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Abstract 

The present work focuses on the formulation of a Continuum Damage Mechanics 

model for nonlinear analysis of masonry structural elements. The material is 

studied at the macro-level, i.e. it is modelled as a homogeneous orthotropic 

continuum.  

The orthotropic behaviour is simulated by means of an original methodology, 

which is based on nonlinear damage constitutive laws and on the concept of 

mapped tensors from the anisotropic real space to the isotropic fictitious one. It is 

based on establishing a one-to-one mapping relationship between the behaviour of 

an anisotropic real material and that of an isotropic fictitious one. Therefore, the 

problem is solved in the isotropic fictitious space and the results are transported to 

the real field. The application of this idea to strain-based Continuum Damage 

Models is rather innovative.  

The proposed theory is a generalization of classical  theories and allows us to use 

the models and algorithms developed for isotropic materials. A first version of the 

model makes use of an isotropic scalar damage model. The adoption of such a 

simple constitutive model in the fictitious space, together with an appropriate 
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definition of the mathematical transformation between the two spaces, provides a 

damage model for orthotropic materials able to reproduce the overall nonlinear 

behaviour, including stiffness degradation and strain-hardening/softening response. 

The relationship between the two spaces is expressed in terms of a transformation 

tensor which contains all the information concerning the real orthotropy of the 

material. A major advantage of this working strategy lies in the possibility of 

adjusting an arbitrary isotropic criterion to the particular behaviour of the 

orthotropic material. Moreover, orthotropic elastic and inelastic behaviours can be 

modelled in such a way that totally different mechanical responses can be predicted 

along the material axes. 

The aforementioned approach is then refined in order to account for different 

behaviours of masonry in tension and compression. The aim of studying a real 

material via an equivalent fictitious solid is achieved by means of the appropriate 

definitions of two transformation tensors related to tensile or compressive states, 

respectively. These important assumptions permit to consider two individual 

damage criteria, according to different failure mechanisms, i.e. cracking and 

crushing. The constitutive model adopted in the fictitious space makes use of two 

scalar variables, which monitor the local damage under tension and compression, 

respectively. Such a model, which is based on a stress tensor split into tensile and 

compressive contributions that allows the model to contemplate orthotropic 

induced damage, permits also to account for masonry unilateral effects. The 

orthotropic nature of the Tension-Compression Damage Model adopted in the 

fictitious space is demonstrated. This feature, both with the assumption of two 

distinct damage criteria for tension and compression, does not permit to term the 

fictitious space as “isotropic”. Therefore, the proposed formulation turns the 

original concept of  “mapping the real space into an isotropic fictitious one” into 

the innovative and more general one of “mapping the real space into a favourable 
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(or convenient) fictitious one”. Validation of the model is carried out by means of 

comparisons with experimental results on different types of orthotropic masonry. 

The model is fully formulated for the 2-dimensional case. However, it can be easily 

extended to the 3-dimensional case. It provides high algorithmic efficiency, a 

feature of primary importance when analyses of even large scale masonry 

structures are carried out. To account for this requisite it adopts a strain-driven 

formalism consistent with standard displacement-based finite element codes. The 

implementation in finite element programs is straightforward.  

Finally, a localized damage model for orthotropic materials is formulated. This is 

achieved by means of the implementation of a crack tracking algorithm, which 

forces the crack to develop along a single row of finite elements. Compared with 

the smeared cracking approach, such an approach shows a better capacity to predict 

realistic collapsing mechanisms. The resulting damage in the ultimate condition 

appears localized in individual cracks. Moreover, the results do not suffer from 

spurious mesh-size or mesh-bias dependence. The numerical tool is finally 

validated via a finite element analysis of an in-plane loaded masonry shear wall. 
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Resumen 

En el presente trabajo se plantea la formulación de un modelo basado en la 

Mecánica del Daño Continuo aplicado al análisis no lineal de estructuras de obra 

de fábrica. El material se estudia a nivel macroscópico y se modela como un 

continuo homogéneo y ortótropo. 

La ortotropía del comportamiento se simula por medio de una metodología 

original, basada en leyes constitutivas no lineales y en el concepto de tensores 

transformados desde el espacio real anisótropo a un espacio ficticio isótropo. En 

detalle, se establece una transformación entre el comportamiento de un sólido real 

anisótropo y el de un sólido ficticio isótropo. De esta manera el problema se 

resuelve en el espacio ficticio isótropo y los resultados se retraen al espacio real. La 

aplicación de dicho planteamiento a Modelos de Daño Continuo basados en 

deformaciones es muy innovadora. 

La teoría propuesta es una generalización de las teorias clásicas y permite utilizar 

modelos y algoritmos formulados para materiales isótropos. Una primera versión 

del modelo considera un modelo de daño escalar e isótropo. La adopción de este 

modelo simple en el espacio ficticio, junto a la apropriada definición de la 
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transformación matemática entre los dos espacios, conduce a un modelo de daño 

para materiales ortótropos capaz de reproducir el comportamiento no lineal global, 

incluyendo degradación de rigidez y leyes de endurecimiento/ablandamiento. La 

relación entre los dos espacios está expresada en términos de un tensor de 

transformación que contiene toda la información sobre la real ortotropía del 

material. Una ventaja muy importante de esta estrategía reside en la posibilidad de 

ajustar cualquier criterio de daño al comportamiento particular del material 

ortótropo. Además, se  pueden modelar comportamientos elásticos e inelásticos 

totalmente diferentes a lo largo de los ejes del material. 

El procedimiento mencionado anteriormente se refina después para reproducir los 

diferentes comportamientos a tracción y a compresión. El objetivo de estudiar un 

material real por medio de un sólido equivalente ficticio se logra a través de las 

definiciones de dos tensores de transformación relacionados a estados de tensión y 

compresión, respectivamente. Estos importantes supuestos permiten considerar dos 

criterios de daño distintos de acuerdo con diferentes mecanismos de fallo, es decir 

fisuración y aplastamiento. El modelo constitutivo contemplado en el espacio 

ficticio considera dos variables para controlar respectivamente el daño local a 

tracción y compresión. Dicho modelo, que está basado en una descomposición del 

tensor de tensión en componentes positivas y negativas que hace que el modelo 

induzca una degradación ortótropa, permite también representar el caracter 

unilateral del daño. Se demuestra el carácter ortótropo del Modelo de Daño 

Tensión-Compresión contemplado en el espacio ficticio. Este último aspecto, 

juntamente al hecho de considerar dos criterios de daño distintos en tracción y en 

compresión, no permite denominar el espacio ficticio como “isótropo”. Por lo 

tanto, la formulación planteada en este trabajo cambia el concepto original de 

“transformar el espacio real en uno ficticio isótropo” en el concepto innovador y 

más general de “transformar el espacio real en uno ficticio oportunamente 

conveniente”. El proceso de validación del modelo se lleva a cabo mediante la 
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comparación con resultados experimentales de diversos ensayos sobre obra de 

fábrica ortótropa. 

El modelo está formulado para el caso bidimensional. Sin embargo, es posible su 

extensión al caso 3D. Se observa una considerable eficiencia computacional, muy 

importante para el análisis de estructuras complejas de obra de fábrica. Este 

requisito se debe al favorable formato en deformaciones, compatible con 

programas de elementos finitos estándar basados en desplazamientos. La 

implementación en codigos de elementos finitos es relativamente simple. 

Finalmente, se plantea la formulación de un modelo de daño localizado para 

materiales ortótropos. Se utiliza un algoritmo de rastreo de fisuras, que fuerza la 

fisura a desarrollarse a lo largo de una fila singular de elementos finitos. Su 

comparación con el enfoque de fisura distribuida evidencia una mejor capacidad de 

predecir mecanismos de fallo realistas. El daño correspondiente a condiciones 

últimas se modela mediante fisuras localizadas. Además, los resultados no 

dependen ni del tamaño de los elementos finitos utilizados en la discretización 

espacial, ni de la orientación de la malla. El proceso de validación de la 

herramienta numérica se lleva a cabo mediante el análisis por el método de 

elementos finitos de una pared de obra de fábrica sometida a cargas verticales y 

horizontales. 
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Sommario 

Questo lavoro presenta la formulazione di un modello basato sulla Meccanica del 

Danneggiamento dei Solidi Continui, finalizzato all’analisi non lineare di elementi 

strutturali in muratura. Il materiale viene studiato da un punto di vista 

macroscopico e modellato come un continuo omogeneo ortotropo. 

Il comportamento ortotropo viene simulato per mezzo di una metodologia 

originale, basata su leggi costitutive non lineari e sul concetto di tensore mappato 

dallo spazio reale anisotropo ad uno spazio fittizio isotropo. In pratica, si stabilisce 

una trasformazione tra il comportamento di un solido reale anisotropo e quello di 

uno fittizio isotropo; di conseguenza, il problema viene risolto nello spazio fittizio 

isotropo e i risultati ricondotti al campo reale. L’applicazione di questa idea a 

modelli di danno continuo formulati in deformazioni è piuttosto innovativa. 

La teoria proposta è una generalizzazione delle teorie classiche e permette 

l’utilizzo di modelli e algoritmi sviluppati per materiali isotropi. Una prima 

versione del modello utilizza una legge costitutiva di danno isotropo scalare. Tale 

semplice assunzione nello spazio fittizio, assieme ad un’appropriata definizione 

della trasformazione matematica tra i due spazi, fornisce un modello di danno per 
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materiali ortotropi in grado di riprodurre il comportamento non lineare globale, 

tenendo in conto la degradazione della rigidezza e leggi di hardening/softening non 

lineari. La relazione tra i due spazi si esprime per mezzo di un tensore di 

trasformazione che contiene tutta l’informazione sull’ortotropia reale del materiale. 

Uno dei vantaggi principali di tale metodologia risiede nella possibilità di 

aggiustare un qualsiasi criterio di danno isotropo al comportamento particolare del 

materiale ortotropo. In aggiunta, è possibile modellare il comportamento elastico 

ed anelastico in modo tale da riprodurre risposte meccaniche completamente 

differenti lungo gli assi del materiale. 

L’approccio summenzionato viene successivamente raffinato, in maniera tale da 

includere la descrizione del diverso comportamento a trazione e a compressione. 

L’obiettivo di studiare un materiale reale per mezzo di un solido equivalente fittizio 

viene raggiunto mediante l’appropriata definizione di due tensori di trasformazione 

relazionati, rispettivamente, a stati di trazione e compressione. Tali importanti 

assunzioni permettono di considerare due criteri di danno indipendenti, 

coerentemente a due diversi meccanismi di rottura, ossia fessurazione e 

schiacciamento. Il modello costitutivo adottato nello spazio fittizio è caratterizzato 

dall’uso di due variabili scalari che controllano, rispettivamente, il danno locale a 

trazione e compressione. Tale modello, basato su una decomposizione del tensore 

degli sforzi nelle sue componenti di trazione e compressione, che permette di 

contemplare l’anisotropia indotta per danneggiamento, include anche la descrizione 

del carattere unilaterale del danno. La natura ortotropa del Modello di Danno 

Tensione-Compressione adottato nello spazio fittizio viene inoltre dimostrata. 

Quest’ultimo aspetto, assieme all’assunzione di due distinti criteri di 

danneggiamento per stati di trazione e compressione, non permette di denominare 

lo spazio fittizio come “isotropo”. Pertanto, la formulazione proposta in questo 

lavoro cambia il concetto originario di “mappare lo spazio reale in uno isotropo 

fittizio” in quello innovativo e più generale di “mappare lo spazio reale in uno 
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fittizio convenientemente opportuno”. La validazione del modello viene eseguita 

attraverso un attento confronto con risultati sperimentali su differenti tipi di 

murature, caratterizzate anche da elevati gradi di ortotropia. 

La formulazione completa del modello viene presentata per il caso bidimensionale; 

ciononostante, è facilmente possibile estrapolare quella tridimensionale. Il modello 

è caratterizzato da un’alta efficienza computazionale, una caratteristica di primaria 

importanza nel campo dell’analisi di strutture in muratura anche complesse. A tal 

fine, viene adottato un vantaggioso formato in deformazioni, pienamente 

compatibile con i programmi ad elementi finiti standard. L’implementazione del 

modello in codici ad elementi finiti è relativamente semplice e viene descritta in 

dettaglio. 

Infine, si presenta la formulazione di un modello di danno localizzato per materiali 

ortotropi, ottenuta per mezzo dell’implementazione di un algoritmo di crack-

tracking, che forza la fessura a localizzarsi lungo una singola fila di elementi finiti. 

Confrontato con il tradizionale approccio alle fessure distribuite, il modello 

proposto presenta una maggiore capacità di prevedere meccanismi di collasso 

realistici: il danno risultante in condizioni ultime appare localizzato in fessure 

discrete. Inoltre, i risultati sono oggettivi al variare delle dimensioni degli elementi 

finiti e dell’inclinazione della mesh adottata nel problema discreto. La validazione 

del modello numerico viene condotta per mezzo dell’analisi agli elementi finiti di 

una parete a taglio in muratura caricata nel piano. 
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Chapter 1.                                 

Introduction 

Masonry has always been one of the basic building materials. Important new 

developments in the materials and applications occurred in the last decades but the 

techniques to assemble bricks or blocks are essentially the same as the ones 

developed thousands of years ago.  

In many European countries, the existing building heritage is mainly constituted by 

masonry structures, including monuments of huge architectural and historical 

value. In a great number of  cases, such buildings are also located in earthquake 

prone sites. Exceptional events such as earthquakes are often the most evident 

cause of damage on the buildings, and even of their collapse. For instance, the 

Umbria-Marche earthquake (1997) damaged important historical heritage buildings 

in Italy, such as the Basilica of Saint Francis in Assisi and more than 200 ancient 

churches. In the former case, the partial collapse of the transept vault caused 4 

persons to die and reduced some Giotto’s and Cimabue’s frescos to a huge jigsaw 

puzzle, see Figure 1.1. 
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Figure 1.1 Photo sequence of the transept vault partial collapse occurred in the Basilica of 

Saint Francis in Assisi, Italy, during the Umbria-Marche earthquake (1997).  

Therefore, it is evident the importance of the structural evaluation of existing 

masonry buildings, in order not only to guarantee the architectural heritage 

conservation, but also people safety.  

The engineer participation in the conservation projects is twofold. Firstly, it is 

necessary to assess the structural safety of the construction. Secondly, the designer 

must provide the strengthening solutions, if they are necessary. In both cases the 

engineer needs adequate structural analysis tools.  

The analysis of masonry structures is a complex task. The material presents a very 

particular mechanical behaviour, which is principally due the lack of homogeneity 

and standardization. The structural response of such a composite material derives 

from the complex interaction between units and mortar joints.  

The traditional simplified analysis methods are not able to contemplate all the 

inherent complex phenomena, such as cracks opening, compression crushing and 
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shear slip. The incompatibilities between observed real structural behaviour and the 

predictions stemming from conventional analysis methods led to the need for using 

refined and advanced computational strategies.  

The numerical approach seems to be an effective possibility to deal with such a 

complicated problem. Several methods and computational tools are available for 

the assessment of the mechanical behaviour. The approaches use different theories, 

resulting in different levels of complexity and cost. Such analysis strategies are still 

in an experimental phase, hence the problem is still open.  

Nowadays, a significant effort is carried out to develop computational models of 

analysis that can be successfully used to determine the structural capacity and 

expected damage attained by masonry structures under different actions, including 

earthquakes. In this particular instance, the determination of the capacity should 

consider accurately the development of localized damage such as the individual 

large cracks normally experienced by masonry structures in the ultimate condition. 

The analysis of the cracking phenomenon is also useful to understand the causes of 

the existing cracks actually visible on historical structures, due for instance to 

construction phases, foundations settlements, previous earthquakes, etc. 

1.1 Overview of Computational Modelling of 
Masonry Structures 

In the last decades, the masonry research community has been showing a great 

interest in sophisticated numerical tools, being in opposition to the prevailing 

tradition of rules-of-thumb and empirical formulae. Several difficulties arose from 

adopting existing numerical tools from more advanced research fields, namely the 

mechanics of concrete, rock and composite materials, because of the very 

particular features of masonry. All the aforementioned factors led to the need for 

developing appropriate and specific tools for the analysis of masonry structures. 
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The large number of modern research studies concerning this issue emphasizes the 

little importance given in the past to the numerical aspects. 

Several numerical models have been proposed for the structural analysis of 

masonry constructions. Such models are characterized by different theoretical 

backgrounds and levels of detail. The cause of these differences is the large variety 

of the objects which could be studied. Masonry involves building techniques which 

may considerably differ for materials, texture and structural details. Therefore, 

trying to individuate a unique model of absolute applicability and general validity 

is not realistic. 

Several ways are practicable and the choice of the analyst depends on the searched 

information (serviceability, damage, collapse, failure mechanisms, etc. ), the 

required level of accuracy (local or global behaviour of the structure), the 

necessary input data (detailed or rough information about material characteristics) 

and the costs (principally the time permissible for the analysis). 

The simplest approach to the modelling of masonry constructions is based on 

representing the structure as a combination of structural elements, such as truss, 

beam, plate or shell elements. This is the case of the simplified methods via macro-

elements. Several approaches based on the concept of the equivalent frame method 

are found in the literature (Magenes and Dalla Fontana, 1998; Roca et al., 2005), in 

which the building walls are idealized as equivalent frames made by pier elements, 

spandrel beam elements and joint elements (Figure 1.2). Research efforts were also 

devoted to the development of two-dimensional macro-elements (Brencich and 

Lagomarsino, 1998, see Figure 1.3). All the cited simplified approaches are 

characterized by a very low computational cost, since each macro-element 

represents an entire wall or masonry panel, reducing drastically the number of 

degrees of freedom of the structure. Nevertheless, such simplified elements usually 

provide a coarse description of the real masonry element behaviour. 
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Figure 1.2 Application of the simplified method proposed by Roca et al. (2005) to the 

study of the Gaudí’s Casa Botines. 

 
Figure 1.3 Macro-elements proposed by Brencich and Lagomarsino (1998). 

Masonry is a composite material that consists of units and mortar joints. In general, 

the approach towards a better numerical representation can focus on the micro-

modelling of the individual components, viz. unit (brick, block, etc.) and mortar, or 

the macro-modelling of masonry as a composite, see Figure 1.4. 
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Figure 1.4 Modelling strategies for masonry structures (from Lourenço, 1996): masonry 

sample (a); detailed (b) and simplified (c) micro-modelling; macro-modelling (d). 

Micro-modelling is probably the best tool available to analyse and understand the 

real behaviour of masonry, particularly concerning its local response. Such an 

approach includes distinct representations of units, mortar and the unit/mortar 

interface. The detailed micro-models represent units and mortar in the joints with 

continuum elements, whereas the unit-mortar interface is represented by 

discontinuous elements (Figure 1.4b). Elastic and inelastic properties of both unit 

and mortar can be taken into account. The interface represents a potential crack/slip 

plane. Such a modelling procedure leads to very accurate results, but requires an 

intensive computational effort. This drawback is partially overcome by the 

simplified micro-models (Lofti and Shing, 1994; Tzamtzis, 1994; Lourenço and 

Rots, 1996; Gambarotta and Lagomarsino, 1997a and 1997b; Sutcliffe et al., 2001), 

where expanded units are represented by continuum elements while the behaviour 

of the mortar joints and unit-mortar interface is lumped in discontinuous elements 
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(Figure 1.4c). Masonry is thus considered as a set of elastic blocks bonded by 

potential fracture/slip lines at the joints (Figures 1.5-1.6).  

 
Figure 1.5 Micro-modelling of masonry shear walls (from Lourenço, 1996): load-

displacement diagrams (a); deformed mesh at peak load (b); deformed mesh at collapse (c).  

 
Figure 1.6 Micro-modelling of masonry, from Gambarotta and Lagomarsino (1997a). 

The micro-modelling approaches are suitable for small structural elements with 

particular interest in strongly heterogeneous states of stress and strain. The primary 

aim is to closely represent masonry from the knowledge of the properties of each 

constituent and the interface. The necessary experimental data must be obtained 

from laboratory tests in the constituents and small masonry samples. Nevertheless, 
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the high level of refinement required for obtaining accurate results means an 

intensive computational effort (i.e. great number of degrees of freedom of the 

numerical model), which limits micro-models applicability to the analysis of small 

elements (e.g. laboratory specimens) or, at least, to small structural details. 

Midway between micro-modelling and macro-modelling we recognize the 

homogenized modelling. Several homogenization techniques have been developed 

to obtain macro-constitutive laws starting from the micro-constitutive laws of the 

constituents and the texture of the masonry (Luciano and Sacco, 1997; Gambarotta 

and Lagomarsino, 1997a and 1997b; Zucchini and Lourenço, 2002; Massart et al. 

2004, Milani et al., 2006a and 2006b). Such methodologies consist in identifying 

an elementary cell, which generates an entire panel by regular repetition. In this 

way, a field problem can be written on the unit cell in order to achieve average 

values for the homogenized masonry material, starting from the knowledge of the 

mechanical properties of the constituents and the geometry of the elementary cell 

(Figure 1.7). Recently, homogenization techniques have been effectively applied to 

upper and lower bound limit analyses (Milani et al., 2006a and 2006b; Cecchi et 

al., 2007; Milani et al., 2007; Milani et al., 2008), see Figure 1.8. Recent advances 

in terms of sophisticated analysis homogenisation tools are discussed in Lourenço 

et al. (2007).  

 
Figure 1.7 Basic cell for masonry and objective of homogenization. 
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Figure 1.8 3-D homogenized limit analysis of  a masonry building, from Milani et al. 2007. 

In large and practice-oriented analyses the knowledge of the interaction between 

units and mortar is, generally, negligible for the global structural behaviour. In 

these cases a different approach can be used, namely the macro-modelling (Figure 

1.4d), which does not make any distinction between units and joints. The material 

is regarded as a fictitious homogeneous orthotropic continuum. An appropriate 

relationship is established between average masonry strains and average masonry 

stresses. A complete macro-model must account for different tensile and 

compressive strengths along the material axes as well as different inelastic 

behaviour for each material axis. This is clearly a phenomenological approach, 

meaning that the continuum parameters must be assessed by means of tests on 
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specimens of sufficiently large size, under homogeneous states of stress. As an 

alternative to difficult experimental tests, it is possible to assess experimentally the 

individual components (or simple wallets and cores, see Benedetti et al. 2008) and 

consider the obtained data as input parameters for the following numerical 

homogenization technique. Clearly, macro-modelling is more practice oriented due 

to the reduced time and memory requirements as well as a user-friendly mesh 

generation. The computational advantage is considerable, since the mesh 

discretization does not have to accurately describe the internal structure of masonry 

and the finite elements can have dimensions greater than the single brick units. 

This type of modelling is most valuable when a compromise between accuracy and 

efficiency is needed. 

The macro-models, also termed Continuum Mechanics finite element models, can 

be related to plasticity or damage constitutive laws.  

An example of the former approach is the work of Lourenço et al. (1997 and 1998, 

see Figure 1.9), which proposed a non-linear constitutive model for in-plane loaded 

walls based on the plasticity theory, for which the material admissible field is 

bounded by a Hill-type yield criterion for compression and a Rankine-type yield 

criterion for tension.  

The latter approach, which is based on Continuum Damage Mechanics, is the one 

that will be considered in the thesis. 
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Figure 1.9 Analysis of a shear wall with the plasticity model of Lourenço et al. (1997): 

deformed mesh (a) and cracks  (b). 

Among the Damage Mechanics-based macro-models we cite the work of Papa 

(1996), which consists in an unilateral damage model for masonry deriving from 

the extension of a damage model originally developed for isotropic material to the 

orthotropic case and including a homogenization technique to keep into account the 

texture of brick and mortar. Berto et al. (2002) developed a specific damage model 

for orthotropic brittle materials with different elastic and inelastic properties along 

the two material directions. The basic assumption of the model is the acceptance of 

the natural axes of the masonry (i.e. the bed joints and the head joints directions) 

also as principal axes of the damage, see Figure 1.10. 
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Figure 1.10 Analysis of a cyclically-loaded wall with openings (from Berto et al. 2002): (a) 

dx
- , (b) dy

- , (c) dx
+ and (d) dy

+ numerical damage contours. 

The macro-models have been extensively used with the aim of analyzing the 

seismic response of complex masonry structures, such as arch bridges (Pelà et al., 

2009), historical buildings (Mallardo et al., 2007), mosques and cathedrals 

(Massanas et al., 2004; Martínez et al., 2006; Murcia, 2008), see Figures 1.11-1.12.  
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Figure 1.11 Pushover analysis of a masonry arch bridge, from Pelà et al. (2009). 

 
Figure 1.12 Analysis of Küçük Ayasofya Mosque in Istanbul, from Massanas et al. (2004). 

In the case of Continuum Damage finite element models, isotropic criteria are 

usually preferred because of their simplicity, hence the need for only few material 

parameters. Moreover, smeared damage models are generally adopted even if they 

only provide general information about the level of damage expected on the 
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structure. In fact, the damage is simulated in an unrealistic way, involving 

significant volumes and spreading over large regions of the structure. 

 
Figure 1.13 Seismic analysis of Mallorca Cathedral: smeared damage approach (a) versus 

localized damage approach (b), from Clemente et al. (2006). 

An interesting enhancement of the traditional smeared damage approaches was 

proposed by Clemente et al. (2006). The model is based on the so-called smeared-

crack scalar damage model, modified in such a way that it can reproduce localized 
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individual (discrete) cracks. This is achieved by means of a local crack-tracking 

algorithm. The crack tracking model enables the simulation of more realistic 

damage distributions than the original smeared-crack model. The localized cracks 

predicted by the crack tracking model reproduce consistently a set of expectable 

plastic hinges developing gradually in the structure and leading to the full 

collapsing mechanism. The model has been used to analyze the response of the 

structure of Mallorca Cathedral under gravity and seismic forces, see Figure 1.13. 

1.2 Masonry Material: Principal Features 
Masonry is a heterogeneous material that consists of units and joints. The huge 

number of possible combinations (see Figure 1.14) generated by the geometry, 

nature and arrangement of units as well as the characteristics of mortars raises 

doubts about the accuracy of the generic term “masonry”. Despite the large number 

of typologies, the overall mechanical behaviour presents several peculiar features. 

A complete description of the material is not pursued in this study and the reader is 

referred to Drysdale et al. (1994) and Hendry (1990). 

From a phenomenological point of view, masonry is a composite material with an 

overall orthotropic behaviour. Such an anisotropy arises from the geometrical 

arrangements of units and mortar, even if the properties of these constituents are 

isotropic. The orthotropy in the elastic response is related to the different elastic 

properties of mortar and units. Moreover, the constituents are arranged in such a 

way that the horizontal and vertical directions are obviously not equivalent.  

The mortar joints act as planes of weakness. Therefore, structural response is 

strongly dependent on the orientations of the bed joints.  
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Figure 1.14 Variability of masonry: stone masonry (a), brick masonry (b). 

The uniaxial compressive strength of masonry in the direction normal to the bed 

joints has been traditionally regarded as the most relevant structural material 

property. Uniaxial compression tests in the direction parallel to the bed joints have 

received substantially less attention from the masonry community. However, 

masonry is an anisotropic material and, particularly in the case of low longitudinal 

compressive strength of the units due to high perforation, the resistance to 

compressive loads parallel to the bed joints can have a decisive effect on the load 

bearing capacity. 
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Hilsdorf (1969) demonstrated that the difference in elastic properties of the unit 

and mortar is the precursor of failure. In fact, units are normally stiffer than mortar 

and the difference is more pronounced in ancient masonry, built with lime mortar. 

Uniaxial compression of masonry in direction perpendicular to bed joints leads to a 

state of triaxial compression in the mortar and of compression/biaxial tension in the 

unit, see Figure 1.15. In practice, the unit confines the mortar and avoids its lateral 

extension. As a consequence, vertical cracks appear in the units. Upon increasing 

deformation, additional vertical cracks appear, until the failure. 

 
Figure 1.15 Local state of stress in masonry prisms under uniaxial vertical compression. 

The strength and the failure mode change when different inclinations of bed joints 

are considered (Samarasinghe and Hendry, 1980; Page, 1981, 1983) because of the 

anisotropic nature of the material. If loading direction is parallel to bed joints, the 

splitting of the bed joints in tension occurs. For intermediate inclinations, we find a 

mixed mechanism, see Figure 1.16. 
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Figure 1.16 Modes of failure of solid clay units masonry under uniaxial compression, from 

Page (1981, 1983). 

For tensile loading perpendicular to the bed joints, failure is generally caused by 

debonding between the bed joint and the unit. As a rough approximation, the 

masonry tensile strength can be equated to the tensile bond strength between the 

joint and the unit. In masonry with low strength units and greater tensile bond 

strength between the bed joint and the unit, e.g. high-strength mortar and units with 

numerous small perforations, which produce a dowel effect, failure may occur as a 

result of stresses exceeding the unit tensile strength. As a rough approximation, the 

masonry tensile strength in this case can be equated to the tensile strength of the 

unit. 

For tensile loading parallel to the bed joints a complete test program was set-up by 

Backes (1985). The author tested masonry wallets under direct tension and he 

found that tension failure was affected by the type of the mortar and the masonry 

units. For stronger mortar and weaker masonry units, the tension cracks passed 

along the head mortar joints and through the centre of the bricks at the intervening 

courses, as shown in Figure 1.17a. For weaker mortar joints and stronger masonry 

units, the tension crack passed along the head joints of the masonry units and the 

length of bed joints between staggered head joints, as shown in Figure 1.17b.  
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Figure 1.17 Modes of tension failure of masonry walls under direct tension, from Backes 

(1985): through type (a), zigzag type (b). 

Figure 1.18 shows different modes of failure observed by Page (1983) on solid clay 

units masonry walls subjected to uniaxial tension. As can be seen, for intermediate 

inclinations of the bed joints, the failure is concentrated on joints. 

 
Figure 1.18 Modes of failure of solid clay units masonry under uniaxial tension, from 

Page (1983). 

The constitutive behaviour of masonry under biaxial states of stress cannot be 

completely described from the constitutive behaviour under uniaxial loading 

conditions. The biaxial strength envelope cannot be described solely in terms of 

principal stresses, because masonry is an anisotropic material. Therefore, the 
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biaxial strength envelope of masonry must be either described in terms of the full 

stress vector in a fixed set of material axes or, in terms of principal stresses and the 

rotation angle θ between the principal stresses and the material axes. The most 

complete set of experimental data of masonry subjected to proportional biaxial 

loading was provided by Page (1981, 1983), see Figure 1.19. The tests were carried 

out with half scale solid clay units. Both the orientation of the principal stresses 

with regard to the material axes and the principal stress ratio considerably influence 

the failure mode and strength.  

 
Figure 1.19 Biaxial strength of solid clay units masonry, from Page (1981, 1983). 
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The influence of the lateral tensile stress in the tensile strength is not known 

because no experimental results are available. A lateral compressive stress 

decreases the tensile strength. The minimum value is achieved when tension 

direction is perpendicular to the bed joints. In tension-compression (Page, 1983), 

the failure occurs either by cracking and sliding of the joints or in a combined 

mechanism involving both units and joints, see Figure 1.20.  

 
Figure 1.20 Modes of failure of solid clay units masonry under biaxial tension-

compression, from Page (1983). 

In biaxial compression failure typically occurs by splitting of the specimen at mid-

thickness, in a plane parallel to its free surface, regardless of the orientation of the 

principal stresses, see Figure 1.21. The orientation plays a significant role when the 

compression in one direction is much greater than the perpendicular one. In this 

case, failure occurs in a combined mechanism involving both joint failure and 

lateral splitting. The increase of compressive strength under biaxial compression 

can be explained by friction in the joints and internal friction in the units and 

mortar. 

It is further noted that the strength envelope shown in Figure 1.19 is of limited 

applicability for other types of masonry. Different strength envelopes and different 

failure modes are likely to be found for different materials, unit shapes and 

geometry. Comprehensive programs to characterize the biaxial strength of different 

masonry types were carried using full scale specimens, see Ganz and Thürlimann 

(1982) for hollow clay units masonry, Guggisberg and Thürlimann (1987) for clay 
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and calcium-silicate units masonry and Lurati et al. (1990) for concrete units 

masonry. 

 
Figure 1.21 Mode of failure of solid clay units masonry under biaxial compression-

compression, from Page (1981). 

Concerning the shear capacity of masonry, we observe that the determination of the 

shear response of masonry joints is a complex task, since it depends on the ability 

of the test set-up to generate a uniform state of stress in the joints. Different test 

configurations are possible and the reader is referred to van der Pluijm (1983, 

1998), Hofmann and Stockl (1986) and Atkinson et al. (1989). Obviously, the 

shear strength increases with the confining compression stress, because of the 

frictional behaviour of masonry in shear. Moreover, the real behaviour of a joint is 

generally non-associative, i.e. δn ≠ δt tanφ , where δn and δt are respectively the 

normal (dilatant) and tangential relative displacements between sliding surfaces at 

a masonry joint, and φ is the angle of friction. Whilst in practice some dilatancy 

will be likely to occur when two rough blocks pass over each other, experimental 

evidence indicates that real joint behaviour is quite complex, with the amount of 
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dilatancy being dependent on the micro-scale geometrical and mechanical features 

of the masonry joint (van Zijl, 2004). Also, it is found that the angle of dilatant 

friction tends to reduce both with increasing relative tangential displacement and 

also under the action of increasing normal stresses, see Figure 1.22.  

 
Figure 1.22 Masonry joint behaviour: associative, Coulomb friction (non-associative) 

idealisations and typical real behaviours. 

A salient feature of masonry is the softening behaviour, which is typical of quasi-

brittle materials. Softening is a gradual decrease of mechanical resistance under a 

continuous increase of deformation and it is due to a process of progressive internal 

crack growth. Such mechanical behaviour is commonly attributed to the 

heterogeneity of the material, due to the presence of different phases and material 

defects, like flaws and voids. Even prior to loading, mortar contains microcracks 

due to the shrinkage during curing and the presence of the aggregate. The clay 

brick contains inclusions and microcracks due to the shrinkage during the burning 

process. The initial stresses and cracks as well as variations of internal stiffness and 

strength cause progressive crack growth when the material is subjected to 

progressive deformation. Initially, the microcracks are stable which means that 
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they grow only when the load is increased. Around peak load an acceleration of 

crack formation takes place and the formation of macrocracks starts. The 

macrocracks are unstable, which means that the load has to decrease to avoid an 

uncontrolled growth. In a deformation controlled test the macrocrack growth 

results in softening and localization of cracking in a small zone while the rest of the 

specimen unloads. Figure 1.23 shows characteristic stress-displacement diagrams 

for quasi-brittle materials in uniaxial tension, uniaxial compression and pure shear.  

 
Figure 1.23 Typical behaviour of quasi-brittle materials and definition of fracture energy: 

uniaxial tensile loading (a); uniaxial compressive loading (b); pure shear (c). 

The integral of the σ−δ diagram is the fracture energy , denoted by Gf and Gc, for 

tension and compression, respectively. In case of mode II failure mechanism, i.e. 

slip of the unit-mortar interface under shear loading, the inelastic behaviour in 

shear can be described by the mode II fracture energy GII,f , defined by the integral 
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of the τ−δ diagram. Figure 1.23c shows brittle behaviours in shear. The value of 

the fracture energy depends on the level of the confining stress. 

Shear failure is a salient feature of masonry behaviour which must be incorporated 

in a micro-modelling strategy. However, for continuum macro-models, this failure 

cannot be directly included because the unit and mortar geometries are not 

discretized. Shear failure is then associated with tension and compression modes in 

a principal stress space. 

1.3 Aim and Objectives of the Thesis  
The main aim of this thesis is to provide a non linear model, based on the 

Continuum Damage Mechanics, devoted to the finite element analysis of masonry 

structures. The work consists in developing a robust and accurate numerical tool 

for the analysis even of large and complex constructions.  

