
   

 Università degli Studi di Ferrara
 

 

DOTTORATO DI RICERCA IN  

FISICA 
 

CICLO XXI 

 

 

 

COORDINATORE Prof. Filippo Frontera 

 

 

 

 

 

 

 

Foreground Implications in the Scientific 

Exploitation of CMB Data 
 

 

 

 

 

 

 

 

 

 

Settore Scientifico Disciplinare FIS/05 

 

 

 

 

 

 

 

 Dottorando  Tutore 

 Dott. Pietro Procopio Prof. Nazzareno Mandolesi 

 

  
   

 

                  Co-Tutori  

            Dr. Carlo Burigana   

                     Dr. Jacques Delabrouille 

 

 

 

Anni 2006/2008 

 

 



      



Preface
The Cosmic Microwave Background (CMB) represents one of the main

sources of information of modern cosmology. Through the CMB it is possible
to probe the Universe till the very primordial stages of its evolution. This is
done thanks to the observables characterizing the CMB: the spectrum, the
temperature anisotropies and the polarization anisotropies. The first part
of this thesis focuses on the spectral distortions of the CMB: the deviations
from the Planckian shape of the CMB photon distribution function. Those
may arise in different epochs: from the early Universe, much more before
recombination, until the reionization phase at relatively recent redshifts.
The observation of this cosmological signal is complicated by astrophysical
foregrounds. In the context of a CMB experiments, the foregrounds represent
unwanted signals and, in order to study the CMB signal, they are subtracted
from the observations during the data analysis phases. Anyway, this is even
a way to study them, because the better you know the component to subtract
the better is performed the subtraction itself.
In this thesis, the impact of the foreground in CMB data analysis will be
mainly discussed, focusing on some aspects about foregrounds modeling
and subtraction.
Foregrounds affects any observables of the CMB. CMB features and
characteristics are discussed in Chap. 2 and in particular the generation
and evolution of spectral distortions are treated deeply.
All the work on the CMB was done at the Istituto di Astrofisica Spaziale e
Fisica Cosmica in Bologna (IASF-Bo). In Chap. 3, the code named KYPRIX
will be presented. It is a code for the solution of the Kompaneets equation in
cosmological context and the detailed phases of the implementation and the
upgrade of the code, the tests done on it and some cosmological applications
are discussed in the same chapter.
For what it concerns experiments aiming to the observations of spectral
distortions, I was involved in the Italian Vision for Moon Exploration,
belonging the proposal Observation of the Universe from the Moon, in which
two mission ideas, of two different size are proposed, allowing to lower
dramatically the upper limits on the parameters characterizing the spectral
distortions and probably to detect them.
The Planck satellite is dedicated to the study of the other two CMB
observables: the anisotropies in temperature and polarization. Being a
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member of the Low Frequency Instrument (LFI) team in Bologna gave me
possibility to better know the instrument’s features. In Chap. 4, after
a review of the past, on going, and future CMB dedicated missions, I’ll
briefly highlight the peculiar technical and instrumental characteristics of
the Low Frequency Instrument aboard the Planck satellite. The amount of
data that the LFI and the High Frequency Instrument (HFI) will provide on
the temperature anisotropies represents the ultimate leap forward to explore
the Universe in different stages of its evolution: from epochs antecedent the
recombination to the more recent reionization process. The latter is a crucial
phase in which the Universe passed through. Indeed, reionization leaves
imprints on every CMB observables, for example it may give rise to free-free
distortions of the spectrum or it can suppress the peaks in the temperature
anisotropy power spectrum.
In Chap. 5, an overview about the foregrounds in the microwave range will
be given. Their modeling and in particular in the context of the Planck Sky
Model (PSM) will be also discussed. Thanks to its wide frequency coverage,
Planck will also provide detailed maps of the foregrounds affecting the CMB.
Extragalactic, Galactic and local foregrounds will be modeled with greater
precision. The PSM is an ensemble of tools dedicated to the prediction and
simulation of the sky at microwave frequencies, in particular to those at
which Planck will observe the sky.
Being a student of the International Doctorate in Astro-Particle Physics
(IDAPP), I had the opportunity to go working in Paris, at APC within the
ADAMIS group, for two times during my PhD. During the second stage in
Paris in 2008, I performed some validation tests on the PSM, in particular on
the models of the Galactic foreground emission. Some of the results of these
tests are shown in Chap. 5.
During the first stage in Paris, in 2007, I started studying a component
separation method. These techniques are treated in Chap. 6. They consist
in separating a component of interest from the others, in maps where all the
emissions are mixed. The method I worked with is called SMICA and it is
a performing tool for diffuse sources component separation. In particular,
once back in Bologna, I used this tool, jointly with a Fourier filter made on
purpose, in order to subtract the Zodiacal Light Emission (ZLE) residual
from the complete IRIS map set. This is a set of maps catching the sky in the
far-infrared in four frequencies. The results of the subtraction are presented
in Chap. 7.
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Chapter 1

Introduction

Since its discover, the Cosmic Microwave Background (CMB) represents
one of the main sources of information on which the modern cosmology is
based. Seen as the strongest proof of the Hot Big Bang cosmological model,
the CMB arise in the first stages of life of the Universe, because of the
tight coupling between matter and radiation that established the thermal
equilibrium between themselves. CMB became visible only after the baryon-
photon decoupling, when its photons were diffused at the Last Scattering
Surface (LSS). A wealth of informations can be extracted from the CMB, not
only on the early Universe but also on its subsequent evolution up today.
The detection and the study of the CMB goes through the observation
of three physical observables: the CMB photon distribution function, the
temperature anisotropies and the polarization anisotropies.1

The first of these represents the frequency spectrum of the CMB radiation,
well fitted by a Planckian spectrum at the actual temperature of 2.725±0.002
K [94]. Anyway, in various stages of the history of the Universe several
kinds of physical processes out of the equilibrium might have produced
energy injection in the radiation field (like radiative particles decaying
or energy dissipation due to viscosity, diffusion from turbulent matter
movements or other non-linear effects). It is then possible that these energy
dissipation could leave signatures of the CMB spectrum, leading to the
not yet observed spectral distortions. Hence, spectral distortions represent
a tool to investigate the thermal history of the Universe and allow to push
observational cosmology beyond the last scattering surface. The precise
measurement obtained through the COBE-FIRAS instrument [50] allow us
to put strong constraints to the energy injection parameters characterizing
spectral distortions [56].

1See Chap. 2 for a deeper treatment of the CMB features.
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The CMB temperature anisotropies pattern encrypts information directly
related to the origin of the large-scale structures that we observe today.
These anisotropies consist in fluctuations from the CMB mean temperature
at various angular scales (at level of ∆T/T $ 10−5), which are related
to the density contrast at the epoch of recombination. Given that the
CMB photons traveled almost unperturbed from the LSS to now, the CMB
temperature anisotropies pattern represents a snapshot of the Universe at
that epoch, allowing us to extract informations, at various angular scales,
on the gravitational potentials and instabilities that generated the density
inhomogeneities and the large density contrast that we observe today [150].
More detailed informations can be extracted from the pattern of polarization
anisotropies of the CMB radiation. The CMB polarization arises during
the recombination phase [128]. If the incident radiation were isotropic
or had only a dipole variation (on 180◦ scale), the scattered radiation
would have no net polarization. However, if the incident radiation from
perpendicular directions (separated by 90◦) had different intensities, a net
linear polarization would result. These diffused photons could scatter only
while free electrons are present. Thus, polarized radiation could be produced
only during a short period near the end of recombination. Only a small
fraction of the CMB radiation is therefore polarized.
The polarization angular power spectrum of the CMB is thus a direct
snapshot of physical conditions at the last scattering surface and it can
substantially improve the accuracy level at which parameters are measured
by breaking the degeneracy between certain parameter combinations.
Furthermore, it allows a much detailed probe of the reionization history
of the Universe.
Observing the fine structures of the CMB is not easy at all. Many
astrophysical processes emit in the microwave range: a detector looking at
the sky sees a superposition of emissions that come from different sources.
In the context of CMB experiment, everything that is not CMB has to be
considered as a foreground emission, affecting the measure of the CMB
itself and it must be subtracted from the maps.
A first attempt of classification could be done on the basis of the involved
angular scale. According to this, one can discern between diffuse and discrete
foreground emissions. The diffuse foreground is characterized by large scale
template, with non-sharp bounded regions, while the discrete emissions are
represented by discrete sources or point sources, for example.
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A subsequent subdivision can be done on the basis of the environment
in which the foreground is generated: local foregrounds are in general
represented by Solar System emissions, like the Zodiacal Light; Galactic
foregrounds are the emission processes raising from our own Galaxy, like the
synchrotron radiation, free-free emission and dust emission; extra-galactic
foregrounds are instead generated out of our Galaxy and they involve
different kinds of emission mechanisms, more relevant in radio and far-
IR sources or the Sunyaev-Zel’dovich effect from galaxy clusters.
These emissions contribute in confusing the signals of all the CMB
observables. Fortunately, foreground most prominent emissions shows a
minimum in their intensity around 70 GHz, where the CMB emission is still
relatively strong. Anyway, the contamination level, even at this frequency,
is non-zero and the subtraction of the unwanted emissions from the sky map
is necessary. As we will see, to do this we have to model these emissions
as better as possible, hence full-sky surveys at several frequencies are a
fundamental basis on which to build a model for the relevant physical
processes.
In order to achieve the high level of accuracy that we reached in observing
the CMB, many efforts have been done since its first official detection by A.
Penzias and R. Wilson. Furthermore, the observation technics depend on
which observable of the CMB one is going to measure.2

The aim of a direct measurement of the CMB spectrum is to determine
the absolute temperature of the radiation at a given wavelength. More
in details, what is done is to compare the sky temperature to that of a
source of known temperature, the reference calibrator. The calibrator must
have an emissivity as near as possible to 1 and its temperature must be
comparable to the CMB temperature (in order to avoid a possible non-linear
response of the instrument). The accuracy of the measurement depends
strongly on the control of systematics and on the accuracy of the calibration.
As an example, the most precise measurements of the CMB absolute
temperature were obtained by the FIRAS instrument, aboard the COBE
satellite, based an a Michelson interferometer. More precisely, FIRAS was a
dual-input differential device. In this concept, the instrument output power
is proportional to the difference of the two inputs: the input that looks at the
sky is a horn antenna, cryogenically cooled, the other is a similar reference
antenna looking to a temperature-controlled blackbody. This temperature

2Results from past, on going and future experiments are presented in Chap. 4
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can be adjusted in order to obtain a null output interferogram, minimizing
instrument uncertainties. Finally, FIRAS had a precision calibrator which
can be inserted in front of the sky antenna, allowing a precise external
calibration in flight.
Because of its limited precision, such kind of observations do not reach
the needed accuracy for precisely mapping the angular distribution of
the CMB. Differential measurements represent a performing method to
reach the necessary level of sensitivity. This instrument concept consists
in measuring the difference between the radiation intensity observed in two
different directions. This method dramatically reduces the systematic errors
related to absolute measurements, but it provides no informations regarding
the CMB absolute temperature. A performing technic involves the use of
two symmetrical antennas, separated by a fixed angle, that simultaneously
observe the sky. The successful WMAP satellite is based on this technic,
but the antennas are substituted by reflecting mirrors, allowing to increase
angular resolution. On the other hand, the forthcoming Planck mission will
map the CMB anisotropies using only one telescope and will provide results
of unprecedented accuracy, thanks to the great control and minimization of
systematic errors.
Polarization observations are challenging as well: they require a very high
sensitivity together with an extreme control of the systematic effects to
highest level. Two classical detection techniques are being used to observe
the CMB polarisation: imaging and interferometer experiment that can
be either heterodyne or bolometric (radiometers can be also used for this
purpose, like in the Planck LFI). For example, the measurement of Stokes
parameters with bolometers is obtained by subtracting the signals from
two perpendicular polarized detectors. This method induces instrumental
systematic effects since the two detection chains do not behave exactly in
the same way. CMB polarization detection is recently dated (2002) and it
was performed by DASI: a compact interferometric array optimized for the
measurement of CMB temperature and polarization anisotropy.
The contamination level could be reduced using prior information on the
emissions, in order to lower their impact on the data. This could be done by:
an adequate selection of the region of observation, masking some regions in
the sky, selecting the right frequency bands of the instrument and subtracting
an estimate of the contamination.
For full-sky CMB observations, there is obviously no region to select, but
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for ground-based and balloon-borne experiments a good choice of the
sky region to observe is perhaps the most obvious solution to minimize
contamination by foreground (at least extra-terrestrial emissions). The choice
is based on existing observations of foreground emissions, hence it is possible
to select regions in which their emission is known to be low. Anyway, there is
a drawback in this strategy: observing a poor contaminated sky region puts
dramatic limitations on the estimate that could be done on the foregrounds
themselves (level of contamination, properties of the contaminants), because
of the lack of collected data about them.
On the other side, in all-sky experiments the masking strategy is widely
used. Highly contaminated regions are masked and the CMB properties are
recovered in the regions with low foreground contamination level. With this
strategy it is also possible to collect more informations about foregrounds.
The frequency (or frequencies) of observation are chosen on the basis of
more than one criterion. The cosmological window around 70 GHz represents
a frequency range in which the foreground emission is minimal, that is to
say a stronger relative CMB signal with respect to the contaminants.3

The foreground cleaning is strictly related to this. In order to subtract the
foregrounds from a sky map and recover a clean CMB map, it is necessary to
model the involved astrophysical emissions. For example, for a frequency
range going from tens of MHz to few GHz, an absolute measurement of the
sky temperature could be decomposed as a superposition of components:

Tsky(r, ν) = TGal(r, ν) + TCMB(ν) + Ters(ν) .

Here, ν is the frequency, TGal is the Galactic contribution, depending
also on the direction of observation r, that is partially polarized and
anisotropically distributed, TCMB is the background temperature and Ters is
a blend of unresolved extragalactic radio sources isotropically distributed.
Any of these quantities is of particular astrophysical importance, but for
disentangling each contribution precise models for foregrounds must be
available. It is easy to understand why multi-frequency observations cover
a key-role in foreground modeling. The available surveys around the
microwave frequency range supply fundamental informations on which
model the components and optimize the model parameters of the involved

3For ground-based and balloon-borne experiments atmospheric emission must be taken into
account, considering the related best windows frequency bands for observation (30, 90, 150 and 240
GHz). For ground-based observations also ground emission at ∼ 300 K contributes in contaminating
the CMB signal.
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processes. Up to now, it is possible to find in literature maps of sky
temperature, around 1 GHz and also in the far-IR. These maps can present
some artificial defects like stripes, due to instrumental and observational
issues and to the fact that maps are a combination of data collected at
different sites or at different time. Moreover, if there are no observation
at a determined frequency, the data extrapolation to CMB frequencies is an
useful tool to estimate the foreground contribution. Of course, the more
detailed and likely is the emission model the more reliable is the estimate
obtained by extrapolation.
From the early 90’s, component separation
technics had a rapid improvement in performances, especially in context
of CMB anisotropies/polarization data reduction. To date, there are different
technics operating with different methods and each of them has particular
advantages and limitations. A preliminary rough classification could be
done separating non-blind from blind component separation technics. The
former are so called because they require some a-priori information on the
signal to be separated (e.g. spatial templates and frequency dependences
of the underlying components), while the blind approach is characterized
from the absence of priors.
Different algorithms are used for the analysis of diffuse sources and for the
extraction of point sources.4

In this work some of the current component separation technics will be also
reviewed and the application of one of them to infrared maps is presented.

4Methods for SZ clusters extraction, based on the knowledge of SZ spectral shape, can also be
added to this list.
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Chapter 2

The Cosmic Microwave
Background

2.1 Introduction

In the last century, our knowledge about the evolution and the origin of
the Universe had a tremendous growth. The wide accepted model of the Hot
Big Bang, with a period of inflationary expansion, is the by-product of the
great effort carried out in theoretical and experimental fields of cosmology.
According to this model, after the Big Bang, in the first 3.8 × 105 yr
matter and radiation were tightly coupled. After that period, at a redshift
z ∼ 1000, the temperature cooled down to about 3000K, permitting in
this way the decoupling of the baryon-photon fluid. From that time,
photons have travelled almost undisturbed, feeling only gravitational effects
on themselves. Today we can observe this cosmological relic radiation
as a blackbody at a temperature of 2.725 ± 0.002 K [94], as measured
by COBE/FIRAS, whose emission, in all directions in the sky, peaks in
the microwave region of electromagnetic spectrum. Because of the tight
coupling between matter and radiation at the recombination era, faint
anisotropies in the CMB angular distribution are the traces of density
inhomogeneities at that time. Due to this unique chance to have a snapshot
of primordial Universe, CMB anisotropies have caught the interest of many
experimental cosmologists, since their first detection by COBE/DMR [133]
and even before, and have become the target of more and more advanced
experiments.
In this chapter, a brief review regarding the Cosmic Microwave Background
will be given. After a short introduction on the standard cosmological
scenario, the main features of any observable related to the CMB are
discussed, with particular attention to its spectrum, the related spectral
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distortion and the physical processes that contribute to these phenomena.

2.2 The cosmological scenario

The large scale geometry of the Universe is well described [78, 89, 105],
within the General Relativity framework, by the Robertson-Walker metric:

ds2 = dt2 − a2(t)
[

dr2

1 − kr2 + r2(dθ2 + sin2θdφ2)
]
. (2.1)

Here the dynamics of the expanding Universe is implicitly contained in the
time dependance of the so called scale factor a(t). The curvature parameter k
can assume−1, 0 or+1 values corresponding to a hyperbolic, flat or spherical
three dimensional space. Solving the Einstein field equation with such a
metric, one obtains the Friedmann equations:

ȧ2

a2 +
k
a2 =

8πG
3
ρ +
Λ

3
(2.2)

ä
a
= −4πG

3
(
ρ + 3p

)
+
Λ

3
(2.3)

where G is the gravitational constant, ρ and p are the energy density and
pressure of the Universe components, related by the typical equation of
state p = wρ, where w is a constant typical of each particle species. The
cosmological constant, Λ, is an additional vacuum energy component in the
stress-energy tensor. Eq. (2.3) together with the stress-energy conservation,
d(ρa3) = −pd(a3), contains relevant informations about the evolution of our
Universe. The expansion rate of the Universe is defined by the Hubble
parameter H = ȧ/a.
If we assume Λ = 0, the first of the Friedmann equations can be recast as

k
H2a2 =

ρ

3H2/8πG
− 1 ≡ Ωtot − 1 (2.4)

Where Ωtot is the ratio of the density to the critical density ρc

Ωtot ≡
ρ

ρc
(2.5)

ρc ≡
3H2

8πG
. (2.6)

The meaning of the critical density is given by analyzing Eq. (2.4).
The value of the parameter Ωtot is related to the curvature parameter k. If
Ωtot > 1 the curvature is positive; the density of the Universe is greater than
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the critical density and it will begin to decelerate and finally collapse. So
Ωtot = 1 (Ωtot < 1) means a flat (open) Universe. The expansion of the Universe
decrease the frequency of a travelling photon. The redshift z = νobs − νem/νem

describing this effect is related to the scale factor as z + 1 = a(t0)/a(t), where
t0 and t are, respectively, the time when we observe radiation and when it is
emitted. In Tab. 2.1 are reported relevant relations describing the evolution
of different contribution to the total energy.

Radiation Matter Vacuum
ρ ∝ a−4 ρ ∝ a−3 ρ ∝ const
a ∝ t1/2 a ∝ t2/3 a ∝ eH0t

T ∝ a−1 T ∝ a−2 –

Table 2.1: Main relations driving the evolution of parameters for the expanding
Universe depending by the energy contribution form of the equation of state.

2.2.1 Thermal history

The expansion of the primordial plasma led to a cooldown, according
to the Tab.2.1. The rate of change of temperature is set by the expansion
rate Ṫ/T = −H. A key to understand the thermodynamics of the early
Universe is the comparison of the interaction rates of the activated processes
to the expansion rate, H. As long as the interactions necessary for particle
distribution functions to adjust to the changing temperature are fast enough
compared to the expansion rate, particles are tightly coupled and our
Universe will evolve through a succession of quasi-steady thermal states.
As interaction rates are usually depending on temperature, the Universe
expansion and cooling passed through some typical temperature scales
where different particles decoupling occurred. Two of the main steps of the
thermal history of the Universe, which have left relevant observable traces
we now use to recover the features of its early stages, are the nucleosynthesis
and the photon-matter decoupling.

• Nucleosynthesis started about 1 sec after the Big Bang when the
temperature dropped below the scale of weak interaction (1 MeV),
which interconverted neutrons to protons. This allowed the formation
of the first nuclei of 2H and, in the subsequent three minutes, of other
species of light elements. Abundances of such elements observed today
fit well this model.
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• After about 3 · 105 years, at a temperature of about 3000K (z $ 1100),
decoupling between photons and electrons occurred, followed by the
recombination of electron and protons into neutral hydrogen atoms.

2.2.2 Inflation

In spite of its success in giving account to most part of the Universe
history since nucleosynthesis up to date, the cosmological standard model
leaves some open questions. One of these problems is the horizon problem.
In the expanding Universe every particle has a growing causal horizon,
defined by:

dH(t) = a(t)
∫ t

0

dt′

a(t′)
, (2.7)

which represents the maximum proper distance which could have been in
causal contact with the particle at a given epoch. This implies, for instance,
that at the recombination time 105 regions contained in the present Hubble
volume were causally disconnected. As the CMB is isotropic up to a part
in 105, on a large angular scale, classical cosmology does not explain a such
singular scenario.
Another open issue left unsolved by the standard cosmology is the so-called
flatness problem. In fact from its definition (see Eq. (2.6)) the Ω parameter
changes with time as Ω(t) = 1/[1 − x(t)] where

x(t) =
k/a2

8πGρ/3
(2.8)

It could be found that x(t) varies as a2 (a) in a radiation (matter)
dominated universe. This implies that, since the Ω parameter is very close
to unity today, as confirmed also by recent CMB measurements, at the very
early stages of the Universe, such as the Planck time (10−43 sec), it should
have been much more close to one, better than a part in 1060. This strong
fine tuning has no explanation in classical cosmology. Both these issues are
solved by the inflationary theory [62, 86].
Inflation is based upon the basic idea that there was an epoch when vacuum
energy, parametrized by a scalar field called inflaton, was the dominant
component of the energy density of the Universe, so that the scale factor
grew exponentially. During such an epoch a small causally coherent
patch of the sky could grow to become the current observable horizon.
This large and quick expansion would dilute existent inhomogeneities,
assuming that in our local patch the spatial gradients are small, and
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smooth the curvature at a relevant level fitting the actual observed flatness.
Quantum fluctuations generated at the inflaton epoch, are stretched by the
accelerated expansion to become density perturbations. Inflationary models
predict fluctuations almost Gaussian with a power spectrum described to
first approximation by a power law P(k) ∝ kns , close to a scale-invariant
spectrum, i.e. with ns ≈ 1 when density fluctuations of scales k re-enters
the horizon. Therefore inflation offers a natural physical mechanism for the
origin of primordial density fluctuations, which have subsequently grown
by gravitational instability, providing the seed of current discrete structures,
such as galaxies and clusters. Furthermore they left their signatures in the
CMB angular anisotropy, which is a rich source to understand both early
stages of the Universe history and late stages of its evolution during the
structure formation.

2.2.3 Models for structure formation

Once the background cosmology has been defined and an acceptable
mechanism generating the fluctuations has been suggested (inflation
paradigm), the way in which structure grows depends on the amount and
type of dark matter present. Three models have been proposed: i) cold dark
matter (CDM): the currently standard model assumes that a minor fraction
of the matter density is due to baryons, while the rest is in non-relativistic
dark matter. Including the contribution of the vacuum energy density (e.g.
the cosmological constant) the total energy density corresponds to Ωtot = 1
i.e. to vanishing curvature.1 Under these assumptions the matter power
spectrum shows a turnover from Pmat ∝ k at large scales (small k) to a k−3

fall-off at small scales (large k), which occurs at k $ 0.03h Mpc. The reason
for this turnover is that perturbations enter the horizon before the universe
becomes matter-dominated, so the growth of perturbations on small scales,
which spend longer periods inside the horizon in the radiation dominated
era, is retarded. Dark matter produces potential wells due to gravitational
instability; baryons fall into them when the photon drag becomes small
enough; ii) hot dark matter (HDM): in this model the difference between Ωb

and Ωm is made up of relativistic particles. These have a minimum scale
on which gravitational instability can cause overdensities, due to their free
streaming. This leads to a large-scale (small k) cut-off; iii) mixed dark matter
(MDM): a combination of hot and cold dark matter may account for extra

1The actual standard cosmological scenario consists in a ΛCDM model.
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power on large scale structure measurements over predictions of standard
CDM (but this difference may also be made up by the cosmological constant).

2.2.4 Dark energy

In 1998 two independent groups, observing Type Ia Supenovae,
pointed out that the expansion of the Universe is accelerating [107] [120].
They observed the luminosity distance of high redshift SN. The apparent
magnitude m, of a source with an absolute magnitude M, is related to the
luminosity distance dL through

m −M = 5 log10

(
dL

Mpc

)
+ 25 (2.9)

and the luminosity distance, in a flat geometry, is given by

dL =
(1 + z)

H0

∫ z

0

dz′
√∑

iΩ
0
i (1 + z′)3(1+wi)

, (2.10)

where wi represents the equation of state for each component. The belief is
that SN Ia are formed and evolve in the same way wherever they are in the
Universe and this is translated in the idea that they have a common absolute
magnitude M, independent of the redshift. The supernova cosmology
project (SCP) and the high-z supernova team (HSST) collected in total fluxes
from almost 70 SN Ia, with redshift ranging in the interval 0.16 < z < 0.83.
In 2004, thanks the study of 16 SN Ia with redshifts z > 1.25 it turned out
[121] that the Universe exhibits a transition from deceleration to acceleration
at > 99% confidence level.
Another evidence for the existence of a cosmological constant emerges
comparing the age of the oldest stellar population with the age of the
Universe. The latter must obviously be greater than the former, but it is
difficult to satisfy this condition for a flat cosmological model with normal
form of matter [30].
Further and more recent observations provided other proofs for an
additional component in the Universe dynamics: observations of CMB
anisotropies and of large scale structures independently support the idea
of a dark energy dominated Universe.
From the point of view of particle physics, the cosmological constant
naturally arises from an energy density from the vacuum and it corresponds
to a fluid with a constant equation of state w = −1. To date, the observations
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say very little about the evolution of w, so it is possible to consider situations
in which the equation of state of dark energy changes with time. Among the
others, these ideas include: quintessence, phantoms, K-essence, tachyon,
ghost condensate.
Let now see just some features of one of this model. Quintessence is
described by an ordinary scalar field Φ minimally coupled with gravity,
but with a particular potential that lead the late time inflation. The action
for quintessence [30] is given by:

S =
∫

d4x
√−!

[
−1

2
(∇Φ)2 − V(Φ)

]
, (2.11)

where (∇Φ)2 = !µν∂µΦ∂νΦ and V(Φ) is the potential of the field. In a FLRW
space-time the variation of the action with respect to Φ is gives

Φ̈ + 3HΦ̇ +
dV
dΦ
= 0 . (2.12)

Computing energy density and pressure of the scalar field in a Friedmann
background, it is possible then to obtain the following equations for the
cosmic evolution:

H2 =
8πG

3

[1
2
Φ̇ + V(Φ)

]
, (2.13)

ä
a
= −8πG

3

[
Φ̇2 + V(Φ)

]
. (2.14)

2.3 CMB anisotropies

The inflationary model predicts Gaussian fluctuations for CMB
temperature anisotropies. If this condition holds, their statistical content
is hold in the 2-point temperature correlation function, or equivalently in its
angular decomposition into Legendre moments Cl, commonly called power
spectrum.
The details of the cosmological model cannot be shaped through the
informations encrypted in the thermal nature and isotropy of the CMB.
Temperature anisotropies anisotropies bear the imprint, filtered through the
dynamics and geometry of the expanding universe, of the fluctuations which
eventually led to structure formation in the universe.
In this section, a light description on the origins and characteristics of the
CMB temperature anisotropies will be given, focusing with more details on
its statistical description.
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2.3.1 Primordial perturbations

In order to analyze the origin of primordial fluctuations we have to
go back in time until the actual model is consistent. At this stage of life
of the Universe, quantum gravity effects start to be important and General
Relativity is no longer a safe theoretical probe. The moment after which this
happens is named Planck time: the age of the universe was t ∼ 10−43 sec
and its temperature was about 1019 GeV. At present, a firm understanding
of the elementary particles and their interactions only extends to energies
of the order of 100 GeV, which corresponds to a time of the order of 10−11

sec. An ascertain truth is that at temperature of about 100 MeV – 200 MeV
(t ∼ 10−5 sec) there was a transition from quark/gluon plasma to very hot
hadronic matter, and that some kind of phase transition associated with the
simmetry breakdown of the electroweak theory took place at a temperature
of the order of 300 GeV.
In this primordial era, two kind of perturbation are of interest: adiabatic
perturbations and isocurvature perturbations

2.3.2 Adiabatic perturbations

Adiabatic (or isentropic) modes are fluctuations in the energy density,
or the number of particles, such as the specific entropy is constant for any
species i. If these species are non-relativistic:

δ
(nγ

ni

)
∝ δρi

ρi
− 3

4
δργ
ργ
= 0.

