in a NoC the switch must occupy
a tiny fraction of the chip real estate. This means that some of the principles
acquired in wide area networking have to be revisited. Some of the challenges
lying ahead of NoCs include:

• The tradeoffs among network features, area and power budgets have to
be studied from scratch. Policies which are widely accepted in general
networking (e.g. dynamic packet routing) must be reassessed to evaluate
their impact on silicon area.

• Performance requirements are very different in the on-chip domain, also
due to the completely different properties of on-chip wiring. Bandwidth
milestones are much easier to achieve, since information transfer across
on-chip wires is much faster than across long cables. Conversely, latency
bounds are much stricter; while milliseconds or even hundreds of millisec-
onds are acceptable for wide area networks, IP cores on a chip normally
require response times of few nanoseconds.

• Contrary to wide area networks, where nodes may often be dynamically
connected to and disconnected from the network, in NoCs the set of at-
tached IP cores is obviously fixed. In many applications, it is also rela-
tively easy to statically characterize the traffic profiles of such IP cores.
This opens up the possibility of thoroughly customizing NoCs for specific
workloads. How to achieve this goal is, however, less clear.

• Design tools for NoCs can be developed, but, as above, how exactly is an
open question. The customizability of NoCs, while an asset, is also an
issue when it comes to devising tools capable of pruning the design space

3

CHAPTER 1. INTRODUCTION

in search of the optimal solutions. The problem is compounded by the
need to take into account both architectural and physical properties; by
the need to guarantee design closure; and by the need to validate that
the outcome is fully functional, e.g. deadlock-free and compliant with
performance objectives.

• NoCs are a recent technology, and as such, they are in need of the de-
velopment of thorough infrastructure. In addition to design tools, this
includes simulators, emulation platforms, and back-end flows for the im-
plementation on APPLICATION-SPECIFIC INTEGRATED CIRCUITS
(ASICS).

The main objective of this dissertation is to perform a design space explo-
ration of network-on-chip architectures, in order to point-out the trade-offs as-
sociated with the design of each individual network building block and with the
design of network topology overall. This exploration aims at providing guide-
lines to system designers as to the most suitable network design configuration to
meet predefined performance, area and power constraints. The design space ex-
ploration is preceded by a comparative analysis of state-of-the-art interconnect
fabrics with themselves and with early network-on-chip prototypes. The ulti-
mate objective is to point out the key advantages that NoC realizations provide
with respect to state-of-the-art communication infrastructures and to point out
the challenges that lie ahead in order to make this new interconnect technol-
ogy come true. Among these latter, technology-related challenges are emerging
that call for dedicated design techniques at all levels of the design hierarchy. In
particular, leakage power dissipation, containment of process variations and of
their effects. The achievement of the above objectives was enabled by means of
a NoC simulation environment for cycle-accurate modelling and simulation and
by means of a back-end facility for the study of NoC physical implementation
effects. Overall, all the results provided by this work have been validated on
actual silicon layout.

4

Chapter 2

State of the Art SoC
Communication
Architecture

2.1 Introduction

The current high levels of on-chip integration allow for the implementation of
increasingly complex Systems-on-Chip (SoCs), consisting of heterogeneous com-
ponents such as general purpose processors, DSPs, coprocessors, memories, I/O
units, and dedicated hardware accelerators.

In this context, Multi-Processor Systems-on-Chip (MPSoCs) are emerging
as an effective solution to meet the demand for computational power posed by
application domains such as network processors and parallel media processors.
MPSoCs combine the advantages of parallel processing with the high integration
levels of Systems-on-Chips (SoCs).

It is expected that future MPSoCs will integrate hundreds of processing units
and storage elements, and their performance will be increasingly interconnect-
dominated [21]. Interconnect technology and architecture will become the limit-
ing factor for achieving operational goals, and the efficient design of low-power,
high-performance on-chip communication architectures will pose novel chal-
lenges. The main issue regards scalability of system interconnects, since the
trend for system integration is expected to continue. State-of-the-art on-chip
buses rely on shared communication resources and on an arbitration mechanism
which is in charge of serializing bus access requests. This widely adopted solu-
tion unfortunately suffers from power and performance scalability limitations,
therefore a lot of effort is being devoted to the development of advanced bus
topologies (e.g., partial or full crossbars, bridged buses) and protocols, some of
them already implemented in commercially available products. In the long run,
a more aggressive approach will be needed, and a design paradigm shift will most
probably lead to a packetized on-chip communication based on micronetworks
of interconnects or Networks-on-Chip (NoCs) [17, 15].

This chapter focuses on state-of-the-art SoC communication architectures,
providing an overview of the most relevant ones from an industrial and research

5

CHAPTER 2. STATE OF THE ART SOC COMMUNICATION

ARCHITECTURE

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

SDRAM
controller

Colour

Controller

LCD

ARM

CPU
Smart

Card I/F

UART

Serial Port
Synchronous

AMBA−(AHB)

System bus

AMBA−(APB)

Peripheral bus

high speed low powerexternal
memory

B
rid

ge

Audio
Codec I/FTest I/F

Controller

SRAM

Figure 2.1: Schematic architecture of AMBA bus.

viewpoint. Open bus specifications such as AMBA and CoreConnect will be
obviously described more in detail, providing the background which is needed
to understand the necessarily more general description of proprietary industrial
bus architectures, while at the same time being able to assess their contribution
to the advance in the field.

2.2 AMBA Bus

AMBA (Advanced Micro-Controller Bus Architecture) is a bus standard which
was originally conceived by ARM to support communication among ARM pro-
cessor cores. However, nowadays AMBA is one of the leading on-chip busing
systems because it is licensed and deployed for use with third party IP cores [1].
Designed for custom silicon, the AMBA specification provides standard bus
protocols for connecting on-chip components, custom logic and specialized func-
tions. These bus protocols are independent of the ARM processor and general-
ized for different SoC structures.

AMBA defines a segmented bus architecture, wherein two bus segments are
connected with each other via a bridge that buffers data and operations between
them. A system bus is defined, which provides a high-speed, high-bandwidth
communication channel between embedded processors and high-performance
peripherals. Two system buses are actually specified: the AMBA High-Speed
Bus (AHB) and the Advanced System Bus (ASB).

Moreover, a low-performance and low power peripheral bus (called Advanced
Peripheral Bus, APB) is specified, which accommodates communication with
general purpose peripherals and is connected to the system bus via a bridge,
acting as the only APB master. The overall AMBA architecture is illustrated
in figure 2.1.

6

2.2. AMBA BUS

2.2.1 AMBA System Bus

ASB is the first generation of AMBA system bus, and sits above APB in that it
implements the features required for high-performance systems including burst
transfers, pipelined transfer operation and multiple bus masters. AHB is a later
generation of AMBA bus which is intended to address the requirements of high-
performance, high-clock synthesizable designs. ASB is used for simpler, more
cost-effective designs whereas more sophisticated designs call for the employ-
ment of the AHB. For this reason, a detailed description of AHB follows.

The main features of AMBA AHB can be summarized as follows:

• Multiple bus masters. Optimized system performance is obtained by shar-
ing resources among different bus masters. A simple request-grant mech-
anism is implemented between the arbiter and each bus master. In this
way, the arbiter ensures that only one bus master is active on the bus
and also that when no masters are requesting the bus a default master is
granted.

• Pipelined and burst transfers. Address and data phases of a transfer occur
during different clock periods. In fact, the address phase of any transfer
occurs during the data phase of the previous transfer. This overlapping
of address and data is fundamental to the pipelined nature of the bus
and allows for high performance operation, while still providing adequate
time for a slave to provide the response to a transfer. This also implies
that ownership of the data bus is delayed with respect to ownership of the
address bus. Moreover, support for burst transfers allows for efficient use
of memory interfaces by providing transfer information in advance.

• Split transactions. They maximize the use of bus bandwidth by enabling
high latency slaves to release the system bus during dead time while they
complete processing of their access requests.

• Wide data bus configurations. Support for high-bandwidth data-intensive
applications is provided using wide on-chip memories. System buses sup-
port 32, 64, and 128-bit data-bus implementations with a 32-bit address
bus, as well as smaller byte and half-word designs.

• Non-tristate implementation. AMBA AHB implements a separate read
and write data bus in order to avoid the use of tristate drivers. In partic-
ular, master and slave signals are multiplexed onto the shared communi-
cation resources (read and write data buses, address bus, control signals).

A typical AMBA AHB system contains the following components:

AHB master: Only one bus master at a time is allowed to initiate and com-
plete read and write transactions. Bus masters drive out the address and
control signals and the arbiter determines which master has its signals
routed to all of the slaves. A central decoder controls the read data and
response signal multiplexor, which selects the appropriate signals from the
slave that has been addressed.

AHB slave: It signals back to the active master the status of the pending
transaction. It can indicate that the transfer completed successfully, or

7

CHAPTER 2. STATE OF THE ART SOC COMMUNICATION

ARCHITECTURE

that there was an error or that the master should retry the transfer or
indicate the beginning of a split transaction.

AHB arbiter: The bus arbiter serializes bus access requests. The arbitration
algorithm is not specified by the standard and its selection is left as a de-
sign parameter (fixed priority, round-robin, latency-driven, etc.), although
the request-grant based arbitration protocol has to be kept fixed.

AHB decoder: This is used for address decoding and provides the select
signal to the intended slave.

2.2.2 AMBA AHB Basic Operation

In a normal bus transaction, the arbiter grants the bus to the master until the
transfer completes and the bus can then be handed over to another master.
However, in order to avoid excessive arbitration latencies, the arbiter can break
up a burst. In that case, the master must re-arbitrate for the bus in order to
complete the remaining data transfers.

A basic AHB transfer consists of four clock cycles. During the first one, the
request signal is asserted, and in the best case at the end of the second cycle
a grant signal from the arbiter can be sampled by the master. Then, address
and control signals are asserted for slave sampling on the next rising edge, and
during the last cycle the data phase is carried out (read data bus driven or
information on the write data bus sampled). A slave may insert wait states into
any transfer, thus extending the data phase, and a ready signal is available for
this purpose.

Four, eight and sixteen-beat bursts are defined in the AMBA AHB protocol,
as well as undefined-length bursts. During a burst transfer, the arbiter rear-
bitrates the bus when the penultimate address has been sampled, so that the
asserted grant signal can be sampled by the relative master at the same point
where the last address of the burst is sampled. This makes bus master handover
at the end of a burst transfer very efficient.

For long transactions, the slave can decide to split the operation warning the
arbiter that the master should not be granted access to the bus until the slave
indicates it is ready to complete the transfer. This transfer splitting mechanism
is supported by all advanced on-chip interconnects, since it prevents high latency
slaves from keeping the bus busy without performing any actual transfer of
data. On the contrary, split transfers can significantly improve bus efficiency,
i.e. reduce the number of bus busy cycles used just for control (e.g. protocol
handshake) and not for actual data transfers. Advanced arbitration features are
required in order to support split transfers, as well as more complex master and
slave interfaces.

2.2.3 Advanced Peripheral Bus (APB)

The AMBA APB is intended for general-purpose low-speed low-power periph-
eral devices. It enables the connection to the main system bus via a bridge. All
bus devices are slaves, the bridge being the only peripheral bus master.

This is a static bus that provides a simple addressing, with latched addresses
and control signals for easy interfacing. ARM recommends a dual Read and

8

2.2. AMBA BUS

Write bus implementation, but APB can be implemented with a single tristated
data bus.

The main features of this bus are the following:

• Unpipelined architecture.

• Low gate count.

• Low power operation.

– Reduced loading of the main system bus is obtained by isolating the
peripherals behind the bridge.

– Peripheral bus signals are only active during low-bandwidth periph-
eral transfers.

AMBA APB operation can be abstracted as a state machine with three
states. The default state for the peripheral bus is IDLE, which switches to
SETUP state when a transfer is required. SETUP state lasts just one cycle,
during which the peripheral select signal is asserted. The bus then moves to
ENABLE state, which also lasts only one cycle and which requires the address,
control and data signals to remain stable. Then, if other transfers are to take
place, the bus goes back to SETUP state, otherwise to IDLE. As can be ob-
served, AMBA APB should be used to interface to any peripherals which are
low-bandwidth and do not require the high performance of a pipelined bus in-
terface.

2.2.4 Advanced AMBA Evolutions

Recently, some advanced specifications of AMBA bus have appeared, featuring
increased performance and better link utilization. In particular, the Multi-Layer
AHB and the AMBA AXI interconnect schemes will be briefly addressed in the
following sub-sections.

It should be observed that interconnect performance improvement can be
achieved by adopting new topologies and by choosing new protocols, at the
expense of silicon area. The former strategy leads from shared buses to bridged
clusters, partial or full crossbars, and eventually to Networks-on-Chip (NoCs),
in an attempt to increase available bandwidth and to reduce local contention.
The latter strategy instead tries to maximize link utilization by adopting more
sophisticated control schemes and thus permitting a better sharing of existing
resources.

Multi-Layer AHB can be seen as an evolution of bus topology while keeping
the AHB protocol unchanged. On the contrary, AMBA AXI represents an
advanced interconnect fabric protocol.

Multi-layer AHB

The Multi-Layer AHB specification emerges with the aim of increasing the over-
all bus bandwidth and providing a more flexible interconnect architecture with
respect to AMBA AHB. This is achieved by using a more complex interconnec-
tion matrix which enables parallel access paths between multiple masters and
slaves in a system [2].

9

CHAPTER 2. STATE OF THE ART SOC COMMUNICATION

ARCHITECTURE

Master

Master

Slave

Slave

Slave

Slave

Interconnect

matrix

Figure 2.2: Schematic view of the multi-layer AHB interconnect

Therefore, the multi-layer bus architecture allows the interconnection of un-
modified standard AHB master and slave modules with an increased available
bus bandwidth. The resulting architecture becomes very simple and flexible:
each AHB layer only has one master and no arbitration and master-to-slave
muxing is needed. Moreover, the interconnect protocol implemented in these
layers can be very simple: it does not have to support request and grant, nor
retry or split transactions.

The additional hardware needed for this architecture with respect to the
AHB is a multiplexor to connect the multiple masters to the peripherals and
some point arbitration is also required when more than one master wants to
access the same slave simultaneously.

Figure 2.2 shows a schematic view of the multi-layer concept. The inter-
connect matrix contains a decode stage for every layer in order to determine
which slave is required during the transfer. The multiplexer is used to route the
request from the specific layer to the desired slave.

The arbitration protocol decides the sequence of accesses of layers to slaves
based on a priority assignment. The layer with lowest priority has to wait for
the slave to be freed. Different arbitration schemes can be used, and every
slave port has its own arbitration. Input layers can be served in a round-robin
fashion, changing every transfer or every burst transaction, or based on a fixed
priority scheme.

The number of input/output ports on the interconnect matrix is completely
flexible and can be adapted to suit to system requirements. As the number of
masters and slaves implemented in the system increases, the complexity of the
interconnection matrix can become significant and some optimization techniques
have to be used: defining multiple masters on a single layer, multiple slaves
appearing as a single slave to the interconnect matrix, defining local slaves to a
particular layer.

10

2.2. AMBA BUS

Read
data

Read
data

Read
data

Address
and

control

Read address channel

Read data channel

Master

Interface

Slave

Interface

Address
and

control

Write
response

data data
Write Write Write

data

Write address channel

Write data channel

Write response channel

Master

Interface

Slave

Interface

a) b)

Figure 2.3: Architecture of transfers: a) Read operation; b) Write operation.

Finally, it is interesting to outline the capability of this topology to support
multi-port slaves. Some devices, such as SDRAM controllers, work much more
efficiently when processing transfers from different layers in parallel.

AMBA AXI Protocol

AXI is the latest generation AMBA interface. It is designed to be used as a
high-speed submicron interconnect, and also includes optional extensions for
low-power operation [3]. This high-performance protocol provides flexibility in
the implementation of interconnect architectures while still keeping backward-
compatibility with existing AHB and APB interfaces.

AMBA AXI builds upon the concept of point-to-point connection. AMBA
AXI does not provide masters and slaves with visibility of the underlying inter-
connect, instead featuring the concept of master interfaces and symmetric slave
interfaces. This approach, besides allowing seamless topology scaling, has the
advantage of simplifying the handshake logic of attached devices, which only
need to manage a point-to-point link.

To provide high scalability and parallelism, four different logical monodi-
rectional channels are provided in AXI interfaces: an address channel, a read
channel, a write channel and a write response channel. Activity on different
channels is mostly asynchronous (e.g. data for a write can be pushed to the
write channel before or after the write address is issued to the address channel),
and can be parallelized, allowing multiple outstanding read and write requests.

Figure 2.3a shows how a read transaction uses the read address and read data
channels. The write operation over the write address and write data channels
is presented in Figure 2.3b.

As can be observed, the data is transferred from the master to the slave
using a write data channel, and it is transferred from the slave to the master
using a read data channel. In write transactions, in which all the data flows
from the master to the slave, the AXI protocol has an additional write response
channel to allow the slave to signal to the master the completion of the write
transaction.

However, the AXI protocol is a master/slave-to-interconnect interface def-
inition, and this enables a variety of different interconnect implementations.

11

CHAPTER 2. STATE OF THE ART SOC COMMUNICATION

ARCHITECTURE

Therefore, the mapping of channels, as visible by the interfaces, to actual inter-
nal communication lanes is decided by the interconnect designer; single resources
might be shared by all channels of a certain type in the system, or a variable
amount of dedicated signals might be available, up to a full crossbar scheme.
The rationale of this split-channel implementation is based upon the observa-
tion that usually the required bandwidth for addresses is much lower than that
for data (e.g. a burst requires a single address but maybe four or eight data
transfers). Availability of independently scalable resources might, for example,
lead to medium complexity designs sharing a single internal address channel
while providing multiple data read and write channels.

Finally, some of the key incremental features of the AXI protocol can be
listed as follows:

• support for out-of-order completion of transactions

• easy addition of register stages to provide timing closure

• support for multiple address issuing

• separate read and write data channels to enable low-cost Direct Memory
Access (DMA)

• support for unaligned data transfers

2.3 CoreConnect Bus

CoreConnect is an IBM-developed on-chip bus that eases the integration and
reuse of processor, sub-system and peripheral cores within standard product
platform designs. It is a complete and versatile architecture clearly targeting
high performance systems, and many of its features might be overkill in simple
embedded applications [13].

The CoreConnect bus architecture serves as the foundation of IBM Blue
LogicTMor other non-IBM devices. The Blue Logic ASIC/SOC design method-
ology is the approach proposed by IBM [6] to extend conventional ASIC design
flows to current design needs: low-power and multiple-voltage products, re-
configurable logic, custom design capability, and analog/mixed-signal designs.
Each of these offerings requires a well-balanced coupling of technology capa-
bilities and design methodology. The use of this bus architecture allows the
hierarchical design of SoCs.

As can be seen in figure 2.4, the IBM CoreConnect architecture provides
three buses for interconnecting cores, library macros, and custom logic:

• Processor Local Bus (PLB).

• On-Chip Peripheral Bus (OPB).

• Device Control Register (DCR) Bus.

The PLB bus connects the processor to high-performance peripherals, such
as memories, DMA controllers, and fast devices. Bridged to the PLB, the OPB
supports slower-speed peripherals. Finally, the DCR bus is a separate control
bus that connects all devices, controllers, and bridges and provides a separate

12

2.3. CORECONNECT BUS

Core

System

Core

System

Core

System

Arbiter Arbiter
Bridge

Bus

(OPB)
On−Chip Peripheral Bus

(PLB)
Processor Local Bus

Core Core

Peripheral Peripheral

CoreMemory

On−Chip Processor

Processor

Auxiliary

DCR Bus

DCR Bus

CoreConnect Bus

Figure 2.4: Schematic structure of the CoreConnect bus.

path to set and monitor the individual control registers. It is designed to transfer
data between the CPU’s general purpose registers and the slave logic’s device
control registers. It removes configuration registers from the memory address
map, which reduces loading and improves bandwidth of the PLB.

This architecture shares many high-performance features with the AMBA
Bus specification. Both architectures allow split, pipelined and burst transfers,
multiple bus masters and 32, 64 or 128-bits architectures. On the other hand,
CoreConnect also supports multiple masters in the peripheral bus.

Please note that design toolkits are available for the CoreConnect bus and
include functional models, monitors, and a bus functional language to drive
the models. These toolkits provide an advanced validation environment for
engineers designing macros to attach to the PLB, OPB and DCR buses.

2.3.1 Processor Local Bus (PLB)

The PLB is the main system bus targeting high performance and low latency
on-chip communication. More specifically, PLB is a synchronous, multi-master,
arbitrated bus. It supports concurrent read and write transfers, thus yielding a
maximum bus utilization of two data transfers per clock cycle. Moreover, PLB
implements address pipelining, that reduces bus latency by overlapping a new
write request with an ongoing write transfer and up to three read requests with
an ongoing read transfer [14].

Access to PLB is granted through a central arbitration mechanism that
allows masters to compete for bus ownership. This arbitration mechanism is
flexible enough to provide for the implementation of various priority schemes.
In fact, four levels of request priority for each master allow PLB implementation
with various arbitration priority schemes. Additionally, an arbitration locking
mechanism is provided to support master-driven atomic operations. PLB also
exhibits the ability to overlap the bus request/grant protocol with an ongoing
transfer.

The PLB specification describes a system architecture along with a detailed
description of the signals and transactions. PLB-based custom logic systems
require the use of a PLB macro to interconnect the various master and slave

13

CHAPTER 2. STATE OF THE ART SOC COMMUNICATION

ARCHITECTURE

macros.
The PLB macro is the key component of PLB architecture, and consists

of a bus arbitration control unit and the control logic required to manage the
address and data flow through the PLB. Each PLB master is attached to the
PLB through separate address, read data and write data buses and a plurality
of transfer qualifier signals, while PLB slaves are attached through shared, but
decoupled, address, read data and write data buses (each one with its own trans-
fer control and status signals). The separate address and data buses from the
masters allow simultaneous transfer requests. The PLB macro arbitrates among
them and sends the address, data and control signals from the granted master
to the slave bus. The slave response is then routed back to the appropriate
master. Up to 16 masters can be supported by the arbitration unit, while there
are no restrictions in the number of slave devices.

2.3.2 On-Chip Peripheral Bus (OPB)

Frequently, the OPB architecture connects low-bandwidth devices such as serial
and parallel ports, UARTs, timers, etc. and represents a separate, independent
level of bus hierarchy. It is implemented as a multi-master, arbitrated bus. It is
a fully synchronous interconnect with a common clock, but its devices can run
with slower clocks, as long as all of the clocks are synchronized with the rising
edge of the main clock.

This bus uses a distributed multiplexer attachment implementation instead
of tristate drivers. The OPB supports multiple masters and slaves by imple-
menting the address and data buses as a distributed multiplexer. This type
of structure is suitable for the less data intensive OPB bus and allows adding
peripherals to a custom core logic design without changing the I/O on either the
OPB arbiter or existing peripherals. All of the masters are capable of providing
an address to the slaves, whereas both masters and slaves are capable of driving
and receiving the distributed data bus.

PLB masters gain access to the peripherals on the OPB bus through the
OPB bridge macro. The OPB bridge acts as a slave device on the PLB and a
master on the OPB. It supports word (32-bit), half-word (16-bit) and byte read
and write transfers on the 32-bit OPB data bus, bursts and has the capabil-
ity to perform target word first line read accesses. The OPB bridge performs
dynamic bus sizing, allowing devices with different data widths to efficiently
communicate. When the OPB bridge master performs an operation wider than
the selected OPB slave can support, the bridge splits the operation into two or
more smaller transfers.

Some of the main features of the OPB specification are:

• Fully synchronous

• Dynamic bus sizing: byte, halfword, fullword and doubleword transfers

• Separate address and data buses

• Support for multiple OPB bus masters

• Single cycle transfer of data between OPB bus master and OPB slaves

• Sequential address (burst) protocol

14

2.4. STBUS

• 16-cycle fixed bus timeout provided by the OPB arbiter

• Bus arbitration overlapped with last cycle of bus transfers

• Optional OPB DMA transfers

2.3.3 Device Control Register Bus (DCR)

The DCR bus provides an alternative path to the system for setting the indi-
vidual device control registers. These latter are on-chip registers that are imple-
mented outside the processor core, from an architectural viewpoint. Through
the DCR bus, the host CPU can set up the device-control-register sets without
loading down the main PLB. This bus has a single master, the CPU interface,
which can read or write to the individual device control registers. The DCR
bus architecture allows data transfers among OPB peripherals to occur inde-
pendently from, and concurrently with data transfers between processor and
memory, or among other PLB devices. The DCR bus architecture is based on
a ring topology to connect the CPU interface to all devices. The DCR bus is
typicallly implemented as a distributed multiplexer across the chip such that
each sub-unit not only has a path to place its own DCRs on the CPU read
path, but has also a path which bypasses its DCRs and places another unit’s
DCRs on the CPU read path. DCR bus consists of a 10-bit address bus and a
32-bit data bus.

This is a synchronous bus, wherein slaves may be clocked either faster or
slower than the master, although a synchronization of clock signals with the
DCR bus clock is required.

Finally, bursts are not supported by this bus, and 2-cycle minimum read or
write transfers are allowed. Optionally, they can be extended by slaves or by
the single master.

2.4 STBus

STBus is an STMicroelectronics proprietary on-chip bus protocol. STBus is
dedicated to SoC designed for high bandwidth applications such as audio/video
processing [20]. The STBus interfaces and protocols are closely related to the
industry standard VCI (Virtual Component Interface). The components inter-
connected by an STBus are either initiators (which initiate transactions on the
bus by sending requests), or targets (which respond to requests). The bus ar-
chitecture is decomposed into nodes (sub-buses in which initiators and targets
can communicate directly), and the internode communications are performed
through FIFO buffers. Figure 2.5 shows a schematic view of the STBus inter-
connect.

STBus implements three different protocols that can be selected by the de-
signer in order to meet the complexity, cost and performance constraints. From
lower to higher, they can be listed as follows:

Type 1: Peripheral Protocol. This type is the low cost implementation for
low/medium performance. Its simple design allows a synchronous hand-
shake protocol and provides a limited transaction set. The peripheral
STBus is targeted at modules which require a low complexity medium

15

CHAPTER 2. STATE OF THE ART SOC COMMUNICATION

ARCHITECTURE

Type 1 Type 2 Type 3

Type 1 Type 2 Type 3

Initiators (masters)

Targets (slaves)

Initiator IP

any bus IF

stbus IF

stbus IF

anybus IF

initiator IP

STBus

Figure 2.5: Schematic view of the STBus interconnect

data rate communication path with the rest of the system. This typi-
cally includes standalone modules such as general-purpose input/output
or modules which require independent control interfaces in addition to
their main memory interface.

Type 2: Basic Protocol. In this case, the limited operation set of the Pe-
ripheral Interface is extended to a full operation set, including compound
operations, source labeling and some priority and transaction labeling.
Moreover, this implementation supports split and pipelined accesses, and
is aimed at devices which need high performance but do not require the ad-
ditional system efficiency associated with shaped request/response packets
or the ability to re-order outstanding operations.

Type 3: Advanced Protocol. The most advanced implementation up-
grades previous interfaces with support for out-of-order execution and
shaped packets, and is equivalent to the Advanced VCI protocol. Split
and pipelined accesses are supported. It allows performance improve-
ments either by allowing more operations to occur concurrently, or by
rescheduling operations more efficiently.

A type 2 protocol preserves the order of requests and responses. One con-
straint is that, when communicating with a given target, an initiator cannot
send a request to a new target until it has received all the responses from the
current target. The unresponded requests are called pending, and a pending
request controller manages them. A given type 2 target is assumed to send the
responses in the same order as the request arrival order. In type 3 protocol, the
order of responses may not be guaranteed, and an initiator can communicate
with any target, even if it has not received all responses from a previous one.

Associated with these protocols, hardware components have been designed
in order to build complete reconfigurable interconnections between Initiators
and Targets. A toolkit has been developed around this STBus (graphical in-
terface) to generate automatically top level backbone, cycle accurate high level

16

2.5. WISHBONE

models,way to implementation, bus analysis (latencies, bandwidth) and bus ver-
ification (protocol and behavior).

An STBus system includes three generic architectural components. The node
arbitrates and routes the requests and optionally, the responses. The converter
is in charge of converting the requests from one protocol to another (for instance,
from basic to advanced). Finally, the size converter is used between two buses
of the same type but of different widths. It includes buffering capability.

The STBus can implement various strategies of arbitration and allows to
change them dynamically. In a simplified single-node system example, a com-
munication between one initiator and a target is performed in several steps.

• a request/grant step between the initiator and the node takes place, cor-
responding to an atomic rendez-vous operation of the system;

• the request is transferred from the node to the target;

• a response-request/grant step is carried out between the target and the
node;

• the response-request is transferred from the node to the initiator.

2.4.1 Bus topologies

STBus can instantiate different bus topologies, trading-off communication par-
allelism with architectural complexity. In particular, system interconnects with
different scalability properties can be instantiated such as:

• Single Shared Bus: suitable for simple low-performance implementations.
It features minimum wiring area but limited scalability;

• Full Crossbar: targets complex high-performance implementations. Large
wiring area overhead.

• Partial Crossbar: intermediate solution, medium performance, implemen-
tation complexity and wiring overhead;

It is worth observing that STBus allows for the instantiation of complex
bus systems such as heterogeneous multi-node buses (thanks to size or type
converters) and facilitates bridging with different bus architectures, provided
proper protocol converters are made available (e.g. STBus and AMBA).

2.5 WishBone

The WishBone System-on-Chip interconnect [11] defines two types of interfaces,
called master and slave. Master interfaces are cores that are capable of generat-
ing bus cycles, while slave interfaces are capable of receiving bus cycles. Some
relevant Wishbone features that are worth mentioning are the multi-master ca-
pability which enables multi-processing, the arbitration methodology defined by
end users attending to their needs, and the scalable data bus widths and operand
sizes. Moreover, the hardware implementation of bus interfaces is simple and
compact, and the hierarchical view of the WishBone architecture supports struc-
tured design methodologies [12].

17

CHAPTER 2. STATE OF THE ART SOC COMMUNICATION

ARCHITECTURE

The hardware implementation supports various IP core interconnection
schemes, including: point-to-point connection, shared bus, crossbar switch im-
plementation, data-flow interconnection and off-chip interconnection. The cross-
bar switch interconnection is usually used when connecting two or more masters
together so that every one can access two or more slaves. In this scheme, the
master initiates an addressable bus cycle to a target slave. The crossbar switch
interconnection allows more than one master to use the bus provided they do
not access the same slave. In this way, the master requests a channel on the
switch and, once this is established, data is transferred in a point-to-point way.

The overall data transfer rate of the crossbar switch is higher than shared bus
mechanisms, and can be expanded to support extremely high data transfer rates.
On the other hand, the main disadvantage is a more complex interconnection
logic and routing resources.

2.5.1 The Wishbone Bus Transactions

The WishBone architecture defines different transaction cycles attending to the
action performed (read or write) and the blocking/non-blocking access. For
instance, single read/write transfers are carried out as follows. The master
requests the operation and places the slave address onto the bus. Then the slave
places data onto the data bus and asserts an acknowledge signal. The master
monitors this signal and relies the request signals when data have been latched.
Two or more back-to-back read/write transfers can also be strung together. In
this case, the starting and stopping point of the transfers are identified by the
assertion and negation of a specific signal [25].

A read-modify-write (RMW) transfer is also specified, which can be used
in multiprocessor and multitasking systems in order to allow multiple software
processes to share common resources by using semaphores. This is commonly
done on interfaces for disk controllers, serial ports and memory. The RMW
transfer reads and writes data to a memory location in a single bus cycle. For
the correct implementation of this bus transaction, shared bus interconnects
have to be designed in such a way that once the arbiter grants the bus to a
master, it will not re-arbitrate the bus until the current master gives it up.
Also, it is important to note that a master device must support the RMW
transfer in order to be effective, and this is generally done by means of special
instructions forcing RMW bus transactions.

2.6 SiliconBackplane MicroNetwork

SiliconBackplane MicroNetwork is a family of innovative communication ar-
chitectures licensed by Sonics for use in SoC design. The Sonics architecture
provides CPU independence, true mix-and-match of IP cores, a unified commu-
nication medium, and a structure that makes a SOC design simpler to partition,
analyze, design, verify, and test [24].

The SiliconBackplane MicroNetwork allows high-speed pipelined trans-
actions (data bandwidth of the interconnect scales from 50Mbytes/s to
4.8Gbyte/s) where the real-time QoS (Quality of Service) of multiple simul-
taneous dataflows is guaranteed. A network utilization of up to 90% can be
achieved.

18

2.6. SILICONBACKPLANE MICRONETWORK

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

����������
����������
����������
����������

����������
����������
����������
����������

Master

Core

Slave Slave

Slave

Bus
initiator

Slave

Master

Master

Bus
initiator

Core Core

Bus
initiator / target

System initiator System innitiator / target System target

initiator target

ON−CHIP BUS

request
response

OCP

Figure 2.6: Schematic view of the SiliconBackplane system

The SiliconBackplane relies on the SonicsStudioTMdevelopment environment
for architectural exploration, and the availability of pre-characterization results
enables reliable performance analysis and reduction of interconnect timing clo-
sure uncertainties. The ultimate goal is to avoid over-designing interconnects.

The architecture can be described as a distributed communication infrastruc-
ture (thus facilitating place-and-route) which can be extended hierarchically in
the form of Tiles (collection of functions requiring minimal assistance from the
rest of the die) in an easy way. Among other features, the SiliconBackplane
MicroNetwork provides advanced error handling in hardware (features for SoC-
wide error detection and support mechanisms for software clean-up and recovery
of unresponsive cores), runtime-operating reconfiguration to meet changing ap-
plication demands and data multicast.

The SiliconBackplane system consists of a physical interconnect bus config-
ured with a combination of agents. Each IP core communicates with an attached
agent through ports implementing the Open Core Protocol (OCP) standard in-
terface. The agents then communicate with each other using a network of inter-
connects based on the SiliconBackplane protocol. This latter includes patented
transfer mechanisms aiming at maximizing interconnect bandwidth utilization
and optimized for streaming multimedia applications [23]. Figure 2.6 shows a
schematic view of the SiliconBackplane system.

A few specific components can be identified in an agent architecture:

Initiators: Who implements the interface between the bus and the master
core (CPU, DSP, DMA...). The initiator receives requests from the Open
Core Protocol, then transmits the requests according to the SiliconBack-
plane standard, and finally processes the responses from the target.

Targets: Who implements the interface between the physical bus and the slave
device (memories, UARTs...). This module serves as the bridge between
the system and the Open Core Protocol.

Service Agent: Who is an enhanced initiator that provides additional capa-
bilities such as debug and test.

19

CHAPTER 2. STATE OF THE ART SOC COMMUNICATION

ARCHITECTURE

2.6.1 System Interconnect Bandwidth

One of the most interesting features of the SiliconBackplane network is the
possibility of allocating bandwidth based on a two-level arbitration policy. The
system designer can preallocate bandwidth to high priority initiators by means
of the concept of Time-Division Multiple Access (TDMA). An initiator agent
with a pre-assigned time slot has the rights over that slot. If the owner does
not need it, the slot is re-allocated in a round-robin fashion to one of the system
devices, and this represents the second level of the arbitration policy.

The TDMA approach provides fast access to variable-latency subsystems
and is a simple mechanism to guarantee QoS. The TDMA bandwidth alloca-
tion tables are stored in a configuration register at every initiator, and can be
dynamically over-written to fit the system needs. On the other hand, the fair
round-robin allocation scheme can be used to guarantee bandwidth availabil-
ity to initiators with less predictable access patterns, since some or many of
the TDMA slots may turn out to be left unallocated. Round-robin arbitration
policy is particularly suitable for best-effort traffic.

2.6.2 Configuration Resources

All the configurable IP cores implemented in the SiliconBackplane system can
be configured either at compile time or dynamically by means of specific con-
figuration registers. These configuration devices are accessible by the operating
system.

Configuration registers are individually set for each agent, depending upon
the services provided to the attached cores. The types of configuration registers
are:

• Unbuffered registers: hold configuration values for the agent or its subsys-
tem core.

• Buffered registers: hold configuration values that must be simultaneously
updated in all agents.

• Broadcast configuration registers: hold values that must remain identical
in multiple agents.

2.7 Other On-Chip Interconnects

2.7.1 Peripheral Interconnect Bus (PI-Bus)

The PI bus was developed by several european semiconductor companies (Ad-
vanced RISC Machines, Philips Semiconductors, SGS-THOMSON Microelec-
tronics, Siemens, TEMIC/MATRA MHS) within the framework of a european
project (OMI, Open Microprocessor Initiative framework1). After this, an ex-
tended backward-compatible PI-Bus protocol standard frequently used in many
hardware systems has been developed by Philips [5].

1The PI Bus has been incorporated as OMI Standard OMI 324.3D.

20

2.7. OTHER ON-CHIP INTERCONNECTS

The high bandwidth and low overhead of the PI-Bus provide a confortable
environment for connecting processor cores, memories, co-processors, I/O con-
trollers and other functional blocks in high performance chips, for time-critical
applications.

The PI-Bus functional modules are arranged in macrocells, and a wide range
of functions are provided. Macrocells with a PI-Bus interface can be easily
integrated into a chip layout even if they are designed by different manufacturers.

The potential bus agents require only a PI-Bus interface of low complexity.
Since there is no concrete implementation specified, PI- Bus can be adapted to
the individual requirements of the target chip design. For instance, the widths
of the address and data bus may be varied. The main features of this bus are:

• Processor independent implementation and design.

• Demultiplexed operation.

• Clock synchronous.

• Peak transfer rate of 200 Mbytes/s (50 MHz bus clock).

• Address and data bus scalable (up to 32 bits).

• 8, 16, 32, bit data access.

• Broad range of transfer types from single to multiple data transfers.

• Multi-master capability.

The PI-Bus does not provide cache coherency support, broadcasts, dynamic
bus sizing and unaligned data access. Finally, the University of Sussex has
developed a VHDL Toolkit to meet the needs of embedded system designers
using the PI-bus. Macrocell testing for PI-bus compliance is also possible using
the framework available in the ToolKit [8].

2.7.2 AVALON

Avalon is Altera’s parameterized interface bus used by the Nios embedded pro-
cessor. The Avalon switch fabric has a set of pre-defined signal types with which
a user can connect one or more IP blocks. It can be only implemented on Al-
tera devices using SOPCBuilder, a system development tool that automatically
generates the Avalon switch fabric logic.

The Avalon switch fabric enables simultaneous multi-master operation for
maximum system performance by using a technique called slave-side arbitration.
It determines which master gains access to a certain slave, in the event that
multiple masters attempt to access the same slave at the same time. Therefore,
simultaneous transactions for all bus masters are supported and arbitration for
peripherals or memory interfaces that are shared among masters is automatically
included.

The Avalon interconnect includes chip-select signals for all peripherals, even
user-defined peripherals, to simplify the design of the embedded system. Sep-
arate, dedicated address and data paths provide an easy interface to on-chip
user logic. User-defined peripherals are not required to decode data and ad-
dress bus cycles. Dynamic bus sizing allows developers to use low-cost, narrow

21

CHAPTER 2. STATE OF THE ART SOC COMMUNICATION

ARCHITECTURE

memory devices that do not match the native bus size of their CPU. The switch
fabric supports each type of transfer supported by the Avalon interface. Each
peripheral port into the switch is generated with reduced amount of logic to
meet the requirements of the peripheral, including wait-state logic, data width
matching, and passing wait signals. Read and write operations with latency can
be performed. Latent transfers are useful to masters wanting to issue multiple
sequential read or write requests to a slave, which may require multiple cycles
for the first transfer but fewer cycles for subsequent sequential transfers. This
can be beneficial for instruction-fetch operations and DMA transfers to or from
SDRAM. In these cases, the CPU or DMA master may pre-fetch (post) multi-
ple requests prior to completion of the first transfer and thereby reduce overall
access latency. Interestingly, the Avalon interface includes signals for streaming
data between master/slave pairs. These signals indicate the peripheral’s capac-
ity to provide or accept data. A master does not have to access status registers
in the slave peripheral to determine whether the slave can send or receive data.
Streaming transactions maximize throughput between master-slave pairs, while
avoiding data overflow or underflow on the slave peripherals. This is especially
useful for DMA transfers.

2.7.3 CoreFrame

The CoreFrame architecture has been developed by Palmchip Corp. and relies
on point-to-point signals and multiplexing instead of shared tri-state lines. It
aims at delivering high performance while simultaneously reducing design and
verification time. CoreFrame distinctive features are:

• 400 MB/s bandwidth at 100 MHz (bus speed is scalable to technology and
design requirements

• Unidirectional buses only

• Central, shared memory controller

• Single clock cycle data transfers

• Zero wait state register accesses

• Separate peripheral I/O and DMA buses

• Simple protocol for reduced gate count

• Low-capacitive loading for high-frequency operation

• hidden arbitration for DMA bus masters

• Application-specific memory map and peripherals

The most distinctive feature of CoreFrame is the separation of I/O and mem-
ory transfers onto different buses. The PalmBus provides for the I/O backplane
and allows the processor to configure and control peripheral blocks while the
MBus provides a DMA connection from peripherals to main memory, allowing
a direct data transfer without processor intervention.

Other on-chip interconnects are not described here for lack of space: IP-
Bus from IDT, IP Interface from Motorola, MARBLE asynchronous bus from
University of Manchester, Atlantic from Altera, ClearConnect from ClearSpeed
Techn., FISPbus from Mentor Graphics [19].

22

2.8. CONCLUSIONS

2.8 Conclusions

This chapter addresses the critical issue of on-chip communication for gigas-
cale MPSoCs. An overview of the most widely used on-chip communication
architectures is provided, and evolution guidelines aiming at overcoming scala-
bility limitations are sketched. Advances regard both communication protocol
and topology, although it is becoming clear that in the long term more ag-
gressive approaches will be required to sustain system performance, namely
packet-switched interconnection networks.

23

CHAPTER 2. STATE OF THE ART SOC COMMUNICATION

ARCHITECTURE

24

Bibliography

[1] ARM.
AMBA Specification v2.0, 1999.

[2] ARM.
AMBA Multi-layer AHB Overview, 2001.

[3] ARM.
AMBA AXI Protocol Specification, 2003.

[4] Synopsys CoCentric.
http://www.synopsys.com, 2004.

[5] Philip de Nier.
Property checking of PI-Bus modules.
In J.P.Veen, editor, Proc. ProRISC99 Workshop on Circuits, Systems and

Signal Processing, pages 343–354. STW, Technology Foundation, 1999.

[6] G. W. Doerre and D. E. Lackey.
The IBM ASIC/SoC methodology. a recipe for first-time success.
IBM Journal Research & Development, 46(6):649–660, November 2002.

[7] E.Bolotin, I.Cidon, R.Ginosar, and A.Kolodny.
QNoC: QoS architecture and design process for network on chip.
The Journal of Systems Architecture, Special Issue on Networks on Chip,

December 2003.

[8] ESPRIT.
PI-Bus Systems ToolKit.
http://www.cordis.lu/esprit/src/results/res area/omi/omi10.htm, 1996.

[9] K.Lee et al.
A 51mw 1.6 ghz on-chip network for low power heterogeneous SoC platform.
ISSCC Digest of Tech. Papers, pages 152–154, 2004.

[10] F.Poletti, D.Bertozzi, A.Bogliolo, and L.Benini.
Performance analysis of arbitration policies for SoC communication archi-

tectures.
Journal of Design Automation for Embedded Systems, Kluwer, (8):189–210,

June/September 2003.

[11] Richard Herveille.
Combining WISHBONE interface signals, Application Note, April 2001.

[12] Richard Herveille.
WISHBONE System-on-Chip (SoC) Interconnection Architecture for

Portable IP Cores. Specification, 2002.

25

BIBLIOGRAPHY

[13] IBM Microelectronics.
CoreConnect Bus Architecture Overview, 1999.

[14] IBM Microelectronics.
The CoreConnect Bus Architecture White Paper, 1999.

[15] J.Henkel, W.Wolf, and S.Chakradhar.
On-chip networks: A scalable, communication-centric embedded system

design paradigm.
Proc. of Int. Conf. on VLSI Design, pages 845–851, January 2004.

[16] L.Benini, D.Bertozzi, D.Bruni, N.Drago, F.Fummi, and M.Poncino.
SystemC cosimulation and emulation of multiprocessor SoC designs.
IEEE Computer, 36(4):53–59, April 2003.

[17] L.Benini and G.De Micheli.
Networks on chips: a new SoC paradigm.
IEEE Computer, 35(1):70–78, January 2002.

[18] M.Loghi, F.Angiolini, D.Bertozzi, L.Benini, and R.Zafalon.
Analyzing on-chip communication in a MPSoC environment.
Proceed. of IEEE Design Automation and Test in Europe Conference

(DATE04), pages 752–757, February 2004.

[19] Summary of SoC Interconnection Buses.
http://www.silicore.net/uCbusum.htm, 2004.

[20] P.Wodey, G.Camarroque, F.Barray, R.Hersemeule, and J.P. Cousin.
LOTOS code generation for model checking of STBus based SoC: the

STBus interconnection.
Proc. of ACM and IEEE Int. Conf. on Formal Methods and Models for

Co-Design, pages 204–213, June 2003.

[21] R.Ho, K.W. Mai, and M.A. Horowitz.
The future of wires.
Proceedings of the IEEE, 89(4):490–504, April 2001.

[22] E. Rijpkema, K. Goossens, and A. Radulescu.
Trade-offs in the design of a router with both guaranteed and best-effort

services for networks on chip.
Proc. of Design Automation and Test in Europe, pages 350–355, March

2003.

[23] Sonics Inc.
SiliconBackplane III MicroNetwork IP. Product Brief, 2002.

[24] Sonics Inc.
Sonics µNetworks. Technical Overview, 2002.

[25] Rudolf Usselmann.
OpenCores SoC Bus Review, 2001.

26

Chapter 3

Analysing the
communication in a
memory-centric industrial
MPSoC platforms

3.1 Introduction

Networked digital products such as set-top-boxes, high-density DVD players
or digital video recorders are increasingly relying on Multi-processor Systems-
on-Chip (MPSoCs). These platforms feature increasing levels of system inte-
gration and high-speed interfaces, thus posing stringent requirements on the
performance of the communication architecture.

Traditionally, shared communication resources have been deployed for SoC
design, and several arbitration strategies have been investigated for their impact
on bus performance. However, this solution scales poorly, since even keeping
the bus busy throughout the entire application lifetime does not suffice to meet
communication requirements. Therefore, bandwidth across the system has been
increased by means of multi-layer communication infrastructures, where clusters
of masters and slaves are connected via bridges. This way, a wide variety of bus
structures and multi-master systems can be constructed, thus ensuring flexibility
to system designers and relieving the scalability limitations of state-of-the-art
system interconnects.

At the same time, the complexity of interconnect design increases a lot. In
fact, the specific layers building up the overall system interconnect exhibit ad-
vanced features such as pipelining, support for split transactions and for multiple
outstanding transactions. Moreover, since layers featuring different communica-
tion protocols might need to be connected in the same system, the bridge might
have to perform a semantic translation of the transactions of one protocol into
the transactions of the other protocol. Besides protocol matching, bridges are in
charge of additional tasks in heterogeneous MPSoC platforms, such as frequency
adaptation and datawidth conversion.

As a consequence, bridges are becoming complex Intellectual Property

27

CHAPTER 3. ANALYSING THE COMMUNICATION IN A

MEMORY-CENTRIC INDUSTRIAL MPSOC PLATFORMS

blocks, highly optimized for a specific communication protocol.
Even deploying highly optimized bridges, performance of the communica-

tion architecture of an MPSoC is not guaranteed, but is tightly related to the
interaction with the memory and I/O subsystems. The memory architecture
determines the prevailing traffic pattern which has to be accommodated by the
interconnect fabric. For instance, in presence of many on-chip memory cores,
system performance depends on the bus ability to enable concurrent memory
accesses without blocking behaviour. However, many state-of-the-art MPSoC
platforms for consumer electronics are memory-centric, in that most of the mem-
ory is off-chip and the on-chip memory controller becomes the performance bot-
tleneck of the platform. In this case, the interaction between specific features
of the communication protocols and the many-to-one traffic pattern has not
been analysed yet, and is certainly a function of architectural parameters such
as memory access latency or amount of buffering implemented in the system.
Moreover, the optimizations performed by advanced memory interfaces (such as
those implemented in SDRAM memory controllers) might make this interaction
unpredictable.

Given the fine-grain nature of the mechanisms that determine macroscopic
MPSoC performance, high-level modelling and simulation tools are likely to fail
to capture the needed level of detail which makes global interconnect perfor-
mance analysis trustworthy. This chapter is centered on cycle-accurate analysis
of the communication, memory and I/O architectures of a state-of-the-art MP-
SoC platform for consumer electronics. We will analyze a multi-abstraction and
accurate virtual platform allowing an in-depth investigation of the behaviour of
system components, captured in isolation and when inter-operating with each
other in a complete MPSoC platform of industrial relevance.