The study focuses on two-dimensional structures, which can be approximated as 

being in a state of plane stress, such as panels, shear walls and arched structures. 

The material is studied at the macro-level, i.e. it is modelled as a homogeneous 

orthotropic continuum without making any distinction between units and joints.  

This aim will be achieved through the following enabling objectives: 

• To gather information on the existing knowledge about Continuum 

Damage Mechanics models, through a comprehensive literature review. 

• To develop an efficient model capable of predicting the behaviour of 

masonry structures, which includes orthotropic elastic as well as 

orthotropic inelastic behaviour and incorporates the knowledge of concepts 

used in crack propagation problems. 

• To validate the model by comparing the predicted behaviour with the 

behaviour observed in experiments on different types of masonry. The 
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developed model should be able to predict the failure mode and the 

ultimate load with reasonable agreement with the experimental evidence. 

• To apply the validated model to engineering practice case-studies. 

It is further noted that the model developed and the discussion carried out in this 

study has a much broader applicability than masonry structures. In fact, the 

proposed model could be utilized for most anisotropic materials such as plastics, 

wood and fibre-reinforced composite materials. 

1.4 Outline of the Thesis 
This thesis consists of six Chapters. 

Chapter 1 provides an introduction and states the aim and objectives of the 

research. A brief overview on the mechanical behaviour of the material and 

computational modelling of masonry structures is also included. 

Chapter 2 reports a review of several Continuum Damage Mechanics models. The 

aspects related to their numerical implementation are also discussed. 

Chapter 3 presents the formulation of a scalar damage model for orthotropic 

materials. An original methodology is presented, which is a generalization of the 

classical theories and allows one to use the models and algorithms developed for 

isotropic materials. Such a methodology is based on establishing a one-to-one 

mapping relationship between the behaviour of an anisotropic real material and that 

of an isotropic fictitious one. Therefore, the problem is solved in the isotropic 

fictitious space and the results are transported to the real field. Orthotropic elastic 

and inelastic behaviours of the material are taken into account, in such a way that 

totally different responses can be predicted along the material axes. The proposed 

tool is able to reproduce the mechanical degradation of the material and to predict 

the potential collapse under given load conditions. 
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Chapter 4 presents the formulation of a two-parameters damage model for 

masonry. Such a model is more sophisticated than the one described in the previous 

chapter. In fact, it accounts for different orthotropic behaviours in tension and 

compression. Individual damage criteria are considered for tension and 

compression, according to different failure mechanisms. The former is associated 

with cracking phenomenon, while the latter is associated with the crushing of the 

material. Totally different elastic and inelastic behaviours can be predicted along 

the material axes, both in tension and compression. The resulting formulation is 

easily implemented in a non linear finite element code. Validation of the model is 

performed by means of a comparison between the calculated numerical results and 

the experimental results available in the literature for different types of orthotropic 

masonry. 

Chapter 5 validates the damage model developed in Chapter 4 by means of the FE 

analysis of an engineering practice case study, i.e. a shear wall with openings. A 

localized-cracks approach is considered instead of the traditional smeared one, in 

order to obtain more accurate and mesh-objective results. The description of the 

adopted local crack-tracking algorithm is also provided. 

Chapter 6 presents an extended summary, the main contributions and the final 

conclusions which can be derived from this study. Suggestions for future work are 

also pointed out. 
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Chapter 2.                                       

Overview of Continuum Damage 

Mechanics and Damage Models 

The mechanical behaviour of many materials is complex and highly nonlinear, 

even for moderate stress levels. The available literature on material modelling 

includes models based on the theories of Hypoelasticity, Hyperelasticity, Plasticity, 

Fracture Mechanics, Plastic-Fracture or Continuum Damage Mechanics. 

Continuum Damage Mechanics provides a powerful and general framework for the 

derivation of consistent material models suitable for many engineering fields. This 

theory was firstly introduced by Kachanov (1958) in the context of creep related 

problems. It has been accepted afterwards as a valid tool to deal with complex 

material behaviour. Continuum Damage Mechanics covers a broad range of 

applications nowadays. It is used for materials so different as metals, ceramics, 

rock, concrete and masonry. Such a large acceptance is due to several important 

factors, namely: 
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• The simplicity of the approach, which is totally based on Continuum 

Mechanics Theory. This is a major difference with Fracture Mechanics and 

leads to a much simpler formulation and interpretation. The damaged 

material is assumed to remain a continuum and the collective effect of 

cracks is modelled by modifying the mechanical properties, i.e. stiffness 

and strength. One or more, scalar or tensorial, field quantities are 

introduced into the constitutive equations as measures of the degradation of 

the material.  

• The consistency of the theory, which is formulated in a rigorous 

framework, i.e. the Thermodynamics of irreversible processes. 

• The versatility  of the approach, which can deal with a large number of 

problems, e.g. creep, fatigue, brittle or ductile failure, etc. 

• The compatibility with other theories. For instance, the combination of 

Damage Mechanics Theory with Plasticity is straightforward. In addition, 

it is possible to include thermal and rate dependent effects in the 

formulation.    

This Chapter presents some approaches to this branch of Continuum Mechanics. 

Basic concepts are defined, together with the theoretical formulation. Then, a 

comparative discussion concerning  some damage models is carried out, in order to 

emphasize the implications arising from the different backgrounds. In particular, 

the attention is paid mainly to the models in which the damage is described by one 

or two scalar variables. A large number of studies deals with such approaches to 

characterize the mechanical behaviour of materials. The principal features of these 

approaches will be pointed out, in order to better understand the models that will be 

formulated in the following Chapters of the thesis. 
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2.1 Continuum Damage Mechanics: Background and 
Basics  

All real materials deform when loaded. The deformation may be elastic or inelastic. 

It may be time independent or dependent. Occasionally rupture may occur, being 

either ductile or brittle. The deformational properties are described by constitutive 

equations, which are either derived from micromechanical or statistical 

considerations or even postulated to fit measurements test specimens. 

In general, constitutive equations relate to the material modelled as a continuum. 

The deformation is described by a field variable, the strain. The distribution of 

internal forces in the material is described by another field variable, the stress. 

These concepts are useful in analyzing the behaviour of load carrying structures in 

spite of the fact that they do not account for the discrete structure of real materials. 

Under certain load conditions the material structure may begin to disintegrate. 

Small cracks may form, voids and other forms of small cavities may appear in 

highly stressed parts. Such deterioration weakens the material and lowers its load 

carrying capacity. Because of their nature, these defects are discrete entities. An 

accurate analysis of their influence would have to consider them as discrete 

disturbances of the material continuum. This is definitely a prohibitive task. 

In a pioneering paper Kachanov (1958) proposed to describe the collective effect of 

such deterioration by means of a field variable termed continuity. Therefore, an 

inherently discrete process was modelled by a continuous variable. What was lost 

in accuracy in modelling the deterioration was then gained in computational 

simplicity. 

The state of the material with regard to deterioration was characterized by a 

dimensionless scalar field variable ψ  denoted continuity. To a completely defect 

free material was ascribed the condition 1ψ = , whereas 0ψ =  was defined to 

characterize a completely destroyed material with no remaining load carrying 
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capacity. Kachanov also postulated a law according to which ψ  changes with time 

in a material subjected to stress at elevated temperature during extended times. For 

further details on Kachanov’s analysis of brittle creep rupture the reader is referred 

to Kachanov (1958, 1986). 

The continuity Ψ quantifies the absence of the material deterioration. The 

complementary quantity 1D ψ= −  is therefore a measure of the state of 

deterioration or damage (Odqvist and Hult, 1962; Rabotnov, 1963). For a 

completely undamaged material 0D =  whereas 1D =  corresponds to a state of 

complete loss of integrity of the material structure. The designation D  as field 

variable to describe the degree of material damage has lately come into a 

widespread use and will be used in the sequel of the work.  

Although Kachanov assumed Ψ to be a scalar field variable, later developments 

have led to the study of tensorial quantities to describe damage, see Krajcinovic 

and Lemaitre (1987) and the references therein.  

Even though the Kachanov model was entirely phenomenological, 

micromechanical studies lent support to this model, see Jansson and Stigh (1985). 

Such results led to increasing interest in damage analyses based on Mechanics 

principles.  

The term Continuum Damage Mechanics was coined by Janson and Hult (1977). 

The aim of such a theory is to develop methods for the prediction of the load 

carrying capacity of structures subjected to material damage evolution. It is a 

counterpart of Fracture Mechanics, which deals with structures containing one or 

several cracks of finite size. In this latter approach, the cracks are usually assumed 

to be embedded in a non-deteriorating material. However, Fracture Mechanics and 

Continuum Damage Mechanics may be combined to predict the damage growth 

and the resulting decrease of load carrying capacity (Janson and Hult, 1977; 

Krajcinovic, 1985). 
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2.1.1 Damage Variable 

Damage in solid materials is the creation and growth of microvoids or microcracks, 

which are discontinuities in a medium considered as continuous at a larger scale. In 

engineering, the mechanics of continuous media introduces a Representative 

Volume Element (RVE) on which all properties are described by homogenized 

variables. To give an order of magnitude, its size can vary from about 0.1 mm3 for 

metals and ceramics to about 100 mm3 for concrete. The damage discontinuities 

are small with respect to the size of the RVE but of course large compared to the 

atomic spacing, see Figure 2.1. 

 
Figure 2.1 Examples of damage in a metal (microcavities in copper), in a composite 

(microcracks in carbon-fiber/epoxy resin laminate), and in concrete (crack pattern).  From 
Lemaitre and Desmorat (2005). 

From a physical point of view, damage is always related to plastic or irreversible 

strains and more generally to a strain dissipation either on the mesoscale, the scale 

of the RVE, or on the microscale, the scale of the discontinuities.  

In the first case (mesolevel), the damage is called ductile damage if it is nucleation 

and growth of cavities in a mesofield of plastic strains under static loadings; it is 
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called creep damage when it occurs at elevated temperature and is represented by 

intergranular decohesions in metals; it is called low cycle fatigue damage when it 

occurs under repeated high level loadings, inducing mesoplasticity. 

In the second case (microlevel), it is called brittle failure, or quasi-brittle damage, 

when the loading is monotonic; it is called high cycle fatigue damage when the 

loading is a large number of repeated cycles. Ceramics, concrete, and metals under 

repeated loads at low level below the yield stress are subjected to quasi-brittle 

damage.  

Consider a damaged solid in which a characteristic element of finite volume has 

been isolated, i.e. the RVE, see Figure 2.2.  

 
Figure 2.2 Damaged element and interpretation of the damage variable.  

Let Sδ  be the area of the section of the volume element identified by its normal 

n . On this section, cracks and cavities which constitute the damage leave traces of 

different forms. Let Sδ  be the effective area of resistance ( )S Sδ δ<  taking 
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account of the area of these traces, stress concentrations in the neighbourhood of 

geometric discontinuities and the interactions between the neighbouring defects. 

Let DSδ  be the difference 

DS S Sδ δ δ= −  (2.1) 

i.e. the total area of the defect traces corrected for stress concentrations and 

interactions. We will see in Section 2.1.2 that the concept of effective stress 

associated with the hypothesis of strain-equivalence enables us to avoid the 

calculations of DSδ . In fact, it would be extremely difficult to do because of the 

lack of knowledge of the precise geometry of the defects and because of the doubts 

regarding the applicability of Continuum Mechanics on this scale. 

By definition (Lemaitre and Chaboche, 1985), the damage variable is physically 

defined by the surface density of microcracks and intersections of microvoids lying 

on a plane cutting the RVE of cross section Sδ  (Fig. 2.2): 

( ) DSD n
S

δ
δ

=  (2.2) 

Expression (2.2) provides the mechanical measure of local damage relative to the 

direction n . It is evident that: 

• ( ) 0D n =  corresponds to the undamaged or virgin state; 

• ( ) 1D n =  corresponds to the totally damaged material, hence breaking of 

the RVE into two parts; 

• ( )0 1D n≤ ≤  characterizes the damaged state. 

If the damage is isotropic, it consists of cracks and cavities with an orientation 

distributed uniformly in all directions. In this case, the variable ( )D n  does not 



Chapter 2 

 

36

depend on the normal and the damaged state is completely characterized by the 

scalar intrinsic variable d: 

( )D n d n= ∀  (2.3) 

However, experimental evidence proves that during the loading history, the 

microcracks undergo irreversible growth mainly “in the direction perpendicular to 

the maximum tensile strain” (Krajcinovic and Fonseka, 1981). Therefore, in the 

general case of anisotropic damage, the value of the variable ( )D n  depends on the 

orientation of the normal. It will be seen afterwards that the corresponding intrinsic 

variable can be represented by a vector or a tensor. 

2.1.2 Effective Stress Concept and Principle of Strain-Equivalence 

The introduction of a damage variable which represents a surface density of 

discontinuities leads directly to the concept of effective stress, i.e. the stress 

calculated over the section which effectively resists to the forces. 

For simplicity, we consider the uniaxial case. If F is the applied force on a section 

of the representative volume element, F Sσ =  is the usual stress satisfying the 

equilibrium equation. In the presence of isotropic damage d, the effective area of 

resistance is 

 ( )1DS S S S d= − = −  (2.4) 

and by definition the effective stress σ  is defined as 

( )1
S
S d

σσ σ= =
−

 (2.5) 

Evidently it results that σ σ≥ . For a virgin material σ σ= , whereas at the 

moment of fracture σ → ∞ . 
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In the case of multiaxial isotropic damage, the ratio S S  does not depend on the 

orientation of the normal and the operator ( )1 d−  can be applied to all 

components. As a consequence, we can consider the tensorial form 

( )1 d
=

−
σσ  (2.6) 

or the inverse expression 

( )1 d= −σ σ  (2.7) 

 
Figure 2.3 Effective stress and equivalence in strain: virgin material (a), damaged material 

(b) and equivalent virgin material (c).  

The definition of the effective stress is introduced in connection with the 

hypothesis of strain equivalence (Lemaitre and Chaboche, 1978):  
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the strain associated with a damaged state under the applied stress σ  is 

equivalent to the strain associated with its undamaged state under the effective 

stress σ  (Figure 2.3). 

We assume that the deformation behaviour of the material is only affected by 

damage in the form of the effective stress. Any deformation behaviour, whether 

uniaxial or multiaxial, of a damaged material is represented by the constitutive law 

of the virgin material in which the usual stress is replaced by the effective stress. 

For example, the uniaxial linear elastic law of a damaged material is written as 

( ) ( )1 1d d Eσ σ ε= − = −  (2.8) 

In which E is the Young’s modulus. This constitutes a non-rigorous hypothesis 

which assumes that all the different behaviours accompanying damage (elasticity, 

plasticity, viscoplasticity) are affected in the same way by the surface density of the 

damage defects. However, its simplicity allows the establishment of a coherent and 

efficient formalism. 

From Equation (2.8) it derives that the macroscopic (or apparent) tension σ  is 

related to the strain by means of a damaged Young’s modulus: 

( )1dE d E= −  (2.9) 

The damage is irreversible, so 

0, 0 0d dS d E≥ ≥ → ≤  (2.10) 

The damage is initiated when the strain (or stress) exceeds the initial damage 

threshold 0ε  (or 0σ ): 

0

0

0d if
σ σ
ε ε

<⎧
= ⎨ <⎩

 (2.11) 
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Figure 2.4 Damaged Young’s modulus during increasing uniaxial load.  

In case of unloading we have 

0 0 0dS and dε < → = =  (2.12) 

and, therefore, 

( )1 dd E d E Eσ ε ε ε= − − =  (2.13) 

In case of unloading the damage does not increase and, consequently, unloading 

occurs until the origin according to a damaged stiffness, see Figure 2.4. A 

successive reloading follows the same unloading branch, until the damage 

threshold is reached again. The damage constitutive law differs from the plasticity 

constitutive law in that no plastic irreversible deformation occurs: all the 

deformation is recovered during the unloading, hence the unloading/reloading  

paths are not parallel. 
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2.1.3 Thermodynamic Framework 

Continuum Damage Mechanics is formulated in a rigorous framework (Maugin, 

1992). The general structure of the classical theory is furnished by the consolidate 

Thermodynamics Theory of irreversible process with internal variables (Coleman 

and Gurtin, 1967). 

The constitutive relationship is obtained by writing the dissipation of the thermo-

mechanical process. The dissipation expression is obtained taking into account the 

first and second principles of thermodynamics (Lemaitre and Chaboche, 1985). 

The first principle postulates the balance of the energy, demanding the 

conservation of the total internal energy of the system: 

:e r div qρ ρ= + −σ ε  (2.14) 

where e  is the specific internal energy, σ  the Cauchy stress tensor, ε  is the rate of 

deformation (under the hypothesis of small strains), r is the specific density of the 

internal heat production, q  is the heat flux vector. 

The second principle of thermodynamics establishes that for an irreversible process 

the change in the internal production of entropy should be bigger or the same than 

the change of introduced entropy: 

0r qs div
T T

ρ − + ≥  (2.15) 

where s is the specific entropy and T is the absolute temperature. The fundamental 

inequality containing the first and second principles is obtaining by replacing r in 

(2.15) with the expression resulting from the equation of conservation of energy 

(2.14). By introducing another variable, i.e. the specific free energy 

 e Tsψ = −  (2.16) 

after simple calculations, we finally obtain the Clausius-Duhem inequality: 
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( ): 0grad TD sT q
T

ρ ψ= − + − ⋅ ≥σ ε  (2.17) 

The method of local state postulates that the thermodynamic state of a material 

medium at a given point and instant is completely defined by the knowledge of the 

values of a certain number of variables at that instant, which depend only upon the 

point considered (Lemaitre and Chaboche, 1985). Physical phenomena can be 

described with a precision which depends on the choice of the nature and number 

of variables. The processes defined in this way will be thermodynamically 

admissible if, at any instant of evolution, the Clausius-Duhem inequality is 

satisfied. The variables of the thermodynamical problem are the free variables and 

the internal variables. 

The free variables are also termed state variables, since the values they assume 

define the state of the problem. We limit ourselves to the two observable variables 

which occur in damage phenomena 

{ }, T= εF  (2.18) 

assuming small strains. For reversible phenomena, at every instant of time, the 

state depends uniquely on these variables.  

For dissipative phenomena, the current state depends also on the past history which 

is represented by the values at each instant of other variables, called internal 

variables:  

{ }, ,p e
kV= ε εI  (2.19) 

The plastic strains pε  are required as internal variables in plasticity and 

viscoplasticity problems. For small strains, the plastic strains is the permanent 

strain associated to the relaxed configuration, given by the decomposition 
p e= −ε ε ε . The thermoelastic strains eε  are also internal variables and they 
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include, as well, the possibility of thermal dilatation. Other phenomena such as 

damage, hardening etc. require the introduction of other internal variables, which in 

(2.19) are termed kV . The values assumed by all the internal variables are 

described by opportune evolution laws. 

Once all the variables of the mechanical problem have been defined, we postulate 

the existence of a thermodynamical potential from which the state laws can be 

derived. Without entering into details, the specification of a function with scalar 

value, concave with respect to the temperature and convex with respect to other 

variables, allows us to satisfy a priori the conditions of thermodynamic stability 

imposed by the inequalities that can be derived from the second principle (Maugin, 

1992; Lemaitre and Chaboche, 1985). It is possible to work with different 

potentials. Here we choose the free specific energy potential 

( ), , , ,p e
kT Vψ ψ= ε ε ε  (2.20) 

In elastoplasticity or viscoplasticity the strains appear only in the form of their 

additive decomposition e p= −ε ε ε , hence we can write ( ), ,e
kT Vψ ψ= ε . We 

now use the Clausius-Duhem inequality with 

: e
ke

k

T V
T V

ψ ψ ψψ ∂ ∂ ∂
= + +

∂ ∂ ∂
ε

ε
 (2.21) 

to obtain 

: : 0e p
ke

k

grad TD s T V q
T V T

ψ ψ ψρ ρ ρ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= − + − + − − ⋅ ≥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
σ ε σ ε

ε
 

 (2.22) 

Since the Clausius-Duhem inequality holds regardless of any particular eε  or T , it 

necessarily follows that (Coleman and Gurtin, 1967): 
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e

s
T

ψρ

ψ

∂
=

∂
∂

= −
∂

σ
ε  (2.23a,b) 

In an analogous manner, we define the thermodynamic forces associated with the 

internal variables by 

k
k

A
V
ψρ ∂

=
∂

 (2.24) 

Equations (2.23a), (2.23b) and (2.24) constitute the state laws. In particular, the 

first one defines the constitutive law.  

In the following Sections, some damage models will be discussed. As it will be 

seen, all the models present a formulation consistent with the thermodynamical 

framework that it has been presented. In particular, the constitutive laws are all 

consistent with (2.23a) and have been obtained by assuming a free specific energy 

potential in compliance with (2.20). 

2.2 Brief Overview of Damage Models 
In Section 2.1 we have presented the basics of the classical theory of Continuum 

Damage Mechanics. The concepts related to the original formulation of Kachanov 

(1958) have been emphasized, such as the effective stress and the strain-

equivalence (Rabotnov, 1969; Lemaitre and Chaboche, 1978; Lemaitre, 1984; 

Krajcinovic, 1984; Chaboche, 1988a; Murakami, 1988).  

Since the pioneering paper of Kachanov, a great effort has been devoted to the 

research on Continuum Damage Mechanics. Completely different approaches at 

the theory have been presented, even concerning the basic hypotheses to describe 

the damage phenomenon. In Section 2.1.2 we have discussed the classical approach 

consisting in the strain-equivalent relationship between the real physic space and 
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an effective undamaged one (Kachanov, 1958; Lemaitre, 1978; Simó and Ju, 

1987a). Other hypotheses have been formulated to define the transformation 

between the real damaged space and the effective undamaged one. For instance, the 

concept of effective strain has been proposed in connection with the hypothesis of 

stress equivalence (Simó and Ju, 1987a). Other researches (Krajcinovic and 

Fonseka, 1981; Dragon and Mroz, 1979; Carol et al., 2001a; Luccioni and Oller, 

2003) have considered the hypothesis of energy equivalence. 

In the literature we find different approaches to describe the damage from the 

phenomenological point of view. In addition to the models based on the 

assumption of one or more scalar damage variables (Simó and Ju, 1987a; Faria and 

Oliver, 1993; Faria et al., 1998, 2000, 2004; Cervera et al. 1995, 1996, 1999; 

Cervera, 2003), models which employ vectorial damage variables (Krajcinovic and 

Fonseka, 1981; Talreja, 1985) have been proposed. In addition, models with 

second order tensors (Dragon and Mroz, 1979; Murakami and Ohno, 1980; 

Lemaitre et al., 2000; Carol et al., 2001a and 2001b), fourth-order tensors 

(Chaboche, 1979; Ortiz, 1985; Lemaitre and Chaboche, 1985; Simó and Ju, 1987a; 

Ju, 1990; Lubarda et al., 1994; Govindjee et al., 1995) or even eighth-order 

damage tensors (Chaboche, 1988a and 1988b) can also be found in the literature. In 

fact, the surface microcracks and the volume cavities that make up damage usually 

have preferred orientations (Krajcinovic and Fonseka, 1981). This leads to the so-

called damage induced anisotropy, which can be described only via second or even 

higher order tensors. However, probably due to the difficulties in postulating 

appropriate evolution laws for higher order tensors, the second-order tensor is 

preferred in the modelling of damage induced anisotropy, though only damage not 

higher than orthotropy can be described. Nevertheless, we recognize that the more 

the model is sophisticated, the more the number of parameters must be 

experimentally evaluated to formulate the model. Moreover, it is very difficult to 
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compare the experimental evidence with the induced anisotropic damage predicted 

by the related models, with the aim of choosing the most proper damage variable. 

In addition, the differences between the great number of models reported in the 

literature are due to the aim of the analysis. Consequently, we will find different 

damage variable laws depending on the mechanical phenomenon considered. For 

instance, different theories are available for creep damage (Kachanov 1958; 

Rabotnov, 1963; Murakami and Ohno, 1980), fatigue damage (Lemaitre, 1985; 

Lemaitre and Chaboche, 1985), ductile damage (Lemaitre, 1985; Dragon, 1985), 

brittle and quasi-brittle damage (Simó and Ju, 1987a and 1987b; Faria and Oliver, 

1993; Govindjee et al., 1995; Cervera et al. 1995, 1996, 1999; Faria et al., 1998, 

2000, 2004).  

One of the critical issues associated with damage models is the selection of a 

proper damage criteria. This aspect is strictly related to the particular material 

investigated. For instance, in case of concrete several different criteria have been 

adopted, such as the equivalent strain-based (Mazars and Pijaudier-Cabot, 1989) 

and the stress-based approaches (Ortiz, 1985), as well as the damage energy release 

rate-based proposals (Simó and Ju, 1987a; Ju, 1989) and the empirical criteria 

(Faria et al. 1998; Comi and Perego, 2001).  

In addition to the classical elastic-damage models (Mazars and Pijaudier-Cabot, 

1989; Lubarda et al., 1994; Cervera et al., 1995, 2003; Comi and Perego, 2001; 

Faria et al. 2004), we can also find models which account for the irreversible 

strains due to plastic flow, e.g. Ortiz (1985), Lemaitre (1985), Dragon (1985), 

Resende (1987), Simó and Ju (1987a), Lubliner et al. (1989), Yazdani and 

Schreyer (1990), di Prisco and Mazars (1996), Lee and Fenves (1998), Faria et al. 

(2000), Hansen et al. (2001). Other models account also for rate dependent effects, 

i.e. viscosity (Simó and Ju, 1987a and 1987b; Cervera et al., 1996, 1999 ; Cervera, 

2003), or even plasticity coupled with viscous damage (Simó and Ju, 1987a and 

1987b; Faria and Oliver 1993; Faria et al., 1998). 
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A complete review of the available damage models is not pursued in this study and 

the reader is referred to Oller (2001), Luccioni (2003), Lemaitre and Desmorat 

(2005). In the following sections, we will focus on some damage models which 

present concepts and features very useful to fully understand the models presented 

in Chapters 3 and 4. We will delve into their formulations in order to emphasize the 

main hypotheses together with the computational aspects related to their numerical 

implementation.  

2.3 Scalar Damage Models 
The simplest models are the scalar damage ones, in which the stiffness degradation 

is described by a single scalar variable d which affects in the same measure all the 

components of the elastic constitutive tensor.  

The formulation that will be principally detailed herein is the strain-based damage 

model proposed by Simó and Ju (1987a and 1987b). It provides a simple 

constitutive model which, nevertheless, is able to reproduce the overall nonlinear 

behaviour including stiffness degradation, strain-hardening/softening response and 

rate dependency. 

2.3.1 Thermodynamic Formulation 

The crucial idea underlining the strain-based isotropic continuum damage model 

formulated by Simó and Ju is the hypothesis that damage in the material is directly 

linked to the history of total strain. Therefore, the free (or state) variable of the 

thermodynamic problem is the strain tensor ε . In addition, we consider an internal 

strain-like variable ( )r r= ε  which can be interpreted as the current damage 

threshold. The scalar damage variable is a function of the internal variable, i.e 

( )d d r= . The following form of the free energy potential is assumed 
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( ) ( ) 0, 1r d rψ ψ= −⎡ ⎤⎣ ⎦ε  (2.25) 

Where d is the damage variable (see Section 2.1.1), ( )0ψ ε  is the initial elastic 

stored energy function of the undamaged (virgin) material. It is a convex function 

that in the linear case assumes the form 

( )0
1 : : 0
2

ψ = ≥ε ε C ε  (2.25) 

where C denotes the usual (fourth-order) isotropic linear-elastic constitutive tensor. 

From (2.25) and recalling that ( )0 1d r≤ ≤ , it derives that ( ), 0rψ ≥ε . 

According to the Clausius-Duhem inequality, see Equation (2.22), the dissipation 

for an isothermic elasto-damageable process takes the form 

0: : 0D dψψ ψ∂⎛ ⎞= − + = − + + ≥⎜ ⎟∂⎝ ⎠
σ ε σ ε

ε
 (2.26) 

Applying the Coleman’s method (Coleman and Gurtin, 1967) to guarantee the 

condition of positive dissipation in (2.26), the constitutive equation is obtained as 

( )1 :d rψ∂
= = −⎡ ⎤⎣ ⎦∂

σ C ε
ε

 (2.27) 

The notion of effective stress, both with the hypothesis of strain equivalence, 

follows from the assumed form of the free energy. In fact: 

:=σ C ε  (2.28) 

Therefore, we finally obtain 

( )1 d r= −⎡ ⎤⎣ ⎦σ σ  (2.29) 

According to (2.26) and (2.27), the dissipation can be expressed as 
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0 0D dψ= ≥  (2.30) 

provided that, in view of (2.25), the scalar damage variable increases 

monotonically, i.e. 0d ≥ . 

2.3.2 Damage Threshold Function 

Simó and Ju (1987a) characterized the progressive degradation of mechanical 

properties of the material due to damage by means of  a simple isotropic damage 

mechanism. For this aim, they introduced the concept of equivalent strain τ , 

which is the (undamaged) energy norm of the strain tensor: 

( )02 : :τ ψ= =ε ε C ε  (2.31) 

Such a scalar positive quantity, is defined in order to identify ‘loading’, ‘unloading’ 

or ‘reloading’ situations for a general 3D stress state. We then characterize the state 

of damage in the material by means of a damage criterion formulated in the strain 

space, with the following functional form 

( ), 0t t t tg r rτ τ= − ≤  (2.32) 

Here, the subscript t refers to value at current time, and tr  is the damage threshold 

at current time t. If 0r  denotes the initial damage threshold before any loading is 

applied, a property characteristic of the material, we must have that 0tr r≥ . 

Equation (2.32) states that damage in the material is initiated when the energy 

norm of the strain tensor tτ  exceeds the initial damage threshold 0r . 

Expression (2.31) is the equation of an ellipsoid. Figures 2.5 and 2.6 show the 

shape of the damage threshold surface in the principal strain space and in the 

principal stress space for a Poisson’s ratio equal to 0.2. 
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Figure 2.5 Damage threshold surface in the principal strain space, with 3 0ε = , according 

to Simó an Ju (1987a). 

  

Figure 2.6 Damage threshold surface in the principal stress space, with 3 0σ = , according 

to Simó an Ju (1987a). 
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2.3.3 Damage Evolution Law 

For the isotropic case, the evolution of the damage variable d is defined by the rate 

equation 

( ),t t td H dµ τ=  (2.33) 

in which 

r µ=  (2.34) 

and  function ( ),t tH dτ  relates its arguments to the damage variable. It is possible 

to consider an explicit damage evolution law in the form 

( )t td G τ=  (2.35) 

Several forms of the damage accumulation function ( )tG τ  are available in 

literature (Mazars, 1982; Oliver et al., 1990; Cervera et al., 1999; Oller, 2001). 

The term µ  is a damage consistency parameter that defines damage 

loading/unloading conditions to the Kuhn-Tucker relations 

( ) ( )0 , 0 , 0t t t tg r g rµ τ µ τ≥ ≤ =  (2.36) 

Conditions (2.36) are standard for problems involving unilateral constraint. If 

( ), 0t tg rτ < , the damage criterion is not satisfied and by condition (2.36)3 0µ = ; 

hence, the damage rule (2.33) implies that 0td =  and no further damage takes 

place. If, on the other hand, 0µ > , that is, further damage (“loading”) is taking 

place, condition (2.36)3 now implies that ( ), 0t tg rτ = . In this event the value of 

µ  is determined by the damage consistency condition, i.e. 
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( ) ( ), , 0t t t t tg r g rτ τ µ τ= = → =  (2.37) 

So that tr  is given by the expression 

( )0max ,maxt tr r τ⎡ ⎤= ⎣ ⎦  (2.38) 

2.3.4 Tangent Constitutive Tensor 

Time differentiation of (2.27) along with the damage rule (2.33) and the damage 

consistency condition (2.37) then yields 

( ) ( ) ( )
2
0
2, 1 : ,t t td d H dψ τ τ∂

= − −
∂

σ ε ε σ
ε

 (2.39) 

since 0ψ= ∂ ∂σ ε . By recalling that 2 2
0ψ= ∂ ∂C ε  we obtain 

( ) ( ) ( ), 1 : ,t t td d H dτ τ= − −σ ε C ε σ  (2.40) 

By taking the time derivative of (2.31), we obtain ( )1 :τ τ= σ ε . Substitution into 

(2.40) then yields 

( ) tan, :d =σ ε C ε  (2.41) 

In which 

( ) ( )tan ,
1 t t

t

H d
d

τ
τ

= − − ⊗C C σ σ  (2.42) 

Note that tanC  is a symmetric and rank-four tensor. The symmetry of the tangent 

stiffness tensor is due to the opportune definition of the equivalent strain τ  given 

by Equation (2.31). 
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2.3.5 Numerical Implementation 

The damage model proposed by Simó and Ju (1987a and 1987b) permits to 

evaluate the damage variable in an explicit way without any iterative procedure. 

The constitutive law integration algorithm is given in the following Table 2.1. 

Table 2.1 Algorithm for the implementation of the damage model of Simó and Ju (1987a 
and 1987b). 

 

1. Compute the displacement increment for step n from the equilibrium 

equation 

n∆u  

2. Compute the strain increment and update the strain 

1n n n−= + ∆ε ε ε  

3. Impose 

1

1

n n

n n

d d
r r

−

−

=
=

 

4. Compute the current equivalent strain 

( )02 : :n n n nτ ψ= =ε ε C ε  

5. Check damage criterion 

( ), 0n n n ng r rτ τ= − ≤  

Yes: elastic behaviour, no further damage. Go to 9. 

No: proceed to 6. 

6. Compute the damage variable 

( )n nd G τ=  

7. Update the damage threshold 

n nr τ=  
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8. Compute the tangent constitutive tensor 

( ) ( )tan ,
1 n n

n n n
n

H d
d

τ
τ

= − − ⊗C C σ σ  

9. Update the stress 

( )1 :n n nd= −σ C ε  

10. End 
 

 

The formulation presented is characterized by a particular versatility, which 

permits to include rate dependent effects and also the plastic strains. For further 

details on the corresponding numerical algorithms, the reader is referred to Simó 

and Ju (1987b), Oller (2001), Luccioni (2003) and Cervera (2003). 

2.3.6 Different Damage Criteria 

Several damage threshold functions different than (2.31) have been proposed in 

literature. The choice is strictly linked to the type of material to be analyzed. 

Mazars (1982) proposed the following form  

:τ = ε ε  (2.43) 

Figures 2.7 and 2.8 show the shape of the damage threshold surface in the principal 

strain space and in the principal stress space for a Poisson’s ratio equal to 0.2. 

This choice leads to a non-symmetric tangent constitutive tensor (Mazars, 1982) 

( ) ( )tan ,
1 t t

t

H d
d

τ
τ

= − − ⊗C C σ ε  (2.44) 

Therefore, it is evident that the symmetry of the tangent constitutive tensor depends 

crucially on the form of the damage threshold function, namely the equivalent 

strain. 
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Figure 2.7 Damage threshold surface in the principal strain space, with 3 0ε = , according 

to Mazars (1982). 

 

Figure 2.8 Damage threshold surface in the principal stress space, with 3 0σ = , according 

to Mazars (1982). 
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The damage criteria described by Equations (2.31) and (2.43) are suitable for 

materials which exhibit similar behaviour in tension and compression, such as 

metals. Nevertheless, the geomaterials are characterized by different damage 

thresholds in tension and compression. In this case, the damage threshold surface 

should account for this phenomenon, like the one proposed by Oliver et al. (1990) 

0
1 2

n
θτ θ ψ−⎛ ⎞= +⎜ ⎟

⎝ ⎠
 (2.45) 

in which n is the ratio between the compression and tension damage thresholds and 

3

1
3

1

i
i

i
i

σ
θ

σ

=

=

=
∑

∑
 (2.46) 

The symbols ⋅  are the Macauley brackets ( ), 0, 0, 0x x if x x if x= ≥ = < . 