In terms of the perfect fluid stress-energy tensor of general relativity, the
assumption of an adiabatic perturbation is equivalent to assuming that the
pressure fluctuation is equivalent to the energy density perturbation. The
adiabatic condition implies:

∆T
T
=

1
4
δργ
ργ
=

1
3
δρ

ρ

On the other hand, because an over-density gives a larger gravitational
potential that photons must climb out of, the gravitational effect and the
adiabatic effect partially cancel, leaving

∆T
T
= −1

3
δφ

where δφ is the fluctuation in the gravitational potential and the minus sign
means that the CMB hot spots are matter under-densities. Inflation naturally
predicts adiabatic perturbation.
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2.3.3 Isocurvature perturbations

Isocurvature modes are fluctuations in the number density of particles
which do not affect the total energy density. They perturb the specific
entropy or the equation of state:

δs = δ
(nγ

nb

)
∝ δρb

ρb
− 3

4
δργ
ργ
! 0

While these perturbations are outside the horizon, causality precludes
them from becoming an energy density perturbation. Inside the horizon,
however, pressure gradients can convert an isocurvature perturbation into
an energy density fluctuation. For isocurvature fluctuations, a positive
fluctuation in the matter density (and therefore in the gravitational potential)
is compensated by a negative fluctuation in the photon temperature. The
gravitational effect (Sachs-Wolfe) and the initial temperature fluctuation
therefore add each other (rather than cancel, as in the adiabatic case), giving
rise to six times more large ∆T/T for a given matter perturbation.

2.3.4 Statistics and angular power spectrum

Since the tight coupling between matter and radiation in the primordial
Universe it is possible to recover the gravitational potential at the Last
Scattering Surface (LSS), which wrap detailed features of the recombination
epoch [70, 106, 139]. In the context of a CMB observation, it is usual
to describe te temperature distribution on the sky through a spherical
harmonics decomposition:

T(x0,θ,φ) =
)=∞∑

)=0

m=)∑

m=−)
A)m(x0)Y)m(θ,φ) (2.15)

where x0 represents our location in the Universe, and the two angles θ
and φ define the pointing direction in the sky. The dependence from x0

should always appear but this will be omitted in the continuation since
it is somewhat implicit in the measurement: we are clearly able to do
measurement only from our location and this is the only realization of
Universe that we can observe. This obviousness is translated in what is
called cosmic variance, that is described at the end of this section.

The multipole moments, A)m, represent the collection of numerical
values necessary to describe the observed sky pattern. The first term, the
monopole, represents the mean sky temperature: T0 = 2.725 ± 0.002 K [94].
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The second term, the dipole, has an amplitude of about ∆T ∼ 3.365 ± 0.027
mK and it results from the Doppler-shifted Planck spectrum due to the Solar
System’s motion with respect to the rest of frame of the CMB, towards the
direction of the Virgo cluster with a velocity of about 370 km/s.

Since CMB spectrum is an extremely good blackbody the observable
is generally described in terms of a temperature fluctuation ∆T(θ,φ) =
T(θ,φ) − T0 and a)m = A)m/T0:

∆T(θ,φ)
T0

=
)=∞∑

)=1

m=)∑

m=−)
a)mY)m(θ,φ). (2.16)

The observed quantities are the RMS value of temperature fluctuations:
〈(
∆T
T0

)2〉
=

1
4π

∫

4π

(
∆T(θ,φ)

T0

)2
(θ,φ) dΩ

=
1

4π

∑

)

∑

m

a)ma∗)′m′
∫

4π
Y)m(θ,φ)Y∗)′m′ dΩ. (2.17)

Since
∫

4π Y)m(θ,φ)Y∗)′m′ dΩ = δ))′δmm′ it results:

〈(
∆T
T0

)2〉
=
∑

)

∑

m

〈
|a2

lm|
〉

4π
. (2.18)

In an isotropic universe a rotational invariance of the coefficients
〈|alm|2

〉
=

〈|alm′ |2
〉

is aspected and:
〈(
∆T
T0

)2〉
=
∑

)

(2) + 1)C)
4π

(2.19)

where the coefficients C) =
〈
|a2

lm|
〉
, named power spectra, are the quantities

related to the physical phenomena. The multipole ) is related to the angular
scale θ by the relationship ) ∼ π/θ.

The average in Eq. 2.17 should be computed over all possible locations
x but of course is not. For this reason what we measure is not C) but:

C̃)(x0) =
)∑

m=−l

|a)m(x0)|2
2) + 1

. (2.20)

Usually is plotted the value )() + 1)C)/2π versus the multipole ) because in
the standard CDM this quantity is aspected to be constant for multipoles
larger than the horizon () " 50). The cosmological models predict only the
statistical distribution of temperature fluctuations and, as said, if such a
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distribution is Gaussian then the power spectrum completely describes the
models.

How accurately could the spectra ultimately be measured had been
defined by the mentioned cosmic variance due to the fact that there are only
(2) + 1) m−samples of the power in each multipole moment. This leads to
an unavoidable error of:

σ) ∼
√

2
2) + 1

C) (2.21)

Allowing for further averaging over ) in bands of ∆) ∼ ), the precision in
the power spectrum determination scales as )−1, i.e. ∼ 1% at ) = 100 and ∼
0.1% at ) = 1000.

There are two general caveats to these scalings. The first is that any
source of noise, instrumental or astrophysical, increases the errors. If the
noise is also Gaussian and has a known power spectrum, the power spectrum
on the right-end-side of Eq. 2.21 can be simply replaced with the sum of
the signal and noise power spectra. This explains why the errors for the
P satellite increase near its resolution scale. Because astrophysical
foregrounds are typically non-Gaussian it is usually necessary to remove
heavily contaminated regions, e.g. the Galaxy. If the fraction of covered sky
is fsky, then the errors increase by a factor of f −1/2

sky and the resulting variance
is usually dubbed sample variance.

Another observation related topic that must be considered is the window
function W). This is characteristic of the instrument involved in the
measurement of the power spectrum and it is due to its discrete angular
resolution:

C),meas = C) ·W) (2.22)

For a Gaussian beam with angular resolution equal to FWHM the window
function is:

W) ∼ e−
)2σ2

2 (2.23)

with σ = FWHM /(2
√

2 ln 2). Therefore, the drop of the window function
makes an instrument sensitive only to ) " π/PFWHM.

2.3.5 Primary anisotropies

When the universe was about 3×105 years old the CMB was a thousand
times hotter (T $ 3 × 103 K, z $ 103), and jointly to the high number of
photons it was able to keep separated baryons and leptons. Before that
epoch, the strength of the Coulomb interactions establish a baryon-photon
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fluid. Fluctuations in the total matter density (including dark matter and
possibly neutrinos) have effects on the photons through the gravitational
potential they create. The anisotropies formation are due also to the presence
of these fluctuations in the early Universe.

The following discussion will be done in Fourier space, in units in
which c = 1 and the gravity is neglected, for the moment. If Θ is the photon
temperature, the decomposition of the temperature field monopole is then:

Θ)=0,m=0(x) =
∫

d3k
(2π)3 eikxΘ(k) ,

where the subscript 00 in the Fourier amplitude is omitted. In the Fourier
space the temperature perturbations obey

Θ̇ = −1
3

kvγ , (2.24)

where the derivative is done with respect to the conformal time η and the
photon fluid velocity vγ is written as a scalar because in the early Universe
only the velocity component parallel to the wavevector k is important. 2

The factor 1/3 comes from the fact that continuity preserves photon number
but not the temperature and the number density nγ ∝ T3. Now, if we
consider that the momentum density of the photons is (pγ + ργ)vγ, with a
photon pressure pγ = ργ/3 and neglect gravity and fluid imperfections, the
pressure gradients represent the only force ∇pγ = ∇ργ/3 and since ργ ∝ T4,
this becomes 4kΘρ̄γ/3 in Fourier space.
With these assumptions, the Euler equation, that for a fluid represents the
momentum conservation, can be written as

v̇γ = kΘ . (2.25)

Differentiating Eq. 2.24, that represents the continuity equation in Fourier
space and inserting Eq. 2.25, it is possible to achieve to the most basic form
of the oscillator equation:

Θ̈ + c2
s k2Θ = 0; , (2.26)

where cs ≡
√

ṗ/ρ̇ = 1/
√

3(= c/
√

3) is the sound speed in the fluid (considered
dynamically baryon-free for now). The pressure gradients act to any
initial perturbations and make them oscillate at the speed of sound. The

2Specifically, it must be written as vγ = −ivγk̂ and it represents the induction of a dipole moment
directed along k
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temperature oscillations physically represent the heating and the cooling
of a fluid in the phases of compression and rarefaction respectively. This
mechanism is well described through the action of acoustic waves and it
lasts until recombination occurs.

Acoustic Oscillations

Acoustic oscillations result inside the fluid since the gravity tries
to compress the fluid in potential wells generated by energy density
fluctuations and photon pressure resists the compression. Ignoring, as
first approximation, time variations in the two potentials Ψ and Φ and the
contribution of baryons to the sound speed, that can be considered cs $ c/

√
3,

the oscillator equation then reduces to:

Θ̈ + k2c2
sΘ = −

1
3

k2Ψ (2.27)

whereΘ is the isotropic temperature fluctuation and the derivative are done
with respect to the conformal time η ≡

∫
dt/a(t). This is a simple harmonic

oscillator under the constant acceleration provided by gravitational infall
and can be solved as:

Θ(τc) = [Θ(0) + (1 + R)Ψ] cos(krs) +
1

kcs
Θ̇0(0) sin(krs) − (1 + R)Ψ, (2.28)

where the sound horizon rs =
∫

csdη = csη. The two initial conditions Θ(0)
and Θ̇0(0) govern the form of the acoustic oscillation.

Gravitational infall and redshift

In the early universe photons dominate the fluid and R → 0. In this
limit the oscillation becames an even simpler form. For the adiabatic mode,
Θ̇(0) = 0 and

Θ(η) = [Θ(0) +Ψ] cos(krs) −Ψ . (2.29)

This represents an oscillator with a zero point which has been displaced by
gravity. The zero point represents the state at which gravity and pressure are
balanced. This displacement −Ψ > 0 yields hotter photons in potential well
since gravitational infall not only increases the number density of photons
but also their energy through gravitational blueshifts. However, photons
also suffer a gravitational redshift from climbing out of the potential well
after the last scattering. This precisely cancel the −Ψ blueshift and the
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effective temperature perturbation is

Θ(η) +Ψ = [Θ(0) +Ψ] cos(krs) . (2.30)

The phase of the oscillation at last scattering determines the effective
fluctuation. Since the oscillation frequency ω = kcs, the critical wavenumber
k = π/rs(η∗) ≈ π/csη∗ is essentially at the scale of the sound horizon
(asterisks denote evaluation at recombination). If there is a spectrum of
k-modes, there will be a harmonic series of temperature fluctuation peaks
with km = mπ/rs(η∗) for the m-th peak. Odd peaks represent the compression
phase (temperature crests), while even peaks represent the rarefaction phase
(temperature troughs), inside the potential well. As first calculated by Sachs
& Wolfe [? ], the effective temperature in the matter dominated limit goes to

Θ +Ψ =
1
3
Ψ . (2.31)

Thus this effect, named Sachs & Wolfe effect, is a combination of intrinsic
temperature and gravitational redshift.

Baryon drag

The baryons contribution must be also taken into account. Even if
they are effectively pressureless, baryons contribute in decreasing the sound
speed. Considering consider the photon-baryon momentum density ratio

R =
pb + ρb

pγ + ργ
≈ 30Ωbh2(z/103)−1 ,

it is possible to quantify the sound speed decrease: cs = 1/
√

3(1 + R).
Because baryons play a fundamental role in the calculation of the inertial
and gravitational mass of the fluid, they change also the balance of pressure
and gravity. The gravitational infall in a potential well is now characterized
by a greater compression of the fluid and this involves a displacement of the
zero point of the oscillations. In order to better understand the contribution
of the baryons, let consider the limit in which R,Φ and Ψ are constant.
Maintaining the formalism of Eq. 2.27 and considering Θ → Θ + (1 + R)Ψ,
the solution of the revised oscillation equation is

[Θ + (1 + R)Ψ](η) = [Θ + (1 + R)Ψ](ηmd) cos krs . (2.32)

Lowering the sound speed, baryons decrease the sound horizon and they
have two further effect: to let the oscillations reach larger amplitude and to
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Figure 2.1: Top panel: radiation pressure from the photons resists the gravitational
compression of the fluid into potential wells and sets up acoustic oscillations in
the fluid. Bottom panel: baryons increase the effective mass of the fluid and the
gravitational infall leads to a greater compression of the fluid in the potential well.
Figure from [3]

shift the zero point of oscillations themselves. This shift breaks the symmetry
of the oscillations, leading the baryons to enhance only compressional phases
(odd peaks on the APS). It means that the baryons supply the extra gravity
to make compressions became potential wells.
It is possible to consider the case of a time-variable mass, that causes the
adiabatic damping of an oscillator and since the frequency (and so the
energy) of an oscillator is an adiabatic invariant, the amplitude must decay
as (1 − R)−1/4.

Doppler effect

Since the oscillation turning points are at the extrema, the fluid velocity
oscillates 90 degrees out of phase with the density. Its motion relative to the
observer causes a Doppler shift. Whereas the observer velocity creates a pure
dipole anisotropy on the sky, the fluid velocity causes a spatial temperature
variation on the last scattering surface from its line of sight component.
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The velocity contribution is equal in amplitude to the density effect. The
addition of baryons significantly changes the relative velocity contribution.
As the effective mass increases, conservation of energy requires that the
velocity decreases for the same initial temperature displacement. Thus
the relative amplitude of the velocity scales as cs. Velocity oscillations are
symmetric around zero unlike the temperature ones. Thus compressional
peaks will rise clearly above the velocity oscillations if R is large. Even in a
universe with Ωbh2 given by nucleosynthesis, R is suffciently large to make
velocity contributions subdominant.

Including radiation

It is possible to take into account the contribution of the energy
density of the radiation. The matter-to-radiation ratio scales as ρm/ργ ≈
24Ωmh2(z/103)−1. At he epoch of recombination z ∼ 103, so this ratio is of the
order of unity (for reasonable cosmological parameters). It also happened
that fluctuations corresponding to higher peaks, entered the sound horizon
during the radiation dominated era.
Further, the inclusion of the radiation of course changes the Universe
evolution and so the physical scale and the sound horizon at recombination.
The effect of the radiation on the power spectrum is to drive the acoustic
oscillations by making the gravitational force to evolve with time. In
particular, in the radiation dominated era once pressure starts to oppose
to gravity at the first compressional maxima of the wave, the Newtonian
gravitational potential and the spatial curvature must decay. The oscillations
are then driven, because the decay leaves the fluid maximally compressed
without any gravitational potential to oppose.
Anyway, once the Universe becomes matter dominated the gravitational
potential is no more determined by the photon-baryon density but by the
cold dark matter and the amplitude of the acoustic peaks increases as the cold
dark matter-to-radiation ratio decreases. So radiation density perturbations
won’t grow anymore around the horizon crossing. It is worth noting that not
considering gravitational potential leads to eliminate the alternating peaks
heights caused by the baryon loading. Indeed, the height of the third peak is
an indication that cold dark matter exists and dominates the energy densities
at recombination.
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Damping

Even id it is characterized by particular regimes, the baryon-photon
fluid is not a perfect fluid. Heat conduction and shear viscosity may perturb
the acoustic oscillations. The effect consists in damping the oscillations.
Considering that the number of photons and baryons is conserved, the
continuity equation,for each of the two species, are written as

Θ̇ = −k
3

vγ − Φ̇ ,

δ̇b = −kvb − 3Φ̇ , (2.33)

where δb and vb are the density perturbation and the fluid velocity of the
baryons respectively. It is possible now to write the Euler equations for the
two species, considering also the new terms:

v̇γ = k(Θ −Ψ) − k
6
πγ − τ̇(vγ − vb) ,

v̇b = −
ȧ
a

vb + kΨ + τ̇(vγ − vb)/R . (2.34)

Here τ̇ ≡ neσTa is the differential Thomson optical depth and the term
of the equation containing it takes into account the momentum exchange
during the Thomson scattering between photons and electrons. Further,
the presence of the scale factor a in the Euler equation for baryons ensures
that momenta decay as a−1. These terms represent the origin of the heat
conduction imperfections.
Anisotropic stress gradients or radiation viscosity add an extra force in the
Euler equation for the photons. The viscosity and the heat conduction terms
can be written the form of damping terms and included in the oscillator
equation, that takes the following form:

c2
s

d
dη

(c−2
s Θ̇) +

k2c2
s

τ̇
[AV + Ah]Θ̇ + c2

s K2Θ = −k2

3
Ψ − c2

s
d

dη
(c−2

s Φ̇) . (2.35)

Here Ah = R2/(1 + R) is the heat conduction coefficient, while AV takes into
account the anisotropic stress gradients. The damping scale, kd, is of the
order of

√
τ̇/η, that corresponds to the geometric mean between the horizon

and the mean free path, λC = τ̇−1. At the recombination kd/η is of the order
of few %, so in the CMB power spectrum all the peaks after the third one are
expected to be affected by dissipation.

completare con massa di silk
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2.3.6 Secondary anisotropies

After recombination, CMB photons travel until us, traversing large
scale structures in the Universe. From the decoupling and along all their
journey they pick up secondary anisotropies in temperature and polarization
anisotropies as well.
Contributions to these anisotropies come from several parts: dark matter,
dark energy, temperature and density distribution of the baryonic gas
and even the existence of gravitational waves could play a role in this
phenomena. Anyway, there are some limitations related to the precise
determination of these effects: on one side the non-linear regime of these
processes and the uncertainties on them put some limitations on the
predictions of their effects, while on the other precise measurements are
limited by cosmic variance and by the important contamination that Galactic
and extragalactic foregrounds bring on CMB measurements.
The secondary anisotropies can be divided in two main classes on the
basis of the source of the anisotropy itself: gravitational secondaries and
scattering secondaries. What follows is a brief description of the secondary
anisotropies.

Gravitational effects

Integrated Sachs Wolfe effect
In a cosmological model in whichΩm < 1, at the epoch in which the Universe
from matter-dominated becomes dark energy-dominated, it is possible that
potentials on a given scale may decay. This happens whenever the expansion
is dominated by a component whose effective density is smooth on that
scale. The effect consists in the relation that is between the decaying of a
potential well and the crossing of it by a photon while it is decaying. If
it decay during the photon crossing, this latter gets a boost in temperature
of δΨ, due to differential gravitational redshift and −δΦ ≈ δΨ due to the
contraction of the wavelength.
A potential decay due to dark energy is characterized by a long time interval
on which the potential decays and today this is of the order of the Hubble
time. Anyway, the distance on which photons feel the effect is much shorter
than the wavelength of the potential fluctuation.
On the power spectrum the contribution of the ISW effect is generally seen
at large angular scale (low )). Since the effect is very sensitive to the dark
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energy, it is very important, because it can provide informations of the
amount, on the equation of state and on the clustering properties of the dark
energy. Unfortunately, being concentrated to low multipoles, the ISW effect
suffers very much from the cosmic variance.
The ISW effect is called early ISW if the time evolution of the anisotropy
perturbation is due to the radiation content, while it is calledlate ISW if it is
due to expansion.

Rees-Sciama effect
The cancellation of the ISW effect on small scales, due to the fact that photons
travel through many peaks and valleys, generates second order and non-
linear contributions to the anisotropies. The evolution of the density profile
of a isolated structure can cause changes in the potential along the line
of sight and a more prominent effect comes from the bulk motion of the
structure along the line of sight. The bulk motion of dark matter halos
contributes to this effect, that consists in low levels of anisotropies: it is
never the major level of secondary anisotropies on any scales.

Gravitational waves and gravitational lensing
The contribution of the gravitational waves to the generation of anisotropies
is generated by a time-variable tensor metric perturbation [123]. The
effect is that of a standing gravitational wave: the raise of a quadrupolar
distortion in the spatial metric and its changing in time leaves a quadrupolar
distortion in the CMB temperature distribution. Once the perturbation
crosses the horizon, the amplitude of a gravitational wave starts oscillating
and decaying and given that this process happen before the recombination,
the Thomson scattering deletes any developing quadrupole anisotropies.
On the power spectrum only the contribution for large scales remains, while
later than the first peak any effect is suppressed. Since the effect is limited
to low moltipoles, the isolation of the gravitational waves contribution is
strongly limited by cosmic variance (see Fig. 2.2)

A further effect of the large-scale gravitational potential consists in
lensing the CMB photons. This is a second order effect because the lensing
holds the surface brightness and affects only anisotropies.

Scattering effects

Reionization
CMB anisotropies can be suppressed if photons are scattered again in
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Figure 2.2: Temperature and polarization spectra from an initial scale invariant
gravitational wave spectrum. Figure from [2]

relatively late epochs, like in the case of a reionization of the Universe.
This process has some major impact on all the observables of the CMB.
In particular, if a reionization occurs the temperature anisotropies will
be suppressed by an amplitude strictly related to the fraction of photons
rescattered. The optical depth for photons plays here a fundamental role and
an important epoch is when it is equal to unity. Since Thomson scattering
is independent of frequency, is quite simple to calculate the reionization
redshift from the following formula

τ = −
∫ z

0
n̄e(z)σTc

(dt
dz

)
dz , (2.36)

where σT is the Thomson cross section, c is the speed of light and ne(z)
takes into account the number density of electrons at different epochs. For a
geometrically flat Universe with a constant ionized fraction, Eq. 2.36 can be
written as:

τ $ 0.035Ωbhxez3/2 . (2.37)

Here, xe is the ionized fraction of the electrons. The important effects of
reionization on anisotropies are at arc-minute scales, in particular, where
primary anisotropies are expected to be erased. These will be suppressed
proportionally to e−τ.

Doppler effects
After the Compton drag epoch baryonic gravitational instability can no
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longer be prevented by the photons. Collapse of the baryon density
fluctuations implies that baryon peculiar velocities will create a Doppler
effect in the CMB. However, the photon traverses many crests and troughs
of the perturbation at last scattering and these contributions are suppressed
in the same way as the late ISW effect: photons that last scattered off opposite
sides of the perturbation get Doppler shifted by equal and opposite amounts.
Thus for wavelengths far below the thickness of the last scattering surface,
Doppler contributions tend to cancel leaving a negligible net effect (see
Fig. 2.4).
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Figure 2.3: Secondary anisotropies. Gravitational secondaries: ISW, lensing and
Rees-Sciama effects (left side). Scattering secondaries: cancelled Doppler effect,
Vishniac effect, and the thermal SZ effect (right side). Figure from [2]

Figure 2.4: Primary and Vishniac contributions for a range of possible ionization
histories in the standard CDM model. Note that even for minimally ionized
zri = 5 − 10, where first order anisotropies are nearly indistinguishable from the
standard recombination case, the Vishniac effect contributes a significant fraction of
its total in temperature fluctuations. Because standard CDM has more small scale
power than measurements suggest, these calculations are expected to be an upper
limit for CDM-like models. Figure from [2]
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Vishniac
Since the first order Doppler fluctuation is severely suppressed due to
coincidental geometrical reasons other effects may dominate the anisotropy
at small scales. Variations in the optical depth due to density fluctuations
across the last scattering surface may allow the Doppler effect to avoid
severe cancellation. The increased probability of scattering causes a
preferential generation of Doppler fluctuations in overdense regions. A
coupling between large scale velocity perturbations with small scale density
perturbations is thus established; it is not as severely damped as the first
order contribution. Vishniac contributions are expected to peak on sub-
arcmin scales.

Sunyaev-Zel’dovich effect
Clusters provide a non-linear analogue of the Vishniac effect. Here the hot
cluster provides the variation in the optical depth which causes preferential
scattering. The Doppler effect due to the peculiar velocity of the cluster
yields an anisotropy known as the kinematic Sunyaev-Zeldovich effect (SZ)
[151]. For an individual cluster the temperature fluctuation is of order
τcvc, where the optical depth through a cluster is of order τc ≈ 0.1 − 0.01
and the peculiar velocity vc ≈ few ×10−3. This provides an interesting
way of measuring the peculiar velocity of a cluster without introducing the
problems associated with determining the distance scale. The average effect
is much smaller however and probably does never dominates the anisotropy
spectrum. Anyway, this non-linear Doppler effect is small in comparison to
the second order Doppler effect.

Approximately 10% of the total mass of rich clusters of galaxies is in the
form of hot (∼ 108 K) ionized plasma. Compton scattering of CMB photons
by electrons in this intra-cluster plasma can result in an optical depth as high
as 0.02, resulting in a distortion of the CMB spectrum at the mK level named
thermal Sunyaev-Zeldovich effect.
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2.4 CMB polarization

The temperature anisotropies that we observe are the result of
primordial fluctuations. On the LSS, Thomson scattering of temperature
anisotropies generates a linear polarization pattern on the sky that
can be simply read off from their quadrupole moments. These
quantities correspond directly to the fundamental scalar (compressional),
vector (vortical), and tensor (gravitational wave) modes of cosmological
perturbations.

Thomson scattering, driving baryon-photon interactions at the
recombination era, is represented by a polarization-dependent differential
cross-section:

dσ
dΩ
=

3σT

8π
|̂ε ′ · ε̂|2 (2.38)

where σT is the total cross section, while ε̂ and ε̂ ′ are unit vectors in
the planes perpendicular to the propagation directions of incoming and
outgoing radiation scattered by an electron. The unpolarized scattered
photon gain a residual polarization from this interaction. Then if we
integrate the effects for photons interacting with the electron through all
directions, polarized component is averaged out. The presence of a local
quadrupole component in the distribution of photons at last scattering
generates a net linear polarization in the CMB [2]. This causal process
leads to polarization spectrum peaks at angular scales smaller than the
horizon size at last scattering. Furthermore, the polarized fraction of the
temperature anisotropy is small, since only those photons that last scattered
in an optically thin region could have possessed a quadrupole anisotropy
(multiple scattering causes photon trajectories to mix and hence erases
anisotropy). This fraction, which depends on the duration of last scattering,
is expected to be of 5 − 10% on a characteristic scale of tens of arcminutes.
Polarization spectrum is related with fluid velocity induced local quadrupole
and then out of phase with temperature power spectrum.

2.4.1 Statistical description

More formally, let call Iij the 2 × 2 intensity tensor characterizing the
CMB radiation field. This quantity is a function of the direction on the sky n
and the two directions perpendicular to n: ê1, ê2. The Stokes parameters are
defined as Q = (I11− I22)/4 and U = I12/2, while the temperature anisotropies
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is given by T = (I11+I22)/4. Generally one represents the polarization through
the definition of the quantities P =

√
Q2 +U2, the magnitude, and the angle

α = arctan
(

U
Q

)
. The Stokes parameter V that describes circular polarization is

not included because it could not be generated through Thomson scattering.
In the plane perpendicular to n, under a right handed rotation of an angle
ψ, Q and U transform as

Q′ = Q cos 2ψ +U sin 2ψ

U′ = −Q sin 2ψ +Ucos2ψ (2.39)

where ê′1 = cos ψ̂e1 + sin ψ̂e2 and ê′2 = − sin ψ̂e1 + cos ψ̂e2. From the Stokes
parameters, it is then possible to construct two quantities having a definite
value of spin:

(Q ± iU)′(n̂) = e∓2iψ(Q ± iU)(n̂) . (2.40)

As for the temperature, also these quantities can be decomposed through
spherical harmonics:

(Q + iU)′(n̂) =
∑

lm

a2,lm 2Ylm(n̂)

(Q − iU)′(n̂) =
∑

lm

a−2,lm −2Ylm(n̂) , (2.41)

where the sYlm(θ,φ) are the so called spin-s spherical harmonics. This sets
of function satisfy the same completeness and orthogonality relations of the
usual spherical harmonics.
The Q and U parameters are easily calculated in a coordinate system where
the wavevector k is parallel to ẑ. The fact that the Stokes parameters are
not invariant under rotations in a plane perpendicular to n̂, complicate the
calculation of the superposition of different modes. For each wavevector k
and direction on the sky n̂ one has to rotate the Q and U parameters from
the k and n̂ dependent basis into a fixed basis on the sky. This process is
well defined only in the small scale limit. However, it is possible to use the
spin raising and lowering operators ð and ð̄ on Q ± iU and from Eq. 2.41
one reaches

ð̄2(Q + iU)(n̂) =
∑

lm

[
(l + 2)!
(l − 2)!

]1/2
a2,lmYlm(n̂)

ð̄2(Q − iU)(n̂) =
∑

lm

[
(l + 2)!
(l − 2)!