Moreover, modelling extensions to the virtual platform allowed to test ar-
chitecture variants concerning both the communication infrastructure (use of
different communication protocols and topologies), the memory and I/O ar-
chitectures (on-chip shared memory versus off-chip SDRAM memory, memory
controllers with increasing complexity). As a consequence, we were able to shed
light on interaction effects between the three main MPSoC subsystems and come
up with design guidelines.

The chapter is structured as follows. Section 3.2 illustrates the framework.
Our modelling is described in Section 3.3. Experimental results are reported in
Sections 3.4 and 3.5. Discussion of results and conclusion are in Section 3.6 and
3.7

3.2 MPSIM, a SystemC Platform Simulation

The MPSIM [5, 4] environment is designed to investigate the system-level ar-
chitecture of MPSoC platforms. To be able to fully assess system performance,
a cycle-accurate, signal-accurate modeling infrastructure is put into place.

MPSIM is a plug-and-play platform based upon the SystemC [2] simulation
engine, where multiple IP cores and interconnects can be freely mixed and
composed. At its core, MPARM is a collection of component models, comprising
processors, interconnects, memories and dedicated devices like DMA engines.
The user can deploy different system configuration parameters by means of
command line switches, which allows for easy scripting of sets of simulation

28

3.2. MPSIM, A SYSTEMC PLATFORM SIMULATION

runs. A thorough set of statistics, traces and waveforms can be collected to
analyze performance bottlenecks and to debug functional issues. To take into
account other crucial design variables, power models for many of the MPARM
components are supplied. Frequency and voltage scaling can be realized at
runtime thanks to dedicated programmable registers.

MPARM features a choice of several IP cores to be used as system masters.
Some of these are taken from the open source or academic domain, and while
spanning over a range of architectures, they typically model pre-existing indus-
trial general purpose processors with little to no possibility of modifying the
supported instruction set and architecture.

MPARM provides extensive facilities to study the performance of alternative
memory hierarchies. Three layers of memory devices are defined: (1) on-tile,
strongly coupled to the processor, e.g. caches and SCRATCH - PAD MEMO-
RIES (SPMs); (2) on-chip, attached to the system interconnect; (3) off-chip,
driven by a DRAM memory controller. In addition, to analyze inter-processor
communication behaviour, memories can be defined as private or shared, and
a cache snooping mechanism is provided. The latency of each memory can be
freely defined.

In terms of interconnect, MPARM provides a wide choice, spanning across
multiple topologies (shared buses, bridged configurations, partial or full cross-
bars, NoCs) and both industry-level fabrics (AMBA AHB and AXI [14], STBus
[26]) and academic research architectures such as the χpipes NoC described in
this dissertation.

On top of the hardware platform, MPARM provides a port of the uClinux
[1] and RTEMS [6] operating systems. The choice of RTEMS is motivated by
the fact that RTEMS is a lightweight OS for embedded systems, but it offers at
the same time good support for multiprocessing, and provides native calls for
communication and synchronization in such multiprocessor environments.

Application code, either OS-based or not, can be easily compiled with stan-
dard GNU cross-compilers. Scripts and makefiles fully automate the process
of building for a multiprocessor platform. Simple function calls, provided by
support libraries of the simulator, allow flexible performance profiling: statis-
tics can be collected during OS boot, application execution,or critical sections
of algorithms.

MPARM also features support libraries to help fast development and de-
bugging of new applications and benchmarks. This is key for establishing a
solid and flexible simulation environment. MPARM includes several bench-
marks from domains such as telecommunications and multimedia, and libraries
for synchronization and message passing.

Debug functions include a built-in debugger, which allows to set breakpoints,
execute code step-by-step and inspect memory content; it is additionally capa-
ble of dumping the full internal status of the execution cores. When testing
applications written without underlying OS support (i.e., no native I/O calls
are available), messages and status information can still be easily provided to
the user by means of pseudo-instructions.

Multiple communication and synchronization paradigms are possible in
MPARM, including plain data sharing on a shared memory bank, message pass-
ing among SPM resources of each processor, interrupts and semaphore polling.

Simulation accuracy and flexibility have to be traded off with simula tion
speed. However, MPARM, despite being signal-accurate and cycle-accurate, is

29

CHAPTER 3. ANALYSING THE COMMUNICATION IN A

MEMORY-CENTRIC INDUSTRIAL MPSOC PLATFORMS

LMI

Memory
Controller

VLIW
DSP

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG
IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

N1

N3

Type 2

Type3

128 Bit
T2

166Mhz

64 Bit

T3

166MHz

64 Bit

T3

250MHz

64 Bit

T3

166MHz

STBus Node Bridges

N2 N4

N5

N6

N7

N8

Figure 3.1: STBus reference MPSoC platform.

fast and usable. Simulation performance is in the range of 200 kCPUcycles/s,
which is enough to simulate applications of reasonable complexity in few min-
utes.

In the context of this chapter, the MPARM features are key to intercon-
nect performance evaluation. MPARM stimulates the communication subsys-
tem with functional traffic generated by real applications running on top of real
processors.

This opens up the possibility for communication infrastructure exploration
under real workloads and for the investigation of its impact on system perfor-
mance at the highest level of accuracy.

3.3 MPSoC platform modelling

State-of-the-art communication architectures are rapidly evolving along two
main directions. On one hand, new communication protocols aim at a full
exploitation of the physical bandwidth made available by the interconnect (e.g.,
masking slave access latencies). On the other hand, parallel topologies based on
partial or full crossbars are progressively replacing simple shared busses when
parallel communication flows need to be accommodated.

Industrial MPSoC platforms often implement multi-layer communication ar-
chitectures, built up by composing basic interconnect units through bridges. Our
modelling effort targets such complex multi-layer systems. In particular, we fo-
cus on an internally-developed MPSoC platform for consumer applications. Its
mission-critical subset is illustrated in Fig.3.1.

30

3.3. MPSOC PLATFORM MODELLING

The platform is made up of a number of IP Cores, grouped in several func-
tional clusters, each one implementing functionalities like video stream decrypt-
ing and decoding, image resizing or more generic DMA tasks, and therefore
features different combinations of data width, clock frequency and STBus pro-
tocol type. Proprietary STBus converters and adapters (named GenConv) are
in charge of bridging the heterogeneous clusters, and make use of buffering re-
sources to store bus requests, responses and outstanding transactions.

Communication requirements are also different across clusters. Some of them
impose tight requirements on both system latency and bandwith. Some are
more tolerant to latency but need garanteed bandwidth over a longer time win-
dow. Finally, the CPU is known to be particularly sensitive to latency in some
conditions.

The system uses the traditional unified memory architecture with a single
off-chip DDR SDRAM, which then becomes the target for the bulk of the bus
transactions. This architectural template is frequently used to cut down on the
cost for technology integration of embedded memories and when data footprint
forces to store processing data in a large off-chip memory. In such an archi-
tecture, protocol intrinsic features can help releaving the bus utilization and so
reduce congestions and contention points.

Message-based arbitration was set in STBus nodes, which poses a trade-off
in our analysis: LMI-friendly traffic can be generated at the cost of a rigid
fixed-priority arbitration scheme supported in message-enabled nodes. Mes-
sages allow several packets to be routed through a node without re-arbitration,
thus avoiding the interleaving of SDRAM accesses addressing different memory
banks. Message-based arbitration and store-and-forward management of write
transactions are set in the GenConv components. Preliminary system simula-
tions also allowed to size request, response and outstanding transaction FIFOs
in the GenConv.

The ST220 VLIW DSP core was used in place of the general purpose pro-
cessor. It is a 32 bit core running at 400 MHz, with 32kB instruction and
32kB data caches, which fetches data and instructions from the off-chip DDR
SDRAM. For this purpose, the core is connected to an upsize (from 32 to 64
bit) and frequency (from 400 to 250 MHz) GenConv converter. In our simu-
lation runs, the ST220 processor core will run a synthetic benchmark, namely
matrix addition with variable size matrices. This benchmark was tuned to gen-
erate a significant amount of cache misses, whose performance was monitored
throughout the entire simulation lifetime.

Finally, functional traffic generated by the most critical audio and video IP
cores is reproduced by means of configurable traffic generators (IPTGs), which
were programmed by means of STMicroelectronics-provided configuration files.

The whole platform was modelled and simulated with clock-cycle accuracy
and a SystemC-based virtual platform described in Section 3.2 was used as the
backbone environment [24]. The modelling effort resulted in a platform model
with multiple abstraction levels. Finally, the modelling effort was completed
by the integration of each sub-component into the complete platform and by
setting up a statistics collection system.

A description of the main system component models follows.

31

CHAPTER 3. ANALYSING THE COMMUNICATION IN A

MEMORY-CENTRIC INDUSTRIAL MPSOC PLATFORMS

3.3.1 STBus platform component models

The STBus Interconnect is the proprietary communication on-chip system
developed at STMicroelectronics[26]. The components interconnected by an
STBus node are either initiators (which initiate transactions on the bus by
sending requests), or targets (which respond to requests).

STBus leverages two physical channels, one for initiator requests and one for
target responses, and supports split transactions. While a system initiator is
receiving data from an STBus target, another one can issue a second request to
a different target. As soon as the response channel frees up, the second request
can be immediately serviced, thus hiding target wait states behind those of the
first transfer. The amount of saved wait states depends on the depth of the
prefetch FIFO buffers at the target side.

Additionally, the split channel feature allows for multiple oustanding re-
quests from the masters, with support for out-of-order delivery.

Single cycle arbitration in STBus paves the way for low latency transactions.
First, a request/grant step between the initiator and the node takes place, cor-
responding to an atomic rendez-vous operation of the system. Then, the request
is transferred from the node to the target, a response-request/grant step is car-
ried out between the target and the node. Finally, the response is transferred
from the node to the initiator.

STBus implements three different protocols featuring increasing complexity.
Type 1 is the low cost implementation for low/medium performance. Type 2
introduces compound operations, source labeling, priority labelling and posted
writes. Split and pipelined transactions are fully supported. Its simple design
allows a synchronous handshake protocol and provides a limited transaction set.
Type 2 (the basic protocol) extends the limited operation set of the peripheral
interface to compound operations, source labeling, priority labelling and posted
writes. Moreover, this implementation supports split and pipelined accesses.
Finally, Type 3 provides the additional system efficiency associated with shaped
request/response packets and the ability to support out-of-order transactions.

The Generic Converter is an STBus configurable block performing clock
domain crossing, data with and STBus protocol type conversion. These func-
tions can be performed standalone or in any combination within the same in-
stance, according to the given configuration. Combining conversions has the
advantage of minimizing the latency and the area with respect to having them
managed separately.

The Generic converter also supports out-of-order response traffic and is op-
tionally able to sort responses according to the initial request order (re-ordering).
This capability is for example by default applied whenever T2/T3 STbus proto-
col conversion is required, as STBus T2 does not allow out-of-order responses.

IPTG is a SystemC block developed at STMicroelectronics aimed at repro-
ducing the communication behaviour of a generic IP. In its simplest configu-
ration, IPTG can generate bus traffic which obeys some statistical properties,
i.e in terms of burst length, transaction types, addressing schemes, or it can
also issue a transaction according to a specified sequence. Transactions can also
be grouped to form a so-called ”behaviour” (see Fig.3.2) and behaviours can
then be executed multiple times or interleaved with one another in specific fash-
ions. However, IPTG is best used to emulate the behaviour of complex real-life
IPs: such IPs can be often seen as having a number of internal sub-process

32

3.3. MPSOC PLATFORM MODELLING

Internal synchronization

U
se

r−
de

fin
ed

S
yn

ch
ro

ni
za

tio
n

IPTG Configuration File

S
yn

ch
ro

ni
za

tio
n

B
lo

ck

IPTG

Behaviour 1

Behaviour 2

Behaviour 3 Control Block

Communication

Bus interface

S
T

B
us

External synchronization

Figure 3.2: Traffic generator architecture.

(or agents), each one with its own characteristics (buffering space, transaction
pipelining capability) but in some way dependent on each other (e.g., when
operating in pipeline). With IPTG, each agent traffic is handled automatically
according to its characteristics, and inter-agent synchronization points can be set
to emulate dependencies between them. Once instantiated in a platform, IPTGs
will generate bus transactions at different abstraction levels (transaction-level,
bus cycle-accurate) according to what is specified in a per-IP configuration file,
where all the required options and parameters are set. IPTG turns out to be
a quite powerful and handy tool to the system integrator, as it allows to try
out the SoC communication infrastructure in real-life conditions such as heavy-
loaded transients which are not likely to be reproduced using random packet
injection.

We developed a memory controller SystemC model and validated its func-
tional correctness and timings with RTL signal waveforms on a cycle-by-cycle
basis. The controller follows the internal LMI specification of SDRAM memory
interface. The model includes a bus dependent and a bus independent part,
thus easily allowing porting to several bus infrastructures. In this analysis, an
STBus target interface is implemented. Input and output FIFOs allow storage
of incoming packets or injection of outgoing packets into the bus. FIFO size
and bus data width are tunable parameters.

In the bus independent part, bus-specific data (e.g., transaction identifier)
are stripped off, while bus-agnostic data carrying memory access information
(e.g., address, size, read/write flag, byte enable, write data) are kept and fed
to an optimization engine. This latter performs memory access optimizations
such as opcode merging and variable-depth lookahead, and generates the corre-
sponding sequence of SDRAM commands (e.g., precharge, autorefresh, active,
read, write) while meeting SDRAM timing specifications (e.g, TRAS, TCAS),
which are model parameters. Data size and burst size are tunable as well. The
controller can drive both SDR SDRAM and DDR SDRAM memory devices.

Finally, latencies incurred for memory controller operation were back-
annotated in our model from real-life ST memory controllers following LMI
specification. Similarly, our model was validated by comparing SystemC signal
traces with those provided by ST, and we found an exact matching for all tested
memory access patterns.

33

CHAPTER 3. ANALYSING THE COMMUNICATION IN A

MEMORY-CENTRIC INDUSTRIAL MPSOC PLATFORMS

3.3.2 Architectural variants

We extended the modelling capability of the virtual platform described so far
in order to explore architectural variants and assess the interaction between the
communication architecture and the other MPSoC subsystems.

On one hand, we ported new communication protocols (AMBA AHB and
AMBA AXI) and made them inter-operate with the traffic generators and the
off-chip memory controller, so to keep the same platform template. Since in the
real system both audio and video IP cores and the memory controller natively
come with STBus interface, we developed bridges for protocol conversion pur-
poses, and accounted for the corresponding latencies. On the other hand, we
replaced the off-chip SDRAM memory with an on-chip shared memory, so to
test the system with a memory core featuring a cheaper access cost. Finally,
we developed several platform instances (which we call the collapsed variants)
where the most heavily congested cluster (node N5 in Fig.3.1) is removed and its
communication actors attached to the central N8 cluster. This way, we intend
to compare a centralized versus a distributed solution for the communication
architecture, thus spanning the bus access versus multi-hop latency trade-off.

The design of these architectural variants required the development of new
component models, which are hereafter briefly described.

The AMBA AHB [14] system backbone consists of a shared communi-
cation channel connecting multiple system cores. The channel is composed of
two split and unidirectional data links (one for reads, one for writes), but only
one of them can be active at any time, thus preventing the multiplexing of re-
quests and responses on the interconnect signals. Transaction pipelining (i.e.
split ownership of data and address lines) is supported to provide for higher
throughput but not as a means of allowing multiple oustanding transactions.
In practice, each transaction consists of an address and a data phase. While
the data phase of the i−th transfer is in progress, the address for the i + 1−th
transfer can be anticipated on the address lines. However, address sampling
is only allowed when the data phase completes successfully, and if this latter
takes a few cycles to complete, the configuration of the address lines is frozen
and their sampling postponed as well. As a consequence, the AHB-compliant
transaction pipelining cannot be considered as a means of allowing multiple ou-
standing transactions. Bursts are supported by AHB masters and arbiter as a
way to amortize arbitration time, and the non-posted paradigm for write trans-
actions is implicitely assumed. The SystemC model of the AHB interconnect we
developed does not implement split transactions. The AHB protocol can also
be used on top of parallel topologies. The Multi-Layer AHB is an interconnect
specification that enables parallel access paths between multiple masters and
slaves by means of an interconnection matrix, and gives the benefit of increased
overall bandwidth and flexible system architecture. Single-master AHB layers at
the input of the matrix do not even need to support arbitration nor split/retry
transactions (AHB-Lite protocol).

AMBA AXI [14] builds upon the concept of point-to-point connection.
Therefore, it can be used to connect (i) a communication initiator to a bus, (ii)
a communication target to a bus, or (iii) directly an initiator to a target. In
practice, the connection between any two devices translates into the instantia-
tion of a master interface and of the symmetrical slave interface. Five different
logical monodirectional channels are provided in AXI interfaces, and activity on

34

3.3. MPSOC PLATFORM MODELLING

Layer B

ASYNCH. FIFO

ASYNCH. FIFO

SIDE

TARGET

SIDE

INITIATOR

Target side clock Initiator side clock

Layer A

Figure 3.3: Generic scheme for hybrid bridges.

them is largely asynchronous and independent (2 address channels, a read data
and a write data channel, and a channel for write responses). This allows to
support multiple outstanding transactions (with out-of-order or in-order deliv-
ery selectable by means of transaction IDs). Other advanced features include
burst transactions with only the first address issued and the support for register
insertion for timing closure transparent to the protocol. The interface definition
enables a variety of different interconnect implementations, which are not ad-
dressed by the AXI specification. In particular, single shared address and data
lanes could be used, or alternatively multiple data lanes. This stems from the
consideration that in most systems, the address channel bandwidth requirement
is significantly less tha the data channel bandwidth requirement. AMBA AXI
modelling was based upon the SystemC libraries provided within the Synop-
sys CoCentric/DesignWare suites. Such systems can achieve a good balance
between system performance and interconnect complexity by using a shared ad-
dress bus with multiple data busses to enable parallel data transfers. To the
limit, designers could opt for a multi-layer approach, with multiple address and
data busses [31].

We modelled in SystemC a number of bridges: AHB-AHB, AXI-AXI, AHB-
STBus, AXI-STBus, AHB-AXI, STBus-AHB, STBus-AXI. Their generic archi-
tecture is reported in Fig.3.3, where we identify a target side, an initiator side
and asynchronous FIFOs providing support for different clock domains. The
developed bridges have some common features: (i) they handle write transac-
tions in a store-and-forward fashion, (ii) they have a blocking target side in
presence of read transactions and (iii) they have tunable latency. Frequency,
datawidth and protocol conversion latencies of the above bridges were set to
be equal to those of the GenConv for STBus. Although introducing the same
latencies, our bridges were not designed to be competitive with the highly opti-
mized STBus-STBus ones. They rather implement basic bridging functionality
and do not exploit some advanced features of the communication protocols. For
instance, they are always blocking on read transactions. This does not affect
our results, since our goal is not a crossbenchmarking of communication pro-
tocols, but rather an analysis of how several communication protocol features,
interconnect fabric topologies and memory architecture configurations combine
together to determine global performance metrics. From this viewpoint, deploy-
ing lightweight bridges even for advanced communication protocols saves power
and area (a typical GenConv bridge performing frequency conversion between
T3 nodes at 64 bits can be as large as an STBus node with 5x3 crossbar topol-
ogy at 64 bits), but penalizes across-layer communications. Therefore, it will

35

CHAPTER 3. ANALYSING THE COMMUNICATION IN A

MEMORY-CENTRIC INDUSTRIAL MPSOC PLATFORMS

be our interest to find out how sensitive system performance is with respect to
bridge functionality.

3.4 Interaction between communication and

memory sub-systems

Since system performance in a multi-layer architecture results from the inter-
action of traffic patterns at many congestion points, we first analyze the single
layer scenario, and get indications that pave the way for a better understanding
of the multi-layer scenario.

3.4.1 Single-layer architecture

Many-to-many traffic pattern

The work in [27] analyzed single-layer shared busses with many slave devices
attached, and proved the effectiveness of STBus and AXI in handling parallel
communication flows. While memory wait states translate into idle cycles for
AMBA AHB, STBus and AXI are able to mask them. STBus leverages two
physical channels, one for request packets and one for response packets. While
one response phase is in progress, one or more new requests can be propagated
across the request path, so that another slave device can be accessed in paral-
lel. Its access latency is then masked by the response phase of the previously
addressed slave. Instead, AXI can arbitrate its internal data lanes on a word-
by-word basis, therefore the access latency of one slave device is masked by the
data transfer of another slave device.

AHB is an effective solution for bus utilizations under 40%, where its low
cost implementation still guarantees competitive performance. More advanced
busses, such as STBus, are needed to deal with bus utilizations ranging from
40% to 80%. STBus is able to initiate new transactions by addressing one/more
slave devices while the previous one is performing its response phase, thus hiding
the latency of this latter. Finally, AXI can interleave the beats of different burst
transactions on its internal data lanes (fine-granularity arbitration mechanism)
and can leverage 5 independent and almost asynchronous physical channels.
This makes AXI too complex to deal with lightweight traffic conditions, but
very effective in presence of bus congestion above 80%.

These results adding new awareness of the fact that the multiple physical
resources employed by STBus and AXI, together with their advanced arbitration
mechanisms, are at the core of their ability to handle parallel communication
flows.

Many-to-one traffic pattern

Here we still focus on single-layer shared busses, but with a single slave device,
hence accommodating a many-to-one traffic pattern. This reflects the architec-
ture of the clusters in Fig.3.1. In this experiment, all IPTGs generate bursty
read accesses to the shared memory (an on-chip core with 1 wait state), however
we proved the independence of the results from the mix of bus transactions.

36

3.4. INTERACTION BETWEEN COMMUNICATION AND MEMORY

SUB-SYSTEMS

In this memory-centric scenario, the maximum bus efficiency is posed by
the memory controller, since there are no opportunities to parallelize access
patterns to different memory devices. With our simple controller, the response
data channel in each communication architecture (carrying read data) is forced
to work with 50% efficiency: 1 data transfer followed by 1 idle cycle (corre-
sponding to 1 memory wait state). What can degrade such efficiency is the
handover overhead incurred by the communication protocols. Let us consider
the handover between two consecutive burst read transactions. While the last
read data word of the first burst is injected into the bus by the slave device,
the new address associated with the next burst should be concurrently driven
by the next master actor on the bus. This way, the new memory access can be
readily initiated on the next clock cycle.

AMBA AHB can hide bus handover overhead by changing the HGRANTx
signals when the penultimate address in a burst has been sampled. The new
master can then readily drive the bus address lines without any handover over-
head. Interestingly, the many-to-one traffic pattern is the best operating condi-
tion for AMBA AHB. STBus achieves the same performance but with a different
mechanism. Transactions are split in a request phase and a response phase, dur-
ing which a request (response) packet is sent through the bus. Each packet is
then mapped onto the physical interface as a series of smaller units called cells.
Each cell is transferred with a request/grant handshake, and the final cell in the
packet is marked. The target asserts a grant signal to the next initiator in the
same cycle it provides the last response data unit to the previous initiator. Since
this grant signal is propagated asynchronously from the target to the waiting
initiator through the STBus node in the same clock cycle, the next transfer
can start immediately without handover overhead and the response channel can
be driven with 50% efficiency. Finally, AXI is able to sustain the required ef-
ficiency by means of the burst overlapping mechanism. A master can drive
another burst address after the slave accepts the address of the previous burst
transaction. This enables the slave to begin processing data for the second burst
in parallel with the completion of the first burst or, at least, to have the control
information for the next transfer readily available for sampling. Therefore, even
the internal read data lane of an AXI bus can be operated with 50% efficiency.

Given the above considerations, our simulations did not show significant dif-
ferences between performance of the communication architectures in the single-
layer, single-slave scenario, hence results are not reported here. In this context,
busses should be able to sustain the transfer efficiency posed by the memory
controller. AMBA AHB is surprisingly as efficient as the other protocols when
a 50% maximum efficiency is required. More complex memory controllers may
implement buffering and perform optimizations on queued transactions, hence
at least split transaction support would be required to the communication pro-
tocols. These findings apply well to set-top-box platforms, where shared mem-
ory/external devices represent bottleneck vertices to which most of the commu-
nication takes place.

3.4.2 Multi-layer architecture

Let us now extend our analysis to the complete MPSoC platform described in
section 3.3. IPTGs reproduce traffic patterns of real-life IP cores.

As regards the memory architecture, we still consider a simple memory con-

37

CHAPTER 3. ANALYSING THE COMMUNICATION IN A

MEMORY-CENTRIC INDUSTRIAL MPSOC PLATFORMS

0,5

0,7

0,9

1,1

1,3

1,5

Collapsed AXI platform

Collapsed STBus platform

Full STBus platform

Full AHB platform

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t
im

e

Figure 3.4: Performance of MPSoC platform instances.

troller driving an on-chip shared memory with 1 wait state and postpone the
analysis with LMI memory controller.

The first two bars in Fig.3.4 compare the normalized execution time of the
collapsed platform instances, since this makes the role of the bridges and initia-
tor interface complexity negligible. AXI and STBus collapsed variants exhibit
almost the same performance, thus confirming the findings of subsection 3.4.1.
In fact, the collapsed communication architectures resemble the single-layer
single-slave scenario, where all interconnects were showed to perform almost
the same.

The third bar in Fig.3.4 allows to compare the single-layer STBus with the
full (multi-layer) STBus platform. Again, the two solutions show negligible
differences in their performance metrics. The multi-layer approach introduces
distributed buffering and relies on multiple outstanding transaction support
of its master bus interfaces. The longer transaction latency associated with
crossing the master-to-slave path in the multi-layer architecture is compensated
by the initiators’ capability to initiate new transactions before the previous
ones complete. The resulting performance is equivalent to that of a single-layer
architecture, where the multiple oustanding transaction capability does not help
much since the target interface has a single-slot buffering here. Therefore, each
transaction is blocking, which compensates the benefits of a shorter master-to-
slave path.

The performance ratio between collapsed and distributed interconnect so-
lutions however changes if the memory device gets progressively slower in re-
sponding to access requests. Fig.3.5 clearly shows the increasing advantage of
distributed solutions as the memory latency increases. Please note that the use
of AXI and STBus is interchangeable here, what really matters is the archi-
tecture topology. A fast memory penalizes communication architectures with
large crossing latencies. In contrast, a slow memory makes distributed solutions
preferrable, since the distributed buffering allows multiple outstanding trans-
actions capable bus interfaces to keep pushing transactions into the bus. The
master-to-slave multi-hop path gets therefore filled, and the system is able to
deliver high throughput.

However, collapsed solutions are not always feasible. First, physical limita-

38

3.4. INTERACTION BETWEEN COMMUNICATION AND MEMORY

SUB-SYSTEMS

0

0,5

1

1,5

2

2,5

3

1 5 10

Collapsed AXI

Distributed STBus

Shared memory initial access latency

N
o

rm
a

l iz
e
d

e
x
e

c
u
t i
o
n

t i
m

e

Figure 3.5: Performance of distributed vs centralized communication architec-
tures as a function of memory speed.

tions as well as layout and routability constraints prevent from connecting tens
or hundreds of actors on the same interconnection layer. Moreover, communi-
cation actors with similar interfaces (e.g., datawidth, protocol type) may have
to be grouped in the same cluster, thus cutting down on the number of required
adapters. Finally, clusters of homogeneous cores favour performance closure. If
we restrict our analysis only to distributed architectures, we can easily realize
that bridges become a key component for system performance. In fact, from
Fig.3.4 we can compare performance of multi-layer STBus and AHB architec-
tures. Please note that this is the best operating condition for AHB, since the
memory device responds with just 1 clock cycle delay. We can observe that
AHB solution is ineffective, due to the fact that AHB-AHB bridges are blocking
on each transaction. The source node of the bridges are non-split AHB layers,
and are therefore blocked until the transaction in progress is completed.

The blocking behaviour of the bridge may depend either on intrinsic limita-
tions of the protocol semantics or on low-cost implementations of the bridges.
For instance, we realized lightweight AXI-AXI bridges as illustrated in Fig.3.3
with blocking target side on read transactions. In fact, while write transactions
can be easily managed by means of a store-and-forward policy, implementing
non-blocking read transactions has a heavier impact on bridge complexity (con-
trol information must be stored and reassociated with response data, read re-
quests might be serviced in a different order than they were received, etc.).
Because of this lightweight bridge design, we found a performance for the dis-
tributed AXI platform almost equivalent to the full AHB platform. Therefore,
advanced features of AXI, which could potentially reach the same performance
level of STBus, are vanished by poor bridge functionality. For this reason, bridge
engineering is becoming increasingly complex as advanced features are intro-
duced in communication protocols, and they can be viewed as true IP blocks.
In our case, the availability of proprietary STBus bridges made performance of
STBus distributed platforms hardly achievable by the other distributed schemes.

The final scenario which is left to investigate is the multi-layer architecture
with LMI memory controller and off-chip DDR SDRAM memory in place of the

39

CHAPTER 3. ANALYSING THE COMMUNICATION IN A

MEMORY-CENTRIC INDUSTRIAL MPSOC PLATFORMS

0

0,5

1

1,5

2

2,5

3

Collapsed AXI

Collapsed STBus

Full STBus

Full AHB

N
o r

m
a l

iz
ed

ex
e c

ut
io

n
tim

e

Figure 3.6: Performance of platform instances with LMI memory controller.

on-chip shared memory. The main differences lie in the higher response latency
of the memory sub-system (11 cycles to get the first read data word since the
request was sampled), in the multi-slot FIFO implemented in the memory bus
interface and in the optimizations performed on queued transactions (opcode
merging, lookahead) by the memory controller. Since the LMI controller na-
tively exhibits an STBus bus interface, a bridge is required to connect it to
other interconnect fabrics. This bridge must be able to implement split trans-
actions, i.e. not to block the bus when a new transaction is sampled and until
the associated memory access is completed. Otherwise the input FIFO of the
memory controller would never contain more than one pending transaction, and
no optimizations could be performed. Fig.3.6 illustrates execution time of var-
ious platform instances. Since the memory response latency is high, we expect
distributed platforms to outperform collapsed ones. However, collapsed AXI is
much worst than collapsed STBus, since (i) this latter does not require a bridge,
(ii) the multiple oustanding transaction capability of STBus initiators can be
fully exploited to fill in the FIFO of the memory bus interface and (iii) thus
memory controller optimizations can be exploited. In contrast, collapsed AXI
was using a simple protocol converter unable to perform split transactions. For
these reasons, collapsed STBus can approach the performance of distributed
STBus.

If we restrict our analysis to distributed solutions, we notice that the perfor-
mance gap between STBus and AHB has increased a lot with respect to Fig.3.4,
due to the higher latency of the memory sub-system, which makes the penalty
associated with non-split blocking bridges even more severe.

3.5 Fine-grain platform performance analysis

The memory controller drains the bulk of all bus transactions in the platform
of Fig.3.1. Therefore, properly monitoring the behaviour of the bus-memory
controller interface can help system designers identify where bottlenecks are.
For instance, should low bandwidth communication be monitored at the I/O

40

3.6. SUMMARY

Full STBus Platform - LMI statistics

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Phase 1 Phase 2

FIFO Full

req0/grant1

FIFO Empty

Figure 3.7: LMI statistics for the full STBus platform.

interface, this might be due to the actual inefficiency of the memory controller or
to the poor performance of the system interconnect. Our modelling environment
enables this kind of analysis at a fine granularity.

As an example, we report in Fig.3.7 the statistics taken at the bus interface
of the LMI memory controller in our full STBus-based MPSoC platform. Two
working regimes are illustrated out of the MPSoC application lifetime. During
the first execution phase, the FIFO of the bus interface is full for 47% of the time,
while it is available to store new transactions for the remaining 53%, partitioned
as follows: for 29% of the time there are no incoming requests (request signal is
0 while grant signal is 1), and for remaining 24% the bus interface is storing new
memory access requests. The FIFO is empty only for a marginal time fraction.
We conclude that this execution phase exhibits intensive memory traffic which
the interconnect is able to handle pretty well.

During the second phase, the time percentage during which the FIFO is
full remains unaltered, while the FIFO is empty for a longer time. Therefore,
the new traffic pattern has a lower intensity than the previous one on average,
but is it more bursty. We repeated the same test for a full AHB platform,
and found that the FIFO is never full (since our AHB implementation does not
support split transactions) and that for 98% of the time there are no incoming
requests. This clearly indicates that the system interconnect is the performance
bottleneck, and not the memory controller.

3.6 Summary

We now turn our analysis findings into guidelines for designers of state-of-the-art
industrial MPSoCs:

1. For single-layer systems, a significant performance differentiation between
different communication protocols can be observed only when they have
to deal with a many-to-many traffic pattern. In this context, advanced
interconnets are able to hide slave response latency by processing parallel
communication flows. This is achieved by means of a fine granularity of
arbiter decisions (e.g., rearbitration of data links on a cycle-by-cycle ba-

41

CHAPTER 3. ANALYSING THE COMMUNICATION IN A

MEMORY-CENTRIC INDUSTRIAL MPSOC PLATFORMS

sis) and of multiple physical resources (multiple communication channels,
buffering in the bus and/or in the bus interfaces).

2. In single-layer systems with a centralized slave, the performance of this
latter and of its control logic bounds the maximum performance that
communication protocols can achieve. This upper bound depends on the
slave response latency, on the amount of buffering implemented at its
bus interface and on the optimizations which might be performed by its
controller. When the required bus efficiency is low (e.g., 50%), simple
interconnect fabrics may provide the same performance of advanced and
more complex communication infrastructures.

3. In the absence of technology constraints, a distributed multi-layer sys-
tem interconnect results in significant performance speed-ups with respect
to centralized ones only if (i) initiator bus interfaces support multiple
outstanding transactions (ii) the target side of bridges is able to handle
split/non-blocking transactions (iii) the response latency of target devices
is long enough with respect to the data transport latency across a multi-
hop interconnect.

4. As long as the features of the previous point are supported by a distributed
system interconnect, performance differentiation of competing communi-
cation protocols is only marginal in presence of a centralized target bot-
tleneck. On one hand, this puts emphasis on the generation of memory
controller-friendly traffic at the initiators rather than on the optimization
of the system interconnect. On the other hand, this calls for optimizations
of the I/O architecture to remove the system bottleneck.

5. Bridges are becoming true IP blocks. The introduction of new features
in communication protocols might be vanished by the deployment of
lightweight bridges with basic functionality. More research is needed to
understand whether it is really worth increasing bridge complexity, instead
of keeping lightweight bridges for path segmentation and traffic routing
and pushing complexity at the system interconnect boundaries, which is
known as the network-on-chip solution.

6. The availability of complete modelling and simulation frameworks like the
one developed for this work makes it easier to accurately identify system
bottlenecks and to fine-grain tune the architecture for the application do-
main of interest. For instance, we have showed how to identify working
conditions during application lifetime and how to discriminate between
poor performance of the memory controller and of the communication
architecture.

3.7 Conclusion

Traditionally, MPSoC interconnects have been based on the shared bus concept
[14]. In other words, a bunch of wires would be laid among all the IP cores in
the design. Only one pair of devices would be allowed to communicate over this
bus at any point in time; access to the shared medium would be regulated by

42

3.7. CONCLUSION

Figure 3.8: Evolution of shared buses towards hierarchical buses and more ad-
vanced protocols.

arbitration, either based on fixed priorities, on time slots, randomly, or on other
criteria.

Shared buses have as a main advantage their extreme simplicity, both in con-
ceptual terms and circuit design terms. However, they are completely unsuitable
for next-generation MPSoCs, due to two fundamental limitations:

• Their maximum available bandwidth is capped by their shared nature,
and this limit can easily be trespassed when the number of attached cores
becomes more than a few.

• Their electrical performance degrades dramatically with new lithographic
nodes. Since a shared bus is necessarily a structure composed of global
wires, as per the INTERNATIONAL TECHNOLOGY ROADMAP FOR
SEMICONDUCTORS (ITRS) [3], its propagation delay actually increases
with miniaturization. Therefore, with each new chip generation, a shared
bus becomes slower in operating frequency, and even slower when com-
pared to the progress in speed achieved by logic blocks. Long wires are
also more vulnerable to crosstalk, variability and electrical noise, all of
which represent increasingly serious problems in current technologies.

In response to these issues, buses have undergone evolutions [14, 26, 7] in
two respects: protocols and topologies (Figure 3.8).

Protocol evolution allows for more sophisticated handshakes occurring on
the bus, such as multiple outstanding transactions, out-of-order retirement of
responses, burst requests, smarter arbitration, etc.. These evolutions help in
making the best possible use of the limited available bandwidth. While useful
in temporarily reducing the extent of bandwidth issues, they still do not provide
a long-term solution to the fundamental limitations of buses.

Topology evolutions are a more radical departure from the original shared
bus paradigm. The main principle is to deploy multiple buses, attached to
each other by bridges or elements called crossbars - i.e., devices providing full
simultaneous connectivity among all their inputs and all their outputs. The
outcome is often called hierarchical bus or multilayer bus. Hierarchical buses

43

CHAPTER 3. ANALYSING THE COMMUNICATION IN A

MEMORY-CENTRIC INDUSTRIAL MPSOC PLATFORMS

are a much better response to MPSoC design concerns, and in fact most MPSoCs
today leverage hierarchical buses.

Even despite these improvements, buses are still a sub-optimal solution for
next-generation MPSoCs, due to several factors:

• Hierarchical buses are mostly a manual workaround, by means of which
designers try to fix the issues they are presently facing. The development
and verification steps have to be performed mostly manually, and it is hard
to guarantee that the design will scale upon the addition of more IP cores
in the next revision of the design. Issues such as deadlock prevention,
address mapping, and compliance with performance objectives are among
the challenges left to designers.

• From the physical design point of view, hierarchical buses are not much
better than shared buses. While allowing for some wire segmentation
(wires only have to span regions of the whole system), wires are still nor-
mally laid with wide parallelism (typically more than 100 wires for a 32-bit
bus and possibly close to 200 for a 64-bit bus), and they still connect mul-
tiple entities (a large fanout). Together, these issues mean that buses are
still electrically inefficient, and difficult to route during physical design.

• Buses normally involve interaction among three agents, usually called mas-
ter, slave and arbiter, instead of providing a point-to-point, one-to-one
handshake. This is unnecessarily making system integration harder.

44

Bibliography

[1] The uclinux embedded linux/microcontroller project
http://www.uclinux.org/

[2] Systemc community, 2003.
http://www.systemc.org

[3] SIA Semiconductor Industry Association.
The international technology roadmap for semiconductors.
SIA Semiconductor Industry Association, 2002.
Tech. Rep.

[4] D. Bertozzi L. Benini M. Loghi, F. Angiolini and R. Zafalon.
Analyzing on-chip communication in a mpsoc environment.
Proceedings of the conference on Design, automation and test in Europe,

February 2004.
IEEE Computer Society.

[5] F. Poletti D. Bertozzi L. Benini M. Ruggiero, F. Angiolini and R. Zafalon.
Scalability analysis of evolving soc interconnect protocols.
roceedings of the 2004 International Symposium on System-on-Chip, 2004.
pp. 169-172.

[6] On-Line Application Research (OAR).
Rtems, open-source real-time operating system for multiprocessor systems,

2002.

[7] D. Wingard.
Micronetwork-based integration for socs.
Proceedings of Design Automation Conference (DAC), 2001.
pp. 673-677.

[8] K.Lahiri, A.Raghunathan, G.Lakshminarayana,
”The LOTTERYBUS on-chip communication architecture”,
Trans. on VLSI Systems, Vol.14, no.6, pp.596-608, June 2006.

[9] S. Pasricha, Y. Park, F. Kurdahi, N. Dutt,
”System-Level Power-Performance Trade-Offs in Bus Matrix Communica-

tion Architecture Synthesis”,
CODES+ISSS 2006.

[10] S. Pasricha, N. Dutt,
”COSMECA: Application Specific Co-Synthesis of Memory and Commu-

nication Architectures for MPSoC”,
Design Automation and Test in Europe, pp.700-705, 2006.

45

BIBLIOGRAPHY

[11] S.Pasricha, N.Dutt, M.B.Romdhane,
”Constraint-driven bus matrix synthesis for MPSoC”,
Asia South Pacific Design Automation Conf., pp.30-35, 2006.

[12] S. Murali and G. De Micheli,
”An Application-Specific Design Methodology for STbus Crossbar Gener-

ation”,
Design Automation and Test in Europe, pp. 1176-1181, 2005.

[13] S. Pasricha, N. Dutt, E.Bozorgzadeh, M. Ben-Romdhane,
”FABSYN: Floorplan-aware Bus Architecture Synthesis”
IEEE Trans. on VLSI Systems, Vol.14, no.3, pp.241-253, March 2006.

[14] ARM Ltd., Sheffield, U.K., AMBA 2.0/3.0 Specifications.
Available: http://www.arm.com/armtech/AMBA

[15] Siemens AG, Open Microprocessor Initiative, OMI 324 PI Bus,
Rev 0.3d 1994, OMI Standards Draft.

[16] Sonics Inc., Sonics Integration Architecture.
Available: http://www.sonicsinc.com

[17] J. Turner and N. Yamanaka,
Architectural choices in large scale ATM switches,
IEICE Trans. Commun., vol. E-81B, no. 2, pp.120-137, Feb. 1998.

[18] Sekar, K.; Lahiri, K.; Raghunathan, A.; Dey, S.;
”Integrated Data Relocation and Bus Reconfiguration for Adaptive System-

on-Chip Platforms”,
Design Automation and Test in Europe, Vol.1, pp.1-6, march 2006.

[19] F. Polloni et al.,
”Fast System-Level Design Space Exploration for Low Power Configurable

Multimedia System-on-Chip”,
15th IEEE Int. ASIC/SoC Conference, pp 150-154, Sep. 2002.

[20] F.Poletti, D.Bertozzi, A.Bogliolo, L.Benini,
”Performance analysis of arbitration policies for SoC communication archi-

tectures”,
Journal of Design Automation for Embedded Systems, pp.189-210, 2003.

[21] A. Wieferink et al.,
”System level processor/communication co-exploration methodology for

multiprocessor system-on-chip platforms”,
IEE Proc. on Computers and Digital Techniques, Vol. 152, Issue 1, pp.3-11,

2005.

[22] Chulho Shin et al.,
”Fast exploration of parameterized bus architecture for communication-

centric SoC design”,
Design Automation and Test in Europe, pp.352-357, Vol.1, 2004.

[23] Xinping Zhu; Wei Qin; Malik, S.;
”Modeling operation and microarchitecture concurrency for communication

architectures with application to retargetable simulation”,
IEEE Trans. on VLSI Systems, Volume 14, Issue 7, pp.707 - 716, 2006.

[24] Loghi, M.; Angiolini, F.; Bertozzi, D.; Benini, L.; Zafalon, R.;
”Analyzing on-chip communication in a MPSoC environment”,

46

BIBLIOGRAPHY

Design Automation and Test in Europe, pp. 752-757, Vol.2, 2004.

[25] IBM Corporation, Armonk, NY, CoreConnect Bus Architecture.
Available: http://www.chips.ibm.com/products/coreconnect/.

[26] ST Microelectronics, STBus Interconnect.
Available: http://www.st.com/stonline/prodpres/dedicate/soc/cores/stbus.htm

[27] M. Ruggiero, F. Angiolini, F. Poletti, D. Bertozzi, L. Benini, R. Zafalon,
”Scalability Analysis of Evolving SoC Interconnect Protocols”,
Int. Symposium on System-on-Chip, Nov 16-18, 2004, pp. 169-172.

[28] N.Wang, M.A. Bayoumi,
”Dynamic fraction control bus: new SOC on-chip communication architec-

ture design”,
IEEE Int.SoC Conference, pp.199- 202, 2005.

[29] Open Core Protocol International Partnership (OCP-IP).
Available: http://www.ocpip.org

[30] Crossbow Technologies.
Available: http://www.crossbowip.com

[31] Synopsys CoCentric
”http://www.synopsys.com”,
2004.

[32] S.Murali, M.Coenen, A.Radulescu, K.Goossens,
”A methodology for mapping multiple use-cases onto networks-on-chips”,
Design Automation and Test in Europe, pp.118-123, 2006.

47

BIBLIOGRAPHY

48

Chapter 4

Network-on-Chip: An
Interconnect Fabric For
MPSoCs

4.1 Introduction

The increasing integration densities made available by shrinking of device ge-
ometries will have to be exploited to meet the computational requirements of
applications from different domains, such as multimedia processing, high-end
gaming, biomedical signal processing, advanced networking services, automo-
tive or ambient intelligence. Interestingly, the request for scalable performance
is being posed not only to high-performance microprocessors, which have been
tackling this challenge for a long time, but also to embedded computing sys-
tems. As an example, systems designed for ambient intelligence are increasingly
based on high-speed digital signal processing with computational loads ranging
from 10 MOPS for lightweight audio processing, 3 GOPS for video processing,
20 GOPS for multilingual conversation interfaces and up to 1 TOPS for syn-
thetic video generation. This computational challenge has to be addressed at
manageable power levels and affordable costs [16].

Such a performance cannot be provided by a single processor core, but
requires a heterogeneous on-chip multi-processor system containing a mix of
general-purpose programmable cores, application specific processors and dedi-
cated hardware accelerators. In order for the computation scalability provided
by multi-core architectures to be effective, the communication bottleneck will
have to be removed.

In this context, performance of gigascale Systems-on-Chip (SoCs) will be
communication dominated, and only an interconnect-centric system architec-
ture will be able to cope with this problem. Current on-chip interconnects
consist of low-cost shared arbitrated buses, based on the serialization of bus ac-
cess requests; only one master at a time can be granted access to the bus. The
main drawback of this solution is its poor scalability, which will result in unac-
ceptable performance degradation already for medium complexity SoCs (more
than a dozen of integrated cores). Moreover, the connection of new blocks to

49

CHAPTER 4. NETWORK-ON-CHIP: AN INTERCONNECT FABRIC FOR

MPSOCS

a shared bus increases its associated load capacitance, resulting in more en-
ergy consuming bus transactions associated with the broadcast communication
paradigm.

A scalable communication infrastructure that better supports the trend of
SoC integration consists of an on-chip micro-network of interconnects, generally
known as Network-on-Chip (NoC) architecture [23, 30, 36]. The basic idea is
borrowed from the wide-area networks domain, and envisions on-chip networks
on which packet-switched communication takes place, as depicted in Fig.4.1
Cores access the network by means of proper interfaces, and have their pack-
ets forwarded to destination through a certain number of intermediate hops
(corresponding to switching elements).

The modular nature of NoC architectures and the enormous communication
bandwidth they can provide leads to network-centric multi-processor systems
(MPSoCs) featuring high structural complexity and functional diversity. While
in principle attractive, these features imply an extension of the design space
that needs to be properly mastered by means of new design methodologies and
tool flows [31].

A NoC design choice of utmost importance for global system performance
concerns topology selection. Topology describes the connectivity pattern of
networked cores, and heavily impacts the final throughput and latency figures for
on-chip communication. In particular, these figures stem from the combination
of the theoretical properties of a NoC topology (e.g., average latency, bisection
bandwidth) with the quality of its physical synthesis (e.g., latency on the express
links of multi-dimension topologies, maximum operating frequency). Several
researchers [36, 29, 31, 13] envision NoCs for the general purpose computing
domain as regular tile-based architectures (structured as mesh networks or fat
trees). In this case, the system is homogeneous, in that it can be obtained by
the replication of the same basic set of components: a processing tile with its
local switching element.

However, in other application domains, designers need to optimise perfor-
mance at a lower power cost and rely on SoC component specialization for
this purpose. This leads to the on-chip integration of heterogeneous cores hav-
ing varied functionality, size and communication requirements. In this sce-
nario, if a regular interconnect is designed to match the requirements of a few
communication-hungry components, it is bound to be largely over-designed for
the needs of the remaining components. This is the main reason why most of
current heterogeneous SoCs make use of irregular topologies [11, 22].

This chapter introduces basic principles and guidelines for the NoC design.
At first, the motivation for the design paradigm shift of SoC communication
architectures from shared busses to NoCs is examined. Then, the chapter goes
into the details of NoC building blocks (switch, network interface and switch-
to-switch links), presenting their design principles and the trade-offs spanned
by different implementation variants. Readers will be given the opportunity to
become familiar with the theoretic notions by analysing a few case studies from
real-life NoC prototypes. For each of them, the design objectives leading to the
specific architecture choices will be illustrated.

Then, the key issue of topology selection will be discussed with reference to
both the general purpose and the application specific computing domains. This
is a high-impact decision in the NoC (and system) design process, and will be
devoted ample room in this chapter. Finally, the main challenges that research

50

4.2. DESIGN CHALLENGES FOR ON-CHIP COMMUNICATION

ARCHITECTURES

Figure 4.1: A generic network-on-chip architecture.

has to tackle in order for NoCs to become mainstream will be briefly discussed.