Figures 2.9 and 2.10 show the shape of the damage threshold surface in the 

principal strain space and in the principal stress space for a Poisson’s ratio equal to 

0.2. 

Expression (2.45) is inadequate for geomaterials, such as concrete, since the 

strength enhancement observed in the compression–compression domain cannot be 

predicted. 
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Figure 2.9 Damage threshold surface in the principal strain space, with 3 0ε = , according 

to Oliver et al. (1990). 

 

Figure 2.10 Damage threshold surface in the principal stress space, with 3 0σ = , 

according to Oliver et al. (1990). 
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2.4 Unilateral Effect and Damage Models 
The unilateral nature of damage is related to the fact that damage, though 

irreversible,  can be active or not, depending on load conditions. For instance, in 

geomaterials, the stiffness degradation in tension is due to formation and 

propagation of microcracks. In addition, experimental tests emphasize the 

phenomenon of crack closure upon loading reversal, with consequent stiffness 

recovery. 

The mechanical behaviour which can be described by a unilateral damage model is 

represented in Figure 2.11. 

 
Figure 2.11 Unilateral effect under cyclical loading. 

In particular, Figure 2.11 shows the following effects: 
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• The OA, OB, OC and OD branches correspond to elastic behaviour during 

loading or unloading. 

• The stretches of the curve denoted by AB and CD correspond to damage 

growth under loading. 

• The unloading paths after damage onset, i.e. BO and DO, are linear elastic 

according to a damaged stiffness. 

• When the tensile damage process stops because of unloading, and then the 

material is subjected to compression, the stiffness is recovered. This 

situation represents the crack-closure phenomenon. 

Several unilateral damage models are available in the literature (Mazars and 

Pijaudier-Cabot, 1989; Ju, 1989; Chaboche, 1995). In this section we will focus on 

the Tension-Compression Damage Model formulated by Faria and Oliver (1993) 

which has been extensively used (Faria et al. 1998, 2000, 2004; Cervera et al. 

1995, 1996, 1999, 2003). This model is characterized by a split of the stress tensor 

into tensile and compressive components, in order to account for the unilateral 

effect. Moreover, two internal scalar variables are assumed to monitor the local 

damage under tension and compression, respectively. These choices provide a 

simple constitutive model which, nevertheless, is able to reproduce  the overall 

nonlinear behaviour including strain-hardening/softening response, stiffness 

degradation and regradation under multiple stress reversal.  

2.4.1 Tension-Compression Damage Model (Faria et al., 1998) 

This damage model is based on the assumption that a stress split is required to 

capture the unilateral behaviour exhibited by the material when passing from 

tension to compression. The split of the effective stress tensor σ  into tensile and 

compressive components, +σ  and −σ , is performed according to 
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3

1
j j j

j
σ+

=

= ⊗∑σ p p  (2.47) 

− += −σ σ σ  (2.48) 

where jσ  denotes the j-th principal stress value from tensor σ , jp  represents the 

unit vector associated with its respective principal direction and the symbols ⋅  

are the Macaulay brackets. 

For a consistent derivation of a constitutive law, a Helmholtz free energy potential 

with the form 

( ) ( ) ( ) ( ) ( )0 0, , 1 1 0d d d dψ ψ ψ+ − + + − −= − + − ≥ε ε ε  (2.49) 

is postulated, where ( )0ψ + ε  and ( )0ψ − ε  are elastic free energies, defined 

according to 

( ) 1
0

1 1: : : 0
2 2

ψ + + − += = ≥ε σ C σ σ ε  (2.50) 

( ) 1
0

1 1: : : 0
2 2

ψ − − − −= = ≥ε σ C σ σ ε  (2.51) 

The set of internal variables is therefore constituted by the d +  and d −  scalar 

damage variables. These damage variables are directly linked to tensile and 

compressive deteriorations, which are assumed as independent processes. Strain 

tensor ε  is the only free variable admitted. 

According to the Clausius-Duhem inequality, see Equation (2.22), the dissipation 

for an isothermic elasto-damageable process takes the form 

0 0: : 0D d dψψ ψ ψ+ + − −∂⎛ ⎞= − + = − + + + ≥⎜ ⎟∂⎝ ⎠
σ ε σ ε

ε
 (2.52) 
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Applying the Coleman’s method (Coleman and Gurtin, 1967) to guarantee the 

condition of positive dissipation in (2.52), the constitutive equation is obtained as 

( ) ( )0 01 1d dψ ψψ + −
+ −∂ ∂∂

= = − + −
∂ ∂ ∂

σ
ε ε ε

 (2.53) 

Owing to the non-negativeness of ( )0ψ + ε  and ( )0ψ − ε , from equation (2.52) it can 

be inferred that for the dissipation 

0 0 0D d dψ ψ+ + − −= + ≥  (2.54) 

Therefore, to satisfy the Clausius-Duhem inequality it suffices that 

0d ± ≥  (2.55) 

Taking into consideration the equations (2.50) and (2.51), the linear dependency 

between σ  and ε  expressed in (2.28), the stress split postulated in (2.47), and the 

fact that +σ  and −σ  are degree one homogeneous functions of ε , owing to Euler’s 

theorem we obtain 

0ψ +
+∂

=
∂

σ
ε

 (2.56) 

0ψ −
−∂

=
∂

σ
ε

 (2.57) 

Substituting (2.56) and (2.57) in equation (2.53), the final form of the constitutive 

law is obtained: 

( ) ( )1 1d d+ + − −= − + −σ σ σ  (2.58) 

Owing to the scalar form of the damage variables d + , d −  and to the format of the 

presented constitutive law, equation (2.58) points out that a split of tensor σ  into 
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tensile and compressive tensors +σ  and −σ  is implicit in the present formulation, 

that is, 

( )1 d+ + += −σ σ  (2.59) 

( )1 d− − −= −σ σ  (2.60) 

This relevant property emphasises that the adopted split of the effective stress 

tensor leads in fact to a related dual split of the Cauchy stress tensor σ . 

Analogously to the equivalent strain (2.31) postulated by Simó and Ju (1987a), 

Faria et al. (1987) define the dual concept of equivalent stress, which is again a 

strain-based scalar positive norm that allows identifying ‘loading’, ‘unloading’ or 

‘reloading’ situations. Since a clear distinction between tension and compression is 

assumed, in view of the stress split defined in (2.47), a tensile equivalent stress τ +  

and a compressive equivalent stress τ −  are postulated according to the forms 

: :τ + + + += σ Λ σ  (2.61) 

: :τ − − − −= σ Λ σ  (2.62) 

where ±Λ  are non-dimensional fourth-order metric tensors that define the shape of 

the damage bounding surfaces. 

Calling for the effective stress norms defined in (2.61) and (2.62), two damage 

criteria g ±  in terms of the effective stress tensors are introduced 

( ), 0g r rτ τ+ + + + += − ≤  (2.63) 

( ), 0g r rτ τ− − − − −= − ≤  (2.64) 

The damage variables are computed in accordance to (Oliver et al., 1990) 
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( ) ( )
1

q r
d r

r

±
± ±

±= −  (2.65) 

where the positive hardening/softening functions ( )q r±  are related to internal 

variables r± , which in turn obey the kinematics 

r µ± ±=  (2.66) 

with µ ±  being damage multipliers which participate in the Kuhn Tucker 

conditions 

0 0 0g gµ µ± ± ± ±≥ ≤ =  (2.67) 

If 0g ± < , the damage criterion is not satisfied and by condition (2.67)3 0µ ± = , 

hence no further damage takes place. If, on the other hand, 0µ ±> , that is, further 

damage (“loading”) is taking place, condition (2.67)3 now implies that 0g ± = . In 

this event the value of µ  is determined by the damage consistency condition, i.e. 

0g g rµ τ± ± ± ± ±= = → = =  (2.68) 

Integrating for a generic instant t, in view of this equation the following conclusion 

arises 

( )0max ,maxt tr r τ± ± ±⎡ ⎤= ⎣ ⎦  (2.69) 

where 0r
±  are the thresholds that bound the initial linear elastic domains. 

The consistent tangent constitutive tensor is derived by differentiating the 

constitutive law (2.58) with respect to time. After some calculations (see Faria et 

al., 2000) we obtain 



Overview of Continuum Damage Mechanics and Damage Models 

 

63

( ) ( )

( ) ( ) ( )

tan 1 : :

1 : : :

hd

hd

τ

τ

+
+ + + +

+

−
− − − −

−

⎧⎡ ⎤⎪= − − ⊗ +⎨⎢ ⎥
⎪⎣ ⎦⎩

⎫⎡ ⎤ ⎪+ − − ⊗ − ⎬⎢ ⎥
⎪⎣ ⎦ ⎭

C I σ σ Λ Q

I σ σ Λ I Q C

 (2.70) 

where h±  are related to the evolution of the damage variables in the following way 

d h r± ± ±=   (2.71) 

and Q  is a projection operator defined as 

( )
3 3

1 , 1

2 i j
i ii ii ij ij

i i j i j
j i

H
σ σ

σ
σ σ= =

≠

−
= ⊗ + ⊗

−∑ ∑Q P P P P  (2.72) 

where ( )iH σ  denotes the Heaviside function computed for the i-th principal 

stress iσ , ⋅  are the Macaulay brackets and 

( ) ( )1
2ij ji i j j i i jsymm= = ⊗ + ⊗ = ⊗P P p p p p p p  (2.73) 

The operator defined in (2.70) is non symmetric under general conditions, and it 

applies whilst loading conditions are observed. If unloading occurs in tension or in 

compression, the evolution of the corresponding damage variable is null, and 

consequently it suffices to take 0h+ =  or 0h− =  in (2.70). 

2.4.2 Numerical Implementation 

Owing to the strain-driven formalism of the model proposed by Faria et al. (1998), 

and to the fact of ε  being fully determined at the beginning of each step of a 
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displacement-based finite element algorithm, the code implementation is 

straightforward, as illustrated in Table 2.2. 

Table 2.2 Algorithm for the implementation of the Tension Compression damage model of 
Faria et al. (1998). 

 

1. Compute the displacement increment for step n from the equilibrium 

equation 

n∆u  

2. Compute the strain increment and update the strain 

1n n n−= + ∆ε ε ε  

3. Impose 

1

1

n n

n n

d d

r r

± ±
−

± ±
−

=

=
 

4. Calculate effective stress and split 

3

1

:n n

n j j j
j

n n n

σ+

=

− +

=

= ⊗

= −

∑

σ C ε

σ p p

σ σ σ

 

5. Compute the current equivalent strain 

: :n n nτ ± ± ± ±= σ Λ σ  

6. Check damage criterion 

n nrτ ± ±<  

Yes: elastic behaviour, no further damage. Go to 10. 

No: proceed to 7. 

7. Compute the damage variable 
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( )
1 n n

n
n

q r
d

r

± ±
±

±= −  

8. Update the damage threshold 

n nr τ± ±=  

9. Compute the tangent constitutive tensor 

( ) ( )

( ) ( ) ( )

tan 1 : :

1 : : :

n
n n n n n

n

n
n n n n

n

hd

hd

τ

τ

+
+ + + +

+

−
− − − −

−

⎧⎡ ⎤⎪= − − ⊗ +⎨⎢ ⎥
⎪⎣ ⎦⎩

⎫⎡ ⎤ ⎪+ − − ⊗ − ⎬⎢ ⎥
⎪⎣ ⎦ ⎭

C I σ σ Λ Q

I σ σ Λ I Q C

 

10. Update the stress 

( ) ( )1 1n n n n nd d+ + − −= − + −σ σ σ  

11. End 
 

 

As can be seen, the algorithm presents the same structure of the one proposed by 

Simó and Ju (1987b) and described in Table 2.1. In particular, the strain-driven 

formalism, which is consistent with standard displacement-based finite element 

codes, provides high algorithmic efficiency.  

The formulation presented is characterized by a particular versatility, which 

permits to include rate dependent effects (Cervera et al., 1996, 1999 and Faria et 

al., 1998) and also the plastic strains (Faria et al., 2000). For further details on the 

corresponding numerical algorithms, the reader is referred to Faria et al. (1998) and 

Cervera (2003). 
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2.4.3 Comparison with Others Formulations 

The Tension Compression Damage Model detailed in Section 2.4.2 is based on a 

split of the effective stress tensor σ  and on the definition of two scalar variables 

,d d+ − . Such assumptions play an essential role in the definition of the free 

energy potential. Both the split and the structure of the free energy potential 

resemble the features of other models based on Continuum Damage Mechanics. 

For instance, Ortiz (1985), Mazars and Pijaudier-Cabot (1989) proposed a similar 

split, but over the strain tensor. This different approaches lead to different form of 

the free energy potential. For instance, the free energy potential presented in (2.49) 

can be compared to the one of Mazars and Pijaudier-Cabot (1989), whose form is: 

( ) ( )
1 11 1: : : :

2 1 2 1d d
ψ + − + − − −

+ −
= +

− −
σ C σ σ C σ  (2.74) 

An important difference is that in (2.74) the Cauchy stress tensor σ  is considered, 

whilst in (2.49) the effective stress tensor σ  have been adopted. Since σ  is the 

stress tensor to be evaluated, in (2.74) an implicit formulation is therefore involved, 

which obviously requires an iterative procedure to be implemented within the 

constitutive model. In (2.49) the constitutive model is written in terms of the 

effective stress tensor, which is an explicit entity because of its strain driven 

background. Anyway, and as emphasised in (2.59) and (2.60), a split of tensor σ  is 

also implicit in the model of Faria et al. (1998), and equation (2.49) can be 

expressed as 

1 11 1: : : :
2 2

ψ + − − −= +σ C σ σ C σ  (2.75) 
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The difference between the two models is evident comparing equations (2.74) and 

(2.75). This crucial modification does rather distinguish both models and leads to 

significant computational differences. 

La Borderie et al. (1990) carried out a split concerning the Cauchy stress tensor, 

but further complexities are included in the formulation due to the addition of a 

third damage variable d , linked to a coupling term describing the effects of micro-

pores: 

( ) ( ) ( ) ( )2: : :
2 1 2 1 2 1

v tr
E d E d E d

ψ
+ + − −

+ −
= + +

− − −
σ σ σ σ σ σ σ  (2.76) 

In (2.76), v is the Poisson’s coefficient and ( )tr σ  is the trace of tensor σ . 

Therefore an implicit formulation is also inherent to this model, leading to 

computational difficulties in what concerns the stress split and the uniqueness of 

tensor σ  with respect to an arbitrary strain tensor. 

Another important aspect involves the choice of the damage criteria. As seen in 

(2.61) and (2.62), the model of Faria et al. (1998) maps tensors +σ  and −σ  onto a 

1D domain via the scalar norms τ +  and τ − , which are equivalent stresses that 

participate in the definition of the two damage criteria. They have been reported in 

equations (2.63) and (2.64) and they exhibit a format clearly inspired on the 

original one of Simó and Ju (1987a), see Equation (2.31), but extended to account 

for the split of the effective stress tensor. 

Many different norms have been proposed in the literature, associated to several 

damage criteria. A crucial distinction between them concerns the basic entity on 

which they are based, i.e. the strain or the stress tensor. 

Mazars and Pijaudier-Cabot (1989) introduced a damage criterion in which crack 

propagation is assumed to be a consequence of the development of positive 
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straining, and accordingly an equivalent strain of the form (2.43) is adopted. The 

strain-based damage criterion is expressed in the form 

( ), 0g r rτ τ= − ≤ε ε  (2.77) 

The damage variable d is defined as a weighted sum of the tensile damage d +  and 

the compressive damage d −  

d d dα α+ + − −= +  (2.78) 

where coefficients α ±  depend on the tensile and compressive strain tensors ±ε , 

these ones defined according to 

( )

( )

1

1

:

:

d

d

−+ +

−− −

= ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦

ε C σ

ε C σ
 (2.79a, b) 

Obviously an implicit formulation is involved here, since ±ε  depend on the Cauchy 

stress tensor and on the rank-four secant matrix, which in turn depends on the 

weighted damage d. Such entities are not known a priori. 

The previous strain-based damage model was improved by distinguishing the 

tensile damage from the compressive one, as postulated for the energy potential 

described in equation (2.74). This strategy allows accounting for the unilateral 

stiffness recovery effect. However, even with this modification, such version of the 

Mazars’ model differs again from the model by Faria et. al (1998) in the damage 

criteria, which are defined in the following form 

( ), 0g r rτ τ± ± ± ± ±= − ≤σ σ  (2.80) 

with the norms τ ±
σ  coinciding with the damage energy release rates, that is, 
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1: :
2 1d d

ψτ
± − ±

±
± ±

∂
= − =

∂ −
σ

σ C σ
 (2.81) 

Formally, equations (2.80) are analogous to equations (2.63) and (2.64) but with an 

essential difference concerning the definitions of the norms: in equation (2.81)  τ ±
σ  

are clearly dependent on the Cauchy stress tensor and on the damage variables, 

whilst in the model of Faria et. al (1998) τ ±  are strain based entities. Therefore, 

the model of Faria et al. (1998) stands between the strain and the stress appraisals, 

since in norms τ +  and τ −  the effective stress tensors +σ  and −σ  are considered, 

see (2.61) and (2.62). Their strain-based nature permits to avoid iterative 

procedures inside the constitutive model. This strategy definitely improves the 

algorithmic efficiency and decreases the analysis computational cost. 

 

Figure 2.12 Damage threshold surfaces in the principal stress space, with 3 0σ = , from  

Mazars and Pijaudier-Cabot (1989): model with one scalar damage variable (a) and with 
two scalar damage variables (b). 



Chapter 2 

 

70

In addition, the purely strain-based norms are not able to account for strength 

increase in compression-compression states, which is a typical behaviour of 

geomaterials, such as concrete. Such undesirable result, pointed out in Figure 2.12, 

derives from the fact that the favourable effect due to the lateral confinement in 

samples axially compressed is compatible with some lateral expansion, a feature 

that can not be captured by a norm like (2.43), since it predicts τ ε  to increase with 

the lateral expansion. 

2.4.4 Extension to Account for Plastic Strains 

Small modifications need to be introduced to the formulation discussed in Section 

2.4.1 in order to account for the plastic strains. Taking into consideration the 

additive rule e p= +ε ε ε , the following evolution law was proposed by Faria and 

Oliver (1993): 

( ) :
:

p eEH dβ −=
σ ε

ε ε
σ σ

 (2.82) 

where, besides the Young's modulus E, a material parameter 0β ≥  is introduced 

in order to control the rate intensity of plastic deformation. ( )H d −  denotes the 

Heaviside step function, computed for the compressive damage rate. Macaulay 

brackets enable one to set a non-negative value for the product :σ ε , an essential 

thermodynamic requirement for ensuring a non-negative dissipation. 

The basic hypothesis in Equation (2.82) is that plastic strain evolution is forced to 

occur in the same direction of the elastic strain tensor. Also, the model predicts 

only irreversible strains in compression, hence the link established with variable 

d − . Furthermore, connecting damage and plasticity through factor ( )H d − , the 
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evolution of plastic strains is avoided during damage unloading or before the 

compressive damage threshold is attained. 

The kinematics (2.82) contains several simplifications regarding the usual 

procedures in classical plasticity, since concepts like "yield surface" or "normality 

condition" are not clearly visible. However, such format is somehow inspired to 

Plasticity Theory, since eε  may be looked as the direction of plastic flow and the 

remaining terms as the plastic multiplier. This non-standard strategy is due to the 

fact that the constitutive model was mainly formulated for large time consuming 

seismic analysis (Faria et al. 1998), hence high algorithmic efficiency was to be 

ensured. 

Wu et al. (2006) have recently reformulated the aforementioned model in terms of 

an energy release rate-based plastic-damage model consistent with 

thermodynamical principles and in compliance with Plasticity Theory with internal 

variables. The following form is assumed for the Helmholtz free energy 

( ) ( ) ( ), , , , , ,e e e pd d d d dψ ψ ψ+ − + − −= +ε κ ε κ  (2.82) 

where κ  denotes the set of plastic variables, eψ  is the free energy potential 

proposed by Faria et al. (1998), 

( ) ( ) ( )1 1, , 1 : 1 : 0
2 2

e e e ed d d dψ + − + + − −= − + − ≥ε σ ε σ ε  (2.83) 

and pψ  is the plastic free energy potential, defined as  

( ) ( ) 2 1 2 1 1
1, 1 3 3

2 2
p pbd d J I J I I

E
ψ η− − − − + −⎛ ⎞= − + −⎜ ⎟

⎝ ⎠
κ  (2.84) 

where 1I
±  are the first invariants of ±σ ; 2J −  is the second invariant of −s , the 

deviatoric tensorial components of −σ ; pη  is a factor which describes the 
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dilatancy; E is the Young's modulus and b is a material parameter related to the 

ratio between the equibiaxial and the uniaxial compressive strengths. As can be 

seen from (2.84), the minor effect of plastic strains in tension is disregarded in the 

definition of the plastic Helmholtz free energy potential. 

According to the definition in Equation (2.82) and in compliance with the 

Clausius-Duhem inequality, the damage energy release rates conjugated to the 

corresponding damage variables, are expressed as  

Y
d
ψ±

±

∂
= −

∂
 (2.85) 

Comparing (2.85) with (2.54) it is evident that the model proposed by Wu et al. 

assumes damage energy release rates dependent on the total elastoplastic Helmoltz 

free energy potential, and not just on the elastic-damage one. A consequent 

interesting assumption of the authors is to assume thermodynamically consistent 

damage criteria related to Y ± , since these quantities are the conjugated forces to 

the damage variables. Damage criteria based on the elastic-damage Helmoltz free 

energy potentials alone would disregard the contribution of plastic strains and thus 

it would prevent the model from predicting the enhancement of the material 

strength under the biaxial compression. Therefore, the damage criteria result 

( ), 0Y Yg r rτ τ± ± ± ± ±= − ≤  (2.86) 

with the norms Yτ ±  defined as 

( )1

0 1 2

2 : :

3

Y

Y

EY E

Y b I J

τ

τ α

+ + + −

− −

= =

= = +

σ C σ
 (2.87a, b) 

and derived by the yield function proposed by Lubliner et al. (1989). 



Overview of Continuum Damage Mechanics and Damage Models 

 

73

The formulation proposed by Wu et al. (2006) is rigorous and consistent with 

thermodynamics. The damage model enhancements introduced involve a more 

sophisticated numerical algorithm, which includes elastic-predictor, plastic-

corrector and damage-corrector steps.  

Nevertheless, the approach of Faria et al. (1998) which we have discussed in 

Section 2.4.1  will be mainly considered in this study, since we are interested in 

analyses of structures subjected to monotonically increasing load, hence the 

assessment of residual plastic strains can be disregarded. This will lead to a much 

lower computational cost, provided by an explicit strain-driven algorithm. The 

important effect of material strength enhancement in the compression–compression 

domain will be taken into account via an appropriate empirical damage criterion, as 

we will see in Chapter 4.  

2.5 Conclusions 
In this Chapter we have presented a brief overview concerning the general 

framework of Continuum Damage Mechanics. For about 50 years since the 

pioneering work of Kachanov (1958), such theory has become theoretically 

popular in the constitutive modelling of materials. The research has considerably 

advanced and Continuum Damage Mechanics is nowadays a reliable engineering 

tool, with wide application to several fields. Among the reasons for such a large 

acceptance, we point out the theoretical simplicity for describing even complex 

physical phenomena, the versatility of the inherent Theory of Irreversible 

Processes, the thermodynamic consistency and the possibility to combine with 

other theories, such as Plasticity, Fracture Mechanics and Viscoelasticity.  

The basic concepts of damage variable, effective stress and strain-equivalence 

have been discussed, together with the thermodynamical formulation of the theory. 
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Among the different models available in the literature, we have turned our attention 

to the models based on the assumption of one or more scalar damage variables.  

The formulation proposed by Simó and Ju (1987a and 1987b) has been considered. 

In this simple model, the stiffness degradation is described by a single scalar 

variable d which affects in the same measure all the components of the elastic 

constitutive tensor. The model presents a favourable strain-driven format, in 

compliance with the fundamental hypothesis that damage in the material is directly 

linked to the history of total strain. The progressive degradation of mechanical 

properties due to damage is characterized by introducing the simple concept of 

equivalent strain, that is a scalar positive quantity which permits identify ‘loading’, 

‘unloading’ or ‘reloading’ situations for a general 3D stress state. The damage 

criterion is therefore formulated in the strain space. The evolution law of the scalar 

damage variable can be described in terms of an internal thermodynamic variable, 

whose definition is consistent with the Kuhn-Tucker conditions. The formulation 

proposed by Simó and Ju (1987a and 1987b) provides a simple constitutive model 

which, nevertheless, can also account for rate dependent phenomena and plastic 

strains. The favourable strain-driven formalism, which is consistent with standard 

displacement-based finite element codes, provides high algorithmic efficiency. In 

fact, the numerical implementation concerns a closed-form algorithm which 

integrates the stress tensor in time and in an explicit way. 

Then, we have discussed the model proposed by Faria et al. (1998), which 

introduces two scalar damage variables to account for the different behaviour of the 

material in tension and compression. Such model adopts a stress split to capture the 

unilateral behaviour of the material when passing from tension to compression. 

Similar assumptions have been pursued on many damage models, but with many 

differences being encountered on the strategies adopted for the implementation of 

such split, which sometimes is performed over the strain tensor. A comparative 

discussion on the implications of those splits has been conducted, as well as on the 
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different choices for the norms that define the elastic domain in the stress space, 

providing a perspective on the advantages and disadvantages of the various 

approaches. The damage model proposed by Faria et al. (1998) adopts a strain-

driven formalism, according to Simó and Ju (1987a and 1987b), but the stress split 

is performed on the effective elastic stress tensor, which is shown to correspond to 

a split of the Cauchy stress tensor. This strategy improves the algorithmic 

efficiency and circumvents many of the drawbacks present in similar damage 

models, in which iterative procedures are necessary within the constitutive model. 

This is the most valuable feature for a model intended to be used in large scale 

computations, in which high algorithmic efficiency is required. 

Owing to all the aforementioned considerations, the frameworks of the presented 

damage models will be considered in the following Chapters. The necessary 

enhancements and modifications will be integrated in order to provide a reliable 

and efficient computational tool for nonlinear analysis of masonry structures. 
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Chapter 3.                                            

Scalar Damage Model for Orthotropic 

Materials 

In general, a material is anisotropic when its properties at a point vary with 

direction or depend on the orientation of the reference axes. If the properties of the 

material along any direction are the same as those along a symmetric direction with 

respect to a plane, then that plane is defined as a plane of material symmetry. A 

material may have zero, one, two, three, or an infinite number of planes of material 

symmetry through a point. A material without any planes of symmetry is called 

general anisotropic (or aeolotropic). At the other extreme, an isotropic material 

has an infinite number of planes of symmetry.  

Of special relevance to structural materials are the orthotropic materials, i.e., 

materials having at least three mutually perpendicular planes of symmetry. Very 

diffused orthotropic structural materials are, for instance, wood, fibre-reinforced 

composites and masonry.  
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The general concept of “material orthotropic behaviour” is related to several 

aspects and phenomena, hence it can be analyzed in depth. In detail, it is possible 

to distinguish three levels of orthotropy: 

• elastic orthotropy; 

• strength orthotropy (or yield orthotropy, in case of ductile materials); 

• brittleness (or softening) orthotropy. 

All the aforementioned features derive from the composite nature of the orthotropic 

materials. Heterogeneous materials have properties that vary from point to point. 

Consider a cross section of a tree, where each growth ring is different from the rest. 

The lighter rings (summer wood) are softer and the darker rings (winter wood) are 

stiffer. The same general idea can be extended to mortar and bricks of masonry, or 

to matrix and fibres of fibre-reinforced materials. Also the particular geometrical 

arrangement of constituents features prominently. 

The elastic orthotropy of a material is due to the different elastic properties of the 

constituents. Also, the constituents can be arranged in such a way that the 

horizontal and vertical directions are not equivalent, e.g. in case of masonry.  

The strength orthotropy is due to the different strengths of the constituents. For 

instance, in a fibre-reinforced composite the fibres provide strength in longitudinal 

direction, while the matrix in the transversal. Furthermore, the strength value in 

one direction is related to the particular failure mechanism activated by 

constituents along that direction of loading. For instance, a compression applied to 

a wood element causes in the longitudinal direction a complex failure mechanism 

due to buckling of grains, shearing or crushing of early-wood. It is obvious that in 

the transversal direction the mechanism is different. 

Softening orthotropy is commonly attributed to the heterogeneity of the material, 

due to the presence of different phases or material defects, like flaws and voids. At 

the beginning of a displacement-controlled tensile loading, microcracks arise from 
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the discontinuities in the material. Then, they grow during load increasing until 

reaching a peak load value, from which an acceleration of cracks formation occurs 

and the formation of macrocracks starts. The macrocracks are unstable, which 

means that the load has to decrease to avoid an uncontrolled growth. The entity of 

such a phenomenon in an orthotropic material can depend on the direction of 

loading. 

A sound model for orthotropic materials should account for the aforementioned 

features, in order to provide an appropriate representation of the real material 

behaviour. This Chapter deals with a generalized orthotropic model based on the 

classical isotropic damage models. The methodology is based on the concept of 

mapped tensor from the anisotropic real space to the isotropic fictitious one, firstly 

introduced by Betten (1981 and 1988). The proposed theory is a generalization of 

classical  theories and allows one to use the models and algorithms developed for 

isotropic materials. It is based on establishing a one-to-one mapping relationship 

between the behaviour of an anisotropic real material and that of an isotropic 

fictitious one. Therefore, the problem is solved in the isotropic fictitious space and 

the results are transported to the real field. This theory is feasible and effective in 

the finite element analysis of orthotropic materials, such as masonry, fibre-

reinforced composites and wood.  

3.1 Orthotropic Elastic Behaviour 
An anisotropic material is one which exhibits properties with different values when 

measured in different directions. Modelling the behaviour of an elastic anisotropic 

solid does not present big difficulties, since it is possible to use the general 

elasticity theory (e.g. Love, 1944; Lekhnitskii, 1963; Malvern, 1969). 

This section is a brief overview of the fundamentals of anisotropic elasticity, with a 

particular attention paid to the special case of plane stress orthotropy. The basic 
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concepts exposed will be useful for formulating the model proposed in the present 

Chapter. First, a review of the stress-strain equations is presented. Then, the 

assumption of plane stress is introduced to obtain the constitutive equations for an 

in-plane loaded structural element, such as a masonry panel. Finally, a review of 

the coordinate transformations is developed. 

3.1.1 Coordinate Systems 

There are two coordinate systems that are used in the analyses of the orthotropic 

materials. The material coordinate system (denoted by axes 1 and 2, in the two-

dimensional case) is a cartesian coordinate system coincident with the principal 

axes of orthotropy of the material (see Section 3.1.2). In case of masonry, for 

instance, axes 1 and 2 have directions aligned with the bed joints and the head 

joints, respectively. In case of composite materials, on the other hand, the 1-axis is 

aligned with the fibre direction while the 2-axis is on the surface of the composite 

shell and it is perpendicular to the 1-axis. 

 
Figure 3.1 Orthotropic material with material axes of orthotropy 1 and 2. 
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The orientation of the global coordinate system (denoted by axes x and y in the 

two-dimensional case) is chosen for convenience during the structural analysis. 

Therefore, it may be aligned with the boundary of the structural element analyzed, 

or with the directions of the mayor loads, etc. As a rule we assume that the axes x 

and y have directions coincident with the horizontal and vertical ones, respectively. 

In Figure 3.1 the material coordinate system and the global coordinate system are 

shown, both with the angle θ  between them. 

3.1.2 Stress-Strain Equations 

For a completely anisotropic material, 36 elastic constants are necessary to define 

the three-dimensional stress-strain relationship. The independent constants are 21 

because of the symmetry of the constitutive tensor.  

If certain symmetries exist in the material, the number of coefficients can be further 

reduced. When the elastic constants at a point have the same values for every pair 

of coordinate systems which are mirror images of each other in a certain plane, that 

plane is called a plane of symmetry (Malvern, 1969). If through each point of a 

body there pass three mutually perpendicular planes of elastic symmetry, the body 

is called orthotropic. The intersection of these planes are known as the principal 

axes of orthotropy. In the particular case of orthotropy, the number of elastic 

constants is reduced to 12, viz. 3 Young’s moduli 1 2 3, ,E E E , 6 Poisson’s ratios 

12 13 21 23 31 32, , , , ,v v v v v v  and 3 shear moduli 12 13 23, ,G G G : 
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 (3.1) 

where 21 2 12 1 31 3 13 1 32 3 23 2, ,v E v E v E v E v E v E= = = . Therefore, the number 

of independent constants is reduced to 9. Note that, in orthotropic materials, there 

is no interaction between the normal stresses 1 2 3, ,σ σ σ  and the shear strains 

12 13 23, ,ε ε ε . 

Since the present work concerns the two-dimensional analysis of in-plane loaded 

masonry structural elements, the state of plane stress ( )3 0σ =  is considered. 

Assuming the following Voigt forms for the in-plane stress and strain vectors, 

making reference to the material axes (Figure 3.1), 

{ } { }1 2 12, , Tσ σ σ τ′ =  (3.2) 

{ } { }1 2 12, , Tε ε ε γ′ =  (3.3) 

for an orthotropic body with orthotropic material directions 1 and 2, the 

compliance equations are 
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 (3.4) 

The compliance equations can be written in compact form as 

:′ ′ ′=ε S σ  (3.5) 

The inversion of the compliance tensor ′S  leads to the constitutive equations 
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1 1 21 1 1

2 12 2 2 2
12 21
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0
1 0

1
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E v E
v E E
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σ ε
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 (3.6) 

or, in compact form, to 

 :′ ′ ′=σ C ε  (3.7) 

where ′C  is the constitutive tensor defined in the material coordinates system. 

Therefore, 5 elastic constants are necessary to describe the elastic behaviour of an 

orthotropic material in two-dimensional problems: the two Young’s moduli E1, E2, 

the two Poisson’s ratios v12 , v21 and the shear modulus G12.  From the symmetry of 

the stiffness matrix it derives that  

12 2 21 1v E v E=  (3.8) 

Although the shear modulus G12 is an independent constant and is in no way 

related to the other elastic constants, Lekhnitskii (1963) proposed an approximate 

formula for practical purposes, obtained from forty five rocks: 
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( )
1 2

12
1 21 21

E EG
E v E+ +

 (3.9) 

Finally, for sake of completeness we remark that in the state of plane stress, the 

only strains and stresses that have to be considered in finite element calculations 

are the three components in the 1-2 plane, according to (3.2) and (3.3). In fact, by 

definition, all other components of stress are zero and therefore give no 

contribution to internal work (Zienkiewicz and Taylor, 2000; Oñate, 1995).  

3.1.3 Coordinate Transformations 

x

y

1, x'2, y'

θ

 
Figure 3.2 Coordinate transformations. 

With reference to Figure 3.2, the position of a point with coordinates x, y  in the 

global coordinates system can be described in the material coordinates system as  

cos sin
sin cos

x x
y y

θ θ
θ θ

′⎧ ⎫ ⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥′ −⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (3.10) 

The angle θ  is measured counter clockwise from the x-axis to the 1-axis. The 

inverse relationship is 
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cos sin
sin cos

x x
y y

θ θ
θ θ
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=⎨ ⎬ ⎨ ⎬⎢ ⎥ ′⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (3.11) 

In compact form, (3.10) and (3.11) take the form 

′ = ⋅x R x  (3.12) 

T ′= ⋅x R x  (3.13) 

since tensor R is orthogonal. 