]1/2
a−2,lmYlm(n̂) (2.42)
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The expansion coefficients are then expressed by

a2,lm =

∫
dΩ 2Y∗lm(n̂)(Q + iU)(n̂) =

[
(l + 2)!
(l − 2)!

]−1/2 ∫
dΩ 2Y∗lm(n̂)ð̄2(Q + iU)(n̂)

a−2,lm =

∫
dΩ 2Y∗lm(n̂)(Q − iU)(n̂) =

[
(l + 2)!
(l − 2)!

]−1/2 ∫
dΩ 2Y∗lm(n̂)ð̄2(Q − iU)(n̂) .

(2.43)
It is possible to introduce the linear combination of a2,lm and a−2,lm

aE,lm = −(a2,lm + a−2,lm)/2

aB,lm = i(a2,lm + a−2,lm)/2 , (2.44)

that have a different behavior under parity transformation: while E remains
unchanged B changes the sign, in analogy with electric and magnetic field.
With these quantities, together with the temperature power spectrum, it is
possible to characterize the statistics of the CMB perturbations with only four
power spectra: those for T, E, and B and one for the cross correlation between
T and E. These spectra are defined as rotationally invariant quantities

CTT
l =

1
2l + 1

∑

m

〈a∗T,lmaT,lm〉

CEE
l =

1
2l + 1

∑

m

〈a∗E,lmaE,lm〉

CBB
l =

1
2l + 1

∑

m

〈a∗B,lmaB,lm〉

CTE
l =

1
2l + 1

∑

m

〈a∗T,lmaE,lm〉 (2.45)

and the following relations can be obtained

〈a∗T,l′m′aT,lm〉 = CTT
l δl′lδm′m

〈a∗E,l′m′aE,lm〉 = CEE
l δl′lδm′m

〈a∗B,l′m′aB,lm〉 = CBB
l δl′lδm′m

〈a∗T,l′m′aE,lm〉 = CTE
l δl′lδm′m

〈a∗B,l′m′aE,lm〉 = 〈a∗B,l′m′aT,lm〉 = 0 . (2.46)

For real space calculation, it is worth introducing two scalar quantities:

Ẽ(n̂) ≡ −1
2

[
ð̄2(Q + iU) + ð2(Q − iU)

]
=
∑

lm

[
(l + 2)!
(l − 2)!

]1/2
aE,lmYlm(n̂)

34



B̃(n̂) ≡ −1
2

[
ð̄2(Q + iU) − ð2(Q − iU)

]
=
∑

lm

[
(l + 2)!
(l − 2)!

]1/2
aB,lmYlm(n̂) . (2.47)

These variables are rotationally invariant, but they are not the invariant
version of Q and U, because ð2 and ð̄2 are differential operators. Finally, in l
space, the quantities defined in 2.47 are related by

a(Ẽ,B̃),lm =

[
(l + 2)!
(l − 2)!

]1/2
a(E,B),lm . (2.48)

Figure 2.5: Temperature and polarization spectra. Figure from [2]

CMB polarization provides an important tool for reconstructing the
model of the fluctuations from the observed power spectrum. Indeed
polarization probes the epoch of last scattering directly unlike the
temperature fluctuations, which may evolve between last scattering surface
and the present. Further, different sources of temperature anisotropies
(scalar, vector and tensor) give different patterns in the polarization, both in
its intrinsic structure and in its correlation with the temperature fluctuations
themselves. That is why different power spectra are attainable from CMB
polarization measurements: discerning between scalar polarization modes
E, and curl component mode B, we can construct a temperature-polarization
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cross correlation spectrum TE and two different polarization power spectra,
EE and BB (Fig.2.5).

Due to its generation mechanism, one interesting feature of polarization
power spectrum is a low ) bump, appearing in the case of a Universe
reionization at low redshifts (see Fig. 2.5). At this epoch the process
coherence scale, the causal horizon, is at large angular scales in the sky.

2.5 Physical processes in the primordial plasma

For the following analysis, we consider true that: 1) the Universe has a
FRW metric; 2) the CMB nature is the one predicted by the standard Hot Big
Bang model; 3) in the primordial plasma the number of protons is equal to
the number of electrons: ne = np.
Let assume that the photon distribution function at equilibrium is a
Planckian one:

η(ν) =
1

ehν/kBT − 1
. (2.49)

The differential number of photons is given by

dNγ = 2η(r,k)
d3rd3k
(2π")3 ,

where k is the moment of the particle. If the radiation field is isotropic and
homogeneous, the photons differential density is given by

dnγ(ν) = 2η(ν)
d3k

(2π")3 =
8π
c3 η(ν)ν

2dν,

where |k| = hν/c, and the evolution of the photons occupation number is
described by

∂η
∂t
=
∂η
∂t

)

c
+
∂η
∂t

)

s
,

where c and s stands for collisions and sources contribution respectively.

2.5.1 Compton Scattering

Compton scattering consists in the diffusion of photons by free electrons
(e−+γ→ e−′+γ′) and so it permits the exchange of energy between electrons
and radiation. Let consider a collision between an electron, with moment q
and energy u (including the mass m0 corresponding to the rest frame energy)
and a photon with moment k and energy ω = hν. From the energy-moment
conservation law we have

q + k = q′ + k′ , u + ω = u′ + ω′ ,
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where ′ indicates the particle features after the collision. Using the following
substitutions k = ωc ê and k′ = ω′c ê′, one can obtain the quantity

ω′ − ω = −ωcq(ê − ê′) + ω2(1 − ê · ê′)
ω(1 − ê · ê′) − cq ê′ + u

,

where ê represents the photon direction. In relativistic regime ((hν, |q|c "
mec2), we have

ω′ − ω ∼ −ω
[ q
mec

(ê − ê′) +
ω

mec2 (1 − ê · ê′)
]
.

In the rest of frame of the electron, the photon energy decrease is represented
by the term in square brackets, while the first term is related to the change
of frequency of the same photon due to Doppler effect (in the laboratory rest
frame). If the electron velocities are randomly distributed, averaging on
angles, in the limit where Te ! Tr, we obtain that, for a single diffusion,
the energy variation rate of the photons is given by the mean variation of ω
times the collisions number in the time unit, is given by

dN
dt
= σTnec

(
1 − V

c
ê
)
, (2.50)

where V is the electron velocity. Considering only Doppler effect it is possible
to write (dω

dt

)

D
$ ω q

mec
(ê − ê′)

dN
dt
. (2.51)

Substituting in Eq. (2.51) the expression for dN/dt (Eq. 2.50) and averaging
on electrons’ momenta, we can obtain the time scale for considerable
changements in the photons distribution function

τC $
ω

〈dω
dt 〉
$ tγe

mc2

kBTe
$ 4.5 × 1028

( T0

2.7K

)−1

φ−1Ω̂−1
b (1 + z)−4 s (2.52)

where tγe = 1/(neσTc) is the photon-electron collision time, φ = Te/Tr.
The isotropic distribution of photons and electrons allow us to write newly
the kinetic equation like

(∂η
∂t

)

C
= −2

∫
d3q
h3

∫
dσLvrel{ f (uk)η(ω)[1+η(ω′)]− f (uk+ω−ω′)η(ω′)[1+η(ω)]} ,

(2.53)
where dσL is the differential cross section in the comoving rest frame, vrel is the
relative velocity between electron and photon in the moving direction of the
photon, the factor 2 takes into account the possible spin state of the electron
and the function f (uk) is the electrons distribution function (assumed to be
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Maxwell like).
Expanding Eq. (2.53) to the second order in (ω′ − ω)/(kBTe), in the non-
relativistc regime and substituting dσL with the differential Thomson cross
section, it is possible to obtain (Kompaneets, 1956) the Kompaneets equation

(∂η
∂t

)

C

∣∣∣∣∣
xe=cost

= neσTc
kBTe

mc2

1
x2

e

∂
∂xe

{
x4

e

[ ∂η
∂xe
+ η(1 + η)

]}
, (2.54)

where xe = hν/kBTe, σT = (8π/3)(e2/mec2)2 = 6.65 × 10−25cm2 is the Thomson
cross section. Given that xe is not an invariant, it is useful to redefine ?? in
terms of the usual dimensionless frequency x = hν/kBTr, that is invariant
thanks to Tr.
If we also define

y ≡
∫ t

th

dt
τC
=

∫ zh

z
actexp

dz
z
,

where ac = τ−1
C e zh suggests the redshift at which the energy injection

happened (or started). In the case of z = 0 e zh = z Eq. (2.5.1) becomes

y =
∫ z

0

dz
z

texp

τC
, (2.55)

and the Kompaneets equation can be write as

∂η
∂y
=

1
x2

e

∂
∂xe

{
x4

e

[ ∂η
∂xe
+ η(1 + η)

]}
. (2.56)

The terms that appear in the eqution are:

1
xe

∂
∂xe

(x4
eη)

the contribution of ordinary scattering, more important in presence of high
energy photons and with a low numeric density;

1
xe

∂
∂xe

(x4
eη

2)

describes the contribution of the induced scatterig, that dominates both at
low frequencies, where η ! 1, and in condition where the thermodynamic
temperature is much higher than electrons temperature;

1
x2

e

∂
∂xe

(
x4

e
∂η
∂xe

)

describes the inverse Doppler effect and photons heating. It dominates if
Te ! Tγ.
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2.5.2 Bremsstrahlung

It is a process characterized by the acceleration of a charge passing
through the Coulombian field of another charge: electrons dipped in the
electrostatic field of ions produce photons by spontaeous emission; on the
other hand, a radiation field stimulates an inducted emission as well, whose
efficiency, at a given frequency, is given by multiplying by η.
Here, a classic treatment with quantum corrections will be provided.
If the process involves identical particles then there is no radiation
emission in the dipole approximation, because the dipole moment

∑
eiri

is proportional to the mass center
∑

miri, that is constant. So let’s consider
an electron moving in a fixed field of an ion and we assume that the electron
is moving at such a velocity that we can neglect the direction deviations
during the whole process.
The electron is in tight interaction with the ion for a characteristic time given
by the collision time τcoll = b/v, where b is the impact parameter. Let’s
consider the electron velocity variation

∆v =
Ze2

me

∫ ∞

−∞

bdt
(b2 + v2t2)3/2 =

2Ze2

mbv
, (2.57)

where Z is the atomic number of the specie considered. From eq. 2.57 it is
possible to recover the emission for a single collision in the limit of small
angles

dW(b)
dω

=

{
8z2e6

3πc3m2
e v2b2 , b" v/ω

0 , b! v/ω
.

From this it is possible to recover the entire spectrum for a medium with
more ions and electrons, at a given electron velocity. The emission per time
unit, volume unit, frequency unit, and valid for every regime and corrected
with the Gaunt factor is

dW
dωdVdt

=
16πe6

3
√

3c3m3
e v

ne ni Z2! f f (v,ω) ,

where ! f f (v,ω) =
√

3
π ln
(

bmax
bmin

)
while ne and ni are the electrons and ions density

respectively.
For thermal bremsstrahlung it is possible to obtain the expression for total
emission per volume unit, per time unit

dW
dtdV

=
(2πkBTe

3me

)1/2 25πe6

3hmec3 Z2ne ni! f f (ν,Te) ,
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where the Gaunt factor is averaged on velocities. For absorption the relation
is

dW
dtdVdν

= 4π j f f
ν ,

where j f f
ν = α

f f
ν Bν(T) (Birchhoff’s law). The free-free absorption coefficient

is

α f f
ν =

4e6

3mhc

( 2π
3kBme

)1/2
T−1/2Z2ne ni ν−3(1 − e−hν/kBT)! f f (ν,Te) .

For non-relativistic Maxwellian electrons, the bremsstrahlung contribution
for a variation of the photons distribution function, is given by

∂η
∂t

)

f f
= K0! f f (ν,Te)

e−xe

x3
e

[1 + η(1 − exe)] ,

with
K0 =

8π
3

e6h2ne(nH + 4nHe)
me(6πmekBTe)1/2(kBTe)3 $ (2.58)

$ 2.1 × 10−25φ−7/2
( T0

2.7 K

)−7/2

(1 + z)5/2Ω2
bh4 s−1 ,

where nH and nHe are the hydrogen and helium density respectively. For the
Gaunt factor the following approximations are considered

! f f (ν,Te) = ! f f (xe) =



√
3
π ln
(

2.25
xe

)
, xe " 1

(
3

nx

)1/2
, xe ! 1 .

Now let’s put
Kf f = α

f f
ν c = K0!(xe)x−3

e (1 − e−xe) , (2.59)

and let define the optical depth like

τ f f =

∫ tric

t
K f f dt′ =

∫ z

zric

K f f (xe, z)
texp

1 + z′
d(1 + z′) $ (2.60)

$ 3.3 × 10−5φ−7/2
( T0

2.7◦K

)−11/2

h4Ω2
b ·

1
K
!(xe)x−3

e (1 − e−xe)

[ (kBz + zeq)1/2 − (kBzric + zeq)1/2],

(2.61)

where K represents the neutrinos contribution to the universe evolution
(K = 1.68 for 3-species massless neutrinos). It is interesting to find xeB when
τ f f = 1, that roughly corresponds to the maximum frequency at which
bremsstrahlung process can thermalize a spectrum distorted at redshift z.
In the limit for xeB " 1

xeB = 5.7 × 10−3φ−7/4
( To

2.7 K

)−11/4

Ω̂b
1

K1/2 ·
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·!1/2
f f (xeB)[(kBz + zeq)1/2 − (kBzric + zeq)]1/2 ,

from which we can obtain values for z! zeq regime

xeB = 5.7 × 10−3φ−7/4
( T0

2.7 K

)−11/4

Ω̂b · !1/2(xeB)z1/4

and for z" zeq regime

xeB = 4.1 × 10−4φ−7/4
( T0

2.7 K

)−15/4

Ωb h3/2Ω−1/4
tot !

1/2
f f (xeB)(z − zric)1/2

from which can be stated that bremsstralung is efficient in thermalizing
distorted spectra only at low frequencies.

2.5.3 Radiative Compton

Photons production by radiative Compton rises up quickly increasing
the redshift. In fact, its emission dominates the bremsstrahlung emission for
z ! 105 ÷ 106 [36], [85].
Consider an ionized plasma in non-relativistc regime, the time scale for
photons emission and the time scale for reaching a Planckian distribution
will grow like the inverse of the square of the electrons number density. In
this case, the radiative scattering, e− + γ → e− + γ + γ, will dominate on
free-free emission. One of the main features of this process is that electron
density rise up almost sponentially in time, until equilibrium is reached.
In the following treatment, we will assume that electrons have such a
temperature that kT " mc2.
So, consider the process ν′ + e− # ν1 + ν2 + e− in the rest of frame of the
electron. If hν′ < mc2 then the total cross section, in the direct process, is
strongly dominated by the contribution of one of the outgoing photons, if,
for example, ν2 is produced at low energies: ν2 " ν1 [118]. In this limit,
integrating on the solid angle of ν2 we obtain

dσDC

dν2
=

4α
3π

( hν′

mc2

)2
(1 − cosθ1)

1
ν2

dσe ,

where dσe is the differential Compton cross section and θ1 is the angle
between the directions of ν′ and ν1. Computing at the lowest order dσe,
ignoring the change of frequency ∆ν1/ν1 ∼ hν1/mc2 " 1 and integrating on
the solid angle Ω1 (the solid angle corresponding to ν1) we have

dσDC

dν1dν2
=

4α
3π
σT

( hν′

mc2

) 1
ν2
δ(ν1 − ν′), (2.62)
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where σT = (8π/3)r2
0 is the Thomson cross section.

We can recover an equation for the evolution of the photons occupation
number, η(ν). The number density fo the photons in the gap between ν and
ν + dν is dN

dV dν = 8πη(ν) ν2

c3 dν.
The total spontaneous production rate of photons per volume unit in the
frequency range between ν2 and ν2 + dν2 is given by

8π
ν2

2

c3 dν2
∂η(ν2)
∂t

=

!

ne
dσDC

dν1dν2
cdν1dν2

(
8πη(ν′)

ν′2

c3 dν′
)

where ne is the number electron density. If we add the stimulated emission
to this expression, then we have

∂η(ν2)
∂t

∣∣∣∣∣
spont+stim

= nec
!

dσDC

dν1dν2
dν1dν′

(ν′
ν2

)2[
1+η(ν1)

][
1+η(ν2)

]
η(ν′). (2.63)

The absorption process must be proportional to η(ν1)η(ν2)[1 + η(ν′)] and
it must delete the contribution of eq. 2.63 when all the photons reach

a Planckian distribution, η(ν) =
(
ehν/kBT − 1

)−1
. If we consider that the

frequency shift of the photons, due to the continuous scattering, dominates
the corrections of the total equation for ∂η/∂t and substituting eq. 2.62 in
eq. 2.63, we obtain the well known expression for the radiative Compton
contribution to the evolution of the photons occupation number [85]:

∂η
∂t

)

DC
= KDC

!DC

x3
e

[
1 − η

(
exe − 1

)]
,

where

KDC(z) =
4α

3πtγe

(kBTe

mc2

)2
I(t) , (2.64)

α = e2/"c is the fine structure constant, Te is the electrons temperature,
tγe = (nσTc)−1 is the collision time photon-electron, x is the dimensionless
frequency and

I(t) =
∫ ∞

0
x4

e (1 + η)ηdxe .

The Gaunt factor is given by [60]

!DC(xe) =

∫ ∞
2xe

x′4e [1 + η(x′e − xe)]η(x′e)[wF(w)/2]dx′e
∫ ∞

0 (1 + η)ηx′4e dx′e
, (2.65)

where w represents the ratio between the frequency of the new producted
photon and the frequency of the old one. A good approximation for the
Gaunt factor, in the case of a Bose-Einstein like spectrum, is given by [18]:

!DC(xe) $ exp(−xe/2) .
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2.6 The Spectrum of the CMB

The CMB spectrum emerges from the thermalization redshift, ztherm ∼
106 − 107, with a shape very close to a Planckian one, owing to the
tight coupling between radiation and matter through Compton scattering
and photon production/absorption processes, radiative Compton and
bremsstrahlung. These processes were extremely efficient at early times
and able to re-establish a blackbody (BB) spectrum from a perturbed one
on timescales much shorter than the expansion time (see, e.g., [35]). Fig 2.6
show the spectrum of the CMB radiation recovered through different type of
measurements. The resulting shape follows a Planckian one in any measured
band. The value of ztherm [18] depends on the baryon density parameter, Ωb,
and the Hubble constant, H0, through the product Ω̂b = Ωb(H0/50)2 (H0

expressed in Km/s/Mpc). On the other hand, physical processes occurring at
redshifts z < ztherm may lead imprints on the CMB spectrum. Therefore, the
CMB spectrum carries crucial informations on physical processes occurring
during early cosmic epochs (see, e.g., [33] and references therein) and
the comparison between models of CMB spectral distortions and CMB
absolute temperature measures can constrain the physical parameters of
the considered dissipation processes.

The timescale for the achievement of kinetic equilibrium between
radiation and matter (i.e. the relaxation time for the photon spectrum),
tC, is

tC = tγe
mec2

kTe
$ 4.5 × 1028 (T0/2.7 K)−1 φ−1Ω̂−1

b (1 + z)−4 sec , (2.66)

where tγe = 1/(neσTc) is the photon–electron collision time, φ = (Te/Tr), Te

and Tr = T0(1 + z) being respectively the electron and the CMB radiation
temperature; kTe/mec2 (being me the electron mass) is the mean fractional
change of photon energy in a scattering of cool photons off hot electrons,
i.e. Te ! Tr; T0 is the present radiation temperature related to the present
radiation energy density by εr0 = aT4

0 (here a = 8πI3k4/(hc)3, I3 = π4/15); a
primordial helium abundance of 25% by mass is here assumed. It is useful
to introduce the dimensionless time variable ye(z) defined by

ye(z) =
∫ t0

t

dt
tC
=

∫ 1+z

1

d(1 + z)
1 + z

texp

tC
, (2.67)

where t0 is the present time and texp = 1/H = 1/[(da/dt)/a] is the expansion
time, a = 1/(1 + z) is the cosmic scale factor normalized to the present time.
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Figure 2.6: This plot shows measurements of the intensity of the cosmic microwave
background as a function of observing frequency (or wavelength). The CMB follows
the expected blackbody curve over more than 5 orders of magnitude in intensity.
Figure from [1]

As particular cases, by neglecting the cosmological constant (or dark
energy) contribution we have

texp $ 6.3×1019
( T0

2.7 K

)−2

(1+z)−3/2
[
κ(1 + z) + (1 + zeq) −

(
Ωm − 1
Ωm

) (1 + zeq

1 + z

)]−1/2

sec ,

(2.68)
where zeq = 1.0 × 104(T0/2.7 K)−4Ω̂m is the redshift of equal non relativistic
matter and photon energy densities and κ = 1 + Nν(7/8)(4/11)4/3, Nν being
the number of relativistic, 2–component, neutrino species (for 3 species
of massless neutrinos, κ $ 1.68), takes into account the contribution of
relativistic neutrinos to the dynamics of the universe3, while assuming
ΩK = 0, ΩΛ = 1 − Ωm, and neglecting the radiation energy density, as
possible at relatively low redshifts, we have

texp $ (1/H0)
[
Ωm(1 + z)3 + 1 −Ωm

]−1/2
sec , (2.69)

3Strictly speaking the present ratio of neutrino to photon energy densities, and hence the value of
κ, is itself a function of the amount of energy dissipated. The effect, however, is never very important
and is negligible for very small distortions.
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where 1/H0 $ 3.1 × 1017h−1 sec (h = H0/100).
The time evolution, ∂η/∂t, of the photon occupation number, η(ν, t),
under the combined effect of Compton scattering (resulting into a second
order, linear partial differential equation of parabolic type) and of photon
production processes, namely radiative Compton (RC) [60], bremsstrahlung
(B) [122], [71] plus other possible contributions (EM), is well described by
the complete Kompaneets equation [80], [17]:

∂η
∂t
=

1
φ

1
tC

1
x2

∂
∂x

[
x4
[
φ
∂η
∂x
+ η(1 + η)

]]
+

[
∂η
∂t

]

RC
+

[
∂η
∂t

]

B
+

[
∂η
∂t

]

EM
. (2.70)

This equation is coupled to the time differential equation governing the
electron temperature evolution for an arbitrary radiation spectrum in the
presence of Compton scattering, energy losses due to radiative Compton and
bremsstrahlung, adiabatic cooling, plus possible external heating sources,
q = a−3(dQ/dt),

dTe

dt
=

Teq,C − Te

(27/28)teγ
− 2Te

texp
+

[
dTe

dt

]

RC,B
+

(32/27)q
3nek

; (2.71)

here Teq,C = [h
∫
η(1 + η)ν4dν]/[4k

∫
ην3dν] is the Compton equilibrium

electron temperature [108], [152], teγ = 3mec/4σTεr, εr $ εr0(1 + z)4 being the
radiation energy density, and x is the dimensionless frequency x = hν/kT0 (ν
being the present frequency).

2.7 Spectral Distortions

In the primordial plasma, the main processes that contributed to form
the presently observed spectrum are: Compton scattering (e− + γ→ e− + γ),
Bremsstrahlung (absorption or emission of photons in presence of charges,
e− + p → e− + p + γ) and radiative Compton (e− + γ → e− + 2γ). These
processes are able to thermalize a spectrum distortion, caused by an energy
injection arbitrarily big, at the condition that this occurred before a certain
period. We can refer to this epoch by ztherm. After ztherm these processes are
not effective enough to ensure a thermodynamic equilibrium. Anyway, if an
energy exchange occurs in epochs not too far from ztherm, the matter-radiation
interaction processes are able enough to establish a kinetic equilibrium.
We can indicate with zBE the epoch until this is true. So, after an energy
injection, at epochs such to have ztherm < z " zBE, there will be a photons
redistribution pointing to a Bose-Einstein (BE) like spectrum with µ ! 0
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(every distortion occurred between ztherm and zBE must be drive the photons
distribution function from a Planckian shape to a BE one). It is possible to
show that for an energy injection ∆ε we find µ ≈ 1.4∆ε/εi, where εi is the
energy density just before the heating and ∆ε is the variation.
After zBE, even if the interactions are not effective enough to maintain a Bose-
Einstein spectrum, if an energy injection occurs and this is able to increase
the electrons temperature to very high value (Te ! Tγ), the same interactions
can increase the photons temperature through the comptonization process.
In this case, a typical distortion of the CMB spectrum will appear: the
comptonized spectrum well describes by Sunyaev and Zel’dovich [138]
characterized by y $ (1/4)(∆ε/εi).
After recombination, free-free interaction can play a fundamental role in the
spectrum evolution, given that it is a process producing low energy photons
and so it has the capacity to distort the spectrum itself.
Fig. 2.7 shows typical shapes of CMB spectral distortions with respect to the
Planckian distribution observed, the flat line at T = 2.725 K.

Figure 2.7: Typical spectral distortions that could occur at various cosmic epochs.
In particular typical shapes of free-free, chemical potential related and reionization
related distortions are showed. Arcade first flight coverage and COBE/FIRAS
measurements are also shown. Figure from [1]
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When a population of particles, i, is in thermal equilibrium, the
corresponding moments distribution function is given by quantum statistics
that depend on the baryonic or fermionic nature of the examined species.
The distribution takes this form

ni(q)dq =
4πh−3!iq2dq

eE(q)− µ
kBT ± 1

(2.72)

that provides the number of particles, per volume unit, having a moment
between q and q+dq (here it is E(q) = (m2c4+q2c2)1/2 with m = 0 for photons).
The sign discriminate between a Fermi-Dirac statistic (sign +) for fermions
and a Bose-Einstein one (sign−) for bosons; the factor !i provides the number
of the possible spin states for each species.
Let consider now photons and let look at the occupation number as a function
of frequency ν. For matter and radiation in thermodynamic equilibrium
µ = 0. The mean number of photons of frequency ν, or the occupation
number ην, is described by

ην =
1

e(hν/kT)+µ − 1
(2.73)

that is the standard expression for a Bose-Einstein statistic (please note the
difference between the notation in eq. 2.72 and eq. 2.73: in the latter it was
introduced the dimensionless potential, that here after will be used). When
µ = 0 the spectrum is a planckian one.
It is possible to associate to the radiation field his brightness Iν = (2hν3/c2)ηγ.
There are two well known regimes: the high frequencies limit (hν ! kBT),
described by the Wien law

IW
ν =

2hν3

c2 e−
hv

kBT

and the low frequencies limit (hν " kBT), described by the Rayleigh-Jeans
(RJ) law

IRJ
ν =

2ν2kBT
c2 .

From the formula that defines the Planckian spectrum it is possible to recover
a quantity that can characterize the radiation intensity, the thermodynamic
temperature

Tthd =
hν

kBln
(
1 + 2hν3

c2Iν

) .

Thanks to this formula, it is possible to analyze the photons distribution
in terms of little shifts from a given temperature, related to the intensity
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deviation by

∆Tthd ≡ Tthd − Tr =
(ex − 1)2

x2ex
c2∆Iν
k2ν2 ,

with x = hν/kBT. Another interesting relation is that between the
thermodynamic temperature and the antenna temperature, defined as the
temperature of a source in the RJ regime that irradiates the same power, with
a value defined by

Tantenna =
Tx

ex − 1
≈ T
(
1 − x

2
+

x2

12

)
(2.74)

(plus higher order terms).

2.8 The complete Kompaneets equation and evolution of the
electrons temperature

Considering all the reviewed processes, we can now write the equation
for the photons distribution function like

∂η
∂t
=
∂η
∂t

)

C
+
∂η
∂t

)

f f
+
∂η
∂t

)

DC
. (2.75)

It is possible to add a further term: (∂η/∂t)s, that takes into account the
photons emission that can joins to the energy release (like in the case of
radiative particle decays).
The variations of Te are related with the interactions of the primordial
plasma. During epochs in which it is possible to neglect emissions or
dissipations of energy caused by the matter in the radiation field, electrons
reach the equilibrium temperature in a time scale much shorter than the
expansion time. This equation describes its evolution

dTe

dt
=

Teq,C − Te

teγ
+

q
3neK

− 2Te

teγ
− 8π(kBTe)4

3nekBh3c3 · (2.76)

·
{
K0

∫ ∞

0
!(xe)e−xe[1 + η(1 − exe)]dxe + C(t)

∫ xe,max

xe.min

[1 + η(1 − exe)]dxe

}
,

where Teq,C, in a radiation field isotropic and not polarized, with an arbitrary
spectrum, is given by

Teq,C =
h
4k

∫ ∞
0 ν

4η(1 + η)dν
∫ ∞

0 ν
3ηdν

.