4.2 Design Challenges For On-Chip Communi-

cation Architectures

SoC design challenges that are driving the evolution of traditional bus architec-
tures toward NoCs can be outlined as follows:

4.2.1 Technology challenges

While gate delays scale down with technology, global wire delays typically in-
crease or remain constant as repeaters are inserted. It is estimated that in 50
nm technology, at a clock frequency of 10 GHz, a global wire delay can be up
to 6-10 clock cycles [23]. Therefore, limiting the on-chip distance travelled by
critical signals will be key to guarantee the performance of the overall system,
and will be a common design guideline for all kinds of system interconnects.
In this direction, recent communication protocols such as AMBA AXI pose no
requirements for a fixed relationship between the various channels the protocol
is structured into. This way, the insertion of a register stage in any channel is
made possible, at the cost of an additional cycle of latency [2]. By breaking
long timing paths, the maximum operating frequency can be preserved. NoCs
are multi-hop architectures pushing this trend to the limit: an aggressive path
segmentation enables an operating frequency which is much higher than that of
state-of-the-art interconnect fabrics and even of attached communicating cores.
The potentially higher speed of NoCs can also be an indirect means of masking
their inherently higher communication latency.

Another technology related issue concerns performance predictability. This
can be defined as the deviation of post-layout performance figures from post-
synthesis ones. The traditional flow for standard cell design features logic syn-
thesis and placement as two clearly decoupled stages. Wire load models make
this splitting possible. They consist of pre-characterized equations, supplied
within technology libraries, that attempt to predict the capacitive load that a
gate will have to drive based on its fan-out alone. A gate driving a fan-out of

51

CHAPTER 4. NETWORK-ON-CHIP: AN INTERCONNECT FABRIC FOR

MPSOCS

two other gates is very likely to be part of a local circuit. Thus, its capacitive
load is little more than the input capacitance of the two downstream gates. A
gate with a fan-out of one thousand is likely to be the driver of a global network.
Therefore, some extra capacitance is expected due to the long wires needed to
carry the signal around. This assumption works very well as long as wire loads
do not become too large. Otherwise, the characterization of wire load models
becomes very complex, and the prediction inaccuracies become critical. It was
showed in [15] that a state-of-the-art AMBA AHB Multi-Layer interconnect is
ineffectively handled by this synthesis flow already at the 130nm technology
node: after placement, the actual achievable frequency decreases by a notice-
able 17%. This drop means that some capacitive loads, which were not expected
after the logical synthesis, arose due to routing constraints. An explanation can
be found in the purely combinational nature of the Multi-Layer fabric, which
implies long wire propagation times and compounds the delay of the crossbar
block. In contrast, the same work in [15] proves that an on-chip network incurs
a negligible timing penalty of less than 3% after taking actual capacitive loads
into account. This confirms that NoC wire segmentation is highly effective and
results in wire load predictability. However, even for NoCs the above synthesis
flow proves substantially inadequate as technology scales further down to the 65
nm node. The origin of the problem lies in the unacceptable inaccuracy in wire
load estimation. Even when synthesizing single NoC modules (i.e., even with-
out considering long links), after the logic synthesis step, tools were expecting
some target frequency to be reachable. However, after the placement phase, the
results were up to 30% worse [6]. Unfortunately, traditional placement tools are
not able to deeply modify the netlists they are given as an input. In general,
they can only insert additional buffering to account for unexpected loads on few
selected wires. Therefore, if the input netlist is fundamentally off the mark due
to erroneous wire load expectations, not only a performance loss is certain, but
the placement runtime skyrockets. To address this issue, placement-aware logic
synthesis tools are replacing the old flow. In this case, after a very quick initial
logic synthesis based on wire load models, the tool internally attempts a coarse
placement of the current netlist, and also keeps optimizing the netlist based on
the expected placement and the wire loads it implies. The final resulting netlist
already considers placement-related effects. Therefore, after this netlist is fed to
the actual placement tool, performance results will not incur major penalties.
Overall, NoCs promise better scalability to future technology nodes, but their
efficient design will require silicon-aware decision making at each level of the
design process, in particular placement-aware logic synthesis.

Another challenge associated with the effects of nanoscale technologies is
posed by global synchronization of large multi-core chips. The difficulty to con-
trol clock skew and the power associated with the clock distribution tree will
probably cause a design paradigm shift toward globally asynchronous and lo-
cally synchronous (GALS) systems [10]. The basic GALS paradigm is based on
a system composed of a number of synchronous blocks designed in a traditional
way (and hence exploiting standard synthesis methodologies and tools). How-
ever, it is assumed that clocks of such synchronous systems are not necessarily
correlated and consequently that those synchronous systems communicate asyn-
chronously using handshake channels. Locally synchronous modules are usually
surrounded by asynchronous wrappers providing such inter-block data trans-
fer. Practical GALS implementations may form much more complex structures,

52

4.2. DESIGN CHALLENGES FOR ON-CHIP COMMUNICATION

ARCHITECTURES

such as bus [14] or NoC structures [7] for inter-block communications, and use
different data synchronization mechanisms.

The GALS paradigm does not rely on absolute timing information and there-
fore favours composability: local islands of synchronicity can be arbitrarily com-
bined to build up larger systems [28]. NoC architectures are generally viewed
as an ideal target for application of the GALS paradigm [7]. While in the
short term a network-centric system will be most likely composed of multiple
clock domains with tight or loose correlation, in the long run fully asynchronous
interconnects might be an effective solution. The uptake of these latter for com-
mercial applications will largely depend on the availability of a suitable design
tool flow. More in general, GALS NoCs are a promising means of tackling a
number of interconnect issues, from power and EMI reduction to clock skew
management, while preserving design modularity and improving the back-end
time spent achieving timing convergence.

Finally, signal integrity issues (cross-talk, power supply noise, soft errors,
etc.) will lead to more transient and permanent failures of signals, logic val-
ues, devices and interconnects, thus raising the reliability concern for on-chip
communication [8]. In many cases, on-chip networks can be designed as regular
structures, allowing electrical parameters of wires to be optimised and well con-
trolled. This leads to lower communication failure probabilities, thus enabling
the use of low swing signalling techniques [18] and the exploitation of perfor-
mance optimisation techniques such as wavefront pipelining [21]. It is worth
observing that permanent communication failures can also occur as an effect
of the deviation of technology parameters from nominal design values (such as
effective gate length, threshold voltage or metal width). In fact, precise control
of chip manufacturing becomes increasingly difficult and expensive to maintain
in the nanometer regime. The ultimate effect is a circuit performance and power
variability that results in increasing yield degradation in successive technology
nodes. The support for process variation tolerance poses unique design chal-
lenges to on-chip networks. From a physical viewpoint, network circuits should
be able to adapt to in-situ actual technology conditions, for instance by means
of the self-calibrating techniques proposed in [17, 32]. From an architecture
viewpoint, one or more sections of the network might be unusable, thus calling
for routing and topology solutions able to preserve interconnection of operating
nodes [20].

4.2.2 Scalability challenges

Present-day SoC design has broken with 1-processor system design that has
dominated since 1971. Dual-processor system design is very common in the
design of voice-only mobile telephone handsets. A general purpose processor
handles the handset’s operating system and user interface. A DSP handles
the phone handset’s baseband processing tasks (e.g., DSP functions such as
FFTs and inverse FFTs, symbol coding and decoding, filtering). Processing
bandwidth is finely tuned to be just enough for voice processing to cut product
cost and power dissipation, which improves key selling points such as battery
life and talk time.

Incorporation of multimedia features (music, still image, video) has placed
additional processing demands on handset SoC designs and the finely tuned,
cost-minimized 2-processor system designs for voice-only phones simply lack of

53

CHAPTER 4. NETWORK-ON-CHIP: AN INTERCONNECT FABRIC FOR

MPSOCS

processing bandwidth for these additional functions. Consequently, the most re-
cent handset designs with new multimedia features are adding either hardware
acceleration blocks or application processors to handle the processing require-
ments of the additional features. The design of multi-processor SoC systems is
today a common practice in the embedded computing domain [LEI06]. Many
SoCs today incorporate dozens or even hundreds of interconnected processor
cores. The ITRS (International Technology Roadmap for Semiconductors) pre-
dicts that this trend will continue, and more than 800 integrated processor cores
are expected in 2020 [3].

A similar design paradigm shift is taking place in the high performance com-
puting domain [12]. In the past, performance scaling in conventional single-core
processors has been accomplished largely through increases in clock frequency
(accounting for roughly 80% of the performance gains at each technology gener-
ation). But frequency scaling has run into fundamental physical barriers. First,
as chip geometries shrink and clock frequencies rise, the transistor leakage cur-
rent increases, leading to excessive power consumption and heat. Second, the
advantages of higher clock speeds are in part negated by memory latency, since
memory access times have not been able to keep pace with increasing clock
frequencies. Third, for certain applications, traditional serial architectures are
becoming less efficient as processors get faster (due to the so-called von Neumann
bottleneck), further undercutting any gains that frequency increases might oth-
erwise achieve. In addition, RC delays in signal transmission are growing as
feature sizes shrink, imposing an additional bottleneck that frequency increases
don’t address.

Therefore, performance will have to come by other means than boosting the
clock speed of large monolithic cores. Another means of maintaining micro-
processor performance growth has traditionally come from microarchitectural
innovations. They include multiple instruction issue, dynamic scheduling, spec-
ulative execution and non-blocking caches. However, early predictions for the
superscalar execution model projected diminishing returns in performance for
increasing issue width, and they finally came true.

In light of the above issues, the most promising approach to deliver massively
scalable computation horsepower while effectively managing power and heat is
to break up functions into many concurrent operations and to distribute them
across many parallel processing units. Rather than carrying out a few operations
serially at an extremely high frequency, chip multiprocessors (CMPs) achieve
high performance at more practical clock rates, by executing many operations
in parallel. This approach is also more power-aware: rather than making use of
a big, power-hungry and heat-producing core, CMPs need to activate only those
cores needed for a given function, while idle cores are powered down. This fine-
grained control over processing resources enables the chip to use only as much
power as it is needed at any time.

Evidence of this CMP trend is today unmistakable as practically every com-
mercial manufacturer of high-performance processors is currently introducing
products based on multi-core architectures: AMD’s Opteron, Intel’s Montecito,
Sun’s Niagara, IBM’s Cell and Power5. These systems aim to optimize per-
formance per watt by operating multiple parallel processors at lower clock fre-
quencies. Clearly, within the next few years, performance gains will come from
increases in the number of processor cores per chip, leading to the emergence
of a key bottleneck: the global intra-chip communication infrastructure. Per-

54

4.2. DESIGN CHALLENGES FOR ON-CHIP COMMUNICATION

ARCHITECTURES

haps the most daunting challenge to future systems is to realize the enormous
bandwidth capacities and stringent latency requirements when interconnecting
a large number of processing cores in a power efficient fashion.

Thirty years of experience with microprocessors taught the industry that
processors must communicate over buses, so the most efficient way of intercon-
necting processors has been through the use of common bus structures. When
SoCs only used one or two processors, this approach was practical. With dozens
or hundreds of processors on a silicon die, it no longer is. Bus-centric design re-
stricts bandwidth and wastes the enormous connectivity potential of nanometer
SoC designs. Moreover, chip-wide combinational structures (as many buses are)
have been proven to map inefficiently to nanoscale technologies. Low latency,
high data-rate, on-chip interconnection networks have therefore become a key to
relieving one of the main bottlenecks for MPSoC and CMP system performance.
NoCs represent an interconnect fabric which is highly scalable and can provide
enough bandwidth to replace many traditional bus-based and/or point-to-point
links.

4.2.3 Design productivity challenges

It is well known that synthesis and compiler technology development does not
keep up with IC manufacturing technology development [3]. Moreover, times-
to-market need to be kept as low as possible. Reuse of complex pre-verified
design blocks is an effective means of increasing productivity, and regards both
computation resources and the communication infrastructure [4]. It would be
highly desirable to have processing elements that could be employed in different
platforms by means of a plug-and-play design style. To this purpose, a scalable
and modular on-chip network represents a more efficient communication fabric
compared with shared bus architectures. However, the reuse of processing ele-
ments is facilitated by the definition of standard interface sockets (corresponding
to the front-end of network interfaces), which make the modularity property of
NoC architectures effective. The Open Core Protocol (OCP) [1] was devised as
an effective means of simplifying the integration task through the standardiza-
tion of the core interface protocol. It also paves the way for more cost-effective
system implementations, since it can be custom-tailored based on the complex-
ity and the connectivity requirements of the attached cores. AMBA AXI [2]
is another example of standard interface socket for processing and/or memory
cores. The common feature of these point-to-point communication protocols is
that they are core-centric transaction-based protocols which abstract away the
implementation details of the system interconnect. Transactions are specified
as though communication initiator and target were directly connected, taking
the well-known layered approach to peer-to-peer communication that proved
extremely successful in the domain of local- and wide-area networks. Referring
to the reference ISO/OSI model, the network interface front-end can be viewed
as the standardized core interface at session layer or transport layer, where
network-agnostic high level communication services are provided. This way, the
development of new processor cores and of new NoC architectures become two
largely orthogonal activities.

Finally, let us observe that NoC components (e.g., switches or interfaces)
can be instantiated multiple times in the same design (as opposed to the arbiter
of traditional shared buses, which is instance-specific) and reused in a large

55

CHAPTER 4. NETWORK-ON-CHIP: AN INTERCONNECT FABRIC FOR

MPSOCS

number of products targeting a specific application domain.

4.3 Network-On-Chip Architecture

Most of the terminology for on-chip packet switched communication is adapted
from the computer cluster domain. Messages that have to be transmitted across
the network are usually partitioned into fixed-length packets. Packets in turn
are often broken into message flow control units called flits. In presence of chan-
nel width constraints, multiple physical channel cycles can be used to transfer
a single flit. A phit is the unit of information that can be transferred across a
physical channel in a single step. Flits represent logical units of information, as
opposed to phits that correspond to physical quantities. In many implementa-
tions, a flit is set to be equal to a phit.

The basic building blocks for packet switched communication across NoCs
are:

1. Network interface

2. Switch

3. Network link

and will be described hereafter.

4.4 Network Interface

The network interface (NI) is the basic block allowing connectivity of commu-
nicating cores to the global on-chip network. It is is charge of providing several
services, spanning from session and transport layers (e.g., decoupling compu-
tation from communication, definition of QoS requirements of network trans-
actions, packetization) up to the layers closer to the physical implementation
(e.g., flow control, clock domain crossing).

The NI provides basic core wrapping services. Their role is to adapt the
communication protocol of the attached core to the communication protocol of
the network. Layering naturally decouples system processing elements from the
system they reside in, and therefore enables design teams to partition a design
into numerous activities that can proceed concurrently since they are minimally
inter-dependent. Layering also naturally enables core reuse in different systems.
By selecting an industry standard interface, there is no added time for this reuse
approach since all cores require such an interface.

Packetization is the very basic service the network interface should offer: tak-
ing the incoming signals of the processor core transaction and building packets
compliant with the NoC communication protocol. This service should care-
fully optimize packet and flit size in order to achieve high-performance network
operation and reduce implementation complexity of network building blocks.

At a lower level of abstraction, clock domain crossing may need to be per-
formed by the NI. Even if the clock frequency is the same over the entire chip,
phase adaptation will be needed for communications. In a more general case,
the system might consist of multiple clock domains which act as islands of syn-
chronicity. Clearly, proper synchronizers are needed at the clock domain bound-
ary. A simplified case of this scenario occurs when each communicating core/tile

56

4.4. NETWORK INTERFACE

Figure 4.2: Architecture of a network interface.

coincides with one clock domain, while the network gives rise to an additional
clock domain with an operating frequency which is typically much higher that
that of the attached cores. This way, clock domain crossing has to be performed
at the network interfaces. To the limit, a true GALS paradigm might be ap-
plied, which envisions a fully asynchronous interconnect fabric. In this case, the
conversion from synchronous to asynchronous (and viceversa) takes place in the
NI.

The NI is also the right place to specify and enforce latency and/or band-
width guarantees. This can be achieved for instance by reserving virtual circuits
throughout the network or by allocating multiple buffering resources and by de-
signing complex packet schedulers in the NI in order handle traffic with different
QoS requirements.

In addition to adaptation services, the NI is expected to provide the tradi-
tional transport layer services. Transaction ordering is one of them: whenever
dynamic routing schemes are adopted in the network, packets can potentially
arrive unordered, thus raising the memory consistency issue. In this case, NIs
should reorder the transaction before forwarding data or control information to
the attached component. Another transport layer service concerns the reliable
delivery of packets from source to destination nodes. The on-chip communica-
tion medium has been historically considered as a reliable medium. However,
recent studies expect this to be no longer the case in the context of nanoscale
technologies. The NI could be involved in providing reliable network transac-
tions by inserting parity check bits in packet tails at the packetization stage or
by implementing end-to-end error control. Finally, NIs should be in charge of
flow control. When a given buffering resource in the network is full, there needs
to be a mechanism to stall the packet propagation and to propagate the stalling
condition upstream. The flow control mechanism is in charge of regulating the
flow of packets through the network, and of dealing with localized congestion.
The NI is involved with the generation of flow control signals exchanged with
the attached switch. Moreover, flow control has to be carried out also with
the connected cores. In fact, when the network cannot accept new packets any
more because of congestion, new transactions can be accepted in the NI from
the connected core just at the same, provided the necessary amount of decou-
pling buffers is available in the NI. However, when also these buffers are full,
the core behaviour is impacted by congestion in the network and it has to be
stalled if further communication services are required.

A generic template for the NI architecture is illustrated in Fig. 4.2. The
structural view of this hardware module includes a front-end and a back-end

57

CHAPTER 4. NETWORK-ON-CHIP: AN INTERCONNECT FABRIC FOR

MPSOCS

sub-module. The front-end implements a standardized point-to-point protocol
allowing core reuse across several platforms. The interface then assumes the
attributes of a socket, that is, an industry-wide well-understood attachment in-
terface which should capture all signalling between the core and the system (such
as dataflow signalling, errors, interrupts, flags, software flow control, testing). A
distinctive requirement for this standard socket is to enable the configuration of
specific interface instantiations along a number of dimensions (bus width, data
handshaking, etc.). It is common practice to implement the front-end inter-
face protocol so to keep backward compatibility with existing protocols such as
AMBA AXI, OCP or DTL. This objective is achieved by using a transaction-
based communication model, which assumes communicating cores of two differ-
ent types: masters and slaves. Masters initiate transactions by issuing requests,
which can be further split in commands (e.g., read or write) and write data.
One or more slaves receive and execute each transaction. Optionally, a trans-
action can also involve a response issued by the slave to the master to return
data or an acknowledgement of transaction completion. This request-response
transaction-based model directly matches the bus-oriented communication ab-
stractions typically implemented at core interfaces, thus reducing the complexity
of core wrapping logic. As a consequence, the NI front-end can be viewed as an
hardware implementation of the session layer in the ISO/OSI reference model.
Traditionally, the session layer represents the user’s interface to the network.
High level communication services made available by the session layer must be
implemented by the transport layer, which is still unaware of the implementation
details of the system interconnect (and hence still belongs to the NI front-end
in Fig. 4.2). The transport layer relieves the upper layers from any concern
with providing reliable, sequenced and QoS oriented data transfers. It is the
first true and basic end-to-end layer. For instance, the transport layer might be
in charge of establishing connection-oriented end-to-end communications.

The transport layer provides transparent transfer of data between end nodes
using the services of the network layer. These services, together with those
offered by the link layer and the physical layer, are implemented in the NI back-
end. Data packetization and routing functions can be viewed as essential tasks
performed by the network layer, and are tightly interrelated. The NI back-end
also provides data link layer services. Primarily, communication reliability has
to be ensured by means of proper error control strategies and effective error
recovery techniques. Moreover, flow control is handled at this layer, by means
of upstream (downstream) signalling regulating data arrival from the processor
core (data propagation to the first switch in the route), but also of piggybacking
mechanisms and buffer/credit flushing techniques. Finally, the physical channel
interface to the network has to be properly designed. NoCs have distinctive
challenges in this domain, consisting of clock domain crossing, high frequency
link operation, low-swing signalling and noise-tolerant communication services.

An insight in the χpipes Lite [33] network interface implementation will
provide an example of these concepts. Its architecture is showed in Fig. 4.3.
This chapter views this case study as an example of a lightweight NI architecture
for best effort NoCs.

The network interface (NI) is designed as a bridge between an OCP interface
and the NoC switching fabric. Its purposes are protocol conversion (from OCP
to network protocol), packetization, the computation of routing information
(stored in a Look-Up Table, LUT), flit buffering to improve performance and

58

4.4. NETWORK INTERFACE

Figure 4.3: χpipes Lite network interface initiator architecture.

flow control. For any given OCP transaction, some fields have to be transmitted
once, while other fields need to be transmitted repeatedly. Initiator and target
NIs are attached to communication initiators and targets respectively. Each NI
is split in two sub-modules: one for the request and one for the response channel.
These sub-modules are loosely coupled: whenever a transaction requiring a
response is processed by the request channel, the response channel is notified;
whenever the response is received, the request channel is unblocked. The NI is
built around two registers: one holds the transaction header (1 refresh per OCP
transaction), while the second one holds the payload (refreshed at each OCP
burst beat). A set of flits encodes the header register, followed by multiple
sets of flits encoding a snapshot of the payload register subsequent to a new
burst beat. Header and payload content is never allowed to mix. Routing
information is attached to the header flit of a packet by checking the transaction
address against an LUT. The length in bit of the routing path depends on the
maximum switch radix and on the maximum number of hops in the specific
network instance at hand.

The header and payload registers represent the boundary of the NI front-
end and also act as clock domain decoupling buffers. These registers can be
read from the NI back-end at a much higher speed than the writing speed of
the OCP side. In practice, network and attached cores can operate at different
frequencies. The only constraint posed by this architecture is that the OCP
frequency is obtained by applying an integer divider to the network frequency.
A finer grain control of the frequencies would make the NI architecture more

59

CHAPTER 4. NETWORK-ON-CHIP: AN INTERCONNECT FABRIC FOR

MPSOCS

Figure 4.4: Common buffering strategies for switch architectures.

complex and costly from an area and power viewpoint.

4.5 Switch Architecture

Switches carry packets injected into the network to their destination, following
a statically (deterministic) or dynamically (adaptive) defined routing path. A
switch forwards packets from one of its input ports to one or more of its output
ports using arbitration logic to solve conflicts. Switch design is usually driven
by a power-performance trade-off: high-performance switches for on-chip com-
munication require power-hungry buffering resources. The buffering strategy
(Fig.4.4) determines the location of buffers inside the switch. A switch may al-
locate buffers at the input ports, at the output ports or both. In input queuing
the queues are at the input of the switch. A scheduler determines at which times
queues are connected to which output ports such that no contention occurs. The
scheduler derives contention-free connections, a switch matrix (crossbar switch)
can be used to implement the connections. In traditional input queuing, there
is a single queue per input, resulting in a buffer cost of N queues per switch.
However, due to the so-called head-of-line blocking, for large N, switch utiliza-
tion saturates at 59% [27]. Therefore, input queuing results in weak utilization
of the links. Another variant of input queuing is virtual output queuing (VOQ),
which combines the advantages of input and output queuing. It has a switch
like in input queuing and has the link utilization close to that of output queuing:
100% link utilization can still be achieved, when N is large [26]. As for output
queuing, there are N2 queues. For every input I there are N queues Q(I,o), one
for each output o. Typically the set of N queues at each input port of a VOQ
switch is mapped to a single RAM.

Switch performance can be affected by the kind of routing method imple-
mented. In source routing, the path of the packet across the network is fixed
before injecting it into the network and is embedded in the packet header.
Switches only have to read the routing directives from the packet header and
to apply them. This is the approach taken by the network interface of Fig. 4.3.
In distributed routing, the path is dynamically computed at every switch when
the header flit is routed.

This latter carries information on the destination node, which is used by the

60

4.5. SWITCH ARCHITECTURE

local switch to perform routing path computation. This can be achieved in two
ways: by either accessing a local look-up table or by means of a combinational
logic implementing predefined routing algorithms. Source routing results in
faster switches, but features limited scalability properties. Moreover, adaptive
routing is not feasible with this approach. With distributed routing, switches
are more complex and therefore slower (due to the routing logic on the critical
path), but they are able to take dynamic routing decisions.

Switching techniques determine the way network resources (buffer capac-
ity, link bandwidth) are allocated to packets traversing the network. Bufferless
switching would be the most power-effective approach for resource allocation,
however it comes with heavy side-effects. In fact, whenever a packet cannot
proceed on its way to destination due to a conflict with another packet, it
should be either discarded (which is not acceptable for on-chip networks) or
misrouted. This latter solution is likely to incur severe livelock problems. A
minimal amount of buffering is instead required by circuit switching. In this
case, long lasting connections are established throughout the network between
source and destination nodes. Once reserved, these connections can be used
by the corresponding communication flows in a contention-free regime. Buffers
in this architecture serve two main purposes: retiming (e.g., input and/or out-
put sampling of the signals in the switch) or buffering of packets devoted to
circuit set-up. In circuit switching, the latency for circuit set-up adversely im-
pacts overall system performance. Moreover, long lasting circuits established
throughout the network suffer from low link utilization. For the above reasons,
buffered switching is the most common switching technique used in the NoC
domain up to date. In practice, data buffering is implemented at each switch
in order to decouple the allocation of adjacent channels in time. The buffer
allocation granularity occurs on a packet- or flit-basis, depending on the specific
swiching technique. Three policies are feasible in this context [35].

In store-and-forward switching, an entire packet is received and stored in a
switch before forwarding it to the next switch. This is the most demanding
approach in terms of memory requirements and switch latency. Also virtual
cut-through switching requires buffer space for an entire packet, but allows for a
lower latency communication, since a packet starts to be forwarded as soon as
the next switch in the path guarantees that the complete packet can be stored.
If this is not the case, the current router must be able to store the entire packet.
Finally, a wormhole switching scheme can be employed to reduce switch memory
requirements and to provide low latency communication. The head flit enables
switches to establish the path and subsequent flits simply follow this path in a
pipelined fashion by means of switch output port reservation. A flit is forwarded
to the next switch as soon as enough space is available to store it, even though
there is no enough space to store the entire packet. If a head flit faces a busy
channel, subsequent flits have to wait at their current locations and are therefore
spread over multiple switches, thus blocking the intermediate links. This scheme
avoids buffering the full packet at one switch and keeps end-to-end latency low,
although it is deadlock prone and may result in low link utilization due to link
blocking.

Guaranteeing quality of service in switch operation is another important
design issue, which needs to be addressed when time-constrained (hard or soft
real-time) traffic is to be supported. Throughput guarantees or latency bounds
are examples of time-related guarantees.

61

CHAPTER 4. NETWORK-ON-CHIP: AN INTERCONNECT FABRIC FOR

MPSOCS

Figure 4.5: CA combined GT-BE router.

Contention related delays are responsible for large fluctuations of perfor-
mance metrics, and a fully predictable system can be obtained only by means of
contention free routing schemes. As already mentioned, with circuit switching
a connection is set up over which all subsequent data is transported. Therefore,
contention resolution takes place only at set-up at the granularity of connections,
and time-related guarantees during data transport can be provided. In time di-
vision circuit switching [9] , bandwidth is shared by time division multiplexing
connections over circuits.

In packet switching, contention is unavoidable since packet arrival cannot
be predicted. Therefore, arbitration mechanisms and buffering resources must
be implemented at each switch, thus delaying data in an unpredictable manner
and making it difficult to provide guarantees. Best effort NoC architectures
mainly rely on network over-sizing to upper-bound fluctuations of performance
metrics. Two case studies taken from the literature will help us understand how
the above design issues can be addressed in real-life switch implementations.

4.5.1 Æthereal

The Æthereal NoC architecture makes use of a router that tries to combine guar-
anteed throughput (GT) and best effort (BE) services [9]. The GT router sub-
system is based on a time-division multiplexed circuit switching approach. A
router uses a slot table to (i) avoid contention on a link, (ii) divide up bandwidth
per link between connections, and (iii) switch data to the correct output. Every
slot table T has S time slots (rows), and N router outputs (columns). There
is a logical notion of synchronicity: all routers in the network are in the same
fixed-duration slot. In a slot S at most one block of data can be read/written
per input/output port. In the next slot, the read blocks are written to their
appropriate output ports. Blocks thus propagate in a store-and-forward fash-
ion. The latency a block incurs per router is equal to the duration of a slot
and bandwidth is guaranteed in multiples of block size per S slots. The BE
router uses packet switching, and it has been showed that both input queuing
with wormhole switching or virtual cut-through switching and virtual output
queuing with wormhole switching are feasible in terms of buffering cost. The BE
and GT router sub-systems are combined in the Æthereal router architecture of

62

4.5. SWITCH ARCHITECTURE

Figure 4.6: χpipes Lite switch architecture.

Fig.4.5. The GT router offers a fixed end-to-end latency for its traffic, which is
given the highest priority by the arbiter. The BE router uses all the bandwidth
(slots) that has not been reserved or used by GT traffic. GT router slot tables
are programmed by means of BE packets (see the arrow “program” in Fig. 4.5).
Negotiations, resulting in slot allocation, can be done at compilation time, and
be configured deterministically at run time. Alternatively, negotiations can be
done at run time.

4.5.2 Xpipes Lite

A different perspective has been taken in the design of the switch for the best
effort χpipes Lite NoC [33]. The switch is represented in Fig.4.6. It features one
cycle latency for switch operation and one cycle for traversing the ouput link,
thus 2 cycles are required to traverse the switch fabric overall. The switch is
output-queued and wormhole switching is used as a convenient buffer allocation
policy. Please notice that while in traditional output queuing each input channel
has its own buffer in each output port, in this case the need to reduce total
switch power (no full custom design techniques were supposed to be used) has
led to the implementation of a unique buffer for all input channels at each
output port. The choice of different performance-power trade-off points may
significantly differentiate on-chip networks from traditional off-chip realizations
due to the different constraints they have to meet.

The input ports are latched to break the timing path. As static source
routing is used, the header of the packet contains all the information required
to route the packet. This keeps the switch routing logic minimal.

Arbitration is handled by an allocator module for each output port according
to a round-robin priority algorithm and performed upon receipt of a header flit.
After a packet wins the arbitration, routing information pertaining the current
switch is rotated away in the header flit. This allows to keep the next hop at
a fixed offset within the header flit, thus simplifying switch implementation.
Access to output ports is granted until a tail flit arrives. The χpipes Lite switch

63

CHAPTER 4. NETWORK-ON-CHIP: AN INTERCONNECT FABRIC FOR

MPSOCS

Figure 4.7: Impact of flow control on link pipelining implementation.

is defined as a soft macro, i.e., it is parameterizable in the number of input and
output ports, in the link width, in the output buffer size but also in the flow
control technique.

4.6 Link Design

In the context of nanoscale technologies, long wires increasingly determine the
maximum clock rate, and hence performance, of the entire design. The problem
becomes particularly serious for domain-specific heterogeneous SoCs, where the
wire structure is highly irregular and may include both short and extremely long
switch-to-switch links. Moreover, it has been estimated that only a fraction of
the chip area (between 0.4 and 1.4%) will be reachable in one clock cycle [34].

A solution to overcome the interconnect-delay problem consists of pipelin-
ing interconnects [24, 25]. Wires can be partitioned into segments (by means of
relay stations, which have a function similar to that of latches on a pipelined
datapath) whose length satisfies pre-defined timing requirements (e.g., desired
clock speed of the design). This way, link delay is changed into latency, but
the data introduction rate is not bounded by the link delay any more. Now,
the latency of a channel connecting two modules may turn out to be more than

64

4.6. LINK DESIGN

one clock cycle. Therefore, if the functionality of the design is based on the se-
quencing of the signals and not on their exact timing, then link pipelining does
not change the functional correctness of the design. This requires the system
to consist of modules whose behaviour does not depend on the latency of the
communication channels (latency insensitive operation). As a consequence, the
use of interconnect pipelining can be seen as a part of a new and more general
methodology for nanoscale designs, which can be envisioned as synchronous
distributed systems composed by functional modules that exchange data on
communication channels according to a latency-insensitive protocol. This pro-
tocol ensures that functionally correct modules behave correctly independently
of the channel latencies [24]. The effectiveness of the latency-insensitive de-
sign methodology is strongly related to the ability of maintaining a sufficient
communication throughput in presence of increased channel latencies.

The architecture of a relay station depends on the flow control scheme used
across the network, since switch-to-switch links not only carry packets but also
control information determining the way the downstream node communicates
buffer availability to the upstream node (i.e., flow control signals). In order
to make this point clear, let us focus on three flow control protocols with very
different characteristics: stall/go, T-error and Ack/nack [5].

4.6.1 Stall/Go

stall/go is a low-overhead scheme which assumes reliable flit delivery. T-error
is much more complex, and provides logic to detect timing errors in data trans-
mission. This support is however only partial, and usually exploited to improve
performance rather than to add reliability. Finally, Ack/nack is designed to
support thorough fault detection and handling by means of retransmissions.

Stall/go is a very simple realization of an ON/OFF flow control protocol. It
requires just two control wires (Fig.4.7a): one going forward and flagging data
availability, and one going backward and signaling either a condition of buffers
filled (“STALL”) or of buffers free (“GO”). Stall/go can be implemented with
distributed buffering along the link; namely, every repeater can be designed
as a very simple two-stage FIFO. The sender only needs two buffers to cope
with stalls in the very first link repeater, thus resulting in an overall buffer
requirement of 2N +2 registers, with minimal control logic. Power is minimized
since any congestion issue simply results in no unneeded transitions over the
data wires. Performance is also good, since the maximum sustained throughput
in the absence of congestion is of one flit per cycle by design, and recovery from
congestion is instantaneous (stalled flits get queued along the link towards the
receiver, ready for flow resumption). In the NoC domain with pipelined links,
stall/go indirectly reflects the performance of credit-based policies, since they
exhibit equivalent behaviour. The main drawback of stall/go is that no provision
whatsoever is available for fault handling. Should any flit get corrupted, some
complex higher-level protocol must be triggered.

4.6.2 T-Error

The T-error protocol (Fig.4.7b) aggressively deals with communication over
physical links, either stretching the distance among repeaters or increasing the
operating frequency with respect to a conventional design. As a result, timing

65

CHAPTER 4. NETWORK-ON-CHIP: AN INTERCONNECT FABRIC FOR

MPSOCS

errors become likely on the link. Faults are handled by a repeater architecture
leveraging upon a second delayed clock to resample input data, to detect any
inconsistency and to emit a VALID control signal. If the surrounding logic is
to be kept unchanged, as we assume in this chapter, a resynchronization stage
must be added between the end of the link and the receiving switch. This logic
handles the offset among the original and the delayed clocks, thus realigning
the timing of DATA and VALID wires; this incurs a one-cycle latency penalty.
The timing budget provided by the T-Error architecture can also be exploited
to achieve greater system reliability, by configuring the links with spacing and
frequency as conservative as in traditional protocols. However, T-error lacks a
really thorough fault handling: for example, errors with large time constants
would not be detected. Mission-critical systems, or systems in noisy environ-
ments, may need to rely on higher-level fault correction protocols. The area
requirements of T-error include three buffers in each repeater and two at the
sender, plus the receiver device and quite a bit of overhead in control logic. A
conservative estimate of the resulting area is 3M + 2, with M being up to 50%
lower than N if T-error features are used to stretch the link spacing. Unneces-
sary flit retransmissions upon congestion are avoided, but a power overhead is
still present due to the control logic. Performance is of course dependent on the
amount of self-induced errors.

4.6.3 Ack/Nack

The main idea behind the Ack/Nack flow control protocol (Fig. 4.7c) is that
transmission errors may happen during a transaction. For this reason, while
flits are sent on a link, a copy is kept locally in a buffer at the sender. When
flits are received, either an ACKnowledge (ACK) or NotACKnowledge (NACK)
is sent back. Upon receipt of an ACK, the sender deletes the local copy of
the flit; upon receipt of a NACK, the sender rewinds its output queue and
starts resending flits starting from the corrupted one, with a GO-BACK-N
policy. This means that any other flit possibly in flight in the time window
among the sending of the corrupted flit and its resending will be discarded
and resent. Other retransmission policies are feasible, but they exhibit higher
logic complexity. Fault tolerance is built in by design, provided encoders and
decoders for error control codes are implemented at the source and destination
respectively. In an Ack/Nack flow control, a sustained throughput of one flit
per cycle can be achieved, provided enough buffering is available. Repeaters
on the link can be simple registers, while, with N repeaters, 2N + k buffers
are required at the source to guarantee maximum throughput, since Ack/Nack
feedback at the sender is only sampled after a round-trip delay since the
original flit injection. The value of k depends on the latency of the logic at
the sending and receiving ends. Overall, the minimum buffer requirement to
avoid incurring bandwidth penalties in a NACK-free environment is therefore
3N + k. Ack/Nack provides ideal throughput and latency until no NACKs are
issued. If NACKs were only due to sporadic errors, the impact on performance
would be negligible. However, if NACKs have to be issued also upon congestion
events, the round-trip delay in the notification causes a performance hit which
is very pronounced especially with long pipelined links. Moreover, flit bouncing
between sender and receiver causes a waste of power.

66

4.7. NOC DESIGN CHALLENGES

Stall/Go T-Error Ack/Nack

BUFFER AREA 2N + 2 > 3M + 2 3N + K
LOGIC AREA Low High Medium
PERFORMANCE Good Good Depends
POWERESTIMATION Low Medium/High High
FAULT TOLERANCE Unavailable Partial Supported

Table 4.1: Flow control protocols at a glance.

The distinctive features of each flow control scheme are summarized in
Table 4.1, which also points out the implications of the flow control technique
on the implementation of link pipelining. Clearly, the best choice depends on
the ultimate design objective and on the level of abstraction at which designers
intend to enforce fault tolerance.

4.7 NoC design challenges

Although the benefits of NoCs architectures are substantial, reaching their full
potential presents numerous research challenges. There are three main issues
that must be addressed for future NoCs: power consumption, latency and CAD
compatibility. As exposed in [19], research challenges for NoCs architectures
can be classified into four broad areas:

Technology and circuits. The most important technology constraint for
NoCs is power. To close the power gap, research should develop op-
timized circuits for NoC components. Other constraints include design
productivity and cost, reflecting the issues derived from the use of new
or exotic technologies that require an additional effort in developing CAD
compatibility.

NoC microarchitecture and system architecture. Architecture research
must address the primary issues of power and latency, as well as critical
issues such as congestion control. This should be address at network-level
(topology, routing, and flow control) as well as in the router microarchitec-
ture. The delay of routers and the number of hops required by a typical
message should be reduced. Circuit research to reduce channel latency
can also help to close the latency gap. All of these architectural improve-
ments must be developed taking into account technology constraints and
the limited power budget. In particular, power consumption is a critical
issue and future NoC architectures must address it effectively, for example
by avoiding unnecessary work or by dynamically modulating voltage and
frequency.

NoC design tools. NoC design tools should be able to better interface with
system-level constraints and design, for instance by means of an accurate
characterization and modelling of system traffic. It is very important to
update CAD tools with specialized libraries for new NoC microarchitec-
tures and interconnects, validation capabilities for new NoC designs and

67

CHAPTER 4. NETWORK-ON-CHIP: AN INTERCONNECT FABRIC FOR

MPSOCS

feedback from end-user to simplify the design process. In order to pre-
serve design tools usability with CMOS scaling, it is of utmost importance
to develop new area, power, timing, thermal and reliability models. Fi-
nally, new methods to estimate power-performance of NoCs other than
simulations are needed, due to the increasing complexity of future NoC
designs.

NoC comparison. Also, it is very important to develop common evaluation
metrics (such as latency and bandwidth under area, power, energy, and
heat dissipation constraints) and standard benchmarks to allow direct
unambiguous comparison between different NoC architectures.

4.8 Conclusion

Parallel architectures are becoming mainstream both in the high performance
and in the embedded computing domains. The most daunting challenge to
future multi-processor systems is to realize the enormous bandwidth capaci-
ties and stringent latency requirements when interconnecting a large number
of processor cores in a power efficient fashion. Even though in the short term
the evolution of topologies and protocols of state-of-the-art interconnects will
suffice to sustain MPSoC scalability, on-chip networks are widely recognized as
the long term and disruptive solution to the problem of on-chip communica-
tion. This chapter has provided basic principles and network building blocks
have been analysed. Finally, the chapter has highlighted the challenges that lie
ahead to make NoC architectures mainstream. They can be broadly categorized
into low power and low latency circuits and architectures, silicon-aware design
tools with system-level exploration capabilities and the definition of standard
quality metrics and benchmarks.

68

Bibliography

[1] Ocp international partnership. open core protocol specification, 2001.
http://www.ocpip.org.

[2] AMBA AXI Protocol Specification, 2003.

[3] ITRS, 2007.
Http://www.itrs.net/Links/2007ITRS/Home2007.htm.

[4] H.Tenhunen A.Jantsch.
Will networks on chip close the productivity gap?
Networks on Chip, A.Jantsch and Hannu Tenhunen (eds), Kluwer, 2003.
pp.3-18.

[5] D.Bertozzi L.Benini A.Pullini, F.Angiolini.
Fault tolerance overhead in network-on-chip flow control schemes.
SBCCI, 2005.
pp.224-229.

[6] P.Meloni D.Atienza S.Murali L.Raffo G. De Micheli L.Benini A.Pullini,
F.Angiolini.

Noc design and implementation in 65nm technology.
1st IEEE/ACM Int. Symp. On Networks-on-Chip, 2007.
pp.273-282.

[7] et al. D. Lattard.
A telecom baseband circuit-based on an asynchronous network-on-chip.
Proc. of the International Solid State Circuits Conference, ISSCC, Feb

2007.
San Francisco, USA.

[8] G.De Micheli D.Bertozzi, L.Benini.
Energy-reliability trade-off for nocs.
Networks on Chip, A.Jantsch and Hannu Tenhunen (eds.), Kluwer, 2003.
pp.107-129.

[9] A.Radulescu J.van Meerbergen P.Wielage E.Waterlander E.Rijpkema,
K.Goossens.

Trade offs in the design of a router with both guaranteed and best-effort
services for networks on chip.

Design Automation and Test in Europe DATE03, March 2003.
pp.350-355.

[10] F.K.Gurkaynak et al.
Gals at eth zurich: Success or failure?

69

BIBLIOGRAPHY

Proc. of the 12th IEEE Int. Symp. On Asynchronous Circuits and Systems,
2006.

pag.150-159.

[11] H.Yamauchi et al.
A 0.8 w hdtv video processor with simultaneous decoding of two mpeg2

mp@hl streams and capable of 30 frames/s reverse playback.
ISSCC02, Feb 2002.
Vol.1, pp. 473-474.

[12] S.Borkar et al.
Platform 2015: Intel processor and platform evolution for the next decade.
Technology@Intel Magazine, Intel Corporation, March 2005.

[13] S.J.Lee et al.
An 800 mhz star-connected on-chip network for application to systems on

a chip.
ISSCC03, February 2003.

[14] T. Villiger et al.
elf-timed ring for globally-asynchronous locally-synchronous systems.
Proc. of the Ninth IEEE Int. Symp. on Asynchronous Circuits and Systems,

Vancouver, 2003.
pp. 141-150.

[15] S.Carta L.Benini L.Raffo F.Angiolini, P.Meloni.
Contrasting a noc and a traditional interconnect fabric with layout aware-

ness.
DATE, 2006.
pp.1-6.

[16] F.Boekhorst.
Ambient intelligence, the next paradigm for consumer electronics: How will

it affect silicon?
ISSCC, February 2002.
Vol.1 ,pp.28-31.

[17] P.Thiran G. De Micheli F.Worm, P.Ienne.
A robust self-calibrating transmission scheme for on-chip networks.
in IEEE Transactions on Very Large Scale Integration (VLSI) System, Jan.

2005.
Vol.13, no.1.

[18] J.M.Rabaey H.Zhang, V.George.
Low-swing on-chip signaling techniques: Effectiveness and robustness.
IEEE Trans. on VLSI Systems, June 2000.
Vol.8 nr.3, pp.264-272.

[19] R.Ho D.N. Jayasimha S.W. Keckler L.Peh J.D.Owens, W.J. Dally.
Research challenges for on-chip interconnection networks.
IEEE Micro, 2007.
pp.96-108.

[20] J.Duato J.Flich, S.Rodrigo.
An efficient implementation of distributed routing algorithms for nocs.
2nd IEEE Int. Symp. On Networks-on-Chip, 2008.

70

BIBLIOGRAPHY

[21] W.Wolf J.Xu.
Wave pipelining for application-specific networks-on-chips.
CASES02, October 2002.
pp.198-201.

[22] L.Benini.
Application-specific noc design.
Design Automation and Test in Europe Conf., 2006.
pp.1-5.

[23] G.De Micheli L.Benini.
Networks on chips: a new soc paradigm.
IEEE Computer, January 2002.
Vol.35, Issue 1, pp.70-78.

[24] A.L.Sangiovanni-Vincentelli L.P.Carloni, K.L.McMillan.
Theory of latency-insensitive design.
IEEE Trans. On CAD of ICs and Systems, September 2001.
Vol.20, nr.9, pp.1059-1076.

[25] L.Scheffer.
Methodologies and tools for pipelined on-chip interconnects.
Int. Conf. On Computer Design, 2002.
pp.152-157.

[26] N. McKeown.
Scheduling algorithms for input-queued cell switches, 1995.
PhD thesis, Univ. of California Berkeley.

[27] M.J.Karol.
Input versus output queuing on a space division packet switch.
IEEE Trans. on Communications, 1987.
COM-35(12), pp.1347-1356.

[28] C.Stahl-M.Piz M.Krstić, E.Grass.
System integration by request-driven gals design.
IEE Proc. Computers & Digital Techniques, September 2006.
Vol. 153, Issue 5, pp 362-372.

[29] A.Greiner P.Guerrier.
A generic architecture for on-chip packet switched interconnections.
Design, Automation and Testing in Europe DATE00, March 2000.
pp.250-256.

[30] K.Goossens P.Wielage.
Networks on silicon: Blessing or nightmare?
Proc. Of the Euromicro Symposium on Digital System Design DSD02,

September 2002.
pp.196-200.

[31] J.P.Soininen-M.Forsell M.Millberg J.Oeberg K.Tiensyrja A.Hemani
S.Kumar, A.Jantsch.

A network on chip architecture and design methodology.
IEEE Symp. on VLSI ISVLSI02, April 2002.
pp.105-112.

[32] M.Lajolo S.Medardoni, D.Bertozzi.

71

BIBLIOGRAPHY

Variation tolerant noc design by means of self-calibrating links.
Proc. of DATE 2008., March 2008.

[33] et al. S.Stergiou.
Xpipes lite: A synthesis oriented design flow for networks on chips.
Proc. of the Design, Automation and Test in Europe Conference, 2005.
pp. 1188-1193.

[34] S. W. Keckler V. Agarwal, M. S. Hrishikesh and D. Burger.
Clock rate versus ipc: The end of the road for conventional microarchitec-

tures.
in Proc. 27th Annu. Int. Symp. Computer Architecture, June 2000.
pp. 248-250.

[35] W.J.Dally and B.Towels.
Principles and practices of interconnection networks.
Morgan Kaufmann, 2004.

[36] B.Towles W.J.Dally.
Route packets, not wires: On-chip interconnection networks.
Design and Automation Conference DAC01, June 2001.
pp.684-689.

72

Chapter 5

Switches: Architecture,
Analysys and Optimization

5.1 Introduction

Networks-on-chip (NoCs) bring a packet-based communication paradigm to the
on-chip domain, and consist of a modular and scalable architecture extensively
relying on path segmentation. Their ability to tackle the scalability challenge
for on-chip communication and to relieve the interconnect delay bottleneck at
the architecture-level is generally accepted [12, 14].

At the same time, a few emerging issues still prevent NoC technology from
becoming mainstream. First, NoCs break down the long timing paths of state-
of-the-art interconnects in a number of hops that packets traverse on their way
to destination. This causes communication latency to become a serious concern
for system performance. Thus, design techniques for low-latency NoCs are being
devoted a lot of attention by the NoC community [1, 2, 3].

Second, power dissipation issues have grown to such importance that they
now constrain attainable performance. A multi-layer AMBA crossbar has been
showed in [12] to be still more area- and power-efficient than its NoC counterpart
(one order of magnitude), with most of the power drained by buffering resources
and by the clock tree[15]. Interestingly, in many test cases switches have been
showed to consume as much power as the sum of master and slave network
interfaces, due to the lower switching activity of these latter and to the lower
operating frequency of most NI front-ends[15].

Third, even if NoC capacitive loads and propagation delays can be controlled
much better than in shared busses, issues such as wiring congestion, link power
consumption and the need for placement-aware logic synthesis still have to be
explored to assess the feasibility of NoCs in forthcoming technology nodes.