In two dimensions, the displacement of a point is described by two components u 

and v. The in-plane components of strain in global coordinates are given by 

x

y

xy

u
x
v
y
u v
y x

ε

ε

γ

∂
=

∂
∂

=
∂
∂ ∂

= +
∂ ∂

  (3.14) 

Whereas the components of strain in material coordinates are given by 

1

2

12

u
x
v
y
u v
y x

ε

ε

γ

′∂
=

′∂
′∂

=
′∂
′ ′∂ ∂

= +
′ ′∂ ∂

  (3.15) 

The relationship between global and material strains is easily obtainable from 

(3.10), (3.11), (3.14) and (3.15): 
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 (3.16) 

The inverse relationship is 
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 (3.17) 

Stresses are transformed in a similar way. The transformation from material to 

global axes is done using the following expression: 

2 2
1

2 2
2

2 2
12

cos sin 2cos sin
sin cos 2cos sin

cos sin cos sin cos sin

x

y

xy

σ θ θ θ θ σ
σ θ θ θ θ σ
τ θ θ θ θ θ θ τ

⎡ ⎤⎧ ⎫ − ⎧ ⎫
⎢ ⎥⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥− − ⎩ ⎭⎩ ⎭ ⎣ ⎦

 (3.18) 

The inverse relationship is 
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 (3.19) 

The expressions (3.16), (3.17), (3.18) and (3.19) can be written in Voigt notation as 

:T ′=ε T ε  (3.20) 

:T−′ =ε T ε  (3.21) 

1 :− ′=σ T σ  (3.22) 

:′ =σ T σ  (3.23) 

with  
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Note that the use of 1/2 in front of the shear strains but not in front of the shear 

stresses. This is because the shear strain xyγ  is not a tensorial component, but 

2xy xyε γ=  is. Since only tensor components can be rotated with the rotation 

matrix T, the tensorial shear strain 2xy xyε γ=  is used rather than the engineering 

shear strain xyγ  but only for coordinate transformations. The engineering shear 

strain will be used afterwards because of the convenience of writing the shear 

version of Hooke’s law as Gτ γ= .  

Finally, it is possible to obtain the transformations of the constitutive equations. 

The stress-strain equations (3.6) are limited to the case of having the stress and 

strains oriented along the material coordinates. To simplify the analysis as much as 

possible, it is convenient to relate stress and strains in global coordinates directly. 

This can be done by using the relationship 

:=σ C ε  (3.27) 
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In which C is the constitutive tensor defined in the global coordinate system in the 

form 

1 T− −′= ⋅ ⋅C T C T  (3.28) 

3.2 Formulation of the Model 
The need to model the behaviour of a real orthotropic material requires the 

formulation of adequate constitutive laws, which can be based on such theories as 

elastoplasticity or damage. In particular, the choice of a suitable orthotropic 

criterion is a complex task. Several failure functions have been proposed but in 

many cases they do not describe the true behaviour of the material. 

One of the more popular attempts to formulate orthotropic yield functions in the 

field of plasticity theory is due to Hill (1948, 1950), who succeeded in extending 

the von Mises (1928) isotropic model to the orthotropic case. The main limitation 

of this theory is the impossibility of modelling materials that present a behaviour 

which not only depends on the second invariant of the stress tensor, i.e. the case of 

geomaterials or composite materials. On the other hand, Hoffman (1967) and Tsai-

Wu (1971) orthotropic yield criteria are useful tools for the failure prediction of 

composite materials. 

For the description of incompressible plastic anisotropy, not only yield functions 

(Dutko et al., 1993) and phenomenological plastic potentials (Życzkowski, 2001) 

have been proposed over the years. Other formulation strategies have been 

developed, related to general transformations based on theory of tensor 

representation (Wang, 1970 and Liu, 1982). A particular case of this general 

theory, which is based on linearly transformed stress components, has received 

more attention. This special case is of practical importance because convex 

formulations can be easily developed and, thus, stability in numerical simulations 

is ensured. Linear transformations on the stress tensor were first introduced by 
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Sobotka (1969) and Boehler and Sawczuck (1970). For plane stress and orthotropic 

material symmetry, Barlat and Lian (1989) combined the principal values of these 

transformed stress tensors with an isotropic yield function. Barlat et al. (1991) 

applied this method to a full stress state and Karafillis and Boyce (1993) 

generalized it as the so-called isotropic plasticity equivalent (IPE) theory with a 

more general yield function and a linear transformation that can accommodate 

other material symmetries. 

The aforementioned approaches, principally addressed to Plasticity, have not been 

applied yet to damage constitutive laws. In fact, within the theoretical framework 

of Continuum Damage Mechanics, isotropic models and criteria are usually 

preferred for practical purposes, especially  in case of finite element analyses.  

In this section, a model for the finite element analysis, based on Continuum 

Damage Mechanics, is presented. Orthotropic behaviour is simulated using the 

concept of mapped stress tensor, firstly introduced by Betten (1981 and 1988) and 

refined by Oller et al. (1995, 1996) afterwards. The idea to formulate the behaviour 

of an anisotropic material by means of an equivalent isotropic solid is achieved by 

means of an appropriate definition of a transformation tensor.   

The method consists in studying the behaviour of a real solid by solving the 

problem in a fictitious isotropic space (mapped fictitious isotropic problem). It is 

based on assuming a real space, in which the orthotropic criterion is defined, and a 

corresponding fictitious space, in which the isotropic criterion is defined. The two 

stress spaces are related by means of a linear transformation, defined by a 

symmetric and rank-four transformation tensor, which allows a one-to-one 

mapping of an image of the stress (or strain) tensor defined in one space into the 

other and vice versa. This working strategy allows one to take advantage of the 

computational benefits of an isotropic model, while all the information concerning 

the real orthotropic properties of the material is included in the transformation 

tensor. The parameters that define the transformation tensor can be calibrated from 
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adequate experimental tests. The constitutive model in the fictitious isotropic space 

is defined by the same algorithms developed for standard isotropic materials. 

Therefore, the implementation of this theory into the framework of the standard 

finite element codes is straightforward. 

The basic ingredients of the stress and strain spaces transformations are presented 

in the following, both with the description of the constitutive relationships adopted. 

The way the strength and softening orthotropies are modelled is also discussed. 

The aspects of implementation into a finite element code are detailed next. 

3.2.1 Definition of the Space Transformation Tensors 

The present methodology is based on assuming a real anisotropic space of stresses 

σ  and a conjugate space of strains ε , such that each of these spaces has its 

respective image in a fictitious isotropic space of stresses *σ  and strains *ε , 

respectively (see Figure 3.3). The relationship between these spaces is defined by 

* :σ=σ A σ  (3.29) 

* :ε=ε A ε  (3.30) 

Where σA  and εA  are the transformation tensors, for stresses and strains, 

respectively, relating the fictitious and real spaces. These rank four-tensors embody 

the natural anisotropic properties of the material. 

The assumption of a strain space transformation tensor (Oller et al. 1995, 1996), in 

addition to the definition of the conventional stress space transformation tensor, 

allows for no-proportionality between the strength and the elastic modulus for each 

material direction. For this reason, the adopted methodology has been also termed 

“isotropic mapped model for non-proportional materials” (Oller et al. 1995). This 

feature of the method avoids the basic assumption of elastic strains uniqueness for 

both the real and fictitious spaces made in previous works (Oller et al. 1993a and 
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1993b). In fact, that situation would introduce a limitation in the anisotropic 

mapped theory, because it would result that 11 1 22 22 12 12f E f E f G= = . In the 

present work, the generalization of such basic theory is introduced, by providing 

the tensor transformations of both real stresses and strains. 

 
Figure 3.3 Relationship between the fictitious isotropic and the real anisotropic spaces 

(from Oller et al., 2003). 

For the definition of the shape and properties of the tensorial operator σA  it is 

necessary to take into account the symmetry of the Cauchy stress tensor in the 

anisotropic and isotropic spaces, therefore the four-rank transformation tensor must 

satisfy the following symmetries: 

ijkl jikl jilkA A Aσ σ σ= =  (3.31) 
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The symmetry of the four-rank transformation tensor is also necessary: 

ijkl klijA Aσ σ=  (3.32) 

In this work, the material is assumed initially orthotropic. There are different 

alternatives to define the tensor σA  for this case. In this context, a diagonal fourth-

order tensor is assumed, according to Betten (1981), Oller et al. (1995, 1996) and 

Car et al. (2000, 2001). The stress transformation tensor corresponds to a 6×6 

matrix for the 3-dimensional case, according to equation (3.1). In the particular 

case of in-plane stress conditions, that will be considered in this work, the 

transformation tensor reduces to a 3×3 matrix. The components of the tensor are 

the ratios of the material strengths in the fictitious isotropic space ( *
ijf ) and in the 

real orthotropic space ( ijf ), all referred to the material axes directions (axes 1 and 

2, see Figure 3.1). By assuming the Voigt forms (3.2) and (3.3) for the stress and 

strain vectors, the stress space transformation tensor in the material coordinate 

system takes the form 
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22

22

12

12

0 0

0 0

0 0

f
f

f
f

f
f

σ

∗

∗

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥′ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  (3.33) 

The orthotropic strengths ijf  can be obtained from simple experimental tests, 

shown in Figure 3.4. Since we assume an isotropic criterion in the isotropic space, 

it results that * * *
11 22f f f= = . The choice of *f  is arbitrary. The expression of *

12f  

depends on the particular isotropic criterion adopted. 



Scalar Damage Model for Orthotropic Materials 

 

93

 
Figure 3.4 Experimental tests required for the definition of the stress transformation tensor 

components: uniaxial test in direction 1 (a) and direction 2 (b), pure shear test (c). 

The stress tensor transformation is sufficient for approximating an explicit isotropic 

criterion to any implicit orthotropic desired. In fact, carrying out the transformation 

of stresses is equivalent to mapping the fictitious isotropic criterion desired. The 

space mapping allows one to represent appropriately even high anisotropic 

surfaces, such as in the case of fibre-reinforced composites (see Car et al. 2000 and 

2001). The transformation leads to changes in the shape of the failure surface. This 

can be observed in Figure 3.5 for different criteria.  

This procedure is advantageous since implicitly convex orthotropic functions are 

obtained from well-established isotropic ones, such as those of Tresca, von Mises, 

Mohr–Coulomb, Drucker–Prager, etc. (for more information, see Lubliner, 1990 

and Maugin, 1992). Any known isotropic criterion can be mapped, as well as 

experimental set of data obtained from laboratory tests.  
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Figure 3.5 Changes in the shape of several isotropic criteria (from Oller et al., 1995). 

Although with definition (3.33) it is possible to find adequate orthotropic criteria, it 

could be difficult to adjust them ‘‘exactly’’ to represent the desired material 

behaviour. In order to circumvent this limitation, a more refined form of the stress 

transformation tensor was proposed by Oller et al. (2003). The authors provided an 

implicit general definition of an orthotropic yield criterion by using an isotropic 

formulation in a fictitious space and then transforming it into an implicit 

orthotropic formulation in a real space. This means that the mathematical form of 

the orthotropic criterion need not be expressed explicitly; it is sufficient to express 
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its “isotropic form” explicitly and to assume the existence of a numerical 

transformation that allows a passage from an isotropic criterion to an implicit 

orthotropic one. Such numerical transformation, defined by the stress 

transformation tensor, must be properly defined in order to achieve the desired 

yield function adjustment. Oller et al. multiplied the transformation tensor defined 

in (3.33) by a “shape adjustment tensor”, whose purpose is to adjust correctly the 

isotropic criterion to the desired orthotropic one. It is evident that the shape 

adjustment tensor must be derived by means of an iterative procedure. In practice, 

the non-linear solution of a quadratic system by the Newton-Rapson method is 

required. The governing equation is the equality of the fictitious isotropic criterion 

to the real implicit orthotropic one, in which transformation (3.29) has been 

introduced. The nonlinear solution of this quadratic system of equations is not an 

easy task and is quite wasteful, since σA  depends on the stress state at the point at 

each instant of the mechanical process. Nevertheless, Oller et al. (2003) obtained 

with a considerable level of accuracy the Hill (1948, 1950) orthotropic criterion, by 

mapping appropriately the von Mises (1928) isotropic criterion. In the same way, 

the authors derived the Hoffman (1967) and Tsai-Wu (1971) orthotropic criteria 

from the adjustment of the Drucker-Prager (1952) one. The results obtained by 

Oller et al. are definitely very accurate, see Figure 3.6. However, the standard form 

of the stress transformation tensor will be considered in the present study, in order 

to disregard more complex assumptions and provide a low computational cost tool. 
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Figure 3.6 Representations of the adjustments of isotropic criteria to orthotropic ones: 

Mises to Hill (a), Drucker-Prager to Hoffman (b) and Tsai-Wu (c), from Oller et al., 2003. 

The stress space transformation tensor in the global coordinate system (axes x and 

y, see Figure 3.1) is readily obtainable from the definition (3.33) of the tensor 

components in the local principal axes of the orthotropic material. In fact, the 

stresses transformation with reference to the material local axes 

( ) ( ) ( )* :σ′ ′ ′=σ A σ  (3.34) 
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complemented with (3.23) as follows, 

( )
( )1

: :

:

σ

σ

∗

∗ −

′= ⋅

′= ⋅ ⋅

T σ A T σ

σ T A T σ
 (3.35a, b) 

permits to obtain 

( )1σ σ− ′= ⋅ ⋅A T A T  (3.36) 

The strain space transformation tensor εA defined in (3.30) can be derived from 

(3.29) and the constitutive equation as follows (Oller et al. 1995, 1996): 

( )
( )

1

1

: :

:

σ ε

σ ε

σ ε

∗

− ∗

− ∗

= ⋅

= ⋅ ⋅

= ⋅ ⋅

A σ C A ε

σ A C A ε

C A C A

 (3.37a, b, c) 

and hence 

( ) 1ε σ−∗= ⋅ ⋅A C A C  (3.38) 

where C and ∗C  are the constitutive tensors in the real and fictitious space, 

respectively. Equation (3.38) allows us to derive the relationship between the 

constitutive tensors in the real and fictitious spaces. This is: 

 ( ) ( ) ( )1 1 1ε ε σ ε− − −∗= ⋅ = ⋅ ⋅ ⋅I A A C A C A  (3.39) 

Or the inverse relation: 

( ) 1σ ε− ∗= ⋅ ⋅C A C A  (3.40) 
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Note that in the expressions (3.38) and (3.40) the constitutive tensor C is expressed 

in the global reference system. This means that prior to the derivation of the space 

transformation tensors, the transformation (3.27) is required. 

3.3 Underlying Fictitious Damage Model 
In this section, a detailed description of the damage model adopted in the fictitious 

space is provided. The present work makes use of an isotropic continuum damage 

model with only one scalar internal variable to monitor the local damage (Simó and 

Ju, 1987; Cervera, 2003). This choice provides a simple constitutive model which, 

nevertheless, is able to reproduce the overall nonlinear behaviour including 

stiffness degradation and strain-hardening/softening response. 

3.3.1 Constitutive Equations 

The constitutive model considered in the fictitious space is based on the concept of 

effective stress tensor, introduced in connection with the hypothesis of strain 

equivalence (Lamaitre and Chaboche, 1978). The effective stresses ∗σ  can be 

computed in terms of the total strain tensor, as 

:∗ ∗ ∗=σ C ε  (3.41) 

where ∗C  is the usual (fourth-order) isotropic linear-elastic constitutive tensor. The 

constitutive equation for the isotropic damage model is defined as 

( )1 d∗ ∗= −σ σ  (3.42) 

where we have introduced one internal variable, d, the damage index, whose 

definition and evolution is given below.  

In compliance with the formulation postulated by Simó and Ju (1987), a scalar 

positive quantity, termed as equivalent stress τ ∗ , is defined in order to identify 
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‘loading’, ‘unloading’ or ‘reloading’ situations for a general 3D stress state. The 

equivalent stress can assume several forms, depending on the damage threshold 

criterion assumed. A typical expression considered is (Cervera and 

Chiumenti, 2006a)  

1 2
: :τ ∗ ∗ ∗ ∗⎡ ⎤= ⎣ ⎦σ Λ σ  (3.43) 

Note that the damage criterion is defined in the effective stress space. The shape of 

the corresponding damage threshold surface in this space depends on the particular 

fourth-order tensor ∗Λ  assumed.  

With the definition (3.43) of the equivalent effective stress, the damage criterion, 
∗Φ , is introduced as 

( ), 0r rτ τ∗ ∗ ∗ ∗ ∗Φ = − ≤  (3.44) 

Variable r∗  is an internal stress-like variable representing the current damage 

threshold, as its value controls the size of the (monotonically) expanding damage 

surface. The initial value of the damage threshold is ( )0 0r r f∗ ∗ ∗= , where f ∗  is the 

initial uniaxial damage stress. 

The expansion of the damage bounding surface for loading, unloading and 

reloading conditions is controlled by the Kuhn–Tucker relations and the damage 

consistency condition, which are 

( ) ( )
( ) ( )

0 , 0 , 0,

, 0 , 0

r r r r

if r then r r

τ τ

τ τ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

≥ Φ ≤ Φ =

Φ = Φ =
 (3.45a, b) 

leading, in view of (3.44), to the loading condition 

rτ ∗ ∗=  (3.46) 
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This, in turn, leads to the explicit definition of the current values of the internal 

variable r∗  in the form 

( )0max ,maxr r τ∗ ∗ ∗⎡ ⎤= ⎣ ⎦  (3.47) 

Note that Eq. (3.47) allows one to compute the current values for r∗  in terms of 

the current value of τ ∗ , which depends explicitly on the current total strains. 

The constitutive equation for the real orthotropic material is obtained by writing the 

dissipation occurring in an isothermic elasto-damageable process in the real 

anisotropic space. The dissipation expression is obtained taking into account the 

first and second principles of thermodynamics. 

We assume a free energy potential of the following form 

( ) ( ) ( )0
1, 1 1 : : 0
2

r d r d rψ ψ ⎡ ⎤= − = − ≥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦
ε ε C ε  (3.48) 

where 0ψ  is the elastic free energy potential. All the variables in (3.48) are 

amenable to the classical thermodynamic representation (Lemaitre and Chaboche, 

1985), i.e. the free variable ε , the internal variable r and the dependent 

variable d(r). 

The second principle of thermodynamics requires the mechanical dissipation to be  

non-negative. Hence, according to the Clausius-Duhem inequality, the dissipation 

takes the form:  

0: : 0D dψψ ψ∂⎛ ⎞= − + = − + + ≥⎜ ⎟∂⎝ ⎠
σ ε σ ε

ε
 (3.49) 

Applying the Coleman’s method (Coleman and Gurtin, 1967) to guarantee the 

condition of positive dissipation in (3.49), the constitutive equation for the 

anisotropic material is obtained finally as 
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( )1 :d rψ∂
= = −⎡ ⎤⎣ ⎦∂

σ C ε
ε

 (3.50) 

The expression (3.48) of the free energy potential can be rewritten by taking into 

account the relationship (3.40) between the constitutive tensors in the real and 

fictitious spaces. This gives 

( ) ( ) ( ) 11, 1 : :
2

r d r σ εψ
− ∗⎡ ⎤= − ⋅ ⋅⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

ε ε A C A ε  (3.51) 

The constitutive equation in the real anisotropic space, defined in terms of stress 

field in the fictitious isotropic space, is obtained by substituting (3.51) into (3.50), 

i.e., 

( ) ( )

( ) ( ) ( ) ( )
( )

1

1 1

1

1 :

1 : 1 :

:

d r

d r d r

σ ε

σ σ

σ

ψ − ∗

− −∗ ∗ ∗

− ∗

∂ ⎡ ⎤= = − ⋅ ⋅ =⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦∂
⎡ ⎤= − ⋅ = − =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

=

σ A C A ε
ε

A C ε A σ

A σ

 (3.52) 

Eq. (3.52) confirms the assumption of space transformations made in (3.29) and 

(3.30). 

Finally, it is important to notice that (3.49) and (3.50) lead to 

0 0D dψ= ≥  (3.53) 

i.e. the scalar damage variable increases monotonically. 
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3.3.2 Evolution of the Damage Variable. Inelastic Behaviour 

The damage index ( )d d r∗=  is explicitly defined in terms of the corresponding 

current value of the damage threshold, so that it is a monotonically increasing 

function such that ( )0 1d r∗≤ ≤ . 

 
Figure 3.7 Uniaxial stress-strain curve. Parabolic hardening and exponential softening. 

Let us consider the uniaxial stress-strain curve reported in Figure 3.7. Let us 

introduce the value 0r
∗ ,  establishing the size of the bounding damage surface for 

the onset of damage, according to (3.44). Then, we assume the value er
∗  

corresponding to the peak value of the uniaxial strength ef
∗  and the value p er r∗ ∗≥  

corresponding to the size of the bounding damage surface at peak strength. These 

values define the hardening part of the uniaxial stress-strain curve for the material. 
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Note that 0p er r r∗ ∗ ∗≥ ≥ . For the limit case 0p er r r∗ ∗ ∗= = , the material would exhibit 

softening immediately after the onset of damage, which is an option often used for 

tension strain softening. 

In this work, we will use the following functions proposed by Cervera et al. (1999) 

and Cervera (2003). For parabolic hardening we assume 

( )
2

0
1
1

e
d p

p

r rd r A r r r
r r

∗ ∗
∗ ∗ ∗ ∗

∗ ∗

⎛ ⎞−
= ≤ ≤⎜ ⎟⎜ ⎟−⎝ ⎠

 (3.54) 

while for exponential softening 

( ) 1 exp 2 pe
d p

e

r rrd r H r r
r r

∗ ∗∗
∗ ∗ ∗

∗ ∗

⎧ ⎫⎛ ⎞−⎪ ⎪= − ≥⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
 (3.55) 

where constants dA , 0dH ≥  are defined as 

p e
d

e

r r
A

r

∗ ∗

∗

−
=   (3.56) 

1 2

d ch
d

p
d ch d d ch

e

H lH
r

H l A H l
r

∗

∗

=
− −

  (3.57) 

where  

( ) ( )3 2
3 2 6 1d d p p e pA A r r r r∗ ∗ ∗ ∗⎡ ⎤ ⎡ ⎤= − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3.58) 

( )2
1

2d
f

f
H

E G L

∗

∗ ∗= =   (3.59) 
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The term dH  depends only on material properties in the fictitious space, i.e. the 

uniaxial damage threshold f ∗ , the Young’s modulus E∗  and the mode I fracture 

energy per unit area fG∗ . It measures the brittleness of the material and it can be 

also termed 1 L , since the unit of the dH  parameter is the inverse of a length. 

In Eq. (3.57), the characteristic length chl  of the element has been introduced to 

ensure mesh-size objective results, according to Bazant and Oh (1983). The 

element characteristic length is the computational width of the fracture zone (Rots 

et al. 1985, Rots and Blaauwendraad 1989, Oliver 1989); it is computed depending 

on the geometric dimensions of the element. The specific dissipated energy D ∗  is 

then scaled for each element so that the equation 

fchD l G∗ ∗=  (3.60) 

holds. This makes the softening modulus dH , which defines the softening 

response, dependent on the element size. It also sets a maximum size for the 

elements that can be used in the analysis.  

The expression (3.57) has been obtained by calculating the specific energy 

dissipated in an ideal uniaxial experiment in which the strain increases 

monotonically and quasi-statically from an initial unstressed state to another in 

which full degradation takes place. In fact, from Equations (3.49), (3.48), (3.41), 

(3.43), (3.47), (3.54) and (3.55) it derives that 
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( )

( ) ( )

0

0

0

0
0

2

2 2

1
2

1 1
2 2

p

p

t

t
t

t

r

r r

r r r

r r r r

D D dt

d dt

r d dr
E

r d dr r d dr
E E
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∗

∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

=∞
∗ ∗

=

=∞
∗

=

=∞
∗ ∗

∗
=

= =∞
∗ ∗ ∗ ∗

∗ ∗
= =

= =

=

′=

′ ′= +

∫

∫

∫

∫ ∫

 (3.61a, b, c, d) 

where the rate of damage has been expressed as d d r∗′= . Using Equations (3.54) 

and (3.55), integrating and equating 
f chD G l∗ ∗= , we finally obtain expression 

(3.57). For further details on calculations, the reader is referred to Cervera (2003). 

Note that for the limit case 0p er r r∗ ∗ ∗= =  Equation (3.56) and (3.58) yield 

0d dA A= =  and then Equation (3.57) reduces to 

1
d ch

d
d ch

H lH
H l

=
−

 (3.62) 

a well known result for tension strain exponential softening (see Cervera and 

Chiumenti, 2006a). 

On the basis of the aforementioned considerations, it is evident that the specific 

softening parameter dH  measures the brittleness of the material, while the 

elemental softening parameter dH  measures the brittleness of the finite element. 
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3.3.3 Tangent and Secant Operators 

Differentiating (3.41) and (3.42) with respect to time, we obtain in the fictitious 

space 

:∗ ∗ ∗=σ C ε  (3.63) 

( )1 d d∗ ∗ ∗= − −σ σ σ  (3.64) 

On the other hand, the rate of the damage index can be expressed as 

d d r∗′=  (3.65) 

where the first derivative term can be obtained from (3.54) or (3.55). On loading, 

consistency requires (3.46), and therefore, differentiating (3.43), we can write 

1 : :r τ
τ

∗ ∗ ∗ ∗ ∗
∗

⎡ ⎤= = ⎣ ⎦σ Λ σ  (3.66) 

On unloading, it is 0r∗ = . Substituting (3.66) in (3.65), and the result in (3.64), 

we finally obtain the desired expression 

tan :∗ ∗ ∗=σ C ε  (3.67) 

With 

( ) ( )tan 1 : :d h∗ ∗ ∗ ∗ ∗ ∗⎡ ⎤= − − ⊗⎣ ⎦C I σ σ Λ C  (3.68) 

where the coefficient h∗  is 

0

d for loading
h

for unloading
τ∗ ∗

′⎧
⎪= ⎨
⎪⎩

 (3.69) 
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Note that the tangent tensor is, in general, nonsymmetric. This is often 

inconvenient for practical finite element applications, as it results in a 

nonsymmetric tangent stiffness matrix. In those cases, and at the cost of the loss of 

rate of convergence, the tangent matrix can be replaced with the secant matrix, 

computed with the secant constitutive tensor 

( )sec 1 d∗ ∗= −C C  (3.70) 

which is much simpler to compute and always symmetric. 

Tangent and secant constitutive operators for the real orthotropic material are 

obtained in compliance with (3.40). 

3.4 Orthotropic Softening Behaviour 
It is important to note that in (3.42) and (3.54)-(3.59) there are terms without the 

apex ( ∗ ) we have assigned to variables related to the fictitious isotropic space. In 

fact, such variables as d, dH  and dH  can be assumed equal in both the spaces, if 

we want to model an isotropic softening behaviour of the material. In fact, in this 

particular case it results that 

( ) ( ) ( )22 2
11 22

1 ,1 2 ,2 1 2

1 1 1
2 2 2f f f

ff f
E G E G E G L L L

∗

∗ ∗ ∗= = ⇒ = =   (3.71) 

This assumption leads to the same elemental softening parameters in the fictitious 

and real spaces.  

As discussed before, the choices of * * *, , ff E G  are arbitrary. In general, it is 

advisable to assume * * *
11 1 ,1, , f ff f E E G G= = = . Such an assumption permits 
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also to obtain ( )11 1σ ′ =A  and deals to scale the isotropic damage threshold surface 

only along the 2-axis, see Figures 3.5 and 3.6. Moreover, from (3.71) it follows that 

( )2
22 11

,2 ,1
2 1

f f

f f
G G

E E
=   (3.72) 

i.e., a restriction on the fracture energy values, in order to ensure isotropic 

softening.  

Nevertheless, the proposed model can also include the description of the material 

softening orthotropy. For this aim, it is necessary to assume two different elemental 

softening parameters along the material axes. This can be achieved by assuming an 

opportune specific softening parameter dH ∗  (or 1 L∗ ). In practice, in the present 

work the following properties are chosen in the fictitious space: 

( )

*
11

*
1

2

2f

f f

E E

f
G L

E

∗
∗ ∗

∗

=

=

=

 (3.73a, b, c) 

and the following expression is adopted for L∗ : 

( ) ( )2 2
1 2cos sinL L Lα θ α θ∗ = − + −   (3.74) 

in which ( )2
1 1 ,1 112 fL E G f= , ( )2

2 2 ,2 222 fL E G f= , θ  is the angle of 

orthotropy and α  is the angle denoting the direction of the main stress 

characterized by the maximum absolute value. Both the angles  are measured 

counter clockwise from the global x-axis to the material 1-axis. 

Such an assumption, permits to account for totally different fracture energies along 

the material axes, hence a full orthotropic softening behaviour. An alternative 
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would be to define another different mapping between the spaces of inelastic 

strains. 

3.5 Numerical Implementation of the Proposed 
Model  

The steps for implementing the scalar damage model for orthotropic materials into 

the framework of standard non-linear finite element programs (Simó and Hughes, 

1998; Crisfield, 1991) are given in the following Table 3.1.  

The model is implemented in a strain-driven form which leads to an almost closed-

form algorithm to integrate the stress tensor in time. This is the most valuable 

feature for a model intended to be used in large scale computations. 

Table 3.1 Algorithm used for the proposed model 

START 

• LOAD INCREMENTAL LOOP: n = 1, NINCR 

• EQUILIBRIUM ITERATION LOOP: i = 1, NITER  

IF ( 1 1n or i> > ) GOTO 3 

1) Define strengths, constitutive tensors and rotation tensors 

11 22 12 11 22 12, , , , ,f f f f f f∗ ∗ ∗  

, ∗′C C , T  

1 T− −′= ⋅ ⋅C T C T  

2) Calculate the transformation tensors: 

( )σ ′A  

( )1σ σ− ′= ⋅ ⋅A T A T  
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( ) 1ε σ−∗= ⋅ ⋅A C A C  

3) Compute tangent stiffness: 

( ) ( ) ( )1 1 1tan tann i n iσ ε− − −∗= ⋅ ⋅C A C A  

( )( ) ( )1 1tan: :
n i n ie

V

dV
− −

= ∫K B C B  

( ) ( )( ) 11
1

n in i ene
e

−−
==K A K  

4) Compute displacement and strains: 

( ) ( ) ( )1 11n in i n i
residδ

− −−= ⋅U K F  

( ) ( ) ( )1n i n i n iδ−∆ = ∆ +U U U  

( ) ( ):n i n i=ε B U  

5) Transform real strains to the fictitious isotropic space: 

( ) ( ):
n i n iε∗ ∗=ε A ε  

6) Calculate fictitious effective stresses: 

:∗ ∗ ∗=σ C ε  

7) Calculate damage index and total stresses in the fictitious space: 

( )1 d∗ ∗= −σ σ  

8) Return to the real anisotropic stress space: 

( ) ( ) ( )1
:

n in i σ − ∗=σ A σ  

9) Compute residual forces: 

( )( ) ( ):
n i n ie T

resid ext
V

dV= −∫F B σ f  
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( ) ( )( )1

n in i ene
resid e resid==F A F  

IF 
( )

1

n i

resid

ext

tol i i> ⇒ = +
F

f
 GO BACK TO 3 

else: 

• END EQUILIBRIUM ITERATION LOOP 

Converged solution for the nth increment. 

Compute new incremental solution: 1n n= +  

• END LOAD INCREMENTAL LOOP 

3.6 Numerical Examples 
This section delves into the numerical application of the proposed model to real 

experimental data of orthotropic materials. For this aim, we consider first a 

benchmark example consisting in a single element test, in order to better 

understand the behaviour of the model along the different material axes. Next, the 

ability of the proposed model to reproduce the directional strength of wood and the 

failure envelopes of composite laminates is assessed. Finally, the comparison 

between experimental data on masonry and numerical simulations is carried out. 

Calculations are performed with an enhanced version of the finite element program 

COMET (Cervera et al. 2002), developed at the International Center for Numerical 

Methods in Engineering (CIMNE, Barcelona). The problem is solved 

incrementally in a (pseudo) time step-by-step manner. Within each step, a modified 

Newton–Raphson method (using the secant stiffness matrix), together with a line-

search procedure, are used to solve the corresponding non-linear system of 

equations (Cook et al., 2002; Zienkiewicz and Taylor, 2000; Simó and Hughes, 

1998; Crisfield, 1991). Convergence of a time step is attained when the ratio 
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between the norm of the iterative residual forces and the norm of the total external 

forces is lower than 1%. 

3.6.1 Behaviour of the Model. Elemental Test 

The ability of the proposed model to represent tensile or compressive orthotropic 

behaviours is now discussed.  

For this purpose, a single element test, subjected to pure uniaxial tension, is 

considered first. The material properties, referred to the material axes 1 and 2, are 

listed in Table 3.2. The material parameters of the 1-direction are selected for the 

fictitious isotropic space. The values chosen for the material parameters illustrate 

the fact that different behaviours along the two material axes can be reproduced. 

The case of isotropic softening is considered first. The fracture energies along the 

material axes are related by means of equation (3.64). 

Table 3.2 Material properties for uniaxial tension test. 

Material Properties 

E1=E* 3000 MPa  f11=f* 0.35 MPa 

E2 2000 MPa  f22 0.15 MPa 

v12=v* 0.1  f12 0.20 MPa 

v21 0.15  Gf,1=G* 100 J/m2 

G12 900   MPa  Gf,2 27.6  J/m2 
 

The single element is subjected to pure uniaxial tension in the x-global direction. 

Figure 3.8 shows the stress-strain responses for angles of orthotropy equal to 0°, 

45° and 90°. As can be seen, the model is able to capture the stiffness, the strength 

and the inelastic dissipation in each direction. As previously mentioned in Section 

3.3.2, the present model considers an exponential softening law. Once the fracture 

energy is exhausted, a no-tension material is recovered. The material strength in the 
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y-direction degrades at the same rate of the material strength in the x-direction, 

since material brittleness is the same in all directions. 

The fracture energy of the material has been normalized by the characteristic length 

chl  of the finite element, in order to ensure mesh-size objective results. Therefore, 

the area under each stress-strain curve is equal to the value 
,f i chG l , in which 

,f i
G  

is the fracture energy along the considered i-direction.  

 
Figure 3.8 Stress-strain responses to uniaxial tension for different angles of orthotropy with 

isotropic softening. 

In the second example, the compressive behaviour is investigated. For this aim, we 

consider again a single element test, under pure uniaxial compression. The material 

properties, referred to the material axes 1 and 2, are listed in Table 3.3. The 
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material parameters of the 1-direction are selected again for the fictitious isotropic 

space. The case of isotropic softening is considered once again. 

Table 3.3 Material properties for uniaxial compression test. 

Material Properties 

E1=E* 3000 MPa  f1=f* 7.00 MPa 

E2 2000 MPa  f2 3.00 MPa 

v12=v* 0.1  f12 3.00 MPa 

v21 0.15  Gf,1=G* 40000 J/m2 

G12 900   MPa  Gf,2 11020 J/m2 

 
Figure 3.9 Stress-strain responses to uniaxial compression for different angles of 

orthotropy with isotropic softening. 

The single element is subjected to pure uniaxial compression in the x-global 

direction. Figure 3.9 shows the stress-strain response for angles of orthotropy equal 
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to 0°, 45° and 90°. The same observations made for the tension test hold. 

Compared with the previous analysis, in compression we assumed hardening 

behaviour until the peak compressive strength. This could be the case of masonry, 

which exhibits limited ductility in compression. Once the ultimate strain is reached, 

the material begins to soften with behaviour dependent on the fracture energy of 

the material. The material strength in the y-direction degrades at the same rate of 

the material strength in the x-direction, since the softening is isotropic and hence 

the material brittleness is the same in all directions. 

 
Figure 3.10 Uniaxial tension and unloading to origin. 