The quantity q in Eq. (2.76) represents the energy disssipation rate for
electron heating due to an external source and it depends on the specific
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process considered.4

The terms in braces in eq. 2.76 describes the variation of Te caused by double
Compton and bremsstrahlung: if the spontaneous and stimulated emission
dominates on absorption there will be electrons cooling and vice versa.
The third term represents the temperature variation in the pure adiabatic
expansion, showing that in absence of interations Te will cool down as R−2.
Furthermore, from the same equation it is possible to recover the time scale
t f f and tDC, resulting to be greater than teγ, so is quite safe to assume Te = Teq,C

(only if q = 0).
In many case of interest, the CMB spectrum (immediately after the energy
injection, for processes occurred at yh " 1) can be described by a
superposition of black bodies, so the electrons temperature at equilibrium
will be given by

φeq $ 1 + 5.4 y∗ ,

where the comptonization parameter is y∗. This quantity can be related to
the exchanged energy amount through this formula

y∗ $ (1/4)∆ε/εi , (2.77)

where εi indicates the radiation field energy before the energy exchange.
Until it is possible to neglect injection and exchange of energy between
matter and radiation, the evolution of the electrons temperature depends
only on the epoch at which the injection occurs. For injection occurred at
epochs such to have yh " 1, the Compton scattering is no longer effective to
modify the perturbed spectrum, so, just before the decoupling, the electrons
temperature is similar to φeq. Instead, if the injection occurred at epochs
corresponding to yh ! 5, the Compton scattering could re-establish the
kinetic equilibrium corresponding to a Bose-Einstein spectrum, while the
final value for the electrons temperature is given by

φ f (yh ! 5) = φBE $ (1 − 1.11µ0)−1/4 ,

where µ0 " 1. The evolution of µ(z) and the relation between itself and the
value of the injected fractionary energy ∆ε/εi depend on the epoch of the

4It is possible to use a numerical application in order to describe the behaviour of q. If we consider
a Gaussian behaviour, then for q it’s valid the following [18]:

q̃ = q
∣∣∣∣∣
dt
dz

∣∣∣∣∣ =
∆ε

σω(2π)1/2(1 + z)
exp
[
− 1

2

(ω − ω̄
σω

)2]
,

where ω = ln(1 + z) and σω is chosen to be so little to determine a characteristic time variations for Te
much shorter than texp (defined from eq. ??). In this way, it is possible to neglect the adiabatic cooling
and so to have a good approximation for Te.
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injection, zh. If yh " 5 the value of φ f is about in the middle between φBE

and φeq, because Compton scattering tends to produce a Bose-Eintesin like
spectrum. In this case, the following is valid [35] µ0 $ 1.4∆ε/εi, while for φ f

a good fit of the numerical results is given by

φ f (yh) =
k
5

5 − yh

k − yh
(φeq − φBE) + φBE ,

where k = 0.146. This result does not depend on Ω̂b directly, according to
the fact that the electrons temperature is essentially controlled by Compton
scattering. The last equation permits to compute the evolution of φ and in
Chap. 3 it will be used to test the numerical evaluation of the same quantity.

2.9 Recombination

During the so-called recombination era, the cooling down of the Universe
allowed the nuclei and electrons contained in it to form neutral atoms [105].
This era is important for more than one reason: recombination sets up
the initial conditions for the chemistry of the early Universe, for example.
Anyway, here we are interested to CMB science and the recombination era
plays a fundamental role in CMB chronicles.
According to the standard cosmological model, the physical environment
during this epoch is not complicate at all thanks to the isotropy and
homogenousity of the universe in those ages. However, the precision
calculation we make about this era arise from the fact that during
recombination CMB photons were last scattered (from here the name of
Last Scattering Surface). Contributions to the relation between cosmological
parameters and CMB temperature APS come also from detailed calculations
and an accurate knowledge of the processes at work during recombination.
Another interesting aspect is related to the CMB polarization: this did
arise when the Universe was sufficiently transparent to permit quadrupole
anisotropy but yet sufficiently opaque to scatter photons and to convert
temperature anisotropies into polarization. Indeed, the CMB polarization is
more sensitive to the mechanism involved in recombination.
The recombination process is all but istantaneous: in the period between
8000 ! z ! 5000 the transition from He III→He II takes place; between
3500 ! z ! 1600 the recombination for He II→He I; between 2000 ! z ! 500
takes place the hydrogen recombination [137]. The main limitations for
understanding and reproducing the ionization history and the cosmological
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recombination spectrum lies in our knowledge of the atomic processes and
the associated transition rates.
A simple treatment of this era could be based equilibrium thermodynamics.
This implies that the rates of the reactions involved have a scale time
shorter than the expansion time, treactions " H−1. However, the equilibrium
assumption is approximative, even if it provides some details on some basic
questions. Given that, in thermodynamic equilibrium, the abundances of
the elements involved in this process are recovered by standard equilibrium
arguments, the ratio between one exited state and another for a single species
is given by the Saha formula:

nqne

nq − 1
=

2!q(2MeT)3/2

!q−1(2π)3 e−χq/T , (2.78)

where !q are statistical weight related to the state degeneracy, χq the
ionization energy, ni the abundance of the specie i, Me the electron mass
and T is the temperature. Considering only the predominant elements
in the primordial Universe, H and He, the relative amounts of them are
generally specified by the primordial helium mass fraction YP, that derives
from nucleosynthesis calculations:

YP =
nHemHe

nHemHe + nHmH
=

fHe

fHe +mH/mHe
, (2.79)

where fHe = nHe/nH. Let rewrite the Saha equation for hydrogen. In this
case, !H = 2, !H+ = 1 and χHI = 13.59844 eV and the formula can be written
as

xexp

xHI
=

(2MeT)3/2

nH(2π)3 e−χHI/T , (2.80)

where xi are the ionization fraction normalized to the density of neutral
hydrogen.
One can note that at very high temperature (T ! χ) the exponential term
becomes unity the equilibrium shifts to favor more ionized states (this is
true in the regime of non-degenerate densities). Instead, at low temperature
the exponential strongly favors the lower ionization state, the neutral state
in this case.
From Eq. 2.80 it is possible to derive the redshift at which recombines.
Substituting T with T0(1 + z) and the number density nH = nH0(1 + z)3 we
reach the form:

1 + z =
χHI

T0

[
ln

(2MeT)3/2

nH0(2π)3 −
3
2

ln(1 + z) + ln
xHI

xexp

]−1

. (2.81)
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Substituting T0 = 2.725 K and using the relation nH0 = ρcΩb(1 − YP)/mH the
previous equation could be written as:

1 + z = 57940
[
40.33 − ln

(
Ωbh2(1 − YP)

0.0167

)
− 3

2
ln
(1 + z

1000

)
+ ln

xHI

xexp

]−1

. (2.82)

In the previous h = H0/(100Km/s/Mps) is the reduced Hubble constant.
Again, this is a valid treatment if the rates of recombination and ionization
have a scale time much shorter than the Hubble time.
Detailed calculations showed that, taking into account precise transition
rates related to the recombination process, both in the Wien and the
Rayleigh-Jeans regions of the CMB blackbody spectrum distortions could
grow. Unfortunately, for regions near the Lyman-α line, even if the relative
distortion exceed unity by several orders of magnitude, the cosmic infra-red
background due to sub-millimeter, dusty galaxies makes a direct measure
of this feature impossible.

2.10 Reionization

An early reionization of the Universe is indicated by the recent WMAP
polarization measurements. With the three-year data on CMB temperature
and its polarization power spectra,WMAP produced a more accurate
determination of the electron scattering optical depth, downwarding its
value from τ = 0.17 ± 0.08 [134] obtained with the first-year data to
τ = 0.09±0.03 [104] consistent with an abrupt reionization at redshift zre $ 11,
significantly later than zre $ 17 as implied by first-year data.
Further refinements to this parameter came from the five-year WMAP data
that, in combination with Type Ia supernovae and the Baryon Acoustic
Oscillations in the distribution of galaxies, provide a more stringent limit on
the optical depth: τ = 0.084 ± 0.016 [58].
In this theoretical and experimental frame, the Planck mission will be
crucial to test the robustness of the ΛCDM concordance model since
the relevant cosmological parameters will be measured with much better
sensitivity. Furthermore, through E-mode CMB polarization power
spectrum measurements, Planck will have the sensitivity to distinguish
among different reionization history models even when they imply the same
optical depth to electron scattering and degenerated temperature anisotropy
power spectra, constraining some properties of the ionizing sources [110]. It
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is well known that the principal observational objective of the Planck mission
is to measure the temperature fluctuations of the CMB with an accuracy set
by the fundamental astrophysical limits, but all the LFI channels and four of
the HFI channels will also measure the linear polarization of the CMB which
encodes not only a wealth of cosmological information, but also provides a
crucial probe of the ionization history of the Universe during the time when
the first stars and galaxies formed.
The polarization signal depends more directly than the temperature signal
on the fluctuations at the last scattering surface and thus encloses a wealth
of cosmological information, some of which being complementary to those
derived from the temperature anisotropies. The polarization anisotropy
at large angular scales is generated by the subsequent rescattering as
the Universe reionized, providing a crucial probe of the ionization (and,
possibly, thermal) history of the Universe at the end of dark ages, when the
first stars and galaxies formed.
The mean ultraviolet radiation background (UVB) intensity responsable for
the cosmological reionization, J(ν0, z0), observed at the frequency ν0 and
the redshift z0 produced by a population of sources characterized by the
comoving emmisivity εν(z) can be written as [111]:

J(ν0, z0) =
c

4π

∫ ∞

z0

εν(z)e−τe f f (ν0,z0,z) dt
dz

dz,

εν(z) = L̄(z)τ̄l f f∗
ωb

ωm

d
dt

∫ ∞

Mmin(z)

dn
dMh

(Mh, z)MhdMh. (2.83)

In the above equation ν = ν0(1 + z)/(1 + z0), (dt/dz)−1 = −H0(1 +
z)
√
Ωm(1 + z)3 +ΩΛ is the line element in our ΛCDM cosmological model,

τe f f is the IGM effective optical depth, n(Mh, z) is the comoving number
density of halos of mass Mh at redshift z given by Press-Shechter formalism,
L̄(z) is the mean specific luminosity of the ionizing sources, τ̄l f is their mean
lifetime and f∗ is the star formation efficiency.

Fig. 2.8 presents few reionization histories obtained for different
UVB models chosen to investigate the effects of Thomson optical depth
in the range τes = 0.050.1 and to study the possibility to distinguish
between models with the same values of τes. The corresponding CMB
anisotropy temperature, CT()), and E-mode polarization, CE()), power
spectra are presented in Fig. 2.9 One should note in Fig. 2.9 that while
CT()) power spectra are almost degenerated, the differences in different
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Figure 2.8: The evolution with redshift of the ionization fraction obtained for
different UVB models chosen to investigate the effects of Thomson optical depth in
the range τes = 0.050.1. Figure from [111].

reionization histories produce non-degenerated signatures on CE()) power
spectra at low multipoles () " 50). This can be explained by the fact that
while polarization is projecting from the epoch of reionization at angular
frequencies ) = k(η0 − ηri) (here k is the wavenumber, η0 and ηri are the
conformal times today and at the epoch of reionization) the temperature is
projecting from the (further) last scattering surface.
The differences between the reionization models in comparison with the
expected sensitivity of the future Planck mission can be expressed in terms
of relative difference between the power spectra CE()) of the E-mode
polarization component as [101]:

Di, j()) =
2[CE,i()) − CE, j())]

CE,i()) + CE, j())
, (2.84)

where the indices i and j denote different reionization models. We compare
the amplitude of the function Di, j()) with the expected relative error of the
CE()) anisotropy power spectrum for the Planck experiment. If systematic
and foreground effects are successfully removed, the corresponding error
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bar is given by:

∆CE())
CE())

=
1

√
fSKY() + 1

2 )[1 + w−1C−1
E ]
. (2.85)

Figure 2.9: The CMB angular power spectra, CT(l) and CE(l) for the reionization
histories presented in 2.8. Figure from [111]

The effects of a global reionization of the Universe would leave imprints
on any osservable feature of the CMB. In fact, such a process will produce,
to our eyes, a secondary Last Scattering Surface, with a consequent new
photons diffusion: temperature anisotropies at high ) will be suppressed,
because in the absence of motion for electrons, there will be no preferred
directions and the diffusion will make the photons distrubution more
isotropic and more homogeneus. The effects would be not negligible also
in polarization anisotropies: growth of the anisotropies power in the cross-
correlation temperature-polarization and of the E mode power spectrum,
with the possibility that the growth could be more stressed at low/mid
multipoles depending on the epoch at which the reionization occurs. On
the photon distribution function, the effect is that to generate free-free and
comptonization spectral distortion, related to the heating of the electronic
temperature of the interstellar medium.
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Chapter 3

KYPRIX

3.1 Introduction

In the previous chapter, we saw how it is possible to use the Kompaneets
equation to compute the evolution of the photon occupation number, taking
into account the photon production processes also. Now I will present
KYPRIX, a performing Fortran based code capable of such computation.
The details on the update of the code will be presented, followed by the tests
done on it and some interesting cosmological applications.

3.2 Setting up the problem

Partial differential linear equations are divided in three classes: elliptic,
parabolic and hyperbolic. The Kompaneets equation is a parabolic partial
differential equation [144]. Solutions to this equation under general
conditions have to be searched numerically, because it is impossible to find
analytical solutions that accurately take into account the many kinds of
cosmological scenarios and the great number of relevant physical processes.
The numerical code KYPRIX [18] was written to overcome the limited
applicability of analytical solutions and to get a precise computation of
the evolution of the photon distribution function for a wide range of cosmic
epochs and for many cases of cosmological interest. KYPRIX makes use of
the NAG libraries. Besides these libraries, a lot of numerical algorithms are
used in this code: we used some of the routines available for the scientific
community, but often we did write routines dedicated to a specific task.
Among the formers, the D03PCF routine (of the current version of the NAG
release, corresponding to D03PGF routine used the first versions of KYPRIX),
has been used to reduce the Kompaneets equation into a system of ordinary
differential equations. In order to use this routine, we have to put the
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Kompaneets equation in the form

NPDE∑

j=1

Pi, j
∂Uj

∂Y
+Qi = X−m ∂

∂X

(
XmRi

)
; (3.1)

where Y is the time variable, X the spatial variable, Pi, j,Qi,Ri depends on
x, t,U, ∂U/∂x, the vector U is defined as above. In our case, Pi, j = 1 and m = 0
(Cartesian coordinates). Note that Pi, j,Qi,Ri do not depend on ∂U/∂t.
The variables that enter in this equation are introduced and used in
logarithmic form, to have a good and essentially uniform accuracy of the
solution in the whole frequency range considered. These variables are
X=log(x) and U=log(η), where x and η are the dimensionless frequency
and the photon occupation number, respectively. Hereafter, the following
notation will be used for the variables: X,U,Y for what concerns the
informatic aspect of the problem, x, η, y for physical problems treatment.
The function Ri is determined only by the inverse Compton term while the
other physical processes, i.e. at least Compton scattering, bremsstrahlung,
and radiative Compton, are included in the function Qi. In order to reduce
Eq. (3.1) into a system of ordinary differential equations, the D03PCF
routine uses the method of lines: pratically, the right member of Eq. (3.1) is
discretized, reducing the calculation of partial derivatives in terms of finite
values of the solution vector U at all the points of the X axis grid. Spatial
discretization is made by the method of finite differences [96]. The choice
of the time parameter was driven by the need to have a very simple form
of the Kompaneets equation. Finally, a “temperature independent” (time)
Comptonization parameter

Y = y(t) =
∫

dye

φ
=

∫ t

ti

neσTc
kTr

mc2 dt′ , (3.2)

has found to be particularly advantageous [18].

3.2.1 Boundary conditions

Integrating equations of the type of Eq. (3.1) means calculating the time
evolution of the function U(X,Y), for a given initial condition U(X, 0) (in fact,
the problem is also called “problem at initial conditions”). Numerically,
the derivatives of U are replaced by finite differences between values of
U computed for a grid of points (in X,Y) and the differential equation is
replaced by a system of more simple equations. However, in presence
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of the only initial condition, this system is singular [112]. For this reason,
resolving partial differential parabolic equations needs boundary conditions:
the problem is at initial values for the Y variable and at the boundary values
for the X variable. In general, boundary conditions mean additional relations
written to be joined to the system derived from the discretization to finite
differences.
Therefore, a good statement of the problem requires the definition of
appropriate boundary conditions and, possibly, the capability of a refresh of
this conditions along the time integration leads more stability to the solution
evolution because of the evolution of the radiation field. Thanks to the
opportunity of having the correct value of φ for each time step, the update
of the boundary conditions can be physically motivated (see Sect. 3.3.2). The
limits of the frequency range considered are: Xmin = log(xmin) = −4.3 and
Xmax = log(xmax) = 1.7. Of course, we want a solution of the Kompaneets
equation over all the frequency range where it is possible to measure the
CMBR and, in addition, a frequency range large enough to contain, in
practice, all the energy density of the cosmic radiation field.

Also, the frequency range is so wide for two other reasons. During
the time evolution, some spurious oscillations of the solution at points
close to the boundaries may appear (these effects, that could also occur
independently of the need of refreshing φ – for example for cases at constant
φ –, may be partially amplified if, for computational reasons discussed in the
following, the necessary refresh of the electronic temperature is not made
for every time step). Fixing the frequency integration range limits far from
the interval where we are interested to compute the photon distribution
function allows to prevent the “contamination” of the solution by this
possible spurious oscillations in the frequency range of interest.

Finally, since we can generally assume that a Planckian spectrum at xmin

is formed before recombination in a timescale shorter than the expansion
time and, on the contrary, at xmax the shape of the spectrum is unknown, it
has been implemented in the code the possibility to adopt a particular case
of Neumann boundary conditions: the requirement that the current density,
in the frequency space, is null at the boundaries of the integration range [29]:

[
φ
∂η
∂x
+ η(1 + η)

]

x=xmin,xmax

= 0 . (3.3)

This choice of boundary conditions formally satisfies the requirement of the
problem when we integrate the Kompaneets equation in the case of Bose-
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Einstein like distortions (with a frequency dependent chemical potential,
µ = µ(x), vanishing at very low frequencies). In fact, such distorted spectra
are indistinguishable from a blackbody spectrum at sufficiently high and at
low frequencies.

Of course, it is possible to make a different choice of the boundary
conditions by selecting Dirichlet like conditions. In this case the photon
occupation number at the boundaries of the integration interval does not
change for the whole integration time. (In general cases, keeping constant
conditions at the boundaries could be dangerous for the continuity of the
solution. Nevertheless, for some specific problems this condition can work
– typically for problems with constant φ).

3.3 A detailed view on KYPRIX

The code KYPRIX has been written to solve the Kompaneets equation
in many kinds of situations. The physical processes that can be considered
in KYPRIX are: Compton scattering, bremsstrahlung, radiative Compton
scattering, sources of photons, energy injections without photon production,
energy exchanges (heating or cooling processes) associated to φ ! 1 at
low redshifts, radiative decays of massive particles, and so on. Being very
versatile, this code could be easily implemented to consider other kinds of
physical processes. Just to have an idea, KYPRIX is fully capable to simulate
scenarios in which the initial condition is: a pure Planckian spectrum; a
Planckian spectrum with several ways to include an istantaneous heating;
a pure Bose-Einstein (BE) spectrum or a BE spectrum modified to become a
Planckian one at low frequencies (this option is worth using in the case one
would integrate the Kompaneets equation with a constant Φ and constant
boundary conditions); a grey body spectrum; a superposition of black
bodies.
The data are saved into five files.
DATI. This file contains the information about the specific parameters of the
problem considered with a general description of its main aspects.
DATIP. In this file we give the evolution of interesting quantities, like time,
redshift, φ, and many another quantities inherent to physical and numerical
aspects of the problem.
DATIG. It contains: the points grid for the X axis used by the main program
(remember that we are using a dimensionless frequency), a Planckian
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spectrum at temperature T0 and the solution vector U (that is to say log(η))
at y = 0 (starting time).
DATIDE. This is the fundamental output file: it gives the solution of the
Kompaneets equations at the desired cosmic epochs.
DATIT. It is similar to the file DATIDE, but it contains the solution in term of
brightness temperature (i.e. equivalent thermodynamical temperature, see
Eq. 3.6 in Sect. 3.3.2).

3.3.1 Main subdivisions

The code is divided in several sections and, from a general point of view,
is structured as described here below.
1. Main program, in which many actions can be carried out: choice of the
physical processes, choice of the cosmological parameters, characteristics of
the numerical integration (accuracy, number of point of the grid, ...), time
interval of interest, choice of the boundary conditions, and so on.
2. Subroutine PDEDEF. It is the subprogram where the problem is
numerically defined. This subroutine is also divided in subsections to allow
modifications in a simple and practical way.
3. Subroutine BNDARY. Here the boundary conditions are numerically
specified.
4. Subroutines and auxiliary functions to perform specific operations.

3.3.2 Technical specifications and code implementation

The first version of KYPRIX1 worked with the Mark 8 version of the
NAG numerical library and were based on the routine D03PGF. The version
of the NAG numerical library currently distributed is the Mark 21. Therefore
an update of the KYPRIX code is necessary to adapt it to this new package.

When KYPRIX starts running it asks all the input data: from the
declarations of the output files’ names to the integration accuracy and
features. In the following subsections we give a description of the various
aspects of the code (and of its update), trying to give relevant hints about
computational aspect fo the code.

1Written in 1989 by Carlo Burigana
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Grid

The frequency integration interval is divided in a grid of points (the
mesh points): larger the number of points smaller the adopted frequency
step.
It is possible to used a very dense grid (for example 36001 mesh points
corresponding to 36000 frequency steps). In general, it is necessary to use at
least 3001 mesh points to have a solution accurate enough.

We found an important difference between the two NAG versions, not
reported in the documentation of the routine D03PCF. In the first version
(D03PGF), the subroutine where the partial differential equation is defined
adopted the same mesh points defined in the main program. In the Mark 21
version the calculation is carried out in a different manner: the mesh points
used in the subroutine PDEDEF is shifted of half spatial step with respect
to the mesh defined in the main program. In this way, the mesh points in
the PDEDEF subroutine will be exactly in the middle of the steps defined in
the grid of the main program. For this reason, the limit of the integration
interval are not considered in the mesh points in the subroutine PDEDEF
and they are used only for the boundary conditions.
The effect of this feature implies the definition of new parameters that play
a fundamental role in the subroutine PDEDEF. The integral quantities in the
Kompaneets equation (necessary to define the radiative Compton term in
the kinetic equations and the electron temperature) are computed once for
any time step, inside the PDEDEF subroutine. For this computation, arrays
of dimension equal to the number of mesh points of the x variable as defined
in the PDEDEF subroutine are used. Therefore, particular care must be taken
in the definition of the dimension of the arrays defined in KYPRIX. Those
used in the main program have dimension equal to the number of points
of the mesh defined in the main program. The same dimension is given
for the arrays defined for the boundary conditions. On the other hand, the
major number of arrays are used in the PDEDEF subroutine to compute the
integral quantities. The inner grid adopted in the PDEDEF subroutine is
based on mesh points in the middle of the spatial steps of the main program
grid, so the two grids can not work with the same point number; in fact, the
arrays used in the PDEDEF subroutine have dimension NPTS−1. Therefore,
in the main program and in the subroutine BNDARY we have to work with
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arrays based on the formula:

X(I) = A + (I − 1) × (B − A)
(NPTS − 1)

, (3.4)

with 1 ≤ X ≤ NPTS ,

to define the correspondence between the grid of NPTS points and the X
position, while we need another expression able to shift of half step the grid
in the PDEDEF subroutine and based on NPTS − 1 mesh points:

X(I) =
(
A + (I − 1) × (B − A)

(NPTS − 1)

)
+

(
(B − A)

2(NPTS − 1)

)
, (3.5)

with 1 ≤ X ≤ NPTS − 1.

For continuity reasons, we need to define (according to the choices made
in the main program) the solution vector, containing the photon initial
distribution function, at the beginning of the integration also according to
this grid definition. This vector is used by the PDEDEF subroutine as initial
spectrum adopted for the computation of the rates of the physical processes
and, of course, it is then renewed at every time step incrementation.

Output

Concerning the output files, the update version of KYPRIX stores a new
vector containing the inner X grid used by the PDEDEF subroutine, XXGR
(XGR refers to the main program X grid).

In addition, we preferred to have the possibility to perform the
conversion of the solution into equivalent thermodynamic temperature
directly into the code and save it in a new output file (DATIT). The conversion
relation is:

Tterm,equiv =
xT0

ln(1 + 1/η)
(3.6)

(we remember that in the code X = log10(x) and U = log10(η)).
The fundamental reason to perform this conversion directly in the code is
associated to the extreme accuracy required for the solution in the case
of very small distortions, of particular interest given the FIRAS results
[51]. During the first tests, the conversion of the solution in brightness
temperature was performed at the same time as the solution visualization,
through the IDL visualization program. The saving of the solution into files
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is typically performed not for all the points of the grid but for a reduced
grid of, for example, 300 equidistant points along the original grid to avoid
to store files of large size, unuseful for our scope, given the interest for the
CMB continuous spectrum (by definition, the Kompaneets equation is not
appropriate to treat recombination lines). If the considered distortions were
very small then the solution at each specific “inner” grid point could be
affected by a numerical uncertainty not negligible in comparison with the
very small deviations from a Planckian spectrum relevant in this cases. This
numerical error is greatly reduced (becoming negligible for our purposes)
by the averaging over a suitable number of grid points. Of course, the
storing of the solution directly on a limited number of grid points makes
this averaging no longer possible on the stored data. It were then necessary
to average the solution values in intervals corresponding to the output X
grid directly into the code. Anyway, in many circumstances the diagram
shape derived applying the conversion to brightness temperature only on
the stored averaged solution still deviates at high frequencies from the
effectively computed solution displayed by considering all the “inner” grid
points because of the high gradients in the photon distribution function
and/or in the brightness temperature that makes difficult, or impossible,
to find a general rule for the solution binning that simultaneously works
properly for the two solution representations. This problem is avoided
converting the solution vector in equivalent thermodynamic temperature
before of the binning of its values and then applying the binning to the
equivalent thermodynamic temperature. The result is then a brightness
temperature diagram very clean and precise, even for very small distortions.
Other minor changes are made about the output data, where we passed from
real to double precision, and for the saving frequency into the output files.

Equation formalism

A necessary update of the code has been performed to adapt it to the
different formalism adopted by the new version of the NAG routine [116].
This regards the expression of the Kompaneets equation in the PDEDEF
subroutine. In particular, the D03PGF routine adopted the following
expression of the partial differential equation:

Ci
∂Ui

∂Y
= X−m

NPDE∑

j=1

∂
∂X

[
XmGij

∂Uj

∂X

]
+ Fi , (3.7)
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where i = 1, 2, ...,NPDE (number of partial differential equations); Ci,Fi

depends on X,Y,U, ∂U/∂X; Gi, j depends on X,Y,U and U is the set of solutions
values (U1,U2, ...,UNPDE).
The expression now adopted by the D03PCF routine is represented by eq.
3.1.
Translating the code from the old to the new formalism is not very difficult.
In the considered case NPDE = 1. In this case, we have simply that R1

contains both the function G1 and the vector solution derivative with respect
to X according to:

R1 = G11 ×
∂U1

∂X
. (3.8)

At this point, it is necessary to apply only the following substitutions:

Q1 = −F1 and P11 = C1 . (3.9)

With respect to this formalism, it is not so difficult to adapt the various
terms of the Kompaneets equation to the D03PCF routine. The terms that
describe Radiative Compton, bremsstrahlung, (optional) electromagnetic
processes and part of the contribution of the Compton scattering are counted
in the funtion Q1. Instead, the second derivative of the solution vector with
respect to X, which represents part of the inverse Compton rate, is counted
in the function R1. So, according to this settings, we can write:

Q1 = FC + FBREM + FRAD + FDEC , (3.10)

where FC stands for the contribution of the Compton scattering, FBREM the
bremsstrahlung one, FRAD the radiative Compton one and FDEC represents
the contribution of radiative decaying of particles. In details, these equation
are written like this:

FC =
[
Φ
∂U
∂X

(
∂U
∂X
+ 3
)
+ 10X

(
∂U
∂X
+ 4
)
+ 2 × 10X10U

(
∂U
∂X
+ 2
)]

1
ln(10)

(3.11)

and

FBREM + FRAD =

(
e10X
)Φ

103X ×
{ 1

10U −
[(

e10X)Φ−1

− 1
]}

×
(
FF0 ×W × 1.5Φ−1/5 × FGAUNT +

DC0
W

I1 × GDC
)
, (3.12)

where FF0 and DC0 are the coefficients for the rates of bremmstrahlung and
radiative Compton respectively; FGAUNT and GDC represent the Gaunt
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factor corrections for bremsstrahlung and radiative Compton respectively;
I1 is an integral quantity refreshed at every time step.
The inverse Compton goes in R1 in this way:

R1 =
∂U
∂X
×Φ × ln(10)−2 . (3.13)

Finally, we can put P11 = 1.
Furthermore, it is possible to add a term in Eq. (3.10). For example, an
already implemented utility would generate a term here called FDEC, to be
added in Eq. 3.10. In this term are included the contributions of possible
radiative decaying of particles in the primordial universe. Anyway, it is
possible to add terms representing other kinds of electromagnetic processes.