The intricacies of nanoscale design are urging a paradigm shift in NoC
characterization frameworks. High-level performance and power models have
been long advocated for assessing NoC architectures and for key predictions
on the scalability properties of NoCs to future technologies[16, 18, 20]. The
questionable accuracy of these models has led some researchers to take an
implementation-oriented approach, presenting area, performance and power fig-
ures as a result of their effort investment on the backend synthesis flow[13, 21,

73

CHAPTER 5. SWITCHES: ARCHITECTURE, ANALYSYS AND

OPTIMIZATION

17]. These works generally trade-off the high level of accuracy of their results
with the restricted scope of their analysis. The comparative study in [11] is
an exception, although it compares the energy efficiency of very specific switch
architectures, which limits the generality of results. Moreover, these latter are
provided for a 90nm technology node.

This chapter takes the same implementation-oriented approach and sheds
light on the main architectural trade-offs that are at the basis of NoC switch
design in 65nm low-power technology. Our work leverages placement-aware
logic synthesis tools and goes through a two step analysis to provide backend
synthesis-proven insights in switch design. First, we accurately assess the delay,
area and power breakdown of traditional switches for packet-switched networks.
Then, we identify an architectural level tuning knob that allows us to specialize
a generic switch architecture for specific design objectives such as low-latency
or low-power.

We identify control and datapath decoupling as such tuning knob, and ac-
count for the buffering, switching and flow-control implications of changing the
propagation delay of control signals through a mux-based crossbar into an ini-
tial latency for path establishment inside the switch. Since configuration signals
can be kept stable throughout the entire connection lifetime, a significant slack
in data-path operation is now exposed, which can be exploited in two ways:
applying gate-level netlist transformations to cut down on power consumption
or increasing data-path operating frequency with respect to the coupled archi-
tecture. The connection life-time depends on the path allocation granularity,
and can be as short as the time for single packet traversal, or as long as the time
to propagate multi-packet messages. In order to overcome the low resource uti-
lization and routing congestion of long-lasting connections used in traditional
circuit-switching solutions, our analysis targets packet-level circuit switching,
wherein circuits are established on a per-(equivalent) packet basis.

This chapter is structured as follows. Section 5.2 illustrates our mod-
elling and simulation environment and the deployed synthesis flow. Section 5.3
presents the basic switching fabric to which control and datapath decoupling
is applied (Section 5.4). Section 5.5 describes and analyzes switch implemen-
tations spanning the area-latency-power trade-off. Conclusions are drawn in
Section 5.6.

5.2 Modelling and synthesis flow

Our modelling, characterization and back-end synthesis flow of NoC switches
is illustrated in Fig.5.1. The entire system is modelled in SystemC at the cy-
cle accurate level and functional traffic is injected by means of programmable
generators of transactions compliant with the OCP2.0 protocol specification.

The slave side of the OCP connection is represented by a network interface
front-end, which converts the OCP protocol into the network protocol and per-
forms clock domain crossing. Packets are injected into the switches by means of
a NI back-end, which was made available in two variants: one supports packet
switching, while the other one supports packet-level circuit-switching.

Switches were modelled at the RTL-equivalent level of accuracy. See section
5.5.1 for the detailed description of the switch architectural variants. In order
to better focus our analysis, only switches were synthesized. We used a 65nm

74

5.3. BASIC SWITCHING FABRIC

SYSTEMC MODELLING FRAMEWORK

.

.

.

.

.

.

.

NI

END

FRONT

NI

END

BACK

.

.

.

.

.

.

.

.

NI

END

FRONT

NI

END

BACK
IN0 OUT0

PLACEMENT−AWARE
LOGIC SYNTHESIS

OCP

TRAFFIC

GENERATOR

OCP

MEMORY

(RTL−EQUIVALENT)

SWITCH

(NETLIST, SPEF, SDC)

TIMING PROPERTIES
VALIDATION

(SDF)

NETLIST

SWITCHING ACTIVITY REPORT

POWER ANALYSIS

VERILOG SIMULATION

.

Figure 5.1: Modelling and synthesis framework of NoC switches.

standard cell technology library provided by a partner foundry, featuring low
threshold voltages and optimized for low-power. Although the traditional flow
for standard cell design features logic synthesis and placement as two clearly
decoupled stages, previous work such as [13] indicates that this assumption
is fundamentally inadequate for the 65nm node, in particular due to wireload
model inconsistencies. We therefore reverted to placement-aware logic synthe-
sis tools (Synopsys Physical Compiler), which minimize the risk of significant
performance losses in post place-and-route netlists and which normally guaran-
tee reasonable placement runtimes. The final resulting netlist already considers
placement-related effects. Such netlist was then simulated in Modelsim. Input
patterns were provided by the same SystemC test infrastructure of the RTL
models by deploying the Modelsim interface for mixed Verilog-SystemC simula-
tion. Therefore, the same traffic patterns were used both for performance and
for power characterizations. HDL simulation includes accurate delay models
generated by Synopsys PrimeTime, which also validates timing properties of
the synthesized netlists. It also accounts for estimated parasitics (SPEF file)
and design constraints (SDC file). Finally, a switching activity report was gen-
erated, and fed to Synopsys PrimePower, which combines it with SPEF and
SDC information to get power/energy profiles.

5.3 Basic switching fabric

We started our analysis by modelling a basic switching fabric for packet-switched
networks. It implements a 2-cycle-latency (one for switch operation and one for

75

CHAPTER 5. SWITCHES: ARCHITECTURE, ANALYSYS AND

OPTIMIZATION

traversing the ouput link), output-queued wormhole-switched router support-
ing fixed priority arbitration on the output lines. Allocation of inputs towards
specific output ports is handled by an allocator module for each output port.
Access to output ports is granted until a tail flit arrives. Arbitration is subse-
quently performed upon receipt of a header flit which also carries desired output
port information (source-based static routing). Link (and flit) width is 32 bits.

Finally, a flow control scheme with stall/go semantics was implemented[22].
It is a simple realization of an on/off flow control protocol, requiring just two
control wires: one going forward and flagging data availability, and one going
backward and signaling either a condition of buffer filled (stall) or of buffer free
(go). For this protocol, recovery from congestion is instantaneous.

Logic synthesis of the switch proved that its critical path results from the
interaction of the control path with the datapath. Most of the clock cycle time
is spent in driving the crossbar selection signals. The signal delay through the
allocator and the crossbar in fact takes 55% of the critical path in a 4x4 switch.
Another 15% is spent in buffering and flow control logic, while the remaining
delay is due to the clock propagation time of the input sampling stage (21%)
and to the library setup time for the output flip-flop (about 9%). The maximum
operating frequency for the 4x4 switch was found to be around 1GHz, to cut
down on it. The basic idea consists of decoupling the control-path and the
data-path of a switch, therefore analyzing their impact on switch performance
separately. We will therefore prove that the switch critical path is a result of the
control-path and of its interaction with the data-path. At this stage, multiple
conflicting requests from the switch input ports must be arbitrated, and most
of the clock cycle time is spent in driving the crossbar selection signals.

5.4 Control and datapath decoupling

Since the data-path configuration in a switch stays the same during the entire
packet traversal time but the arbitration and crossbar multiplexer selection de-
lays impact the switch critical path at each clock cycle, we decided to decouple
the datapath and the control path. For each input packet, the switch arbiter
is invoked once, thus resulting in an initial arbitration latency for path setup
through the data-path. The concept architecture is illustrated in Fig.5.2. Please
note that the control signals can be driven by the upstream arbiter or directly
by the initiator network interface depending on the network protocol. Since
the focus of this work is not on the efficiency of the path setup protocol and
of its implementation (which we view as a further optimization step), but on
the core switch architecture, we assumed a setup mechanism based on control
signals. An initiator device drives a request line of the arbiter, at the same time
indicating the desired output port and the data input port. Such information
are easily available in statically-routed networks. In modelling the decoupled
switch architecture, we reused as many components as possible from the basic
switching fabric and just changed small details (e.g., tail recognition logic, ar-
biter module interface). Blocks implementing core functions stay the same in
both implementations (e.g., flow control, arbitration algorithm, crossbar).

By first synthesizing the data-path of the decoupled switch architecture, we
found the critical path breakdown illustrated in Fig.5.3 as a function of switch
arity. The decoupling from the control path led to largely reduced critical paths

76

5.4. CONTROL AND DATAPATH DECOUPLING

INPUT FLIT

CONTROL

FLOW

CONTROL

FLOW

ARBITER

FLOW CONTROL
MUX

CROSSBAR

STALLSTALL

DATA PATH

CONTROL PATH

Request

Output port

Grant

OUTPUT FLIT

Figure 5.2: Switch architecture with decoupled datapath and control path.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

4x4 5x5 6x6 8x8 10x10

D
e

la
y
 [
n

s
]

LibrarySetUpTime

FlowControl_OUT

Crossbar

FlowControl_IN

Figure 5.3: Critical path in the data plane

(52% improvement for a 4x4 switch) in the data plane. However, we observed
that a 5x5 switch, generally deployed to implement mesh topologies, hardly
achieves 2 GHz operating frequency while a 10x10 switch hardly works at 1.5
GHz. Although such speeds are well beyond those achievable by NoC prototypes
in state-of-the-art technologies, we would have expected a higher acceleration
of the data-path. The reason for this lies in the significant fraction of the data-
path delay drained by flow control logic (66%). In a 4x4 switch, crossbar delay
accounts only for 19%, while the remaining 15% can be ascribed to the library
setup time. The relative contribution of the crossbar delay grows to 31% for a
10x10 switch, wherein flow control still accounts for 59%.

With stall/go, two-slot buffer stages are needed at switch inputs and outputs
for the purpose of flow control: one slot is used for normal flit propagation
and the other one is a back-up slot needed to store incoming flits before the
backpressure mechanism stops the upstream switch propagation of trailing flits.
More buffer slots can be added for performance gains, but are not required
for functionality. Although simplified, this buffering architecture requires some

77

CHAPTER 5. SWITCHES: ARCHITECTURE, ANALYSYS AND

OPTIMIZATION

control logic whose delay adds up to the data-path delay and determines the
performance limitations we have observed. Decoupling such delay from the
data-path is not as easy as for the arbitration logic, since flow control comes
into play on a flit-by-flit basis and not on a per-packet basis.

By synthesizing the new switch architecture, we found that the arbitration
delay almost reaches 1.2 ns for 10x10 switches (round-robin arbitration), and
is below 1 ns for switches smaller than 5x5. This means that if the data-
path can be clocked at 1,5 GHz, 2 equivalent data-path clock cycles are needed
for path establishment across the switch. We found this number to be pretty
independent of the switch arity. If the data-path can be operated at more than
2 GHz, the arbitration latency then grows to 3 cycles. We tested this up to 2,4
GHz. These values have been derived for a round-robin arbitration stage, and
more relaxed timing constraints have been derived when fixed priority policies
are implemented.

Finally, our synthesis results indicated that an arbitration round can always
be carried out within 2 data-path equivalent clock cycles, and this number
proved almost independent of the switch arity. This means that the initial
latency for path setup through the switch can be reduced to just 2 data-path
clock cycles.

5.5 Spanning the area-latency-power trade-off

With respect to the operating frequency of the basic switching fabric, the data-
path of the decoupled architecture now exposes a significant slack. This latter
can be exploited in a number of implementation variants spanning the latency-
power trade-off. At one side of the design space, we can come up with a latency-
optimized solution, which translates the slack into a higher operating frequency,
much higher than the speed of the networked communication actors, so that
the penalty cycles for across-network communication can be masked by shorter
network clock periods. System interconnect overclocking with respect to com-
putation and storage elements speed is a typical design option of NoC-based
systems, in that NoC path segmentation allows to achieve very high operating
frequencies. On the contrary, state-of-the-art interconnects either suffer from
the delay scalability limitations of crossbars or introduce protocols allowing the
insertion of retiming stages in a transparent way. This system interconnect
overcloking solution however comes at a significant power cost.

At the opposite extreme of the design space stands a solution wherein the
slack is exploited to infer low-power switch implementations. In this latter
case, an incremental run of the synthesis tool with relaxed timing constraints
is able to perform power-driven gate-level netlist transformations resulting in
more power-efficient designs for the same target performance, as already proved
for simpler designs in [19].

5.5.1 Selection of switch architectures

In order to prove and explore in detail the design flexibility made available by
decoupled switch architectures, we selected a few representative implementation
variants in the power-latency design space. Without lack of generality, a 4x4
switch will be hereafter assumed.

78

5.5. SPANNING THE AREA-LATENCY-POWER TRADE-OFF

First, we consider the initial switching fabric described in Section 5.3, i.e., a
coupled architecture suitable for packet-switched networks deploying wormhole
switching. This solution heavily relies on buffering to sustain performance. Our
in-house experience suggested to implement 6 slot buffers for each output port of
the output-buffered switch. Based on our initial critical path analysis, we chose
a 1GHz operating frequency for this switch, which will be hereafter referred
to as packet-switching (PS). OCP cores (processing cores and memories) were
assumed to be working at 500MHz, with clock domain crossing implemented
inside network interfaces (NIs).

Second, we consider the low-latency corner of the design space, i.e. a de-
coupled architecture where the datapath is operated at a speed of 2 GHz. The
control path (i.e., the arbitration logic) takes 2 datapath equivalent clock cycles
to execute, and therefore is operated at 1GHz. For a fair analysis, we opted for
the architectural solution illustrated in Fig.5.2, implementing stall/go flow con-
trol stages at switch inputs and outputs, since these stages are there also in the
PS variant. In this case, however, we just implemented the minimum buffering
requirements for correct functionality (i.e., 2 slots), since circuit-switching is
deployed. In particular, we opted for packet-level circuit switching (PLCS), i.e.,
we setup and tear-down a connection inside the switch for the transmission of a
PS-equivalent packet. Circuit management is handled as illustrated in Fig.5.2.

Third, we consider the low-power design corner, i.e. a decoupled architecture
where the datapath is operated at the relaxed frequency of 1 GHz, and so is
the control path. The incremental synthesis run triggering power-driven netlist
transformations was performed. Also this solution has the same flow control
architecture and connection management protocol of Fig.5.2. An overview of
the selected implementation variants is reported in Table 5.1.

Switch variant OCP freq. Datapath freq. Control Path freq.

PS 500MHz 1GHz 1GHz

LowLatPLCS 500MHz 2GHz 1GHz

LowPowPLCS 500MHz 1GHz 1GHz

Table 5.1: Switch implementation variants.

5.5.2 Area comparative analysis

As can be observed from Fig.5.4, PS consumes more area than other solutions
for at least two reasons: it deploys 6-slot buffers for each output port and it
consequently features buffer control logic impacting area. The contribution of
the sequential logic of course decreases for LowPowPLCS and LowLatPLCS,
which just feature 2-slot buffers at the input and output ports. LowLatPLCS
takes in general more area than LowPowPLCS, since the datapath has been
synthesized with tight timing requirements, which have been met at the cost of
area.

5.5.3 Performance comparative analysis

We simulated the system in Fig.5.1 with the different switch variants. Interest-
ingly, we took NI-related effects into account. At first, we monitored transaction

79

CHAPTER 5. SWITCHES: ARCHITECTURE, ANALYSYS AND

OPTIMIZATION

0

5000

10000

15000

20000

25000

30000

LowPowPLCS LowLatPLCS PackSwitch

T
o

ta
l

A
re

a
 [

u
m

^
u

m
]

Noncombinational

Combinational

Figure 5.4: Area breakdown.

latency. We measured it for burst write transactions, from the time the first
write data word is sampled at the master NI front-end, to the time the same
word is driven to the OCP memory from the slave NI front-end. This exper-
iment is independent of packet length. For PS, such latency amounts to 10
network clock cycles: 2 in the master NI, 1 in the switch, 2 in switch input and
output links, and 5 in the slave NI (depacketing and synchronization with the
OCP clock). For LowPowPLCS, transaction latency grows to 14 network clock
cycles, due to the circuit setup overhead through the switch. Even LowLat-
PLCS exhibits 14 network cycles: it features one more cycle in the arbiter than
LowPowPLCS (since the data-path now operates at a higher speed) but 1 cycle
less in the slave NI for the easier alignment of its fast clock with the OCP one.

The above network cycles have different clock periods, and a useful insight
consists of expressing them in terms of the OCP clock period. In doing this
conversion, we also sum up the handshaking time spent in the TGEN-master
NI and slave NI-Memory OCP links. Final results indicate an overall transac-
tion latency of 6 OCP clock cycles for LowLatPLCS, 8 OCP cycles for PS and
10 OCP cycles for LowPowPLCS. This meets our expectations: the low latency
solution masks its setup time overhead with the higher frequency of its dat-
apath (which explains the difference with LowPowPLCS latency), and brings
additional performance improvements for the same reason. Scalability analysis
of these values with circuit length and setup time is left for future work.

A summary of latency figures is reported in Table 5.2.

Implementation variant Network Cycles Network cycle period OCP cycles

PS 10 1ns 8

LowLatPLCS 14 0.5ns 6

LowPowPLCS 14 1ns 10

Table 5.2: Latency figures.

As an additional performance metric, we monitored the execution time spent
by OCP traffic generators (TGENs) to complete a set of predefined OCP trans-
actions. This metric accounts for the fact that the master OCP interface only

80

5.5. SPANNING THE AREA-LATENCY-POWER TRADE-OFF

182

184

186

188

190

192

194

196

198

200

BL 100 IW 5 BL 100 IW100 BL 100 IW 10000

T
G

E
N

 e
x

e
c

u
ti

o
n

 t
im

e
 (

O
C

P
 c

lo
c

k
 c

y
c

le
s

)
LowPowerPLCS

LowLatencyPLCS

PacketSwitching

Figure 5.5: Execution time results.

needs to wait untill one OCP transaction has been accepted by the network.
This is relevant in particular for posted writes, which do not force the OCP
master interface to wait till the write is actually carried out by the memory
and its success is notified back. The more buffering is implemented through
the network, the lower the blocking time of the master OCP interface, and the
lower the execution time of the TGEN. Fig.5.5 shows the execution time for one
TGEN to carry out 10 burst write transactions (each consisting of 100 burst
beats) with increasing inter-burst idle waiting time (IW). Many other traffic
patterns were simulated, but did not provide different results with respect to
those simulated for Fig.5.5.

When the IW is large, there are no tail effects between the end of one
transaction and the beginning of the following one. Moreover, since the memory
throughput is rather slow compared to the network one (it works at 500MHz
and features 1 wait state), at regime the behavior is the same for all solutions:
1 data word is accepted by the master NI front-end every 2 OCP clock cycles,
since the internal network pipeline from source to destination is full and the
data transfer beat is determined by memory speed. The only difference lies
in the ability of each solution to perform the initial transient for each burst
efficiently. In particular, LowLatPLCS and PS show the same behavior, in
that in spite of their different speeds and network protocols they can consume
the same number of data words from TGEN at max speed (1 word per OCP
clock cycle) before achieving the regime operating condition. On the contrary,
LowPowPLCS saturates much faster and therefore its TGEN takes longer to
execute.

When the IW reduces significantly, then tail effects come into play, which
are better handled by LowLatPLCS. In particular, the time that the LowLat-
PLCS solution spends in setting up the circuit leaves enough time for flits of
the previous packet to move further down the network pipeline, and this allows
to consume more write data words of the next burst transaction at max speed.
Then, the usual saturation regime takes place. On the contrary, the unmasked

81

CHAPTER 5. SWITCHES: ARCHITECTURE, ANALYSYS AND

OPTIMIZATION

0,00E+000

2,00E-003

4,00E-003

6,00E-003

8,00E-003

1,00E-002

1,20E-002

1,40E-002

1,60E-002

1,80E-002

BL 8 IW 5 BL 8 IW 10 BL 8 IW 100 BL 100 IW 5 BL 100 IW 100

T
o

ta
l
P

o
w

e
r

[W
]

LowPowPLCS

PackSwitch

LowLatPLCS

Figure 5.6: Power consumption analysis.

setup time in LowPowPLCS slows down its execution and leaves bubbles in the
memory input buffer. This set of experiments shows that (i) high transmis-
sion rates are the best operating regime for LowLatPLCS and that (ii) further
performance differentiation would need a removal of the slave bottleneck. Ex-
periments characterizing switch behavior under congestion are omitted for lack
of space, but did not introduce significant novelties to the picture. The same
holds for the power characterization that follows.

5.5.4 Power/energy comparative analysis

Following the power characterization flow illustrated in Fig.5.1, we profiled both
stand-by power (no network transactions) as well as operational power. As
regards stand-by power, we found that LowPowPLCS consumes 37% less total
power than PS (7.43mW against 11.8mW). This is due to the lower number
of buffering resources while working at the same operating frequency, and (to
a smaller extent) to the power optimizations performed by the synthesis tool
on the data-path. In contrast, LowLatPLCS consumes only 10.6% more power
than PS. Again, this is due to the lower number of buffering resources and to
the fact that only the data-path is operated at a higher frequency. Finally, we
measured that leakage power accounts in all switch variants at most for 0.5% of
total power. This is due to the use of an effective low-power technology library.

Fig.5.6 reports the operational power consumed by the switch for different
traffic patterns injected by the TGEN. We observe that LowPowPLCS is always
the most power-efficient implementation, followed by PS and by LowLatPLCS.
We observe that as the IW increases, power decreases and tends asymptotically
to the stand-by power. Interestingly, we observe that the power gap between
LowPowPLCS and PS (on average 40.11% power savings) is much larger than
the one between PS and LowLatPLCS. In spite of the worst performance in-
curred by LowPowPLCS, its total energy (Fig.5.7) is still always below that of
other solutions, saving 38% energy on average with respect to packet switching.
With short IW, the performance benefits of LowLatPLCS counterbalance its
power overhead and determine 6.23% energy savings. When the IW increases,
we observe performance balancing between LowLatPLCS and PS, therefore the
higher power incurred by LowLatPLCS determines also an energy overhead.

82

5.5. SPANNING THE AREA-LATENCY-POWER TRADE-OFF

0

50

100

150

200

250

300

350

400

BL 8 IW 5 BL 8 IW 10 BL 8 IW 100 BL 100 IW 5 BL 100 IW

100

T
o

ta
l

E
n

e
rg

y
 [

n
J

]
LowPowPLCS

PackSwitch

LowLatPLCS

Figure 5.7: Energy dissipation analysis.

Total Power

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LowPowPLCS PS LowLatPLCS

Arbiter Crossbar Flow_control Out Flow_control In

Leakage Power

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LowPowPLCS PS LowLatPLCS

Arbiter Crossbar Flow_control Out Flow_control In

Figure 5.8: Power breakdown.

These results highlight the potentials of the LowPowPLCS solution when con-
sidering a trade-off between performance, area and power quality metrics, while
raise some skepticism on LowLatPLCS, at least for these memory-dominated
test conditions. Experiments on congestion showed power and energy figures in
agreement with those just illustrated, and were not reported.

We illustrate in Fig.5.8 the total and leakage power breakdown for all the
switch variants. Since dynamic power dominates total power, its breakdown is
similar to that of total power and hence is not reported. In PS we observe that
buffering resources at the input (for flow control) and mostly at the output stage
(for flow control and performance) dominate overall power consumption. In
LowPowPLCS flow control stages are again the most power-hungry components
(80%),while the remaining 20% is consumed by the arbiter module. Almost the
same behaviour was measured for LowLatPLCS, with the only difference that
the arbiter’s relative contribution to power decreases since the datapath is now
clocked two times faster. Please note that the crossbar contribution to total
power is always almost negligible.

83

CHAPTER 5. SWITCHES: ARCHITECTURE, ANALYSYS AND

OPTIMIZATION

As regards leakage power, we found a precise correlation between the area
breakdown and the leakage power breakdown, which denotes the need for low-
area footprints in leakage-sensitive technologies. It is worth observing that leak-
age of one sub-module may heavily depend on the specific synthesis constraints
for that component, as the leakage contributions of the crossbar in LowPow-
PLCS and LowLatPLCS clearly indicate. At the same time, while it is true
that the arbitration control stage incurs a small fraction of the switch dynamic
power, care must be devoted to arbitrarily increasing the complexity of the
control logic due to its impact on leakage power.

5.6 Conclusions

This chapter explores the performance,area and power implications of decou-
pling control path from datapath in NoC switches. In particular, it was showed
how effectively decoupled switch architectures can be used to span the power-
latency trade-off. We intended to point out quality metrics of different switch
variants strictly associated with the internal switch architecture. The depen-
dence of such metrics on other external factors (e.g., circuit setup time and
protocol, network size, end-to-end flow control efficiency) was intentionally left
out of this work.

84

Bibliography

[1] J.Kim et al.,
”A low latency router supporting adaptivity for on-chip interconnects”,
DAC, pp.559-564, 2005.

[2] S.Stergiou et al.,
”Xpipes Lite: a Synthesis Oriented Design Library for Networks on Chips”,
DAC, pp.559-564, 2005.

[3] J.Kim et al.,
”A Gracefully Degrading and Energy-Efficient Modular Router Architec-

ture for On-Chip Networks”,
Int.Symp.on Computer Architecture, pp.4-15, 2006.

[4] Rijpkema, E. et al.,
Trade-offs in the design of a router with both guaranteed and best-effort

services for networks on chip,
in Computers and Digital Techniques, IEE Proceedings,
Volume 150, Issue 5, 22 Sept. 2003 Page(s): 294-302.

[5] S.Sathe, D.Wiklund, D.Liu,
Design of a switching node (router) for on-chip networks.
Int. Conf. on ASIC, pp.75-78, 2003.

[6] D.Wiklund, D.Liu,
SoCBUS: Switched network on chip for hard real time embedded systems,
in Proc. of IPDPS, 2003, pp.78a.

[7] P.T.Wolkotte et al.
An energy-efficient reconfigurable circuit-switched network-on-chip,
in Proc. of IPDPS, 2005, pp.155a.

[8] A.Ahmadinia et al.,
A practical approach for circuit routing on dynamic reconfigurable devices,
in Proc. of RSP, 2005, pp.84-90.

[9] P.H.Pham, Y.Kumar, C.Kim,
High performance and area-efficient circuit-switched network on chip de-

sign,
in Proc. of CIT06, 2006.

[10] Q.Ye, J.Liu, L.R.Zheng,
Switch Design and Implementation for Network-on-Chip,
Conference on High Density Microsystem Design and Packaging and Com-

ponent Failure Analysis,
June 2005, pp.1-7.

85

BIBLIOGRAPHY

[11] A.Banerjee, R.Mullins, S.Moore,
A power and energy exploration of network-on-chip architectures,
in International Symposium on Networks-on-Chip, 2007.
May 2007, pp.163-172.

[12] F.Angiolini, P.Meloni, S.Carta, L.Benini, L.Raffo,
Contrasting a NoC and a traditional interconnect fabric with layout aware-

ness,
in Design Automation and Test in Europe Conference,
2006, pp.124-129.

[13] A.Pullini et al.,
NoC design and implementation in 65nm technology,
Int. Symposium on Networks-on-Chip,
2007, pp.273-282.

[14] F.Steenhof et al.,
Networks on Chips for high-end consumer-electronics TV system architec-

tures,
DATE, 2006, pp.148-153.

[15] D.Bertozzi,
Network interface architecture and design issues,
book chapter from Networks on Chips: Technology and Tools,
Morgan Kaufmann, 2006, San Francisco (USA).

[16] H.Wang, X.Zhu, L.S.Peh, S.Malik,
Orion: a power-performance simulator for interconnection networks,
in ACM/IEEE MICRO, Nov. 2002, pp.294-305.

[17] K.Lee, S.J.Lee, H.J.Yoo,
Low-power network-on-chip for high-performance SoC design,
IEEE Transactions on VLSI Systems, vol.14, no. 2, pp.148-160, 2006.

[18] X.Chen, L.S.Peh,
Leakage power modelling and optimization in interconnection networks,
ISLPED 2003, pp.90-95.

[19] S.Medardoni, D.Bertozzi, E.Macii,
Power-optimal RTL arithmetic unit soft-macro selection strategy for

leakage-sensitive technologies,
to be presented at ISLPED 2007.

[20] J.Xi, P.Zhong,
A transaction-level NoC simulation platform with architecture-level dy-

namic and leakage energy models,
GLSVLSI 2006, pp. 341-344.

[21] N.Banerjee, P.Vellanki, K.S.Chatha,
A power and performance model for network-on-chip architectures,
DATE 2004, pag.21250.

[22] A.Pullini et al.,
”Fault tolerance overhead in network-on-chip flow control schemes”,
SBCCI, pp.224-229, 2005.

86

Chapter 6

Network Interface:
Architecture, Analysys and
Optimization

With the advent of multi-processor system-on-chip (MPSoC) technology, com-
putation efficiency can be achieved by combining multiple programmable proces-
sors within a multicore system, hence only marginally impacting programma-
bility and configurability. Relevant examples thereof come from commercial
products both in the high-performance microprocessor domain [1] and in the
embedded computing domain with tighter optimization constraints [2, 3].

Perhaps the most daunting challenge to make MPSoC technology main-
stream is to realize the enormous bandwidth capacities and stringent latency
requirements when interconnecting a large number of processing cores. This task
is on burden of the global intrachip communication infrastructure. Networks-
on-Chip are a promising solution for designing scalable communication architec-
tures for MPSoCs, featuring better modularity and design predictability when
compared to bus based systems.

Although preliminary analysis frameworks have pointed out the performance
enhancements achievable by on-chip networks [4], the area concern for NoC
implementation was raised by many works in the open literature. For instance,
it was showed in [4] that a NoC architecture for a 30 core system takes one
order of magnitude more cell area than that of a state-of-the-art multi-layer
interconnect. In terms of floorplan area, the increase can be as large as a few
tens of squared millimiters.

It should be observed that in realistic NoC architectures, network interfaces
(NI) play a significant role in determining overall NoC area. In [5], a TV com-
panion chip was redesigned with a NoC as the interconnect fabric, and 78% of
increase in chip area was proved to come from the NIs. In the χpipes based
system in [4], more than half of the NoC area is due to NIs. Finally, these
network components should come with low area footprint, since the size of IP
modules attached to them is relatively small.

Network interface sharing could be a viable option to reduce the area over-
head of these components. The most common approach consists of attaching
multiple cores to the same NI, thus sharing the same input port to the net-

87

CHAPTER 6. NETWORK INTERFACE: ARCHITECTURE, ANALYSYS

AND OPTIMIZATION

work (see for instance [6]). This approach involves replication of the buffering
resources in the NI, thus leading to an increase of area which hardly justifies
this design choice. In fact, trusting published reports, buffers can account for
more than 30% of the NI area. Moreover, the replication of buffering resources
increases the complexity of buffer control logic (e.g., scheduling), thus resulting
in a reduction of the maximum operating frequency or in an increase of NI la-
tency. The problem can be relieved as in [6] by infering custom-made hardware
FIFOs at the cost of flexibility. Other approaches delve into the intricacies of
NI design trying to reduce its complexity [7]. However, this solution can be
successful only up to a certain extent, since the support for processing cores
with advanced communication capabilities (e.g., multiple oustanding transac-
tions, out-of-order completion, quality of service guarantees) requires complex
NI architectures anyway.

This chapter advocates for a more radical solution preserving the flexibil-
ity of fully synthesized architectures. We propose a network interface sharing
architecture wherein the entire NI resources (including buffering) are shared
among a cluster of processing cores or communication targets. We design traffic
merging and splitting modules for this purpose, which interleave the different
traffic flows on a unique network interface. While potentially resulting in more
area efficient implementations, this solution needs to preserve compliance with
end-to-end communication protocols linking network interfaces with commu-
nicating cores. The work focuses on the Open Core Protocol (OCP) [25], a
standard socket interface for industry-relevant MPSoCs, and proves the feasi-
bility of traffic merging and splitting in this context.

Moreover we shows that by devising proper optimization techniques at the
merging and splitting modules, NI sharing outperforms a pure serialization of
conflicting network access patterns. Moreover, system-level effects associated
with the presence of global slave bottlenecks or physical-level effects associated
with a higher achievable operating frequency (due to a lower switch radix) may
mask the further level of arbitration introduced by traffic mergers and splitters.
Finally, this work assesses the non-trivial area-performance trade-off spanned
by our architecture based on NI sharing in an application-specific as well as in
a general purpose scenario.

Design guidelines for a traffic merger and splitter are analysed in Section
6.1. Then, architecture details and related optimizations follow in Sections
6.2 and 6.3, respectively. Synthesis results are illustrated in Section 6.4. Basic
performance tests follow in Section 6.5 while a system-level analysis is illustrated
in Section 6.6.

6.1 Design requirements

Fig.6.1 illustrates the concept architecture of a traffic merger, which merges
traffic flows coming from different initiator cores. A similar scheme can be
applied to group a number of target cores, thus allowing them to share a unique
network interface. The architecture block required for this purpose is denoted
as traffic splitter from here on. The main requirements when designing a traffic
merger (splitter) are as follows:

- Preserving compliance to the point-to-point protocol. Communi-
cating cores are typically wrapped in such a way that they are connected to the

88

6.1. DESIGN REQUIREMENTS

NI

INportProcessor1

Buffering

MUX

ProcessorN

FSM

Network

Interface

Network

NI

INportProcessor1

Buffering

MUX

ProcessorN

FSM

Network

Interface

Network

Figure 6.1: Concept network interface architecture

network via standard point-to-point communication protocols (e.g., OCP, AXI,
DTL). Mergers and splitters have to be inserted on the physical point-to-point
link in a transparent way with respect to the protocol, since traffic merging
and splitting are handled at a lower level of abstraction than that specified by
the standard interface sockets. As an example, when an OCP master interface
intends to start a new command but looses arbitration to access the shared net-
work interface, it must not be aware of this and the blocking condition should
be signaled as the unavailability of the OCP slave interface to process a new
command. In practice, this can be achieved by the merger driving the SCmdAc-
cept signal low for that master until the network interface becomes available.
Without lack of generality, the OCP protocol (revision 2.1) will be hereafter
used as the reference point-to-point communication protocol.

- Providing different levels of support for multiple outstanding
transactions. In order to relieve the performance overhead induced by NI
sharing, multiple outstanding transactions could be supported. Even when the
processor cores do not support multiple outstanding transactions, the cluster of
cores sharing the same NI appears as a single core which is capable of them. Ob-
viously, mergers and splitters should support multiple outstanding transactions
only if the network interface supports them. Unfortunately, network interfaces
usually reflect processor core complexity, and if cores are blocking on read trans-
actions, the corresponding NI will not provide the support for more advanced
communication features not to overdesign the system. In this work, we focus
on a network interface architecture which supports multiple outstanding write
transactions but a single oustanding read transaction. As a consequence, these
are also the communication capabilities supported by our mergers and splitters.
As will be proved later on, a few simple optimizations are enough to break
the serial dependency between conflicting transactions from different processor
cores in a cluster.

- Minimization of area and delay overhead. Area consumption depends
on the level of support for multiple outstanding transactions and on the number
of states in the FSM. The requirement is that the area of a traffic merger or
splitter be less than that of a network interface, thus making NI sharing cost
effective. As Fig.6.2 indicates, mergers (and splitters) might turn out to be
particularly area demanding since they cannot handle the OCP signaling from

89

CHAPTER 6. NETWORK INTERFACE: ARCHITECTURE, ANALYSYS

AND OPTIMIZATION

up_n

up_0

up_1

up_n

up_0

up_1

N

I

N

I

MData

MBurstSingleReq

MCmd

MAddress

Req

FSM

Res

FSM

Sel_0

Sel_0

Sel_1

Sel_1

MRespAccept

SCmdAccept

SDataAccept

SData

SResp

SDataLast

ARBITER

MData

MBurstSingleReq

MCmd

MAddress

Req

FSM

Res

FSM

Sel_0

Sel_0

Sel_1

Sel_1

MRespAccept

SCmdAccept

SDataAccept

SData

SResp

SDataLast

ARBITER

Req

FSM

Res

FSM

Sel_0

Sel_0

Sel_1

Sel_1

MRespAccept

SCmdAccept

SDataAccept

SData

SResp

SDataLast

ARBITER

Figure 6.2: Detailed merger architecture

a processor core as a whole, but they have to handle both the request and the
response channel, and inside each channel they have to deal with handshaking
signals traveling in opposite directions. Moreover, since mergers break the tim-
ing path of point-to-point links, their critical path needs to be carefully designed
not to degrade the operating frequency of the processor cores and of the network
components.

- Scalability. Merger/splitter architecture needs to support a scalable number
of attachable cores that will be decided based on system performance analysis
(e.g., traffic patterns, real-time requirements).

6.2 NI sharing architectures

Before dwelving into the architecture details of the proposed merger and splitter,
an overview of the network interface architecture that will be used throughout
this chapter is provided. It is the interface module to the χpipes NoC fabric
[27].

6.2.1 Network interface architecture

The network interface is designed as a bridge between an OCP interface and
a NoC switching fabric. Its purposes are the synchronization between OCP
and network timing, (de-)packetization, the computation of routing informa-
tion (stored in a Look-Up Table, LUT) and flit buffering to improve perfor-
mance. Differentiated bridges exist between communication initiators and the

90

6.2. NI SHARING ARCHITECTURES

Figure 6.3: request FSM for the merger module

network (network interface initiator) and between communication targets and
the network (network interface target).

Each NI is split into two sub-modules: one for the request and one for the
response channel. These sub-modules are loosely coupled. Whenever a trans-
action requiring a response is processed by the request channel, the response
channel is notified; whenever the response is received, the request channel is
unblocked.

The request path of the NI is built around two registers (Fig.4.3, page 59):
one holds the transaction header (1 refresh per OCP transaction), while the
second one holds the payload (refreshed at each OCP burst beat). A set of
flits encodes the header register, followed by multiple sets of flits encoding a
snapshot of the payload register subsequent to a new burst beat. Header and
payload content is never allowed to mix, and padding is eventually used. Routing
information is attached to the header flit of a packet by checking the transaction
address against a LUT. The length of this field depends on maximum switch
radix and maximum number of hops in the specific network instance at hand.

The NI performs clock domain crossing, however in order to keep the archi-
tecture simple the ratio between network and core clock frequencies needs to be
an integer divider.

6.2.2 Merger architecture

The detailed architecture of the proposed traffic merger is illustrated in Fig.6.2.
Each OCP channel (request and response) is handled by a separate couple of
multiplexer/demultiplexer blocks and by a dedicated FSM generating the con-
trol signals for the (de-)multiplexing logic.

Control logic has been carefully optimized for minimum complexity, and the
resulting FSM is illustrated in Fig.6.3 (for the request path). The state is IDLE
whenever no commands are received on the MCmd lines from the processor
cores. However, the state stays the same also when single writes or single or
burst reads are performed. This is because for all these transactions only one
clock cycle is required by the network interface to store them. In fact, the
OCP protocol allows to generate a single address even for long burst transfers,
the addressing mechanism being implicit in the kind of burst transaction being
executed. In contrast, whenever burst write transactions need to be performed,
the merger switches to the BWR state, and the control signals are kept stable
until all the write data words have been stored into the NI. Then, the merger
goes back to the idle state. In essence, in the idle state an arbitration mechanism
is active, discriminating between multiple requests from the processor cores. A
fixed priority arbitration is currently supported, even though the extension to
round robin is straightforward.

91

CHAPTER 6. NETWORK INTERFACE: ARCHITECTURE, ANALYSYS

AND OPTIMIZATION

NI accessNI access

1
N
I

A

R
B

1 1
2

3 OK

GoGo

1
N
I

A
R
B

2
2

3

2

OK

Pre-arbitrationPre-arbitration

1
N
I

A
R
B

2

3

2 1

STOP

NI access

1
N
I

A
R
B

1 1
2

3 OK

Arbitration

1
N
I

A
R
B

2
2

3 OK

Stall

1
N
I

A
R
B

2

3

1

STOP

Optimized

Original

Figure 6.4: Comparison between original and pre-arbitrated architecture

All other state machines (for the response path in the merger, for the request
and the response path in the splitter) also exhibit two states and have similar
characteristics, and hence are not reported here.

6.3 Optimizations

The network interface architecture we are targeting supports multiple oustand-
ing write transactions but only one pending read transaction. The support for
multiple outgoing reads would require a deep modification of the network inter-
face and is outside the scope of the chapter. However, since our on-chip network
supports posted writes, multiple posted writes could be performed while a read
transaction is pending. The merger might allow several cores with pending OCP
write transactions to access the NI while the ongoing high priority core is wait-
ing for response data of a read transaction previously stored by the NI. During
this state, other cores with pending OCP read transactions would be kept out of
the arbitration even though they had the highest priority. Once response data
is stored by the waiting processor core, then the normal arbitration priority is
restored. The support for this optimization involves the selector signals for the
request and the response paths (Fig.6.2) to drive different values. The request
path selector selects cores with pending OCP writes, which will be serialized
on the network interface based on their priority. The response path selector is
instead fixed at the value of the processor core with the pending read, since it
has to receive incoming data.

Another optimization was implemented in our merger architecture to effi-
ciently utilize the network interface. The original merger architecture features
the behavior in Fig.6.4. Assume that cores 1, 2 and 3 have pending OCP com-
mands. Following arbitration, the command of core 1 is processed. Because of
network congestion, the network interface might delay the assertion of the next
SCmdAccept. Meanwhile, the MCmd line between the arbiter and the NI is
idle since a new arbitration round can take place only on the next SCmdAccept
edge. When this latter is finally asserted, it takes a round trip delay before the
new MCmd line (the one of processor core 2) can be driven to the NI. In order

92

6.4. SYNTHESIS RESULTS

0,27

0,28

0,29

0,3

0,31

0,32

0,33

0,34

0,35

0,36

0,37

2 3 4 5

Number of attached cores

0

5000

10000

15000

20000

25000

30000

35000

Switch 5x5 Switch 3x3 NI_target NI_initiator Merger Splitter

Non Combinational

Combinational

C
ri
ti
c
a
l
P

a
th

 (
n
s
)

A
re

a
 (

u
m

2
)

(a) (b)

Figure 6.5: Synthesis results for the merger. (a) Critical path (b) Area

to avoid this delay overhead, the optimized scheme illustrated in Fig.6.4 was
implemented. Immediately after the transaction of core 1 is stored at the NI,
a new arbitration round takes place, so that the OCP signals of the next high
priority core immediately drive NI inputs. As a consequence, when SCmdAc-
cept will transition from low to high again, the new command is immediately
stored without any additional penalty. The inconvenience of this approach is
that if core 1 is the highest priority one, it cannot acquire the network inter-
face for two consecutive transactions in case of contention, since the NI will be
re-arbitrated to another waiting processor before a new command from core 1
can be driven. However, full exploitation of network resources was our primary
design objective.

Similar optimizations were implemented in the FSMs of the traffic splitter.
Here multiple target devices share the same network interface target. Again,
only one target core will be accessed for a read transaction at a time. However,
while a read transaction is taking place, all other target cores can be accessed for
write transactions. These optimizations reflect the NI capability to perform one
outstanding read transaction but multiple write-after-read transactions. Finally,
the same pre-arbitration mechanism was implemented in the splitter, allowing
prompt addressing of a new target core.

6.4 Synthesis results

Merger and splitter were synthesized with Synopsys Physical Compiler [26] (thus
accounting for placement effects during logic synthesis) to assess their critical
path and area, as well as the scalability of these parameters with an increasing
number of clustered cores. A 65nm STMicroelectronics technology library was
used.

When synthesizing for maximum performance, the critical path results illus-
trated in Fig.6.5-a are obtained for the merger. Timing paths in the request and
in the response sections of the merger are quite close to each other, therefore
the critical path is in one module or in the other one depending on the number
of inputs and on the effectiveness of the synthesis heuristics. In any case, the
critical path is always in the control logic and does not involve the datapath.
Moreover, the critical path scales quite smoothly for the realistic cases anal-

93

CHAPTER 6. NETWORK INTERFACE: ARCHITECTURE, ANALYSYS

AND OPTIMIZATION

SWITCHup_1

up_2

Mem_1

Mem_2

Parallel
Topology

NI

NI

N
I

N
I SWITCHup_1

up_2

Mem_1

Mem_2SWITCHup_1

up_2

Mem_1

Mem_2

Parallel
Topology

NI

NI

N
I

N
I

SWITCH

up_1 M

E

R

G

E

R

Mem1

up_2

S

P

L

I

T

T

E

R
Mem2

Merger&splitter

N
I

N
I SWITCH

up_1 M

E

R

G

E

R

Mem1

up_2

S

P

L

I

T

T

E

R
Mem2

SWITCH

up_1 M

E

R

G

E

R

Mem1

up_2

S

P

L

I

T

T

E

R
Mem2

Merger&splitter

N
I

N
I

Merger

SWITCH

up_1

up_2

Mem_1

M

E

R

G

E

R

Mem_2

NI

N
I

N
I

Merger

SWITCH

up_1

up_2

Mem_1

M

E

R

G

E

R

Mem_2

NI

N
I

N
I SWITCH

up_1

up_2

Mem_1

M

E

R

G

E

R

Mem_2

SWITCH

up_1

up_2

Mem_1

M

E

R

G

E

R

Mem_2

NI

N
I

N
I

SWITCHup_1

up_2

Mem_1
S

P

L

I

T

T

E

R

Mem_2

Splitter

NI

N
I

N
I SWITCHup_1

up_2

Mem_1
S

P

L

I

T

T

E

R

Mem_2

SWITCHup_1

up_2

Mem_1
S

P

L

I

T

T

E

R

Mem_2

Splitter

NI

N
I

N
I

SWITCHUP_1

UP_2

MEMSWITCHUP_1

UP_2

MEM

Collapsed Slave

SWITCHUP MEM_1

MEM_2

SWITCHUP MEM_1

MEM_2

Collapsed Master

Figure 6.6: Simple test cases for performance characterization

ysed in Fig.6.5-a. As suggested by [24], realistic target frequencies for the OCP
section of the system might be around 500 MHz, while the network could be
operated at 1 GHz. By synthesizing the NI initiator under these conditions, the
critical path of its OCP frontend is 1.30ns and goes to the SData output. Even
assuming that in the response path of the merger the maximum delay of 0.37
ns is incurred (but it will be less than that, because this is the delay measured
in the control logic and for the highest number of attached cores), the total
delay would amount to 1,67ns. If we assume that the master OCP interface
does not implement combinational dependencies (hence its inputs are latched),
the total delay is just increased by a library setup time (around 0.10 ns) and
the worst case delay of the OCP section is well below the target 2ns delay in the
worst case. As a consequence, for a realistic target operating frequency of high-
performance systems, our traffic merger does not degrade the target frequency
of the OCP section. Similar considerations hold for the merger.

As regards the area overhead (Fig.6.5-b), the merger for a cluster of 2 at-
tached cores exhibits an area which is 1/6 that of the corresponding network
interface and 1/18 that of a 5x5 switch commonly found in 2D mesh topolo-
gies. This paves the way for significant area savings at network level, as will be
illustrated in section 6.6.

6.5 Basic performance tests

In order to characterize the performance degradation induced by our traffic con-
ditioning blocks and the effectiveness of the proposed optimizations, we set up a
few simple test cases which are reported in Fig.6.6. All test cases were modeled
in SystemC with clock cycle accuracy. Microprocessor cores were emulated by
means of OCP traffic generators, injecting parameterizable traffic patterns. Pa-
rameters include burst length of OCP read and/or write transactions and idle

94

6.5. BASIC PERFORMANCE TESTS

0

1

2

3

4

5

6

7

8

9

I.W.100

B.L 10

I.W.50

B.L 10

I.W.20

B.L 10

I.W.10

B.L 10

I.W.5

B.L 10
Idle Waits

Burst Length

PARALLEL

SPLITTER

COLLAPSED SL.

MERGER

COLLAPSED MA.

MERGER&SPLITTER

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Figure 6.7: Execution time results for the basic topologies

cycles between consecutive bursts. Target cores are instead SystemC models
of OCP memories with tunable access latency. Each memory is assumed to be
private to a correspondent processor core.

The fully parallel topology (see Fig.6.6) represents the ideal case: each pro-
cessor core accesses its private memory without any contention. We compare
this topology with the ones featuring a traffic splitter for the memories or a
traffic merger for the processor cores or both of them. Finally, we also anal-
ysed a collapsed topology wherein the two processor cores sharing the same NI
initiator are replaced by a single processor core generating twice the number
of transactions of the original cores. This test case will unveil whether using a
traffic merger is equivalent to a pure serialization of network accesses or not.
Similarly, a topology wherein the two memory cores are replaced by a single
memory core with doubled capacity is assessed.

We at first generated a mixed traffic pattern consisting of alternating read
and write transactions. Burst length was set to 10 data words (similar results
were obtained by varying this parameter), and a total of 500 read and 500 write
data words were transferred between each initiator core and its corresponding
private memory. Execution time results are reported in Fig.6.7, and are nor-
malized to the best case. We notice that as the idleness in the system increases,
execution times of the different solutions are very similar to each other, except
for the collapsed master case, which takes on average two times longer than
the parallel topology (as expected). With a lot of idleness in the system, net-
work accesses of the processor cores can be interleaved without any interference,
therefore the price to pay for having mergers and splitters is just the delay for
the first serialization, which is negligible.