An important feature of the proposed model is the particular behaviour during 

unloading/reloading conditions. In compliance with the Continuum Damage 

Mechanics (see Chapter 2), in case of unloading the damage does not rise and, 
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consequently, unloading occurs until the origin according to a damaged stiffness, 

see Equations (3.41) and (3.42). A successive reloading follows the same 

unloading branch, until the damage threshold is reached again. Figures 3.10 and 

3.11 illustrate the aforementioned feature of the model, by showing the numerical 

response of a single element subjected to uniaxial tension cycles (Figure 3.10) or 

uniaxial compression cycles (Figure 3.11) in the x-global direction. Once again, we 

have assumed angles of orthotropy equal to 0°, 45° and 90°. As can be seen, the 

damage constitutive law differs from the plasticity constitutive law in that no 

plastic irreversible deformation occurs: all the deformation is recovered during the 

unloading, hence the unloading/reloading  paths are not parallel.  

 
Figure 3.11 Uniaxial compression and unloading to origin. 
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Finally, the capability of the model to represent the softening orthotropy of a 

material is shown. For this aim, we consider a single finite element subjected to 

pure uniaxial tension in the x- and y-global directions. The same feature of the 

model could be demonstrated in the same manner by considering an uniaxial 

compression test.  The material properties in the real space, referred to the material 

axes 1 and 2, are the same of Table 3.2. The material parameters for the fictitious 

isotropic space are selected according to (3.65a, b, c). 

 
Figure 3.12 Stress-strain responses to uniaxial tension along the two material axes: 

influence of fracture energy Gf,y on the orthotropic softening behaviour. 

In addition to the value of fracture energy in the y-direction 2
,2 27.6fG J m= , 

which has been obtained by (3.64) and corresponds to the case of isotropic 

softening, other values are considered: 213.8 J m , 241.4 J m , 2138 J m  and 
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+∞. The assumption of these four values leads to two different softening 

parameters along the material axes x and y. In the first case, the material strength in 

the y-direction degrades at a faster rate than the material strength in the x-direction. 

In the second and third cases, the opposite occurs. The last case represents an 

hypothetic orthotropic material with a post-peak perfectly plastic behaviour in y-

direction. Therefore, the proposed model permits to represent completely different 

inelastic behaviours along the two material axes, see Figure 3.12. 

3.6.2 Directional Strength of Wood 

Although the thesis principally deals with masonry structures, for the sake of 

completeness we discuss hereafter the capacity of the present model to simulate the 

behaviour of other orthotropic materials. First, we assess the uniaxial strength of 

wood elements for different orientations of the grain relative to the loading 

direction. The numerical results are compared with predictions obtained by the 

common strength criteria generally used for this material. 

 
Figure 3.13 Material axes and global axes in a wood specimen. 
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Hankinson (1921) proposed an empirical formula for the determination of the 

strength of wood. The formula is expressed in terms of the strengths in the axes 1 

and 2 (i.e. the grain direction and the perpendicular, Figure 3.13), the angle θ  

between the loading direction and the 1-axis, and a parameter n, which provides 

information about the shear strength f12.  

On the other hand, Norris (1955) developed a theory for the strength of orthotropic 

materials based on the von Mises (1928) theory for isotropic materials. He 

considered an orthotropic material to be made up of an isotropic material by 

introducing voids in the shape of equal rectangular prisms. The walls of isotropic 

material between these voids form the three principal planes of the orthotropic 

material. Using the energy of distortion expression, he obtained a formula for each 

of these planes, such as the plane 1-2.  

Of all the macro-mechanical failure theories for anisotropic materials, the Tsai-Hill 

(1965) theory is the most widely used for wood.  

The predictions obtained by the aforementioned criteria for a Sitka spruce (Picea 

sitchensis) element subjected to tension are compared with the numerical 

simulations. According to Green (2001), typical properties are assumed for this 

type of wood: f1=78.3 MPa, f2 =2.55 MPa and f12=7.93 MPa. Figure 3.14 presents 

the tensile strength results obtained by assuming n=1.78 in the Hankinson formula 

and taking f12=6.25 MPa for Norris and Tsai-Hill criteria. These results are 

compared with those derived by the numerical simulations, where we assume the 

von Mises criterion (1928) for the fictitious isotropic space. In this particular case, 

the ∗Λ  tensor in the expression (3.43) of the equivalent stress assumes the form 

1 1 2 0
1 2 1 0
0 0 3

∗

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

Λ  (3.75) 
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and 0 1r f f∗ ∗= = . In compliance with the examples discussed in Section 3.6.1, the 

material parameters of the 1-axis have been selected for the fictitious isotropic 

space. As can be seen, the different approaches lead to very similar results. 
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Figure 3.14 Comparison between numerical results and strength values obtained by 

Hankinson, Norris and Tsai-Hill theories (f1=78.3 MPa, f2 =2.55). 

Figure 3.15 compares the numerical results with the different theories for the same 

data, except for n=1.97 in the Hankinson formula and f12=7.93 MPa for Norris and 

Tsai-Hill criteria. Good agreement is discovered by comparing the numerical 

results and the analytical predictions.  
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Figure 3.15 Comparison between numerical results and strength values obtained by 

Hankinson, Norris and Tsai-Hill theories (f1=78.3 MPa, f2 =2.55). 

3.6.3 Biaxial Failure Envelopes for Unidirectional Fibre-Reinforced 

Composite Laminae 

The biaxial failure envelopes of two unidirectional fibre-reinforced laminae are 

analyzed in this section. In recent years, considerable attention has been focused on 

the modelling of composite materials. Several approaches have been developed, 

but there is still a strong need of predicting models for stiffness and strength 

assessment. The problem is a hard task, since a reliable model should represent 

with a good level of approximation the overall behaviour of the laminate, taking 

into account the particular behaviour of the individual components (i.e. matrix, 

fibres and interface) and their spatial organization. Constitutive models for fibre 

reinforced composite laminates can be classified according to the scale in which 
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they are defined. Since the goal of the present work is not to propose an ad-hoc 

approach for this type of materials, a very simple macro-model is considered 

hereinafter. This type of approach generally results insufficient to describe the 

overall inelastic behaviour and failure of the laminate. However, this section would 

like to emphasize the potential applicability of the proposed tool to more refined 

models. 

Figure 3.16 shows the comparison of the failure envelope obtained using the 

proposed model with experimental results (Soden et al. 2002) for an unidirectional 

glass fibre reinforced lamina (E-Glass/LY556/HT907/DY063), with a fibre volume 

fraction kf =0.62, under shear stresses and normal stresses orthogonal to fibre 

direction. Experimental results correspond to tubes of 60 mm internal diameter and 

2 mm thick. The average properties of the homogenized material are obtained by 

the information concerning the constituents provided by Soden et al. and the basic 

formulae of the mixing theory (Daniel and Ishai, 1994). The experimental data are 

compared with results derived by the numerical simulations, in which we have 

assumed the Drucker-Prager criterion (1952) for the fictitious isotropic space. In 

this case, the assumed fictitious damage criterion presents the following 

expression:  

( ) ( )0 1 2, 0r r I J kτ τ α∗ ∗ ∗ ∗ ∗ ∗ ∗Φ = − = + − =  (3.76) 

Where 1I
∗  is the first invariant of the fictitious stress tensor, 2J ∗  is the second 

invariant of the deviatoric stress tensor, α and k are material constants defined as 

( ) ( )
21 ,

3 1 3 1
cfm k

m m
α

∗−
= =

+ +
 (3.77) 
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where cf
∗  and tf

∗  are the fictitious isotropic compressive and tensile strengths, 

respectively, and c tm f f∗ ∗= . In the numerical simulations, we have assumed 

140MPacf
∗ =  and 40MPatf

∗ = , thus values equal to the strengths in the real 

space. Real shear strength has been assumed equal to 61.2 MPa in order to map 

properly the fictitious isotropic criterion to the orthotropic desired one. 

It can be observed that the model reproduces with an acceptable approximation the 

experimental failure envelope. 
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Figure 3.16 Failure envelope for unidirectional lamina (E-Glass/LY556/HT907/DY063). 

Figure 3.17 shows the comparison of failures stresses obtained using the model 

proposed with experimental ones (Soden et al. 2002) for an unidirectional carbon 
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fiber reinforced lamina (T300/BSL914C epoxy), with a fibre volume fraction 

kf=0.60, under shear stresses and normal stresses in the direction of the fibres. 

Experimental results were obtained from tubes tested under combined axial tension 

or compression and torsion. The tubes were 32 mm diameter and 1.9–2.3 mm 

thick.  
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Figure 3.17 Failure envelope for unidirectional lamina (T300/BSL914C epoxy). 

In the numerical simulations, we have assumed again the Drucker-Prager criterion 

for the fictitious isotropic space, with 900MPacf
∗ =  and 1500MPatf

∗ = . Real 

shear strength has been assumed equal to 101.3 MPa, in order to map properly the 

fictitious isotropic criterion to the orthotropic desired one. 
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It could be seen that the model approximately reproduces the lamina failure 

envelope. We do recognize that the presented results are coarse, since they do not 

provide any information about individual components, associated failures etc. 

Nevertheless, the presented methodology provides a basic tool that could be 

combined efficiently with more sophisticated models, in order to obtain more 

precise results. This could be the case, for example, of models based on an analysis 

at component materials level that allow obtaining the behaviour of the lamina and 

even the more complex laminate, composed of laminae with different fibre 

orientations. 

3.6.4 Uniaxial and Biaxial Failure Envelopes for Masonry 

The ability of the present model to reproduce the strength of masonry is assessed 

herein. A comparison with experimental data obtained by Page (1981, 1983) is 

carried out. Page published the results of a series of tests designed to assess the 

directional strength characteristics of masonry panels subjected to in-plane 

monotonic loading. For that purpose, he conducted a series of biaxial tension–

compression and biaxial compression–compression tests, which are still the most 

comprehensive experimental program conducted on the in-plane behaviour of brick 

masonry.  

First, we consider the results of numerical simulations carried out for different 

orientations of the bed joints relative to the loading direction. For each orientation, 

three different loading patterns were applied (Figure 3.18), namely uniaxial 

tension, uniaxial compression and biaxial tension–compression. 
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Figure 3.18 Load patterns for different orientations: uniaxial tension (a), uniaxial 

compression (b) and biaxial tension–compression (c). 

For tensile stress states, the Rankine criterion is assumed in the fictitious isotropic 

space. In this particular case, calling 1
∗p  the unit vector associated with its 

respective principal direction, the tensor ∗Λ  in the expression (3.43) assumes the 

form  

1 1 1 1
∗ ∗ ∗ ∗ ∗= ⊗ ⊗ ⊗Λ p p p p  (3.78) 

and, therefore, the equivalent stress is defined as 

1τ σ∗ ∗=  (3.79) 
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Where 1σ ∗  is the largest principal effective stress and the symbols ⋅  are the 

Macauley brackets ( ), 0, 0, 0x x if x x if x= ≥ = < . The initial value of the 

damage threshold is 0r f∗ ∗= , where f ∗  is the initial uniaxial damage stress. 

For compressive stress states, the criterion proposed by Faria et al. (1998) is 

assumed. In this case, the equivalent stress is defined in the following form instead 

of (3.43): 

( )3 oct octKτ σ τ∗ ∗ ∗= +  (3.80) 

In this format, directly inspired on the Drucker-Prager criterion,  octσ ∗  and  octτ ∗  are 

the octahedral normal stress and the octahedral shear stress. Constant K controls 

the aperture of the inherent Drucker-Prager cone. According to (3.47) and (3.80), 

the initial value of the damage threshold is equal to  

( )0
3 2

3
r K f∗ ∗= −  (3.81) 

For all the tests, the material properties in the 1-axis have been selected for the 

fictitious isotropic space. We have assumed the following values for real strengths, 

extrapolated by the experimental data of Page (1983): f1=0.4 MPa, f2 =0.2 MPa, 

f12=0.3 MPa for the tension criterion and f1=3.5 MPa, f2 =7.0 MPa and f12=2.71 

MPa for the compression criterion. 

For uniaxial tension, masonry was subjected to the loading pattern shown in 

Figure 3.18a. The load was gradually increased until the ultimate conditions were 

reached. The simulations were performed for different orientations of the bed 

joints, namely 0°, 22.5°, 45°, 67.5° and 90°. The directional strength characteristics 

obtained from numerical simulations are presented in Figure 3.19 and are 

compared with the data of Page (1983). Also the results obtained by Shieh-Beygi 
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and Pietruszczak (2008) are reported for the sake of argument. Instead of the 

macro-model assumed in this work, they adopted a mesoscale approach, in which 

the structural behaviour is examined at the level of constituents, i.e. brick and 

mortar. 
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Figure 3.19 Failure envelope for uniaxial tension at different orientations of the bed joints. 

It can be seen from this figure that the experimental data are quite scattered. For 

most orientations, however, the numerical predictions are in a reasonably good 

agreement with the mean values of the experimental data. The only exception is 

θ =22.5°, where the finite element simulation underestimates the ultimate strength 

of the panel by over 25%. 
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For uniaxial compression, masonry was subjected to the loading pattern shown in 

Figure 3.18b. The directional strength characteristics obtained from numerical 

simulations are presented in Figure 3.20. The assessed failure loads are quite 

consistent with Page’s results on the average, except for θ =67.5°, where the finite 

element simulation overestimates the ultimate strength of the panel by over 15%. 
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Figure 3.20 Failure envelope for uniaxial compression at different orientations of the bed 

joints. 

For biaxial tension-compression, masonry was subjected to the loading pattern 

shown in Figure 3.18c, which is equivalent to pure shear of a specimen with bed 

joints at θ-45° with respect to the horizontal axis. The strength characteristic 
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obtained from numerical analysis are compared with the best fit to the experimental 

curves reported by Page (1983). The results are, in general, consistent with the 

experimental evidence, except for θ =67.5°, where the finite element simulation 

underestimates the ultimate strength of the panel by over 25% (Figure 3.21). 
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Figure 3.21 Failure envelope for biaxial tension-compression at different orientations of 

the bed joints. 

Then, the comparison of numerical results with biaxial failure envelopes in 

compression is presented. The set of experimental strength data is again the one 

given by Page (1981). The panels were loaded proportionally in the principal stress 

directions σ1 and σ2 along different orientations θ with respect to the material axes. 
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The values assumed for real strengths are f1=8.74 MPa, f2 =8.03 MPa, f12=2.71. For 

all the tests, the material properties in the 1-axis have been selected for the 

fictitious isotropic space. The criterion proposed by Faria et al. (1998) is 

considered again. The comparisons between the experimental values and the model 

are given in Figures 3.22-2.24, corresponding to orientations of the bed joints equal 

to 0°, 22.5° and 45°, respectively.  
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Figure 3.22 Failure envelope for biaxial compression–compression (θ = 0°). 
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Figure 3.23 Failure envelope for biaxial compression–compression (θ = 22.5°). 

Globally, good agreement is found. The uniaxial compressive strength parallel to 

the bed joints seems to be overpredicted by the model, see Figure 3.22, which is 

due to a debatable definition of failure in the experiments for these loading 

conditions (early splitting of the bed joints in tension), see Dhanasekar et al. 

(1985). In fact, the individual “piers” of masonry formed after splitting of the bed 

joints can withstand a much higher load before collapse is obtained. 
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Figure 3.24 Failure envelope for biaxial compression –compression (θ = 45°). 

3.7 Conclusions 
In this Chapter, an original methodology has been presented to model the 

mechanical behaviour of orthotropic materials. Such a theory, is based on non-

linear damage constitutive laws and on the concept of mapped tensor from the 

anisotropic real space to the isotropic fictitious one. It allows the establishment of 

an implicit orthotropic damage criterion in the real anisotropic space by using the 

isotropic one formulated on the fictitious isotropic space. In this way, the different 

behaviours along the material axes can be reproduced by means of a very simple 

formulation, taking advantage of the well-known isotropic damage models. A 

major advantage lies in the possibility of adjusting an arbitrary isotropic criterion to 

the particular behaviour of the orthotropic material.  
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The model has been fully formulated for the 2-dimensional case. However, it can 

be easily extended to the 3-dimensional case, as in Oller et al. (2003). 

The implementation of this theory in finite element codes is straightforward. The 

model proposed is particularly suited for finite element computations of initially-

orthotropic materials, such as wood, fibre reinforced composites and masonry. The 

brittleness orthotropy can also be modelled in a very easy and effective way. 

Initial applications of the model to these types of materials have shown promising 

results. Nevertheless, some improvements are required in order to obtain a better 

description of the material behaviour. First of all, the methodology has to take into 

account the different behaviours in tension and compression. In case of masonry, 

for example, it is not possible to describe the material behaviour with a single 

criterion. Therefore, different inelastic criteria for tension and compression have to 

be properly mapped in order to achieve the correct description of ultimate 

conditions. This will be the main topic of the next Chapter. 



Chapter 4.                                              

Two-Parameters Damage Model for 

Orthotropic Materials: Application to 

Masonry 

The present Chapter represents a step further in the formulation of damage models 

for orthotropic materials. The practical examples presented in Chapter 3 have 

shown the need for a more refined tool. In fact, a sound model should take into 

account the different behaviours in tension and compression, in order to describe 

correctly the real material behaviour. 

An implicit composite damage criterion suitable for the modelling of orthotropic 

materials under plane stress conditions is presented herein. The presented 

methodology is based again on the concept of mapped tensor from the real space to 

the fictitious one, firstly introduced by Betten (1981 and 1988). Individual damage 

criteria are considered for tension and compression, according to different failure 

mechanisms. The former is associated with a localized fracture process, denoted by 
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cracking of the material, and the latter is associated with a more distributed fracture 

process, i.e. the crushing of the material. The aim of studying the behaviour of a 

real material by means of an equivalent fictitious solid can be achieved via the 

appropriate definitions of two stress transformation tensors. Each of them is related 

to tensile or compressive stress states, respectively. 

The proposed model, based on Continuum Damage Mechanics, is principally 

devoted to the finite element analysis of masonry structures. Thus, the modelling of 

the orthotropic behaviour of such a material is discussed. Then, the formulation of 

the model is presented, together with the description of the constitutive 

relationships adopted. The aspects related to the implementation in a finite 

elements code are detailed next. Finally, the capability of the model to represent 

correctly the orthotropic strength behaviour of different masonry types is 

demonstrated through a comparison with available experimental data. 

4.1 Modelling the Orthotropic Behaviour of Masonry 
From a phenomenological point of view, masonry is a composite material with an 

overall orthotropic behaviour. The effective constitutive behaviour of masonry 

features anisotropy arising from the geometrical arrangements of units and mortar, 

even if the properties of these constituents are isotropic. A complete description of 

the material mechanical behaviour is not pursued in this study and the reader is 

referred to Drysdale et al. (1994) and Hendry (1990) for this purpose. 

The elastic orthotropy of masonry is due to the different elastic properties of 

mortar and units. Moreover, the constituents are arranged in such a way that the 

horizontal and vertical directions are obviously not equivalent. This may be even 

emphasized when the units themselves are elastically anisotropic due to the 

presence of horizontal or vertical holes. Existing approaches for the determination 

of overall elastic properties of masonry are based on the homogenization theory. 
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Such a methodology consists in identifying an elementary cell, which generates an 

entire panel by regular repetition. In this way, a field problem can be written on the 

unit cell in order to achieve average values for the homogenized masonry material, 

starting from the knowledge of the mechanical properties of the constituents and 

the geometry of the elementary cell. Homogenization techniques have been 

extensively developed for periodic media and have been widely employed for 

modelling masonry structures in the elastic and also inelastic field. Fore a more 

exhaustive information about the topic, the author is referred to the vast available 

scientific literature (e.g. Anthoine 1995, Cecchi and Sab 2002, Massart et al. 2004, 

Milani 2004). 

 
Figure 4.1 Representation of masonry stresses in plane stress: full stress vector components 

(a), principal stresses and angle θ  between principal and material axes (b). 

Concerning the strength orthotropy of masonry, the representation of an 

orthotropic failure surface in terms of principal stresses or stress invariants only is 

not possible. For plane stress situations, which is the case of the present study, a 

graphical representation in terms of the full stress vector (σx, σy and τxy) is 

necessary. The material axes are assumed to be defined by the bed joints direction 

(x direction) and the head joints direction (y direction), see Figure 4.1. Another 

possible representation can be obtained in terms of principal stresses and an angle 
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θ. The angle θ measures the rotation between the principal stress axes and the 

material axes. Clearly, different principal stress diagrams are found according to 

different values of θ. 

There have been few attempts to obtain a general failure criterion for masonry 

because of the difficulties in developing a representative biaxial test and the large 

number of tests involved. The problem was discussed by Yokel and Fatal (1976) 

with reference to the failure of shear walls. Dhanasekar et al. (1985) interpolated 

the test data of Page (1981, 1983) by means of three elliptic cones, see Figure 4.2. 

However, as the authors mentioned, the cones do not correspond with the observed 

distinct modes of failure. The elliptic cones have been expressed by a second-order 

tensor polynomial. A wide review of the subject can be found in Hendry (1990), 

Anthoine (1992) and Molins Borrell (1996). 

 
Figure 4.2 Failure surface idealized by Dhanasekar et al. (2002). 
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Several authors proposed polynomials already available for composite materials for 

the expression of analytical failure models of masonry. Syrmakesis and Asteris 

(2001), for instance, used a Tsai-Wu (1971) cubic tensor polynomial. The ability to 

ensure the closed shape of the failure surface and the unique mathematical form for 

all possible combinations of plane stress are not returned by a satisfactory 

approximation of Page’s experimental data (1981), as can be easily noticed in 

Figure 4.3. 

 
Figure 4.3 Comparison between experimental results from Page (1981) and the failure 

curves proposed by Syrmakesis and Asteris (2001). 
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Berto et al. (2002) assumed a double pyramid with rectangular base for the shape 

of the admissible field, for which the slopes of the faces correspond to the internal 

friction angles of the material, see Figure 4.4. The damage threshold surface, 

defined in the effective stress space, is simple, regular and convex. Nevertheless, 

this formulation is incapable of reproducing the increase of strength in biaxial 

compression, occurring in most materials known. Also, this surface leads to 

conservative values of shear strength, and this drawback will be discussed in the 

validation examples presented in Section 4.5.3. 

 
Figure 4.4 Damage threshold surface proposed by Berto et al. (2002). 

Lourenço (1996) emphasized the inadequacy of describing the material behaviour 

with a single failure criterion. Figure 4.5, for instance, shows the non-acceptable fit 

of masonry experimental values which results by the Hoffman criterion. A least 

squares fit of the experimental results from Page (1981,1983) with a Hoffman 
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criterion turns out to show no tensile strength in the uniaxial behaviour. A manual 

fit through the different uniaxial strengths and the compressive failure obtained 

upon loading with 1 2σ σ=  also gives a very poor representation of the set of 

experimental data.  

 
Figure 4.5 Comparison between experimental results from Page (1981,1983) and a 

Hoffman type yield surface (from Lourenço, 1996). 

Furthermore, a single surface fit of the experimental values would lead to an 

extremely complex yield surface with a mixed hardening/softening rule in order to 

describe properly the inelastic behaviour. It is believed that this approach is 
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practically non-feasible. Thus, an alternative approach consists in expanding the 

conventional formulations for isotropic quasi-brittle materials to describe 

orthotropic behaviour. Formulations of isotropic quasi-brittle materials behaviour 

consider, generally, different inelastic criteria for tension and compression. 

Lourenço et al. (1997) proposed an extension of the work of Feenstra and De Borst 

(1996), who utilized this approach for concrete with Rankine and Drucker-Prager 

criteria. In particular, Lourenço formulated a non-linear constitutive model for in-

plane loaded walls based on the plasticity theory, for which the material admissible 

field is bounded by a Hill-type yield criterion for compression and a Rankine-type 

yield criterion for tension, see Figure 4.6. This model considers the influence of the 

tangential stress (i.e. of the inclination of the principal stress with respect to the 

natural axes of the material) on the material strength and allows a good fitting with 

available experimental results. 

 
Figure 4.6 Composite yield surface formulated by Lourenço (1997). 

Few numerical macro-models specifically devoted to masonry have been 

implemented in recent years, because of the intrinsic complexity of introducing 

orthotropic behaviour in the non-linear range. A sound procedure should represent 
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with an acceptable level of approximation the brittleness (or softening) orthotropy 

of masonry.  

Softening behaviour is commonly attributed to the heterogeneity of the material, 

due to the presence of different phases and material defects, like flaws and voids. 

Even prior to loading, mortar contains microcracks due to the shrinkage during 

curing and the presence of the aggregates. The clay brick contains inclusions and 

microcracks due to the shrinkage during the burning process. The initial stresses 

and cracks, as well as variations of internal stiffness and strength, cause 

progressive crack growth when the material is subjected to progressive 

deformation. Initially, the microcracks are stable which means that they grow only 

when the load is increased. Around peak load an acceleration of crack formation 

takes place and the formation of macrocracks starts. The macrocracks are unstable, 

which means that the load has to decrease to avoid an uncontrolled growth. In a 

deformation-controlled test, the macrocrack growth results in softening and the 

localization of cracking occurs in a small zone, while the rest of the specimen 

unloads. Figure 4.7 shows characteristic stress-displacement diagrams for quasi-

brittle materials in uniaxial tension and compression. As can be seen, the inelastic 

behaviours are totally different. Therefore, regarding a numerical model, it is 

crucial to represent separately the correct softening behaviours in tension or 

compression. 

In several studies, including the present one, it is assumed that the inelastic 

behaviour both in tension and compression are related to the integral of the σ−δ 

diagram. These quantities, denoted respectively as tensile fracture energy Gf and 

compressive fracture energy Gc, are assumed to be material properties. With this 

energy-based approach, tensile and compressive softening can be described within 

the same context, since the underlying failure mechanisms are similar, namely 

continuous crack growth at micro-level. It is noted that masonry presents another 

type of failure mechanism, generally identified as mode II, that consists of slip of 
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the unit-mortar interface under shear loading. Again, the inelastic behaviour in 

shear can be described by the mode II fracture energy Gf,II , defined by the integral 

of the τ−δ diagram in the absence of normal confining load. Shear failure is a 

salient feature of masonry behaviour, which must be incorporated in a micro-

modelling strategy. However, for continuum models, this failure cannot be directly 

included because the unit and mortar geometries are not discretized. Failure is then 

associated with tension and compression modes in a principal stress space. 

 
Figure 4.7 Typical behaviour of quasi-brittle materials under uniaxial loading and 

definition of fracture energy: tensile loading (a); compressive loading (b). 
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Several procedures have been proposed to model the aforementioned softening 

behaviour of masonry. In the field of Continuum Damage macro-models, Berto et 

al. (2002) developed a specific model for orthotropic brittle materials, starting from 

the observation that in masonry the development of damage can modify the 

intensity of the anisotropy but does not alter the initial symmetries of the material. 

The basic assumption of the model is the acceptance of the natural axes of the 

masonry (i.e. the bed joints and the head joints directions) also as principal axes of 

the damage. In each direction, two independent damage parameters are assumed, 

one for compression and one for traction. Their evolution are described by 

functions similar to that used for isotropic damage of concrete, different for tension 

and compression. The fourth-rank damage tensor, which reduces to a 3×3 matrix 

for in-plane stress conditions, is written in terms of the four scalar damage 

parameters and of the strain tensor. 

Lourenço et al. (1997), on the other hand, proposed a plane-stress softening 

plasticity model for masonry. As commented before, they adopted a composite 

yield criterion, by combining the Rankine-type and the Hill-type criteria. In tension 

they adopted an exponential softening law for the stress-strain diagrams, with 

different fracture energies along each material axes. Hence, the principal directions 

of damage are indeed fixed and aligned with the initial orthotropy axes. Although 

the model incorporates two different fracture energies, a single scalar internal 

parameter is used in the plasticity algorithm in order to measure simultaneously the 

amount of softening in two material axes. In compression, the authors adopted an 

isotropic parabolic hardening law, followed by a parabolic/exponential softening 

law with different compressive fracture energies along the material axes. 

The dissimilar behaviour exhibited by masonry under tension or under compression 

is an essential feature when dealing with cyclic actions. This peculiarity of 

masonry behaviour, also exhibited by other geomaterials, is a consequence of the 

rather different strengths exhibited under tension or under compression, the first 
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one associated to significant fragility, responsible for visible cracking. Under cyclic 

loading tensile cracking is usually the first evidence of nonlinearity, and 

consequently important changes in stiffness are observed when passing from 

tension to compression. The constitutive model must be able to distinguish tension 

from compression, in order to allows for this unilateral effect, clearly visible when 

reversing the sign of the external loading (as in the earthquake motion). The 

plasticity models, by definition, are not able to model either the damaged stiffness 

during unloading/reloading or the stiffness recovery at crack closure under 

alternate loading. These effects, shown in Figure 4.8, can only be represented by 

means of Continuum Damage Mechanics models which account for different 

behaviours in tension and compression (Papa, 1996). 

 
Figure 4.8 Numerical response of a masonry specimen subjected to a tensile-compressive 

cycle, making use of the unilateral continuum damage model proposed by Papa (1996). 
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4.2 Formulation of the Model 
In this section, a model for the finite element analysis, based on Continuum 

Damage Mechanics, is presented. Orthotropic behaviour is simulated using the 

concept of mapped stress tensor, firstly introduced by Betten (1981 and 1988) and 

refined by Oller et al. (1995, 1996) afterwards. A one-to-one mapping relationship 

is established between the behaviour of the real material and that of a fictitious one. 

The problem is solved in a fictitious space and the results are transported to the real 

field. Compared to the formulation proposed in Chapter 3, the model proposed 

herein presents several enhancements, in order to account for different behaviours 

in tension and compression of masonry. 

4.2.1 Definition of the Space Transformation Tensors 

In compliance with the procedure exposed in Section 3.2.1, the proposed 

methodology is based on assuming a real anisotropic space of stresses σ  and a 

conjugate space of strains ε , such that each of these spaces has its respective 

image in a fictitious isotropic space of stresses *σ  and strains *ε , respectively. The 

relationship between the spaces is defined again by 

* :σ=σ A σ  (4.1) 

* :ε=ε A ε  (4.2) 

Where σA  and εA  are the transformation tensors, for stresses and strains, 

respectively, relating the fictitious and real spaces. These rank-four tensors embody 

the natural anisotropic properties of the material (Oller et al. 2003). 

As discussed before, masonry presents different strengths as well as failure 

mechanisms and inelastic behaviours in tension and compression. For these 

reasons, two distinct damage criteria must be introduced both with a constitutive 
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model able to distinguish tension stress states from compression stress states. An 

essential feature of the proposed model is that a split into tensile and compressive 

contributions is introduced. Such a split is carried out on the stress tensor, 

according to Faria and Oliver (1993), Faria et al. (1998, 2000, 2004) and Cervera et 

al. (1995, 1996, 1999, 2003): 

3

1
i i i

i
σ+

=

= ⊗∑σ p p  (4.3) 

− += −σ σ σ  (4.4) 

where iσ  denotes the i-th principal stress value from tensor σ  and ip  represents 

the unit vector associated with its respective principal direction. The ramp function 

indicated by the Macaulay brackets ⋅  returns the value of the enclosed 

expression if positive, but sets a zero value if negative. As in equations (4.3) and 

(4.4), in the ensuing lines tensile and compressive entities will be pointed out 

through the using of indices (+) and (-), respectively. 

The split shown by equations (4.3) and (4.4) can be expressed in an alternative 

compact form as follows 

:+ =σ P σ  (4.5) 

( ) :− = −σ I P σ  (4.6) 

where I is the rank-four identity tensor and P is a projection tensor such that 

( )
3

1
i i i

i
H σ

=

= ⊗∑P p p  (4.7) 

where ( )iH σ  denotes the Heaviside function computed for the i-th principal 

stress iσ .  



Two-Parameters Damage Model for Orthotropic Materials 

 

149 

The present model proposes the following transformations of the tensile and 

compressive stress components from the real to the fictitious space: 

* :σ+ + +=σ A σ  (4.8) 

* :σ− − −=σ A σ  (4.9) 

Where σ +A  and σ −A  are the stress transformation tensors, for positive and 

negative components +σ  and −σ , respectively, relating the fictitious and real 

spaces. Since we assume two distinct stress transformation tensors, it is possible to 

map the real stresses into the fictitious space and solve the problem there, by 

adopting two different isotropic damage criteria for tension and compression. 

In this work, a diagonal fourth-order tensor is assumed for each transformation 

tensor, according to Betten (1981), Oller et al. (1995, 1996) and Car et al. (2000, 

2001). The transformation tensors correspond to 6×6 matrices for the 3-

dimensional case, according to equation (3.1). In the particular case of in-plane 

stress conditions, that will be considered in this work, the transformation tensors 

reduce to 3x3 matrices. The components of each tensor are the ratios of the 

strengths in the fictitious isotropic space ( *
ijf ± ) and in the real orthotropic space 

( ijf ± ), all referred to the material axes directions. By assuming the Voigt forms 

(3.2) and (3.3) for the stress and strain vectors, the stress space transformation 

tensors in the material coordinate system take the forms 

( )

11

11

22

22

12

12

0 0

0 0

0 0

f
f

f
f

f
f

σ

+∗

+

+∗
+

+

+∗

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥′ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  (4.10) 
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( )

11

11

22

22

12

12

0 0

0 0

0 0

f
f

f
f

f
f

σ

−∗

−

−∗
−

−

−∗

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥′ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  (4.11) 

The parameters *
ijf ±  represent the intersections of the fictitious damage threshold 

surfaces with axes 1, 2 and 3. Since we assume two distinct isotropic criteria in the 

fictitious space, it results that * * *
11 22f f f+ + += =  and * * *

11 22f f f− − −= = . The choices 

of *f +  and *f −  are arbitrary. The expressions of the fictitious pure-shear strengths 

*
12f +  and *

12f −  derive from the particular isotropic criteria adopted for tension and 

compression. 

The parameters ijf ±  represent the intersections with axes 1, 2 and 3 of the damage 

threshold surfaces mapped into the real orthotropic space. This concept will be 

detailed in Section 4.3.2. The orthotropic real strengths can be obtained from 

simple experimental tests, which will be also discussed in Section 4.3.2. 

The need for two stress transformation tensors to account for different behaviours 

of the material in tension and compression is evident from definitions (4.10) and 

(4.11). Most of all, it always results that ( ) ( )33 33
σ σ+ −′ ′≠A A , i.e. 

12 12 12 12f f f f+∗ + −∗ −≠ . In fact, we generally observe that * *
12 12f f+ −≠ , since we 

assume distinct isotropic damage criteria in tension and compression. Also, the two 

isotropic fictitious criteria have to be mapped in two distinct ways into the real 

space, so 12 12f f+ −≠  (see Section 4.3.2). Therefore, a single stress transformation 

tensor would not lead to the correct masonry shear strength. Moreover, such a 
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choice would force the ratio between the tensile and compressive strength to be 

equal along each axis (Pelà et al. 2008a and 2008b), whilst in masonry 

typically x x y yf f f f− + − +≠ . 

The stress space transformation tensors in global coordinates are readily obtainable 

from the definitions (4.10) and (4.11) of the tensor components in the local 

principal axes of the orthotropic material. In fact, according to (3.36), 

( )1σ σ+ − + ′= ⋅ ⋅A T A T  (4.12) 

( )1σ σ− − − ′= ⋅ ⋅A T A T  (4.13) 

where tensor T has been defined in (3.24) and is related to the angle θ  between the 

material and global axes. It permits the transformation of stress/strain components 

from one axes reference system to the other. 