Boundary conditions

Also notable are the differences between the input expressions defining
the boundary conditions. The D03PGF routine adopted an expression of the
form:

Pi(Y)Ui +Qi(Y)
∂Ui

∂X
= Ri(Y,U) , (3.14)

where i = 1, 2, ...,NPDE and Pi(Y),Ri(Y,U),Qi(Y) are functions to be defined.
A quite different notation is used to provide the boundary conditions in the
D03PCF routine:

βi(X,Y)Ri(X,Y,U,UX) = γi(X,Y,U,UX) , (3.15)

where i = 1, 2, ...,NPDE and βi(X,Y)Ri(X,Y,U,UX) and γi(X,Y,U,UX) are
functions to be defined (UX ≡ ∂U/∂X).
As a consequence of this notation, Neumann like boundary conditions can
be now specified according to the expression:

β(1) = 1 (3.16)

γ(1) = −XVA × (10U(1) + 1) × ln10−2 (3.17)

where XVA = η computed in A and the dimension of both the equations
corresponds to the differential equation number. Similar conditions are
defined for the other extreme of the integration interval [A,B].
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Accuracy parameters

Another considerable difference between the two library versions
regards the definition of the integration accuracy parameter. D03PGF used
three parameters for monitoring the local error estimate in the time direction,
supplying a good versatility. RELERR and ABSERR were respectively the
quantity for the relative and absolute component to be used in the error test.
The third parameter, INORM, was used to define the error test. If E(i, j) is
the estimated error for Ui (the vector solution) at the j − th point of the X
grid, then the error test was:

• INORM = 0 =⇒| E(i, j) |≤ ABSERR + RELERR× | U(i, j) |

• INORM = 1 =⇒| E(i, j) |≤ ABSERR + RELERR ×maxy | U(i, j) |

• INORM = 2 =⇒ ‖E(i, j)‖ ≤ ABSERR + RELERR × ‖U(i, j)‖ .

Instead, according to the new library version we have to define only one
parameter ACC, a positive quantity that monitors the local error in the time
integration. If E(i, j) is defined as above, then the error test is:

| E(i, j) |= ACC × (1+ | U(i, j) |) . (3.18)

Electron temperature

During the numerical integration, some subprograms use the
distribution function calculated at that time to compute φ. The integrals
to be computed are those appearing in the expression for φeq,C:

φeq,C =
Te

Tγ
=

∫ ∞
0 η(η + 1)x4dx

4
∫ ∞

0 ηx
3dx

. (3.19)

In this calculation, the integration range is obviously the integration interval
considered for the problem: A ≤ X ≤ B (that, in terms of mesh ordering,
corresponds to the range between 1 and NPTS or NPTS− 1). For computing
these integrals, all the points of the grid are used. The integration is based
on the NAG D01GAF routine, suitable for tabulated functions. Of course,
the update value of φ is also used in the boundary conditions.

In the previous version of the KYPRIX code, the computation of integral
quantities were performed through a specific modification of the NAG
package implemented by the KYPRIX code author that allowed to recover
the whole vector solution at each time step in the subroutines (and in
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particular in PDEDEF), while the original package maked only available in
PDEDEF the solution separately at each grid point (being in fact the package
originally designed for “pure” partial differential equation, without terms
involving integrals of the solution). This modification, possible thanks to
the availability of the NAG sources (and, in practice, thanks to the relative
simplicity of the early library versions), permitted to update the integral
quantities perfectly according to the implicit scheme adopted by the code
for the integration in time. This is no longer feasible, because the sources
file are no longer delivered with the libraries (and in addition they are
very expensive now). Therefore, the update of the integral quantities must
be now performed with an alternative scheme, saving the solution at the
previous time step in a proper vector and using it in the computation at the
given time step. This alternative scheme may be less stable than implicit
schemes. And, in fact, we verified the difficulty of the D03PCF routine
to work implementing the update of the quantities corresponding to the
integral terms in the Kompaneets equation (and in particular of φ) for each
time step. The latter, depending on the accuracy required, may be very
small. This issues were likely due to numerical instabilities.

We have then introduced a new integer control parameter into the
code: STEPFI. It determines the frequency for the update the dimensionless
electron temperature φ, relevant, of course, in the case we want to perform
an integration with a variableφ. We have checked that updating the integral
terms in the Kompaneets equation not at every time step, but after a suitable
number of time steps does not affect the accuracy of the solution. This is due
to the fact that the time increasing in the code is performed with very small
steps while the physical variation of φ occurs on longer timescales 2.

Radiative Compton

In the computation of the radiative Compton term there is an
integral term, so it is necessary to harmonize its update according to the
parameter STEPFI discussed in the previous subsection. In fact, a possible
asynchronous update of it and φ could create numerical instabilities and the
crash of the code run, as physically evident from the great relevance of both
radiative Compton term and electron temperature for the evolution of the

2Of course, for physical processes with a stronger variation of the electron temperature, the
accuracy parameter (see previous subsection) should be good enough to force the code to adopt
sufficiently small time steps.
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low frequency region of the spectrum.

Integration routines

Different numerical integration routines can make similar tasks, but
this is made with different algorithms. Inside KYPRIX we find a practical
example: in the early release of the code the NAG D01BDF routine was
used to calculate integrals of a function over a finite interval. The same
task can be carried out by the D01AJF routine. Anyway, this code offers a
better accuracy than D01BDF (D01AJF is in fact suitable also to integrate
functions with singularities, both algebric and logarithmic). After the
routines substitution, the results showed a great increasing of accuracy. In
particular, this improvement offers the possibility to investigate also very
small distortions that requires a very precise determination of all the relevant
quantities because the absolute numerical error of the integration must be
much smaller than the (very small) quantities of interest in these cases.
In particular, the quantity ∆εr/εi (where εr is the density energy and εi is
the energy density corresponding to the imperturbed distribution function
just before the energy injection) must be constant during all the integration
process in the absence of energy injection terms, according to the energy
conservation. The precision increase on the computation of this quantity
was noteworthy: now it is always inside a few percent of the physical value
(and its possible physical variation) of the same quantity independently
of the magnitude of the considered distortion. This allows to accurately
check the global accuracy of the code and to assure that the integral terms
appearing in the Kompaneets equation are properly computed (this is a
remarkable result, because the code can now be used also for very small
distortions).

3.4 New physical options

3.4.1 The introduction of the cosmological constant

Up to about 10 years ago the favourite cosmological models were
CDM or CHDM models. In the recent years the relevance of the
cosmological constant term (or of dark energy contributions) has been
renewed by a wide set of astronomical and cosmological observables
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[107, 120, 79]. The numerical integration code KYPRIX has been then
updated to include the cosmological constant in the terms controlling
the general expansion of the universe [117][116]. In particular the
input background cosmological parameters considered in the code are
now: T0,κ, h[= H0/(100Km/s/Mpc)],Ωm,Ωb,ΩΛ,ΩK, i.e. the present CMB
temperature, the contribution of massless neutrinos, the Hubble constant,
the (non relativistic) matter and baryon energy density, the energy densities
corresponding to cosmological constant and curvature terms.
In order to compute the proper cosmic evolution of the various terms we
introduced a scale factor parameter ω [129], defined by:

ω =
a
a1
≡ mec2

kT0

1
1 + z

= 1.98 × 109Θ(1 + z)−1, (3.20)

with Θ ≡ T0/3◦K and the index 1 is referred to a particular epoch, when the
CMB energy density was equal to the electron mass3: kT(a1) = mec2. To write
a suitable expression for its time evolution we have to introduce two new
key parameters

β =
ρm1

ρr1
= 3.5 × 10−6 h2

Θ3 Ωtot (3.21)

that is the initial ratio between matter energy density and radiation energy
density, and

1
τ!1
=
(8π

3
Gρr1

)1/2
=
[8π

3
G

a
c2

(mec2

k

)4]1/2
= 0.076s−1 (3.22)

defined as ana initial gravitational time scale. The quantities with the index
1 refer to the epoch when a = a1, with the index 0 when t = t0 (today); ρr1

and ρm1 are related to ρr and ρm by

ρr = ρ0r

(ωo

ω

)4
= ρr1

1
ω4 ; ρm = ρ0m

(ω0

ω

)3
= ρm1

1
ω3 , (3.23)

respectively.
Now we can define an equation for the evolution of ω:

ω̇
ω
=
[8π

3
Gρ(ω)

]1/2
= (3.24)

8π
3

G
[ρr1κ

ω4 +
ρm1

ω3 +
ρK1

ω2 + ρΛ
]
,

where we have included the contribution of massless relativistic neutrinos
in the term κ (see also footnote 1; the term κ should be properly evaluated

3So, the parameterω is analogous to the scale factor a, but normalized at the epoch in which a = a1,
that is to say when kT = mec2.
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considering also possible energy injections after neutrino decoupling).
After some calculations (see Appendix A), we can write the final expression
of dt

dω implemented in the new code version:

1
ω̇
=

τ!1 ω
[
1 + β ω

(
1 + ΩK/m ω

2.164×109 +
ΩΛ/m ω3

2.164×1027

)]1/2 , (3.25)

where Ωx/y =
Ωx
Ωy

.
The equation for ω̇ has to be inserted in the expression giving dy = acdt.
The latter is involved in the integral used to compute the time variable
y(ω) =

∫ ω
ωstart

dy because we set y = 0 when the integration starts at ω = ωstart

(or equivalently at z = zstart). Finally, the expression for the time evolution
of ω and y are related by the variable change:

dy = acdt = ac
dt
dω

dω = ac
ω
ω̇

1
ω

dω , (3.26)

where ac = φ/(τc1ω4) (τc1 = 2.638 × 10−9Θ3/(h2Ωb)).
Introducing the cosmological constant and curvature terms, the code
KYPRIX is suitable to be applied to interesting cases at low redshifts,
where Λ supplies the greatest contribution to the expansion rate of the
universe (remarkable examples are spectral distortions associated to the
reionization of the universe). For sake of completeness, a few words about
the computation of the time evolution in the code. The subroutine called
WDIY0 is the core of the time evolution in KYPRIX: it computes the value
of ω given a value of y. This process takes advantages of the definition of
y as integral of dy and, of course, it happens at each time step. To do this,
we make use of a double precision version of the function ZBRENT, from
Numerical Recipes.

3.4.2 Chemical abundances

As a consequence of the fact that now it is possible to choose the
primordial abundances of H and He a different number of effective electrons,
ne f f

e , are involved in the different physical processes. Before this was
possible, in the code was assumed a fixed abundance of H and He and
also the maximum level of ionization of the elements was assumed. With a
primordial He abundance of the 25%, the number of the effective electrons
was given by

ne f f
e = ntot

e $
ρb

mb

7
8
, (3.27)
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where ρb is the baryon density and mb the mean mass of a baryon. Now, if
we call fH the fraction of primordial H and considering that ne = nH + 2nHe,
after some calculation, we have:

ne f f
e =

1 + fH

2
ρb

mb
. (3.28)

Of course it is necessary to newly calculate the rates of the physical processes
involved in the code.In fact, both Compton scattering and bremsstrahlung
depends directly from ne f f

e .

3.4.3 Including recombination and reionization processes

The high accuracy reached in the last years in observations on CMB is
bringing us a lot of informations regarding temperature anisotropies and
spectrum. So, a detailed understanding of the recombination process is
crucial for modeling the power spectrum of CMBR anisotropies with such
a precision. Future missions, dedicated to the masurement of the absolute
temperature of the cosmic background, must have an high sensitivity and
accuracy in order to bring the level of measurements adequate to the physic
knowledge that we reached on this axpect of the CMBR.

The past versions of KYPRIX included the recombination process as an
istantaneous phenomenon and characterized by fully ionized elements. This
is a very semplified scenario and a more precise calculation was needed.
The first implemenation about that was to include the ionization fraction
in the equation for the rates of bremsstrahlung and Compton scattering, by
allowing a more realistic calculation of the spectral distortions that could
accurred during this phase transition [117].
This upgrade permits to take into account the ionization fraction of the
elements involved in the physical processes during recombination in three
different ways: the simplest is a toy model in which, once the ionization
fraction of electrons, χe− , is given (that is to say a recombination history), the
code assumes that hydrogen and helium has the same degree of ionization.
In order to include new precise calculation regarding the processes involved
in phenomena like reionization or recombination, we performed another
remarkable implementation in KYPRIX. This is related to the contribution
that each state of ionization of the elements involved in the processes
could now give in the considered scenario. More precisely, independent
ionization fractions are introduced in the code for each element that takes
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part in the processes. Before this implementation, the code was able
to simulate reionization only considering the species involved as totally
ionized. Now there are different way by which the code can handle the
ionization parameters related to the ionization fractions of the elements.
The effects of this implementation are totally negligible for the Radiative
Compton, because during the epochs this process is active, the medium is
totally ionized thanks to the high energy scale of the primordial universe.
Instead, Compton scattering and bremsstrahlung feel strongly the influence
of the implementation, altough in different way: Compton scattering
depends of course on the number of free electron ne, so if we have a
medium not fully ionized the number of active electrons will be different;
bremsstrahlung shows also a dependence from the baryon density and,
again, the fact that the medium could be considered not fully ionized will
have deep effects on this process evolution.
Now, once introduced an electron ionization fraction in the code, χe, which
represents the effective number of electrons that take part in the physical
processes, we can choose different way by which the active fractions of
elements can play their roles in the phenomena. Given χe, from the charge
conservation law, we have constraints on the number of the free baryon
in the considered plasma. The simplest way to take count of them, in the
code, is to assume: an equal fraction of ionization for H and He and a totally
ionized plasma. Of course, this is a toy model, but a parametrization like
this would be very useful to test the code, and also it is just enough to newly
write the rates for the Compton scattering and for bremsstrahlung.
A more accurate treatment of the physics of reionization/recombination
processes, consists in introducing the Saha equation for every degree of
ionization of the considered species:

ni+1ne

ni
=

2
Λ3

!i+1

!i
e−
εi+1−εi

kBT , (3.29)

where ni is the density of atoms in the i-th state of ionization, ne is the electron
density, !i is the degeneracy of states for the i-ions, εi is the energy required
to remove i electrons from a neutral atom and Λ is the thermal de Broglie
wavelength of an electron, defined by

Λ =

√
h2

2πmekBT
. (3.30)

Thanks to this equation it is possible to obtain the concentration of each
ionization state of the considered elements: there is no more degeneracy
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about the ionization states of He. Providing the electron ionization fraction
χe, we find unknown parameters,χH,χH+ ,χHe,χHe+ ,χHe++ , that are the relative
abundances of the different states of the elements. The Saha equation
provides the ratio between two state of ionization of a single specie, once
given the electron density and the temperature. This means that we can
easily calculate these ratio:

nH+

nH
,

nHe+

nHe
,

nHe++

nHe+
, (3.31)

where nX indicates the particles number for the element X. To recover all the
unknows we need to couple some other relations to the Saha equation. These
additional conditions are provided by the charge conservation law and the
nuclei conservation. If we write these latter two relations in function of the
ionization fractions of the elements considered, we approach to this form
for the nuclei conservation law:

nTOT
b =

ρb

mb

[
f (χH + χH+) +

(
1 − f

4

)
(χHe + χHe+ + χHe++)

]
(3.32)

and to this form for the charge conservation law:

ne f f
e =

ρb

mb

[
χH+ f + 2

(
1 − f

4

)
(χHe+ + χHe++)

]
. (3.33)

These two relations, plus those ones that gives us the ratio shown in 3.31,
complete a sistem of five unknowns and five equations that we need to
recover all the effective abundances of the various elements.

Another way to perform the exact calculation and integration of the
processes rates in scenarios involving reionization/recombination is to use a
co-running code, coupled to KYPRIX, able to supply the ionization fraction
for all the species.

3.5 Tests carried out

Once termined the updating of the numeric integration code, we have
carried out many accuracy and performance tests [117][113]. A code of
good quality requires at least: high numerical precision compared to the
knowledge, both theoretical and observational, of the considered problem
and physical meaning of the results obtained from the numerical integration
based on a specific NAG routine (D03PCF for the update version – D03PGF
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for the original version) for partial differential equations. Moreover, for
several specific computations some other routines, mainly from the NAG
package albeit also from the Numerical Recipes [112] package, are used in
the code. Since different routines can solve the same mathematical problems
using different numerical methods and/or implementations, typically with
different settings and different input parameters, we have also verified that
the adopted routines allow an appropriate efficiency and accuracy.

In order to evaluate the global CPU time of the code we performed
many runs with very different settings. These times are carried out testing
the code on a Digital machine with 4 Alpha CPUs, but effectively using
only one CPU (now we are running the code on IBM Power5 Processors).
The global CPU time interval ranges from few minutes for cases in which
the integration starts at low redshifts to about 5 hours for cases starting
at very high redshifts (y(z) $ 5). There are many factors that take role in
determining the global CPU time. The complete Kompaneets equation [17]
is in fact composed by several terms. In the KYPRIX code we can select
the physical processes to be considered in the numerical integration and the
global CPU time increases with the number of activated processes.

Of course, the global CPU time depends on the parameters related to
the numerical integration characteristics. The number of points adopted for
the x grid has a great influence on the global CPU time. The integration
interval starts from a point, A, and ends to a point, B, and it is discretized
in a number of spatial steps given by the parameter NPTS. Clearly, the
integration accuracy improves with NPTS because of the increasing of the
density of the adopted mesh point grid. In most of the cases NPTS is set up
to a very large value. We find that the global CPU time is approximately
proportional to NPTS (tCPU ∝ NPTS).

The parameter that plays the most relevant role in determining the
global CPU time is the accuracy required for the time integration. The final
solution precision depends on the value of the corresponding parameter
ACC. Only for very high accuracy (ACC" 10−12−10−14) the CPU time reaches
the duration of some hours while keeping ACC ∼ 10−5 the integration is
carried out in few minutes. Anyway, the limits imposed by CMB spectrum
observations drive us to investigate in particular on small distortions. It is
then necessary to work with low values of ACC (in general, " 10−10).

Once termined the better choice of the various numerical routines and
fixed the characteristics of the time integration, we have carried out several
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tests in order to verify the physical validity of the results given by the code
KYPRIX.

3.5.1 Energy conservation test

In the code output file DATIP we store values of several parameters
of interest. Two of them provide very useful information on the goodness
of the numerical integration. The first one is the ratio, εr/εi, between the
radiation energy density today and the energy density corresponding to
the unperturbed distribution function before the distortion4. In absence of
dissipation processes, the perfect energy conservation is represented by the
constance of this ratio at all the times during the integration. To determinate
the accuracy supplied by KYPRIX, the values of εr/εi are stored at the starting
of the integration and at many following times. In order to estimate the
precision of the energy conservation, we define the quantity:

ERRε =
|(εr/εi)t=tstart − (εr/εi)t>tstart |

(εr/εi)t=tstart − 1
, (3.34)

that gives the relative error induced by the numerical uncertainty on the
initial value of the amount of fractional injected energy, ∆εr/εi.

A typical result is reported in Fig. 3.1.
Since the same absolute numerical integration error corresponds to

a larger relative error for a smaller distortion, i.e. for smaller ∆εr/εi in
these models, we could in principle expect a degradation of the energy
conservation for decreasing distortions. Our tests indicate in fact that the
maximum induced error shows an increasing of the degradation of the
energy conservation for decreasing distortions adopting the same accuracy
parameters. On the other hand, one can select them according the specific
problem. We find that for suitable choices of the integration accuracy
parameters, the above relative error can be kept always below $ 0.05%
without requiring a too large computational time. Finally, we note that in
some circumstances the scheme for the electron temperature evolution in the
new version of KYPRIX (backward differences), different from that used in
the original one (implicit scheme), could imply some small discontinuities
in the evolution of the electron temperature and of∆εr/εi. They are localized
only to few time steps and do not propagate along the evolution. We have

4For example, for a Bose-Einstein distorted spectrum εr/εi = φ4 f (µ)/[φ4
0ϕ

4/3
0 (µ)] (see, e.g., [138]

[35]).

76



Figure 3.1: Error in the energy conservation expressed in terms of relative (%)
deviation from its input value of the quantity ∆εr/εi. See the text for further details
on computation parameters. Thin solid, dot-dashed, and dashed lines refer to
an energy injection occured respectively at yh(z) $ 1.5, 0.25, 0.01. Obviously, this
error further decreases improving the accuracy parameter adopted in the numerical
integration.

verified that this effect does not affect the very good accuracy of the solution,
because of the very small amplitude of these discontinuities and of the
corresponding energy conservation violation.

3.5.2 Comparative tests

Comparing solutions

The first kinds of tests consisted simply in comparing the results
obtained with the update version of KYPRIX with those obtained with the
original version for the same sets of input parameters (see Fig. 3.2).

To this purpose, we have considered some interesting cases carried
out in the past. In particular we used the input parameters adopted
in Burigana et al. (1995) where also semianalytical descriptions of the
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numerical solutions of the Kompaneets equation were reported. Relatively
small distortions have been assumed in the tests reported here: the amount
of exchanged fractional energy is∆εr/εi = 10−4 and we started the integration
from a redshift corresponding to yh(z) $ 0.25 in one of the two cases and
yh(z) $ 0.01 for the other case. The input cosmological parameters are:
H0 = 50, Ω̂b = 0.03, k = 1.68, T0 = 2.726 K. Clearly, the results given by
the update version of KYPRIX are fully consistent with the those reported in
[17]. Moreover, since in that paper a seminalytical description of the solution
of the Kompaneets equation is given, it is clear that a good agreement of the
numerical results obtained with the original and update code represents a
further confirmation of the analytic solution validity.

Figure 3.2: Comparison between the present time solution for the CMB spectrum
obtained from the old version of the numerical code (upper lines; adapted from
panel a of Fig. 1 in [17]) and the current one (lower lines). See the text for
further details on computation parameters. Dashed (dot-dashed) line refers to
an energy injection occured at yh(z) $ 0.01 (yh(z) $ 0.25). Note the excellent
agreement between the results of the two codes. In the case of the old version
of the code we report also the analytical approximation (dotted line) described by
a Comptonization spectrum plus a free-free distortion (see Eq. (33) in [17]).
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Comparing the analytical description of the behaviour of φ with the numerical
one

While the energy exchange between matter and radiation is led by
Compton scattering (in the absence of external energy dissipation processes),
electrons reach the equilibrium Compton temperature (Peyraud 1968,
Zeldovich & Levich 1968), Te,eq, in a time shorter than the expansion time.
For yh " 1, (non primordial heating processes) Compton scattering is no
longer able to significantly modify the shape of the perturbed spectrum and
the final electronic temperature φ f (remember that φ = Te/Tr), immediately
after the decoupling, is very close to φeq = Te,eq/Tr. On the other hand,
we know that for energy injections at redshifts corresponding to yh ! 5
Compton scattering can estabilish kinetic equilibrium between matter and
radiation. This corresponds to a Bose-Einstein spectrum, with a final electron
temperature given by (Sunyaev & Zeldovich 1970, Danese & De Zotti 1977):

φ f (yh ! 5) = φBE $ (1 − 1.11µ0)−1/4 , (3.35)

where µ0(" 1) is the dimensionless (initial) chemical potential. Moreover, in
this case the evolution of the chemical potential, µ(z), the relation between it
and the amount of fractional energy injected, ∆ε/εi, depends on the energy
injection epoch.
For the intermediate energy injection epochs, corresponding to yh " 5, the
final value of φ (a function depending on yh) is between the values of φBE

and φeq, because the Compton scattering works to produce a Bose-Einstein
like spectrum anyway (Burigana et al. 1991). At these epochs the relation
between the chemical potential and the amount of fractional injected energy
injected is simply given by (Sunyaev & Zeldovich 1970, Danese & De Zotti
1977):

µ0 $ 1.4
∆ε
εi
. (3.36)

By exploiting the numerical results, Burigana et al. (1995) found a simple
formula for φ:

φ f (yh) =
k
5

5 − yh

k + yh
(φeq − φBE) + φBE , (3.37)

where k = 0.146. Moreover, this expression represents an accurate
description of the evolution of φ for any value of yh. In facts, for a value of
y (y < yh) we have:

φ(y, yh) = φ f (yh − y) . (3.38)
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In the considered cases, as in many situations of interest, the perturbed
spectrum of the radiation (immediately after the heating process) could
be described by a superposition of blackbodies and the equilibrium
temperature is given by (Zeldovich & Sunyaev 1969, Zeldovich et al. 1972,
Burigana et al. 1995):

φeq $ (1 + 5.4 y∗)φi , (3.39)

where φi = Ti/Tr = (1 + ∆ε/εi)−1/4 $ 1 − y∗ and the Comptonization
parameter y∗ could be related to the amount of fractional energy exchanged
by (Zeldovich & Sunyaev 1969, Zeldovich et al. 1972, Burigana et al. 1995):

y∗ $ (1/4)∆ε/εi . (3.40)

Through Eqs. (3.37) and (3.38) we can test the behaviour of the electron
temperature during the numerical integration of the Kompaneets equation
carried out with the new code version. With the increasing of the time
variable, the values of φ are saved into the file DATIP, from the initial time
step to the final one. Fig. 3.3 shows the two behaviours of φ (the numerical
one and the analytical expression given by Eqs. (3.37) and (3.38)).

This test is of particular importance for the check of the validity of the
results. In fact, the numerical computation of φ during time evolution of
the system is of crucial relevance because of the role of φ in the Kompaneets
equation. As remembered in the previous section, in the new version of
the code a different scheme is used with respect to that implemented in
the original version. The verification of the very good agreement of the
above behaviours of φ further supports the substantial equivalence of the
two code versions, their reliability, and, in particular, the negligible impact
of the approximation implemented into the new numerical scheme adopted
for the evolution of φ (in principle less stable than the implicit scheme) with
respect to the old one.

3.5.3 Tests on the free-free distortion

As already discussed by Sunyaev & Zeldovich (1970), accurate measures
of the CMB spectrum in the Rayleigh-Jeans region could provide quantitative
informations about the thermal history of the universe at primordial cosmic
epochs. On the other hand, photon production processes (mainly radiative
Compton at earlier epochs and bremsstrahlung at later epochs) work to
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Figure 3.3: Evolution of φ as derived from the numerical code compared with that
defined by Eq. ??. The parameters adopted for the computation are the same as in
Fig. 3.1 as well as the adopted kinds of lines. Note that the differences in φ between
the numerical results (solid lines) and those based on Eq. ?? are less than 10−6 and
the relative differences in (φnumerical −φanalytical)/(φ− 1) are less than 1% at each time.

reduce the CMB spectrum depression at long wavelengths [34] since they
try to estabilish a true (Planckian) equilibrium. For z < zp [34] [18] with

zp $ 2.14 × 104
( T0

2.7 K

)1/2( k
1.68

)1/4
Ω̂−1/2

b , (3.41)

low frequency photons are absorbed before Compton scattering brings them
to higher frequencies.
In case of small and late distortions (zh " zp), a good approximation of the
whole spectrum is given by [17]

η(x, τ) = ηie−(τ−τh)e−(τ−τh)
∫ τ

τh

e(τ′−τh) 1
ex/φ(τ′) − 1

dτ′
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+u
x/φiex/φi

(ex/φi − 1)2

( x/φi

tanh(x/2φi)
− 4
)
, (3.42)

where the index i denotes the initial value of the corresponding quantity
and u is the Comptonization parameter. This expression provides also
an exhaustive description of continuum spectral distortions generated
in various scenarios of (standard or late) recombination or associated
to the cosmological reionization. For an initial blackbody spectrum, at
dimensionless frequencies xB " x" 1 the above equation can be simplified
and reduces to [17]

η $ ηBB,i +
yB

x3 − u
2

x/φi
; (3.43)

here yB, an optical depth of the universe for bremsstrahlung absorption
(radiative Compton can be neglected at late epochs), is analogous to the
Comptonization parameter and it is given by

yB =

∫ t

th

(φ − φi)φ−3/2!B(x,φ)K0Bdt = (3.44)

∫ 1+zh

1+z
(φ − φi)φ−3/2!B(x,φ)K0Btexp

d(1 + z)
1 + z

;

xB is the frequency at which yabs,B = 1 [151] [39]. The dependence of the
Gaunt factor ([71],[122],[18]) on x and φ at very long wavelengths is weak:
!B ∝ ln(x/φ).

In terms of brightness temperature, the distortions at low frequencies
(at any redshift) could be written as

Tbr − Trφi

Tr
$ yB

x2 − 2uφi , (3.45)

where Tr = T0(1 + z). This approximation holds at low frequencies but not
at extreme low frequencies, where the brightness temperature obviously
approaches the electron temperature because of the extreme efficiency of
bremsstrahlung still able to generate a Planckian spectrum at electron
temperature.