As the number of idle waits decreases, we have a neat performance differen-
tiation. Interestingly, using a splitter does not impact performance significantly.
This is due to the support for write-after-read transactions at the splitter, and
hence is an effect of our optimizations. Clearly, using a traffic splitter is more
convenient than collapsing the two memory cores in a single memory of increased
capacity and with 2 split addressing regions.

This trend is even more apparent when we compare the topology with a
merger and the one with collapsed processor cores. The former significantly
outperforms the latter as the idleness in the system increases, indicating that
for realistic network access traces mergers do not vanish the advantages of par-

95

CHAPTER 6. NETWORK INTERFACE: ARCHITECTURE, ANALYSYS

AND OPTIMIZATION

5X5

5x5 5x5

5x55x5

pr1 pr2

up4

up3

up6

up5

up8

up7

shm

pr3 pr4 pr7 pr8

pr5 pr6

up2

up1

5X5

5x5 5x5

5x55x5

pr1 pr2

up4

up3

up6

up5

up8

up7

shm

pr3 pr4 pr7 pr8

pr5 pr6

up2

up1

5X5

3X3 3X3

3X33X3

pr1 pr2

up2

up1

up4

up3

up6

up5

up8

up7
shm

pr3 pr4

pr5 pr6

pr7 pr8

5X5

3X3 3X3

3X33X3

pr1 pr2

up2

up1

up4

up3

up6

up5

up8

up7
shm

pr3 pr4

pr5 pr6

pr7 pr8

Non-shared NIs NI sharing

Figure 6.8: Application-specific topologies under test. uP denotes processor
cores, pr private memories and shm the shared memory.

allelism. The worst case for the mergers occurs when the processor cores initiate
two read transactions at the same time. In fact, the lowest priority one waits for
the highest priority one to complete before being processed. In contrast, with
only a splitter, such contention occurs closer to the target core, thus improving
performance. Finally, the combined utilization of mergers and splitters halves
the performance for short idle waits, while it keeps almost the same performance
of the parallel architecture from 50 idle waits on.

With a traffic pattern made up of write transactions, we obtain similar re-
sults with high levels of idleness. When this latter decreases, all non-parallel
architectures exhibit an execution time which is almost two times that of the
parallel topology, without any further differentiations. This is an effect of the
posted write semantics and of the intensive traffic patterns, which avoid re-
source under-utilization. Hence, by introducing additional arbitration rounds
in the system, parallel writes get simply serialized. Finally, a traffic pattern
made up of only read transactions provided execution time results similar to
those in Fig.6.7. This behavior is related to the distance of the congestion point
from the target destination.

6.6 System-level analysis

Let us now take system-level effects into account in determining the area-
performance trade-off spanned by architectures with NI sharing. Our scheme
can be applied both to application-specific and general purpose NoC topologies,
as illustrated hereafter.

6.6.1 Application-specific topology

We consider the MPEG-4 application as a case study. In particular, we focus
on the MPEG-4 decoder Profile High 4:2:2 Level 5, which supports a resolution
of 1920x1088 at a frame rate of 72.3 frames/sec. The workload is assumed to
be split among 8 parallel processor cores by means of an horizontal slicing tech-
nique. We consider a shared memory system, where each processor core reads

96

6.6. SYSTEM-LEVEL ANALYSIS

Figure 6.9: NI and switch area reduction in the topology with NI sharing

0

10

20

30

40

50

60

70

80

0 6% 15% 22%

Cache miss overhead

NI sharing

Non-shared NIs

T
h

ro
u

g
h

p
u

t
(f

ra
m

e
s

/s
e

c
)

Figure 6.10: Throughput degradation as a function of cache miss overhead with
shared and non-shared NIs

encoded data from the shared memory, performs its computation (eventually
accessing its private memory for cache line refills) and writes decoded data back
to shared memory. Based on the specific MPEG-4 profile and resolution and
on real-time constraints, we extrapolated read/write communication require-
ments of the processor cores from/to the shared memory. The number of cache
line refills was kept as a parameter of the traffic pattern, and they will end
up degrading the nominal throughput in our assumptions. A synthetic traffic
pattern reflecting the above scenario was therefore generated by means of the
OCP traffic generators. In practice, since we are focusing on video decoding,
the amount of write data will be much higher than that of read data. We set the
network clock frequency to be twice the frequency of the OCP section, which is
a reasonable assumption for the χpipes architecture [24].

Since the traffic pattern is shared memory dominated, we selected the H-star
topology suggested in [7] for this application and placed the shared memory in
the central switch, as illustrated in Fig.6.8-left. Peripheral switches connect

97

CHAPTER 6. NETWORK INTERFACE: ARCHITECTURE, ANALYSYS

AND OPTIMIZATION

processor cores and their associated private memories.The switch radix in all
cases is 5. This topology with non-shared NIs was compared with the shared
NI topology reported in Fig.6.8-right. Here clusters of two processor cores and
those of two memory cores share the same network interface initiator and target,
respectively. Because of the central switch, the maximum switch radix (deter-
mining the maximum network clock frequency) does not change. However, the
amount of hardware resources changes a lot: switches have lower radix on av-
erage, the number of NIs decreases from 17 to 9, with only the addition of 4
mergers and 4 splitters.

Physical synthesis of the two topologies provided the area reports of Fig.6.9.
NI sharing allows an impressive reduction of total NoC area by 41%. In particu-
lar, total switch area is reduced by 41.3% while total NI area by 46.7%. Mergers
and splitters alltogether account for only 6% of total area of the topology with
NI sharing. These results prove the effectiveness of our technique in providing
area-efficient NoC realizations.

Performance results are instead illustrated in Fig.6.10. Nominal through-
put is guaranteed for the topology with non-shared NIs in the absence of cache
misses. For the same case, NI sharing does not incur any throughput degrada-
tion, since there is a strong congestion to access the shared memory, therefore
an additional arbitration round at the network boundary does not result in bub-
bles in shared memory utilization. Moreover, the traffic pattern is dominated
by posted write transactions, effectively supported by our mergers and splitters.

We express the impact of cache misses as the percentage stretching of compu-
tation time due to cache misses computed as though processor core and memory
were directly connected without the network in between. Hence, it is the time
needed by a processor core to directly access its private memory for cache line
refills. The network latency then introduces an additional and unpredictable
overhead.

With an increasing role played by cache misses, the non-shared topology
exhibits a progressive throughput degradation, as expected. For 6% and 15%
cache miss overheads, we can consider the variability of throughput results as
a statistical variation associated with the interleaving of traffic patterns on the
network. As the cache miss overhead becomes significant, the impact of NI
sharing on throughput becomes apparent.

6.6.2 General purpose topology

The 2-D mesh is currently the most popular regular topology used for on-chip
networks in regular tile-based architectures, because it perfectly matches the 2-D
silicon surface. However, this topology shows poor latency scalability and is very
area demanding. Concentrated topologies are a straightforward optimization of
2D mesh topologies[18, 24]. They envision the connection of more cores per
switch. This way, less switches are required and the average number of hops is
reduced at the cost of a lower bandwidth. The main problem with this solution
is at the physical layer: a concentrated architecture makes use of switches with
a higher radix, which reduces the maximum operating frequency of the network.
On one hand, the total number of cycles for the execution of a given benchmark
is expected to decrease with respect to a 2D mesh, while on the other hand if
we consider the achievable clock frequency the performance is almost the same
or even worse than a 2D mesh. See [24] for further details.

98

6.6. SYSTEM-LEVEL ANALYSIS

6X6 6X6

6X66X6

sh1 pr2

up4

up3

up6

up5

up8

up7

pr3 pr4 pr7 sh8

pr5 pr6

up2

up1
4X4 4X4

4X44X4

sh1 pr2

up2

up1

up4

up3

up6

up5

up8

up7

pr3 pr4

pr5 pr6

pr7 sh8

Concentrated topology NI sharing

Figure 6.11: Concentrated topologies without and with NI sharing

The proposed traffic mergers and splitters provide an effective workaround
for this problem. In fact, they allow to share the same NI, and hence to keep the
switch radix unaltered. This prevents a degradation of the maximum operating
frequency. As a case study, we propose the topologies illustrated in Fig.6.11.
A concentrated topology (resulting from the optimization of a 4x4 2D mesh) is
compared with a concentrated variant making use of NI sharing. This time, NI
sharing reduces the maximum switch radix, and therefore raises the maximum
operating frequency from 1 GHz to 1.4 GHz. Since the ratio between network
frequency and OCP section frequency was kept to 2, NI sharing allows OCP
cores to be operated at 700 MHz instead of 500 MHz. For what follows, we
assume that OCP cores can keep up with these speeds.

Both topologies were synthesized for their target frequencies, thus coming up
with realistic area numbers. The only exception concerns mergers and splitters,
always synthesized for maximum performance not to degrade the frequency of
the OCP section. Total area turns out to be reduced by 42%.

As regards performance, we simulated the traffic pattern of a parallel appli-
cation with a producer-worker-consumer workload allocation policy. One core
on one side of the chip (say, core 1) accesses an I/O device and writes compu-
tation data to shared memory sh1. All other processor cores (from cores 2 to
7) read their computation data from this memory, perform computation and
finally write output data to the output shared memory sh8 on the opposite side
of the chip, from where another processor core (say, core 8) moves them off-chip.
This way, a longer number of hops to read input data is counterbalanced by a
shorter path to write output data or viceversa. During computation, cores 2
to 7 access their private memories for cache line refills. A number of conflicts
arise in the system when NI sharing is used: core 1 write accesses to sh1 are
in conflict with read accesses of cores 2 to 7 always from sh1. There are also
conflicts for cache line refills on the splitters serving private memories. Finally,
there is a conflict between read accesses of core 8 from sh8 and write accesses
of cores 2 to 7 always to sh8.

Performance results are illustrated in Fig.6.12. Execution cycle statistics
show a negligible 3% degradation of the topology with NI sharing, proving
that the merger/splitter architecture optimizations have been quite effective in

99

CHAPTER 6. NETWORK INTERFACE: ARCHITECTURE, ANALYSYS

AND OPTIMIZATION

0

0,2

0,4

0,6

0,8

1

1,2

Exec.Cycles Exec.Time

Concentrated

NI sharing

Figure 6.12: Impact of the lower switch radix on execution time of topologies
with NI sharing

handling this traffic pattern. However, if we consider the operating frequency
boosting that NI sharing enables, we get a 28% improvement of total execution
time.

6.7 Conclusions

In this chapter it is proposed an area efficient NoC design technique relying on
NI sharing. All NI resources are shared by a cluster of initiator or target cores,
including buffering resources. This paves the way for significant area savings.
Performance degradation of this solution cannot be reduced to a mere serializa-
tion of network access requests, in that optimizations implemented at mergers
and splitters allow performance of architectures with NI sharing to more closely
follow that of fully parallel architectures. Moreover, physical (improvement of
maximum operating frequencies) as well as system level effects (centralized slave
bottlenecks) play in favour of our solution. Our experimental results prove the
effectiveness of NI sharing in reducing NoC area footprint.

100

Bibliography

[1] P. Kongetira, K. Aingaran, and K. Olukotun,
”Niagara: A 32-way Multithreaded Sparc Processor”,
IEEE Micro,
pp.21-29, 2005.

[2] STn8811A12 Mobile Multimedia Application Processor,
available online: http://www.st.com

[3] SPEAr Plus600 dual processor cores,
available online: http://www.st.com

[4] F.Angiolini, P.Meloni, S.Carta, L.Benini, L.Raffo,
Contrasting a NoC and a traditional interconnect fabric with layout aware-

ness,
in DATE, 2006, pp.124-129.

[5] F.Steenhof et al.,
Networks on Chips for high-end consumer-electronics TV system architec-

tures,
DATE, 2006, pp.148-153.

[6] A.Radulescu, J.Dielissen, K.Goossens, E.Rijpkema, P.Wielage,
An Efficient On-Chip Network Interface Offering Guaranteed Services,

Shared-Memory Abstraction, and Flexible Network Configuration,
DATE 2004, pp.873-883.

[7] Kim et al.,
Solutions for Real Chip Implementation Issues of NoC and Their Applica-

tion to Memory-Centric NoC,
Int. Symp. on Networks-on-Chip, pp.30-39, 2007.

[8] A.Pinto et al.,
Efficient Synthesis of Networks on Chip,
ICCD 2003, pp. 146-150, Oct 2003.

[9] T. Ahonen et al.,
Topology Optimization for Application Specific Networks on Chip,
pp.53-60 Proc. SLIP 04.

[10] K. Srinivasan et al.,
An Automated Technique for Topology and Route Generation of Applica-

tion Specific On-Chip Interconnection Networks,
pp.231-237 Proc. ICCAD 2005.

[11] J. Hu, R. Marculescu,

101

BIBLIOGRAPHY

Application Specific Buffer Space Allocation for Networks on Chip Router
Design,

pp.354-361 Proc. ICCAD 2004.

[12] U. Y. Ogras, R. Marculescu,
Application-Specific Network-on-Chip Architecture Customization via

Long-Range Link Insertion,
pp.246-253 Proc. ICCAD 2005.

[13] G.Palermo, C.Silvano, G.Mariani, R.Locatelli, M.Coppola,
Application-Specific Topology Design Customization for STNoC,
DSD 2007, pp.547-550.

[14] U. Ogras and R. Marculescu,
Energy and Performance Driven NoC Communication Architecture Syn-

thesis Using A Decomposition Approach,
pp.352-357 DATE 2005.

[15] S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini, G. De
Micheli, and L. Raffo,

Designing Application-Specific Networks on Chips with Floorplan Informa-
tion,

in International Conference on Computer-Aided Design (ICCAD), pp. 355-
362, 2006.

[16] K. Srinivasan, K.S. Chatha, and G. Konjevod,
Linear Programming based Techniques for Synthesis of Network-on-Chip

Architectures,
IEEE Transactions on VLSI, 14(4):407-420, 2006.

[17] Dongkook Park Nicopoulos, C. Jongman Kim Vijaykrishnan, N. Das, C.R.,
”A Distributed Multi-Point Network Interface for Low-Latency, Deadlock-

Free On-Chip Interconnects”,
International Conference on Nano-Networks and Workshops,
On page(s): 1-6, 2006.

[18] Balfour, J., Dally, W.J.,
”Design Tradeoffs for Tiled CMP On-Chip Networks”,
ACM International Conference on Supercomputing,
pp.187-198 2006.

[19] Gilabert, F., Gomez, M.E., Lopez, P.J.,
”Performance Analysis of Multidimensional Topologies for NoC”,
ACACES 2007, poster session with proceedings at the Hipeac Summer

School.

[20] P.Meloni, S.Murali, S.Carta, M.Camplani, L.Raffo, G.De Micheli,
”Routing Aware Switch Hardware Customization for Networks on Chips”,
Int. Conf. on Nano-Networks and Workshops, pp.1-5, 2006.

[21] Bertozzi D.,
”Network Interface Architecture and Design Issues”,
book chapter from ”Networks on Chips: Technology and Tools”, edited by

Benini L., G.De Micheli,
Morgan Kaufmann, 2006.

[22] P. Bhojwani and R. Mahapatra,

102

BIBLIOGRAPHY

”Interfacing cores with on-chip packet-switched networks”,
In Proc. VLSI Design, pp.382-387 2003.

[23] C. A. Zeferino, M. E. Kreutz, L. Carro, and A. A. Susin.,
”A study on communication issues for systems-on-chip”,
In Proc. SBCCI,pp.121-126 2002.

[24] F. Gilabert et al.,
”Exploring High-Dimensional Topologies for NoC Design Through an In-

tegrated Analysis and Synthesis Framework”,
Network-on-Chip Symposium, pp.107-116, 2008.

[25] OCP protocol specification, release 2.1.

[26] Synopsys Inc.,
Physical Compiler, www.synopsys.org

[27] S.Stergiou et al.,
”Xpipes Lite: a Synthesis Oriented Design Library for Networks on Chips”,
DAC, pp.559-564, 2005.

103

BIBLIOGRAPHY

104

Chapter 7

Designing Regular
Network-on-Chip
Topologies under
Technology and
Architecture Constraints

The execution of many multimedia and signal processing functions has been
historically accelerated by means of specialized processing engines [27]. With
the advent of multi-processor system-on-chip (MPSoC) technology, performance
of hardware accelerators is becoming accessible by combining multiple pro-
grammable processor tiles within a multicore system [28]. In addition, the
performance of latest application specific integrated processors (ASIPs) [30]
together with the high availability of transistors is making the design of cus-
tom hard-wired logic always less convenient (time-to-market, respin risks). The
underlying principle is that efficient computation can be achieved while only
marginally impacting programmability and/or configurability, and architectures
can be devised that address the computation requirements of an entire applica-
tion domain [29].

In this context, tile-based architectures cope effectively with the productivity
gap, in that they provide parallelism through the replication of many identical
blocks placed each in a tile of a regular array fabric [32, 33, 29]. This approach
makes performance scalability more a matter of instantiation and connectivity
capability rather than architecture complexity.

Perhaps the most daunting challenge to make MPSoC technology main-
stream is to realize the enormous bandwidth capacities and stringent latency
requirements when interconnecting a large number of processing cores. This task
is on burden of the global intrachip communication infrastructure. Networks-
on-chip (NoCs) are generally believed to be the long term solution to the com-
munication scalability issue [34].

Topology selection is a NoC design issue which needs to be addressed in
the early design stages and which has deep implications both on final system

105

CHAPTER 7. DESIGNING REGULAR NETWORK-ON-CHIP

TOPOLOGIES UNDER TECHNOLOGY AND ARCHITECTURE

CONSTRAINTS

performance and on physical network feasibility. NoC architectures can be de-
signed with both regular and custom topologies. The primary advantages of a
regular NoC architecture are topology reuse, reduced design time, ease of rout-
ing, better control of electrical parameters and hence less design respins and a
higher degree of performance predictability. The 2D mesh is currently the most
popular regular topology used for on-chip networks in tile-based architectures,
because it perfectly matches the 2D silicon surface. Unfortunately, 2D meshes
show very poor scalability properties in terms of diameter, average minimal hop
count and bisection bandwidth and it feels the need to find new topologies.

On one side, we will consider topologies with more than 2 dimensions that are
attractive for a number of reasons. First, increasing the number of dimensions
in a mesh results in higher bandwidth and reduced latency. Second, the num-
ber of dimensions can be traded-off with the number of cores per switch, thus
giving rise to concentrated topologies saving network components and trading
bandwidth for latency.

On the other side, we will pose attention on Fat-tree. In this case the higher
wiring irregularity and the larger switch radix of most fat-tree configurations
raise some skepticism about their practical feasibility. Moreover, instead of aim-
ing strictly for speed, designers increasingly need to consider energy consump-
tion constraints, and fat-trees are expected to pay the increased connectivity
they provide with a significant area and power cost. In spite of these concerns,
constant attention has been devoted to tree-based topologies in the NoC com-
munity, proving their superior performance with respect to normal 2D meshes
under different kinds of synthetic traffic patterns [20, 2].

Moreover, wiring on a chip comes at a lower cost with respect to off-chip
interconnections. However, wiring is also the challenging aspect of these topolo-
gies, since their mapping on a bidimensional plane involves the existence of
wires with different lengths. Depending on the physical design technique, the
more complex connectivity pattern may impact performance, area and power in
different ways, such as a decreased operating frequency or a higher link latency.

The objective of this chapter is to assess performance of many topologies
(k-ary n-mesh and k-ary n-Tree) while considering design constraints posed by
real-life HW/SW MPSoC platforms. This makes the analysis more insight-
ful and trustworthy than traditional abstract exploration frameworks based on
pencil-and-paper floorplanning considerations. These latter often ignore the
presence of non-routable hard IP blocks, the asymmetric tile size, the use of
link pipelining to sustain network speed or the dependence of switch critical
path on its radix. The relentless scaling of silicon technology to the nanoscale
regime is making the interconnect delay issue even more critical and is causing
the network critical path to move from the logic to global network links. By
leveraging a backend synthesis flow for regular NoC architectures, we character-
ize the mapping efficiency of a given topology on the silicon layout, targeting a
65nm technology node.

We extract physical parameters from the physical synthesis and expose them
to the system-level simulation tool, thus coming up with silicon-aware perfor-
mance figures.

This chapter is structured as follows. Backend synthesis flow is illustrated
in Section 7.1. Topologies under test are presented in Section 7.2 (7.2.2
for k-ary n-mesh, and 7.2.3 for k-ary n-Tree), while their physical design
is addressed in Section 7.3 and 7.4. Post-Layout analysis for k-ary n-mesh

106

7.1. BACKEND SYNTHESIS FLOW

Topology Generation

Topology Specification

RTL / SystemC/Verilog Simulation

VCD trace
Phyisical synthesis

PlacementFloorplan

Clock tree, power grid, routing, post-routing

Netlist, Parasitics Extraction PrimeTime

SDF (timing)
PrimeTime

Layout-aware
Power statistics

OCP Traffic Generators

Core area

Fences

Figure 7.1: Backend synthesis flow.

in Sec. 7.5 and k-ary n-Tree in 7.6. Finally conclusions are drawn in Section 7.7.

7.1 Backend synthesis flow

The practical feasibility of topologies under test was explored by means of a
semi-automated design flow spanning from RTL description to layout-level ver-
ification. This enables us to explore and validate topologies down to the place-
ment and routing steps, thus accounting for the effects of nanoscale technologies.

The flow starts with a topology specification file (see Fig.7.1) indicating the
number of dimensions, the number of hops in each dimension and the number
of cores connected to each switch. The XpipesLite architecture is used for
NoC synthesis[8]. The file is then processed by a script interacting with the
xpipescompiler tool[5], resulting in the generation of self-contained SystemC
code for RTL-equivalent simulation and for synthesis.

Synopsys Physical Compiler is used for placement-aware logic synthesis.
The technology library is a low-power low-Vth 65nm STMicroelectronics library
available through the CMP project [21]. The final place-and-route step is per-
formed with Cadence SoC Encounter. Hard IP blocks representing computation
tiles are defined and rendered as black-boxes obstructing an area of 1mm×2mm,
reflecting our assumption on a computation tile architecture consisting of a pro-
cessor core and a memory core. To account for the most challenging scenario,
over-the-cell routing is disabled for the hard obstructions.

The designer then performs a first floorplanning phase, where he places the

107

CHAPTER 7. DESIGNING REGULAR NETWORK-ON-CHIP

TOPOLOGIES UNDER TECHNOLOGY AND ARCHITECTURE

CONSTRAINTS

hard black boxes on the floorplan. Fences are defined to limit the area where
the cells of each module of the interconnect can be placed. Subsequently, the
tool automatically places cells without trespassing the fences.

The next step is clock tree synthesis. We assume that each computation tile
and the on-chip network are independent clock domains with their own clock
trees. All computation tiles will be operated at the same nominal frequency,
while only the network will be allowed to operate at a higher frequency.

At this point, the power supply nets are added. We choose the power grid
scheme, which distributes power nets from the topmost metal layer of the chip
and which minimizes IR drops. After the power nets have been routed, the tool
begins to route the logic wires. After an initial mapping, search and repair loops
are executed to fix any violations. As a final step, post-routing optimizations
are performed, including crosstalk and antenna effect minimization. Finally,
a signoff procedure is run by Synopsys PrimeTime to accurately validate the
timing properties of the design.

Post-layout power estimation is performed as follows. PrimeTime PX [6]
calculates average power based on toggle rates. The annotated activity comes
from RTL simulation-generated VCD files, using parameterizable OCP traffic
generators to inject OCP compliant transactions into the network. Zero-delay
simulation is then used to propagate switching activity to unannotated nets to
calculate the power consumption of the complete design. In practice, we collect
from SystemC RTL-simulation the VCD traces expressing the switching activity
of the signals at the boundary of the NoC (i.e., signals connecting the tiles to
the network interfaces). The tool then performs propagation to the internal
nodes and provides average power estimates. We adopted this methodology as
a reasonable trade-off between accuracy and characterization time.

7.2 Topology exploration

7.2.1 NoC architecture

Our realistic topology exploration framework utilizes the the xpipesLite NoC
architecture [31]. The switching fabric implements a 2-cycle-latency (one
for switch operation and one for traversing the output link), output-queued
wormhole-switched router supporting round-robin arbitration on each output
port. The implemented flow-control scheme is stall/go [51].

The switch is parameterizable in the number of its inputs and outputs, its
link width as well as in the size of the output buffering. For this work, 6-flit
buffers are assumed and the link (and flit) width is set to 32 bits.

The network interface (NI) is designed as a bridge between an OCP 1 inter-
face and the NoC switching fabric. Its purposes are the synchronization between
OCP and network timing, (de-) packetization, the computation of routing in-
formation (stored in a Look-Up Table, LUT) and flit buffering to improve per-
formance. The NI performs clock domain crossing, however in order to keep the
architecture simple the ratio between network and core clock frequencies needs
to be an integer divider.

1Open Core Protocol – standard end-to-end communication protocol

108

7.2. TOPOLOGY EXPLORATION

7.2.2 Topologies under test: k-ary n-meshes

The target of this analysis is a tile based architecture where each tile is assumed
to include at least one processor and one local memory core. Therefore, the
asymmetric tile size needs to be accounted for when laying out the topology:
this puts traditional assumptions on mesh and hypercube wiring in discussion.

Meshes can be referred to as k-ary n-meshes. The topology has kn routers
in a regular n-dimensional grid with k switches in each dimension and links
between nearest neighbors. Moreover, the n-hypercube topology is a particular
case of a mesh where k is always 2. Also, each switch can have one or more tiles
attached.

In this Section we devise topologies for two system scales, namely topologies
for 16 tiles and topologies for 64 tiles. In the 16 tiles category we analyze a
4-ary 2-mesh (referred to as 2D-mesh from now on) with one tile per switch,
a 2-ary 4-mesh (4-hypercube) with one tile per switch, and a 2-ary 2-mesh
with 4 tiles per switch. The 4-hypercube is a representative topology for those
ones featuring a number of dimensions higher than 2, while the 2-ary 2-mesh
illustrates the properties of concentrated topologies, connecting more nodes to
the same switch.

In the 64 tiles category, we analyze a 8-ary 2-mesh (also referred to as 2D-
mesh) with one tile per switch, a 2-ary 6-mesh (6-hypercube) with one tile per
switch and a 2-ary 4-mesh with 4 tiles per switch. These topologies were chosen
with the same criteria as for the 16 node systems.

Table 7.1 shows some representative data for the studied topologies. Please
note that even with 1 tile per switch, 2 switch input and 2 switch output ports
are required to connect the tile, since it includes an initiator and a target NI,
each with one input and one output port to the switch for receiving/sending
data. The initiator NI uses the output port to send out packets and the input
port to receive packets carrying read response data. The target NI uses the input
port to receive packets carrying write data or read requests for the connected
target. Read responses are packetized and sent out through the output port.

Now we enter more in detail in the 16 tiles category.
Both the 2D mesh and its concentrated counterpart feature 2 dimensions

and homogeneous interswitch wire lengths. However, such wire length will not
be the same in the two topologies due to floorplan constraints reflecting a well-
known trade-off for these topologies: spread-around topologies on one hand
(large number of low-radix switches) as opposed to more concentrated ones
with a small number of high-radix switches placed further apart to optimize
connectivity with a large number of tiles. In fact, these latter have to be placed
around the switches they have to be connected to, thus separating the switches
in space. In these two topologies, all the links have to be performance-optimized
in order to speed-up the entire topology, hence the associated cost will be more

16 tiles 64 tiles
Topology 4-ary 2-ary 2-ary 8-ary 2-ary 2-ary

2-mesh 4-mesh 2-mesh 2-mesh 6-mesh 4-mesh
Max Arity 6 6 10 6 8 10

Total Switches 16 16 8 64 64 16
Tiles x Switch 1 1 4 1 1 4
Total Ports 80 96 40 352 384 192

Bisection Cut 4 8 2 8 32 8
Ideal Diameter 6 4 3 14 6 4

Table 7.1: Topologies under test: k-ary n-meshes
109

CHAPTER 7. DESIGNING REGULAR NETWORK-ON-CHIP

TOPOLOGIES UNDER TECHNOLOGY AND ARCHITECTURE

CONSTRAINTS

Tile

Switch

(a)

Tile

Switch

(b)

Tile

Switch

(c)

Figure 7.2: Floorplan directives for (a) the 2D mesh, (b) the 4-hypercube and
(c) the 2-ary 2-mesh.

relevant in relative terms with respect to the baseline unoptimized topologies.

A different design point is represented by hypercubes. The n-hypercube
topology is a particular case of a mesh where k is always 2. For 16 tile systems,
a 2-ary 4-mesh (4-hypercube) can be obtained from the 2D mesh by increas-
ing the number of dimensions and by reducing the number of switches in each
dimension. Interestingly, the maximum switch radix stays the same, only the
4-hypercube has all the switches with the same radix while the 2D mesh has
the central switches with a higher radix than the peripheral ones. Of course,
the 4-hypercube has larger bisection bandwidth and lower network latency. Un-
fortunately, this comes at the cost of links with uneven length. In fact, in a
mesh with more than two dimensions the links used to connect the dimensions
greater than two (often denoted as express links) are longer, and this holds for
50% of the 4-hypercube interswitch links.

In theory, the length of a link of the dimension t is generally assumed to be
k(d−2)/2, where d is equal to t if t is an even number and d is equal to t + 1 if
it is an odd number. Unfortunately, placement and layout constraints put this
picture in discussion, thus making it very difficult to predict the impact that
the cost of a specific link performance boosting technique might have on the
cost metrics of the entire topology.

They are reported in Fig.7.2(a), Fig.7.2(b) and Fig.7.2(c). The asymmetric
tile size plays in favor of the 4-hypercube wiring, since the length of the hori-
zontal and of the vertical express links turns out to be comparable to that of
horizontal wires in the 2D mesh. This latter also features horizontal and vertical

110

7.2. TOPOLOGY EXPLORATION

Figure 7.3: Total wire length.

links of unequal length, indicating that the layout regularity often assumed in
high-level considerations does not materialize in practice. Our guiding principle
for floorplan definition consists of shortening the longest links in each topology
and of coming up with a scalable floorplanning style. For the 2-ary 2-mesh, we
placed the computation tiles around the switch they are attached to, which is
an ideal scenario for pipelining interswitch links. In all cases, network interfaces
were placed close to their tile but also to the connected switch, so to move the
critical path away from these critical links.

As a result of topology synthesis and place-and-route, Fig.7.3 shows the total
wiring length for the three topologies (Post-Layout curve), normalized to the
least wire-hungry topology. It is compared with the results of traditional pencil-
and-paper floorplanning considerations. Curve Ideal computes wire length based
on the ideal formula given above, which only considers the number of hops
crossed by a wire. Curve Floorplan-aware updates the previous formula with
the knowledge of the asymmetric tile size and of switch placement. The ideal
analysis largely overestimates the amount of wiring needed for the 4-hypercube.
Floorplan awareness allows to account for specific floorplanning techniques that
optimize wiring of a given topology, and therefore leads to more conservative
estimations of the wiring overhead. However, this is still far away from real-life,
where the post-layout report of total wire length gives only a 10% overhead of
the 4-hypercube wiring with respect to 2D mesh one and a 43% with respect
to the 2-ary 2-mesh. This is because switch-to-switch and switch-to-network
interface wiring only accounts for a relatively small percentage of total wiring,
ranging from 7% for the 2-ary 2-mesh to 26% for the 4-hypercube. This explains
the relatively small total wire length difference between the different topologies.
This scenario plays in favor of engineering performance-optimized interswitch
links with a possibly minor impact on topology cost metrics.

7.2.3 Topologies under test: k-ary n-Tree

For each topology, we focus on two network sizes: 16 cores and 64 cores, thus
getting scalability indications. Like in section 7.2.2 half of the cores are processor
cores, while the remaining half consists of the private memory cores of the

111

CHAPTER 7. DESIGNING REGULAR NETWORK-ON-CHIP

TOPOLOGIES UNDER TECHNOLOGY AND ARCHITECTURE

CONSTRAINTS

Network size 16 Cores

Unidir Unidir
Topology 4-ary 2-ary 2-ary 4-ary

2-mesh 4-tree 4-tree 2-tree

Switch radix 5 4 2 4

Total switches 16 32 32 8

Total Ports 64 112 64 32

Diameter 6 6 3 1

Bisect. Cut 8 16 8 8

Table 7.2: Topologies under test: k-ary n-Tree.

processors. Table 7.2 shows some representative data for the studied networks.

In the 16 cores category, we analyze a 4-ary 2-mesh while in the 64 cores
category, we analyze an 8-ary 2-mesh. In all cases, we refer to them as 2D
meshes.

Fat-trees (FT) are a particular sub-set of a family of topologies known as
multistage interconnection networks (MINs). In MINs, switches are structured
in multiple stages. Each switch can only be connected to switches belonging
to their previous or to their next stage. Cores are connected to the switches of
the lowest stage. For instance, Fig. 7.4(a) depicts a MIN with three stages and
eight interconnected cores.

Fat-trees are based on complete trees, but differ from them for preserving
bandwidth near the root. For this purpose, the switch radix grows as we move up
to the root, which makes the physical implementation impractical. Therefore,
some alternative implementations have been proposed to use switches of fixed
arity [19].

In particular, we focus on a specific implementation: the k-ary n-trees (see
Fig.7.4(a)), a parametric family of regular multistage topologies. The number
of switch stages is n and k is the arity or the number of links of a switch that
connect to the previous or to the next stage (i.e., the switch radix is 2k). Links
of a switch can be classified as ascending or descending, depending on whether
they connect to switches located in the higher or lower stage, respectively. All
the switches have the same number of ascending and descending links. A k-ary
n-tree is able to connect N = kn processing nodes using nkn−1 switches and
2nkn

− k unidirectional links.

Routing in Fat-trees is performed in two phases: ascending and descending.
In the ascending phase, several minimal paths for each source-destination pair
are possible. Packets are forwarded upwards in the tree until one of the nearest
common ancestors between source core and destination core is reached. At this
point, the descending phase is started. This latter is deterministic by construc-
tion and the path used in this phase depends on the nearest common ancestor
that has been reached in the ascending phase. To provide a deterministic rout-
ing algorithm for the ascending path, a unique path must be selected for each
origin-destination pair among all the possible ones. The deterministic routing
algorithm for fat-trees used is the one presented in [15].

In this routing algorithm, during the ascending phase consecutive destina-
tions are shuffled among the different ascending links of the switches. Figure
7.4(a) shows how destinations are distributed in each switch among the different

112

7.2. TOPOLOGY EXPLORATION

0 0 1

0 0 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3

5

6

7

0,2,6

1,3,5

5

2

3

0

1

2

4

2,4,6

1,5,7

3,5,7

0,4,6

1,3,7

0,2,4

6

7

0

1

4 0

4

1

5

2

6

3

7

0

2

1

3

4

6

5

7

(a)

0 0 1

0 0 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

2

3

4

5

6

7

0,2,4,6

1,5

0

1

2

4

0,2,4,6

1,3,5,7

0,4

7
1,3,5,7

0,4

2,6

1,5

3,7

3,7

2,6

0

4

2

1

6

5

30,2,4,6

1,3,5,7

0,2,4,6

1,3,5,7

(b)

Figure 7.4: (a)A 2-ary 3-tree topology. (b)A RUFT derived from a
2-ary 3-tree. Each switch port shows its reachable destinations.

ascending links: each ascending port is labeled in italics with the destination
cores that are reachable through it. Also, Figure 7.4(a) shows how destinations
are distributed in the descending phase; in this case, descending ports show in
bold their sets of reachable destinations. As can be seen, each descending link
is only used by a single destination. We analyze a 2-ary 4-tree for a 16-core
system.

Reduced Unidirectional Fat-Tree (RUFT) is a topology resulting from
the simplification of the above mentioned k-ary n-tree when using the determin-
istic routing algorithm proposed in [15]. RUFT was first presented in [16] as
a conceptual topology scheme, without any implementation analysis. When
using this deterministic routing algorithm, the whole descending phase can be
reduced to a single long link that connects the output ports of the switches of
the last stage with the input port of the corresponding destinations. In this
way, switches become unidirectional and all packets must reach the last stage
of the network (Figure 7.4(b)).

Although the use of long links may compromise the feasibility of this topol-
ogy, all the hardware resources related to the descending phase are reduced
to these long links, simplifying the switch architecture. The resulting topol-
ogy resembles an unidirectional butterfly, with a permutation of the reachable
destinations from the last stage.

An unidirectional reduced k-ary n-tree is able to connect N = kn processing
nodes using nkn−1 unidirectional switches and nkn unidirectional links.

When evaluating RUFT, we consider two different topologies for each net-
work size. The first ones are the unidirectional networks resulting from the
simplification of standard k-ary n-tree fat-trees, that is, we analyze an unidirec-
tional 2-ary 4-tree in the 16 cores category, while we analyze an unidirectional
2-ary 6-tree in the 64 cores category.These unidirectional networks have the
same number of switches of the original fat-trees but, as can be seen in Table
7.2, the switch radix is reduced to one half.

This leads us to explore an alternative RUFT implementation, denoted as
S(implified)-RUFT hereafter, trading switch radix (which we make equal
to that of the fat-tree) for the switch count. In this direction, we define an
unidirectional 4-ary 2-tree for the 16-core system and a 4-ary 3-tree for 64 cores.

113

CHAPTER 7. DESIGNING REGULAR NETWORK-ON-CHIP

TOPOLOGIES UNDER TECHNOLOGY AND ARCHITECTURE

CONSTRAINTS

16 tile 64 tile

4-ary 2-ary 2-ary 8-ary 2-ary 2-ary 2-ary 2-ary
Topology 2-mesh 4-mesh 2-mesh 2-mesh 6-mesh 6-mesh 4-mesh 4-mesh

High-Speed Reduced

Max. switch arity 6 6 10 6 8 8 12 12

Post-synthesis freq. 1 Ghz 1 Ghz 850 Mhz 1 Ghz 900 Ghz 900 Ghz 790 Mhz 790 Mhz

Post-layout. 786 MHz 640 Mhz 600 Mhz 786 Mhz 640 Mhz 786 Mhz 500 Mhz 500 Mhz

Core speed (max. 500) 393 MHz 320 Mhz 300 Mhz 393 Mhz 320 Mhz 393 Mhz 250 Mhz 500 Mhz

Cell Area 949k µm2 1108k µm2 733k µm2 4461k µm2 7356k µm2 22784k µm2 2610k µm2 2611k µm2

Power 0.67 W 0.64 W 0.32 W — — — — —

Latency on top dimensions

Dimension 3 — — — 1 1 2 1 1

Dimension 4 — — — 1 1 2 2 2

Dimension 5 — — — 1 2 2 — —

Dimension 6 — — — 1 3 3 — —

Table 7.3: Physical Parameters of Topologies under Test

This way, the total number of switches is lower than that in the original fat-tree,
as reported in Table 7.2.

Please observe that we were not able to perform the same switch count re-
duction in the original bidirectional fat-tree since this would have led to switches
with an overly high radix (i.e., 8x8), which results in a significantly lower max-
imum operating frequency [12]. In essence, moving from performance consider-
ations, the topologies explored in our experiments have a switch radix which is
always lower than 5.

7.3 Physical design: k-ary n-meshes

Link latency and maximum achievable frequency are key parameters to deter-
mine performance, area and power of each topology. However, they can only be
quantified by post-layout analysis. This motivates our bottom-up approach to
topology exploration. Due to synthesis time constraints, real physical parame-
ter values were obtained for 16 tile systems, while some for 64 tile systems were
extrapolated based on the synthesis experience on the smaller systems and on
ad-hoc scalability experiments.

7.3.1 16 tile networks

Network building blocks have been synthesized in isolation for maximum per-
formance. Post-synthesis achievable frequencies are reported in Table 7.3 - 3rd
row. They only account for timing paths in network logic and ignore those going
through switch-to-switch links. We always found the critical paths to be in the
switches and never in the network interfaces, and this explains why the network
speed closely reflects the maximum switch radix of each topology.

When post-layout speed is considered, we observe that inter-switch wiring
has caused a significant performance drop for all topologies, depending on the
wiring intricacy of each of them. As reported in Table 7.3 - 4th row, the more
complex connectivity pattern of 2-ary 4-mesh results into a larger frequency
drop than the 2D mesh. The 2-ary 2-mesh pays its lower number of switching
resources with a larger switch-to-switch separation, and hence with a severe
degradation of network performance due to link delay.

Since frequency-ratioed clock domain crossing is implemented in xpipesLite
network interface, network speed affects IP core speed. For this latter, a max-
imum value of 500 MHz is assumed in the context of multi-core embedded
microprocessors. In spite of the post-layout speed drop, IP cores cannot sustain

114

7.3. PHYSICAL DESIGN: K-ARY N -MESHES

the network speed just at the same and therefore a divider of 2 is applied (Table
7.3 - 5th row).

The total larger number of switch I/O ports used by the 4-hypercube well
motivates its larger area footprint than the 2D mesh. Cell (floorplan) area is
considered in Table 7.3 - 6th row, while chip floorplan area is not reported since
no specific optimizations were applied to it. Although the 2-ary 2-mesh has half
the number of switches, its area is not halved as well, due to the fact that those
fewer switches have a larger radix.

7.3.2 64 tile networks

For 64 tile networks, we had to assume a different physical design technique
than for smaller scale systems. In fact, should switch-to-switch link delay still
impact overall network speed, this latter would become unacceptably low. For
this reason, link pipelining becomes mandatory. While it might turn out to be
expensive for 16 tile systems, for larger networks it can break long timing paths
across on-chip interconnects and sustain network speed even in presence of long
links.

The number of pipeline stages depends on the link length on the layout.
As a first approximation, layouts for 64 node topologies can be obtained in a
modular way by replicating those of 16 node topologies 4 times. So, for instance,
the layout of a 2-ary 6-mesh can be derived from that of the 4-hypercube while
from a 2-ary 2-mesh it is possible to draw the layout of a 2-ary 4-mesh. Since
in the 64 tile systems the switch radix is larger, the main inaccuracy may only
regard the size of some routing channels. The 2D mesh is an exception to this
scaling policy, in that its extension to 64 tiles is straightforward and retains the
switch radix.

From the layouts, we were able to project link lengths for each topology di-
mension and, consequently, link latencies when link pipelining is applied. Table
7.3 reports latency results for the top dimensions, since the lower ones always
feature 1 cycle latency. This way, the same post-layout frequency of the orig-
inating 16 tile topologies could be retained. The only exception regards the
2-ary 4-mesh, where the maximum frequency is determined by the large switch
radix and not by link delay anymore.

The mapping function between wirelength and link delay has been experi-
mentally derived. We placed two switches in the layout at increasing distance,
and measured the post-routing critical path going through the switch-to-switch
link as a function of the distance. The resulting curve is illustrated in Fig.7.5.
We have two physical design options. Repeater stages can be used in link seg-
ments to speed up signal propagation, resulting in an almost linear increase
of critical path delay. This technique also allows to limit the number of link
pipeline stages. In contrast, some previous works advocate the use of unre-
peated global wires to avoid an exponential increase in area and power. As
can be observed from Fig.7.5, the consequence would be a steep increase of link
latency, and hence of retiming stages. We leave the exploration of the most
power-efficient solution for previous work, and consider the combined use of
repeater and retiming stages in this work.

In order to point out the key role of physical design techniques in determin-
ing system performance, we consider two topology variants featuring the same
connectivity pattern of presented topologies but different physical parameters.

115

CHAPTER 7. DESIGNING REGULAR NETWORK-ON-CHIP

TOPOLOGIES UNDER TECHNOLOGY AND ARCHITECTURE

CONSTRAINTS

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8

[n
s]

[mm]

with repeaters
no repeaters

Figure 7.5: Switch-to-switch distance and associated critical path.

The high-speed version of the 2-ary 6-mesh topology illustrated in Table 7.3
(7th column) differs from the reference 2-ary 6-mesh only for the higher post-
layout operating frequency, which was made equal to that of the 2D mesh. This
was allowed by an aggressive use of link pipelining, applied also to the links in
the third and forth dimensions. Since each pipeline stage is not just a retiming
stage but also a flow control stage, it needs to have a 2 slot buffer, and this
leads to the significant area overhead illustrated in Table 7.3 with respect to
the baseline 2-ary 6-mesh. The same design technique could not be applied
to the 2-ary 4-mesh, since the high switch radix poses an upper bound to the
performance optimization achievable by link pipelining.

On the other hand, maximum speed of the 2-ary 4-mesh is so low that
a modification of the frequency ratio at the network interface might become
convenient. In fact, if we change the ratio from 2 to 1, we enable IP cores to run
at the same speed of the network. So, the network slowdown might be offset by
speeding up the IP cores. We refer to this topology with NI divider set to 1:1
as the reduced 2-ary 4-mesh.

7.4 Physical design: k-ary n-Tree

This section discusses the criteria for floorplan design of the topologies under
test. Synthesis time constraints forced us to limit the physical design to 16 core
systems. However, projections of 64 core system designs will be extrapolated as
well, thus getting useful scalability indications.

The 2D mesh floorplan is straightforward (see Fig.7.6(a)) due to its regular
grid structure matching the 2D silicon surface.

116

7.4. PHYSICAL DESIGN: K-ARY N -TREE

(a) (b)

(c) (d)

Figure 7.6: Floorplans of topologies under test. a) 4-ary 2-mesh b)2-ary 4-tree
RUFT c)4-ary 2-tree S-RUFT d)2-ary 4-tree FT. Only the main wiring patterns
are reported.

Things are more complex for 2-ary 4-tree FT (Fig.7.6(d)). The topology
consists of 4 switch stages with 8 switches each. Our floorplanning strategy
was to minimize wirelength between consecutive switch stages. For this reason,
cores are clustered in groups of four and the connected switches (of the first
and second stage) are placed in the middle of each cluster. The third switch
stage is split into 2 subgroups and placed between the upper and lower clusters.
Each subgroup serves its relative counterpart from the first and second stage.
The last switch stage is located in the center of the chip. The presented layout
exhibits equalized wirelengths between the second, the third and the last stage
of switches. Another appealing characteristic is the straightforward scalability
of this floorplanning strategy to 64-core systems.

The 2-ary 4-tree RUFT (Fig.7.6(b)) is a novel unidirectional fat-tree which
has never been laid out before. This time, a switch belonging to the last stage
is directly connected to the network interface of a core. This link is viewed in
[16] as the intuitive weakpoint of the layout of this topology. To go around this
problem, our floorplanning directive in this case is to minimize the wirelength of
this critical set of links. Thus, switches from the last stage are positioned in the
middle of each 4-core cluster. Obviously, also the first stage has to be close to

117

CHAPTER 7. DESIGNING REGULAR NETWORK-ON-CHIP

TOPOLOGIES UNDER TECHNOLOGY AND ARCHITECTURE

CONSTRAINTS

the appropriate cores. Therefore, it is placed above and below the middle of the
chip between two neighboring clusters, so to equalize the link length and keep
the delay as homogeneous as possible on the wires of the first stage. As the third
stage has to be connected to the last one and to the second one, two groups of
switches belonging to the third barrier are placed at the left and at the right of
the chip center. This also achieves an easy connection with the second stage,
which is positioned in the center of the chip. An interesting property of the
presented floorplan is that the link length is kept almost constant on a stage-
by-stage basis. Unfortunately, although the aforementioned layout elegantly
solves the placement problem for this 16-core RUFT, its scalability to 64 cores
is not straightforward and as efficient. In this sense, it can be considered an
ad-hoc floorplan for 16 connected nodes.

Finally, the floorplan for a 4-ary 2-tree S-RUFT is illustrated in Fig.7.6(c).
Although the number of switch stages is small (just 2), this is a challenging
topology from a physical layout viewpoint. The problem stems from the fact
that each switch of the first stage is directly connected to all the switches of
the second stage. Moreover, a second stage switch is connected to network
interfaces of cores, since this is again a unidirectional topology. Following the
same floorplanning strategy of the 2-ary 4-tree RUFT, a switch from the last
stage has to be placed in the middle of a 4-core cluster.

Unfortunately, in this case the switch has to be interconnected also to all
the switches of the first stage, which should be necessarily placed in the center
of the chip to equalize link length. This results in very long links going from
each cluster to the switches at the center of the layout. As we will show later
on, this dramatically impacts the achievable post-routing performance of this
topology.

The 2D mesh is easily scalable to 64 cores, resulting in an 8-ary 2-mesh. Also
the floorplan of the fat-tree (which becomes a 2-ary 6-tree FT) can be easily
scaled with our strategy. In fact, a 64 node topology can be viewed as built up
by four clusters of 16 cores with two additional switch stages connecting them to
each other. The four clusters can be internally placed as previously described.
This approach features a high level of modularity along with an adequate link
length scalability. Moreover, all the link lengths from the fourth stage (the last
stage in the 16-core system) to the two additional ones in the 64-core system
can be tuned to be the same in the final layout.