It is possible to relate the positive and negative stress transformation tensors to the 

global stress transformation tensor. In fact, after the definitions (4.1), (4.2), (4.8), 

and (4.9), the condition 

 * * *+ −= +σ σ σ  (4.14) 

must still apply. Therefore, the previous expression yields 

: : :
: : ( ) :

σ σ σ

σ σ σ

+ + − −

+ −

= +

= ⋅ + ⋅

A σ A σ A σ
A σ A P σ A I - P σ

 (4.15a, b) 

and hence 

( )σ σ σ+ −= ⋅ + ⋅A A P A I - P  (4.16) 

The strain space transformation tensor εA  defined in (4.2) can be derived 

analogously to (3.37a, b, c) and results: 
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( ) 1ε σ−∗= ⋅ ⋅A C A C  (4.17) 

where C and ∗C  are the constitutive tensors in the real and fictitious space, 

respectively. Equation (4.17) also allows us to derive the relationship between the 

constitutive tensors in the real and fictitious spaces. This is: 

( ) 1σ ε− ∗= ⋅ ⋅C A C A  (4.18) 

Notice that in the expressions (4.17) and (4.18) the real orthotropic constitutive 

tensor C is expressed in the global reference system. This means that prior to the 

derivation of the space transformation tensors, the transformation (3.28) is 

required. 

4.3 Underlying Fictitious Damage Model 
In this section, a detailed description of the continuum damage model adopted in 

the fictitious space is provided. The present work makes use of the Tension-

Compression Damage Model formulated by Faria and Oliver (1993) which has 

been extensively used (Faria et al. 1998, 2000, 2004; Cervera et al. 1995, 1996, 

1999, 2003). This model is characterized by two internal scalar variables, which 

monitor the local damage under tension and compression, respectively. This choice 

provides a simple constitutive model which, nevertheless, is able to reproduce  the 

overall nonlinear behaviour including unilateral effects, strain-hardening/softening 

response, stiffness degradation and regradation under multiple stress reversal. 

4.3.1 Constitutive Equations 

The Tension-Compression Damage Model adopted in the fictitious space is based 

on the concept of effective stress tensor σ , introduced in connection with the 
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hypothesis of strain equivalence (Lamaitre and Chaboche, 1978). Thus, the 

following relation is defined in the fictitious space: 

:∗ ∗ ∗=σ C ε  (4.19) 

where ∗C  is the usual (fourth-order) isotropic linear-elastic constitutive tensor. In 

order to account for different behaviours of masonry in tension and compression, 

the split of the effective stress tensor (Faria et al., 2000) into tensile and 

compressive components, +∗σ   and −∗σ , is introduced according to (4.3) and (4.4): 

3

1
j j j

j

σ+∗ ∗ ∗ ∗

=

= ⊗∑σ p p  (4.20) 

−∗ ∗ +∗= −σ σ σ  (4.21) 

where jσ ∗  denotes the j-th principal stress value from tensor ∗σ , j
∗p  represents the 

unit vector associated with its respective principal direction and the symbols ⋅  

are the Macaulay brackets. 

The split shown by equations (4.20) and (4.21) can also be expressed, in 

compliance with (4.5) and (4.6), in the forms 

:+∗ ∗ ∗=σ P σ  (4.22) 

( ) :−∗ ∗ ∗= −σ I P σ  (4.23) 

where I is the rank-four identity tensor and ∗P  is a projection tensor such that 

( )
3

1
j j j

j
H σ∗ ∗ ∗ ∗

=

= ⊗∑P p p  (4.24) 
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where ( )jH σ ∗  denotes the Heaviside function computed for the j-th principal 

stress jσ ∗ . 

The constitutive equation for the damage model is defined as 

( ) ( )1 1d d∗ + +∗ − −∗= − + −σ σ σ  (4.25) 

where we have introduced two internal variables, d +  and d − , the damage indexes, 

each related with the sign of the stress and thus with tension and compression. The 

internal damage variables are equal to zero when the material is undamaged and 

equal to one when it is completely damaged. Their definition and evolution are 

detailed afterwards. 

Owing to the scalar form of the damage variables d + , d −  and to the format of the 

presented constitutive law, equation (4.25) points out that a split of tensor ∗σ  into 

tensile and compressive tensors +∗σ  and −∗σ  is implicit in the present formulation, 

that is, 

( )1 d+∗ + +∗= −σ σ  (4.26) 

( )1 d−∗ − −∗= −σ σ  (4.27) 

This relevant property emphasises that the adopted split of the effective stress 

tensor leads in fact to a related dual split of the Cauchy stress tensor ∗σ . 

Although the Tension-Compression Damage Model has been usually termed 

“isotropic” (Faria and Oliver, 1993; Cervera et. al., 1996; Faria et al., 2000; 

Cervera, 2003; Wu and Li, 2008), it is possible to demonstrate that the model is 

definitely orthotropic. In fact, by recalling (4.22) and (4.23), (4.25) can be 

rewritten as follows: 
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( ) ( )( )
( ) ( )( )

( )

1 : 1 :

1 1 :

:

d d

d d

d d

∗ + ∗ ∗ − ∗ ∗

∗ + ∗ − ∗ ∗

∗ + ∗ − ∗ ∗

= − + − −

⎡ ⎤= − + − −⎣ ⎦
⎡ ⎤= − − −⎣ ⎦

σ P σ I P σ

σ P I P σ

σ I P I P σ

 (4.28a, b, c) 

and therefore the constitutive relationship can assume the form 

( ) :∗ ∗= −σ I D σ  (4.29) 

where  

( )d d+ ∗ − ∗= + −D P I P  (4.30) 

is the fourth-order tensor which characterizes the state of damage. As can be easily 

seen, such a tensor is not isotropic and entails directional orthotropic damage. The 

dependence on principal directions of stress, expressed by tensor ∗P , is relevant 

since we have assumed the microcracks and microvoids to growth in different 

manners under tensile or compressive stress states. If ∗ =P I , a tensile isotropic 

damage model is recovered, while if ∗P  is a zero tensor, we recover a compressive 

isotropic damage model. 

Equation (4.30) has a structure similar to (4.16), used to define the global stress 

transformation tensor, thus a crucial relationship is emphasized. In fact, the stress 

transformation in the form (4.16) has been hypothesized in order to be consistent 

with the constitutive law to be adopted in the fictitious space. 

An important remark concerns the distinctive characteristic of the fictitious space 

adopted in the proposed Two-Parameters Damage Model for Orthotropic Materials. 

The concept of mapping a real anisotropic space into a fictitious isotropic one, 

exhaustively discussed in Chapter 3, is not feasible in the presented new 

framework. In fact, in this particular case the fictitious space cannot be termed 

“isotropic”, since we assume an orthotropic damage constitutive law and also a 
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composite damage criterion. Therefore, the present methodology turns the original 

concept of “mapping the real space into an isotropic fictitious one” into the 

innovative and more general one of  “mapping the real space into a favourable (or 

convenient) fictitious one”. 

4.3.2 Damage Threshold Surfaces in the Fictitious Space 

Analogously to the concept of equivalent strain postulated by Simó and Ju (1987), 

the dual concept of equivalent stress is introduced, according to Faria and Oliver 

(1993), Faria et al. (1998, 2000, 2004) and Cervera et al. (1995, 1996, 1999, 2003). 

Such a scalar positive norm allows identifying loading, unloading or reloading 

situations. Since a clear distinction between tension and compression is assumed by 

means of the stress split defined in (4.20) and (4.21), a tensile equivalent stress τ +∗  

and a compressive equivalent stress τ −∗  are postulated. 

Individual criteria for tension and compression have to be considered in the 

fictitious space, in order to describe different failure mechanisms for masonry. The 

first criterion is associated with a localized fracture process, namely cracking of the 

material, and the second criterion is associated with a more distributed fracture 

process, viz. crushing of the material. The two damage criteria +∗Φ  and −∗Φ  are 

defined as follows 

( ), 0r rτ τ+∗ +∗ +∗ +∗ +∗Φ = − ≤  (4.31) 

( ), 0r rτ τ−∗ −∗ −∗ −∗ −∗Φ = − ≤  (4.32) 

Variables r+∗  and r−∗  are the internal stress-like variables representing the current 

damage thresholds in tension and compression. Their values control the size of 

each (monotonically) expanding damage surface. Notice that the damage criteria 

are defined in terms of effective stresses. This strategy preserves the advantages of 
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a strain-driven formulation, since the effective stress tensor is itself a strain-based 

entity, and circumvents the drawbacks inherent to those formulations based on the 

final Cauchy stress tensor, which require an iterative procedure inside the 

constitutive model (for more details, see Faria et al. 2000). 

The expansion of the damage bounding surfaces for loading, unloading and 

reloading conditions is controlled by the Kuhn–Tucker relations and the damage 

consistency conditions, which are 

( ) ( )
( ) ( )

0 , 0 , 0,

, 0 , 0

r r r r

if r then r r

τ τ

τ τ

±∗ ±∗ ±∗ ±∗ ±∗ ±∗ ±∗ ±∗

±∗ ±∗ ±∗ ±∗ ±∗ ±∗ ±∗

≥ Φ ≤ ⋅Φ =

Φ = ⋅Φ =
 (4.33a, b) 

leading, in view of (4.31) and (4.32), to the loading conditions 

rτ ±∗ ±∗=  (4.34) 

These, in turn, lead to the explicit definition of the current values of the internal 

variables r±∗  in the form 

( )0max ,maxr r τ±∗ ±∗ ±∗⎡ ⎤= ⎣ ⎦  (4.35) 

where ( )0 0r r f±∗ ±∗ ±∗=  are the initial values of the damage thresholds and f ±∗  are 

the initial uniaxial damage stresses. 

Notice that Eq. (4.35) allows one to compute the current values for r+∗  and r−∗  in 

terms of the current values of τ +∗  and τ −∗ , respectively, which depend explicitly 

on the current total strains. 

In the present work, the Rankine criterion is assumed in the fictitious isotropic 

space for tensile stress states. Therefore, the tensile equivalent stress is defined as 

1τ σ+∗ ∗=  (4.36) 
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Where 1σ ∗  is the largest principal effective stress and the symbols ⋅  are the 

Macaulay brackets. The initial value of the damage threshold is  

0r f+∗ +∗=  (4.37) 

where f +∗  is the initial uniaxial damage stress. 

Expression (4.36) represents the equation of a three-dimensional surface defined in 

the coordinates system denoted by axes , ,x y xyσ σ τ∗ ∗ ∗ , see Figure 4.9.  

 
Figure 4.9 Rankine damage threshold surface in the fictitious space. 

For compressive stress states, the criterion proposed by Faria et al. (1998, 2000) is 

assumed. In this case, the equivalent stress is defined in the following form: 
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( )3 oct octKτ σ τ−∗ −∗ −∗= +  (4.38) 

In this format, directly inspired on the Drucker-Prager criterion, octσ −∗  and octτ −∗  are 

the octahedral normal stress and the octahedral shear stress obtained from σ −∗ . 

Constant K controls the aperture of the inherent Drucker-Prager cone. According to 

(4.35) and (4.38), the initial value of the damage threshold is equal to  

( )0
3 2

3
r K f−∗ −∗= −  (4.39) 

Expression (4.38) represents the equation of a three-dimensional surface defined in 

the coordinates system denoted by axes , ,x y xyσ σ τ∗ ∗ ∗ , see Figure 4.10. 

 
Figure 4.10 Faria damage threshold surface in the fictitious space. 
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4.3.3 Evolution of the Damage Variables. Inelastic Behaviour 

The damage indexes ( )d d r+ + +∗=  and ( )d d r− − −∗=  are explicitly defined in 

terms of the corresponding current values of the damage thresholds, so that they are 

monotonically increasing functions such that 0 1d ±≤ ≤ . In the present work, the 

damage variables are computed according to the laws proposed by Cervera et al. 

(1999) and Cervera (2003). In tension, the softening law takes the exponential form 

( ) 0 0

0

1 exp 2 d
r r rd r H
r r

+∗ +∗ +∗
+ +∗ +

+∗ +∗

⎧ ⎫⎛ ⎞−⎪ ⎪= − ⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 (4.40) 

where constant 0dH + ≥  is defined as 

1
d ch

d
d ch

H lH
H l

+
+

+=
−

  (4.41) 

where  

( )2
1

2d
f

f
H

E G L

+∗
+

∗ +∗ += =   (4.42) 

The term dH +  depends only on material properties in the fictitious space, i.e. the 

uniaxial tensile damage threshold f +∗ , the Young’s modulus E∗  and the tensile 

mode I fracture energy per unit area fG+∗ . It measures the brittleness of the material 

in tension and it can be also termed 1 L+ , since the unit of the dH +  parameter is 

the inverse of a length.  

In Eq. (4.41), the characteristic length chl  of the element has been introduced to 

ensure mesh-size objective results, according to Bazant and Oh (1983). The 
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element characteristic length is the computational width of the fracture zone (Rots 

et al. 1985, Rots and Blaauwendraad 1989, Oliver 1989); it is computed depending 

on the geometric dimensions of the element. The specific dissipated energy D +∗  is 

then scaled for each element so that the equation 

fchD l G+∗ +∗=  (4.43) 

holds. This makes the tensile softening modulus dH + , which defines the softening 

response, dependent on the element size. It also sets a maximum size for the 

elements that can be used in the analysis.  

The expression (4.41) has been obtained by calculating the specific energy 

dissipated in an ideal uniaxial experiment in which the tensile strain increases 

monotonically and quasi-statically from an initial unstressed state to another in 

which full degradation takes place. In fact, from Equations (4.19), (4.20), (4.35) 

and (4.36) it derives that 

( ) ( )
0

0

0
0

21
2

t

t

t

t

r

r r

D D dt

d dt

r d dr
E

ψ

+∗

+∗ +∗

=∞
+∗ +∗

=

=∞
+∗ +

=

=∞
+∗ + +∗

∗
=

=

=

′=

∫

∫

∫

 (4.44a, b, c) 

where 0 1 2 : 0ψ +∗ +∗ ∗= ≥σ ε  is the positive part of the elastic free energy potential 

(see Chapter 2), and the rate of damage has been expressed as ( )d d r+ + +∗′= . 

Using Equation (4.40), integrating and equating 
f chD G l+∗ +∗= , we finally obtain 
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expression (4.41). For further details on calculations, the reader is referred to 

Cervera (2003). 

On the basis of the aforementioned considerations, it is evident that the specific 

softening parameter dH +  measures the brittleness of the material in tension, while 

the elemental softening parameter dH +  measures the brittleness of the finite 

element in tension. 

 
Figure 4.11 Uniaxial stress-strain curve. Parabolic hardening and exponential softening. 

A different law is considered for damage variable d − , in order to represent the 

peculiar compressive inelastic behaviour of masonry. Let us consider the uniaxial 

stress-strain curve reported in Figure 4.11. Let us introduce the value 0r
−∗ ,  

establishing the size of the bounding damage surface for the onset of damage, 
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according to (4.35) and (4.39). Then, we assume the value er
−∗  corresponding to 

the peak value of the uniaxial strength ef
−∗  and the value p er r−∗ −∗≥  corresponding 

to the size of the bounding damage surface at peak strength. These values define 

the hardening part of the compressive uniaxial stress-strain curve for masonry. 

Notice that 0p er r r−∗ −∗ −∗≥ ≥ . For parabolic hardening we assume 

( )
2

0
1
1

e
d p

p

r rd r A r r r
r r

−∗ −∗
− −∗ −∗ −∗ −∗

−∗ −∗

⎛ ⎞−
= ≤ ≤⎜ ⎟⎜ ⎟−⎝ ⎠

 (4.45) 

while for the consequent exponential softening  

( ) 1 exp 2 pe
d p

e

r rrd r H r r
r r

−∗ −∗−∗
− −∗ − −∗ −∗

−∗ −∗

⎧ ⎫⎛ ⎞−⎪ ⎪= − ≥⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
 (4.46) 

where constants dA , 0dH − ≥  are defined as 

p e
d

e

r r
A

r

−∗ −∗

−∗

−
=  (4.47) 

1 2

d ch
d

p
d ch d d ch

e

H lH
r

H l A H l
r

−
−

−∗
− −

−∗

=
− −

  (4.48) 

where 

( ) ( )3 2
3 2 6 1d d p p e pA A r r r r−∗ −∗ −∗ −∗⎡ ⎤ ⎡ ⎤= − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (4.49) 

( )2
1

2d
f

f
H

E G L

−∗
−

∗ −∗ −= =   (4.50) 



Chapter 4 

 

164

As can be seen, also in compression the softening modulus is regularized according 

to the material fracture energy and the element size, in order to ensure mesh-size 

objective results. Therefore, the specific dissipated energy D −∗  is scaled for each 

element so that the equation 

fchD l G−∗ −∗=  (4.51) 

holds.  

The expression (4.48) has been obtained by calculating the specific energy 

dissipated in an ideal uniaxial experiment in which the compressive strain increases 

monotonically and quasi-statically from an initial unstressed state to another in 

which full degradation takes place. In fact, from Equations (4.19), (4.20), (4.35), 

(4.36), (4.38), (4.45) and (4.46) it derives that 

( ) ( )

( ) ( ) ( ) ( )

0

0

0

0
0

2

2 2

1
2

1 1
2 2

p

p

t

t

t

t

r

r r

r r r

r r r r

D D dt

d dt

r d dr
E

r d dr r d dr
E E

ψ

−∗

−∗ −∗

−∗ −∗ −∗

−∗ −∗ −∗ −∗

=∞
−∗ −∗

=

=∞
−∗ −

=

=∞
−∗ − −∗

∗
=

= =∞
−∗ − −∗ −∗ − −∗

∗ ∗
= =

=

=

′=

′ ′= +

∫

∫

∫

∫ ∫

 (4.52a, b, c, d) 

where 0 1 2 : 0ψ −∗ −∗ ∗= ≥σ ε  is the negative part of the elastic free energy potential 

(see Chapter 2) and the rate of damage has been expressed as ( )d d r− − −∗′= . 

Using Equations (4.45) and (4.46), integrating and equating 
f chD G l−∗ −∗= , we 
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finally obtain expression (4.48). For further details on calculations, the reader is 

referred to Cervera (2003). 

On the basis of the aforementioned considerations, it is evident that the specific 

softening parameter dH −  measures the brittleness of the material in compression, 

while the elemental softening parameter dH −  measures the brittleness of the finite 

element in compression. 

4.3.4 Tangent and Secant Operators 

Differentiating the constitutive law (4.25) with respect to time, we obtain in the 

fictitious space 

( ) ( )1 1d d d d∗ + +∗ − −∗ + +∗ − −∗= − + − − −σ σ σ σ σ  (4.53) 

Despite the simplicity of the stress split postulated in (4.20), which expresses ±∗σ  

as functions of the eigenvalues and eigenvectors of ∗σ , quite more complex 

operations are required to express +∗σ  as a function of ∗σ . It can be shown that the 

appropriate expressions are (Faria et al. 2000) 

: : :+∗ ∗ ∗ ∗ ∗ ∗= =σ Q σ Q C ε  (4.54) 

( ) ( ): : :−∗ ∗ ∗ ∗ ∗ ∗= − = −σ I Q σ I Q C ε  (4.55) 

where the projection operator is 

( )
3 3

1 , 1

2 i j
i ii ii ij ij

i i j i j
j i

H
σ σ

σ
σ σ

∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗
= =

≠

−
= ⊗ + ⊗

−∑ ∑Q P P P P  (4.56) 
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where ( )iH σ ∗  denotes the Heaviside function computed for the i-th principal 

stress iσ ∗ , ⋅  are the Macaulay brackets and 

( ) ( )1
2ij ji i j j i i jsymm∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= = ⊗ + ⊗ = ⊗P P p p p p p p  (4.57) 

On the other hand, the rate of the damage index can be expressed as 

( )d d r± ± ±∗′=  (4.58) 

where the first derivative term can be obtained from (4.40), (4.45) or (4.46). On 

loading, consistency requires (4.34), and therefore, it is necessary to differentiate 

(4.36) or (4.38) to derive the second term. On unloading, it is 0r±∗ = . Substituting 

(4.58) in (4.53), we finally obtain the desired expression 

tan :∗ ∗ ∗=σ C ε  (4.59) 

At the cost of the loss of rate of convergence, the tangent matrix can be replaced 

with the secant matrix, computed with the secant constitutive tensor 

( ) ( )( )sec 1 1 :d d∗ + ∗ − ∗ ∗⎡ ⎤= − + − −⎣ ⎦C Q I Q C  (4.60) 

which is much simpler to compute. 

Tangent and secant constitutive operators for the real orthotropic material are 

obtained in compliance with (4.18). 

4.4 Damage in the Real Orthotropic Space 

4.4.1 Damage Threshold Surfaces in the Real Orthotropic Space 

In Section 4.3.2 we have presented the two isotropic damage criteria to be assumed 

in the fictitious space. The expressions (4.36) and (4.38) represent the equations of 
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two three-dimensional surfaces defined in the coordinates system denoted by axes 

, ,x y xyσ σ τ∗ ∗ ∗ . 

Transformations of stresses (4.8) and (4.9) allow one to scale in distinct manners 

the two isotropic damage threshold surfaces assumed in the fictitious space. By 

means of such a mapping operation, shown in Figures 4.12 and 4.13, the desired 

real orthotropic criteria are reproduced in the coordinate system denoted by axes 

, ,x y xyσ σ τ . The corresponding orthotropic composite damage threshold surface 

is reported in Figure 4.14. 
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Figure 4.12 Rankine criterion in the fictitious space (a) and in the real space (b). 
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Figure 4.13 Faria criterion in the fictitious space (a) and in the real space (b). 
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Figure 4.14 Orthotropic composite damage threshold surface. 
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Owing to the choices of the Rankine and Faria criteria in the fictitious isotropic 

space, the stress transformation tensors, which have been defined in (4.10) and 

(4.11), take the specific forms 

( )
11

22

12

0 0

0 0

0 0

f
f

f
f

f
f

σ

+∗

+

+∗
+

+

+∗

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥′ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A  (4.61) 

( )

( )

11

22

12

0 0

0 0

2 6
0 0

f
f

f
f

f K

f

σ

−∗

−

−∗
−

−

−∗

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

′ ⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

A  (4.62) 

The choices of *f +  and *f −  are arbitrary. It is advisable to assume *
11f f+ +=  and 

*
11f f− −= , in order to obtain ( ) ( )11 11 1σ σ+ −′ ′= =A A . Such an assumption leads to 

scale the isotropic criteria only along the 2- and 3-axes, see Figures 4.9 and 4.10. It 

is evident that the transformation of space is feasible only if we know all the six 

parameters 11 11 22 22 12 12, , , , ,f f f f f f+ − + − + − , i.e. the strengths of the real  orthotropic 

material. Such parameters also represent the intersections of the real damage 

threshold surfaces with axes 1, 2 and 3, see Figure 4.15. 
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Figure 4.15 Damage surfaces intersections with the axes, in the fictitious isotropic space 

(a) and in the real orthotropic space (b).  

The first group of four strength parameters ( 11 11 22 22, , ,f f f f+ − + − ) are the uniaxial 

tensile and compressive strengths along the material axes, which are natural in 

view of the orthotropic behaviour of masonry. They can be estimated by means of 

the experimental tests shown in Figure 4.16. It suffices that these tests are 

performed under displacement control conditions to obtain also the inelastic 

parameters that define the model, viz. the four independent fracture energies 

(tension and compression) and the peak strain in compression. 
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Figure 4.16 Natural tests used to define the transformation of space. Uniaxial tension: 

parallel to bed joints (a) and normal to bed joints (b). Uniaxial compression: parallel to bed 
joints (c) and normal to bed joints (d).  

Three additional tests are necessary to fully define the space transformation. They 

are nonstandard and were proposed by Lourenco et al. (1998). The first one (Figure 

4.17a) controls the coupling between normal stress values in the case of 

compressive failure and permits to estimate the parameter K termed in (4.38). The 

second test (Figure 4.17b) weights the shear stress contribution to compressive 

failure and permits to evaluate the 12f −  parameter. The third test (Figure 4.17c) 

weights the shear stress contribution to tensile failure and permits to evaluate the 

12f +  parameter. 

 

Figure 4.17 Nonstandard tests used to calibrate the parameters: K (a), 12f −  (b) and 12f +  (c).  
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4.4.2 Orthotropic Softening Behaviour 

It is important to note that in (4.40)-(4.42) and (4.45)-(4.50) there are terms without 

the apex ( ∗ ) we have assigned to variables related to the fictitious isotropic space. 

In fact, such variables as d ± , dH ±  and dH ±  can be assumed equal in both the 

spaces, if we want the material brittleness to be the same, in tension or 

compression,  in all directions. In this particular case it results that 

( ) ( ) ( )2 2 2

11 22

1 ,1 2 ,2 1 2

1 1 1
2 2 2f f f

f f f
E G E G E G L L L

± ± ±∗

± ± ∗ ±∗ ± ± ±∗= = ⇒ = =   (4.63) 

This assumption leads to the same elemental softening parameters, for tension and 

compression, in the fictitious and real spaces. Since conventionally we assume 
* * *

11 1 ,1, , f ff f E E G G± ± ± ±= = =  , as discussed in Section 3.2.3,  it follows that 

( )2

22 11
,2 ,1

2 1
f f

f f
G G

E E

± ±
± ±=   (4.64) 

i.e., a restriction on the fracture energy values, in order to ensure isotropic 

brittleness in tension or compression.  

In Chapter 3, the possibility of including the material softening orthotropy has been 

discussed. The same concept is generalized herein for the Tension-Compression 

Damage Model. In the same way, we assume two different elemental softening 

parameters along the material axes, for tension and for compression.  

Consequently, two opportune specific softening parameters dH ±∗  (or 1 L±∗ ) are 

chosen in the fictitious space. In practice, in the present work the following 

properties are chosen in the fictitious space: 
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( )

*
11

*
1

2

2f

f f

E E

f
G L

E

± ±

±∗
±∗ ±∗

±∗

=

=

=

 (4.65a, b, c) 

and the following expressions are adopted for L+∗  and L−∗ : 

( ) ( )2 2
1 2cos sinL L Lα θ α θ+∗ + += − + −   (4.66) 

( ) ( )2 2
1 2sin cosL L Lα θ α θ−∗ − −= − + −   (4.67) 

in which ( )2

1 1 ,1 112 fL E G f± ± ±= , ( )2

2 2 ,2 222 fL E G f± ± ±= , α  is the angle denoting 

the direction of the maximum main stress and θ  is the angle of orthotropy. Both 

the angles  are measured counter clockwise from the global x-axis to the material 1-

axis. 

Such an assumption permits to account for totally different fracture energies along 

the material axes, hence a full orthotropic softening behaviour.  

4.5 Numerical Implementation of the Proposed 
Model  

The steps for implementing the Two-Parameters Damage Model for orthotropic 

materials into the framework of standard non-linear finite element programs (Simó 

and Hughes, 1998; Crisfield, 1991) are given in the following Table 4.1.  

The proposed model adopts a strain-driven formalism consistent with standard 

displacement-based finite element codes. This feature provides high algorithmic 

efficiency, which is of primary importance when analyses of even large scale 

masonry structures are carried out.  
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Table 4.1 Algorithm used for the proposed model 

START 

• LOAD INCREMENTAL LOOP: n = 1, NINCR 

• EQUILIBRIUM ITERATION LOOP: i = 1, NITER  

IF ( 1 1n or i> > ) GOTO 2 

1) Define strengths, constitutive tensors and rotation tensors 

11 22 12 11 22 12, , , , ,f f f f f f+ + + +∗ +∗ +∗  

11 22 12 11 22 12, , , , ,f f f f f f− − − −∗ −∗ −∗  

, ∗′C C , T  

1 T− −′= ⋅ ⋅C T C T  

2) Calculate the transformation tensors: 

( )σ + ′A , ( )σ − ′A  

( )1σ σ± − ± ′= ⋅ ⋅A T A T  

( ) 1 1 1( )
i i iσ σ σ− + − − −= ⋅ + ⋅A A P A I - P  

( ) ( ) ( )1 1 1i iε σ− − −∗= ⋅ ⋅A C A C  

3) Compute tangent stiffness: 

( ) ( ) ( ) ( )
11 1 1 1tan tann i i n i iσ ε

−− − − −∗⎡ ⎤= ⋅ ⋅⎢ ⎥⎣ ⎦
C A C A  

( )( ) ( )1 1tan: :
n i n ie

V

dV
− −

= ∫K B C B  

( ) ( )( ) 11
1

n in i ene
e

−−
==K A K  

4) Compute displacement and strains: 
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( ) ( ) ( )1 11n in i n i
residδ

− −−= ⋅U K F  

( ) ( ) ( )1n i n i n iδ−∆ = ∆ +U U U  

( ) ( ):n i n i=ε B U  

5) Calculate real effective stresses and split: 

( ) ( ):n i n i=σ C ε  

( ) ( )
3

1

i
j j j

j

H σ
=

= ⊗∑P p p  

( ) ( ) ( ):
n i i n i+ =σ P σ  

( ) ( ) ( ) ( ) ( ):
n i n in i i n i− + ⎡ ⎤= − = ⎣ ⎦σ σ σ I - P σ  

6) Update the transformation tensors: 

( ) ( )
i i iσ σ σ+ −= ⋅ + ⋅A A P A I - P  

( ) ( ) ( )1i iε σ−∗= ⋅ ⋅A C A C  

7) Transform real strains to the fictitious isotropic space: 

( ) ( ):
n i n iε∗ ∗=ε A ε  

8) Calculate fictitious effective stresses and split: 

( ) ( ):
n i n i∗ ∗ ∗=σ C ε  

( ) ( )
3

1

i

j j j
j

H σ∗ ∗ ∗ ∗

=

= ⊗∑P p p  

( ) ( ) ( ):
n i i n i+∗ ∗ ∗=σ P σ  

( ) ( ) ( ) ( ) ( ):
n i n i n i i n i−∗ ∗ +∗ ∗ ∗⎡ ⎤= − = ⎢ ⎥⎣ ⎦
σ σ σ I - P σ  
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9) Compute damage indexes and total stresses in the fictitious space: 

( ) ( ) ( )1
n i n i

d+∗ + +∗= −σ σ  

( ) ( ) ( )1
n i n i

d−∗ − −∗= −σ σ  

10) Return to the real orthotropic stress space: 

( ) ( ) ( )1 *:
n i n iσ −+ + +=σ A σ  

( ) ( ) ( )1 *:
n i n iσ −− − −=σ A σ  

( ) ( ) ( )n i n in i + −= +σ σ σ  

11) Compute residual forces: 

( )( ) ( ):
n i n ie T

resid ext
V

dV= −∫F B σ f  

( ) ( )( )1

n in i ene
resid e resid==F A F  

IF 
( )

1

n i

resid

ext

tol i i> ⇒ = +
F

f
 GO BACK TO 3 

else: 

• END EQUILIBRIUM ITERATION LOOP 

Converged solution for the nth increment. 

Compute new incremental solution: 1n n= +  

• END LOAD INCREMENTAL LOOP 

4.6 Numerical Examples 
This section delves into the numerical application of the proposed model to real 

cases study. The capability of the proposed model to reproduce the strength of 
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different masonry types is demonstrated through a comparison with available 

experimental data in masonry panels subjected to in-plane loading conditions. The 

nonlinear behaviour of the model is also discussed. 

Calculations are performed with an enhanced version of the finite element program 

COMET (Cervera et al. 2002), developed at the International Center for Numerical 

Methods in Engineering (CIMNE, Barcelona). The problem is solved 

incrementally in a (pseudo) time step-by-step manner. Within each step, a modified 

Newton–Raphson method (using the secant stiffness matrix), together with a line 

search procedure, are used to solve the corresponding non-linear system of 

equations (Cook et al., 2002; Zienkiewicz and Taylor, 2000; Simó and Hughes, 

1998; Crisfield, 1991). Convergence of a time step is attained when the ratio 

between the norm of the iterative residual forces and the norm of the total external 

forces is lower than 1%. 

4.6.1 Simulation of Experimental Tests Conducted by Page 

In the early 1980s, Page published the results of a series of tests designed to assess 

the directional strength characteristics of masonry panels subjected to in-plane 

monotonic loading. For that purpose, he conducted a series of biaxial tension-

compression (Page, 1983) and biaxial compression–compression (Page, 1981) 

tests, which still are the most comprehensive experimental program conducted on 

the in-plane behaviour of brick masonry. The test specimen consisted of a 360 x 

360 x 54 mm3 panel of running bond brick masonry constructed by adhering the 

bricks in their designated place to a temporary plate, and then pouring in mortar. A 

total number of 102 panels were tested. Half-scale bricks were used, where the 

actual bricks were cut in half in all three dimensions, in order to obtain 115 x 40 x 

54 mm3 elements. In the corners, each individual brick was sawn to the appropriate 

shape required to fit the designated angle. The specimens were subjected to a 

biaxial load-controlled test in the load rig shown in Figure 4.18. In order to 
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alleviate the restraining effect of the loading caps, a series of brush platens were 

used to transfer the load to the panel. The tests were conducted for five different 

orientations, 0°, 22.5°, 45°, 67.5° and 90°. The results from all orientations were 

then gathered to obtain a fairly comprehensive picture of the directional strength 

characteristics of brick masonry. 

 
Figure 4.18 Page test setup. 

The panels were loaded proportionally in the principal stress directions σ1 and σ2 

along different orientations θ with respect to the material axes.  

The values assumed for real strengths are 11 0.43f MPa+ = , 22 0.32f MPa+ =  and 

12 0.33f MPa+ =  for tension and 11 8.74f MPa− = , 22 8.03f MPa− =  and 

12 2.71f MPa− =  for compression. The parameter K of (4.38) has been considered 

equal to 0.118. All the aforementioned values have been selected according to data 

given by Page (1983) and parameters calibrated by Lourenço et al. (1998). The 
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composite damage criterion features a low degree of anisotropy ( 1.34x yf f+ + =  

and 1.09x yf f− − = ). For all the tests, the material properties in the 1-axis have 

been selected for the fictitious space. The comparisons between the experimental 

values and the model are given in Figures 4.19-4.21, corresponding to orientations 

of the bed joints equal to 0°, 22.5° and 45°, respectively. For sake of comparison, 

the figures also report the results of the simulations obtained by the plasticity 

model of Lourenco et al. (1997). 

Globally, good agreement is found. The uniaxial compressive strength parallel to 

the bed joints seems to be overpredicted by the model, see Figure 4.19, which is 

due to a debatable definition of failure in the experiments for these loading 

conditions (early splitting of the bed joints in tension), see Dhanasekar et al. 

(1985). In fact, the individual “piers” of masonry formed after splitting of the bed 

joints can withstand a much higher load before collapse is obtained. 

The results obtained by the proposed model are consistent with the ones obtained 

by Lourenço et al.. Nevertheless, the Two-Parameters Damage Model that has been 

presented is much more advantageous, because of its intrinsic simplicity. The 

favourable strain-driven format provides robustness and high algorithmic 

efficiency, whereas the stress-driven format of an orthotropic plasticity model can 

sometimes lead to ill-conditioning of the return-mapping algorithm (Lourenço et 

al. 1995). 
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Figure 4.19 Comparison between the proposed model, the plasticity model of Lourenço et 
al. (1997) and the experimental results from Page (1983): θ=0°. 
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Figure 4.20 Comparison between the proposed model, the plasticity model of Lourenço et 
al. (1997) and the experimental results from Page (1983) ): θ=22.5°. 
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Figure 4.21 Comparison between the proposed model, the plasticity model of Lourenço et 
al. (1997) and the experimental results from Page (1983) ): θ=45°. 
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4.6.2 Simulation of Experimental Tests Conducted by Ganz and 

Thürlimann 

A smaller testing program of biaxially loaded masonry panels was carried out at 

ETH Zurich. The panels, with dimensions 1200 × 1200 × 150 mm3, were loaded 

proportionally in the principal stress directions σ1 and σ2 along different 

orientations θ with respect to the material axes as defined previously. The twelve 

panels of hollow clay brick masonry, denoted by panels K1 to K12 and reported by 

Ganz and Thürlimann (1982), are considered.  