In order to show that our numerical solution follows the behaviour
described by the last equation, we can compute yB from the brightness
temperature derived from the numerical solution:

yB $ x2
(Tbr − Trφi

Tr
+ 2uφi

)
. (3.46)

The reported numerical result (see Fig.3.4) refers to a heating process
corresponding to a full reionization starting at z $ 20 with φ = 104 K,
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producing a final Comptonization parameter u $ 4 × 10−6 compatible with
FIRAS upper limit. As shown in Fig.3.4, at low frequencies yB approaches
an almost constant value with varying frequency. This is correct only for
λ > 200− 300 cm while at higher frequencies yB is no longer almost constant
because of the dependence of the Gaunt factor on x andφ as expressed in the
definition of yB. We can also write an expression describing the brightness
temperature through a constant parameter ȳB, derived from Eq. ?? (see
Fig.3.4 bottom panel) averaged over the range at very long frequencies
before the yB declining shown in the lower panel of Fig.3.4, to verify the
accuracy of the below expression

Tbr,yB =
( ȳB

x2 − 2uφi + φi

)
· Tr (3.47)

in comparison with the numerical results. Note that where the Gaunt factor
dependence on x and φ produces a significantly varying yB (see Fig.3.4 top
panel), the Comptonization decrement is more relevant than the free-free
excess in determining the brightness temperature, as evident from the good
agreement of the two curves in Fig.3.4 (bottom panel). Clearly, the brightness
temperature derived in this way works only up to frequencies (∼ 100 GHz)
approaching that at which the excess in the brightness temperature produced
by the Comptonization begins (at ∼ 220 GHz, λ ∼ 0.13 cm see Fig.3.4 bottom
panel). Note also that, the uses of ȳB is Eq. (3.47) implies a slight excess
with respect to the accurate numerical results since yB decreases with the
frequency (see Fig.3.4 upper panel). In this representative test, the excess
is ∼ 0.02 mK. This error is clearly negligible for the analysis of current data
(see, e.g., [124]) It is also negligible for the analysis of future measures at
λ ! 1 cm with accuracy comparable to that proposed for DIMES [74, 25].

On the contrary, it could be relevant for a very accurate analysis of
future measures at λ > 1 cm with accuracy comparable to that proposed for
FIRAS II [56, 26]. This calls for a complete frequency and thermal history
dependent treatment of the free-free distortion in the accurate analysis of
future data of extreme accuracy.

3.6 Some cosmological applications

We saw that before the thermalization redshift, ztherm ∼ 106 − 107 (the
exact epoch depends on the baryon density and on H0), any kind of
energy injection has no consequences on the spectrum of the CMB. More
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Figure 3.4: Top panel: yB as derived from Eq. 3.46. Bottom panel: comparison
between the numerical (long dashes) solution and the analytical approximation
represented by Eq. 3.47. See the text for further details.

in detail, even if a big amount of energy is injected, the thermodynamic
equilibrium between matter and radiation is soon re-established because
of the high efficiency of the photons production processes, coupled to the
photons migration to high frequency due to Compton scattering. After
that particular redshift (that corresponds approximately to the first year
of life of the Universe), if an energy injection occurs, the features of the
distortion induced depends strongly on the epoch of the injection. Indeed,
an energy release occurred at a redshift ztherm < z < zBE could leave an
imprint on the CMB spectrum and the resulting one is well described by a
Bose-Einstein spectrum, while if the heating occurs before recombination,
but not near to zBE in time, then the resulting spectrum is described by a
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superposition of blackbodies. These two are the only two asymptotic limit
in which the Kompaneets equation could be resolved analytically. In this
section, starting from the most primordial possible energy injections, I will
show some interesting applications of the code KYPRIX [114][115].

3.6.1 Distortions at z ! zBE

Once the thermalization epoch termined, in case of energy injection, the
CMB spectrum is described by

ηBE =
1

ex/ΦBE+µ + 1
(3.48)

where µ(x) = µ0e−xc(zBE)/(x/ΦBE) is the dimensionless chemical potential, ΦBE $
(1 − 1.11µ0)−1/4 and µ0 $ 1.4∆ε/εi in the limit in which µ0,∆ε/εi " 1. The
characteristic dimensionless frequency xc is the solution of the equation
tabs = tC, computed at zBE, where tabs is the joined absorption time for
Bremsstrahlung and radiative Compton, while tC is the time scale to reach
the kinetic equilibrium between matter and radiation.
The contribution of the radiative Compton is very effective at high
redshifts. The following results come from integrations starting at a redshift
corresponding to y(z) $ 5

3.6.2 Distortions at zBE > z! zrec

For energy injections occurring in the period between the two
asymptotic limit cases, the solution of the Kompaneets equation can be
found only numerically and even if some analytical approximations were
found [17], these are true only under determined conditions.
Just after the heating process, the initial spectrum of the photons is assumed
to be a superposition of blackbodies:

η(x, y∗) = (4πy∗)−1/2
∫ ∞

0
η0(x′)exp

[
− (ln(x/x′) + 3y∗)2

4y∗
]dx′

x′
, (3.49)

where η0 = 1/[exp(x′/φi) − 1], φi = Ti/Tr $ (1 + ∆ε/εi)−1/4, and εi is the CMB
energy density before the heating and y∗ the comptonization parameter.
Eq. 3.49 represents a comptonized spectrum, from a Planckian one, by
hot electrons and, in case of small distortions, the shape of the spectrum
is completely independent from a detailed description of the distribution
function of the temperature.
The redshifts range in which this kind of distortion could occur is wide. From

85



Figure 3.5: Final distorted spectrum starting from a Bose-Einstein one. The
related chemical potential is µ = 1 × 10−5. An early energy injection occurred
at redshift z ∼ 2.85 × 105, corresponding to an yh $ 4. Cosmological parameters:
Ωb = 0.047,ΩΛ = 0.73,Ωm = 0.23,H0 = 70. For this simulation, the recombination
process is assumed to be instantaneous.

the numerical integrations, the final spectrum results to have an intermediate
shape, a sort of mix between a Bose-Einstein spectrum and a comptonized
one. The presence and the depth of the well that recalls a chemical potential
distortion depends strongly from the epoch at which the heating occurs.

3.6.3 Distortions at zrec " z" zBE

In this limit, the analytical results fits very well with the values for η
obtained through the numerical integration. The integrations I made starts
from redshifts corresponding to y(z) < 1. The initial spectrum is assumed to
be a superposition of blackbodies. In this case, the low frequency filling
due to Bremsstrahlung, depends strongly from the epoch at which the
heating occurs and from the amount of fractional energy injected. With
reference to the case treated in the next section, it turned out that at the
epoch corresponding to the run of Fig. the recombination history had a
negligible impact on the final spectrum.
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Figure 3.6: Final distorted spectrum starting from a Bose-Einstein one. An
early energy injection of ∆ε = 5 × 10−6, that corresponds to a chemical potential
µ = 7 × 10−6, occurred at redshift z $ 2.5 × 105, corresponding to an yh $ 3.
Cosmological parameters: Ωb = 0.047,ΩΛ = 0.73,Ωm = 0.23,H0 = 70. For this
simulation, the recombination process is assumed to be instantaneous.

3.6.4 Distortions at z ∼ zrec: impact of a recombination history

The principal results of the latest implementations to the code are those
to probe in a more precise way the contribution of the photons production
processes during the recombination.
The introduction of the ionization fractions for Hydrogen, Helium and
electrons permitted to create an interface between KYPRIX and codes capable
to provide a reionization history. In our case the code RECFAST was chosen.
In particular, for the case here showed, I modified the output of RECFAST in
order to have an ionization fraction history for each of the involved elements.
Acting in this way, it is only necessary to create a crowded web for these
values e redshifts coming from RECFAST, in order to have continuity of
solutions for whatever values can take the redshift inside the integration
routine of KYPRIX.

The difference between Fig. 3.9 and Fig. 3.10 lies in the type of
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Figure 3.7: Intermediate (dashed and dot-dashed lines) and final (solid line)
distorted spectrum in the case of an energy injection occurred at z < zBE, at an epoch
corresponding to yh = 2.5. The initial spectrum is represented by a superposition
of blackbodies. The fractional energy injected is ∆ε/εi = 5× 10−6. The cosmological
parameters are the same of the case in Fig. 3.6.

recombination used in the code. The non-instantaneous recombination used
to simulate the spectrum in Fig. 3.10 allows the active processes to act with
different effectiveness. In particular, Fig. 3.11 shows the difference of this
two kind of history: it is the result of subtracting the final spectrum of the
case with a gradual recombination from the case in which is activated an
instantaneous recombination. The excess of photons at lower frequencies
finds easily an interpretation: in the case of instantaneous recombination,
the photon production process (at these epochs, only bremsstrahlung
is effective) works with the maximum possible rate until recombination
redshift is reached, because the species involved are assumed to be fully
ionized; instead, the rate of photon production of the same process in the case
of a recombination history is not so effective because the role of the ionization
fraction, that allow a weaker production of photons (the production rate is
proportional to the density of ions and electrons).
At higher frequency an similar argumentation could be found to explain
the well that starts at the right end in Fig. 3.11. The Compton scattering
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Figure 3.8: Intermediate (dashed and dot-dashed lines) and final (solid line)
distorted spectrum in the case of an energy injection occurred at zrec " z " zBE,
at an epoch corresponding to yh = 0.5. The initial spectrum is represented by a
superposition of blackbodies. The fractional energy injected is ∆ε/εi = 5 × 10−6.
The cosmological parameters are the same of the case in Fig. 3.6.

is more effective, in shifting photons to higher frequencies, in the case of
a instantaneous and fully ionized recombination, while it loses effectiveness
when the ionization fraction are considered (its rate is proportional to the
free electrons). That’s why the spectrum in Fig. 3.10 shows more photons at
high frequency.

3.6.5 Distortions due to reionization process

In the previous chapter we saw that if the Universe pass through a
phase of reionization this could leave imprints on any CMB observable.
The available data from the WMAP satellite suggest a global reionization
occurred at a redshift zreion = 11.0 ± 1.4. This epoch is derived from the
observed optical depth τ = 0.087 ± 0.017 (WMAP data only). The reasons
of the rise of this phenomenon can be traced in the context of a primordial
star formation, such the one related to Population III stars, for example. The
thermonuclear reaction caused by the matter gravitational collapse could
heated the Universe, allowing reionization around the collapsed regions. To
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Figure 3.9: Final spectrum (solid line) for an energy injection occurred at redshift
z = 104. The initial spectrum is a superposition of blackbodies and the amount of
fractional energy injected is ∆ε/εi = 1×10−5.. Here an instantaneous recombination
process is considered.

our eyes, the effect of such a event is that to move forward in time the LSS,
because an heating of the photons implies a dramatic re-distribution of their
energies and a consequent loss of informations regarding their previous
configuration.
On the CMB spectrum the effects consist in formation of free–free and
comptonization like distortions, related to the heating of the electrons of the
ISM during the reionization phase. Furthermore, these distortions depends
strongly on the thermal history of the ISM also and not only from the degree
of ionization: the exchanges of energy between matter and radiation depend
directly on the electronic temperature.
Here a reionization toy model was used to produce the results presented.
The process is simulated through an instantaneous heating of the electrons,
characterized from a fixed value for Φ = 104.

The effect of a contribution ofΛ ! 0 is well visible through the tests done.
The difference of depth between the two final spectra is ∆T $ 5 × 10−5. The
interpretation of such difference lies in the huge contribution that a Λ ! 0
gives to he Universe evolution, during late epochs like the one considered
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Figure 3.10: Same of FIg. 3.9, but the recombination process. A RECFAST simulation
was used to recover the recombination history of the ionization fraction of electrons,
H and He. See text for details.

Figure 3.11: Result of the subtraction of the final spectrum of Fig. 3.10 from the
final spectrum of Fig. 3.9. See text for details.

(zreion $ 20). Practically, the processes have more time to act, producing in
this way a more prominent distortion.
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Figure 3.12: Reionization process simulation in an Universe with noΛ contribution.
The initial spectrum is Planckian and a fractional energy injection ∆ε/εi = 5 × 10−6

occurs during reionization. The final spectrum is represented by the solid line. The
process starts at redshift z $ 20.
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Figure 3.13: Reionization process simulation in an Universe with Λ contribution.
Same integration characteristic of Fig. 3.12.

Figure 3.14: Difference in thermodynamic temperature between the two previous
cases. See text for details.
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Chapter 4

CMB measurements

4.1 Introduction

As previously said, definitive, very precise maps of the CMB are
fundamental to fully characterize cosmological parameters and to constrain
theories. Small error bars in the power spectrum and on the frequency
spectrum let us to provide answers to recently rising questions about the
nature and content of the Universe.
The observation of the CMB is crucial for more than one reason. First of
all, its signal is weak, as said, its absolute temperature is measured to be
2.725 ± 0.002 K. No detection of spectral distortions is recorded to date, the
upper limit imposed by FIRAS measurements on the key parameters for
possible spectral distortion are: |µ| < 9 × 10−5 for the chemical potential
(characterizing a Bose-Einstein like spectrum) and |y| < 15 × 10−6 for what
concern the Comptonization parameter (that characterize a superposition of
black bodies or a Comptonized spectrum) [56].
On the other hand, the detected fluctuations from the mean temperature
are on a scale of ∆T/T ∼ 10−5 and after the first detection, by the COBE
Differential Microwave Radiometer [133], the missions that followed aimed
to observe these fluctuations with an ever better resolutions, in order to
probe the smallest angular scale possible, with the consequent results on
constraining the cosmological parameters of the standard model.
The newest discover about CMB observables is its polarization. The CMB
was predicted to be weakly polarized (5-10 %). The first detection came
out in 2002, through the observation made by the DASI interferometer [81].
A further indirect indication of the polarized signal was detected from the
one-year WMAP data [76], through the cross-correlation with temperature
anisotropies, followed by a polarization analysis made on the WMAP three-
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years data [104].
Another complication regarding CMB measurements is the signal that came
from spurious and unwanted emissions raising from our Galaxy and from
extragalactic sources: the foregrounds. These emissions are the main limiting
factors in the new generation CMB experiments and we will see the reasons
of that in the next pages.
In this chapter, after a review of the past and future CMB dedicated
experiments, it will be given an overview of the Planck mission, focusing on
some details about the importance of monitoring foreground, to be followed
in the next chapter, by a more deep presentation of the foregrounds features.

4.2 Observing the Background

Spectrum measurements
In Fig. 4.1 all the measurements done on the CMB absolute temperature
are shown. The first observations of the CMB spectrum were made through
ground based experiments. The signal coming out from the instrument of
such experiments contains the combined contribution of Galactic and extra-
Galactic sources’ radiation, atmospheric emission, ground radiation and the
cosmic background radiation (neglecting instrumental losses). The presence
of an absorbing atmosphere degrades the received signal for two reasons:
a reduction of the signal power is due to simple absorption, while a re-
radiation at the atmosphere ambient temperature introduces a signal. Many
results from ground-based experiments are collected in [35], and treating
the errors on measures as standard deviations, a simple statistical analysis
gives a CMB absolute temperature of 2.69 ± 0.08 K.
Before the coming of the COBE space mission, and before the COBRA
rocket measurements [61], the observations based on the analysis of the
molecular absorption lines, provided measurements of the CMB absolute
temperature with good precision. It must be noticed, that this method
allows to probe, in a direct way, the homogeneity of the CMB: in a
FRW Universe, the temperature of the background scales with redshift as
TCMB(z) = TCMB(0)(1 + z), where TCMB(0) is the nowdays CMB temperature.
Anyway, to measure the blackbody temperature at redshifts higher than 1,
it is better to use atomic fine-structure transitions in absorbers toward high
redshift quasars [9]. Many observations used the C I, because the energy
levels in its fine structure levels are closer compared to other abundant
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species. The main difficulties in this kind of measurements are: on one side,
the fact that the absorption lines of the C I ground state are often weak and
difficult to detect in quasar absorbers at high redshifts, on the other side,
non-cosmological sources can also populate the excited fine-structure levels
interested. Also for these reasons, the excitation temperature derived in
such way, is an upper limit to the CMB temperature, unless the degeneracy
due to the source of excitation is broken.
Another kind of measurements involve the observation of the rotational
energy states of some molecules, common in the interstellar medium, like
CN, CH and CH+: these energy states are so low that can be populated by
CMB thermal radiation. In general, it is calculated the ratio between two
population with different rotational states through the Boltzmann equation:

Nb

Na
=
!b

!a
exp[(Ea − Eb)/kT] , (4.1)

where a and b are the two states, k the Boltzmann’s constant, T the
temperature and and N, !,E are the particles number, the statistical weight
and the energy of the related state. Anyway, there is the possibility that other
processes might alter the population ratios, like collisions between electrons
and the CN molecules and this could bring to overestimate the excitation
temperature and so T0.
The COBRA instrument was launched in 1990. It started observing the sky
when the rocket was at 150 km altitude in the ascent phase until it was 100 km
in descent phase, with a maximum value for the altitude of 250 km. COBRA
measured the CMB temperature in the frequency range 90 < ν < 500 GHz.
The instrument compared the temperature of the sky Tsky with the radiation
of a blackbody calibrator Tre f in this way: Tsky was directed to one side
of a differential polarizing symmetric two-beam interferometer, while the
other side of the instrument looked to the blackbody calibrator, through an
identical telescope. The internal black body was calibrated after the launch,
filling the the aperture of the sky telescope by an additional black body
whose emissivity was more than 0.999 and whose temperature was possible
to set between 1.8 and 4.2 K. The limit on the accuracy of the measures was
determined by the discrepancy of these two calibrators, that is lower than
±5 mK. The mean temperature observed from the rocket is 2.736 ± 0.017 K,
in good agreement with the FIRAS data.

To date, the best measurements of the CMB spectrum are those made
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Figure 4.1: Plot of all measures of the CMB thermodynamic temperature. The
big stars are the early ground measurements, the small stars the recent ground
measurements, the squares the balloon measurements, the triangles the experiments
with the CN molecural and the diamonds the COBRA data. The FIRAS data are
plot as a solid line. Figure from [124]

through the FIRAS instrument (Far Infrared Absolute Spectrometer), aboard
the COBE (COsmic Background Explorer) satellite. FIRAS was a polarizing
Michelson interferometer operated differentially, with two input and two
output ports, calibrated with an external black body having an estimated
emissivity of better than 0.9999 [50]. One of the input ports, received signals
from the sky horn, while the other from the reference horn, seeing an internal
reference calibrator with an emissivity of $ 0.98. For the calibration, the sky
horn was completely filled by the external calibrator, isothermal to better
than 1 mK at 2.7 K, with a consequent uncertainty on the spectrum of
approximatively 10 parts per million.
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Figure 4.2: Plot of the more recent measures of the CMB thermodynamic
temperature. The small stars the recent ground measurements, the squares the
balloon measurements, the triangles the experiments with the CN molecural and
the diamonds the COBRA data. The FIRAS data are plot as a solid line. Figure from
[124].

The first analysis of the FIRAS data was made on a frequency range
spanning from 1 to 20 cm−1 and it gave a temperature of 2.735 ± 0.06 K [92].
Successive more refined analysis improved the calibration (bias of some
pixels corrected, effects of Cosmic Rays hits removed, different weighting
for the pixels mostly affected by glitches) and gave an absolute temperature
of 2.726 ± 0.004 K (95% CL) [93].
A following re-processing of the FIRAS data supplied a CMB temperature of
2.728± 0.004 K (95 % CL) [52]. The derivation of this value was obtained by
the combination of three methods used on the dataset. One of these consisted
in using the preflight calibration of the external calibration thermometers
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and it gave a temperature of 2.730 ± 0.004 K and the error is practically
determined and dominated only by the absolute calibration error on the
external calibrator. Another method used the collected data to determine
the temperature scale. The uncertainty on the frequency, 0.03%, generates
an uncertainty on the temperature of 0.82 mK. This way provided a value of
2.7255 ± 0.0009 K. In the third method, the CMB itself was used. The basic
assumption is that the dipole is the result of a Doppler shift. As consequence,
that the shape of the differential spectrum should be dBν/dT, where Bν(T)
is the Planck function and the derived temperature showed a value of
2.717 ± 0.007 K, with the uncertainty dominated by the ones concerning
the fitting of the Galaxy radiation, which contributes in a modulation of the
dipole (see Fig. 4.3 for an example of two subsequent FIRAS calibrations).

Figure 4.3: A comparation between the FIRAS data reported by Mather et al. (1994)
and the more refined analisis of these by Fixsen et al. (1996). Figure from [124]

The most recent re-processing of the calibration data provided an
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Figure 4.4: The COBE/FIRAS spectrum overplotted on a 2.725 K. Error bars are
magnified by a factor 400. Figure from [7]

absolute temperature of 2.725 ± 0.002 K [94] (see FIg. 4.4). They newly
analyzed the performance of the FIRAS black body calibrator and reduced
the estimate of systematic errors. The final constraints on the distortions
parameters are: |µ| < 9×10−5 and |y| < 15×10−6. Anyway, these parameters,
and the observational limits on them, depend on the shape of the spectrum
and not on the value of the absolute temperature.
The Absolute Radiometer for Cosmology, Astrophysics, and Diffuse
Emission (ARCADE) is one of the most recent mission dedicated to the
observation of the CMB spectrum. It is a balloon-borne instrument which
measured the radiometric temperature of the sky at 10 and 30 GHz
(ARCADE), and at six frequencies, ranging from 3 to 90 GHz (ARCADE II)
[130]. The measurements done during the first scientific flight of ARCADE
gave an absolute CMB temperature of 2.721 ± 0.01 K at 10 GHZ and
2.694 ± 0.032 K at 30 GHz [55].
The goal was not only to measure the CMB signal, but also to observe Galactic
diffuse emission. The sky was observed at Galactic latitude of 13◦ < b < 83◦

and most of the observations were taken at b > 35◦. The models mainly used
to estimate the Galactic contaminations are those derived from the WMAP
data for synchrotron, free-free and dust emissions, scaled for ARCADE
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frequencies using the spectral index derived from the WMAP 23 and 33
GHz. Considering the frequency coverage of the mission, the uncertainty on
the zero level of the foreground emission is dominated by the uncertainty on
the synchrotron spectral index β: simply scaling the synchrotron zero level
as Tsync(ν/408MHz)β with −3.2 < β < −2.7 the estimates on the temperature
give values between 0.7 and 3.5 mK at 10 GHz. The free-free emission
from ionized gas was traced and estimated through the Hα emission from
the same gas [47], whose contribution is rated to be 0.04 mK at 10 GHz,
while the thermal dust emission estimates, at the same frequency, suggest a
temperature of 1µK at |β| > 75◦ [48].
The newest results from ARCADE II suggest an excess at low frequencies
[54]. In particular the excess is seen in the 3.3 and 8 GHz channels. The
amount is of 50 ± 7 mK at 3.3 GHz and it is interpreted as an unknown
extragalactic contribution. The exclude the effects of systematic errors,
thanks to the high control on them; the radio sources count is not responsible
for this signal as well, because it is expected to rise at lower frequencies.
Anyway, in their paper they also exclude the possibility of a free-free
distortion of the CMB spectrum because their models don’t fit the data.

Temperature anisotropies measurements
The initial theoretical estimates of temperature fluctuations can be dated
in the 60’ s and in the following years, characterized by a predicted
contrast scale to an upper limit of ∆T/T < 10−3. The first detection was
claimed in 1992, by the COBE DMR team [133] and it was the ticket
for the Nobel prize for G.F. Smoot and J.C. Mather (2006). The COBE
satellite was launched November 18, 1989 and carried three instruments,
a Diffuse Infrared Background Experiment (DIRBE) to search for the cosmic
infrared background radiation, a Differential Microwave Radiometer (DMR)
to sensitively map the cosmic radiation anisotropies, and a Far Infrared
Absolute Spectrophotometer (FIRAS) to compare the spectrum of the cosmic
microwave background radiation with a precise blackbody. Each of these
instruments gave a huge contribution to the richness of our cosmological
model. The already mentioned FIRAS features and results are not mentioned
here.

• With its ten frequencies, ranging from 1.25 to 240 µm, the DIRBE
instrument was designed to carry out a search for the cosmic infrared
background (CIB), providing maps of the infrared absolute sky
brightness. The CIB was detected both by DIRBE and FIRAS. This
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signal contains the cumulative emissions of stars and galaxies dating
back to the epoch when these objects first began to form.

• The CMB was found to have intrinsic ”anisotropy” for the first time,
at a level of a part in 100,000. These tiny variations in the intensity of
the CMB over the sky show how matter and energy was distributed
when the Universe was still very young. These early structures, seen
by DMR, are the seeds from which born galaxies, galaxy clusters, and
the large scale structure that we see in the Universe today.

The results from COBE opened the road for a new cosmology era. Before
the coming of the second generation CMB dedicated space mission, many
other ground based and balloon borne experiments were realized.

Figure 4.5: Measurements on the temperature angular power spectrum of the CMB
from various experiments.

Among the others, big results have been obtained from: ARCHEOPS
[11], a balloon borne experiment based on bolometers receivers at
frequencies of 143, 217, 353, 545; ACBAR [119], a ground based bolometer
array receiver capable of measuring the CMB anisotropies from angular
scales corresponding to ) = 200 to ) ∼ 3000. It extended the frontier of CMB
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anisotropy measurement to angular scales more than a factor of two finer
than that achieved with previous experiments; BOOMERANG [31], [38],
[37], a balloon borne experiments, flown around Antarctica in two separate
flights (the first in 1998, the second in 2003) to map the CMB, providing
with the first flight data the first high resolution map of the CMB anisotropies,
for a patch of the sky with low foreground emissions; COSMOSOMAS [57],
dedicated to mapping COSMOlogical Structures On Medium Angular Scales
and diffuse emission of our Galaxy, provided considerable results at 11,12,
13, 15 and 17 GHz, showing also an anomalous emission at high Galactic
latitude [64]; MAXIMA [136], evolved from the successful MAX experiment.
To date, the most precise measurements on temperature anisotropies (and
on polarization) are the datasets provided by the WMAP team [65], [104].
WMAP produced the first full-sky map of the microwave sky with a
resolution of under a degree, producing a convincing consensus on the
contents of the universe, confirming the existence of dark energy, and
severely limiting the density of hot dark matter. The telescope’s primary
reflecting mirrors are a pair of Gregorian 1.4m× 1.6m dishes (facing opposite
directions), that focus the signal onto a pair of 0.9m × 1.0m secondary
reflecting mirrors, while the receivers are differential radiometer, sensitive to
polarization. The five frequencies at which WMAP operates (23, 33, 41, 61, 94
GHz) permit a good measurement and a consequent effective subtraction of
the foregrounds contributing at these frequencies (mainly synchrotron, free-
free and dust emission) and providing the possibility to realize the more
accurate full sky map of CMB anisotropies. The last release of cosmological
parameters derived from WMAP data is shown in Fig. 4.6.

Polarization measurements
Predicted by the cosmological standard model, the first signal of polarization
in the CMB radiation was detected in 2002 through the Degree Angular Scale
Interferometer (DASI), observing from the NSF Amundsen-Scott South Pole
station. DASI is an interferometer based on cooled HEMT amplifiers running
between 26-36GHz, in ten 1 GHz channels. DASI has an instrumental
response to E and B modes that is symmetric and nearly independent. For
this reason, even if the B mode spectrum is predicted not to have a E mode
like shape, in the analysis reported in [84] they assumed the modes to have
the same spectrum, to preserve this symmetry.
A more precise measurements comes from WMAP data. The satellite has
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Figure 4.6: Cosmological parameters derived from WMAP data only for a ΛCDM
model. Figure from [? ]

mapped the full sky in Stokes I, Q, and U parameters at frequencies of
23, 33, 41, 61, and 94 GHz. They firstly detected correlations between the
temperature and polarization maps significant at more than 10σ [77], then,
with the increasing observations and statistics, they delivered a detailed
polarization analysis [104]. Furthermore, WMAP detected a significant
polarization level from foreground emission, in particular from Galactic
synchrotron radiation and thermal dust emission. In the analysis they
applied a Galactic mask, cutting out the 25.7% of the sky and showed
that the high Galactic latitude rms polarized foreground emission ranges
from ≈ 5µK at 22 GHz to " 0.6µK at 61 GHz. In order to compare
the magnitude of the CMB signal, the level of intrinsic CMB polarization
for a ΛCDM model, considering an optical depth of τ = 0.09 and a
tensor to scalar ratio r = 0.3, are ≈ 0.3µK for E-mode polarization and
0.1µK for the B-mode. In the foreground corrected maps, they detect
)() + 1)CEE

)=<2−6>/2π = 0.086 ± 0.029(µK)2 and they interpreted it as the result
of the re-scattering of CMB photons by free electrons released during an
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instantaneous reionization occurred at zr = 11.0+2.6
−2.5. No evidence for B-

modes was seen, but a more stringent upper limit was derived, that is
)() + 1)CBB

)=<2−6>/2π = 0.04 ± 0.03(µK)2 [104].
Further results were presented with the BOOMERanG 2003 flight, observing
the 0.22% of the sky. The instrument was formed by four pairs of polarization
sensitive bolometers operating in bands centered at 145, 245 and 345 GHz
(the first CMB polarization detection made with bolometers) [99]. Using
two independent analysis pipelines, they found a non-zero 〈EE〉 signal, for
angular scales corresponding to 100 < ) < 1000, with a significance of 4.8σ,
and estimated the 〈EE〉APS. A 2σ upper limit for any 〈BB〉 contribution was
derived to be 8.6µ (K)2, while a 2σ upper limit of 7.0µ (K)2 was fixed for the
〈EB〉 spectrum.
Among the others, previous upper limits were fixed with POLAR [72]: 10µK
on both E- and B- mode polarization on angular scales greater than 7◦;
PIQUE, a ground-based polarimeter operating at 90 GHz, yielded to a 95%
confidence level flat band power limits of 14 and 13 µ(K)2 on the amplitudes
of the E- and B-mode angular power spectra, respectively [63].