For the 2-ary 6-tree RUFT, again 4 clusters of 16 cores are formed. However,
the main issue is that unlike the usual fat-tree, the center of each cluster is now
occupied by the second stage of switches and not the fourth one (i.e., the last
in the 16-core system). Therefore, the fourth stage being scattered on the edges
of the chip, the connection with the additional switch stages is not equalized,
leading to links of uneven lengths. The problem stems from the fact that the
layout was customized for a 16-core system and afterwards a modular approach
was applied in order to re-use previous effort. A better floorplan could be
obtained by customizing it for a 64-core system, which is not as intuitive as for
a 16-core system and falls outside the scope of this chapter.

Finally, the S-RUFT topology now becomes a 4-ary 3-tree (3 switch stages).
Without going into further details, this floorplan turns out be as inefficient as
that of the RUFT topology, and results in very long links between the last stage
of switches and the network interface of connected cores.

118

7.5. POST-LAYOUT ANALYSIS: K-ARY N -MESH

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

Time (Cycles) Time (ns) Energy (J) Time (Cycles) Time (ns) Energy (J)

OneSided FourSided

4-ary 2-mesh 2-ary 4-mesh 2-ary 2-mesh

Figure 7.7: Normalized execution time for 16 tile topologies.

7.5 Post-Layout analysis: k-ary n-mesh

In order to simplify topology analysis, we assumed a workload distribution be-
tween the tiles which de-emphasizes the role of the topology mapping algorithm.
In fact, we consider a parallel benchmark consisting of one or more producer
tasks, a scalable number of worker tasks and 1 or more consumer tasks. Every
task is assumed to be mapped on a different hardware tile. The producer task(s)
reads in data units from the I/O interface of the chip and distributes it to the
worker tasks. There are no constraints on which worker tile has to process a
given data unit. Output data from each worker tile is then collected by one or
more consumer tiles, which write them back to the I/O interface. The following
assumptions were made on the I/O interface. A maximum of 8 I/O ports is
assumed for 64 tile systems, each one used for input or for output. This number
was reduced to 2 I/O ports for 16 tile systems. Such ports are accessed through
sidewall tiles. The mapping of producer(s) and consumer(s) tasks is therefore
constrained to these tiles. This I/O architecture is compliant with that of com-
mercial embedded microprocessors, such as [29]. We set latency for access to the
off-chip I/O devices as a function of their frequency. We considered 20 cycles
at 500 MHz and 15 cycles at 350 MHz.

While insensitive to worker tile mapping on the topology, our benchmark is
still sensitive to I/O tile mapping on the chip periphery. For this reason, two
scenarios are considered:
OneSided: all the I/O tiles are placed on the same side of the chip. This
mapping has a high probability of I/O streams collision.
FourSided: I/O tiles are spread across the four sides of the chip. For 64 tile
systems, at least one input and one output is placed at each side. For 16 tile
systems, I/O tiles are placed at opposite sides to balance the average number
of hops to input and output tiles for all workers.

7.5.1 16 tile

Figure 7.7 shows performance of 16 tile topologies in clock cycles and elapsed
time. The left side shows results for OneSided mapping, while the right side
shows results for FourSided mapping. In OneSided, the hypercube (2-ary 4-
mesh) reduces total number of cycles by 27.4%. In this mapping, inputs and
outputs are placed at the top of the chip. Therefore, path length is very irregu-
lar, as tiles located at the top of the chip can reach input and output through a
shorter path than the tiles located at the bottom. This makes topologies with

119

CHAPTER 7. DESIGNING REGULAR NETWORK-ON-CHIP

TOPOLOGIES UNDER TECHNOLOGY AND ARCHITECTURE

CONSTRAINTS

0,5

0,6

0,7

0,8

0,9

1

1,1

1,2

1,3

1,4

1,5

Time (ns) Time (Cycles) Time (ns) Time (Cycles)

OneSided FourSided

8-ary 2-mesh 2-ary 6-mesh 2-ary 4-mesh 2-ary 4-mesh reduced

Figure 7.8: Normalized execution time for 64 tile topologies.

higher network diameter more sensitive to this effect. Moreover, the probability
of collision between I/O streams is quite high, thus penalizing topologies with
fewer dimensions. The concentrated hypercube (2-ary 2-mesh) reduces cycles
only by 1.6% over the hypercube, despite its lower diameter. The main reason
for this lies in the chip I/O: as the bottleneck introduced by the topology is alle-
viated, the external I/O bottleneck arises. So, the maximum improvement that
can be achieved in the 16 tile system is bounded by I/O speed. On the other
hand, FourSided mapping (see Figure 7.7) reduces I/O streams collision prob-
ability while providing homogeneous path length, thus decreasing performance
differences among topologies.

Unfortunately, these results become irrelevant when considering the real op-
erating frequency of each topology. While in OneSided mapping the reduc-
tion of cycles of the 4-hypercube barely compensates for its lower frequency, in
Foursided mapping it is not enough, and the 2D mesh turns out to be the best
topology overall.

Finally, Figure 7.7 shows the energy consumed by each topology. These
numbers are measured on the post-layout netlists illustrated in Section 7.3.
While the 4-hypercube consumes almost the same or even more energy than the
2D mesh depending on the I/O tile mapping, the concentrated hypercube shows
superior energy saving properties (from 40 to 50% less than the 2D mesh). .

7.5.2 64 tile

Fig.7.8 shows performance of 64 tile topologies for both mappings in cycles and
real elapsed time. The projected link latencies from Table 7.3 are considered for
each topology. The trend observed in 16 tile systems with respect to the I/O tile
mapping seems to be confirmed also in 64 tile systems. With this system scale,
the impact of the different operating frequencies of the topologies is even more
apparent. For instance, performance in cycles of both non-reduced hypercubes
seems quite similar, but when frequency is taken into account, performance
results are very different.

Again, the 2D mesh outperforms both the non-reduced hypercubes, due
mainly to two reasons. The first one is of course the decreased operating fre-
quency of the hypercubes, which is the price to pay for the more intricate
physical routing (6-hypercube) or for the longer links used to interconnect few
network resources sparse all around the chip (4-hypercube). Performance im-
provements in cycles are not such to offset the lower operating speed. However,

120

7.6. POST-LAYOUT ANALYSIS: K-ARY N -TREE

0,5

0,6

0,7

0,8

0,9

1

1,1

Time (ns) Time (Cycles)

Link Pipelining Aggressive Link Pipelining

Figure 7.9: Relative performance comparison between 2-ary 6-mesh and its
high-speed variant leveraging aggressive link pipelining.

one might expect a larger cycle reduction from an hypercube, which conflicts
with the real 10% reduction measured in our simulations. This is due to the
fact that the systems under test are I/O constrained, since computation tiles
spend around 50% of their time waiting to send data to the consumer tile. This
constraint introduces an upper bound to topology-related performance opti-
mization. Removal of the I/O bottleneck has to be considered as mandatory to
achieve performance differentiation between topologies.

An interesting effect can be observed when looking at the results of both
2-ary 4-mesh topologies. In the reduced one, clock domain ratio is set to 1, so
NoC and tiles work at the same frequency, allowing to increase tile speed to
500 MHz. In this case, although the number of cycles is greatly reduced (29%
less cycles than the 2D mesh), the low network frequency compensates for that,
so performance is very similar. However, the reduced 2-ary 4-mesh requires 4
times less switches than the 2D mesh, half the number of ports and works at
half the frequency, so power requirements are going to be lower, while preserving
performance.

Finally, the effects of an aggressive utilization of re-timing stages over per-
formance was analyzed for the 2-ary 6-mesh. Figure 7.9 shows the performance
of 2-ary 6-mesh and of its high-speed variant in both cycles and elapsed time.
As can be observed, the high-speed 2-ary 6-mesh slightly increases the number
of cycles. However, the increased operating frequency is high enough to reduce
elapsed time by 27% over the baseline topology. This might cause the high-speed
2-ary 6-mesh to become competitive with the 2D mesh performance-wise, but a
significant area and power overhead needs to be taken into account, associated
mainly with the additional buffers used in retiming stages.

7.6 Post-Layout analysis: k-ary n-Tree

Max Post-. Post- Area Area Area overhead Tot. Wire

Topology Arity Synthesis. place&route 16 cores 64 cores for Retiming Length

4-ary 2-mesh 5x5 0.9 ns 1.19 ns 802k µm2 3691k µm2 0% 8081 mm
2-ary 4-tree RUFT 2x2 0.6 ns 1.15 ns 795k µm2 4769k µm2 37% 8370 mm

2-ary 4-tree FT 4x4 0.8 ns 1.29 ns 1280k µm2 8076k µm2 19% 12389 mm
4-ary 2-tree S-RUFT 4x4 0.8 ns 2.1 ns 400k µm2 2400k µm2 112% 7346 mm

Table 7.4: Physical synthesis reports

121

CHAPTER 7. DESIGNING REGULAR NETWORK-ON-CHIP

TOPOLOGIES UNDER TECHNOLOGY AND ARCHITECTURE

CONSTRAINTS

Timing
In all topologies, the network building blocks have been synthesized for max-
imum performance. The post-synthesis critical paths (ignoring place&route
effects) are reported in Table 7.4, 3rd column. We found the critical path to
be always in the switch and to reflect the maximum switch radix of the topol-
ogy. Obviously, the lower switch radix of the 2-ary 4-tree RUFT results in a
much shorter critical delay. We then iterated place&route starting from the
post-synthesis target frequencies.

For a 16 core system, we assessed the integration of a link pipelining tech-
nique in the backend synthesis flow overly expensive. For this system size,
we aim at analysing whether the delay of switch-to-switch links already impacts
overall NoC performance or not. For what follows, the mismatch between wiring
of a topology and the 2D silicon layout will result in increased clock cycle time
after place&route.

Timing closure was achieved at the post-layout speed reported in the 4th
column of Table 7.4. Performance degradation turns out to be very significant,
thus pointing out the critical role of interconnects. In fact, for all topologies (and
even for the 2D mesh) the critical path goes through the switch-to-switch links.
While data/flit wires are sampled at the input and output port of the switch,
flow control wires go through the FSM of the flow control stages at switch I/O.
As a consequence, these control wires go through logic gates whose delay adds
up to the link delay, determining the critical path. The impact of the link delay
is evident, in that the critical delays of the topologies are differentiated by the
longest link in that topology.

The 2-ary 4-tree RUFT wastes part of its speed with respect to the 2D
mesh due to the use of longer links. In practice, the theoretical performance
enhancement associated with a lower switch radix does not materialize after
place&route, but has served as timing margin against physical degradation ef-
fects.

The 2-ary 4-tree FT has incurred a lower degradation than the 2-ary 4-
tree RUFT, but its post-synthesis performance was lower, therefore it ends up
running even slower than the 2D mesh.

Finally, for the 4-ary 2-tree S-RUFT the above effects are even more apparent
due to the longer wires that are needed to connect a low number of switching
resources sparse all around with each other. The lower area footprint is achieved
at the cost of a remarkable 162% speed degradation after place&route.

Overall, in spite of a good post-synthesis frequency, thanks to the lower
radix MINs typically suffer from a more significant performance degradation
after place&route due to their more intricate wiring compared to a 2D mesh.
Hence, final performance cannot be predicted from early post-synthesis results
in a straightforward way without accounting for interconnect-related effects.

When scaling the system to 64 cores, we think that the impact of link delay
on maximum achievable speed of MINs cannot be tolerated any more. Advanced
link pipelining techniques are required to exploit MIN topology properties while
supporting high operating frequencies. From here on, we will assume the use of
link pipelining for 64-node topologies (except for the 2D mesh). For this system
size, we target a reasonable 750 MHz clock speed for the network, and place
pipeline stages across links inducing timing violations at the target clock speed.
The number of pipeline stages was computed based on an experiment where
two switches were placed close together in a real layout. Their distance was

122

7.6. POST-LAYOUT ANALYSIS: K-ARY N -TREE

then progressively increased, and for each inter-switch wire length the needed
number of pipeline stages was computed to meet the target frequency. Please
observe that a pipeline stage is not just a simple retiming stage, but needs to
take care of flow control and hence is a flow control stage with 2 slot buffers
(see [51] for more details).

In the experiment, we assume that repeater stages are not inferred across
retimed wire segments, since their use for such large scale systems is still contro-
versial. Projections indicate that power incurred by repeaters might be as large
as tens of Watts, with also an exponential impact on area [7]. For this reason,
we conservatively inferred unrepeated AND retimed switch-to-switch links for
64-node networks, which is certainly a worst case for MIN network latency.

After associating a proper number of retiming stages to each wirelength
range, we identify on the 64-node floorplans of each topology the links that
might be concerned by retiming. For RUFT we found that, as expected by
[16], a high number of stages (11) need to be placed in the links connecting
the last switch barrier to the network interfaces of destination cores. For the
fat-tree, as expected by previous work (e.g., [9]), latency of links close to the
root grows. However, due to the better scalability of fat-tree floorplan, the
worst-case latency of the fat-tree is lower than RUFT.

Area
Since we only performed a coarse grain shrinking of placement blocks on the
floorplan without a finer-grain layout area optimization, we only report here
total floorplan cell area. See Table 7.4, 5th column. The 2D mesh and the
2-ary 4-tree RUFT exhibit almost the same area, in that they have exactly the
same number of I/O ports for a 16-core system, which are the ones that mainly
determine switch area. The 2-ary 4-tree FT has a significant 60% area overhead
with respect to the 2D mesh, which can be correlated with a 75% increase in the
number of switch ports. Interestingly, although featuring the same number of
switches, the 2-ary 4-tree RUFT achieves a significant area saving with respect
to the FT since it employs lower-radix switches. Obviously, the 4-ary 2-tree
S-RUFT exhibits the lowest area footprint with just 8 4x4 switches.

When looking at area projections for 64-core systems (based on post-
synthesis area reports of network building blocks), we observe that area of MINs
has increased much more than that of the 2D mesh. This is due to a higher
increase factor of the switch count in MINs than in 2D meshes to interconnect
a larger number of cores. This makes area footprint of 2-ary 4-tree FT hardly
affordable and that of 2-ary 4-tree RUFT larger than the 2D mesh.

When we account for area overhead induced by retiming and flow control
stages, Table 7.4 shows that an impressive 37% overhead is incurred by RUFT
due to the poor scalability of its floorplan. Obviously, S-RUFT is the more
penalized topology, and more than 50% of its area with 64 nodes might be
occupied by retiming stages. Please consider that this is a worst-case scenario
pointing out scalability issues, which can be mitigated by repeater insertion in
the links or by custom floorplans for a given system size.

Wirelength
A side effect of using lower switch radix in 2-ary 4-tree RUFT is the large saving
in total wire length with respect to the 2-ary 4-tree FT, although they are using
the same number of switches. 2-ary 4-tree RUFT and 2D mesh consume almost
the same amount of wiring resources in spite of the higher routing complexity
of RUFT. This further confirms the high efficiency of the customized layout

123

CHAPTER 7. DESIGNING REGULAR NETWORK-ON-CHIP

TOPOLOGIES UNDER TECHNOLOGY AND ARCHITECTURE

CONSTRAINTS

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

Without Clock Gating With Clock Gating

2D MESH

FAT TREE

RUFT

S RUFT

Figure 7.10: Normalized total power.

for this topology. Finally, the 4-ary 2-tree S-RUFT has obviously a lower total
wiring length, mitigated by the need to interconnect few switch components
that are far apart from each other.

Power
Power was computed with the same producer-worker-consumer benchmark of
[17], which emulates the average communication bandwidth requirements of a
partitioned MPEG-4 application. This traffic pattern models bursty accesses
to 2 memories serving as I/O interfaces, and all-to-all accesses associated with
a cooperative computation process. Processor and memory cores were mapped
on each topology. For the 2D mesh, mapping was done in such a way that each
processor core is always 1-hop away from its private memory core. In all fat-
trees, a processor core and its memory core were connected to the same switch
at the lowest stage of the topology. This mapping may turn out to be highly
performance sub-optimal for fat-trees (indeed it is a worst-case for RUFT [16]),
however we opted for it since it is very intuitive and avoids the use of high-level
mapping tools (which is outside the scope of this work).

Power results are illustrated in Fig.7.10. Power of 2D mesh and 2-ary 4-tree
RUFT turns out to be the same due to the equivalent number of I/O ports in
both networks. The correlation of power with the number of buffering resources
is further emphasized by power reports of the 2-ary 4-tree FT, which is the most
power consuming topology: 34% more than the 2D mesh. It is worth noting
that all aforementioned topologies work at a comparable frequency (the post-
place&route one), whereas the 4-ary 2-tree S-RUFT works at approximately
half of the speed. If we combine this feature with the far lower number of I/O
ports of this topology, we can explain its significantly lower power consumption.

We also went through the physical synthesis process again and enabled the
clock gating feature. Results are provided in Fig.7.10 for the most power-
consuming topologies. On average, an impressive 75% power saving is mate-
rialized by clock gating. This brings power of the most power-hungry topologies
close to that of the 4-ary 2-tree S-RUFT. From a timing viewpoint, we observed
no major modifications with respect to previous results.

7.7 Conclusions

This chapter takes a bottom-up approach to the assessment of k-ary n-mesh
topologies for regular tile-based architectures. Scalability of presented results

124

7.7. CONCLUSIONS

to 64 tile architectures is considered. The chapter considers a number or real-life
issues: physical constraints of nanoscale technologies (post-layout performance,
area and power results are given), different physical design techniques, the role
of the chip I/O, the communication semantics of middleware for MPSoCs and
the role of I/O tile mapping.

7.7.1 k-ary n-meshes

We found that the intricate wiring of multi-dimension topologies or the long
wires required by concentrated k-ary n-meshes can be changed into 2 different
kinds of performance overhead by means of proper design techniques:

• operating frequency reduction. This is likely to be the technique of choice
for small scale systems. In this case, in spite of a lower number of execution
cycles, multi-dimension topologies loose in terms of real execution time
due to lower working frequency. Nonetheless, reducing the number of
dimensions and connecting more cores to the same switch represent a way
to trade performance for power and area;

• increase of link latency. An aggressive utilization of retiming stages al-
lows to sustain operating frequency while increasing network latency. The
switch delay associated with its radix poses an upper bound to the effec-
tiveness of this technique. Finally, a significant area and power overhead
is to be expected, since retiming stages need to be also flow control stages.

Overall, we found the 2D mesh to still outperform the hypercubes even in
64 tile systems. This is counterintuitive, since hypercubes should scale better in
principle. The motivation lies in the mismatch between multi-dimension topolo-
gies and the 2D silicon surface (whatever the kind of performance overhead it
is changed into) and in the chip I/O bottleneck, which prevents an aggressive
performance speed-up at least in clock cycles. Removal of this bottleneck is
mandatory to achieve significant performance differentiation between topolo-
gies.

These considerations are architecture-specific to some extent. The xpipes-
Lite NoC for instance uses frequency-ratioed clock domain crossing at the net-
work interface. So, we found the opportunity to take profit of the low speed
of concentrated hypercubes to change the frequency divider at the network
interface and to have the cores running faster. We therefore got a topology
that achieves the same performance of the 2D mesh while consuming much less
hardware resources and power. The availability of more complex synchroniza-
tion techniques such as asynchronous FIFOs at network interfaces may extend
this benefit to other topologies as well.

7.7.2 k-ary n-Tree

Fat-trees are feasible for on-chip networks from a physical design viewpoint.
Unfortunately, for small scale systems, they are not able to capitalize on their
better performance figure scalability yet. 2D mesh is in contrast a very ef-
ficient solution from all viewpoints. Using MINs with less resources (namely
S-RUFT) incurs serious physical design issues, mainly associated with long link

125

CHAPTER 7. DESIGNING REGULAR NETWORK-ON-CHIP

TOPOLOGIES UNDER TECHNOLOGY AND ARCHITECTURE

CONSTRAINTS

delay. Moreover, circuit-level power control techniques such as clock gating can
significantly cut down on power of the more complex topologies.

As the system size scales up, 2D meshes however suffer from poor perfor-
mance scalability. Hence, the need for alternative topologies becomes more
stringent. k-ary n-trees can provide that performance scalability, but at an
impractical power and area cost. In this scenario, unidirectional MINs (like
RUFT and S-RUFT) become attractive for their reduced power and area over-
head. Performance-wise, they are effective for latency-sensitive traffic, while
they cannot handle bandwidth-intensive traffic as effectively. Unfortunately,
their advantages cannot be easily materialized due to a more intricate physical
design. No clearly scalable floorplanning strategy is known, and a lot of link
retiming and flow control stages are needed to sustain clock speed. The area
and power overhead associated with these stages might turn out to be unac-
ceptable. Due to link pipelining, area and power cost of k-ary n-trees becomes
further prohibitive. From a performance viewpoint, the increased link latency
of unidirectional MINs causes a lower performance but still better than 2D mesh
and also than k-ary n-trees under latency-sensitive traffic.

126

Bibliography

[1] S.Suboh, M.Bakhouya, S.L.Buedo, T.E.Ghazawi;
”Simulation-Based Approach for Evaluating On-Chip Interconnect Architec-

tures”,
South. Conf. on Programmable Logic, pp.75-80, 2008.

[2] Vu-Duc Ngo, H.Nam Nguyen, Hae-Wook Choi;
”Analyzing the Performance of Mesh and Fat-Tree Topologies for Network on

Chip Design”,
L.T.Yang et al. (Eds): EUC 2005, LNCS 3824, pp.300-310, 2005.

[3] S. Kumar et al.,
” A Network on Chip Architecture and Design Methodology”,
IEEE Computer Society Annual Symposium on VLSI, April 2002. pp. 105-

112.

[4] Rijpkema, E.; Goossens, K.; Radulescu, A.,
”Trade Offs in the Design of a Router with Both Guaranteed and Best-Effort

Services for Networks on Chip”,
Design, Automation and Test in Europe (DATE’03), Mar. 2003, pp. 350-355.

[5] A. Jalabert et al.,
”xpipesCompiler: a Tool for Instantiating Application Specific Networks on

Chip”.
Proc. of Design, Automation and Test in Europe (DATE), pp.884–889, 2004.

[6] Synopsys PrimeTime PX,
http://www.synopsys.com/products/primetimepx/ptpx ds.html

[7] D. Sylvester and K. Keutzer,
”Getting to the bottom of deep sub-micron II: A global paradigm”,
Proc. IEEE Int. Symp. Physical Design, pp.193-200, 1999.

[8] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi, G. De Micheli,
“XPipes Lite: a Synthesis Oriented Design Library for Networks on Chips”.
Proc. of DATE, pp.1188–1193, 2005.

[9] H.Matsutani, M.Koibuchi, D.F.Hsu, H.Amano,
”Three-Dimensional Layout of On-Chip Tree-Based Networks”,
Int. Symp. on Parallel Architectures, Algorithms and Networks, pp.281-288,

2008.

[10] H.Matsutani, Michihiro Koibuchi, Hideharu Amano,
”Performance, Cost and Energy Evaluation of Fat H-Tree: a Cost-Efficient

Tree-Based On-Chip Network”,
IPDPS 2007, pp.1-10, 2007.

127

BIBLIOGRAPHY

[11] C. Leiserson,
”Fat-trees: Universal Networks for Hardware Efficient supercomputing”,
IEEE Transactions on Computer, vol. 34, no. 10, 1985.

[12] Antonio Pullini et al.,
”Bringing NoCs to 65 nm”,
IEEE Micro 27(5): pp.75-85 (2007).

[13] A.Adriahantenaina, H.Charlery, A.Greiner, L.Mortiez, C.A.Zeferino,
”SPIN: a Scalable, Packet Switched, On-chip Micro-Network”,
DATE’03, Embedded Software Forum, pp.70-73, 2003.

[14] A.Adriahantenaina, A.Greiner;
”Micro-Network for SoC: Implementation of a 32-port SPIN Network”,
DATE’03, pp.1128-1129, 2003.

[15] C.Gomez et al.,
”Deterministic versus Adaptive Routing in Fat-Trees”,
CAC’07, as part of IPDPS’07, 2007.

[16] C.Gomez et al.;
”Beyond Fat-Tree: Unidirectional Load-Balanced Multistage Interconnection

Network”,
Computer Architecture Letters, June 2008.

[17] Omitted for blind review.

[18] Omitted for blind review.

[19] F.Petrini, M.Vanneschi,
”k-ary n-trees: High Performance Networks for Massively Parallel Architec-

tures”,
Int. Parallel Processing Symposium, 1997, pp.87-93.

[20] P.P.Pande, C.Grecu, M.Jones, A.Ivanov, R.Saleh;
”Performance Evaluation and Design Trade-Offs for Network-on-Chip Inter-

connect Architectures”,
IEEE Trans. on Computers, Vol.54, no. 8, 2005.

[21] Circuits Multi-Projects, Multi-Project Circuits;
http://cmp.imag.fr

[22] P.Guerrier, A.Greiner,
”A Generic Architecture for On-Chip Packet-Switched Interconnections”,
DATE’00, pp.250-256, 2000.

[23] P.P.Pande, C.Grecu, A.Ivanov, R.Saleh
”Design of a Switch for Network on Chip Applications”,
ISCAS’03, pp.V.217-V.220, Vol.5, 2003.

[24] Open Core Protocol Specification, v.2.1.

[25] C. Grecu, P. P. Pande, A. Ivanov, and R. Saleh,
”Structured interconnect architecture: A solution for the non-scalability of

bus-based SoCs”,
Proceedings of the Great Lakes Symposium on VLSI, pages 192-195, 2004.

[26] S.Stergiou et al.,
”Xpipes Lite: a Synthesis Oriented Design Library for Networks on Chips”,
DAC, pp.559-564, 2005.

128

BIBLIOGRAPHY

[27] STn8811A12 Mobile Multimedia Application Processor,
available online: http://www.st.com

[28] SPEAr Plus600 dual processor cores,
available online: http://www.st.com

[29] TILE64 PROCESSOR FAMILY,
available online:
http://www.tilera.com/pdf/ProBrief Tile64 Web.pdf

[30] Tensilica LX configurable processor,
Tensilica Inc., http://www.tensilica.com

[31] S.Stergiou et al.,
”Xpipes Lite: a Synthesis Oriented Design Library for Networks on Chips”,
DAC, pp.559-564, 2005.

[32] S. W. Keckler et al.,
”A wire-delay scalable microprocessor architecture for high performance sys-

tems”,
ISSCC’03, Feb. 2003, pp. 168-169.

[33] Z. Yu et al.,
”An asynchronous array of simple processors for DSP applications”,
in ISSCC’06, Feb. 2006, pp. 428-429.

[34] Benini, L., De Micheli G.,
”Networks on Chips: a New SoC Paradigm”,
IEEE Computer 35(1),
pp.70-78, 2002.

[35] Dalla Torre, A., Ruggiero, M., Acquaviva, A., Benini, L.,
”MP-Queue: an Efficient Communication Library for Embedded Streaming

Multimedia Platform”,
IEEE Workshop on Embedded Systems for Real-Time Multimedia,
2007.

[36] Balfour, J., Dally, W.J.,
”Design Tradeoffs for Tiled CMP On-Chip Networks”,
ACM International Conference on Supercomputing,
2006.

[37] S. Vangal et al.,
”An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm CMOS”,
ISSCC 2007,
pp.98-589, 2007.

[38] Coppola, M.; Locatelli, R.; Maruccia, G.; Pieralisi, L.; Scandurra, A.,
”Spidergon: a novel on-chip communication network”,
International Symposium on System-on-Chip, 2004,
pp.16-18, 2004.

[39] Bourduas, S.; Zilic, Z.,
”Latency Reduction of Global Traffic in Wormhole-Routed Meshes Using Hi-

erarchical Rings for Global Routing”,
IEEE International Conf. on Application-Specific Systems, Architectures and

Processors,
pp.302-307, 2007.

129

BIBLIOGRAPHY

[40] Martinez Vallina, Fernando; Jachimiec, Nathan; Saniie, Jafar;
” NOVA interconnect for dynamically reconfigurable NoC systems”,
IEEE International Conf. on Electro/Information Technology, 2007,
pp.546-550, 2007.

[41] Gilabert, F., Gomez, M.E., Lopez, P.J.,
”Performance Analysis of Multidimensional Topologies for NoC”,
ACACES 2007, poster session with proceedings at the Summer School.

[42] Medardoni, S., Gilabert, F., Bertozzi, D., Gomez, M.E., Lopez, P.J.,
”Towards an Implementation-Aware Transaction-Level Modeling of On-Chip

Networks for Fast and Accurate Topology Exploration”,
INA Workshop, presented at the HiPEAC08 conference, 2008.

[43] Mirza-Aghatabar, M.; Koohi, S.; Hessabi, S.; Pedram, M.,
”An Empirical Investigation of Mesh and Torus NoC Topologies Under Dif-

ferent Routing Algorithms and Traffic Models”,
Euromicro Conference on Digital System Design Architectures, Methods and

Tools,
Page(s):19-26, 2007.

[44] Luciano Bononi, Nicola Concer, Miltos Grammatikakis, Marcello Coppola,
Riccardo Locatelli,

”NoC Topologies Exploration based on Mapping and Simulation Models”,
Euromicro Conference on Digital System Design Architectures,
Page(s):543-546, 2007.

[45] Wang, H., Peh, L.S., Malik, S.,
”A Technology-Aware and Energy Oriented Topology Exploration for On-

Chip Networks”,
Design Automation and Test in Europe,
Vol.II, pp.1238 - 1243, 2005.

[46] Pavlidis, V.F.; Friedman, E.G.,
”3-D Topologies for Networks-on-Chip”,
International SOC Conference,
Page(s):285 - 288, 2006.

[47] I.Hatirnaz, S.Badel, N.Pazos, Y.Leblebici, S.Murali, D.Atienza, G.De
Micheli,

”Early Wire Characterization for Predictable Network-on-Chip Global Inter-
connects”,

SLIP’07, pp.57-64, 2007.

[48] Murali, S., De Micheli, G.,
”SUNMAP: a Tool for Automatic Topology Selection and Generation for

NoCs”,
Proc. of the Design Automation Conference,
2004, pp.914-914.

[49] Soteriou, V., Eisley, N., Wang, H., Li, B., Peh, L.S.,
”Polaris: a System-Level Roadmapping Toolchain for On-Chip Interconnec-

tion Networks”,
IEEE Trans. on VLSI 15(8),
2007, pp.855-868.

130

BIBLIOGRAPHY

[50] F.Gilabert, S.Medardoni, D.Bertozzi, L.Benini, M.E.Gomez, P.Lopez,
J.Duato,

”Exploring High-Dimensional Topologies for NoC Design Through an Inte-
grated Analysis and Synthesis Framework”,

Proc. of the 2nd Int. Symposium on Networks-on-Chip,
to appear in 2008.

[51] A.Pullini et al.,
”Fault tolerance overhead in network-on-chip flow control schemes”,
SBCCI, pp.224-229, 2005.

131

BIBLIOGRAPHY

132

Chapter 8

Emerging Issue

8.1 Introduction

Due to silicon technology scaling effects, boosting clock frequency of monolithic
high-performance microprocessors has clearly reached a point of diminishing re-
turns. As an effect, we are experiencing a rapid shift towards massively parallel
architectures with tens or even hundreds of cores integrated onto a single chip.
Evidence of this trend is unmistakable as practically every commercial manu-
facturer of high performance processors is currently introducing products based
on multi-core architectures[7, 12].

With the increasing number of cores, scalability of communication architec-
tures becomes critical for system performance and traditional bus architectures
are rapidly running out of steam [10]. We are moving from core-centric to
interconnect-centric design flows and very likely buses will soon be replaced by
a dedicated on-chip network providing point-to-point communications by means
of dedicated routers [2].

As transistor dimensions continue to shrink, it becomes harder and harder to
precisely control the fabrication process. Transistors and wires become faster,
but less predictable and, after fabrication, it is becoming more and more diffi-
cult to guarantee timing closure, and hence performance, across multiple copies
of the chip [4]. Therefore, fault-tolerance is becoming a major concern when
designing a multicore chip in general, and a NoC in particular. It is important
to emphasize that, in the NoC context, fault-tolerance is not only considered
for technical reasons but mainly as the way chip manufacturers keep yield and
thus reduce fabrication costs and ensure their economical benefits.

Unfortunately, variability is expected to increase as technology scales down.
The ITRS roadmap [20] predicts different percentages of variability in the
medium and long term. Current and near term silicon variability is estimated
to be around 5% for 45-65nm technologies, while for 22nm variability raises up
to 18%.

The rest of the chapter is organized as follows. Section Section 8.2 presents
the architectural implications while 8.3 presents the circuit implication of the
problem. Finally, Section 8.4 provides the conclusions.

133

CHAPTER 8. EMERGING ISSUE

0
1.000

0
.9
9
3

1
1.000

1
.0
0
0

2
0.965

1
.0
0
0

3

1
.0
0
0

4
1.000

1
.0
0
0

5
1.000

1
.0
0
0

6
1.000

1
.0
0
0

7

1
.0
0
0

8
0.995

0
.9
7
7

9
0.940

1
.0
0
0

10
0.974

0
.8
7
2

11

1
.0
0
0

12
0.957

13
0.932

14
0.898

15

(a) Link frequencies under 5%
variability

0
1.000

0
.9
9
3

1
1.000

1
.0
0
0

2
0.965

1
.0
0
0

3

1
.0
0
0

4
1.000

1
.0
0
0

5
1.000

1
.0
0
0

6
1.000

1
.0
0
0

7

1
.0
0
0

8
0.995

0
.9
7
7

9
0.940

1
.0
0
0

10
0.974

11

1
.0
0
0

12
0.957

13
0.932

14 15

(b) Links selected for 932 MHz
threshold

Figure 8.1: Example on the effect of variability on link frequencies.

8.2 Architectural Implications

When such variability affects transistors in the driver or in the buffering stages
of NoC communication links, it may happen that one or more wires of the
link do not properly switch at the target frequency. The situation is further
worsened by the performance variability induced by link dishing effects. These
links may turn out to be unusable, as they cannot be simply replaced as in
off-chip networks.

As an example of the problem we face in this Section, Figure 8.1.a shows the
network for a 16-core chip using a 4x4 mesh topology to interconnect the cores.
In this system links have been initially designed to work at 1GHz. However,
because of a 5% of variability (for current technologies), we will end up having
links working at different frequencies. Figure 8.1.a shows the frequency of each
link after applying our variability model (described in Section 8.2.2).

In order to keep the chip working and not decreasing yield, the simplest
thing we can do is to lower the operating frequency of the entire network to the
lowest link frequency. In this case, our example chip would work at 872 MHz.
This, in fact, could be the only feasible option if, for instance, we implement
the DOR routing in the network. DOR is designed for 2D meshes and cannot
work on a network with one or more missing links. However, as variability
increases, reducing chip frequency to the lowest link frequency in the NoC may
be unacceptable. Notice that in the example chip, frequency is reduced down
to 872 MHz just because one of the links is not able to switch at a faster rate.
Actually, just by not considering two links in the network we could increase
chip frequency up to 932 MHz. Figure 8.1.b shows the resulting topology for
that frequency, where all the cores remain connected but two links are disabled
(those not reaching that frequency). However, this would turn an initial regular
topology into an irregular one and, therefore, the DOR routing cannot be used
because there is a pair of unconnected nodes. If the routing layer does not
take this into account, the chip would have to be discarded, reducing yield
and increasing manufacturing costs (or would have to be operated at a lower
frequency, if the design allows it, decreasing thus performance and benefit).

Fortunately, it is possible to avoid the constraints imposed by the use of

134

8.2. ARCHITECTURAL IMPLICATIONS

the DOR routing algorithm, that is, it is possible to efficiently route packets in
incomplete meshes. The solution is the use of topology-agnostic routing algo-
rithms, which can be applied to any topology. Examples of this kind of routing
algorithms are the up*/down* [27] and the segment-based routing algorithms
[26]. Unfortunately, the implementation of these algorithms is much more com-
plex than the DOR routing. The general way to implement such routing algo-
rithms is by using routing tables either at end nodes (source-based routing, used
by the Polaris chip) or at switches (distributed-based routing). In either case
the provided implementation does not scale (in terms of power and area) since
it requires as many tables as endnodes (or switches) with as many entries as
endnodes, therefore exhibiting memory requirements with a quadratic increase.

Recently two solutions to overcome this problem have been proposed: RbR
[29] and LBDR [28]. In [29] authors propose compressing the routing tables by
destinations. At every switch all the destinations using the same set of output
ports at the switch are grouped in one single entry thus achieving large area
savings. The set of destinations is referred to as a region and RbR relies on
the use of a bounded number of regions at every switch. Indeed, a logic block
is used per each region defined at each switch. On the other hand, in [28] a
further compression of the routing logic downto a small set of bits is proposed.
In particular, routing tables are removed by a set of 12 bits per switch. These
bits indicate connectivity of the switch and routing options. A small logic block
has been proposed for LBDR.

However, the efficient implementations of topology-agnostic routing algo-
rithms mentioned above do not support all the topologies, as they are a simpli-
fication of the general table-based implementation and they could endup requir-
ing many resources (regions in the case of RbR). Therefore, some combinations
of topologies, routing algorithms and implementations will simply fail for a given
chip, while other combinations will succeed. Moreover, with a given routing im-
plementation we may succeed to operate a given chip at a higher link frequency.
This is a challenging task since yield, production costs, and benefits are affected.

We will explore the effect of different routing algorithms and routing imple-
mentations on yield and link frequency, taking into account variability issues
for chips with manufacturing defects. We will also analyze the impact of yield
and link frequency on the manufacturer benefit. The main goal is to determine
which is the best option for routing purposes when considering yield, perfor-
mance (frequency), cost and benefit.

It has to be noted that variability on transistors is used as a source of irregu-
lar topologies. Therefore, we do not consider at this step topologies derived from
other sources of manufacturing errors. Also, we assume that variability compen-
sation techniques are implemented in the switches, so that switch performance
variability cannot be a further source of topology irregularity.

8.2.1 Routing Mechanisms and Algorithms

For this study we have selected the SR [26] routing algorithm and two routing
implementations: RbR [29] and LBDR [28]. We chose them as they provide
flexible computation of routing paths (SR) and efficient implementations of
routing mechanisms (RbR and LBDR) without the need for routing tables.
Also, they have been presented in the last three years and have been focused
for on-chip networks. We have added also new functionalities to these routing

135

CHAPTER 8. EMERGING ISSUE

N
E
W
S

−

+

+

−

+

+

−

−

Output Port Selector

Region Matcher (RM)

OP register

Row1

Row2

Col1

Col2

RowDst >= Row1

ColDst >= Col1

Col2 >= ColDst

Row1 >= RowDest

RowDst

RowDst

ColDst

ColDst
... S

.
. .

..
. .

.

... W

N

...

...

E

.
. .

.

Routing Region 1

Routing Region 2

Routing Region n

(a) RbR

(b) LBDR and LBDRdr

S0 S1 S2

S3S4S5

S6 S7

A

X

B

bidirectional routing restriction

(c) SR algorithm and
deroute example

Figure 8.2: SR, RbR, and LBDR routing algorithms and mechanisms.

mechanisms (namely LBDR) in order to increase their coverage of non-regular
topologies. The main constraint for these additions is that they must have small
area overheads while increasing the coverage in an effective manner.

SR is a topology-agnostic routing algorithm that does not require the use of
virtual channels and guarantees deadlock freedom and full connectivity among
nodes. SR works by partitioning a topology into subnets, and subnets into
segments. As segments are independent, placements of routing restrictions are
independent from segment to segment. This locality independence property
adds a new dimension to the placement of routing restrictions, and allows to
disentangle from the limitations found in other routing algorithms. An example
set of routing restrictions computed by SR is observed in Figure 8.2.c. The
search for segments is initiated on the top left most switch and in a zigzag
manner down to the bottom. Figure draws each node and link with different
patterns showing that each of them belong to a different segment (from S0 to
S7). A bidirectional routing restriction have been placed on each segment (8 in
total) so traffic can be spread evenly across the topology. A routing restriction

136

8.2. ARCHITECTURAL IMPLICATIONS

(see Figure 8.2.c) is set by two adjacent links and ensures no packet can cross
them. Both routing mechanisms (RbR and LBDR) will make use of this routing
algorithm.

Region-based Routing (RbR) framework allows to route messages by using
simple and efficient blocks of logic referred to as regions. A different set of
regions is implemented in logic at every input port of a given switch. Figure
8.2.a shows hardware required per input port. Each region is a square box of
destinations that is identified by the possible output ports (OP register), the top
left most switch (Row1 and Col1 registers) and the bottom right most switch
(Row2 and Col2 registers) of the region. When a message header arrives to the
input port, it inspects all regions in parallel in order to find out which are the
possible output ports it can take. Regions are computed and identified by the
RbR mechanism based on the routing restrictions and the network topology.
They are used to setup hardware registers located at every input port of every
switch. These registers must be programmed before routing any packet at net-
work boot time. A nice feature of RbR is that it allows the implementation of
topology-agnostic routing algorithms providing appropriate support for routing
under the presence of link and node failures.

LBDR implementation is based on a small logic and uses two sets of bits
on every switch: the Rxy routing bits and the Cx connectivity bits. As in
RbR, all bits are set before normal operation and are computed based on the
routing algorithm used and the current topology. A routing bit, Rxy, at a given
switch indicates if a packet is allowed (by the applied routing algorithm) to leave
the switch through output port x and at the next switch to turn to direction
y. Connectivity bits, Cx, are used to define the current topology being used.
Each output port has a connectivity bit that indicates if a neighbor switch is
attached through the output port. With all these bits a small logic block is set
to effectively route packets in a deadlock-free and connected manner (Figure
8.2.b).

As commented by the authors, LBDR does not allow the use of non-minimal
paths. And this fact limits its applicability to highly irregular topologies, thus
potentially affecting yield. As an effort to reduce this shortcoming, we extended
LBDR with an additional feature. The addition is referred to as LBDRdr and
will provide non-minimal paths at strategic switches. To do so, we add a small
logic and two bits per switch to LBDR. The addition is shown in Figure 8.2.b.
The logic (NOR gate) is enabled when LBDR is not able to select a proper
output port for a packet. Then, a multiplexer is enabled to provide a deroute
output port for the packet. Two bits are used per switch to configure the
multiplexer accordingly to the routing algorithm being used. Notice that when
computing the routing bits and the deroute bits we need to guarantee that no
routing restrictions are crossed by packets.

Figure 8.2.c shows an example where the deroute is used. The figure shows
a case not supported by LBDR (the non-minimal path shown). At switch A
the packet should be sent through the east output port, however the link is not
operational. With LBDRdr, now the provided example is supported. At switch
A, the packet needs to be derouted. In the example we select the north port as
the deroute port for the packet. The packet will leave the switch through the
north port and will reach switch X. At that switch the packet is evaluated. In
particular, the direction is computed. In this case direction is south-east. With
LBDR the packet would select either east or south. Notice that in this case the

137

CHAPTER 8. EMERGING ISSUE

Figure 8.3: Several Gaussian density functions showing different process vari-
ability

packet should not take south since it was coming through the south port. To
prevent this we filter U turns with a small logic. From that point the packet will
be routed with the basic LBDR mechanism. There is no need for new deroute
ports.

8.2.2 Modelling within-die variability

Variability is caused by deviations introduced in the fabrication process and by
intrinsic effects like atomic-level differences due to small variations in dopant
levels. Process variation affects the delay of a signal propagating between two
points in the die, and therefore, NoC links are also affected by variability.

When designing a NoC, the maximum theoretical operating frequency of the
links (fmax), obtained through the worst-case delay analysis, follows a Gaussian
probability density function [19] that depends on the parameter variation of the
manufacturing process. Thus, the actual operating frequency targeted at design
time (fclk) must be lower than the mean of this density function (fo), since
not all wires would be able to reach fo as a consequence of process variations.
Actually, fclk must be low enough to guarantee that all links in the network are
able to switch at that frequency. This behavior is shown in Figure 8.2.2, where
several Gaussian density functions corresponding to different process variations
are shown. The narrowest curve is associated to a fabrication process with
low frequency variation, σ (σ is the standard deviation). In order to minimize
the probability of having faulty links, the operation frequency, fclk, is chosen
according to a 6σ criterion, i.e. fclk = fo−3σ. However, as process variability is
becoming higher, the shape of the probability density function of the maximum
operating frequency becomes wider too. Consequently, as variability increases, a
lower value of fclk must be used in order to keep all the links within its operating
range, noticeably reducing frequency. This frequency reduction keeps yield but
considerably reduces performance.

138

8.2. ARCHITECTURAL IMPLICATIONS

We consider two different values for link-delay variability (or more precisely,
for link-segment delay variability), according to [16] [20]. The first one is set to
5% (σ = 0.05), representing the current technology aiming a 65nm manufactur-
ing process. The second one is 18% (σ = 0.18), corresponding to the estimated
variability present in future 22nm processes [21]. These values will provide us
a good estimation on how an increasing variability may affect link delay and
therefore design decisions.

Process variability also presents spatial dependencies, that can be modelled
by using Gaussian Random Fields (GRF) [17] [22]. When using GRF, if it is
assumed that the field is stationary and isotropic, then the variance (σ2

i) of the
random field D(x, y), representing the delay in the (x,y) die position, depends
only on the euclidean distance between two given locations. Then, the delay
distribution (D) only depends on a correlation function. We are going to use the
exponential model for characterizing the correlation function. In this model, λ
modulates the strength of the correlation in such a way that if λ tends to infinite,
then the delay at a given point has no neighborhood dependencies.

We have modelled spatial dependencies of variability by generating synthetic
within-die variations following the methodology proposed in [17]. Moreover, we
have considered two different families of scenarios. The first one models a CMP
chip consisting of 16 cores arranged as a 4x4 2D-mesh showing variability of
5%. This chip family is intended to represent current or near term CMPs. The
second family models a 64-core chip using an 8x8 2D-mesh. This family would
represent future CMPs, and therefore presents a 18% variability. Within each
family, the strength of the spatial correlation, λ, has been set to values 0.4
and 1.2, representing a high and low correlation, respectively. These values are
representative of the typical correlation induced by fabrication processes [17]
[22]. In summary (see Table 8.1), we are taking into account two chip sizes,
each of them using two correlation strengths but showing different variability
values. Finally, for each parameter combination we have analyzed 50 chips.

In order to accurately map spatial variability data to the physical layout of
the chips, a real 65nm implementation NoC layout [18] has been considered,
where all cores are identical, and their size is 1mm2. Additionally, the gap
between cores is 0.2mm. Therefore, links connecting NoC switches are 1.2mm
long. According to these sizes, the 4x4 chips require a 4.7mmx4.7mm die.
Then, the methodology proposed in [17] has been applied by transforming the
4x4 die into a 47x47 grid. By doing so, every point in the grid represents the
delay of a link segment whose driving repeater is located at that die location.
Link segment length corresponds to the interval for repeater insertion and is
derived by observing in [30] the behaviour of a commercial link physical synthesis
tool for a 65nm technology. With respect to the 8x8 chips, we do not have
implementation data for them (with a 22nm technology). Therefore, we have
assumed that the ratio between core side and intercore space is kept, and thus
8x8 dies will transform into 95x95 grids.

Figure 8.4 shows some examples of the data provided by the methodology
described above when applied to the 16-core chips. The nominal delay of links
considered is 1ns. It can be seen that as variability increases, differences in the
delay among different parts of the chip also increase. This can be easily seen
in Figures 8.4(a) and 8.4(c). The only difference between them is the increased
process variability. Also, when Figures 8.4(a) and 8.4(b) are compared, it is
clearly seen that fabrication processes showing large correlation (small values

139

CHAPTER 8. EMERGING ISSUE

0
2

4

0

2

4

0.5

1

1.5

x(mm)y(mm)

N
or

m
al

iz
ed

 d
el

ay

(a) σ = 0.05 λ = 0.4

0
2

4

0

2

4

0.5

1

1.5

x(mm)y(mm)

N
or

m
al

iz
ed

 d
el

ay

(b) σ = 0.05 λ = 1.2

0
2

4

0

2

4

0.5

1

1.5

x(mm)y(mm)

N
or

m
al

iz
ed

 d
el

ay

(c) σ = 0.18 λ = 0.4

Figure 8.4: Spatial correlation of delay in a 4.7mm x 4.7mm die

of λ) produce much more homogeneous layouts from the point of view of delay.
Figure 8.4(b) shows that a small correlation value causes that points closely
located to each other may exhibit larger differences in delay.

The last step is obtaining link-delay data from the computed grids. To
do so, we have taken into account that 1.2mm links require two segments in
a 65nm technology when working at 1GHz. Therefore, we have added the
values of the two grid points that map to the two segments of each link in the
network. Therefore, we catch the possible timing compensation produced as a
consequence of link length.

8.2.3 Evaluation

In this Section we provide the results in terms of coverage, performance, and
benefit. However, we first introduce the evaluation methodology and define the
set of metrics we have used.