The values assumed for real strengths are 11 0.28f MPa+ = , 22 0.01f MPa+ =  and 

12 0.04f MPa+ =  for tension and 11 1.83f MPa− = , 22 7.63f MPa− =  and 

12 3.41f MPa− =  for compression. The parameter K of (4.38) has been considered 

equal to 0.072. All the aforementioned values have been selected according to data 

given by Ganz and Thürlimann (1982) and parameters calibrated by Lourenço et 

al. (1998). The composite damage criterion features a high degree of anisotropy 

( 28x yf f+ + =  and 4.17y xf f− − = ) These high ratios are due to the high 

perforation of the clay bricks. For all the tests, the material properties in the 1-axis 

have been selected for the fictitious space. Figure 4.22 shows the shape of the 

adopted composite damage criterion both with the points representing the set of 

strength experimental data. 
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Figure 4.22 Composite damage criterion and experimental results from Ganz and 

Thürlimann (1982). 

A single finite element was considered in the numerical simulation. Two stresses 

were applied to the element, namely σx and σy , and then the tangential stress τxy 

was increased until failure. 

The test results, the proposed model results and the ratio between experimental and 

predicted failure are given in Table 4.2. Notice that this ratio is a measure of the 



Two-Parameters Damage Model for Orthotropic Materials 

 

187 

norm of the stress vector in the ( , ,x y xyσ σ τ )-space which equals 

( )1 22 2 2
x y xyσ σ τ+ + . Panels K5 and K9 are not included because the boundary 

conditions affected the failure mode of panel K5 and panel K9 included 

reinforcement. 

The model seems to be able to reproduce the strength behaviour of this type of 

anisotropic masonry with good accuracy. The error is bounded by a maximum 

value of 5%, corresponding to test K8. The mean of the ratios results equal to 

0.995. 

Table 4.2 Comparison between the proposed model and the experimental results obtained 
by Ganz and Thürlimann (1982). 

σx σy τxy σx σy τxy

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa)
K1 -0.08 -0.92 0.42 -0.08 -0.92 0.44 0.99
K2 -0.17 -1.42 0.62 -0.17 -1.42 0.61 1.00
K3 0.00 -7.63 0.00 0.00 -7.63 0.00 1.00
K4 -1.83 0.00 0.00 -1.83 0.00 0.00 1.00
K6 -0.32 -0.32 0.32 -0.32 -0.32 0.34 0.98
K7 -0.39 -2.25 0.93 -0.39 -2.25 0.94 1.00
K8 -0.22 -0.04 0.09 -0.22 -0.04 0.12 0.95
K10 -2.11 -6.44 0.00 -2.15 -6.44 0.00 1.00
K11 -2.04 -4.49 1.23 -2.04 -4.49 1.39 0.99
K12 -2.03 -2.03 1.08 -2.03 -2.03 0.69 1.04

Present model
RatioPanel

Experimental results

 

For sake of completeness, Figures 4.23-4.29 report, for each test, the comparison 

between the point of coordinates , , ,, ,x u y u xy uσ σ τ , which denote the experimental 

failure conditions, with the section of the composite damage threshold surface at  a 

constant value of ,y uσ . These figures help to understand better how the proposed 

methodology models the shear strength behaviour of this type of masonry. It 

appears that the tension regime represents the majority of the composite damage 

surface domain. 
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Figure 4.23 Comparison between K1 test and the composite damage threshold surface. 
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Figure 4.24 Comparison between K2 test and the composite damage threshold surface. 
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Figure 4.25 Comparison between K6 test and the composite damage threshold surface. 
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Figure 4.26 Comparison between K7 test and the composite damage threshold surface. 
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Figure 4.27 Comparison between K8 test and the composite damage threshold surface. 
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Figure 4.28 Comparison between K11 test and the composite damage threshold surface. 
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Figure 4.29 Comparison between K12 test and the composite damage threshold surface. 

4.6.3 Simulation of Experimental Tests Conducted by Lurati et al. 

The nine panels of hollow concrete block masonry, denoted by panels ZSW1 to 

ZSW9 and tested by Lurati et al. (1990) as a part of the ETH Zurich program, are 

considered next. Panel ZSW3 is not considered because the head joints were not 

filled. 

The values assumed for real strengths are 11 0.01f MPa+ = , 22 0.01f MPa+ =  and 

12 0.01f MPa+ =  for tension and 11 5.78f MPa− = , 22 9.12f MPa− =  and 

12 3.98f MPa− =  for compression. This type of masonry is practically a no-tension 

material. The parameter K of (4.38) has been considered equal to 0.0. All the 

aforementioned values have been selected according to data given by Lurati et al. 

(1990) and parameters calibrated by Lourenço et al. (1998). The composite damage 

criterion features a reasonable degree of anisotropy in compression, with 
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1.58y xf f− − = . For all the tests, the material properties in the 1-axis have been 

selected for the fictitious space. Figure 4.30 shows the shape of the adopted 

composite damage criterion both with the points representing the set of strength 

experimental data. For sake of comparison, the damage domain formulated by 

Berto et al. (2002) is also reported. 
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Figure 4.30 Composite damage criterion, damage domain formulated by Berto et al. (2002) 

and experimental results from Lurati et al. (1990). 

A single finite element was considered in the numerical simulation. Two stresses 

were applied to the element, namely σx and σy , and then the tangential stress τxy 

was increased until failure. 
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The test results, the proposed model results and the ratio between experimental and 

predicted failure are given in Table 4.3. This ratio is again a measure of the norm 

of the stress vector in the ( , ,x y xyσ σ τ )-space which equals ( )1 22 2 2
x y xyσ σ τ+ + .  

The model seems to be able to reproduce the strength behaviour of this type of 

anisotropic masonry with good accuracy. The error is bounded by a maximum 

value of 7%, corresponding to test ZSW7. The mean of the ratios results equal to 

0.993. 

Table 4.3 Comparison between the proposed model and the experimental results obtained 
by Lurati et al. (1990). 

σx σy τxy σx σy τxy

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa)
ZSW1 0.00 -9.12 0.00 0.00 -9.12 0.00 1.00
ZSW2 -6.12 -0.83 0.00 -6.01 -0.83 0.00 1.02
ZSW4 -5.98 -9.13 0.00 -5.76 -9.12 0.00 1.01
ZSW5 -3.06 -3.06 3.06 -3.06 -3.06 3.07 1.00
ZSW6 -4.60 -4.60 2.93 -4.60 -4.60 3.06 0.99
ZSW7 -6.12 -6.12 0.00 -6.60 -6.60 0.00 0.93
ZSW8 -2.34 -0.40 0.97 -2.34 -0.40 0.98 1.00
ZSW9 -0.97 -5.66 2.35 -0.97 -5.66 2.36 1.00

Present model
RatioPanel

Experimental results

 

For sake of completeness, Figures 4.31-4.34 report, for each test, the comparison 

between the point of coordinates , , ,, ,x u y u xy uσ σ τ , which denote the experimental 

failure conditions, with the section of the composite damage threshold surface at  a 

constant value of ,y uσ . As can be seen, the proposed model is able to capture the 

correct shear strength of this orthotropic masonry. On the contrary, the damage 

domain formulated by Berto et al. leads to conservative ultimate values, see 

Figures 4.32-4.34. 
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Figure 4.31 ZSW5 test, domain by Berto et al. (2002) and proposed model. 
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Figure 4.32 ZSW6 test, domain by Berto et al. (2002) and proposed model. 
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Figure 4.33 ZSW8 test, domain by Berto et al. (2002) and proposed model. 
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Figure 4.34 ZSW9 test, domain by Berto et al. (2002) and proposed model. 
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4.6.4 Inelastic tensile and compressive orthotropic behaviour 

This example delves into the proposed model in order to understand how it models 

the inelastic orthotropic behaviour of masonry. 

For this aim, we consider a masonry subjected to uniaxial tension. The material 

properties, referred to the material axes 1 and 2, are listed in Table 4.4. The values 

chosen for the material parameters illustrate the fact that completely different 

behaviours along the two material axes can be reproduced. In particular, it results 

that the restriction (4.64) between fracture energies is not valid. Therefore, the 

brittleness of the material is not the same in all the directions. This softening 

orthotropy can be adequately described by the proposed model. In fact, two 

different softening parameters along the material axes x and y can be considered, 

by choosing the material properties for the mapped fictitious solid according to 

(4.65a, b, c).  

Table 4.4 Material properties for uniaxial tension test. 

Material Properties 

E1=E* 3000 MPa  f11
+=f +* 0.35 MPa  f1

-=f -* 7.00 MPa 

E2 2000 MPa  f22
+ 0.15 MPa  f2

- 3.00 MPa 

v12=v* 0.1  f12
+ 0.20 MPa  f12

- 3.00 MPa 

v21 0.15  Gf,1
+=G+* 100 J/m2  Gf,1

-=G -* 40000 J/m2 

G12 900   MPa  Gf,2
+ 13.8  J/m2  Gf,2

- 5510 J/m2 
 

Figure 4.35 shows the stress-strain responses for angles of orthotropy equal to 0°, 

45° and 90°. The present model considers an exponential softening law, which is 

sound for a quasi-brittle material such as masonry. Once the fracture energy is 

exhausted, a no-tension material is recovered. The material strength in the y-

direction degrades at a faster rate than the material strength in the x-direction, 

according to the selected material data. 
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Figure 4.35 Stress-strain responses to uniaxial tension for different angles of orthotropy 

with orthotropic brittleness. 

Then, we consider a masonry subjected to uniaxial compression. The same 

observations made for the tension test hold. The only exception concerns the 

compressive nonlinear behaviour. A parabolic hardening followed by exponential 

softening is considered for the stress-strain diagrams, with completely different 

compressive fracture energies along the material axes, see Figure 4.36. The peak 

strength value is assumed to be reached simultaneously on both materials axes, i.e. 

isotropic hardening, followed by orthotropic softening as determined by the 

different fracture energies. The model allows one to set an ultimate value of the 

strain, from which the material begins to soften. 
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Figure 4.36 Stress-strain responses to uniaxial compression for different angles of 

orthotropy with orthotropic brittleness. 

An important feature of the proposed model is the particular behaviour during 

unloading/reloading conditions. In compliance with the Continuum Damage 

Mechanics (see Chapter 2), in case of unloading the damage does not rise and, 

consequently, unloading occurs until the origin according to a damaged Young 

modulus, see Equations (4.26) and (4.27). As discussed in Chapter 3, the damage 

constitutive law differs from the plasticity constitutive law in that no plastic 

irreversible deformation occurs: all the deformation is recovered during the 

unloading, hence the unloading  paths are not parallel.  

In addition, the two-parameters damage model is able to capture the unilateral 

behaviour exhibited by masonry when passing from tension to compression. This is 

due to the assumption of the stress split described by Equations (4.20) and (4.21) 
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and to the definition of two different variables to describe tensile and compressive 

damage, see Equations (4.25), (4.26) and (4.27).  

This peculiarity of the model is emphasized in Figure 4.37, which shows the 

numerical response of a masonry specimen subjected to tensile-compressive cycles. 

A cyclical displacement history is applied to the specimen with horizontal bed 

joints. As can be seen, the unloading occurs until the origin of the stress-strain 

diagram, according to a damaged stiffness. A successive reloading follows the 

same unloading branch, until the damage threshold is reached again. 

 
Figure 4.37 Uniaxial response under cyclical displacement history: global behaviour. 

Figure 4.38 shows a zoom to the origin of the strain-stress diagram of Figure 4.37. 

As can be seen, when reversing the sign of the external loading, the constitutive 

model is able to distinguish tension from compression. In particular, the stiffness 

recovery upon loading reversal is correctly represented. For instance, when passing 
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from tension to compression, the model accounts for the crack closure phenomenon 

in masonry. 

 
Figure 4.38 Uniaxial response under cyclical displacement history: detail of the stiffness 

recovery upon loading reversal. 

4.7 Conclusions 
In this Chapter, a plane-stress macro model for finite element analysis of 

orthotropic materials has been presented. The study focuses on application to 

masonry, but the model could also be suitable for other orthotropic materials, such 

as wood and fibre reinforced composites.  

The proposed model is capable of modelling the following features of masonry: 

• the elastic orthotropy of the intact material; 
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• the orthotropy along the two natural directions of masonry, parallel and 

orthogonal to the mortar joints; 

• the different strengths and inelastic behaviours along these two directions; 

• the dependence of the response on the inclination of the natural axes of the 

material; 

• the  unloading (and reloading) depending on the damaged stiffness;  

• the stiffness recovery at crack closure under alternate loading. 

The Two-Parameters Damage Model is based on the concept of mapped tensor 

(Betten, 1983) from the orthotropic real space to the fictitious one. A one-to-one 

mapping relationship is established between the behaviour of the real material and 

that of a fictitious one. The problem is solved in a fictitious space and the results 

are transported to the real field. 

In order to account for different behaviours in tension and compression, the 

relationship between the two spaces is defined by means of two transformation 

tensors, which are related to tensile stress states and compressive stress states, 

respectively. Such an enhancement of the model proposed in Chapter 2, permits to 

reproduce different ultimate behaviours in tension and compression by considering 

two distinct isotropic criteria in the fictitious space. Each of them describes 

different failure mechanisms. The first criterion is associated with a localized 

fracture process, namely cracking of the material, and the second criterion is 

associated with a more distributed fracture process, i.e. the crushing of the material. 

In this study, a Rankine criterion for tension and a Faria criterion in compression 

have been selected for the fictitious space.   

It is possible to adjust the two assumed isotropic criteria to the particular behaviour 

of the orthotropic material. In fact, the two distinct transformations allow one to 

scale in distinct manners the two isotropic damage threshold surfaces assumed in 
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the fictitious space. The result is an implicit composite damage threshold surface 

defined in the real space.  

The constitutive model assumed in the fictitious space is the Tension-Compression 

Damage model proposed by Faria and Oliver (1993) which has been extensively 

used (Faria et al. 1998, 2000, 2004; Cervera et al. 1995, 1996, 1999, 2003). An 

essential feature of the proposed model is that a split into tensile and compressive 

contributions is introduced. The model includes different hardening/softening 

behaviour for tension and compression. The softening behaviour has been 

modelled with a smeared approach in which the damaged material is still 

considered as a continuum. The damage variables are related by an equivalent 

length to the released energy per unit cracked area. With the assumption that the 

fracture energy is uniformly dissipated in a representative area, the finite element 

calculations lead to objective results with regard to mesh refinement. 

The orthotropic nature of the Tension-Compression Damage Model adopted in the 

fictitious space has been demonstrated. This feature, both with the assumption of 

two distinct damage criteria for tension and compression, does not permit to term 

the fictitious space as “isotropic”. Therefore, the present methodology turns the 

original concept of “mapping the real space into an isotropic fictitious one” into the 

innovative and more general one of “mapping the real space into a favourable (or 

convenient) fictitious one”. 

The model has been fully formulated for the 2-dimensional case. However, it can 

be easily extended to the 3-dimensional case, see Oller et al. (2003). 

The proposed model provides high algorithmic efficiency, a feature of primary 

importance when analyses of even large scale masonry structures are carried out. 

To account for this requisite it adopts a strain-driven formalism consistent with 

standard displacement-based finite element codes. The implementation of the 

model in finite element programs is straightforward. 



Chapter 5.                                             

Localized Damage Model for Orthotropic 

Materials 

Local continuum damage models are generally combined with the traditional 

smeared damage approach in the finite elements analyses of masonry structures, as 

previously discussed in Chapter 1. In this case, only a general information is 

provided about the level of damage expected on the structure. In fact, the damage is 

simulated in an unrealistic way, involving significant volumes and spreading over 

large regions of the structure. This is not accurate, since localized cracks can be 

normally observed in structures with brittle behaviour, such as masonry 

constructions, both in service and at the ultimate condition. 

In addition, it has been observed that the smeared crack approach suffers from 

spurious mesh-bias dependence in the discrete problem. This drawback leads to 

loss of results objectivity when different spatial discretizations are considered in 

the finite elements problem. 
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In order to overcome all these drawbacks, in this work the traditional smeared 

crack approach has been modified in such a way that it can reproduce localized 

individual (discrete) cracks. This is achieved by means of the implementation of a 

crack tracking algorithm. 

Compared with the smeared cracking approach, the tracking method shows a better 

capacity to predict realistic collapsing mechanisms. The resulting damage in the 

ultimate condition appears localized in individual cracks. Moreover, the results do 

not suffer from spurious mesh-size or mesh-bias dependence. 

In this Chapter, the crack tracking technique formulated by Clemente et al. (2006), 

is adopted to study the structural behaviour of in-plane loaded shear walls. The 

original formulation is enhanced, by combining it with the continuum damage 

model for orthotropic materials that has been detailed in Chapter 4. The result is an 

efficient numerical tool which is able to account for material orthotropy and crack 

localization. 

After a brief overview of the cracking approaches and the description of the crack 

tracking technique, we will consider an in-plane loaded shear wall with an opening. 

The validity of the model will be demonstrated, by comparing the numerical results 

with the experimental evidence. The analysis will be carried out by utilizing a finite 

elements macro-model, in which no distinction is made between bricks and mortar. 

Therefore, the computational strategy proposed herein is firstly aimed at the 

analysis of large and complex masonry structures. 

5.1 Cracking Approaches 
The numerical modelling of cracks growth and propagation is a difficult task. The 

question of predicting correctly the direction of crack propagation is deemed as the 

main difficulty to be overcome in the discrete problem. 
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With the advent of digital computers and computational mechanics, two different 

formats have evolved to model the phenomenon of tensile cracking in the context 

of finite element analysis: the discrete and the smeared crack approaches.  

 
Figure 5.1 Crack modelling at continuum level: discrete approach (a) and smeared 

approach (b). 

 
Figure 5.2 Continuum and discrete approaches to crack modelling: discontinuous 

displacement (a)  and continuous (smeared) displacement (b). 
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In the discrete crack models, displacements jumps across the crack are explicitly 

considered. Consider the body Ω , as shown in Figure 5.1a, crossed by a 

discontinuity S, which represents a crack. Regions +Ω  and −Ω  are the parts of the 

body located “in front” and “behind” the crack. In Figure 5.2a, the top graph shows 

the normal displacement along a line normal to the crack, with a discontinuous 

jump w, which represents the normal opening of the crack, occurring at S. The 

corresponding normal strain component is shown in the bottom graph, with a 

singularity occurring at S. The behaviour of the crack must be established through a 

softening traction-jump law. 

In the smeared crack models, displacements jumps across the crack are smeared 

over the affected elements. In Figure 5.1b,  S +  and S −  are two lines that run 

parallel to S, at a relative distance h. In this model, the normal jump w occurring at 

S is smeared over the distance h. The top graph in Fig. 5.2b shows the normal 

displacement along a line normal to the crack, with the normal jump w smeared 

continuously between S +  and S − . The corresponding normal strain is shown in 

the bottom graph, with no discontinuity occurring at S. The behaviour of the crack 

can be established through a softening stress–(total) strain law. 

5.1.1 Discrete Crack Approach 

The discrete crack approach is usually based on the Fracture Mechanics theory. 

The criteria for crack propagation and, eventually, the prediction of the direction of 

propagation come directly from this theory, which is, mostly, based on energy 

criteria. Discrete cracks models represent the individual cracks as actual 

discontinuities in the topology of the FE mesh. 

One of the first records of such an approach is due to Ngo and Scordelis (1967), 

who modelled cracks by separation of nodal points initially occupying the same 

spatial position. Obviously, the response was strongly mesh-dependent, as cracks 



Localized Damage Model for Orthotropic Materials 

 

207 

could only form along the element boundaries, see Figure 5.3a. Furthermore, when 

a crack propagates, the topology of the mesh is changed, and the updating 

procedures are time consuming. The approach was later refined so that new 

elements could be introduced whose boundaries were along the spreading crack, 

see Figure 5.3b. This reduces the mesh dependency of the approach, but remeshing 

techniques are required and the computing time increases. Also, it was recognized 

almost from the beginning that standard FE were not appropriate to capture the 

singular stress and strain fields that develop at the tip of the crack (Tong and Pian, 

1973). Consequently, special FE were developed, see Owen and Fawkes (1983). 

 
Figure 5.3 Discrete crack models: without (a) and with (b) remeshing. 

5.1.2 Smeared Crack Approach 

The smeared crack approach is based on the Continuum Mechanics theory. The 

criteria for crack propagation and the prediction of the direction of propagation 

come directly from this theory, which is, mostly, based on failure criteria expressed 

in terms of stresses or strains. The cracked material is assumed to remain a 

continuum and the mechanical properties (stiffness and strength) are modified to 

account for the effect of cracking, according to the evolving states of strain and/or 

stress. Therefore, remeshing is, in principle, unnecessary, see Figure 5.4a. 
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Figure 5.4 Smeared crack approach (a) and mesh bias dependence (b).  

The simplicity of the approach, proposed by Rashid (1968), has caught the 

attention of the engineering community and many of today commercial FE codes 

use this approach, with little refinement over the original concept. Smeared crack 

models can be readily implemented in any nonlinear FE code, by simply writing a 

routine for a new material constitutive model.  

The first drawback of the approach was discovered in the 1970s. It was realized 

that if a smeared crack is only one element across, the total energy dissipated in the 

cracking process is proportional to the size (the volume) of the element. Thus, upon 

mesh refinement, for infinitesimally small elements, the dissipated energy 

vanishes. This is unacceptable from the physical point of view. 

Bazant and Oh (1983) showed that, in the context of FE models, the always 

controversial concept of strain softening should not be considered as a 

characteristic of the material, as it is related to the fracture energy of the material 

and the size of the FE crossed by the smeared crack. Today, most of the 

commercial FE codes implement smeared models with strain softening related to 

the fracture energy of the material and the element size. 

But once the problem of mesh-size dependence was quite satisfactorily overcome, 

a more difficult one was identified. In the early 1990s it was widely recognized that 

FE solutions based on Continuum Mechanics suffered from mesh-bias dependence 
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in a strong manner. Also, it was noted that if the spatial discretization was designed 

in such way that an “appropriate” path for the advancing crack was available, the 

solutions obtained were satisfactory, see Figure 5.4b. Again, adaptive remeshing 

was suggested as a partial solution to this problem. In the last 15 years, a 

significant part of the research effort in Computational Solid Mechanics has been 

devoted to this problem. 

5.1.3 Some Recent Trends 

Nowadays, most structural engineers and FE codes for computational solid 

mechanics opt for the smeared crack approach. On the other hand, the observed 

mesh-bias dependence exhibited by these models makes the academic world very 

suspicious about this format. Therefore, a lot of effort has been spent in the last 30 

years to investigate and remedy the observed drawbacks of the smeared approach. 

However, the most promising of the newly proposed methods resign from the 

smeared approach and turn back to the discontinuous format. 

 
Figure 5.5 Finite elements with nodal enrichment (X-FEM) (a) and elemental 

enrichment (b).  

Belytschko and Black (1999), Möes et al. (1999) Sukumar et al. (2000) have 

recently introduced the concept of the extended finite element method (X-FEM). 
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This approach allows for crack propagation without remeshing, at the expense of 

tracking the advance of the crack through the FE mesh and progressively enriching 

the nodal degrees of freedom with new ones that represent both the displacement 

jumps across the crack and the developed singular field at the tip of the advancing 

crack (Figure 5.5a, where the “enriched” nodes are marked). The main 

disadvantage of this approach is that it requires special integration rules inside the 

affected finite elements to take into account what happens at and outside the 

discontinuity. 

On the other hand, the strong discontinuity approach (Simó et al., 1993; Oliver, 

1995; Oliver et al., 1999; Oliver et al., 2004; Oliver and Huespe, 2004) leads to 

enhanced formulations for finite elements with embedded displacement 

discontinuities. Such concept does not really depart from the usual continuum 

framework. The application invariably needs the use of discontinuity tracking 

algorithms (Oliver et al., 2004; Oliver and Huespe, 2004; Mosler and Meschke, 

2004), in order to establish which elements lie in the crack and need to be enriched 

(Figure 5.5b, where the elements with embedded discontinuities are marked). The 

displacement field inside the affected elements is assumed to be discontinuous and 

the strain field is decomposed into a regular part, outside the crack, and a singular 

part at the crack, see Figure 5.6a. This, as the explicit control on the energy 

dissipated in the formation of the crack, represents another link with the established 

tradition of fracture mechanics. 

Another option has been recently investigated: the adoption of a smeared model 

that incorporates the effect of the displacement jumps in the strain field of the 

elements, rather than the actual jumps themselves. This approach has been termed 

smeared-embedded continuum crack model (Cervera, 2008a and Cervera, 2008b) 

and it is a refinement of the basic smeared continuum model. The displacement 

field is assumed continuous inside the localization band but, as in the discontinuous 

embedded models, the strain field is decomposed into its elastic and inelastic parts, 
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the latter due to the crack, see Figure 5.6b. All computations are made at 

constitutive level and this allows the use of standard elements with continuous 

displacement fields, making the implementation of these models straight-forward 

in nonlinear FE codes. Necessary corrections are introduced in the model to avoid 

mesh-size and mesh-bias dependency. The solution for the latter drawback is found 

in the form of a mesh corrected crack model where the structure of the inelastic 

strain tensor is linked to the geometry of the cracked element (Cervera, 2008a and 

Cervera, 2008b). The situation described is similar to what happens when using 

incompressible von Mises type softening models, either in a plasticity or damage 

format. In those cases, the discrete problem has to be modified appropriately, or 

“mesh corrected”, to obtain mesh independent results, see Cervera et al. (2003a 

and 2003b). 

 
Figure 5.6 Embedded discrete approaches to crack modelling: discontinuous displacement 

(a) and continuous (smeared) displacement (b).  
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This can be considered a particular case of the smeared damage approach, 

implemented at constitutive level. On the other hand, similarities between the X-

FEM and the smeared damage approach are evident. 

5.2 Problem of Crack Propagation in Smeared 
Damage Approaches 

As pointed out in the previous Section, the main drawbacks concerning the 

smeared crack approaches are the observed mesh-size and mesh-bias spurious 

dependences. The former problem has been properly solved by relating the 

softening behaviour to the size of the FE crossed by the smeared crack (Bazant and 

Oh, 1983), in addition to the material fracture energy. Nevertheless, a great effort 

has been devoted to the latter problem, which is definitely more complicated.  

To propose, implement and use a computational failure model, set up within the 

Continuum Mechanics framework, three items are necessary (Cervera and 

Chiumenti, 2006a):  

• a continuum model that defines the variables and equations of the 

continuum BVP to be solved;  

• a constitutive model for the cracked and non-cracked parts of the domain; 

• a spatial discretization procedure to turn the continuum differential 

equations into discrete algebraic equations.  

If the resulting computational discrete model has a flaw, its origin must be sought 

in one of the links of the chain.  

The disagreeable effects of mesh dependence have been attributed to the fact that, 

when strain softening occurs and the slope of the local stress–strain curve becomes 

negative, the governing equations of the continuum problem lose their “natural” 

elliptic character. Therefore, many solutions have been sought by modifying either 

the continuum or the constitutive models. Many so-called non-local constitutive 
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models have been proposed in different versions, see Jirásek (1998). All these 

strategies introduce a “localization limiter” (a length parameter) into the problem 

that effectively precludes the occurrence of sharp displacement gradients (strains). 

On the other hand, even if these strategies have proved effective to some extent, 

they pose theoretical and computational difficulties. Just to mention a serious one, 

non-local models do not predict maximum stress values and, therefore, crack 

initiation, at the tip of a sharp crack, but rather at a finite distance ahead of the tip. 

In this work, we will deal with the problem from a different point of view. The 

established fact that “well-aligned” meshes produce good results strongly suggests 

that the main flaw lies in the spatial discretization procedure. 

5.2.1 Local Approximation Error 

In a Continuum Mechanics framework, the problem of crack propagation involves 

a procedure amenable to two steps. For a given damage distribution, we need to (i) 

solve the mechanical problem in order to compute the stress field and, 

consequently, (ii) update the damage distribution. This second stage entails two 

different operations: (ii.a) to update the damage index in those elements previously 

damaged and (ii.b) to decide which elements are newly damaged. Stage (ii.a) is 

trivial, as damage is an explicit function of the strain history. Stage (ii.b), deciding 

which elements are newly damaged, requires some more deliberation. 

In the smeared crack approach it has always been implicitly assumed that the 

criterion for the onset of cracking, which is always established in terms of 

stresses/strains, also must automatically define the direction of propagation. This 

may be a natural assumption in the continuum problem, with proper evaluation of 

stress and strain values and directions. However, in the discrete problem the stress 

and strain fields evaluated in the vicinity of the crack tip differ greatly from being 

exact. Therefore, the computed damage distribution is “incorrect”, as it depends 
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spuriously on the alignment of the finite element mesh. As a consequence, the 

automatic application of the cracking criterion for the evaluation of the direction of 

crack growth leads to an unacceptable dependence on the mesh bias at the crack 

tip. In fact, that point in the continuum problem is a singular, hence the L∞ - norm 

of the error on the displacement gradients (strains) in the computed discrete 

solution is unbounded.  

We may conclude that the main difficulty in solving the problem of tensile crack 

propagation using standard elements, with continuous displacement fields and local 

constitutive models, with properly size-adjusted strain-softening, is the 

approximation error due to the spatial discretization (Cervera and Chiumenti, 

2006a and 2006b). This error must be overcome if reasonable solutions are to be 

obtained with the smeared crack approach. 

5.2.2 Evaluation of the propagation direction 

In the last decade, the so-called strong discontinuity approach has been developed 

as a Continuum Mechanics alternative to the Fracture Mechanics formulation. 

Successful applications of this approach use tracking algorithms to determine the 

direction of crack propagation (Oliver et al., 2004; Oliver and Huespe, 2004; 

Mosler and Meschke, 2004). This evidence points to the potential advantages of 

using a crack tracking algorithm in the discrete format of the crack propagation 

problem, also if continuous displacement fields are used in the interpolation basis.  

The crack tracking technique marks the finite elements which can damage and 

prevents the others from failing. This essential feature  

• minimizes the number of possible solutions, so it helps to identify the 

unique one; 
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• leads to a better representation of the expected solution for mixed modes 

fracture problems, which are often characterized by curved cracks (Cervera 

and Chiumenti, 2006b); 

• limits (or vanishes) the mechanical dissipation outside the crack track. A 

better description of the dissipative phenomenon is achieved by forcing the 

crack to develop along a single row of finite elements, since the elemental 

softening parameter is directly related to the fracture energy of the 

material. 

The crack tracking algorithm to be used in crack propagation problems must be 

consistently linked to the cracking criterion, as this is the established cracking 

mechanism at continuum level. For a Rankine criterion based on the value of the 

maximum tensile principal stress, it is consistent to assume that the crack 

propagates in the plane orthogonal to the corresponding first stress eigenvector. 

A global crack tracking technique has been proposed by Oliver et al. (2004) and 

used by Cervera and Chiumenti (2006a and 2006b). Such a methodology considers 

the evaluation of the propagation direction as a separate problem, independent from 

the local values of the discrete stress/strain fields, as these may be substantially off-

track. The direction of propagation is evaluated by solving a conduction-like 

problem which, by definition, is sufficiently well-behaved and does not present any 

singular point in the vicinity of the advancing crack. Oliver and Huespe (2004) 

have also applied such strategy to 3D problems. 

Also local crack tracking algorithms have been formulated (Manzoli, 2005; 

Clemente et al., 2006 and 2008), in which the propagation direction is evaluated 

locally. This approach will be adopted in this work and improved in order to 

include some peculiar features of masonry material.  
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5.3 Local Crack Tracking Technique 
The local crack tracking technique detects the point where a crack is originated and 

then it lets the crack develop as a function of the direction of the principal tensile 

stress (Clemente, 2006). The algorithm marks a track of finite elements pertaining 

to the crack path which can experience potential damage. The crack is forced to 

develop along a single row of finite elements. The fracture energy normalization 

respect to the characteristic length ensures that dissipation will be element-size 

independent. 

The proposed method is applied at every time step during the analysis, just before 

the stress evaluation. The method works with a flags system, where finite elements 

are labelled to delimit the zones where cracks will appear or develop. The criteria 

used to define these zones depend on the magnitude and direction of the principal 

stresses at each element. The algorithm has been implemented for 2D problems 

using three-noded elements (constant strain-triangles, see Cook et al., 2002). 

The procedure is divided into two steps. First, new cracks are detected by checking 

the stress values at every finite element located on the boundary of the structure. 

Then, the track of finite elements pertaining to the crack path is marked by the 

algorithm, in order to compute the crack propagation direction. 

5.3.1 New Cracks Detection 

The input data of this first stage of the procedure are (i) the principal tensile stress 

values of the elements located on the boundary of the mesh and (ii) the list of the 

elements labelled as crack root, all referred to the previous time step. 

Then, the following operations are carried out: 

1. New elements are labelled as potential crack roots. For this aim, we 

consider some criteria: 
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• The crack starts once the principal tensile stress value reaches the 

material strength, according to the Rankine tensile criterion. This 

check is performed only on finite elements located on the boundary of 

the mesh. Therefore, cracks are assumed to start only from the border 

of the structure.  

• When several neighbour elements reach the tensile strength at the same 

time step, the exclusion radius criterion is applied. This radius (defined 

by the user) is the minimum distance imposed between two crack root 

elements, and it is used to guarantee the creation of separated discrete 

cracks. In case of masonry, for instance, it could be the size of the 

elements (bricks or blocks). Among all the elements which have 

reached the tensile strength at the same time step, and which are 

contained into the exclusion radius, the one with the greatest principal 

tensile stress is labelled as crack root. 

2. The spatial coordinates of the crack origin are computed. The midpoint of 

the element side located at the mesh boundary is considered. In case of 

corner elements, the centroid is assumed, see Figure 5.7. 

 
Figure 5.7 Location of cracks origin coordinates. 
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The output data of the new cracks detection procedure is the list of the potential 

crack root elements, together with their spatial coordinates. 

5.3.2 Cracks Propagation 

The input data of this second stage of the procedure are (i) the list of the potential 

crack root elements, together with their spatial coordinates, (ii) the principal tensile 

stress values and directions of all the mesh elements and (iii) the list of the 

elements belonging to consolidated cracks referred to the previous time step. 

Then, the following operations are carried out: 

1. Determine the tip of the crack element for each existing consolidated crack. 

This is defined as the damaged element with only one neighbour damaged 

element. 

2. For each tip of the crack element, as well as for the new crack root 

elements, we act as follows: 

• Determine the exit point coordinates. A vector is drawn from the entry 

point coordinates (defined below), using the direction perpendicular to 

the principal tensile direction of the element. The exit point is defined 

as the intersection of that vector with the corresponding face of the 

element, see Figure 5.8a.  

• Determine the next potential element on the crack for the current time 

step. This is the neighbouring element whose face in common with the 

current element corresponds with the face where its exit point is 

located. The element is marked as a potential element belonging to this 

crack. 

• Determine the entry point coordinates. The entry point of the new 

element on the crack is located at the same coordinates of the exit point 

of the previous element, see Figure 5.8b. 
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• Repeat the three previous steps, taking the new potential element as the 

crack tip element. 

 
Figure 5.8 Exit point of element I (a); new potential element J and its entry point (b). 

For each crack, the previous procedure is repeated until one of the following 

criteria is satisfied: 

a. Stress threshold criterion. Element tracking and labelling is stopped 

when the principal tensile stress is lower than a threshold defined by 

the user. The experience has demonstrated that 75% of tensile strength 

usually works well.  

b. Crack meeting criterion. The procedure stops when a previously 

damaged element, or an element marked as a potentially cracking one, 

is found along the current crack. This means that two cracks have met, 

and from then on they will be considered as a single one. 

c. Boundary criterion. When the exit point of an element is on the 

boundary of the structure, the cracking process finishes. 