4.3 Future missions

The possibility to measure or to provide upper limits on the distortions
related parameters y and µ at level of 10−7 was hypothesized with the
proposal of the FIRAS II mission [56]. Likely, it would be feasible to measure
deviations from the Planckian shape with an accuracy and precision of 1
ppm, reaching the astrophysical limit set by our location in the Galaxy. The
analysis of the main limitations to FIRAS is a key point for the new possible
mission. An improved detector characterization, a more accurate control of
the calibrator reflectance of light, a wider frequency band, a better control
of the cosmic rays contamination, the use of reflectors to obtain a smaller
beamwidth are some of the features that FIRAS II must have to be a leap
forward than FIRAS. The proposed frequency coverage is from 2 to 120cm−1

(60-3600 GHz), with a resolution of 0.2cm−1 (6 GHz). A FIRAS like design
limits the resolution, so an external off-axis parabolic mirror with 1 m of
aperture would be provided. The mirror must be surrounded by absorbing
walls of controlled temperature and the parabolic shape is to ensure that
the beam spillover onto the black walls is extremely small. Detector would
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Figure 4.7: The WMAP five-year TT and TE power spectra. Figure from [4]

be four spiderweb bolometers, one for each polarization, and with optical
efficiencies of 10% each of them would achieve a cosmic background photon
noise-limited sensitivity of 10−17 W Hz−1/2, that is about 100 times better than
the FIRAS one.
The Diffuse Microwave Emission Survey (DIMES) [74] represents a
complementary proposal to FIRAS II. The complementarity lies in the fact
that the frequency coverage would fill the gap between the full-sky surveys
at radio frequencies (ν < 2 GHz) and the mm and sub-mm measurements
done by COBE. The instrument consists of a set of narrow-band cryogenic
radiometer (∆ν/ν ∼ 10%), each of them measures the power difference
between sky through a beam-defining antenna of FWHM ∼ 6◦ and an
internal reference load of controlled temperature. Further, each antenna
sees alternatively the sky and a full-aperture target with an emissivity of
ε > 0.9999. This will eliminate instrumental signatures. The sensitivity
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reached in 100 sec of integration is 0.1 mK.
For measures at wavelength λ < 1 cm, the equipment is not so large and as
seen more could be gained by using dedicated satellites. For measurements
at λ > 1 cm the instrument starts to be quite big and a satellite is no longer
reasonable. Indeed, in the context of the Observation of the Universe from
the Moon campaign the Italian Vision for Moon Exploration proposal [27] (in
which I’m involved) include two possible missions with different size [24].
The large size experiment proposal consists in a multi-channels receiver
with a frequency range coverage of 0.4 − 50 GHz, a spectral resolution of
10%, an angular resolution of 7◦ − 8◦ (FWHM), a sensitivity < 1 mK sec−1/2,
leading to a final sensitivity better than 0.1 mK for resolution element. The
frequency range coverage is determined by the proposed scientific target and
it permits to separate in a good way the different components that contribute
to the CMB spectral distortions. The obvious advantages of basing such an
instrument on the Moon can be summarized in two points: the more long
is the wavelength of observation the bigger is the radiometer needed and it
is not possible to realize it on a satellite; secondly, on the Moon there is no
atmosphere, which is an effective source of contamination for ground based
measurements.
A small instrument mission design is also proposed. The motivation
consists in the fact that free-free and Bose-Einstein like distortions, although
more remarkable at λ > 10 cm, can reach levels of some 0.1 mK even
at λ of some cm where they can be detected with an experiment with
ultimate sensitivity comparable to that of COBE/FIRAS, as that proposed
[23]. In addition, although experiments at centimetre wavelengths are more
devoted to (earlier) Bose-Einstein like distortions and to (later) free-free
ones, a very careful absolute calibration accuracy such that of the proposed
experiment could have also relevant implications for our understanding of
(later) Comptonization like distortions.

4.4 The Planck Mission

Planck, whose launch is foreseen in 2009, is the third generation space
mission, after COBE/DMR [133] and WMAP [103], devoted to image the
CMB anisotropies. The Low Frequency Instrument (LFI) [147, 142] will
simultaneously observe the sky in three frequency bands centered at 30, 44
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and 70 GHz. It is composed by 11 pseudo-correlation receivers, actively
cooled to 20 K, able to detect both orthogonal polarisation of the incoming
signal. The LFI will be located, along with the High Frequency Instrument
(HFI), in the focal region of a 1.5 m aperture telescope. The LFI will produce
full-sky maps of the anisotropies of the CMBR with a FWHM angular
resolution of 33’, 27’ and 13’ for the 30, 44 and 70 GHz LFI bands, respectively.
While WMAP is not sensitive at frequency higher than ∼100 GHz, the Planck
instruments will produce cross calibrated full sky maps spanning a very
large frequency range. The HFI, operating between 100 and 857 GHz, is
able to monitor, for instance, the dust contamination, the LFI, covering
from ∼27 to ∼77 GHz, is sensitive to the synchrotron and freefree emission.
The combination of the two instruments will therefore produce the cleanest
image of the CMB anisotropies ever obtained. Moreover, the wide frequency
range covered, delivering all-sky maps for each channel, will provide at the
same time a gold-mine of astrophysical information.
Comparing the three generation of space mission devoted to the CMB
anisotropies, COBE/DMR first mapped the temperature anisotropies;
WMAP, after successful ballon-borne and ground-based experiments (see
among others [37]; [43]) determined with high accuracy the temperature
power spectrum up to the third peak and improved [102] the first
determination of the TE and EE power spectrum. Planck will not only extend
the high precision determination of the TT-spectrum up to ) ∼ 2000, but it
will determine the EE-spectrum with high sensitivity up to ) ∼ 1000 and has
a chance to detect primordial B-modes, depending on the tensor-to-scalar
ratio of primordial perturbations (The Scientific Programme of Planck, 2005).

4.4.1 Some details about the satellite

The design philosophy for the LFI is to minimise any systematic effect,
from instrument intrinsic effects and from astrophysical origin, in the design
of the instrument instead of removing it in data reduction. It results in a
very complex instrument, especially for the radiometric [127], optical [21]
and thermal aspects [95]. Moreover a big effort is made to model the
impact of any known effect on the final maps. The LFI is an array of 22
pseudo-correlation receivers [13], based on radio detectors [32]. They are
continuously comparing the signal of the sky and of a stable reference load.
LFI design minimises systematic effects such as thermal instabilities [95], 1/f
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Figure 4.8: The High Frequency Instrument and the Low Frequency Instrument
that will be aboard the Planck satellite.

[127] noise. To minimise the effects of power dissipation in the critical focal
plane area, the receivers are split into two parts, the Front-end and the Back-
end. The former is placed in the focal plane unit (FPU) at 20 K, and the latter
at 300 K on the top part of SVM (the service module). The radiation focused
by the telescope [148] is coupled to the radiometers by double profiled,
corrugated feed-horns. Feed-horn, in particular, are optimised for angular
resolution as a trade-off with straylight rejection and low sidelobes [21],
minimal beam ellipticity [125].
The reference signal for the LFI radiometers is provided by the 4K reference
load (4KRL) unit [146], which uses the HFI outer shield to reach an operating
temperature expected less than 5 K. The overall design of the 4KRL was
driven by high-level constraints: total heat load on the HFI less than 1
mW and the small allowed volume within the two instruments. Among
the possible options, it was chosen to have a mechanical separation (only
radiative thermal coupling) and a minimum clearance to prevent any contact
between the LFI and the HFI due to vibrations at launch. Two figures-
of-merit were used in designing the 4KRL unit: reflectivity and leakage.
Since the LFI radiometers are comparing the signal from the CMB (whose
temperature is known with an accuracy of about 1%) and the reference
signal from the 4KRL, the loads emissivity should be better than ε = 0.99.
The leakage is defined as the spillover signal that can enter the horn-target
gap (< 1.5).
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Particular care is posed on thermal aspects, which could be an important
source of systematic effects: thermal fluctuations, induced mainly by the
HFI 4K cooler, are propagated in the LFI radiometer global model up to the
final effect expected on the sky maps [95].
Another main limiting factors in terms of systematic effects in a CMB space-
borne experiment is the optical system, because main beam distortions
and sidelobes are two of the main sources of systematic errors [20]. The
former degrades the angular resolution, limiting the reconstruction of the
anisotropy power spectrum at high multipoles, the latter drives unwanted
radiation not coming from the boresight direction (the so-called straylight)
into the feed horn, contaminating the measurement mainly at large and
intermediate angular scales (i.e. at multipoles ) less than ≈ 100). Accurate
predictions and measurements of the beam shape are essential both during
the instrument development phase (to design and to properly locate each
feed horn) and for an in-depth knowledge of the whole-instrument response
in the development of the data reduction pipeline (to remove residual
systematic effects by software) [126].
The Planck sorption cooler [100] is a closed-cycle, continuous cryocooler
designed to provide more than 1 W of heat lift at a temperature of less than
20 K using isoenthalpic expansion of hydrogen through a JouleThompson
valve (JT). Some of this cooling power will be provided to cool the low-
frequency instrument onboard the Planck spacecraft. The remaining heat
lift will be used as a pre-cooling stage for two further cryogenic refrigerators
(He JT cooler to 4 K; Dilution cooler to 0.1 K) that will in turn maintain the
high-frequency instrument (HFI) at 100 mK.

Since the performance of the LFI radiometers, sensitive also to
polarization, is the best ever obtained in a CMB space mission at ν " 70
GHz, LFI data will play a crucial role in the context of the Planck scientific
aims and, possibly, in the context of future CMB space missions dedicated
to a more precise measure of CMB polarization anisotropies.
On the other hand, at ∼ 70 GHz all the three (two) main Galactic
diffuse components in temperature (polarization), synchrotron, free-free and
dust (synchrotron and dust) are in principle relevant, with a consequent
increasing of the number of needed fit parameters for a precise component
separation between CMB and foreground. It is then required to combine
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Figure 4.9: A schematic and simple view of the Planck satellite. HFI and LFI are
placed at the focal plane instruments.

data at different microwave frequencies and, possibly, to add auxiliary
information (Galactic templates) from radio to far-IR. The 30 and 44 LFI
bands are crucial to determine the foreground contribution at low frequency.
In fact, if the Galactic foreground close to the Galactic plane can be excluded
by applying dedicated masks to the all-sky maps, the determination and
careful subtraction of the Galactic synchrotron and the free-free contribution
[46] at intermediate Galactic latitudes is critical to avoid a significant loss
of statistical information. Finally, we note that the LFI information on
Galactic foreground polarization will be useful to understand the level
of accuracy needed in future high accuracy CMB satellite polarization
missions dedicated to the B-mode. In the case in which they will include
frequency channels at ν " 50 GHz, LFI will contribute to appropriately
define their sensitivity, In the case in which they will operate only at ν ! 50
GHz, it will constitute the best uniformly calibrated all-sky survey for the
intercalibration of collections of future dedicated observations of Galactic
polarized synchrotron emission.
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4.5 The key-role of the foregrounds

As it will be stressed in the next chapter, foreground emissions are
by now the main limitations to a space mission devoted to observation of
any of the features of CMB. More precisely, this limitation consists in two
facts: the narrow band that corresponds to the minimum of the foregrounds
emissions (especially that from Galactic foregrounds), found to be around
70 GHz, limits us to measure directly the CMB radiation in few frequency
channels, limiting a wider spectral coverage that potentially could bring
more informations from the first years of life of our Universe; on the other
side, the lack of knowledge necessary to outline the precise characterization
of these unwanted emissions.
For what concerns the first factor, we can not do so much: this is a matter of
facts, we observe that there is a minimum and the only thing we can do is
to not forget to provide our instruments of frequency channels lying in this
spectral range. It is clear that on the sky there are regions less contaminated
and regions that are more. Indeed, a basic strategy, characterizing a non-full
sky experiment devoted to observe the CMB signal, consists in choosing one
or, better, more regions on the sphere with a low level of contamination. This
is the observing strategy that owned to every experiment from ground or
from balloon, given that is not possible to observe the whole sky with such
experiments.
In order to plan observations like this, it is clear that sky surveys and
available data from previous observations and estimates of the foregrounds
patterns and signals have the fundamental role. Clearly, the bigger and the
better is this database, the cleanest will be the region chosen. Anyway,
observing a foreground free region of the sky, and consequently a less
contaminated CMB signal, has a drawback: this kind of observations do
not permit to estimate the level of contamination effectively. Furthermore, it
is not possible to estimate the properties of the foreground itself. Of course
the lack of an uniform frequency coverage of collected data and statistics
about the contaminants is a result of the trade-off between the observation of
the clean CMB signal and the observation of the foreground itself.
On the other hand, the inaccurate knowledge and characterization of these
emissions is due to different factors. Multi-frequency observations are a
must if one wants to model the foregrounds spectral behavior. As we will
see in the next chapter, it is usual to model Galactic emissions through a
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power law, characterized by a spectral index β. A wide multi-frequency
monitoring could of course lead to a more precise estimate of β for every
emission process. However, there are some issues about determining β.
For example, it was found that the spectral index of a particular emission
could vary along the sky, depending on the region one is observing. Clearly,
this has a potentially deep impact when it is necessary to extrapolate the
emission law of the foreground to frequencies where there is a total lack
of observations, leading to a bad estimation of its contributions and with a
consequent non-optimal CMB signal after a foreground subtraction process.
In addition to this, a sort of degeneracy among processes emitting in a
particular frequency range could drive to a bad estimation of their single
contributions. Sometimes, it is possible to disentangle the two emissions:
synchrotron and free-free emissions both dominates on CMB in the low
frequency part of the spectrum. In this case, the degeneracy is broken
first of all thanks to the polarization signal from synchrotron, while no
detection of polarization from free-free is registered to date. Furthermore,
free-free can be traced through Hα line emission. Instead, in some other
cases, to separate contributions could be more tricky: the anomalous dust
emission contributes to Galactic foregrounds signals at low frequency as
well. The emission mechanism related to this anomalous contribution is
well not understood (more details in the next chapter). However, the key
point is that foreground estimation of the WMAP team fits the 90% of the
sky with a 3-components model (synchrotron, free-free and thermal dust),
while on the Galactic plane, where this model doesn’t work very well, it is
necessary a further tuning. Indeed, in this region, an additive component
like spinning dust or a steepening of the synchrotron contribution gives the
same results.
All that means that we have to push further on this phenomena, also because
polarization experiments are the next challenge and, as we will see, the
disentanglement between foregrounds and CMB is much crucial on this
aspect.
The contamination doesn’t spare any CMB observable. In addition to this,
CMB spectral distortions are characterized by a very weak signals and they
likely could lie in critical spectral regions. Furthermore, the contaminating
processes are characterized by temperature higher than the CMB one. Just
think about thermal dust: it dominates from ν " 70 GHz and its emission is
well modeled by a grey body (a modified black body) of few tens of degrees.
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In the following chapter, we will see how and how much the foregrounds
contaminate any CMB observable.
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Chapter 5

Foregrounds and models

5.1 Overview

Any instrument trying to measure the intensity (or anisotropy) of the
CMB sees many other mixed signals in the sky, which cannot be avoided by
instrumental or observational techniques, and must be accounted for and
subtracted from the data during the analysis. It is crucial to determine which
fraction of the observed signal is due to some foreground contaminant.
The foregrounds could be divided in two main classes: Galactic and extra-
Galactic foreground. In addition to these, there are other local foregrounds,
like the Zodiacal Light Emission (ZLE), and if we consider ground-based
experiments and balloon experiments, the atmospheric contamination is
not negligible.
The main physical processes that contribute to the Galactic foreground
contamination are: synchrotron emission, bremsstrahlung and the dust
emission (thermal and anomalous emission). At lower radio frequencies the
synchrotron emission is usually dominant, with flux decreasing at higher
frequencies. In terms of brightness temperature, a power law model would
have an average index β ∼ −3. Free-free emission has a flux that is nearly
constant with frequency and its emission temperature is well fitted by a
power law with an index β ∼ −2.1. It becomes relatively more important
than synchrotron at higher frequencies, let say 60 GHz at higher latitudes,
but at a fixed frequency its domination varies on the sky (also because the
synchrotron has a varying spectral index).
At frequencies larger than 60 GHz it is possible to begin to probe the spectrum
tail of vibrational dust emission, β ∼ 2, which becomes dominant around 70
GHz. In addition to these three foregrounds, there is the possibility to have
another contribution of foreground at lower frequencies, in the 10-30 GHz
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range. The nature of this source is still unknown, but many think that are
some hints to point at rapidly rotating dust grains.

The uncertainties in the maps and in the frequency dependence of
the galactic emission at radio and microwave frequencies have become
the limiting factor in the accuracy and interpretation of the low frequency
measurements of the spectrum of the CMB and anisotropies as well.
In the following sections, the main foreground features will be presented, in
the context of CMB experiments. This will be followed by a brief overview of
the impact that the PLANCK satellite will have in the context of foregrounds
and by a description of the Planck Sky Model, coming with the report of
some tests I’ve done on it.

5.2 Extragalactic foregrounds

Extragalactic sources emit in several frequency ranges. The extragalactic
foregrounds include: radio sources, the Sunyaev-Zel’dovich effect from
galaxy clusters, and infrared-bright dusty galaxies.
The spectral energy distribution (SED) of most of them shows a minimum
around 1-2 mm. This is the results coming from the superposition of
two emission mechanisms: the radio emission, that dominates for lower
frequencies with respect to this minimum, and the thermal dust emission,
that starts dominating at frequency ν ! 70 GHz. Consequently, this
determines also a difference in the populations of the bright sources observed
above and below ∼ 1 mm.
The synchrotron emission is likely to be the primary emission mechanism
of all radio sources. According to the model of Blandford & Rees (1974),
supported by observational evidence, the frequency of this spectral break,
νb, that coincides with the frequency at which the synchrotron spectrum
steepens, is related to the magnetic field and the synchrotron age, ts, by

νb $ 96
(

30µG
B

)3
t−2
s GHz (5.1)

where ts is expressed in Myr. In concordance with this, a systematic
multifrequency study, that will be possible to do with the multifrequency
Planck data-set, will provide a statistical estimate of the source ages and of
the evolution of their spectra.
Synchrotron is also known to be strongly polarized, while most of the radio
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sources observed in MHz and GHz ranges are not. This lack of polarization
could be due to random alignment of the magnetic field in the source, or to
Faraday depolarization of the emergent radiation.
However, the observed spectra of radio sources can be not a power law with
a fixed index. This departure from a simple power law depends mainly on
two facts: the aging process: the higher the energy of an electron, the less
time it takes to radiate a given fraction of that energy; the opacity: a peak
may appear in the SED, centered roughly at the frequency where the optical
depth reaches unity.
A particular class of objects that shows clearly this behavior is that of the so-
called gigahertz peaked spectrum (GPS) sources [135]. These objects could
represent very young stages of the evolution of a radio source and this would
provide an insight into the genesis of this sources class. They can be also
very compact sources in the ISM of host galaxies, characterized by unusual
conditions like high density or turbulence.
In many galaxies, a very cold dust component is observed (6 " T " 15
K). When SCUBA started observing the sky with unprecedented sensitivity
in the sub-millimeter waveband three years ago, it unveiled vigorous star-
forming activity in the early Universe and hundreds of otherwise invisible
galaxies were seen. Radiation from dust in distant star-forming galaxies
contributes in the sub-mm frequency range through thermal emission (see
Sec. 5.3.3).
Concerning anisotropy observations a consideration must be done. The first
space mission for CMB anisotropies observation, DMR aboard the COBE
satellite, was basically not affected by extragalactic foreground sources [10].
That’s because its large beam size. In fact, the contribution of a point source
increases with the inverse of the solid angle of the beam. From this statement
follows that observations at high angular resolution (i.e. the Planck mission)
are more sensitive to extragalactic foregrounds, than a mission with lower
resolution.
Clusters of galaxies play another important role among the astrophysical
foregrounds. A systematic shift of photons from the Rayleigh-Jeans to
the Wien regime is caused by the inverse Compton scattering of CMB
photons against the hot and diffuse electron gas trapped in the potential
well of clusters of galaxies (also responsible of their X-ray emission). This
contribution, the thermal Sunyaev-Zel’dovich (SZ) effect, arises from the
thermal motion of the electrons and it is described by the Kompaneets
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equation which, in the non relativistic limit, leads to the formula for the
spectral intensity changes across a cluster:

∆Iν = 2
(kTCMB)3

(hc2)
y!(x) , (5.2)

where x is the usual dimensionless frequency and !(x) is the function that
describes the spectral form of this effect

!(x) = x4ex[x ˙coth(x/2) − 4]/(ex − 1)2 . (5.3)

!(x) is negative for x < x0 = 3.83 (corresponding to ν0 = 217 GHz) and
positive for x > x0.
Hence, CMB absolute temperature measurements are affected by
extragalactic foregrounds: the astrophysical monopole must be subtracted
from the total monopole observed and this is a crucial step.
The sky brightness can be decomposed as follow:

Tsky(ν,α, δ) = TCMB(ν) + TGal(ν,α, δ) + Text(ν) , (5.4)

where TGal(ν,α, δ) is the emission of our Galaxy and Text(ν) the contribution
of the unresolved extragalactic sources. An estimate of their contribution
could be done on the current knowledge of their amplitude and spectrum
[87], recovered through CMB observations carried out in the past. These
estimates could be done at 600, 800, 1400 and 2500 MHz, for example, and
their contribution is 810 ± 180 mK, 340 ± 80 mK, 79 ± 19 mK and 16 ± 4
mK respectively [131]. Using the current 178 MHz normalization [87] it
turns out that the uncertainty associated with the unresolved extragalactic
contribution is potentially higher than instrumental systematic errors. This
is particularly important for low frequency measurements, which is the most
interesting frequency range for looking for CMB spectral distortions.
In the sub-mm range, the extragalactic contribution is expected to
overwhelm the differences between a distorted spectrum or a blackbody one
with the same, or very similar, T0, permitting a relatively simple subtraction
of it. The submillimetric extragalactic foreground derived in [53] is given by

I $ 1.3 × 10−5[ν/(c/0.01cm)]0.64Bν(18.5K) . (5.5)

These results support an active phase of star formation rate at high redshift
(z $ 2.1 − 3.8) and dust reprocessing [19].
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5.3 Galactic Foregrounds

In the following sections will be given a description of the Galactic
diffuse foreground emission. In order to explain the relation between
foreground and CMB pattern, the problem will be considered under
temperature and polarization aspect, given that many efforts are being done
to face the challenge related to the amount of data that the Planck mission
will provide. On the other side, foregrounds are crucial also for absolute
temperature measurements and so, after the T and P overview, I will focus
on the contaminations related to the monopole moment.

5.3.1 Synchrotron emission

Synchrotron emission is widespread in the Galaxy and it arises from
the acceleration of cosmic ray electrons in the magnetic field of our Galaxy.
Concerning CMB experiments, the synchrotron emission is the dominant
Galactic foreground at low frequencies, i.e. below 30 - 40 GHz (for
polarization it starts to be dominant from higher frequencies, given that free-
free is considered un-polarized) and its intensity depends on the Galactic
magnetic field, on the energy spectrum of the electrons and on their spatial
distribution.
The Galactic synchrotron emission (like the other two Galactic emissions) is
generally described by a power-law spectrum

T(ν) ∼ ν−βsync (5.6)

where βsync is the synchrotron spectral index, with typical values in the
range 2.6 − 3.4. This is a varying spectral index: it varies with frequencies,
depending on the details of the cosmic ray electron propagation, including
energy loss, and as a consequence it varies with position on the sky.
Electrons with energy between 3 and 170 GeV, accelerated in magnetic
field with an intensity between 0.2 and 2.5 µG, will have a spectrum
ranging from 400 MHz and 100 GHz. Furthermore, synchrotron radiation
could reach a theoretical intrinsic degree of polarization of about 75%. In
order to better understand this foreground process, some observations have
been performed in the typical frequency range of synchrotron emission:
the Leiden surveys are linear polarization surveys covering the Northern
Celestial Hemisphere at five frequencies between 408 MHz and 1411 MHz,
with an angular resolution ranging from 2.3◦ to 0.6◦ [16], the DRAO
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polarization survey at 1.4 GHz [149] with a FWHM resolution of 36′ and
the Villa Elisa polarization survey [143], with the same resolution. The latest
two survey covered respectively the Northern and the Southern sky and
both were sensitive to the Stokes parameter Q and U.
The total intensity template of the radio sky appears very different from the
polarization one. Furthermore, the polarized intensity is characterized by
important structures at high Galactic latitude, while on the Galactic plane it
results to be less bright than in total intensity. From the statistical analysis
in [22] results also that E and B polarization modes show a very similar
behavior and are well fitted by a power law, with typical slopes ringing
from −2.5 to −3, confirming previously results at ) " 200 obtained through
analysis on the Leiden survey at 1.411 GHz [82].
Other available high resolution data, in radio band, is approximately 10
arcmin and data are limited to a low - medium Galactic latitude, |b| " 20◦ [45].
More than one times, these templates were used to evaluate the synchrotron
angular power spectrum in the radio band up to arcmin scale.
In terms of C), for ) ! 200, other efforts come from independent groups. For
the Galactic region they considered, Tucci et al. [145] estimated CE,B

) ∝ )−1.5÷−2

and the same behavior was claimed by Tegmark [141]. Furthermore,
Baccigalupi et al. [8] confirmed this results up to |b| $ 20◦ and they also
found out that the level of Faraday depolarization is quite important, but
not so much to affects and masks the true synchrotron emission.
A multifrequency analysis of these surveys resulted in a series of angular
power spectra, that when fitted with a power law (C) ∼ k)α) give spectral
indices that steepen with increasing frequency [82]: from α ∼ −(1 − 1.5) at
408 MHz to α ∼ −(2 − 3) at 1411 MHz for 10 " ) " 100 and from α ∼ −0.7 to
α ∼ −1.5 for lower multipoles (the exact values depending on the considered
sky region and polarization mode). Anyway, it is possible that Faraday
depolarization effects can play a fundamental role in the determination of
the effective degree of polarization for the synchrotron emission.
Even if it is subject to a degeneracy with the free-free emission, synchrotron
radiation results to be stronger than dust emission in WMAP frequencies
[58]. They claim a strong synchrotron depolarization toward the Galactic
plane. Indeed, a decrement in polarization intensity can be caused by the
superposition, along the line of sight, of two synchrotron regions having
their polarization angles oriented nearly orthogonally. Moreover, if the two
regions have different spectral indices the loss of power in polarization is
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maximized at the frequency where the individual polarization amplitudes
match. Also because of that, total intensity and polarization synchrotron
template appears quite different.

Figure 5.1: The frequency dependence of the expected CMB anisotropy (red band)
and of three known sources of foreground emission from our Galaxy, in units of
antenna temperature. The five bands of WMAP are indicated, while the dotted
lines labeled with Kp0 and Kp2 represent the level reached after a Galactic cut with
the two different masks. The residual fraction of sky after the cut is also indicated.
[6]

5.3.2 Bremsstrahlung

Free-free emission arises from the collisions between thermal electrons
and other ions. Typically this process takes place in regions with hot gas,
with temperature around 106 Kelvin. The spectral index is fixed through the
atomic physic laws: β f f ∼ 2− 2.1 (in the formalism of Eq. (5.6)), and it varies
with the frequency. Like synchrotron, the main contribution of the free-free
emission is visible at low frequencies, below 70 GHz. Anyway, synchrotron
emission dominates over free-free for frequencies below 30 GHz. This
foreground emission is also a tracer of star formation, that is a process able
to ionize the abundant interstellar hydrogen and consequently, the ionized
component, locks all the gas to the magnetic field through collisions. This
hot ionized gas can be traced, in the optical regime, by recombination lines
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of hydrogen, principally the H-alpha line.
It is possible to estimate the brightness temperature for free-free emission.
Theoretically, one considers an electrically neutral medium consisting of
ions and electrons. The estimate of the temperature Tf f at a given frequency
ν is given by

Tf f $ 0.08235T−0.35
e ν−β

∫

l.o.s.
NeNidl , (5.7)

where the line of sight integral of electron and ion density must be expressed
in cm−6 pc.
However, free-free emission has a weak signal if compared to the others
Galactic emissions and it cannot be directly observed. A good tracing of
the source of its emission it could be reconstructed out through hydrogen
recombination emission lines, in particular Hα emission. This is due to the
fact that both processes are emitted by the same ionized medium and both
have intensities proportional to the line of sight integral of the free electron
density squared, ∝

∫
N2

e dl. For T ≤ 2.6× 104 K, the intensity of Hα emission
is given by

Iα = 0.36R
( T
104K

)−γ ∫ NeNidl
cm−6pc

, (5.8)

where γ varies from 0.9 to 1.2 for higher temperatures and

1R ≡ 1Raylei!h ≡ 106

4π
photons/(cm2s ster) = 2.41 × 10−7photons/(cm2s ster) ,

at λ = 6563 Å.
The connection between this two processes has been widely discussed
[75, 47, 132] and an Hα intensity based estimate of the free-free brightness
temperature could be given as follows:

Tf f

Iα
$ 10.4ν−2.14T0.527

4 100.029/T4
(1 + 0.08) . (5.9)

Here, Tf f is expressed in mK, Iα is the Hα surface brightness in Rayleigh and
T4 is the temperature of the ionized medium in unit of 104 K.
Free-free emission is observed to be not polarized (at least to the first order),
because it is generated by incoherent emissions from individual electrons
scattered by nuclei in a partially ionized medium.