Evaluation Methodology

Figure 8.5 shows the evaluation procedure we will apply to each of the chips
shown in Table 8.1. For each chip, and as a result of analyzing link delay vari-
ability, we will generate different topologies by varying the operating frequency
(step a). The highest considered frequency will be the one that first provides
physical connectivity between all end nodes (932 MHz in Figure 8.1), while the
lowest one will correspond to that of the slowest link. That frequency will pro-

140

8.2. ARCHITECTURAL IMPLICATIONS

Chip

2D mesh
with a

set of topologies
with different

a topology

network frequency
with a given

instances

compute

the same topology
algorithms for
set of routing

for a topology
a routing instance

routing
apply all the

network frequencies
mechanisms

analyze link
variability

(a) (b) (c)

SR routing

Figure 8.5: Steps followed to compute the fault tolerance of LBDR and RbR
mechanisms.

vide the maximum connectivity in the NoC, that is, a 2D mesh network (872
MHz in Figure 8.1). The first topology will set the maximum frequency the
network can work and the last topology will set the minimum frequency. The
number of topologies for each chip will vary due to variability issues.

chips σ λ topology SR instances
50 0.05 0.4 4 × 4 mesh 16
50 0.05 1.2 4 × 4 mesh 16
50 0.18 0.4 8 × 8 mesh 8
50 0.18 1.2 8 × 8 mesh 8

Table 8.1: Parameters used in the evaluation.

For each of the topologies obtained in the previous step, we will compute the
SR routing algorithm prioritizing performance by searching segments from top
to bottom and in a zig-zag manner. Additionally, we will compute different SR
instances by starting from a different node. Thus, we will obtain 16 instances
for all the topologies of the 4 × 4 chips and 8 instances for all the topologies of
the 8 × 8 chips1 (step b).

For every computed routing instance (belonging to a topology of a given chip
and operating frequency) we will test if every routing implementation works or
not (step c). A routing implementation will work if it is able to route packets
from every source to every destination. The routing implementations we will
test are LBDR, LBDRdr (LBDR with deroutes), RbR8r (RbR with eight regions
per input port), and RbR12r (RbR with 12 regions per input port).

If a routing implementation works for at least one of the routing instances
for a topology with a given operating frequency, then, it is said that the routing
implementation covers the current chip at that frequency. We will rank all the
chips with the maximum supported link frequency for every routing implemen-
tation.

Evaluation Metrics

The main goal is to analyze the fault tolerance of the LBDR and RbR routing
implementations with respect to variability issues. To do so, we define a new
metric that represents the usability of each mechanism. The metric is named
coverage and is defined as the percentage of chips that are usable for a given
frequency and routing implementation. For instance, if we show a coverage of
80% for LBDR at 900MHz, this means that in 80 chips out of 100 chips working

18x8 topologies allow for 64 instances, but for the sake of reducing analyzed data, we only
compute 8 of them by starting in the diagonal nodes.

141

CHAPTER 8. EMERGING ISSUE

(a) high spatial correlation, λ = 0.4 (b) low spatial correlation, λ = 1.2

Figure 8.6: Coverage results for chips using a 4 × 4 mesh. σ = 0.05.

at 900MHz, LBDR successfully allows communication between all the cores in
the chip.

In addition to the coverage metric we will analyze the effectiveness of each
implementation to provide coverage. In particular, we model each implemen-
tation in the xpipeslite switch architecture and derive area and delay results
for each routing implementation. With the coverage/area metric we will assess
the effectiveness of each implementation in providing coverage. As pointed out
in [23], additions in area in a multicore chip must be done if the benefits are
worth the addition. A kill rule is defined where 10% of additional area is worth
being used if at least a 10% increase in performance is achieved. With the
coverage/area metric we will provide a kill rule for the coverage.

As we analyze coverage at different link frequencies we endup with differ-
ent distributions of chips along the frequency spectrum for each implementa-
tion. This has a strong correlation with the benefits the chip manufacturer
may achieve. Indeed, chips working at higher frequencies will be targeted for
high-end applications and thus these chips will be more expensive. In order to
analyze this issue we define a new metric, referred to as average benefit. This
metric will indicate the differences in benefits for each chip when using different
routing implementations.

Coverage Results

In this first evaluation we analyze the coverage that can be achieved for each
routing implementation. To do so, we classify the chips according to the fre-
quency they can work at. Figure 8.6 shows the distribution along the link
frequency of all the 4× 4 chips (σ = 0.05) analyzed for λ = 0.4 and λ = 1.2, re-
spectively. The figure includes results for LBDR, LBDRdr, RbR8r, RbR12r, and
MAX (routing tables). The MAX curve represents the percentage of chips that
have a connected network (with respect to the total amount of chips). The same
frequency f0 is assumed for all experiments, selected in the high-performance
range of the network (e.g., 1GHz) where the reliability-performance trade-off
appears more clearly.

As a first observation (see MAX curve) we can see how the spatial corre-
lation of the variability affects the connectivity of the network. With a low
spatial correlation (λ = 1.2) more chips can be operated at a higher frequency
(the topology gets connected at higher frequencies). The reason for this is that
for low correlation values, the frequencies of the links of a given router spread
out to a larger frequency range, and therefore, when a frequency threshold is
applied, that router has more chances to get any of its links above the threshold.
On the contrary, for high correlations, all the links of the router will work at

142

8.2. ARCHITECTURAL IMPLICATIONS

(a) high spatial correlation, λ = 0.4 (b) low spatial correlation, λ = 1.2

Figure 8.7: Coverage results for chips using a 8 × 8 mesh. σ = 0.18.

similar frequencies, and thus, for a given frequency threshold, the probability of
all of them having a lower (or higher) frequency than the threshold is higher. If
they are below the threshold, the router will remain unconnected.

It is interesting to see how link frequency is affected by the variability effect
on transistors. 50% of the chips get connected topologies at 0.94f0 for λ = 0.4
and at 0.96f0 for λ = 1.2. Less than 20% of the chips have a connected topology
at the designed frequency f0 and all chips get a connected topology at low
frequencies: 0.87f0 for λ = 0.4 and 0.91f0 for λ = 1.2.

As we focus on the coverage we can see that overall, RbR achieves the highest
coverage in both scenarios (different λ values), as it covers all the connected
topologies in all the frequency ranges (bar plots of RbR8 and RbR12 equal the
MAX curve). In this case, only eight regions are enough to provide maximum
coverage. This is an interesting observation since an 8-region implementation of
RbR will be much simpler and efficient than 12- or 16-region implementations
(we will show area results in the following subsection).

On the other hand, the LBDR mechanism is somewhat behind RbR in terms
of coverage. The basic LBDR mechanism (without deroutes) achieves half
the RbR8 coverage for chips operating in the range of 0.94f0 to f0 for λ =
0.4. However, for a lower spatial correlation (λ = 1.2, Figure 8.6.b) differences
between RbR8 and LBDR are more significant. Notice that, 80% of chips can
be operated at 0.94f0 with RbR8 whereas only 40% of them can be used with
LBDR.

If we add the deroute option to LBDR, differences are significantly reduced.
For a high spatial correlation (λ = 0.4), LBDRdr almost solves the coverage
problem of LBDR. As an example, adding deroutes helps to increase coverage
from 60% upto 72% for chips working at 0.92f0. Similar results are achieved
also in the case of lower spatial correlation (λ = 1.2), however differences in
coverage still remain when compared to RbR8.

As a conclusion for the current 4 × 4 chips with σ = 0.05, we can conclude
that the best option for coverage purposes is RbR with only 8 regions and LBDR
achieves a decent although minor result for the coverage. RbR achieves 100%
coverage for all connected chips in all the frequency range. Instead, LBDR
achieves, in most cases, 50% of coverage for the connected chips.

Now, let us turn our attention to future technologies with larger variability
margins. Figure 8.10 shows, for different spatial correlations, the coverage of
each implementation for chips with an 8×8 mesh with σ = 0.18. Frequencies are
again normalized to f0. Results are very interesting here since the mechanisms
face much more irregular topologies. The first observation is that the span of
frequencies is much larger (due to a larger variability parameter). For instance,
all the chips get a connected topology at 0.65f0 for λ = 0.4 and at 0.74f0 for
λ = 1.2.

143

CHAPTER 8. EMERGING ISSUE

0

0,2

0,4

0,6

0,8

1

1,2

LBDR LBDRdr RBR-8 RBR-12

M
a
x
im

u
m

 F
re

q
u

e
n

c
y
 (

n
o

rm
.
to

th
e
 f

a
s
te

s
t

o
n

e
)

Figure 8.8: Maximum speed achievable by the switch with different routing
mechanisms inside. Post-layout results.

Also, differences between LBDR and RbR are much more noticeable. In
particular, LBDR looses all the coverage it achieved for current 4x4 chip de-
signs. Neither LBDR nor LBDRdr are able to achieve a reasonable coverage
percentage at a high link frequency (e.g. 50% coverage is achieved at 0.73f0

for both λ = 0.4 and λ = 1.2). On the other hand, for RbR we observe that
maximum coverage of chips with connected topologies is achieved in all the
frequency ranges for λ = 0.4 and in most cases for λ = 1.2. In some cases
(for λ = 1.2) RbR requires 12 regions to achieve maximum coverage for chips
with connected topologies. Up to 30% of coverage differences can be achieved
between RbR8 and RbR12, and more than 50% of coverage difference in a wide
frequency spectrum between LBDR and RbR.

To sum up, we see that a higher variability value increases the span of
frequencies of the chip (many irregularities) and decreases the effectiveness of
the routing implementations. Coverage is guaranteed in this case with RbR but
requiring 12 regions instead of 8. LBDR looses ground in terms of coverage. In
the next section we will analyze each mechanism in terms of performance and
area.

Performance and Cost Results

In the previous section we have analyzed the coverage each routing implementa-
tion provides for different values of σ and λ. The analysis has been performed for
the same design frequency f0. In this section we analyze the maximum operating
frequency reachable by each switch with the different routing implementations
and the area overhead for their logic and registers. The intention behind this
is to characterize the reliability-performance/area trade-off, and to ultimately
assess whether the implementation complexity of a routing mechanism largely
exceeds its coverage improvements or whether these latter are worth the cost.

The xpipesLite design platform is used to refine RTL descriptions into actual
switch layouts. An STMicroelectronics 65nm low-power technology library was
used, and commercial backend synthesis tools.

Figure 8.8 shows the maximum achievable switch frequency when using each
possible routing mechanism. Results are normalized to the fastest solution
(LBDR). Logic depth for each scheme is important, since it resides on the switch

144

8.2. ARCHITECTURAL IMPLICATIONS

N
o

rm
a

li
z
e

d
 S

w
it

c
h

A
re

a

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

 Max Performance

(post-layout)

1 GHz target frequency

(estimated for RbR)

LBDR

LBDRdr

RBR-8

RBR-12

Figure 8.9: Switch area with different routing mechanisms inside. Area at 1 GHz
is estimated accounting for the switch pipelining overhead (best and typical case
area ratios).

critical path. Clearly, LBDRdr incurs only a minor degradation of the maxi-
mum speed (which is slightly more than 1 GHz for baseline LBDR). In contrast,
RbR suffers from about 30% frequency reduction, with a further degradation
when moving from RbR8 to RbR12. The main cause for this large critical path
lies in the larger number of cascaded logic stages (local-port matching, region
matching, output port selection) and in the use of high-fanout nets at switch
inputs. In fact, the destination coordinates of the packet have to be checked
in parallel with the upper-left and lower-right coordinates of each region. In
practice, after place-and-route, a large delay arises to drive these high-fanout
nets. LBDR has a much more layout aware implementation that reduces to a
few more gates and registers for each switch input port.

The low performance of RbR can be hidden by pipelining switch operation.
To reach 1GHz switch frequency the single cycle switch architecture can be
retained only for LBDR solutions. RbR requires 2 cycle switches to keep up
with that frequency.

As regards area, we can see in Figure 8.9 the results. The left-hand plot
shows post-layout area at maximum performance, which is the one just found.
In all switches, input and output buffers drain most of the area. Therefore, the
larger routing logic used by RbR with respect to LBDR is not fully reflected
in the switch area increment, which makes RbR overhead significant but not
unacceptable.

On the right-hand side of Figure 8.9 an area estimation is reported for the
case where all switches have to be operated at 1 GHz. Therefore, area overhead
of RbR now also includes the estimated cost for pipeline registers and additional
flow control stages. In practice, the left-hand plot shows area for single cycle
routers at maximum performance, while the right-hand plot shows area for the
two schemes to run at the same frequency.

Therefore, we endup having two mechanisms with opposite benefits, LBDR
having low coverage but small area requirements and RbR having excellent
coverage but large area requirements. In order to quantify this trade-off, we
define the coverage/area metric, which expresses how effectively network area
is used with respect to the reliability objective. Coverage/area is measured by

145

CHAPTER 8. EMERGING ISSUE

Figure 8.10: Coverage/area results for chips using a 4 × 4 mesh. σ = 5%,
λ = 0.4.

Frequency Chips Benefit
range LBDR LBDRdr RbR8 RbR12 weight

0.91f0 - f0 0% 0% 2% 8% 3.47
0.82f0 - 0.9f0 2% 6% 32% 52% 1.93
0.73f0 - 0.81f0 40% 42% 66% 40% 1

Table 8.2: Frequency bins, percentage of chips, and relative benefit.

dividing the coverage percentage by the percentage of chip area devoted to the
routing mechanism (area of the mechanism multiplied by the number of routers).
Results are reported in Figure 8.10. A value of one in coverage/area means that
the same percentage of area increment leads to the same percentage of coverage
increase. As can be seen, now when considering real implementation costs we
get opposite coverage results. LBDR achieves a high coverage/area value since
its implementation costs are very modest. Values higher than 300 are obtained
(300 times more coverage than area required). However, RbR achieves a low
coverage/area value because although it achieved an overall high coverage value,
its area requirements are too high.

As we have seen in the previous section, different chips can be operated at
different link frequencies, thus enabling a higher throughput for the entire chip.
Chip manufacturers tipically classify chips at different operating frequencies and
they are sold at different prices, thus achieving different benefits. As the use
of different routing implementations can lead to different amounts of chips at
different frequency bins, they (the routing implementations) will have a high
impact on the potential benefits. To analyze this, Table 8.2 shows different
frequency bins and a relative number of the benefit for chips at different bins.
These numbers (frequency ranges and benefits) have been derived from the Intel
web page, in particular from the Intel Core i7 processor family (i7-920, i7-940,
and i7-965 models). Based on these numbers, Figure 8.11 shows, for σ = 0.18
and λ = 1.2 the average benefit of each chip when using a different routing
mechanism. As can be seen, RbR allows much higher benefits than LBDR due
to its higher coverage. This is due, mainly, to the fact that no chips can be
operated at the highest frequency range with LBDR. Average benefit per chip
can be cuadrupled when using RbR.

146

8.2. ARCHITECTURAL IMPLICATIONS

Figure 8.11: Average chip benefits. 8 × 8, σ = 0.18, λ = 1.2.

(a) 4 × 4 mesh, σ = 5%, λ = 0.4
(b) 8 × 8 mesh, σ = 18%, λ = 0.4

Figure 8.12: Coverage results for LBDRvc.

Virtual Channels on the Run

From the previous section we can derive conflicting interests when deciding
which is the best routing implementations in terms of coverage, performance,
and area. LBDR performs well (high frequency design, no pipeline required) and
is area efficient, however has a low coverage (even with deroutes). On the other
hand, RbR has a very good coverage but low performance and is inneficient
in terms of area. Additionally, increasing RbR performance is difficult. It
seems more interesting to improve LBDR coverage. In this section we analyze
a further improvement over LBDR trying to increase significantly its coverage
while keeping its area requirements low (and its high frequency design).

The idea behind the new improvement is applicable to routers using virtual
channels. It is expected, as technology advances, that the use of virtual channels
will be common in NoCs. LBDR is extended to allow a virtual channel transition
once a routing restriction is used. By doing this, and by transitioning virtual
channels in a sequential and ordered way we can ensure deadlock-freedom.

Figure 8.12 shows the coverage results for LBDR when using no virtual
channels (LBDR) or when using two (LBDRdr−2vc) or four (LBDRdr−4vc)
virtual channels. As can be seen, using virtual channels helps to maximize
coverage with LBDR. Only two virtual channels are required with current 4× 4
chips with σ = 0.05 whereas four virtual channels are required for 8 × 8 chips
with σ = 0.18. These results, however, need to be further explored in terms
of coverage/area and benefit. This is left for future work. However, results
provide good indications about how coverage can be maximized with an area-

147

CHAPTER 8. EMERGING ISSUE

and performance-efficient solution.

8.3 Circuit Implications

With traditional worst-case design techniques, the risk is to be too conservative
or to discard too many chips, thus resulting in very low levels of yield.

The emerging issue now is how to design differently than worst-case [3].
Self-calibrating designs have been introduced as an alternative to worst-case
characterization of silicon [13]. Instead of relying on over-conservative worst-
case assumptions, self-calibrating circuits tune their operating parameters to
in-situ actual conditions. A run-time controller receives feedback from a checker
that monitors correct operation of the circuit. When needed, circuit reliability
can be restored at some power or performance cost, depending on actual silicon
capabilities and noise conditions.

A milestone work exploring the use of self-calibrating links in the context of
on-chip networks is [14]. It proposes dynamic voltage-swing scaling as a way to
dynamically adapt to environmental variations, design uncertainties, manufac-
turing parameter deviations or communication bandwidth requirements.

While their transmission scheme adapts to variations of link physical param-
eters by discovering the real delay-voltage characteristic of the technology with-
out any assumptions on it, there is no connection between link operating con-
ditions and parameter variations affecting upstream or downstream functional
units. In practice, self-calibrating links cannot prevent an upstream switch from
violating its timing requirements due to delay variations.

In contrast, our work pioneers the use of digital self-calibrating links to
compensate process variation induced delays in the upstream logic unit. We do
not view the communication channel in isolation, but its operating parameters
can be adapted to absorb and compensate the effects of process variations in
connected modules. We also select link voltage swing as our compensation knob.
We envision a design methodology where process variations of link upstream
modules are measured during the post-fabrication test phase, and clock skew of
such modules tuned accordingly. Then we make up for the reduced propagation
delay margins on the link through voltage swing adaptation.

We show that the energy overhead induced by the increased swing is offset
by deploying low-swing signaling on the links under nominal conditions. This
creates some margin for power savings which is the budget for process variation
compensation during post-silicon testing and therefore for yield enhancement.

Our technique can also be used during the normal life of the circuit in order
to address wear-out problems. Periodically, the chip could be re-tested and
new problems caused by delay variations might arise. Our NoC links could be
reconfigured in order to cope with the new conditions, thus resulting in the
possibility to extend the lifetime of the chip by recharacterizing the links and
their power consumption.

The rest of the chapter is organized as follows. Section 8.3.1 presents our
guiding principles. Self-calibrating link implementation is then illustrated in
Section 8.3.2. Finally, the experimental results in Section 8.3.3 explore the
reliability - power trade-off. Conclusions are drawn in Section 8.4.

148

8.3. CIRCUIT IMPLICATIONS

8.3.1 Self-correcting flip-flop

A recently proposed technique to deal with process variations in pipelined de-
signs consists of clock cycle time stealing, where the time slack of faster stages
in the pipeline is transferred to the slower ones by skewing the clock arrival
times to latching elements.

In a different context, a similar scenario occurs also in on-chip networks.
Whenever the switch and the link can be viewed as two consecutive pipeline
stages, a critical path delay degradation in the switch could be compensated
through slack stealing from the link. However, there is a big difference between
the NoC and the microarchitecture scenario. In this latter case, if not enough
slack is available in other pipeline stages, donor pipeline stages should be in-
serted, which are empty stages added in the pipeline to donate slack to the
slow stages. A larger flexibility does exist for NoC links, since such slack could
be provided without increasing link latency (e.g., by means of pipelined links).
Link operating conditions provide the needed tuning knob to adapt the link
propagation delay to the skew applied to an upstream logic stage. In particular,
electrical schemes to reduce the voltage swing of the interconnect are known
and well studied [15]. Obviously, the variable voltage swing impacts the speed
at which the interconnect driver is able to charge of discharge the load capaci-
tance. In the past, this has been exploited to identify voltage/frequency pairs
for reliable link operation in presence of changing environmental conditions or
application requirements.

In this work, we intend to apply the slack stealing technique to switch-link
pipelines in on-chip networks for process variation tolerant operation. In prac-
tice, we propose to skew the clock of the switch output latches to compensate
for variation induced gate delays. We then propose to make up for the reduced
margins for signal propagation across the link by increasing the voltage swing.
Since the effects of process variations are typically known only during the post-
silicon testing, we need a self-calibrating mechanism in the link that tunes clock
skews and drives the proper voltage swing to the link driver and receiver.

One of the main trends in the design of self-calibrating circuits is to empower
a selected subset of standard flip-flops with error detection and correction capa-
bilities. Figure 8.13 shows the architecture of the self-correcting FF that we have
designed to recycle switch-link pipelines in on-chip networks. If the incoming
data, due to process variations, arrives late, the main FF will sample it incor-
rectly, but the circuit is equipped with a certain number of additional detection
and correction paths that will be able to tolerate delays up to approximately
50% of the clock period.

Our enhanced self-correcting flip flop has two execution modes, with well dif-
ferentiated performance and power requirements: calibration mode and normal
execution mode.

In calibration mode, an operating point controller compares the output of
the main and of the delayed-sampling flip flops, assuming that the worst-case
transition delay of the input signal is within the correct sampling window of
the flip flop with the most delayed clock. Contrarily to similar circuits that
cope with dynamic timing errors[5], our enhanced flip flop needs not only to
detect timing violations, but also to quantify them. In fact, the voltage swing
on the link will have to be adjusted accordingly, and we should take care of
not over-designing the voltage swing to avoid link power inefficiencies. In con-

149

CHAPTER 8. EMERGING ISSUE

CLK

Metastability
Detector

&
Error
check

0

1

2

3

S1
D Q

S1
D Q

S2
D Q

S2
D Q

S3
D Q

S3
D Q

Main
D Q

Main
D Q

OUT

Adaptive
VSwing

SKEW
SELECTOR

DEL 16%

DEL 32%

DEL 48%

SWING
SELECTOR

DATA

MUXD Q DRIVER INTERCONNECT RECEIVER
DATA

FF
DEL 16%

CLK

A)

B)

Figure 8.13: Self-correcting flip-flop followed by an adaptive swing driver

trast, similarly to [5], we need to cope with metastability. This scenario, where
multiple delayed FFs sample the same input signal, is particularly sensitive to
metastability, and we accounted for this in the controller design.

The controller compares all FF outputs (MAIN, S1, S2) with that of S3.
When the output of a FF differs from S3 or is metastable, then the next one in
the timing chain is selected for reliable operation. If there are no evidences of
process variations, the controller selects the data from the main FF. The truth
table of the controller is reported in Table 8.3.

S2 S1 MAIN SELECTED FF Sel1 Sel2

0 0 0 MAIN 0 0

0 0 1 S1 0 1

0 1 1 S2 1 0

1 1 1 S3 1 1

Table 8.3: Truth table of the operating point controller.

The calibration phase takes place during post-fabrication testing, and re-
quires proper input patterns to be fed to the switch. In fact, switch critical
paths need to be stimulated for proper detection of timing violations. Since
then due to process variations paths that are non-critical under nominal con-
ditions may become critical under certain variation scenarios, statistical static
timing analysis (SSTA) needs to drive the test pattern selection process. Such
analysis methodologies are so critical for efficient nanoscale designs that proper
tooling support is becoming available [1] and will soon be mainstream. In addi-
tion, switches are easily testable as far as we are concerned. In fact, they usually

150

8.3. CIRCUIT IMPLICATIONS

exhibit a well identifiable number of critical paths going through the arbitration
stage and through the crossbar selection signals. Moreover, a large timing gap
does exist between the critical and the non-critical paths, thus making SSTA
easier.

After calibration, the circuit enters in its normal execution mode. All FFs
that do not belong to the selected path can be powered down using either
clock- or power-gating techniques in order to save power. Active circuits during
both calibration and execution modes are illustrated in Fig. 8.13(a) and (b)
respectively. It is important to stress that no power overhead is caused by our
self-calibrating link during normal execution mode.

Periodically, the chip could be re-tested and new problems caused by delay
variations might arise depending on the age and the history of operating con-
ditions of the chip. Our NoC links could be reconfigured in order to cope with
the new conditions, thus resulting in the possibility to extend the lifetime of the
chip by recharacterizing the links and their power consumption. This results in
the possibility to effectively cope with wear-out effects.

Applicability

As regards applicability of our technique, a wide application domain can be
envisioned in the NoC context. The requirement we pose on the NoC architec-
ture is to expose the switch-link interface as a logic pipeline. As a consequence,
switches implementing input buffering or virtual output queuing can be made
variation tolerant with our circuit technique provided output latching is imple-
mented. In principle, this might lead to an increased communication latency
through the network, but a lack of output latching might give rise to long signal
paths degrading global design performance. Circuit-switching architectures like
the one reported in [8] or in Chapter 5 are ideal candidate for our self-correcting
FFs, since they implement end-to-end flow control and feature retiming stages
at switch inputs and outputs. Finally, our technique applies to output-buffered
switches as well with a few modifications. First, the input to output buffers
should feed our enhanced FF as well. During self-calibration, the controller se-
lects the proper voltage swing for the switch output links. Moreover, it should
drive a multiplexer that selects a proper delayed version of the clock for the
whole output buffer. Second, input latching may be required to break long
timing paths..

8.3.2 Link Design

Let us consider at first all circuit components that are active during normal
execution mode and their relative design issues. We opted for full SPICE mod-
elling of the whole communication channel, in order to accurately characterize
the reliability-power trade-off. Our design effort can then be capitalized to
develop cells for technology libraries to feed ASIC synthesis tools. We used
90nm Berekely Predictive Technology device models for our design and analysis
framework.

A number of well-known schemes for low-swing signaling have been presented
in the open literature[15]. After evaluation of several alternatives, we selected
the same low-swing transmission scheme as in [11], and adapted it to our needs.
The circuit schematic is reported in Fig. 8.14, except for the multiplexer whose

151

CHAPTER 8. EMERGING ISSUE

Figure 8.14: Low-swing signalling scheme

implementation was straightforward and which we could consider as a simple
delay stage in what follows.

The interconnect is driven by a transmitter that takes the input stream from
a flip flop. The receiver is composed by an amplifier and an output latch. We
deployed a Sense-Amplifier Flip-Flop[6] scheme optimized for high-performance.
It incorporates a precharged sense amplifier followed by a symmetric latch topol-
ogy that significantly reduces delay and improves driving capability. The trans-
mitter performs voltage-level conversion for low-swing signalling. The chosen
receiver is a pseudo-differential circuit (PDIFF), consisting of a clocked sense
amplifier and a static NOR output latch. It uses single wire per bit while at
the same time retaining most of the advantages of differential schemes, namely
low input offset and good sensitivity. Its major reliability degradation comes
from the local device mismatch between the double input transistor pair, which
usually can be controlled very well. The variation between distant REF’s of
the driver and the receiver also contributes some reliability degradations. The
operation of the receiver is not sensitive to the supply noise, as opposed to other
schemes. Since the FF samples on the rising edge of the clock and the receiver
on the falling edge, it is possible to apply a clock signal with a phase shift be-
tween these two modules in order to increase the link throughput and/or to let
the receiver sample more stable input signals. In order to simplify the clock
network, we fed the PDIFF receiver with the negated clock, thus giving the
signal an entire clock period for propagation across the link. A π3 model was
used for electrical level simulation of the interconnect[9], due to the reasonable
trade-off between computation complexity and accuracy.

Our SPICE characterization of this interconnect scheme for 90nm technology
indicated a maximum operating frequency of 2 GHz (2mm wire, 200mV voltage
swing). This frequency is much larger than those achievable by state-of-the-
art NoC prototypes, which hardly achieve more than 1 GHz. Therefore, we
set our nominal performance constraint to an aggressive value of 1 GHz. For
transistor sizing, we used the optimization engine that comes with HSPICE.
For each component in the channel, we kept requesting increasing performance
to the optimizer till an abrupt increase of transistor sizes was returned by the
optimizer. An interesting trade-off is implicit in the sizing process. On one
hand, we would like to have large slacks so to be able to allow more slack
stealing to the upstream switch. On the other hand, large transitor sizing results
in more power consumption and area overhead. The driver was resized for
different interconnect lengths and hence wire load capacitances. We considered

152

8.3. CIRCUIT IMPLICATIONS

Figure 8.15: Operating point controller

link lengths ranging from 0.5 up to 4mm, which reflects typical NoC wiring
scenarios.

We then designed the circuit components for the calibration phase. The
most relevant optimization was performed on the operating point controller,
whose logic structure is reported in Fig.8.15. In (a), we compared the output
of a generic FF of index N (MAIN, S1, S2) with that of the reliable S3 FF. At
this stage, we have to consider that only 50% of the clock period is available for
single-cycle calibration, since we need for wait for the sampling of S3 to have
the reference logic value for comparison. When values differ or metastability is
detected, a logic 1 generated on OUTN . All outputs at this stage then feed a
combinational logic which returns the binary code of the selected FF. Observing
the truth table of this combinational function from Table 8.3 we devised a
straightforward mux-based implementation which is illustrated in Fig.8.15(b).
OUT 2 is not only the mux selector, but also the first digital output of the
controller, the second being the mux output. Interestingly, in contrast to [5] our
scheme does not suffer from short path concerns. In fact, while razor flip flops
are employed at runtime to cope with dynamic timing errors, our enhanced FF
only operates during predefined calibration phases wherein selected test patterns
stimulate only critical paths.

We implemented the same metastability detectors as in [5], which detect
the presence of a metastable voltage level. A detected metastability event is
corrected the same way as a regular delay failure. The circuit consists of two in-
verter gates with different skewed P/N ratios, such that they switch at different
voltage levels. If the two inverters interpret the result differently, the flip flop
voltage is not definitive and may be metastable. Note however that complete
system failure due to metastability cannot be completely avoided and only its
probability of occurrence can be reduced to negligible levels. In fact, in our cir-
cuit there is a small but finite probability that the OUTN signal itself becomes
metastable, possibly causing a failure in the following cascaded decision logic.
A number of standard techniques do exist to reduce the probability of such an
event, trading reliability with latency. We are also aware that a reduction of the
probability of having an input signal violating FF sample and hold constraints
can be reduced by limiting the number of sampling flip flops. In the simplest
case, a 2 FFs scheme could be used. However, we would have a coarser granu-

153

CHAPTER 8. EMERGING ISSUE

0.00E+00

1.00E-10

2.00E-10

3.00E-10

4.00E-10

5.00E-10

6.00E-10

7.00E-10

8.00E-10

9.00E-10

1.00E-09

[S
]

LINK 3mm

DRIVER

MUX

CNTRL

SKEW

Figure 8.16: Critical path breakdown

Figure 8.17: Area breakdown

larity in voltage swing adaptation, leading to conversative and power inefficient
solutions. Techniques for a further reduction of the probability of metastability
events are left for future work.

We optimized the critical path of the entire enhanced FF (going through
the calibration circuitry) in order to allow for single-cycle calibration. Even
forcing the voltage swing to its maximum value (1V), we achieved our goal only
in presence of 2mm wires or below. For longer links, either adaptive strength
drivers should be implemented, resulting in high area impact, or two cycles
should be used for calibration. In this latter case, a retiming stage could be
inserted along the link or clock stretching could be implemented at the receiver
sampling stage. The critical path breakdown of the enhanced self-correcting FF
is illustrated in Fig.8.16 for a 3 mm wire. As mentioned, calibration only has
50% of the clock period (i.e., 500ps) to evaluate.

The critical path goes through the controller, the mux selector signals, the
driver and the link. For a 3mm link, the link contribution to the critical path is
significant. The breakdown also shows the results of controller delay optimiza-
tion. Even though the total delay is lower than 1ns, calibration does not work
at 1 GHz since these delays are taken at 50% of the voltage swing (1V) and the
receiver setup time is not accounted for in the plot.

Finally, area breakdown is illustrated in Fig.8.17. We can see that controller
performance has been achieved at a significant area cost. Driver, receiver and
FFs account for an almost equal share of area. Total area incurred by the

154

8.3. CIRCUIT IMPLICATIONS

0.00E + 00

5.00E -05

1.00E -04

1.50E -04

2.00E -04

2.50E -04

P o w 0.5m m P o w 1m m P ow 2m m P ow 3m m P o w 4m m

M a x ske w =
500p s

M a x ske w =
500ps

M a x ske w =
500ps

M a x ske w =
500p s

M a x ske w =
350ps

L in k le n g th

[W
]

L o w s w in g , 0 s k e w

Re d u ce d s w in g , m ax s k e w

Fu ll s w in g , 0 s k e w

Figure 8.18: Link power saving reduction with clock skew

enhanced self-correcting FF amounts to 5 um2. Of course this depends on the
number of instantiated FFs (4 in this case, as in Fig. 8.13 A).

8.3.3 Experimental results

Mode power

Our first experiment intends to characterize power consumption of our self-
calibrating link in calibration and normal execution mode. We chose a target
2mm link and instantiated 4 FFs in the enhanced self-correcting FF. In all
modes, the link works at 1 GHz.

In calibration mode, measured power was 0.388mW. Please consider that this
value includes not only link power, but the power of the entire communication
channel, from the enhanced FF to the PDIFF receiver and NOR latch. Full
swing voltage was enforced to meet the single cycle specification on calibration
execution. In contrast, in normal mode the enhanced FF consumes like a normal
flip flop, and power goes down to 50uW. In this condition, the voltage swing
was kept at 200mV, since even with 50% skew the nominal swing was able to
meet timing constraints. Even raising the voltage swing to 1V, in normal mode
power would be bounded to 0.15mW.

Link power margins

The next experiment intends to characterize the margins for slack stealing made
available by low-swing signaling interconnects and the link power overhead as
a function of clock skew of the upstream logic stage. The plot in Fig.8.18
reports power consumption of our low-swing self-calibrating channel in three
configurations and for different wire load scenarios. The leftmost bars indicate
power when no clock skewing is applied, and hence the minimum voltage swing
of 200mV is used. The rightmost bar reports power in the same case, but
when voltage swing is arbitrarily raised to the full swing 1V value. Finaly,
the intermediate bar describes the case where the maximum tolerable skew is
applied in each configuration (up to a maximum of half the clock period), and

155

CHAPTER 8. EMERGING ISSUE

0.00E + 00

5.00E -05

1.00E -04

1.50E -04

2.00E -04

2.50E -04

0 50 100 150 200 250 300 350 400 450 500

Clo ck ske w

[W
]

P ow 0.5m m

P ow 1m m

P ow 2m m

P ow 3m m

P ow 4m m

Figure 8.19: Voltage swing selection strategy

the relative power is highly impacted by the voltage swing needed to compensate
that skew.

First, let us observe the first and the third columns. It is evident that
low-swing signaling achieves a much smoother power behavior as a function of
increasing wireload capacitance. The main difference is due to the interconnect
capacitance being switched at its maximum swing. In practice, by implementing
low-swing signalling in on-chip links we can accumulate power budgets that
could be erased by process variations later on. In fact, the intermediate bar
illustrates the way in which such budget is consumed by clock skew. For small
wireload capacitances (from 0.5mm to 2mm links), the budget needs not to
be consumed, since clock skew simply reduces the available slack. For longer
links, such slack is not enough, and voltage swing needs to be increased with a
significant reduction of power margins.

Voltage swing selection policy

The third experiment aims at deriving a selection policy of the proper voltage
swing on the link as a function of clock skew. The plot in Fig. 8.19 shows the
power incurred by a link as a function of increasing clock skew in order to be
able to continue working at the target frequency of 1GHz in normal execution
mode.

A few things are evident. First, as the link length increases, even raising the
voltage swing to 1V does not allow to compensate up to 50% clock skew. In
contrast, for small wire loads the clock skew is compensated by absorbing the
available slack, without the need for voltage swing raising. Second, as soon as
the voltage swing is increased, power goes up rapidly. So, when possible, it might
be better to drive a given wireload capacitance with a slightly overdimensioned
driver instead of having a weak driver which is then forced to raise the voltage
swing to compensate large clock skews. Unfortunately, this was not feasible for
the 4mm link, since the optimizer would have returned overly large transistor

156

8.4. CONCLUSIONS

sizes to appropriately drive its wire load. As a result, with 350ps skew, power
incurred by the link is more than 4x with respect to the zero skew case.

8.4 Conclusions

This Chapter is split in two part: Architectural and Circuit Implications.
Regarding the architectural implications (Sec. 8.2) we demonstrate the ben-

efits of using an emerging class of routing mechanisms in network-on-chip (NoC)
to mitigate the impact of within-die process variability on the performance and
yield of many-core silicon chips. Such a class of routing mechanism can be called
variability-aware routing mechanism, in that they try to combine the need for
scalable and compact routing implementation with the need to face variability-
induced irregularity on the topology. We propose a new metric (coverage) to
quantify the percentage of chips usable for a given frequency in the presence of
variability. Using this metric, we analyze and evaluate the effectiveness of two
specific routing implementations of different design complexity, namely LBDR
and RbR, while considering link delay variations and spatial correlations that
are representative in current (65nm) and future (22nm) processes. Our results
based on comprehensive simulations of 4x4 and 8x8 2D mesh show that the
two routing mechanisms provide a wide range of flexibility that allows the chip
designer to choose either desired yield, performance, or a combination of both
in post silicon configuration. Therefore, we believe that network-on-chip with
variability-aware routing support will be increasingly important for improving
the chip yield in the future. To this purpose, we prove that virtual channel
availability would heavily relieve the requirements on the routing mechanism
for designs targeting high irregularity coverage.

In Section 8.3 circuit implication we present the implementation and analysis
of a variation tolerant version of a switch-to-switch link in a NoC. The goal is
to tolerate the effects of process variations on NoC architectures using self-
correcting links that automatically detect delay variations in upstream logic
units and compensate them. The correction is applied without increasing the
switch-to-switch latency by substituting the output flip-flops of the sending
switch with a self-correcting flip-flop followed by an adaptive voltage swing
selector. As a result, it is possible to tolerate delay variations at the cost of
additional power consumption.

157

CHAPTER 8. EMERGING ISSUE

158

Bibliography

[1] Synopsys PrimeTime VX Application Note - Implementation Methodology
with Variation-Aware Timing Analysis.

Version 1.0, May 2007.

[2] L. Benini and G. De Micheli.
Networks on Chips - Technology and Tools.
Morgan Kaufmann, 2006.

[3] S .Bhunia, S. Mukhopadhyay, and K. Roy.
Process Variations and Process-Tolerant Design .
In Int’l Conf. on VLSI Design, pages 699–704, 2007.

[4] S. Borkar, T. Karnik, and V. De.
Design and Reliability Challenges in Nanometer Technologies.
In Proc. of the 41st Annual Int’l Conf. on Design and Automation, 2004.

[5] D. Ernst et al.
Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation.
In Proc. 36th Int’l Symp. Microarchitecture (Micro-36), pages 7–18, 2003.

[6] A. Ghadiri and H. Mahmoodi.
Dual-Edge Triggered Static Pulsed Flip-Flops.
In Proc. Int. Conf. VLSI Design, pages 846–849, 2005.

[7] S. Kyo, S. Ohazaki, and T. Arai.
An Integrated Memory Array Processor Architecture for Embedded Image

Recognition Systems.
In Proc. of the 32nd Int’l Symp. on Computer Architecture (ISCA’05),

2005.

[8] S. Medardoni, D. Bertozzi, L. Benini, and E. Macii.
Control- and Data-path decoupling in the design of a NoC switch: area,

power and performance implications.
In Proc. of the International Symposium on System-on-Chip, 2007.

[9] J. M. Rabaey.
Digital Integrated Circuits: A Design Perspective.
Prentice-Hall, 1996.

[10] M. Ruggiero, F. Angiolini, F. Poletti, D. Bertozzi, L. Benini, and
R. Zafalon.

Scalability Analysis of Evolving SoC Interconnect Protocols.
In Int. Symposium on System-on-Chip, 2004.

[11] N. Terrassan, D. Bertozzi, and A. Bogliolo.

159

BIBLIOGRAPHY

Spice-Accurate SystemC Macromodels of Noisy on-Chip Communication
Channels.

In Proc. of SPI-07, 2007.

[12] Tilera Corporation.
http://www.tilera.com.

[13] F. Worm, P. Ienne, P. Thiran, and G. De Micheli.
An Adaptive Low Power Transmission Scheme for On-Chip Networks .
In Proceedings of the 15th International Symposium on System Synthesis,

pages 92–100, Oct. 2002.

[14] F. Worm, P. Ienne, P. Thiran, and G. De Micheli.
A Robust Self-Calibrating Transmission Scheme for On-Chip Networks .
In IEEE transactions on very large scale integration (VLSI) sys-

tem,vol.13,no.1, Jan. 2005.

[15] H. Zhang.
Low-swing On-Chip Signaling Techniques: Effectiveness and Robustness.
In IEEE Trans. VLSI Systems, pages 264–272, June 2000.

[16] , M. Mondal, T. Ragheb, X.W. Adnan Aziz and Y. Massoud, ”Provisioning
On-Chip Networks under Buffered RC Interconnect Delay Variations”,
ISQED ’07.

[17] B. Hargreaves, H. Hult and S. Reda, ”Within-die process variations: How
accurately can they be statistically modeled?”, ASPDAC 2008.

[18] A. Pullini et al, ”NoC Design and Implementation in 65nm Technol-
ogy”, NOCS ’07: Proceedings of the First International Symposium
on Networks-on-Chip, pp. 273–282, IEEE Computer Society, 2008.

[19] K.A. Bowman, S.G. Duvall, and J.D Meindl, ”Impact of die-to-die and
within-die parameter fluctuations on the maximum clock frequency dis-
tribution for gigascale integration”, IEEE Journal of Solid-State Cir-
cuits.

[20] International Technology Roadmap for Semicon-
ductors, 2007 Edition, available online at
http://www.itrs.net/Links/2007ITRS/Home2007.htm

[21] J.D. Owens, W.J. Dally, R. Ho, D.N. Jayasimha, S. W. Keckler, and L. Peh,
”Research Challenges for On-Chip Interconnection Networks”, IEEE
Micro, vol 27, no 5, pp 96–108, 2007.

[22] S. Herbert and D. Marculescu, ”Characterizing chip-multiprocessor
variability-tolerance”, Proceedings of the 45th annual conference on De-
sign automation, pp 313-318, 2008.

[23] A. Agarwal and M. Levy, ”The Kill Rule for Multicore,” in Annual
ACM/IEEE Design Automation Conference, 2007.

[24] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, ”A 5-GHz Mesh
Interconnect for a Teraflops Processor,” in IEEE Micro Magazine, Sept-
Oct. 2007, pp. 51-61.

[25] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, T.R. Maeurer, and
D. Shippy, ”Introduction to the Cell Multiprocessor,” IBM Journal of
Research and Development, Vol. 49, Num. 4/5, 2005.

160

BIBLIOGRAPHY

[26] A. Mej́ıa, J. Flich, J. Duato, S.A. Reinemo, and T. Skeie, ”Segment-Based
Routing: An Efficient Fault-Tolerant Routing Algorithm for Meshes
and Tori,” in IPDPS, 2006.

[27] M.D. Schroeder, A.D. Birrell, M. Burrows, H. Murray, R.M. Needham,
T.L. Rodeheffer, E.H. Satterthwaite, and C. Thacker, ”Autonet: A
High-speed, Self-configuring Local Area Network using Point-to-point
Links,” Technical Report SRC research report 59, DEC, April 1990.

[28] J. Flich, S. Rodrigo, and J. Duato, ”An Efficient Implementation of Dis-
tributed Routing Algorithms for NoCs,” in Int. Symp. on Networks on
Chip, 2008.

[29] J. Flich, A. Mej́ıa, P. López and J. Duato, ”Region-Based Routing: An
Efficient Routing Mechanism to Tackle Unreliable Hardware in Network
on Chip,” in Int. Symp. on Networks on Chip, 2007.

[30] G. Paci, D. Bertozzi and L. Benini, ”Effectiveness of Adaptive Supply Volt-
age and Body Bias as Post-Silicon Variability Compensation Techniques
for Full-Swing and Low-Swing On-Chip Communication Channels”, to
be presented at Date, 2009.

161

BIBLIOGRAPHY

162

Chapter 9

Power-Optimal RTL
Soft-Macro Selection
Strategy for
Leakage-Sensitive
Technologies

9.1 Introduction

Energy efficient design is an active area of research and development in semi-
conductor electronics [3, 5, 4]. The proliferation of multimedia-enabled portable
consumer products urges designers to deliver high computation power while pre-
serving battery lifetimes. Even for non-battery operated devices, thermal dis-
sipation limits posed by conventional packaging and cooling technologies might
slow down the rate of system integration. Moreover, in the nanometer regime
an increasing fraction of total power in high-performance digital circuits is due
to leakage currents [12]. For microprocessors, projections envision that a 50%
share of the total power for sub-65nm technologies will be contributed by the
leakage power dissipated by the functional sub-units [33].

As a consequence, traditional low-power design techniques and methodolo-
gies are being upgraded with careful consideration of all sources of power dis-
sipation, including leakage-power [6]. Most techniques for leakage-control are
at the physical, circuit and logic level [24]. Design time techniques exploit the
delay slack in non-critical paths to reduce leakage, while runtime techniques for
leakage control aim at placing idle circuits in a standby low-leakage state [27].

RTL low-power techniques are mostly devoted to dynamic power optimiza-
tion [24]. Unfortunately, not properly accounting for leakage power at RTL or
above might result in highly suboptimal designs from a power perspective, since
decisions taken in the early design stages play a significant role in determining
final performance and power figures. In particular, it cannot be neglected that
leakage and dynamic power reduction are sometimes conflicting requirements.

163

CHAPTER 9. POWER-OPTIMAL RTL SOFT-MACRO SELECTION

STRATEGY FOR LEAKAGE-SENSITIVE TECHNOLOGIES

For instance, the effectiveness of traditional RTL power management techniques
such as clock gating can be impaired by the increasing role of leakage power. In
addition, it turns out to be very difficult to apply conventional leakage power
reduction techniques to circuits with clock gating [19]. Another example con-
cerns voltage scaling which, under constant performance constraints, carries an
implied trade-off between dynamic and leakage power savings. In fact, as volt-
age is reduced, logic cells will be slower and there will be less opportunity to
use low-leakage cells.

As a consequence, developing power efficient products will require consid-
eration of static power in IC design front-ends, possibly exploiting high-level
leakage estimators or macromodels incorporated in ASIC design flows [25, 26].
The most straightforward high-level technique for power optimization consists of
design-time architectural inferences based on specific design constraints. This is
a well-known technique to bring leakage-awareness to behavioural synthesis al-
gorithms and tools [10, 20]. Functional units are identified, that can be replaced
by low-leakage variants while not sacrificing performance.

In this chapter we will present a unexploited opportunity for leakage-aware
low power RTL design that consists of properly tuning selection strategies for
RTL soft macros. In particular, RTL synthesis tools automatically infer ba-
sic HDL arithmetic or functionals operators into specific unit implementations
depending on performance and area optimization constraints. It happens also
during the synthesis process of a switch or a network interface where, before to
do the real synthesis, it is inferred some operator (like increment or decrement)
or comparator.

Default soft-macro selection strategies need to be revisited in light of the
new trade-offs spanned by designs in nanoscale technologies. First, power op-
timizations cannot be postponed to post-synthesis steps but need to be taken
into account already at soft-macro selection. Second, leakage control needs to
be an integral part of power-aware selection strategies. Third, suitability of
different macro implementations to power-driven gate level transformations or
to low-leakage cell insertion techniques performed by advanced synthesis tools
need to be carefully assessed.

It is proposes a technique for optimizing the selection of RTL arithmetic soft
macros with respect to total power dissipation. Without lack of generality, we
restrict our analysis to adder macros and explore their total power as a function
of different design constraints (performance, area), technology libraries (single
vs multi-Vth) and working conditions (switching activity). We come up with
design tables instructing the synthesis tool to make the most power-efficient
inference choice for the design at hand. By applying our design methodology to
the DesignWare (DW) library of synthesizable components [13], we achieved a
significant 43% power saving with respect to the default macro selection strategy
of Synopsys.

The chapter is structured as follows. Section 9.2 illustrates our synthesis
methodologies, that lead to the experimental results of Section 9.3. Section 9.4
reports a comparison of our DW selection strategy with Synopsys default one
and conclusions are drawn in Section 9.5.

164

9.2. SYNTHESIS METHODOLOGY

Figure 9.1: DesignWare adder portfolio.

9.2 Synthesis methodology

We choose adder soft macros from the Synopsys DesignWare library to prove the
effectiveness of our characterization and power-aware selection methodology. We
assume that parametric, synthesizable and technology independent descriptions
are provided for each soft macro. For instance, the DesignWare portfolio [14] of
adder macros includes seven alternative implementations, as reported in Fig.9.1.
We synthesized a set of adder macros for different values of the bitwidth, ranging
from 8 to 16, 32 and 64 bits. We target 65nm low power technology libraries
from STMicroelectronics, assuming the typical corner case. High-Vth (HVT),
Standard-Vth (SVT) and Low-Vth (LVT) library variants were made available
for synthesis tool-driven leakage optimizations. For the sake of RTL synthesis,
the driving strength of a simple flip flop library cell is set for all inputs and a
fan-out-of-four equivalent load is placed on each output.