3. Once any of the previous criteria is reached, the current crack is considered 

totally developed and the next one is studied, by restarting the cycle. 
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Finally, after applying this procedure to all the cracks, each element will 

have one of the three following labels: 

• Intact element, not able to damage (out of potential crack track; it will 

keep elastic behaviour during the current time step) 

• Intact element, able to damage (in a potential crack track; it will 

initiate inelastic behaviour if the material strength is reached) 

• Damaged element (belonging to a crack consolidated in previous time 

steps; it will develop inelastic behaviour during the rest of the 

calculations) 

The analysis procedure recognizes these labels and activates the corresponding 

constitutive law (elastic or damage) in each element for the current time step. Also, 

once the stresses have been updated and the damaged indexes are known, the 

elements with potential cracking that really suffer damage are relabelled as 

included in a consolidated crack for the rest of calculations. Finally, elements 

potentially cracking that do not suffer damage are restored to their original status, 

i.e. unlabelled. 

5.3.3 Maximum Curvature Criterion 

The implementation of the crack tracking algorithm in the form described in 

Sections 5.3.1 and 5.3.2 leads to some problems in case of bending stress states. 

Figure 5.9 shows the finite elements simulation of an advancing flexural crack in 

the middle of a 3-point loaded concrete beam. The contour of tensile damage is 

zoomed in the proximity of the neutral axes, as well as the tensile principal 

directions. As can be seen, since the algorithm assumes the direction of the crack to 

be perpendicular to the principal tensile stress, the track should propagate from the 

crack tip (element A) to element B and then to element C. This is obviously 

erroneous, because the vertical crack should go up to the element D. Therefore, the 
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local crack tracking technique needs a specific device to overcome such a 

drawback. 

 
Figure 5.9 Crack “about-turn” in the proximity of the neutral axes, under bending 

conditions. 

Clemente et al. (2008) introduced the maximum curvature criterion in order to 

correct such spurious changes of propagation direction. The procedure consists in 

identifying and correcting the sudden change of curvature in the crack track, before 

marking each potential element. Making reference to Figure 5.10, the following 

parameters are considered: 

• Crack direction vector for the current element eV . 

• Crack average direction vector fV . It is equal to the vectorial sum of all 

the elemental cracking vectors ,e iV . All the elements belonging to the crack 
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are considered in the calculations, both the potential at the current time 

step and the consolidated at the previous time steps. 

• Angle α  between fV  and eV . 

• Maximum curvature angle α , defined by the user at the beginning of the 

calculations. 

• Vector fV  which forms an angle α  with vector fV . 

 
Figure 5.10 Maximum curvature criterion. 

If it results that α α≤ , the considered element is marked as potential for the 

current time step with a corresponding direction eV . Then, the following element 

of the crack is considered. 

If it results that α α> , the crack direction is deflecting sharply and a correction is 

needed. Two possibilities are available: 

• Use fV  instead of eV . In this case, we impose the crack to maintain the 

average direction exhibited until the step considered. This is feasible for 

problems characterized by straight or low curvature cracks. 
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• Use fV  instead of eV . This case permits to allow for curved cracks, but it 

is necessary to calculate vector fV  making reference to a limited number 

of elements. This number is another parameter defined by the user. 

Once the most convenient possibility is chosen, the standard procedure is followed, 

i.e. the element is marked as potential and the new one is considered. 

5.3.4 Validation Example 

The numerical analysis of a holed strip subjected to uniaxial stretching is now 

considered, in order to point out the difference between a traditional smeared 

damage model and its enhanced version improved by a local crack tracking 

algorithm. 

The example is solved using the continuum isotropic damage model presented in 

Chapter 2 with exponential softening, adjusted according to the element size. The 

following material properties are assumed: Young’s modulus E = 30 MPa, 

Poisson’s ratio v = 0.2, tensile strength f = 2 kPa and mode I fracture energy 

Gf = 100 J/m2. 

The discrete problem is solved incrementally, in a (pseudo) time step-by-step 

manner. In all cases 200 equal time steps are performed to complete the analyses. 

Within each step, a modified Newton–Raphson method (using the secant stiffness 

matrix), together with a line search procedure, is used to solve the corresponding 

non-linear system of equations. Convergence of a time step is attained when the 

ratio between the norm of the iterative and the incremental norm of the computed 

displacements is lower than 1%. Calculations are performed with an enhanced 

version of the finite element program COMET (Cervera et al. 2002), developed by 

at the International Center for Numerical Methods in Engineering (CIMNE). Pre- 

and post-processing is done with GiD (2002), also developed at CIMNE. 
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The holed strip is subjected to axial vertical straining imposed at both ends. A two-

dimensional plane strain condition is assumed. Because of the symmetry of the 

domain and boundary conditions, only one half of the domain (the right half) is 

considered. Dimensions of the specimen are 200 x 400 mm2 and the radius of the 

perforation is r = 10 mm. This example is selected because the initial geometry 

does not present any singular point; tensile stresses are larger in the vicinity of the 

perforation and damage starts there. Also, it represents an example of pure mode I 

fracture. The computational domain is discretized in two different unstructured 

meshes with average mesh sizes of he = 5 mm (2023 nodes) and he = 2.5 mm (7648 

nodes).  

Two separate analyses are performed using both meshes. First, a traditional 

smeared damage model is used for finite elements calculations. The computed 

deformed shapes of the strip in the vicinity of the perforation are shown in Figure 

5.11 for the two different meshes ((half)-imposed vertical displacement d = 0.1 

mm, with a displacement amplification factor of 100; the other half-imposed 

displacement is applied at the opposite end of the strip). The different element sizes 

in both meshes can be appreciated in this figure. As shown, the crack initiates 

horizontally in both meshes, but it soon departs from this course to spuriously 

follow a line of elements along the mesh bias (30° in this case). 
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Figure 5.11 Deformed mesh (x100) and tensile damage contour with a smeared damage 

model: mesh with average size he = 5 mm (a) and mesh with average size he = 2.5 mm (b). 

Then, a smeared damage model with crack tracking technique is adopted in the 

analyses. Figure 5.12 shows the computed cracks in both the meshes, which follow 

exactly the horizontal axis of symmetry of the perforation, even if the elements in 

neither of the two meshes are aligned along this line. 
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Figure 5.12 Deformed mesh (x100) and tensile damage contour with the localized damage 
model: mesh with average size he = 5 mm (a) and mesh with average size he = 2.5 mm (b). 

Figure 5.13 shows the (half)-load vs. (half)-imposed vertical displacement curves 

obtained in the two analyses with crack tracking technique. Because in this 

example the strain field is almost uniform prior to the inception of the cracks, the 

response curve is almost linear until the cracks form suddenly, with a nearly 

exponential softening branch after the limit load is attained. 

Note that the overall global response is satisfactorily similar upon mesh refinement, 

with the total area under the load–displacement curve converging to the correct 

amount of energy dissipated to create the cracks. This should be equal, for half of 
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the domain, to 100 0.09 1 9tot f crD G l t J= ⋅ ⋅ = ⋅ ⋅ = , where lcr is the length of the 

crack (0.09 m) and t is the thickness (1 m). The area under the curves is almost 

exactly, half of this value. No spurious brittleness is observed when the size of the 

elements is reduced. 

 
Figure 5.13 Load versus displacement for holed strip with the localized damage model. 

Comparison between different mesh sizes.  

5.4  Localized Damage Model for Orthotropic 
Materials 

The local crack tracking technique which has been detailed in the previous Section 

has been used by Clemente et al. (2006)  to analyze the response of the Mallorca 

Cathedral under gravity and seismic forces. Compared with the traditional smeared 

cracking approach, the tracking method has shown a better capacity to predict 
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realistic collapsing mechanisms; the resulting damage in the ultimate condition 

appears localized in individual cracks, thus is more realistic; the computed ultimate 

loads become less sensitive to the variation of the tensile strength and other 

material parameters. Owing to the huge dimension of the structure and being the 

first application of such a model to a complex building, the authors have modelled 

masonry as an isotropic material in order to simplify the analysis. 

The present work has been providing a simple model with an original formulation 

which permits to account for the orthotropy of the material in an effective way. The 

versatility of the model allows us to cover a wide range of applications. Therefore, 

the damage model detailed in Chapter 4 can also be combined with a localized 

cracking approach, making use of the crack tracking technique. In this way, an 

efficient tool is obtained, without increasing considerably the computational cost. 

Nevertheless, it is necessary to combine carefully the crack tracking and the 

mapped tensor-based algorithms, in order to implement a fully operative localized 

damage model for orthotropic materials.  

The tracking algorithm is once again executed at every time step during the 

analysis, just before the stress evaluation. The same operations described in 

Chapter 5.3 are followed, but several adjustments are necessary. In simplistic 

terms, the identification of the damageable finite elements is performed in the 

fictitious space, in compliance with the Rankine tensile damage criterion defined in 

that space. On the other hand, the tracking process, i.e. the evaluation of the crack 

propagation direction, is carried out in the real space, by assuming the crack to 

develop perpendicularly to the real maximum principal tensile direction of the 

element. 

The algorithm is divided into two steps, i.e. the new cracks detection and the cracks 

propagation evaluation. Such procedures are schematized in Tables 5.1 and 5.2, 

respectively.  
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Table 5.1 New cracks detection procedure. 

START 

Input data:  

- list of fictitious principal tensile stresses ( )
b

I i
σ ∗  in boundary elements at time 

step n-1 

- list of crack root elements at time step n-1 

 

• LOOP ON BOUNDARY ELEMENTS  ib= 1, NBOUEL 

1. Check the isotropic Rankine criterion defined in the fictitious space: 

IF ( )1 0
b

b
i i

fσ+∗ ∗ ∗Φ = − <       ⇒  GO TO 4 

ELSE ⇒  Label new potential crack root element at time step n. 

2. Check the exclusion radius criterion. 

3. Compute the crack root coordinates. 

4. Next boundary element: ib = ib + 1 ⇒  GO BACK TO 1 

• END LOOP ON BOUNDARY ELEMENTS  

 

Output data: 

- list of potential crack root elements at time step n  

- list of crack root coordinates at time step n  

END 

Table 5.2 Cracks propagation evaluation. 

START 

Input data:  

-  list of potential crack root elements at time step n 

-  list of crack root coordinates at time step n  
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- list of fictitious principal tensile stresses ( )1 i
σ ∗  and real principal tensile 

directions jp  for all the elements at time step n-1 

- list of elements belonging to consolidated cracks at time step n-1 

 

• LOOP ON CRACKS  k = 1, NCRACKS 

1. Define the tip of the crack (element next to only one damaged element or 

potential crack root elements at time step n) 

2. Determine the exit point coordinates of the tip of the crack (using the 

direction perpendicular to the real principal tensile direction jp  of the 

element) 

3. IF α α> ⇒   Maximum curvature criterion (vectors fV  and eV  are 

computed in the real space) 

4. Determine the next potential element on the crack for time step n 

5. Determine the entry point coordinates of next potential element for time 

step n (equal to exit point coordinates of the tip of the crack element). 

6. The potential element on the crack becomes tip of the crack 

7. IF  current element  is a boundary element⇒  GO TO 10 

8. IF  current element  stays between two marked elements (two cracks join) 

⇒  GO TO 10 

9. IF for the current element ( ) 0.75I i
fσ ∗ ∗≥  (criterion in the fictitious 

space) ⇒  GO TO 1 

ELSE ⇒  GO TO 10 

10. Next crack: k = k + 1 ⇒  GO BACK TO 1 

• END LOOP ON CRACKS 
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Output data: 

- List of intact elements, not able to damage (out of potential crack track) at step n 

- List of intact elements, able to damage (in a potential crack track) at step n 

- Damaged element (belonging to a crack consolidated at time step n-1) 

END 

 

The tracking algorithm output data, i.e. the elements flags (intact element able to 

damage, intact element no able to damage, damaged element), are then recalled 

inside the constitutive model subroutine after the mapping into the fictitious space 

has been performed. Once the stresses and the damaged indexes have been 

computed in the fictitious space, the elements with potential cracking that really 

suffer damage are included in a consolidated crack. Elements potentially cracking 

that do not suffer damage are unlabelled instead. 

5.4.1 Validation Example 

The benchmark example of Section 5.3.4 is considered. The geometry is once 

again the same, but the material is assumed orthotropic.  

We consider three different analyses with orthotropy angles θ  equal to 0°, 45° and 

90°, respectively. Practically this is the case of three metal strips with different 

inclinations between the axis of the specimen and the rolling direction.  

The following material properties are assumed: Young’s moduli Ex = 20 MPa, Ey = 

30 MPa, Poisson’s ratio vxy = 0.2, real tensile strengths f11 = 1 kPa, f22 = 2 kPa, f12 = 

1.5 kPa, mode I fracture energy Gf,1 = 37.5 J/m2 and Gf,2 = 100 J/m2. The 

parameters in the fictitious space are E* = 20MPa, v* = 0.2, f * = 1 kPa, G* = 37.5 

J/m2. 

The holed strips are subjected to axial vertical straining imposed at both ends. A 

two-dimensional plane stress condition is assumed. The computational domain is 
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discretized in an unstructured mesh with average mesh sizes of he = 5 mm (2023 

nodes). Because of the symmetry of the domain and boundary conditions, only one 

half of the domain (the right half) is considered. 

First, a traditional smeared crack approach is adopted in combination with the 

damage model for orthotropic materials, which has been proposed in Chapter 4. 

We consider the strip with orthotropy angle θ  equal to 0°. The computed deformed 

shape of the strip in the vicinity of the hole is shown in Figure 5.14a, for an half-

imposed vertical displacement d = 0.1 mm.  

As shown, the crack follows a favourable path given by the spatial discretization. 

The situation is also evident by analyzing the corresponding contour of the tensile 

damage variable. The solution is not reliable, since the crack track spuriously 

follows a line of elements along the mesh bias. 
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Figure 5.14 Deformed mesh (x100) and tensile damage contour: smeared damage model 

(a) and localized damage model (b). 

Then, we adopt the localized damage model for orthotropic materials in finite 

elements calculations. As shown in Figure 5.14b, the crack-tracking algorithm 

leads to a solution which is definitely mesh-unbiased. The direction of propagation 

of the crack is determined in an objective manner, since it does not depend on the 

spatial discretization assumed. 
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Figure 5.15 Load versus displacement for holed strips with different orthotropy angles. 

Comparison between localized and smeared damage models.  

Figure 5.15 shows the (half)-load vs. (half)-imposed vertical displacement curves 

obtained by the six analyses carried out with the smeared and the localized damage 

models for different orthotropy angles. After preliminary uniform extension, which 

corresponds to the elastic branch of the curve, necking begins from the hole, which 

is a geometrical non-uniformity. The phenomenon of cracking leads to a nearly 

exponential softening branch after the limit load is attained. Comparing the curves 

obtained by the two approaches, it is evident that the localized damage approach 

provides a steeper softening branch. The main reason is that the tracking strategy 

limits the mechanical dissipation outside the crack track, as already discussed in 

Section 5.2.2: only the finite elements crossed by the crack dissipate energy. On the 
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contrary, the damage spreads over several finite elements when we adopt the 

smeared approach and this means a greater amount of dissipated energy. 

5.5 Finite Elements Analysis of a Masonry Shear 
Wall 

The localized damage model for orthotropic materials is validated next via a 

comparison with experimental results available in the literature. In particular, we 

consider the shear wall tests carried out by Raijmakers and Vermeltfoort (1992).  

In this study, we will analyze the walls with a central opening, here denoted J2G 

and J3G. They have dimensions 990 × 1000 mm2 and are constituted by 18 

courses, from which 16 courses are active and 2 courses are clamped in steel 

beams, see Figure 5.16a.  

 
Figure 5.16 Geometry and loading phases for Raijmakers and Vermeltfoort (1992) shear 

walls: vertical loading (a); horizontal loading under displacement control (b). 

The walls are made of wire-cut solid clay bricks with dimensions 210 × 52 × 100 

mm3 and 10 mm thick mortar, prepared with a volumetric cement:lime:sand ratio 

of 1: 2: 9. Vertical precompression uniformly distributed forces p = 0.30 N/mm2 
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are applied to the walls, before a horizontal load is monotonically increased under 

top displacement control d in a confined way, i.e. keeping the bottom and top 

boundaries horizontal and precluding any vertical movement, see Figure 5.16b.  

The experimental crack patterns for the two tested walls are shown in Figure 5.17. 

Diagonal cracks arise from the opening and propagate up to the top and the bottom 

of the wall. In addition, tensile cracks arise from the vertical external sides of the 

wall. They involve the two piers next to the opening. Such cracks occur at the top 

of the left pier and at the bottom of the right one.  

 
Figure 5.17 Experimental crack patterns of the walls tested by Raijmakers and 

Vermeltfoort (1992). 

The resulting collapse mechanism is schematized in Figure 5.18. As can be seen, 

the kinematism is amenable to four hinged rigid blocks, and it is activated when 

compressive failure occurs in the highlighted zones. 
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Figure 5.18 Collapse mechanism of the tested shear walls. 

For the numerical analysis, the wall is represented by 5982 bi-dimensional plane-

stress 3-noded linear triangular elements. The computational domain is discretized 

with an unstructured mesh with average mesh size of he = 20 mm (3128 nodes). 

Calculations are performed again with an enhanced version of the finite element 

program COMET (Cervera et al. 2002). Pre- and post-processing is done with GiD 

(2002).  

The discrete problem is solved incrementally, in a (pseudo) time step-by-step 

manner. The analysis is completed by means of 200 equal time steps. Within each 

step, a modified Newton–Raphson method (using the secant stiffness matrix), 

together with a line search procedure, is used to solve the corresponding non-linear 

system of equations. Convergence of a time step is attained when the ratio between 
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the norm of the iterative residual forces and the norm of the total external forces is 

lower than 1%. 

The values of the mechanical parameters used in the numerical analysis to describe 

the masonry behaviour are summarized in Table 5.3. Some of them are the 

mechanical characteristics of masonry provided by Raijmakers and Vermeltfoort 

(1992), others are data obtained via a homogenization procedure (Lourenço, 1996), 

and finally a few parameters have been chosen by fitting the experimental data. 

Table 5.3 Parameters adopted in the numerical analysis. 

Material Properties 

E1=E* 7520 MPa  f11
+=f +* 0.35 MPa  f1

-=f -* 5.25 MPa 

E2 3960 MPa  f22
+ 0.25 MPa  f2

- 3.75 MPa 

v12=v* 0.09  f12
+ 0.30 MPa  f12

- 3.00 MPa 

v21 0.05  Gf,1
+=G+* 50 J/m2  Gf,1

-=G -* 20000 J/m2 

G12 1460   MPa  Gf,2
+ 48  J/m2  Gf,2

- 19400 J/m2 
 

The crack tracking technique has been set by imposing a minimum distance of 350 

mm between the cracks (exclusion radius criterion) and a maximum value for angle  

45α = °  (maximum curvature criterion). 

The comparison between the calculated and experimental load-displacement 

diagrams is shown in Figure 5.19. The results agree reasonably well, both in the 

elastic field and in the inelastic one. This indicates that the deformability of the 

wall as well as the failure mechanism are properly represented. 

The experimental behaviour of the walls is well captured by the numerical model 

as illustrated in Figure 5.20, which shows the computed deformed shape (imposed 

horizontal displacement d = 20 mm, with a displacement amplification factor of 

10). Note the cracks opening that causes the global failure kinematism. 
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Figure 5.19 Walls J2G and J3G. Load vs. displacement diagrams. 

 
Figure 5.20 Computed deformed mesh (x10). 
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Figure 5.21 illustrates the tensile damage contour. As shown, the damage in the  

ultimate conditions is represented in the form of discrete cracks, thanks to the 

tracking technique which permits to describe the tensile cracks localization 

phenomenon. Obviously, the model cannot closely reproduce the experimental 

evidence depicted in Figure 5.17, since it entails a macroscopic approach to the 

structure, as discussed in Chapter 1. However, the numerical model shows his 

capability to capture the real behaviour observed in the experiments. In fact, the 

tensile cracks related to the failure mechanism illustrated in Figure 5.18 are 

properly represented. 

 
Figure 5.21 Tensile localized damage contour. 

Figure 5.22 shows the maximum principal strain vectors. The concentration of the 

displacement gradients (strains) in the elements lying  along the computed crack is 

evident. Therefore, the resolution of the cracks is optimal for the mesh used. The 

correct failure mechanism has been predicted although the directions of the 
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computed maximum principal strain vectors (as the related vectors of maximum 

principal effective stress) are clearly dependent on the mesh bias (Cervera, 2008a).  

 
Figure 5.22 Vectors of maximum principal strain. 

Figure 5.23 shows the compressive smeared damage contour. As can be seen, the 

model predicts correctly the location of the areas interested by material 

compressive failure. The failure mechanism is properly represented. We notice the 

compressed struts located next to the opening which fail at both of their ends.  

Finally, Figure 5.24 reports the tensile damage contour obtained by a finite element 

analysis with a traditional smeared damage approach. It is evident as the damage 

spreads unrealistically. The comparison with Figure 5.21 points out a very 

important issue. Although it seems that almost the same result has been obtained, 

the smeared model is considerably mesh-bias dependent: the crack follows a 

favourable path given by the spatial discretization. This would imply lost of 

solution objectivity when different inclination of the mesh would be considered in 

the discrete problem. 
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Figure 5.23 Compressive damage contour. 

 
Figure 5.24 Tensile damage contour for a smeared damage model: mesh-bias dependence. 
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5.6 Conclusions 
In this Chapter, we have presented the formulation of a Localized Damage Model 

for Orthotropic Materials. The model is based on the traditional smeared cracking 

approach, modified in such a way that it can reproduce localized individual 

(discrete) cracks. This is achieved by means of a local crack tracking technique. 

The corresponding algorithm detects the point in the discrete problem where a 

crack is originated and then it lets the crack develop as a function of the direction 

of the principal tensile stress. Then, it marks a track of finite elements pertaining to 

the crack path which can experience potential damage. The crack is forced to 

develop along a single row of finite elements. The method works with a flags 

system, where finite elements are labelled to distinguish which elements are going 

to damage during the current time step. The fracture energy normalization respect 

to the characteristic length ensures that dissipation will be element-size 

independent. 

The crack tracking model enables the simulation of more realistic damage 

distributions than the original smeared-crack model. The localized cracks predicted 

by the tracking model reproduce consistently the ones usually observed on 

masonry structures, which develop gradually and lead to the full collapsing 

mechanism. In turn, the smeared-crack model describes damage in a widely 

distributed, unrealistic way. The tracking model represents a more suitable method 

to predict the structural behaviour of masonry structures, without requiring 

significant additional computation cost. The algorithm has been implemented for 

2D plain-stress problems using three-noded elements (constant strain triangles).  

The crack tracking technique which has been presented is inspired to the format 

proposed by Clemente et al. (2006) but an important additional improvement has 

been supplied. The model which has been presented in Chapter 4 has been included 

in the algorithm, in order to account for the orthotropic behaviour of the material. 
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The mapped tensor and crack tracking algorithms have been carefully combined in 

order to obtain an efficient and reliable tool. It has been validated via a comparison 

with experimental results available in the literature. In particular, the finite element 

analysis of a shear wall has been carried out, showing good agreement with the 

experimental evidence. Compared with the result obtained by means of a smeared 

crack approach, the localized damage model for orthotropic materials has shown a 

better capacity of predict realistic collapse mechanisms and a better description of 

damage distribution on the structure in the ultimate condition. Moreover, the use of 

a crack tracking algorithm considerably helps to avoid the dependence of the 

predicted failure mechanisms on the mesh directional bias. This leads to solution 

objectivity when different inclinations of the mesh are considered in the discrete 

problem. 

 

 

 

 

 



Chapter 6.                                       

Conclusions 

6.1 Summary 
The growing concern about the preservation of ancient constructions, particularly 

of the architectural heritage, has led to great innovation in the development of 

specific techniques for studying structures made with traditional materials. This 

research represents an original contribution to numerical strategies aimed to the 

structural analysis of masonry constructions. Reliable and accurate numerical 

methods reveal to be fundamental in the engineering calculations and in supporting 

the definition of rational design rules. Therefore, a great effort has been devoted to 

this field.  

The Chapter 1 of the thesis reports a brief review of the most recent trends in 

computational modelling of masonry structures. The formulation of an appropriate 

numerical method for analysing masonry structures must start from the knowledge 

of the peculiarity of such a composite material, which is characterized by a very 

particular mechanical behaviour. Different approaches to the problem are possible. 
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Micro-modelling is probably the best tool available to analyse and understand the 

real behaviour of masonry, particularly concerning its local response. It leads to 

very accurate results, but requires an intensive computational effort. Since the main 

objective of the thesis is to provide an efficient numerical tool for the nonlinear 

analysis of large and complex structures, we have aimed the research at the macro-

modelling approach. In this case, the material is represented by a fictitious 

homogeneous continuum whose behaviour is described by constitutive laws based 

on Continuum Mechanics Theory.  

We have focused on the constitutive laws based on Continuum Damage 

Mechanics, which provides a powerful and general framework for the derivation of 

consistent material models suitable for many engineering fields. Such a theory is 

characterized by simplicity in the formulation, versatility, compatibility with other 

theories (Plasticity, Fracture Mechanics, Viscoelasticity) and consistency, since it 

is based on the thermodynamics of irreversible processes, the internal state variable 

theory and relevant physical considerations. In Chapter 2 we have discussed all this 

features, together with the basic concepts. Among the different models available in 

the literature, we have turned our attention to the ones based on the assumption of 

one or more scalar damage variables. Such approaches provide a simple 

constitutive model characterized by a favourable strain-driven format consistent 

with standard displacement-based finite element codes. This leads to high 

algorithmic efficiency, which is the most valuable feature for a model intended to 

be used in large scale computations. 

In the case of Continuum Damage finite element models, isotropic criteria are 

usually preferred in the analysis of complex masonry structures, because of their 

simplicity, hence the need for only few material parameters. Moreover, smeared 

damage models are generally adopted even if they only provide general 

information about the level of damage expected on the structure. This work 



 Conclusions 

 

247 

constitutes a step further from such a situation. At first, attention has been paid to 

aspects related to the modelling of the material orthotropic behaviour. 

Chapter 3 has presented an original methodology related to the aforementioned 

topic. It is based on the concept of mapped tensor from the anisotropic real space to 

the isotropic fictitious one. The proposed theory, which in literature has been 

mainly used in the framework of Plasticity, is a generalization of classical theories 

and allows one to use the models and algorithms developed for isotropic materials. 

It is based on establishing a one-to-one mapping relationship between the 

behaviour of an anisotropic real material and that of an isotropic fictitious one. 

Therefore, the problem is solved in the isotropic fictitious space and the results are 

transported to the real field. The relationship between the two spaces is expressed 

in terms of a transformation tensor which contains all the information concerning 

the real orthotropy of the material. A first preliminary model adopts an isotropic 

scalar damage model in the fictitious space. The final result is an implicit damage 

model for orthotropic materials able to reproduce the overall nonlinear behaviour, 

including stiffness degradation and strain-hardening/softening response. This 

general formulation permits to adjust an arbitrary isotropic criterion to the 

particular behaviour of the orthotropic material. The orthotropic elastic and 

inelastic behaviours can be modelled in such a way that totally different 

mechanical responses can be predicted along the material axes. The model has 

been fully formulated for the 2-dimensional case but it can be easily extended to 

the 3-dimensional one, by providing additional material parameters. Initial 

applications of the model have shown promising results. 

In Chapter 4 the model has been improved further, by accounting for the different 

material behaviour in tension and compression. The aim of studying a real material 

via an equivalent fictitious solid has been achieved by means of the appropriate 

definitions of two transformation tensors related to tensile or compressive states, 

respectively. Although the model shows potential applicability to many orthotropic 
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materials, such as wood and fibre reinforced composites, it has been specifically 

formulated for masonry. The constitutive model adopted in the fictitious space 

makes use of two scalar variables to monitor the local damage under tension and 

compression. Such a model, which is based on a stress tensor split into tensile and 

compressive contributions, permits to account for masonry unilateral effects, as 

well as for different damage criteria. The tensile Rankine and the compressive 

(Drucker Prager inspired) Faria isotropic damage criteria are mapped in the 

fictitious space, in order to provide in the real orthotropic space a composite 

damage threshold surface. This permits to account for different failure 

mechanisms, i.e. cracking in tension and crushing in compression. The internal 

damage parameters associated with each failure mechanism are related to the finite 

elements size and to the tensile or compressive fracture energies. This leads to 

objective results with respect to the finite element mesh size. The model is capable 

of predicting independent, in the sense of completely different, behaviour along the 

material axes. The brittleness orthotropy can also be modelled in a very easy and 

effective way.  The strength parameters involved appear to be enough to reproduce 

the biaxial behaviour of all masonry types, ranging from isotropic behaviour to 

extreme anisotropic behaviour. This validation has been carried out by means of 

comparisons with experimental results on different types of orthotropic masonry. 

The orthotropic nature of the Tension-Compression Damage Model adopted in the 

fictitious space has been demonstrated. This feature, both with the assumption of 

two distinct damage criteria for tension and compression, does not permit to term 

the fictitious space as “isotropic”. Therefore, the proposed formulation turns the 

original concept of  “mapping the real space into an isotropic fictitious one” into 

the innovative and more general one of “mapping the real space into a favourable 

(or convenient) fictitious one”. 

Finally, attention has been given to the role of the developed model in engineering 

practice. With the aim of performing reliable non linear numerical analyses of 
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masonry structures, a localized damage model for orthotropic materials has been 

formulated in Chapter 5. The model proposed in Chapter 4 has been successfully 

combined with a local crack tracking technique, which modifies the traditional 

smeared cracking approach in order to reproduce localized individual (discrete) 

cracks. The implemented algorithm detects the point in the discrete problem where 

a crack is originated and then it lets the crack develop as a function of the direction 

of the main tensile stress. Then, it marks a track of finite elements pertaining to the 

crack path which can experience potential damage. The crack is forced to develop 

along a single row of finite elements. The method works with a flags system, where 

finite elements are labelled to distinguish which elements are going to damage 

during the considered time step. The crack tracking model enables the simulation 

of more realistic tensile damage distributions than the original smeared-crack 

model. The computed discrete cracks reproduce consistently the ones usually 

observed on masonry structures, which develop gradually and lead to the full 

collapsing mechanism. Moreover, the results do not suffer from mesh-bias 

dependence in the discrete problem. The tracking model represents a more suitable 

method to predict the structural behaviour of masonry structures, without requiring 

significant additional computation cost. The algorithm has been easily 

implemented in a finite element code making reference to 2D plain-stress problems 

and using three-noded elements (constant strain triangles). The finite element 

analysis of a shear masonry wall has pointed out that a stable and accurate 

algorithm has been achieved. The entire pre- and post-failure regimes have been 

properly represented. Converged solutions have been obtained even in the presence 

of softening behaviour. A comparison with experimental observations has shown 

good agreement. 
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6.2 Main Contributions 
The originality of the present work mainly lies in the following contributions: 

• The application of the mapped tensor concept to Continuum Damage 

Mechanics models. At the moment, the strategy of establishing a 

relationship between the behaviour of an anisotropic real material and that 

of an isotropic fictitious one has been principally addressed to Plasticity 

constitutive laws.  

• The formulation of complex orthotropic damage criteria by using simpler 

and well-known isotropic ones. Illustrative examples have shown the 

possibility of representing correctly the failure surface of several 

anisotropic materials, without resorting to the complex yield functions 

normally adopted in Plasticity. 

• The proof that the Tension-Compression Damage Model (Faria et al., 

1998), in which the damage evolution is described by two scalars, is 

orthotropic. In fact, in the existing literature such a model has usually been 

termed as “isotropic”. 

• The definition of two different transformation tensors from the real to the 

fictitious space, which are related to tensile and compressive stress states. 

In this way, individual damage criteria can be considered for tension and 

compression, according to different failure mechanisms. Moreover, totally 

different inelastic orthotropic behaviours can be reproduced in tension and 

compression. 

• The proposal of the innovative concept of “mapping the real space into a 

favourable (or convenient) fictitious one”. This important generalization 

permits to adopt even orthotropic damage models in the fictitious space 

and to properly adjust them to the material real behaviour. 
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• The particularization of the approach for the description of masonry 

mechanical behaviour. It has been proved that the proposed strategy 

permits to represent the experimental evidence in a better way than others 

existing macro-models available in literature. 

• The formulation of a very simple format for the constitutive law which is 

mainly based on the classical algorithms developed for isotropic materials. 

Consequently, the implementation in the framework of standard finite 

element codes is straightforward. 

•  The formulation of a localized crack model for orthotropic materials, 

which have been obtained by combining the (implicit) orthotropic model 

with a crack-tracking technique. The result is an efficient numerical tool 

devised for the analysis of masonry structures. 

• The application of the localized crack model for orthotropic materials to 

the analysis of in-plane loaded masonry shear walls. The analyzed case-

study has shown promising results that will be improved in future work. 

6.3 Suggestions for Future Work 
In retrospect, the present study has successfully achieved the objectives defined in 

Chapter 1. In particular, a robust and accurate numerical tool has been developed 

for masonry structures analysis, both in case of new buildings design and 

vulnerability assessment of existing constructions. However, it is necessary to 

apply the formulations and techniques described in this work to a variety of 

elements and structures in order to gain more experience and confidence on its 

usage. In addition, the following investigations can be suggested as further work: 

• The extension of the damage model to the three-dimensional case. This 

should be relatively simple, but at the cost of providing additional material 
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parameters. On the other hand, the local crack tracking algorithm is 

impossible to apply in 3D. 

• The extension to account for plastic strains and viscous effects. Many 

models concerning the description of such effects have been already 

proposed in literature (Faria and Oliver, 1993; Cervera et al. 1995; Cervera 

et al. 1996; Faria et al., 1998; Cervera et al. 1999; Faria et al., 2000; 

Cervera, 2003), therefore only few adjustments to the proposed model are 

necessary. 

• The study and the comparison of different formats for the transformation 

tensor from the real to the fictitious space. The definition of the 

mathematical relationship between the two spaces could be enhanced in 

order to achieve an optimal mapping of the behaviour of the real solid. 

• Improve the orthotropic softening model, possibly with another mapping 

for inelastic strains. 

• The combination with homogenization procedures. At its current state, the 

model needs the evaluation of parameters which are obtainable from 

expensive experimental tests, such as the ones related to post peak 

behaviour and the ones performed on masonry small assemblages. The use 

of homogenization techniques, aimed to the determination of the elastic 

constants and the inelastic parameters (strengths and fracture energies), 

would reduce the costs and would permit to account for material properties 

variability. 

• The inclusion in the model of the damage-induced anisotropy description. 

The development of damage necessarily modifies the intensity of the 

material anisotropy. The inclusion of such an effect is a hard task and the 

problem is twofold. On one hand, it is very difficult to compare the 

experimental evidence with the induced anisotropic damage predicted by 
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the computational models, with the aim of choosing the most proper form 

of the damage tensor. On the other hand, it is well known that several 

numerical problems, such as stress locking, arise when orthotropic models 

are used in the discrete problem. The fact that acceptable results can be 

obtained by assuming opportune spatial discretizations, aims the future 

research at working on it. 

• The improvement of the localized crack approach. The smeared crack 

approach combined with a crack tracking technique has shown some 

limitations. For example, at the actual state the algorithm detects the crack 

origin only from the boundary of the mesh. This is unacceptable, for 

instance, in case of horizontally in-plane loaded shear walls without 

openings, in which the cracks could start from the interior of the mesh. In 

addition, the need for external control parameters, related for instance to 

the concept of maximum curvature criterion, represents a drawback since it 

requires analyst experience and practice. In this sense, a more robust 

approach which includes in its formulation such check devices would lead 

to a more user-friendly numerical tool. 

• The extension of the whole model to the dynamic case. It is possible to 

formulate an adequate structural computational model to solve the dynamic 

equilibrium problem by enhancing the numerical tool formulated in this 

work.  
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