9.2.1 Performance-optimized synthesis flow

Our first objective is to characterize critical path and area of the different adder
implementations when synthesized for maximum performance and as a function
of data parallelism. The synthesis flow for this purpose is illustrated in Fig.9.2-
left. Each instance is inferred from HDL and synthesized with Physical Compiler
by linking only the low-Vth technology library. The output of the physical
synthesis step consists of timing and area reports, an SDF file (information
for timing-accurate analysis) and a spef file (parasitic capacitance annotation).
Then gate level simulation is performed, driven by a testbench where adders
are instantiated and their inputs properly driven. The real switching activity
is back-annotated and fed to Synopsys PrimePower[15] for power estimation.
The use of the real switching activity and the small area of the adder instances
under test are likely to result in accurate power reports. We refer to section
9.3.1 for the results obtained with this flow.

9.2.2 Power-optimized synthesis flow

The second synthesis flow we set up aimed at applying power optimizations
to the different adder implementations, taking advantage of the slack, i.e., the
difference between the target delay and the critical path delay of adders. This
latter is always derived from the synthesis for maximum performance, so that
for each target delay the maximum slack is available for power optimizations.
The low-Vth technology library is again linked to Physical Compiler, since we

165

CHAPTER 9. POWER-OPTIMAL RTL SOFT-MACRO SELECTION

STRATEGY FOR LEAKAGE-SENSITIVE TECHNOLOGIES

Figure 9.2: Synthesis flows. Left: optimized flow for maximum performance.
Middle: flow for power optimization. Middle/Right: multi-Vth synthesis flow

166

9.3. EXPERIMENTAL RESULTS

intend to explore multi-Vth technologies only later on and restrict our analysis
to power-driven netlist transformations.

Fig.9.2-middle shows the steps of the power-optimized flow. All adder in-
stances are first inferred and synthesized for max. performance, thus deriving
the shortest critical path for each of them. Then, we span the target perfor-
mance parameter, and for each value of the target delay we select those adders
whose delay meets the performance constraint. Their RTL description is then
fed to a second physical synthesis step. For this latter, we enable dynamic and
leakage power optimizations of the Physical Compiler. The power estimation
methodology is the same as before.

This flow was set up in order to assess whether it is more power-efficient,
for a given target performance, to deploy adders whose delay almost exactly fit
the target delay (and which generally consume less area) or much faster ones
(and generally more area consuming), which exhibit a larger slack available for
power optimizations.

9.2.3 Multi-Vth synthesis flow

The third flow aimed at assessing the impact of deploying multi-Vth technology
libraries for leakage power optimizations. We of course expect a reduction of
leakage power, but the interaction of dynamic and leakage power optimizations
is the specific focus of our analysis. It is important to observe that we only
use the power optimization directives exposed by the synthesis tool, and we try
to take the maximum advantage out of them through customized power-aware
design flows.

As showed in Fig. 9.2-right, the first three steps are in common with the
single threshold flow. We then added an incremental synthesis step where all
LVT, SVT and HVT libraries are linked, keeping the same leakage and dynamic
power optimizations as before, and even the same timing constraints. We got
the best power savings with this methodology, as discussed in Section 9.3.3.

9.3 Experimental results

9.3.1 Energy characterization of adder units

To prove the practical viability of our design methodology, we focused on the
DesignWare library of synthesizable adders, managed by Synopsys tools. We
therefore applied the above synthesis flows to the adder implementations of
Fig.9.1.

The performance-optimized design flow illustrated in section 9.2.1 led to the
results of Fig.9.3 and 9.4. All 8 bit adders have similar critical path delays but
RPL and RPCS exhibit poor scalability as data parallelism increases. From
an area perspective, PPARCH, RPL and BK show lower occupancies for all
bit-widths, while CSM and CLA exhibit the largest area. Interestingly, RPCS
has limited area till 32 bits, but then shows an abrupt increase for 64 bit inputs,
and ends up even surpassing other area-hungry architectures.

These data pave the way for a power characterization of the adder imple-
mentations. We assume each adder to work at its maximum performance, i.e.,
its critical path delay in the performance-optimized netlist is used as the clock

167

CHAPTER 9. POWER-OPTIMAL RTL SOFT-MACRO SELECTION

STRATEGY FOR LEAKAGE-SENSITIVE TECHNOLOGIES

Figure 9.3: Area of adder implementations when synthesized for max perfor-
mance. Scalability with bitwidth showed.

Figure 9.4: Critical path of adder implementations when synthesized for max.
performance. Scalability with bitwidth showed.

168

9.3. EXPERIMENTAL RESULTS

Figure 9.5: Power scaling as a function of bitwidth for high performance adder
implementations.

Figure 9.6: Energy scaling as a function of bitwidth for high performance adder
implementations.

period which synchronizes application of new input patterns. We define the
Data Introduction Rate (DIR) as the rate at which new data patterns are ap-
plied at adder inputs. This is an experimental way of controlling the switching
activity. A DIR of 1/N means an addition computed every N clock cycles. A
maximum DIR of 1 is used for power characterization, where all permutations
of input bits are generated for an 8-bit parallelism, while a random subset of
10000 input configurations is applied to higher bitwidth adders.

Power results are illustrated in Fig.9.5. For all bitwidths, RPL and RPCS
are the most power-efficient instances, with power savings increasing with the
bitwidth. Please also note that it is not always true that adders with higher area
also consume more total power. Due to the deployment of a low-power technol-
ogy library, leakage power was found to be negligible, therefore total power is
almost completely determined by dynamic power. Even in these conservative
conditions, we will prove that leakage power cannot be neglected at all for the
selection of power-optimal adder instances from the DW library.

We are now able to answer the following question: given a certain amount of

169

CHAPTER 9. POWER-OPTIMAL RTL SOFT-MACRO SELECTION

STRATEGY FOR LEAKAGE-SENSITIVE TECHNOLOGIES

0,00E+000

1,00E-008

2,00E-008

3,00E-008

4,00E-008

5,00E-008

6,00E-008

7,00E-008

8,00E-008

9,00E-008

1,00E-007

Data Introduction Rate

E
n

e
rg

y RPL dyn. energy

RPL leak. energy

RPCS leak. energy

RPCS dyn. energy

7,81E-003 3,91E-003 1,95E-003 9,77E-004 4,88E-004 4,88E-004

Figure 9.7: Total energy as a function of DIR for RPL and RPCS adder imple-
mentations.

additions to be executed, which adder instance can do the job while consuming
the least energy? The answer is provided by the energy plot in Fig.9.6, showing
that the most energy-efficient implementation depends on the target bitwidth:
RPCS for 32 bit adders, BK for a lower data parallelism.

Till now, the maximum DIR was used. However, as the switching activity of
adders is decreased, leakage power associated with idle cycles comes into play.
To better understand this, the same clock period was considered for all adder
instances, equal to that of the slowest implementation (RPL). Energy results
are plotted as a function of decreasing DIRs in Fig 9.7. Total energies (and
their breakdowns) of only RPL and RPCS are showed, since they are the most
energy-efficient adder instances at a DIR of 1. The same number of additions
is performed at each DIR value, therefore dynamic energy for each adder stays
the same throughout the plot and is almost equal to the asymptotic value on
the left. The increase in energy is only determined by leakage energy. Two
interesting observations can be done here. First, a DIR does exist for each
adder instance at which leakage energy becomes larger than dynamic energy.
Second, the plot shows total energy crossing between RPL and RPCS for a DIR
of 6.99e−4 (1 addition every 1.43 usecs). The crossing behavior indicates that
an adder instance consuming less dynamic energy than another consumes more
leakage power. As a consequence, more total energy is incurred as the DIRs
decreases. As a result, had we considered RPL as the most energy-efficient
adder instance irregarding of DIR and therefore of the impact of leakage power,
we would have inferred a sub-optimal instance.In fact, for low DIRs, RPCS
is the most energy-efficient implementation. We conclude that, even for low-
power technology libraries, consideration of leakage power is key for selecting
power-efficient functional module implementations for sub-65nm nodes, and the
switching activity parameter becomes an integral part of selection algorithms.

170

9.3. EXPERIMENTAL RESULTS

Figure 9.8: Area results with power optimizations enabled. Low-Vth technology
library used.

9.3.2 The impact of power optimizations

Synthesis tools are able to apply a number of power optimizations while per-
forming RTL synthesis which might put the above results in discussion. Most
of these techniques exploit slack availability with respect to target performance
requirements. For a given target delay, we wonder whether it is more power-
effective to deploy adder instances that closely fit the requirement or much faster
ones that can potentially result in larger power optimizations. Since adders be-
longing to the first category are likely to incur lower area, the overall power
balance with leakage awareness is an interesting analysis topic.

We proceeded as follows. We adopted the synthesis flow for low-power illus-
trated in section 9.2.2. We considered a target performance requirement for all
adders, and a maximum DIR was initially assumed. As we increase the target
delay parameter, slower adder instances come progressively into play. Physical
Compiler power optimizations were enabled, trying to exploit the slack of each
adder and resulting in gate netlist transformations. Area and power results for
this kind of analysis are reported in Fig.9.9 and Fig. 9.8. Since power proved
almost independent of bitwidth, only results for 32 bit adders were showed.
We observe that, in contrast to the results of section 9.3.1, there is a one-to-
one correspondence between area and total power, meaning that higher area
always results in higher total power. It can also be clearly observed that as
the target delay increases, newly considered adders (critical path delay almost
equal or slightly lower than target delay) are never the most power efficient
solutions. Faster adders provide area and power savings when used with larger
target delays, since the synthesis tool is able to scale their area and perfor-
mance to maximally exploit the available slack. Some implementations (such
as PPARCH) prove more scalable than others (e.g.,CSM) over a wide range of
performance requirements, as a consequence of their specific architecture.

At a maximum DIR of 1, adder instances with higher area also have higher

171

CHAPTER 9. POWER-OPTIMAL RTL SOFT-MACRO SELECTION

STRATEGY FOR LEAKAGE-SENSITIVE TECHNOLOGIES

Figure 9.9: Power results with power optimizations enabled. Low-Vth technol-
ogy library used

total power. Moreover, we experimentally verified that higher area also results
in higher leakage power. Therefore, if we plot adder energy as a function of
the DIR, we do not notice any curve crossings, since instances with higher total
power at maximum DIR also consume more leakage power. As a consequence,
for a single-threshold technology library and power optimizations enabled in
the synthesis tool, the DW selection strategy for power-optimal adder instances
does not need to take the DIR into account. More in general, we expect this
to be true whenever higher area translates into higher leakage power and total
power.

9.3.3 The impact of multi-Vth design

In order to decrease the impact of leakage energy as the DIR is decreased, we
introduce multi-threshold design. Unfortunately, by just extending the design
flow of section 9.2.2 to multi-threshold technology libraries (linking HVT, SVT
and LVT libraries instead of just LVT), we interestingly get worse total power
results, as illustrated in Fig. 9.10 (label All − lib compared with LV T − lib).

This is because the synthesis tool is instructed to perform dynamic power
optimizations in parallel with multi-Vth cell insertion. In some cases, inserting
high-Vth cells shortens the total positive slack and prevents high-impact netlist
transformations to cut down on dynamic power in the following optimization
cycles of the tool. In our case, since dynamic power is dominant, we would
like to give it higher priority in power optimizations, and to leave high-Vth cells
insertion as an incremental optimization step. We therefore set up the optimized
flow for multi-Vth design illustrated in section 9.2.3.

Incremental total power savings were obtained with respect to Fig.9.8, as
indicated by Fig.9.10 (label All − lib − new) for the PPARCH architecture.
Please note that such savings are mostly related to a decrease of dynamic power,
which takes advantage of the incremental optimization step. The decreasing

172

9.3. EXPERIMENTAL RESULTS

Figure 9.10: Impact of synthesis methodology on the total power of the
PPARCH adder instance.

trend of total power is due to the decrease of operating frequency and to the
reduction of the number of total cells placed by the synthesis tool. In order
to assess the leakage reduction as well, we have to look at Fig.9.11. It shows
total energy of the PPARCH adder as a function of decreasing DIR for single-
threshold and multi-threshold libraries. Leakage energy savings for the multi-
Vth instance span several orders of magnitude.

The reason behind this lies in the progressive replacement of low-Vth cells
with high-Vth cells as the target delay is increased (performance requirement
relaxed). The behavior of the synthesis tool is represented in Fig. 9.12, showing
the percentage of HVT, SVT and LVT cells on the total number of placed cells.
For short target delays, low-Vth cells will be on the critical path, and high-Vth
cells in off-critical paths. As the timing constraint is relaxed, all cells tend to
be progressively replaced by their high-Vth variants.

We do not report area and total power plots for all adder instances, since they
are very similar to those already seen in Fig. 9.8 and 9.9, although absolute
values are lower due to the incremental optimization run. There is however
a significant difference in the energy behaviour as a function of DIR. In this
case (i.e., multi-Vth design), we have a direct relation between area and total
power, but not between area and leakage power. In fact, for some target delays
there are adder instances featuring larger area but making use of high-Vth cells
only. If compared with adders with smaller area but still deploying low-Vth
cells, the former adders consume less leakage power. As a result, energy curve
crossings can take place as the DIR decreases. An example thereof is illustrated
in Fig.9.13.

When the target delay allows full insertion of high-Vth cells in all adder
instances, then leakage power is again directly related to area, and no energy
crossings will occur. This has heavy implications on the DW selection strategy.
If crossings can occur, the DIR must be taken into account for the power-

173

CHAPTER 9. POWER-OPTIMAL RTL SOFT-MACRO SELECTION

STRATEGY FOR LEAKAGE-SENSITIVE TECHNOLOGIES

Figure 9.11: Savings on leakage energy as DIR decreases

Figure 9.12: Percentage of cells with different Vth on the total number of cells
for the PPARCH architecture.

174

9.4. COMPARISON WITH DEFAULT DW SELECTION STRATEGY

Figure 9.13: Total energy crossing example with multi-threshold library.

optimal inference of adder implementations. If not, the selection strategy does
not depend on DIR considerations.

9.4 Comparison with default DW selection
strategy

The default adder inferred by Synopsys tools in compliance with design con-
straints is PPARCH. We verified that this is indeed a good choice given the
results reported in Fig.9.14. They illustrate the range of target delays (y-axys)
over which the synthesis tool was able to perform power-driven gate netlist
transformations for the different adder implementations. The lower point de-
notes the tighter performance requirement that each adder is able to meet.
Clearly, some adders allow a better exploitation of the available slack, and al-
low power optimizations over a wider range of target delays. From the upper
side of the bars on, the further slack which is made available cannot be exploited
any more. PPARCH and RPL show the best scalability results. When multi-
Vth technology libraries are used, the optimization window is obviously larger
since replacement of low-Vth cells with high-Vth ones is an additional degree of
freedom to exploit available slack.

These results perhaps explain why the PPARCH implementation is the de-
fault adder inferred by Physical Compiler in compliance with design constraints.
However, our power exploration has showed that PPARCH is not always the
most power-efficient solution (recall Fig.9.8 and 9.9), and power savings should
be expected by a more accurate DW selection strategy. We summarize the re-
sults of our power exploration without and with multi-threshold libraries in the
Tables 9.1, 9.2 and 9.3, selecting the most power-efficient adder implementation
for varying design constraints and data parallelism (32 and 64 bits). Please note
that when only an LVT library is used, the optimal selection does not depend
on the DIR due to the direct relation proved between adder area,total power
and leakage power.

175

CHAPTER 9. POWER-OPTIMAL RTL SOFT-MACRO SELECTION

STRATEGY FOR LEAKAGE-SENSITIVE TECHNOLOGIES

Figure 9.14: Optimization windows for the different adders with single- and
multi-threshold design.

Target Delay Adder 64 bit Target Delay Adder 32 bit

400-700 ps PPARCH 330-900 ps PPARCH
700-4000 ps CLA 900-2500 ps CLA
4000ps-on RPL 2500ps-on RPL

Table 9.1: Inference table of power-optimal 32- and 64-bit adder implementa-
tions for LVT library

Our DW selection strategy was then compared with the default one of Phys-
ical Compiler under different design constraints and with maximum DIR, and
power dissipation was measured for the adder instances inferred by the two
strategies. As Fig.9.15 and 9.16 prove, we achieved up to 22% power savings
for a single-Vth library and up to 43% savings for the multi-Vth case. Please
note that 100% dissipation means that our and Synopsys’ strategies inferred the
same adder instance. Larger savings are expected if the datapath works at a
very low DIR, since in that region leakage energy dominates and instantiating
the power-optimal adder (if different from PPARCH) achieves increasing energy
savings with increasing idleness.

9.5 Conclusions

In this chapter is proposed an RTL technique for power reduction performing
smart selection of RTL adder soft-macro implementations based on an extensive
power pre-characterization framework. We proved that a combination of adder
architecture features, synthesis tool capabilities and design flow optimizations
for low power determine the most-power efficient adder implementation for dif-
ferent design constraints. Even conservatively deploying technologies already
optimized with respect to leakage power and multi-Vth design, we show that
leakage power cannot be neglected for power-aware selection strategies of RTL
functional units, and that correctly estimating switching activity is key to come
up with efficient solutions.

176

9.5. CONCLUSIONS

Figure 9.15: Power savings wrt Synopsys default inferences of 32 bit adders
using single-Vth library.

Figure 9.16: Optimization windows for the different adders with single- and
multi-threshold design using multi-Vth library.

177

CHAPTER 9. POWER-OPTIMAL RTL SOFT-MACRO SELECTION

STRATEGY FOR LEAKAGE-SENSITIVE TECHNOLOGIES

1 2.5E-1 7.94E-3 5E-3 1.82E-3 1.28E-3 1.09E-3 1.05E-3

407 ps PPARC PPARC PPARC PPARC PPARC PPARC PPARC PPARC
484 ps PPARC PPARC PPARC PPARC PPARC PPARC PPARC BK
500 ps PPARC PPARC PPARC PPARC PPARC PPARC BK BK
1300 ps CLA CLA CLA BK BK BK BK BK
1750 ps CLA CLA CLA CLA BK BK BK BK
2420 ps CLA CLA CLA CLA CLA BK BK BK
7100 ps CLA CLA CLA CLA CLA CLA CLA CLA
7500 ps RPL CLA CLA CLA CLA CLA CLA CLA
13800 ps RPL RPL RPL RPL RPL RPL RPL RPL

Table 9.2: Inference table of power-optimal 64-bit adder implementations for
multi-Vth libraries. x-dimension is DIR, y-dimension is target delay.

1 1.67E-1 7.94E-3 3.77E-3 2E-3 1.79E-3 1.09E-3 1.05E-3 1E-3

330 ps CLA CLA CLA CLA CLA CLA CLA PPARCH PPARCH
.340ns CLA CLA CLA CLA CLA CLA CLF CLF CLF
.38ns CLA CLA CLA CLA CLA CLF CLF CLF CLF
.48ns CLA CLA CLA CLA CLA CLA CLA CLA PPARCH
.97ns CLA CLA CLA CLA CLF CLF CLF CLF CLF
1.2ns CLA CLA CLA CLF CLF CLF CLF CLF CLF
3.5ns RPL CLA CLA CLA CLA CLA CLA CLA CLA
3.8ns RPL RPL RPL RPL RPL RPL RPL RPL RPL

Table 9.3: Inference table of power-optimal 32-bit adder implementations for
multi-Vth libraries. x-dimension is DIR, y-dimension is target delay.

178

Bibliography

[1] S.Heo, K.Asanovic
”Leakage-biased domino circuits for dynamic fine-grain leakage reduction”,
Symposium on VLSI circuits, pp.316-319, 2002.

[2] S. Narendra et al.,
”Scaling of stack effect and its application for leakage reduction”,
International Symposium on Low Power Electronics and Design, pp. 195-

200, Aug. 2001.

[3] E. Macii (Editor)
”Ultra Low-Power Electronics and Design”,
Kluwer Academic Publishers,2004, Dordrecht, The Netherlands.

[4] M.Pedram and J.M. Rabaey (Editor)
”Power aware design methodologies”,
Kluwer Academic Publishers,2002, Dordrecht, The Netherlands.

[5] Laurie Kelly, Piguet Piguet, Christian (EDT) Piguet
”Low-Power Electronics Design”,
CRC Press,Series: Computer Engineering Series Volume: 1, 2005,CSEM,

Neuchatel, Switzerland.

[6] K.Bernstein, C.Chuang, R.Joshi, R.Puri
”Design and CAD Challenges in sub-90nm CMOS Technologies”,
2003 International Conference on Computer-Aided Design (ICCAD ’03), p.

129-136.

[7] M. C. Johnson, D. Somasekhar, L. Chiou, and K. Roy,
”Leakage control with efficient use of transistor stacks in single threshold

CMOS”,
IEEE Trans. VLSI Syst., Vol. 10, No. 1, pp. 1-5, Feb. 2002.

[8] E.Macii, M.Pedram, and F.Somenzi
”High-Level Power Modeling, Estimation, and Optimization”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, Volume 17, Issue 11, Nov. 1998 Page(s):1061 - 1079.

[9] A.Khan, P.Watson, G.Kuo, D.Le, T.Nguyen, S.Yang, P.Bennett, P.Huang,
J.Gill, C.Hawkins, J.Goodenough, D.Wang, I.Ahmed, P.Tran, H.Mak,
O.Kim, F.Martin, Y.Fan, D.Ge, J.Kung and V.Shek

”A 90-nm Power Optimization Methodology With Application to the ARM
1136JF-S Microprocessor”,

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 8, AU-
GUST 2006.

179

BIBLIOGRAPHY

[10] K.S.Khouri,N.K.Jha,
”Leakage Power Analysis and Reduction During Behavioral Synthesis”,
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION

(VLSI) SYSTEMS, VOL. 10, NO. 6, DECEMBER 2002.

[11] K.Shin, T.Kim
”Leakage power minimisation in arithmetic circuits”,
Electronics Letters - 1 April 2004 - Volume 40, Issue 7, p. 415-417.

[12] S.G. Narendra
”Challenges and Design Choices in Nanoscale CMOS”,
ACM Journal on Emerging Technologies in Computing Systems (JETC)

Volume 1 , Issue 1 (April 2005), Pages: 7 - 49, 2005.

[13] Synopsys,
”DesignWare Building Block IP User Guide”,
Synospys documentation, SOLD.

[14] Synopsys,
”DW01 add DataSheet”,
Synospys documentation, SOLD.

[15] SOLD,
Synospys documentation.

[16] Synopsys,
Online: http://www.synopsys.com/products/solutions/galaxy platform.html

[17] Cadence,
Online: http://www.cadence.com/lowpower/index.aspx

[18] Magma,
Online: www.magma-da.com/articles/BlastPower.pdf

[19] K.Fukuoka, M.Iijima, K.Hamada, M.Numa, A.Tada,
”Leakage power reduction for clock gating scheme on PD-SOI”,
ISCAS ’04, Volume: 2, On page(s): II- 613-16, 2004.

[20] S.P.Mohanty, R.Velagapudi, E.Kougianos
”Physical-aware simulated annealing optimization of gate leakage in

nanoscale datapath circuits”,
DATE, Pages: 1191-1196 , 2006

[21] D.Stasiak, R.Chaudhry, D.Cox, S.Posluszny, J.Warnock, S.Weitzel,
D.Wendel, M.Wang,

”Cell Processor Low-Power Design Methodology ”,
IEEE Micro November/December 2005 (Vol. 25, No. 6), pp. 71-78.

[22] T.Karnik, Y. Ye, J. Tschanz, L. Wei, S. Burns, V.Govindarajulu, V.De,
S.Borkar,

”Total Power Optimization By Simultaneous Dual-Vt Allocation and De-
vice Sizing in High Performance Microprocessors”,

39th Design Automation Conference (DAC’02) p. 486-491.

[23] J.Kao, S.Narendra, A.Chandrakasan,
”Subthreshold leakage modeling and reduction techniques”,
Proceedings of the 2002 IEEE/ACM international conference on Computer-

aided design, San Jose, California, Pages: 141 - 148, 2002.

180

BIBLIOGRAPHY

[24] B.M. Al-Hashimi(Editor)
PART III: chapter 12, Power minimisation techniques at the RT-level and

below,
”System-on-Chip:Next generation Electronics”,
IEE Circuits, Devices and Systems Series 18, 2006, London, United King-

dom.

[25] D.Helms, G.Ehmen, W.Nebel
”Analysis and modeling of subthreshold leakage of RT-components under

PTV and state variation”,
Proceedings of the 2006 international symposium on Low power electronics

and design, Tegernsee, Bavaria, Germany, Pages: 220 - 225, 2006.

[26] H.Su, F.Liu, A.Devgan, E.Acar, S.Nassif
”Full chip leakage estimation considering power supply and temperature

variations”,
Proceedings of the 2003 international symposium on Low power electronics

and design, Seoul, Korea. Pages: 78 - 83, 2003

[27] T.Kuroda et al.
”A 0.9V 150MHz 10mW 4mm2 2-D discrete cosine transform core processor

with variable-threshold-voltage scheme”,
Digest of technical papers of IEEE international solid-state circuits confer-

ence, vol 166, 1996.

[28] Laurie Kelly, Piguet Piguet, Christian (EDT) Piguet
”Low-Power Electronics Design”,
chapter V: Embedded software
CRC Press,Series: Computer Engineering Series, Volume: 1, 2005,CSEM,

Neuchatel, Switzerland.

[29] S.Mutoh, T.Douseki, Y.Matsuya, T.Aoki, S.Shigematsu, J.Yamada
”1-V power supply high-speed digital circuit technology with multitreshld

CMOS”,
IEEE journal of Solid-state circuits, 1995, Vol.30(8), pp 847-854.

[30] J.T.Kao, A.P.Chandrakasan
”Dual-thresholtvoltage technique for low-power digital circuits”,
IEEE journal of Solid-state circuits, 2000, Vol.35, pp. 1009-1018.

[31] S.Bobba, I.N.Hajj
”Maximun leakage power estimation for CMOS circuits”,
Proceedings of Alessandro Volta memorial international workshop on Low-

power design, Como, Italy, 1999, pp 116-124.

[32] A.Bogliolo, R.Corgnati, E.Macii, M.Poncino
”Parameterized RTL power models for combinational soft macros ”,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Date:

Dec 2001, Volume: 9, Issue: 6, On page(s): 880-887.

[33] Kim, N.S. Austin, T. Baauw, D. Mudge, T. Flautner, K. Hu, J.S. Irwin,
M.J. Kandemir, M. Narayanan, V.

”Leakage current: Moore’s law meets static power”
IEEE Computer, Volume: 36, Issue: 12, On page(s): 68- 75, 2003.

181

BIBLIOGRAPHY

182

Chapter 10

Conclusion and Future work

10.1 Conclusions

Emerging consumer applications demand high performance, low power, low cost
and high reliability from the current and the upcoming generations of embedded
devices. MPSoCs, i.e. highly integrated, often heterogeneous chips, have a
leading role in fulfilling these demands. However, their complexity is becoming
so challenging that new techniques and mechanisms to design their on-chip
interconnection are greatly needed.

NoCs have enjoyed increasing acceptance as the most scalable answer to
these shortcomings. However, as a technology of recent inception, the consensus
on their full maturity has not been reached yet. This dissertation proves fully
that NoCs are a viable, efficient, scalable, predictable, flexible answer to the on-
chip interconnection woes. We have shown a complete design flow that is capable
of generating placed&routed instances of a NoC. Our proposed design flow is
conceived to optimize design time. Thanks to a detailed modeling activity, by
taking into account aspects such as the resulting chip floorplan, and with careful
analysis of on-chip wiring, we dramatically increase the design closure chances
and thus the need for project re-spins. Our NoC instances have been verified as
fully functional. We have also shown some implementations in 65nm technology
driving the designer to remove the interconnect bottleneck, and outlined some
properties and optimization of these networks, and we also concretely extend the
domain of applicability of NoCs, by presenting techniques for increased system
fault tolerance and power awareness.

This dissertation provides a broad range of contributions to the scientific
community:

• A detailed guideline to a complete design space exploration of network-
on-chip architectures, in order to point-out the trade-offs associated with
the design of each individual network building block and with the design
of network topology overall.

• A complete, top-to-bottom design flow for the implementation of NoCs.
This set of tools empowers designers to generate optimized networks for
regular topologies given predefined software as well as technology con-
straints. The design flow includes architectural simulation and physical
implementation.

183

CHAPTER 10. CONCLUSION AND FUTURE WORK

• A set of techniques enabling the use of NoCs in the presence of challenging
sub-65nm technology nodes, such as leakage power dissipation, contain-
ment of process variations and of their effects.

10.2 Future Work

Despite the large body of research devoted to NoCs in the last years, many open
challenges remain. We identify several major areas for upcoming research:

• There is a consensus on the system-level need of integrating blocks at
different operating frequencies, which is also often called a GLOBALLY
ASYNCHRONOUS , LOCALLY SYNCHRONOUS (GALS) paradigm.
However, as of today, the dilemma of which NoC alternative to choose
in this context has not been fully cleared: synchronous choices (inter-
spersed with a minimum amount of clock converters) have been claiming
rapid development times and minimum overhead, while the alternatives
claim, for example, superior robustness to process variance. Furthermore,
to the best of our knowledge, none of the contending approaches has yet
comprehensively tackled the issue of dynamic frequency (and possibly also
voltage) scaling; some open questions in this research area include how to
best devise mechanisms for NoC partitioning, how to best control the
operating parameters of each NoC partition statically (e.g. with CAD
tooling for heterogeneous NoCs) or at runtime, etc..

• NoCs for 3D chips are an emerging trend. Moreover, since the manu-
facturing technology is not fully mature, many crucial design parameters
remain unclear(attainable density, yield and speed of vertical intercon-
nects). Depending on these parameters, many different NoC architectures
and topologies can be envisioned. Some of the key upcoming challenges
in this field include the potential need for pervasive fault tolerance, the
design of a new generation of CAD tools for NoC topology exploration,
and the issue of clock domain synchronization across stack layers.

• NoC reconfiguration is also a broad topic. While several approaches have
been published to reconfiguring NoCs, our impression is that many links
are missing before fully reconfigurable, hazard- and deadlock-free, low-
resource-overhead NoCs can be available. Furthermore, even then, the
larger problem of efficiently deciding how to reconfigure NoCs at runtime,
based on mutating application demands, will be very challenging.

10.3 Scientific Publication

The work presented in this thesis has led to several publications on the pro-
ceedings of international conferences and scientific journals, as listed Hereafter.
The list includes a brief description of the contributions made on each paper
and it also includes other research work not related to this thesis that the
author has also focused on during the development of his PhD thesis.

184

10.3. SCIENTIFIC PUBLICATION

10.3.1 Proceedings

Title: Capturing the interaction of the communication, memory and I/O
subsystems in memory-centric industrial MPSoC platforms
Authors: Simone Medardoni, Martino Ruggiero, Davide Bertozzi, Luca
Benini,Giovanni Strano, Carlo Pistritto.
Proceedings: conference on Design, automation and test in Europe
Location: Nice, France.
Pages: 660 - 665
Year of Publication: 2007
Description: Industrial MPSoC platforms exhibit increasing communication
needs while not yet reverting to revolutionary solutions such as networks-on-
chip. On one hand, the limited scalability of shared busses is being overcome
by means of multi-layer communication architectures, which are stressing
the role of bridges as key contributors to system performance. On the other
hand, technology limitations, data footprint and cost constraints lead to
platform instantiations with only few on-chip memory devices and with a
global performance bottleneck: the memory controller for access to the off-chip
SDRAM memory. The complex interaction among system components and
the dependency of macroscopic performance metrics on fine-grain architectural
features stress the importance of highly accurate modelling and analysis
tools. This paper takes its steps from an extensive modelling effort of a
complete industrial MPSoC platform for consumer electronics, including the
off-chip memory sub-system. Based on this, relevant design issues concerning
the communication, memory and I/O architecture and their interaction are
addressed, resulting in guidelines for designers of industry-relevant MPSoCs.

Title: Power-Optimal RTL Arithmetic Unit Soft-Macro Selection Strategy
for Leakage-Sensitive Technologies
Authors: Simone Medardoni, Davide Bertozzi, Enrico Macii.
Proceedings: international symposium on Low power electronics and design
Location: Portland, OR, USA.
Pages: 159 - 164
Year of Publication: 2007
Description: With the advent of nanoscale technologies, developing power
efficient ASICs increasingly requires consideration of static power. An effective
approach to make RTL synthesis algorithms and tools leakage-aware consists of
the smart inference of RTL macros based on design constraints and optimization
directives. This involves exploring the new trade-offs spanned by the design of
RTL functional units, as an effect of the features of nanoscale technologies and
of the power optimizations performed by commercial synthesis tools. This work
explores these new trade-offs and proves that making RTL macro selection
strategies aware of them results in power savings as high as 43%.

Title: Control- and Data-path decoupling in the design of a NoC switch:
area, power and performance implications
Authors: Simone Medardoni, Davide Bertozzi, Luca Benini, Enrico Macii.
Proceedings: System-on-Chip, 2007 International Symposium

185

CHAPTER 10. CONCLUSION AND FUTURE WORK

Location: Tampere, Finland.
Pages: 1-4
Year of Publication: 2007
Description: Networks on chip are emerging as a disruptive technology to
tackle the problem of scalable on-chip communication. An intensive research
effort is being devoted to customizing generic network building blocks for
specific design objectives such as low-latency or low-power. In this work, we
identify in control and datapath decoupling inside a switch architecture an
effective means of achieving the needed flexibility, while taking into account
the switching, buffering and flow control implications of each design point. We
deploy a 65 nm low-power technology library to explore the performance-power
trade-off in the design of a NoC switch with area awareness, while leveraging
placement-aware logic synthesis tools to deal with the predictability challenges
posed by nanoscale designs.

Title: Variation tolerant NoC design by means of self-calibrating links
Authors: Simone Medardoni, Marcello Lajolo, Davide Bertozzi.
Proceedings: conference on Design, automation and test in Europe
Location: Munich, Germany.
Pages: 1402-1407
Year of Publication: 2008
Description: We present the implementation and analysis of a variation
tolerant version of a switch-to-switch link in a NoC. The goal is to tolerate the
effects of process variations on NoC architectures using self-correcting links that
automatically detect delay variations and compensate them. The correction
is applied without increasing the switch-to-switch latency by substituting the
output flip-flops of the sending switch with a self-correcting flip-flop followed
by an adaptive voltage swing selector. Higher delay variations will result in
a smaller slack in the switch-to-switch path, but the adaptive voltage swing
selector could mitigate its impact on the NoC communication by increasing the
voltage swing on the link, thus allowing a compensation of the delay variation.
As a result, it is possible to tolerate delay variations at the cost of additional
power consumption.

Title: Network Interface Sharing Techniques for Area Optimized NoC
Architectures
Authors: Alberto Ferrante, Simone Medardoni, Davide Bertozzi.
Proceedings: 11th EUROMICRO Conference on Digital System Design
Architectures, Methods and Tools
Location: Parma, Italy
Pages: 10-17
Year of Publication: 2008
Description: Abstract-Regular multi-core processors are appearing in the
embedded system market as high performance software programmable solu-
tions. The use of regular interconnect fabrics for them allows fast design time,
ease of routing, predictability of electrical parameters and good scalability.
k-ary n-mesh topologies are candidate solutions for these systems, borrowed
from the domain of off-chip interconnection networks. However, the on-chip

186

10.3. SCIENTIFIC PUBLICATION

integration has to deal with unique challenges at different levels of abstraction.
From a technology viewpoint, interconnect reverse scaling causes critical paths
to go across global links. Poor interconnect performance might also impact
IP core speed depending on the synchronization mechanism at the interface.
Finally, this might also conflict with the requirements that communication
libraries employed in the MPSoC domain pose on the underlying interconnect
fabric. This paper provides a comprehensive overview of these topics, by
characterizing physical feasibility of representative k-ary n-mesh topologies and
by providing silicon-aware system-level performance figures.

Title: Exploring High-Dimensional Topologies for NoC Design Through an
Integrated Analysis and Synthesis Framework
Authors: Francisco Gilabert, Simone Medardoni, Davide Bertozzi, Luca
Benini, Maria Engracia Gomez, Pedro Lopez and Jose Duato.
Proceedings: Second ACM/IEEE International Symposium on Networks-
on-Chip
Location: Newcastle University, UK.
Pages: 107-116.
Year of Publication: 2008
Description: Networks-on-chip (NoCs) address the challenge to provide
scalable communication bandwidth to tiled architectures in a power-efficient
fashion. The 2-D mesh is currently the most popular regular topology used
for on-chip networks in tile-based architectures, because it perfectly matches
the 2-D silicon surface and is easy to implement. However, a number of
limitations have been proved in the open literature, especially for long distance
traffic. Two relevant variants of 2-D meshes are explored in this paper:
high-dimensional and concentrated topologies. The novelty of our exploration
framework includes the use of fast and accurate transaction level simulation
to provide constraints to the physical synthesis flow, which is integrated
with standard industrial toolchains for accurate physical implementation.
Interestingly, this work illustrates how effectively the compared topologies can
handle synchronization-intensive traffic patterns and accounts for chip I/O
interfaces.

Title: Assessing Fat-Tree Topologies for Regular Network-on-Chip Design
under Nanoscale Technology Constraints
Authors: D. Ludovici, F. Gilabert, S. Medardoni, C. G. Requena, M. E.
Gómez, P. López, D. Bertozzi, G. N. Gaydadjiev.
Proceedings: conference on Design, automation and test in Europe
Location: Nice, France.
Year of Publication: 2009
Description: Most of past evaluations of fat-trees for on-chip interconnection
networks rely on oversimplifying or even irrealistic architecture and traffic
pattern assumptions, and very few layout analyses are available to relieve
practical feasibility concerns in nanoscale technologies. This work aims at
providing an in-depth assessment of physical synthesis efficiency of fat-trees
and at extrapolating silicon-aware performance figures to back-annotate in
the system-level performance analysis. A 2D mesh is used as a reference

187

CHAPTER 10. CONCLUSION AND FUTURE WORK

architecture for comparison, and a 65 nm technology is targeted by our
study. Finally, in an attempt to mitigate the implementation cost of k-ary
n-tree topologies, we also review an alternative unidirectional multi-stage
interconnection network which is able to simplify the fat-tree architecture and
to minimally impact performance, resulting in a more power-aware fat-tree
implementation.

Title: Designing Regular Network-on-Chip Topologies under Technology,
Architecture and Software Constraints
Authors: F.Gilabert, D.Ludovici, S.Medardoni, D.Bertozzi, L.Benini,
G.N.Gaydadjiev.
Proceedings: International Workshop on Multi-Core Computing Systems
Location: Fukuoka, Japan
Year of Publication: 2009
Description: Abstract-Regular multi-core processors are appearing in the
embedded system market as high performance software programmable solu-
tions. The use of regular interconnect fabrics for them allows fast design time,
ease of routing, predictability of electrical parameters and good scalability.
k-ary n-mesh topologies are candidate solutions for these systems, borrowed
from the domain of off-chip interconnection networks. However, the on-chip
integration has to deal with unique challenges at different levels of abstraction.
From a technology viewpoint, interconnect reverse scaling causes critical paths
to go across global links. Poor interconnect performance might also impact
IP core speed depending on the synchronization mechanism at the interface.
Finally, this might also conflict with the requirements that communication
libraries employed in the MPSoC domain pose on the underlying interconnect
fabric. This paper provides a comprehensive overview of these topics, by
characterizing physical feasibility of representative k-ary n-mesh topologies and
by providing silicon-aware system-level performance figures.

10.3.2 Magazine

Title: An Efficient Implementation of Distributed Routing Algorithms for NoCs
Authors: S.Rodrigo, S.Medardoni, J.Flich, D.Bertozzi, J.Duato.
Magazine: to appear in IET Computers and Digital Techniques Journal.
Description: Chip multiprocessors (CMPs) are gaining momentum in the
high-performance computing domain. Networks-on-chip (NoCs) are key compo-
nents of CMP architectures, in that they have to deal with the communication
scalability challenge while meeting tight power, area and latency constraints.
2D mesh topologies are usually preferred by designers of general purpose NoCs.
However, manufacturing faults may break their regularity. Moreover, resource
management frameworks may require the segmentation of the network into ir-
regular regions. Under these conditions, efficient routing becomes a challenge.
Although the use of routing tables at switches is flexible, it does not scale in
terms of latency and area due to its memory requirements. LBDR (Logic-Based
Distributed Routing) is proposed as a new routing method that removes the
need for routing tables at all. LBDR enables the implementation of many rout-

188

10.3. SCIENTIFIC PUBLICATION

ing algorithms on most of the practical topologies we may find in the near future
in a multi-core system. From an initial topology and routing algorithm, a set of
three bits per switch/output port is computed. Evaluation results show that,
by using a small logic, LBDR mimics the performance of routing algorithms
when implemented with routing tables, both in regular and irregular topolo-
gies. This paper also explores LBDR implementation in a real NoC switch,
proving its smooth integration in the architecture and its negligible hardware
and performance overhead.

10.3.3 Poster

Title: Performance, area and power breakdown analysis for NoC switches in
65nm technology
Authors: S.Medardoni, D.Bertozzi.
Proceedings: Acaces.
Year of Publication: 2007

Title: Assessing the Implementation Trade-offs of Logic-Based Distributed
Routing for NoCs
Authors: S.Rodrigo, S.Medardoni, J.Flich, J.Duato, D.Bertozzi.
Proceedings: Acaces.
Year of Publication: 2008

10.3.4 Patent

Title: Variation Tolerant Network on Chip (NoC) system with self-calibrating
links.
Authors: Simone Medardoni, Marcello Lajolo.

189

CHAPTER 10. CONCLUSION AND FUTURE WORK

190

List of Tables

4.1 Flow control protocols at a glance. 67

5.1 Switch implementation variants. 79
5.2 Latency figures. 80

7.1 Topologies under test: k-ary n-meshes 109
7.2 Topologies under test: k-ary n-Tree. 112
7.3 Physical Parameters of Topologies under Test 114
7.4 Physical synthesis reports . 121

8.1 Parameters used in the evaluation. 141
8.2 Frequency bins, percentage of chips, and relative benefit. 146
8.3 Truth table of the operating point controller. 150

9.1 Inference table of power-optimal 32- and 64-bit adder implemen-
tations for LVT library . 176

9.2 Inference table of power-optimal 64-bit adder implementations
for multi-Vth libraries. x-dimension is DIR, y-dimension is
target delay. 178

9.3 Inference table of power-optimal 32-bit adder implementations
for multi-Vth libraries. x-dimension is DIR, y-dimension is
target delay. 178

191

LIST OF TABLES

192

List of Figures

2.1 Schematic architecture of AMBA bus. 6
2.2 Schematic view of the multi-layer AHB interconnect 10
2.3 Architecture of transfers: a) Read operation; b) Write operation. 11
2.4 Schematic structure of the CoreConnect bus. 13
2.5 Schematic view of the STBus interconnect 16
2.6 Schematic view of the SiliconBackplane system 19

3.1 STBus reference MPSoC platform. 30
3.2 Traffic generator architecture. 33
3.3 Generic scheme for hybrid bridges. 35
3.4 Performance of MPSoC platform instances. 38
3.5 Performance of distributed vs centralized communication archi-

tectures as a function of memory speed. 39
3.6 Performance of platform instances with LMI memory controller. 40
3.7 LMI statistics for the full STBus platform. 41
3.8 Evolution of shared buses towards hierarchical buses and more

advanced protocols. 43

4.1 A generic network-on-chip architecture. 51
4.2 Architecture of a network interface. 57
4.3 χpipes Lite network interface initiator architecture. 59
4.4 Common buffering strategies for switch architectures. 60
4.5 CA combined GT-BE router. 62
4.6 χpipes Lite switch architecture. 63
4.7 Impact of flow control on link pipelining implementation. 64

5.1 Modelling and synthesis framework of NoC switches. 75
5.2 Switch architecture with decoupled datapath and control path. . 77
5.3 Critical path in the data plane 77
5.4 Area breakdown. 80
5.5 Execution time results. 81
5.6 Power consumption analysis. 82
5.7 Energy dissipation analysis. 83
5.8 Power breakdown. 83

6.1 Concept network interface architecture 89
6.2 Detailed merger architecture . 90
6.3 request FSM for the merger module 91

193

LIST OF FIGURES

6.4 Comparison between original and pre-arbitrated architecture . . 92
6.5 Synthesis results for the merger. (a) Critical path (b) Area . . . 93
6.6 Simple test cases for performance characterization 94
6.7 Execution time results for the basic topologies 95
6.8 Application-specific topologies under test. uP denotes processor

cores, pr private memories and shm the shared memory. 96
6.9 NI and switch area reduction in the topology with NI sharing . . 97
6.10 Throughput degradation as a function of cache miss overhead

with shared and non-shared NIs 97
6.11 Concentrated topologies without and with NI sharing 99
6.12 Impact of the lower switch radix on execution time of topologies

with NI sharing . 100

7.1 Backend synthesis flow. 107
7.2 Floorplan directives for (a) the 2D mesh, (b) the 4-hypercube

and (c) the 2-ary 2-mesh. 110
7.3 Total wire length. 111
7.4 (a)A 2-ary 3-tree topology. (b)A RUFT derived from a

2-ary 3-tree. Each switch port shows its reachable desti-
nations. 113

7.5 Switch-to-switch distance and associated critical path. 116
7.6 Floorplans of topologies under test. a) 4-ary 2-mesh b)2-ary 4-

tree RUFT c)4-ary 2-tree S-RUFT d)2-ary 4-tree FT. Only the
main wiring patterns are reported. 117

7.7 Normalized execution time for 16 tile topologies. 119
7.8 Normalized execution time for 64 tile topologies. 120
7.9 Relative performance comparison between 2-ary 6-mesh and its

high-speed variant leveraging aggressive link pipelining. 121
7.10 Normalized total power. 124

8.1 Example on the effect of variability on link frequencies. 134
8.2 SR, RbR, and LBDR routing algorithms and mechanisms. 136
8.3 Several Gaussian density functions showing different process vari-

ability . 138
8.4 Spatial correlation of delay in a 4.7mm x 4.7mm die 140
8.5 Steps followed to compute the fault tolerance of LBDR and RbR

mechanisms. 141
8.6 Coverage results for chips using a 4 × 4 mesh. σ = 0.05. 142
8.7 Coverage results for chips using a 8 × 8 mesh. σ = 0.18. 143
8.8 Maximum speed achievable by the switch with different routing

mechanisms inside. Post-layout results. 144
8.9 Switch area with different routing mechanisms inside. Area at 1

GHz is estimated accounting for the switch pipelining overhead
(best and typical case area ratios). 145

8.10 Coverage/area results for chips using a 4 × 4 mesh. σ = 5%,
λ = 0.4. 146

8.11 Average chip benefits. 8 × 8, σ = 0.18, λ = 1.2. 147
8.12 Coverage results for LBDRvc. 147
8.13 Self-correcting flip-flop followed by an adaptive swing driver . . . 150
8.14 Low-swing signalling scheme . 152

194

LIST OF FIGURES

8.15 Operating point controller . 153
8.16 Critical path breakdown . 154
8.17 Area breakdown . 154
8.18 Link power saving reduction with clock skew 155
8.19 Voltage swing selection strategy 156

9.1 DesignWare adder portfolio. 165
9.2 Synthesis flows. Left: optimized flow for maximum performance.

Middle: flow for power optimization. Middle/Right: multi-Vth
synthesis flow . 166

9.3 Area of adder implementations when synthesized for max perfor-
mance. Scalability with bitwidth showed. 168

9.4 Critical path of adder implementations when synthesized for max.
performance. Scalability with bitwidth showed. 168

9.5 Power scaling as a function of bitwidth for high performance
adder implementations. 169

9.6 Energy scaling as a function of bitwidth for high performance
adder implementations. 169

9.7 Total energy as a function of DIR for RPL and RPCS adder
implementations. 170

9.8 Area results with power optimizations enabled. Low-Vth tech-
nology library used. 171

9.9 Power results with power optimizations enabled. Low-Vth tech-
nology library used . 172

9.10 Impact of synthesis methodology on the total power of the
PPARCH adder instance. 173

9.11 Savings on leakage energy as DIR decreases 174
9.12 Percentage of cells with different Vth on the total number of cells

for the PPARCH architecture. 174
9.13 Total energy crossing example with multi-threshold library. . . . 175
9.14 Optimization windows for the different adders with single- and

multi-threshold design. 176
9.15 Power savings wrt Synopsys default inferences of 32 bit adders

using single-Vth library. 177
9.16 Optimization windows for the different adders with single- and

multi-threshold design using multi-Vth library. 177

195