5.3.3 Dust emission

In the most general scenario, the Inter-Stellar Medium (ISM) contains
molecular and atomic cold clouds and hot ionized cavities likely generated
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by supernovae. Observations suggest that atomic gas (HI) could be part
of the warm neutral medium, with T ≈ 104, and also of the cold neutral
medium, with T ≈ 100K. The warm ionized medium is in part ionized gas
(T ≈ 104K), while a small fraction of the ISM gas is in the hot ionized medium
(T ≈ 106K).
What we know about interstellar dust, comes from observation in the
infrared and beyond and from the extinction observation from UV to
infrared. It is also known, that dust is susceptible to magnetic fields,
showing indeed a certain degree of polarization. The dimensions of the
grains could vary from few nanometers for the smallest, to several hundreds
of nanometers for the biggest grains. In addition, to this it is possible to
classify the variety of materials of which dust is thought to be composed:
large polycyclic aromatic hydrocarbon molecules, carbonaceous compounds
and silicates.
The thermal dust emission is usually modeled by a spectrum of a modified
black-body (a grey-body):

I(ν,Td) ≈ νβdB(ν,Td) ≈ νβ+2 (5.10)

where B(ν,Td) is the emission law of a black-body and β = 2 (recovered from
FIRAS and WMAP data).
In total intensity, an all sky map at 100µm and with a resolution of 6 arcmin, is
available and it is possible to scale this map down to microwave frequencies,
in order to be compared with the CMB [48]. For what concerns the dust
polarization, a great leap forward was made through the results obtained
by the Archeops experiment, at 353 GHz, based on observations of the ∼ 20%
of the sky [12], [109]. Extrapolation at 353 GHz of the IRAS and DIRBE data
are in good agreement with the dust power spectrum recovered through
Archeops. On large scales and for Galactic latitudes |b| ≥ 5◦ is detected
a temperature-polarization cross-correlation () + 1)CTE

) /2π = 76 ± 21µK2
RJ

at 4 σ. They set also upper limits on E and B polarization modes at
11µK2

RJ. For Galactic latitude |b| ≥ 10◦ they report also a TE cross-correlation
() + 1)CTE

) /2π = 24 ± 13µK2
RJ at 2 σ. The extrapolation of these data down to

100 GHz gives interesting results [109]: if the dust properties detected are
the same significant for a whole sky representation and if the upper limits
recovered on E and B modes are near to the dust polarization level, then
the dust contribution to the polarized foreground at 100 GHZ is the most
important spurious signal when recovering the polarization power spectra
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of the CMB.
In recent times, dust emission is likely decomposed in two components that
contribute in different ways: one is the classical thermal emission, the other
is the so called anomalous emission. It came out from cross-correlation studies
of CMB and far-IR data. This emission shows a spectral index typical of
the free-free emission, but evidence from experiments (COBE, Saskatoon,
Tenerife experiment) indicates is high level correlated to the dust emission,
instead of free-free like thought before. Draine & Lazarian [44] suggested
that this emission may originate from very small spinning dust grains, but it
is still an open question (that’s why this source is often also called spinning
dust emission). They also showed how this emission can’t be attributed to an
anomalous emission related to bremsstrahlung.

5.4 Local foregrounds

Foregrounds can arise also from our Solar System. Planets, asteroids
owing to the Main Belt and NEO, comets and comets trails, all of these are
compact or narrow featured objects from the Solar System.
The diffuse local foreground is instead known as Zodiacal Light and the
thermal emission arising from the Interplanetary Dust Particles (IDPs) is
known as Zodiacal Light Emission (ZLE). The ZLE is the far-IR counterpart
of the more known Zodiacal Light, due to scattering of the solar light by
IDPs.
This dust cloud consists of a population of micron to millimeter size particles,
distributed mainly between the Sun and the orbit of asteroid belt at 2 AU (the
tail of the distribution may be more far). ZLE shows a significant emission
component at infrared wavelengths. In fact, depending on the distance from
the Sun, these particles have temperatures from 240 to 280 K.
Many leaps forward were done in our understanding the complex geometry
and the dust properties of the ZLE, thanks to the infrared and far-infrared
space-borne missions like IRAS, COBE and ISO, that observed the emission
below 300 µm. The peak of the ZLE is at λ ≈ 10µm, so it is one of the major
contributors to the sky background in the far-IR domain at low ecliptic
latitude. It is important to study the ZLE not only through maps and
templates, but also using the time ordered data stream coming from a CMB
satellite mission. That’s because its surface brightness depends not only on
the pointing direction, but also on the instantaneous position of the observer
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with respect to the Sun.
Under determined assumptions, it is possible to write a relatively simple
general expression for estimating the ZLE brightness at a frequency ν. For a
space-born experiment and for a given population c of the IDPs cloud, this
is represented by [91]

Iν,c(P,RP) = KνEν,cn0,c ×
∫ +∞

0
dsBν(Tc(r(s)))Nc(r(s)) , (5.11)

where P is the observing direction, s the distance from the observer along
P, RP the position of the observer with respect to the Sun, r(s) the position
within the Solar System with respect to the Sun along the line of sight,
Tc(r(s)) the thermodynamic temperature of the grains of the population c, Bν
the blackbody emissivity, Nc(r(s)) the spatial distribution of the grains, Kν is
a color correction that takes into account the effect of the frequency response
of the instrument in a given bandwidth, n0,c the optical density for the
dust component c and Eν is an emissivity correction that takes into account
features related to the size distribution and composition of the grains. In
general Eν is normalized to a reference frequency ν0. This operation implies a
further renormalization of the optical density ν0. As said, Eq. (5.11) is valid
only under determined conditions: the grain size distribution and their
optical properties must not depend on r; a symmetrical beam is assumed
and it has no variations with ν inside the bandwidth of each channel; the
beam is small compared to the typical scale on which the properties of the
ZLE show variations.
Fig. 5.2 shows the spectrum of the Zodiacal Dust cloud from 10 to 1000 µm,
normalized to a 240 K blackbody spectrum. It is clear a break in the emission
at ∼ 150 µm: below this wavelength, the Zodiacal Dust spectrum is roughly
represented by a 240 K blackbody with a grey emissivity of ∼ 3× 10−7, while
above the break wavelength the emissivity shows a dependent behavior
with respect to λ and it falls off as λ−2 [49]. Even if this is a simple model, it
helped to recover informations about size and mass distribution of the grains
in the main cloud: the spectrum is dominated by emission from grains with
radii smaller than ∼ 30 µm, characterized by the λ−2 decline, while a larger
population is responsible of the normalized flat spectrum below 150 µm.
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Figure 5.2: The 10−1000 µm annually averaged spectrum of the zodiacal dust cloud
normalized to that of a 240 K blackbody. Diamonds represents the DIRBE data and
the solid error bars represent the FIRAS spectrum. See text for more details. Figure
from [49].

5.5 Observing and monitoring foregrounds with PLANCK

5.5.1 Galactic study

The LFI and HFI maps of the Galactic foregrounds (synchrotron, free-
free and dust emission) will have a measurement accuracy comparable to
that achieved on the CMB, with orders of magnitude lower noise than any
current data, and at least 3-4 times better sensitivity than WMAP. Methods of
blind and non blind component separation applied to these high resolution
maps could be a very valuable tool for understanding the different sources of
Galactic emission. Also polarization measurements could be very useful in
singling out the synchrotron emission whose percentage polarization can be
expected at a level of 30 ÷ 50% at the frequencies sampled by PLANCK/LFI,
where Faraday depolarization will be minimal. Maps of the synchrotron
emission of the Galaxy will give information about:

• the structure of the magnetic field;

• the spatial and energy distribution of relativistic electrons;

• the variations of electron density, of electron energy and of magnetic
field induced by supernova shocks and winds from OB stars.

The maps will explore correlations between magnetic fields and the matter
distribution more systematically and often on much smaller scales than
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ground-based surveys. Free-free emission from ionized gas in the Galaxy is
not easily identified at radio frequencies, except near the Galactic plane.
It may, however, be the dominant foreground at 30 ÷ 80 GHz. The
multifrequency all-sky PLANCK/LFI maps, coupled with X-ray maps and Hα
surveys, will therefore be a very valuable tool for investigating the structure,
distribution and physical conditions in the hot regions of the interstellar
medium. Galactic dust emission is expected to be important, or even
dominant, at frequencies higher than 100 GHz, and to fade rapidly at lower
frequencies. PLANCK/HFI measurements will contribute to investigate
the distribution and nature of cold dust in the Galaxy. The simultaneous
study of dust and free-free emission will be very useful to investigate the
relationships between different phases (HI and HII gas) of the interstellar
medium. PLANCK measurements will also detect and provide spectral
information on the brightest discrete Galactic radio sources, including a
relatively large sample of supernova remnants. These data will be unique
in allowing a search for extremely compact bremsstrahlung or synchrotron
sources, self-absorbed up to tens of GHz and therefore unobservable in
existing surveys.

5.5.2 Extragalactic sources

Although PLANCK’s instruments have sensitivities near fundamental
physical limits, CMB optimized instrumental properties lead to an overall
sensitivity of PLANCK to compact sources which is poor compared to
dedicated ground based instruments, as well as to space missions such
as HERSCHEL. Nevertheless, because PLANCK will observe the entire sky,
it will be able to detect a large number of compact sources. As a result, the
LFI surveys will provide unique information on the frequency range they
explore; the data sets they will produce will be important in several areas
of extragalactic radio astronomy, particularly since PLANCK covers just the
frequency range where the shape of the spectral energy distribution of Active
Galactic Nuclei is least well known. The LFI is expected to detect mostly flat
spectrum radio-sources (compact radio-galaxies, radio loud QSOs, BL Lacs,
blazars), in a frequency region where spectral features carrying essential
information on physical conditions of sources show up. These features
include:
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• spectral breaks related to the synchrotron age of the source;

• spectral steepening corresponding to the transition between optically
thick and optically thin synchrotron emission;

• spectral turnovers due to self absorption of extremely compact flaring
components.

Sources with strongly inverted spectra, peaking at mm wavelengths would
either be missing or strongly under-represented in low frequency surveys.
Recent studies of GHz Peaked Spectrum radio sources (GPS) have revealed
a flat distribution of peak frequencies extending out to 15 GHz in the rest
frame. This suggests the existence of an hitherto unknown population of
sources with a spectral peak at high frequencies. GPS sources are important
because they may be the youngest stages of radio source evolution and
may thus provide insight into the genesis and evolution of radio sources;
alternatively, they may be sources which are kept very compact by unusual
conditions (high density and/or turbulence) in the interstellar medium of
the host galaxy.
Using COBE/FIRAS and IRAS observations, it is possible to have a good data-
set to be compared to the predictions of the level of extragalactic foregrounds.
Most of the far-IR sources detected by IRAS are inactive spiral galaxies,
while some are quasars, starburst galaxies and Seyfert galaxies. Gawiser
and Smoot compared the location of more than 5000 galaxies, from the IRAS
data, with a thousand of the brightest radio sources. They found only 7
possible matching results. This lack of coincidence shows that radio-loud
galaxies can be treated separately.
The forthcoming Planck satellite will detect many low-redshift spiral galaxies
and moderate starburst galaxies already detected by IRAS, but his long-
wavelength coverage will provide many informations on cold dust, that
were unavailable from IRAS.

5.5.3 Clusters of galaxies

The Sunyaev-Zel’dovich (SZ) effect is the result of the Compton
scattering of the CMB radiation by non-relativistic electron gas, either in
the intergalactic space or within clusters of galaxies. This effect, arising from
the thermal motions of the electrons, results in a systematic shift of photons
from the Rayleigh-Jeans to the Wien side of the spectrum. With respect to the
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incident radiation field, the change of the CMB intensity across a cluster can
be viewed as a net flux emanating from the cluster. The flux is negative below
the crossover frequency, ν0 = 217 GHz, and positive above this characteristic
frequency. While the main emphasis so far has been on the measurement of
the SZ effect in individual clusters, the ability to observe a large number of
clusters in a satellite survey at millimetric wavelengths enhances interest
in cluster number counts using the SZ signal. Because of its angular
resolution and sensitivity, PLANCK will observe a large number of clusters.
While the model dependence of the number and amplitude of cluster SZ
signals makes predictions of the cluster foreground contamination difficult,
PLANCK observations provide a splendid opportunity to get information on
the intracluster medium complementary to the X-ray observations. In fact,
the SZ surface brightness is proportional to ne (electron density), while the
X-ray surface brightness is proportional to n2

e . Thus, SZ measurements
are much better suited than X-ray observations to probe the less dense
regions, further away from the cluster core. The comparison of SZ and X-ray
measurements will yield an independent measure of the Hubble constant.
On the other hand, if we make use of the cosmological parameter estimation
derived from the Cl’s, PLANCK detection of several hundred individual
clusters will certainly result in an enhanced knowledge of the population of
clusters and of the properties of their hot gas.

5.6 The Planck Sky Model

5.6.1 An overview

The Planck Sky Model (PSM) is a complete and versatile set of programs
and data, to be used for the simulation or the prediction of sky emission in
the frequency range of typical CMB experiments, and in particular of the
upcoming Planck sky mission (the 10-1000 GHz range). It is being developed
as part of the activities of Planck Working Group 2 (WG2) on component
separation, and of the ADAMIS team at APC.
With the PSM, It is possible to have a reconstruction of the sky, at a given
frequency, in two different ways:

• prediction: it is the case in which the sky provided by the PSM is the
best guess of what the sky emission could be at a certain frequency. For
this option, the models involved are deterministic and there are few
tunable parameters (where possible);
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• simulation: in this second case, on the contrary, the realization of the sky
is widely tunable, offering the possibility to test and evaluate algorithm
and tools (i.e. component separation, for example).

The PSM package is mainly composed by IDL script and it is continuously
updated and implemented. It contains and uses a certain number of
templates and catalogs, like: Galactic template, non Gaussian CMB maps,
WMAP-constrained CMB maps, thermal SZ, IR point sources, radio sources,
and others. From summer 2007 the PSM includes a 4-components Galactic
model (thermal dust, synchrotron, free-free and spinning dust) and also
Galactic polarization has been improved.
During the set up of a PSM run it is possible to choose several options
and parameters: first of all, one decides if the run will be a simulation or a
prediction and if it will involve temperature or polarization or both; then it is
possible to determine the parameters of the output format (resolution of the
maps, the maximum multipole order ), the maps coordinate system, etc.);
then the cosmological environment must be set up; the emission model for
the CMB; the diffuse Galactic emission model; the extra-Galactic foregrounds
options.
It is clear that such a package is of primary importance in the context
of the PLANCK mission, for testing the softwares that will used for the
data reduction for example, but it is not excluded that it could have some
repercussions on other field of astrophysics: just think about the PSM
Galactic model and at the possibility to implement it with multifrequency
templates and data, it would be used from astrophysicist from different
areas.
The Galactic model emission of the PSM, is discussed in the next section
and, in particular, I will give an overview of the tests I did on it.

5.6.2 Tests carried out

I carried out some tests on the PSM galactic models aiming to a
validation of the models themselves. In particular, I performed several
comparative tests between the two last realizations of diffuse Galactic
emission model in the PSM: the mamd2008 model (the last release) and the
mamd-dickinson model (the previous one). In addition, the models were
compared with the corresponding real Galactic emissions derived from the
WMAP 3yr data, estimated through the Maximum Entropy Method (MEM).
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The models were tested both in temperature and in polarization.
Here, I will report only a fraction of the tests done, showing few plots about
the differences between the two PSM Galactic models and some others about
the validation of the model in relation with the MEM predicted foreground
maps from WMAP. Every map or plot here is at a frequency of 23 GHZ (K
band), unless differently specified.
Have been also used the Galactic mask used to identify point sources (PS)
by the WMAP team and a low foreground, full sky, new CMB map release
[42].

Figure 5.3: Full sky map of the 23 GHz channel of WMAP. The log scale was used
to emphasize the details. Temperature in mK.
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Figure 5.4: Full sky map of the results of the subtraction of the mamd2008 model
and the CMB map from the WMAP coadded map in K band. The results was
multiplied for the Galactic mask used for the identification of PS by the WMAP
team. Flux is constrained from −0.5 to 0.5 mK.

Figure 5.5: Same of Fig. 5.4, but the model subtracted is the mamd-dickinson one.

Several validation tests were carried out also between the PSM Galactic
models themselves: both considering the coadded maps and considering
the single emission process. In particular, the Galactic models considered
are 4-components models, that is to say that synchrotron, free-free, thermal
and spinning dust emission processes are considered. The next double
panel figure shows the subtraction of the mamd2008 model from the mamd-
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dickinson one. more details in the caption.

Figure 5.6: Left panel: mollview projection of the difference of the two model (see
text), with flux constrained between two arbitrary values in order to emphasize
the differences. Right-panel: plot of the same quantity. More precisely: on the
x axis there is the pixel number for a ring numbering scheme in HEALPix2 [59]
environment, on the y axis the pixel power. With this kind of plot the North
Galactic Pole is on the left of the graph, the South Galactic Pole on the right, while
the Galactic plane stays in the middle.

5.6.3 Results from the tests

In total intensity it turned out that the main discrepancies between the
models stays on the Galactic plane, even if some other confined zones out of
the Galactic disk seem to mismatch between the two models. These seem to
be compact regions, mostly known, and it would be not so hard to include
them in the model.
It is clear that if one wants to validate a software, let’s say a certain component
separation technique, the lack of precision in the PSM is of course transmitted
in some way to validation criterion used to test the software. Hence.
there is the need of some improvements for what concerns the temperature
template, at least at low frequency. At higher frequencies the features of
the templates of the Galactic emission of the two model converge, showing
the same amplitude and spatial template. Also in the Galactic plane, at
high frequencies, the residuals start to be comparable to those left when
one subtract the MEM foreground realization to a sky map at a determined
frequency. For what concerns polarization the results of the validation test
were optimal, in the sense that the new model takes better into account the
polarized signal of the foreground emissions, with respect to the mamd-
dickinson model.
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Figure 5.7: Left panel: mollview projection of the residuals for the Q Stokes
parameter, in K band, obtained subtracting the mamd.dickinson model from the
WMAP map. No CMB was taken into account. Right panel: same thing, but the Q
parameter from the mamd2008 model was subtracted. The scale is in mK.

Figure 5.8: Same of previous figure, but in W band.

Figure 5.9: Same of Fig. 5.7, but for U Stokes parameter.

Figure 5.10: Same of previous figure, but in W band.
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Chapter 6

Component Separation

6.1 Introduction

Looking forward for the Planck mission, some considerations on the
techniques that will be used to recover all about CMB features have to be
done.
To recovery the CMB anisotropy pattern (and the consequent Angular Power
Spectrum representation) one must disentangles the CMB component from
the foregrounds. In this process, two factors determine the quality of the
whole analysis: on one side the knowledge of the Galactic and extragalactic
emissions, of the physical processes involved in these and the need to
have a good database about their spectral behavior, on the other side the
development of precise algorithms capable of separating the CMB patterns
from the other contributions. Of course it is worth complementing all of
these by ancillary data and informations at other frequencies.
Moreover, if we are looking for collecting polarization data, with respect
to the case of temperature, it turns out a relevant intrinsic complication:
observations show that the Galactic foregrounds components are typically
polarized up to 5 − 50%, while CMB anisotropies are weakly polarized,
around few %. In addition to this, the CMB B-mode polarization is much
weaker than the E-mode, differently from the case of foregrounds where the
two polarization modes have almost the same amplitude.

6.2 Component separation technics

In the previous chapter we saw how impressive is the contamination
of CMB by foregrounds and so, in order to study CMB features, it is worth
(not to say necessary) to separate the astrophysical emissions. This is done
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through component separation techniques: the aim is indeed to isolate the
emission of interest (or more than one) from all the rest, in the best possible
way. Usually, for each component, the best map estimation, is obtained
minimizing the total error variance [40]

χ2 =
∑

p

|ŝ(p) − s(p)|2 , (6.1)

where s(p) is the true component emission, ŝ(p) is its estimated value, p is
an index for the space of interest (it could be a set of pixels, or modes of a
spherical harmonic decomposition, etc).
Let overview now a simple method to consider in a stand alone set an
average of the measurements obtained at different frequencies: the Internal
Linear Combination (ILC) method. It assumes few informations about the
components. One of them is considered to be the emission of interest
(for example, the CMB), while all the other emissions are considered
foregrounds, unwanted signal. In the ILC component separation method,
the component of interest has the same emission template at every frequency
and the observations are calibrated on the component of interest. For each
frequency channel i we have

yi(p) = s(p) + fi(p) + ni(p) , (6.2)

where fi(p) is the foreground contribution and ni(p) is the noise, for each
channel i. Practically, it is possible to consider that, during the observation,
the detector is measuring s(p) with an error fi(p)+ ni(p), so it is quite natural
to average all the measurements giving to each of them a specific weight wi

ŝ(p) =
∑

i

wi(p)yi(p) . (6.3)

Of course, the choice of the weights is driven by the maximization of some
criterion on the estimate of s(p). This means that for all p, the sum of the
coefficients wi(p) must be equal to 1.
It is so possible to minimize the variance σ2 of the map ŝ(p) using weights
independent of p, in order to have wi(p) = wi and

∑
i wi = 1. The estimate

takes the following form

ŝ(p) =
∑

i

wiyi(p) = s(p) +
∑

i

wi fi(p) +
∑

i

wini(p) . (6.4)

If the signal s(p) is non-correlated with foregrounds fi(p) and with noise ni(p),
the variance of the error is minimum when the variance of the ILC map is
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minimum.
The ILC method is widely used to obtain CMB maps, but it could be used
to obtain emission maps also for other emission processes. In this case, it is
necessary to remember that the data must be calibrated with respect to the
component of interest (that is to say, the emission template of this component
should not change significantly with the frequency of observation) and the
component itself must be uncorrelated with other components. Anyway, as
demonstrated in [40], there are some issues caused by this non-correlation
problem that could complicate the separation process. The ILC could indeed
bias the results if the assumption on the component of interest are correlated
with other components for some reason or if the data-set is significantly
small (e.g., if the analysis is done on small region on the sky).
Hence, even if the ILC method is powerful when nothing is known about the
data, it is not the optimal procedure when prior informations are available.

6.2.1 A more detailed view

In the context of CMB experiment, in order to handle observations
derived data, the most used model is probably the linear mixture. In this
model, the emission of each component could be decomposed as the product
of two parts: a spatial template independent of the frequency and a spectral
emission that does not depend on the pixel. The total emission of an emission
process j, at the frequency ν, in the pixel p is given by

xj(ν, p) = a(ν)sj(p) (6.5)

that in spherical harmonics becomes xj(ν, )m) = a(ν)sj()m). Neglecting the
details that could come from the instrument characteristics (beams, response,
etc), the observation with a detector is given by

yi(p) =
∑

j

xj(νi, p) + ni(p) (6.6)

where ni(p) is the noise contribution for the detector i. A matrix-vector form
could be used for a set of detectors:

y(p) = As(p) + n(p) . (6.7)

In the latter equation, y(p) represents the map-set observed with all detectors,
while s(p) is the unobserved component, that contains one template map
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per astrophysical component. The mixing matrix A has one column per
astrophysical component and one line per detector and it does not depend
on pixels. The generic element of the mixing matrix is proportional to the
spectrum of the source at an effective frequency, within the passband of
the detector. With the detectors properly calibrated and using the CMB
temperature for all the measurements, If one is trying to disentangle the
CMB signal, detectors must be properly set such that each element of the
column corresponding to the CMB, in the mixing matrix, must be equal to
1.
Recovering the single emission process through component separation
means to invert the linear system represented by Eq. 6.7.
There is more than one way to get the results.

• If A is square and not singular, without additional informations, the
inversion is simple and it is obtained by

W = A−1 (6.8)

and consequently
ŝ = A−1y = s +A−1n . (6.9)

This inversion is not always the best solution in terms of residual error,
because of the remaining noise term n. Anyway, if the aim is to reject
astrophysical signals, in terms of residual foreground contamination,
the inversion gives an unbiased solution, even if it could be noisy. In
comparison, the ILC method can produce a better result in terms of
signal to noise ratio, but, as said, the results can be biased.

• If the system is redundant, i.e. there are more observations than
components, and there are no prior informations about noise and signal
levels, the inversion is obtained by the pseudo inverse

W = [A†A]−1A† (6.10)

and the estimator is given by

ŝ = [A†A]−1A†y = s[A†A]−1 +A†n . (6.11)

This estimator is unbiased as well, but it could get not rid of the noise
and so results can show a low signal to noise ratio. It must be noted
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that, since there is no noise-weighting in this method, just one bad
channel could affect the whole data-set after the inversion.

• If we have more statistics informations about the noise, it is worth to
build the noise correlation matrix, Rn. The generalized least square
(GLS) solution of the system represented by Eq. 6.7 is given by

W = [A†R−1
n A]−1A†R−1

n (6.12)

and the estimator is

ŝ =W = [A†R−1
n A]−1A†R−1

n y = s + [A†R−1
n A]−1A†R−1

n n . (6.13)

This solution is unbiased. The GLS method assumes that for each
detector the noise is a realization of a random Gaussian field. Anyway,
this solution is, at least theoretically, better than the ILC one, if the
model holds, but there is still the need for prior informations about
data.

• If further informations about the spectral content of the original signal
and noise are known, then is possible to adapt the widely used Wiener
filter to find a solution of the system in Eq. 6.7. Many details can be
given about this filtering technic. Here I will give just a quick look
regarding the solution of the system in Eq. 6.7. If the mixing matrix
A is provided and second order statistics of the components and the
noise are known [140] [15], through the Wiener filter we can obtain a
solution by

W = [A†R−1
n A + R−1

s ]−1A†R−1
n (6.14)

where Rs is the correlation matrix of the sources and Rn the noise one.
The estimator is given by

ŝ = [A†R−1
n A + R−1

s ]−1A†R−1
n s +

[A†R−1
n A + R−1

s ]−1A†R−1
n n (6.15)

This method can not provide an unbiased estimate of the component
of interest because some of the diagonal terms can differ from unity.
Indeed the matrix before s is not the identity matrix. Furthermore,
the final CMB map obtained through the Wiener filter may not be
foregrounds free, since off-diagonal terms can have non-zero values.

Of course the use of one method instead another is determined by what
we need to recover and by which constraints have to satisfy the component
of interest.
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6.2.2 Overview on different methods

Before moving to a particular blind technic of component separation,
some other methods must be mentioned:

• the Maximum Entropy Method (MEM). If the observations correspond
to a linear mixture of distinct emissions and the components (and noise)
are Gaussian stationary random processes, the Wiener filter provides
the best estimation of the maps (in terms of minimum-variance).
The MEM method can invert the linear system of Eq. 6.7 assuming
non-Gaussian probability distributions (see e.g. [66]). A particular
implementation of MEM works in spherical harmonic domain: the
separation of the components is done mode-by-mode allowing one to
split a huge optimization problem into a certain number of smaller
problems.
Given that this is a non-blind method, the spectral behavior of the
components must be known in advance and since the mixing matrix
A is fixed the spectral properties of the components must be the same
everywhere in the sky. However, introducing additional component
can be seen as introducing small variations in the spectral properties of
the sources. Finally one can note that using priors on the signals could
bias the solution.

• The Generalized Morphological Component Analysis (GMCA) [14].
This is a semi-blind source separation method that aims to disentangle
the components assuming that the source spatial morphology is well
represented in a fixed waveform dictionary, such as wavelets. The
waveform dictionary leads to a so-called sparse representation. This
implies that the components are well defined from only few samples
in the waveform dictionary. In addition, simple physical priors can be
used to model Galactic foregrounds.

• The Independent Component Analysis (ICA) [67]. This method looks
for the components which maximize some measure of the statistical
independence of the components themselves. A recent implementation
of this method [90] exploits the fact that non-Gaussianity is usually
a convenient and robust measure of the statistical independence In
addition, it also searches for linear combinations y of the input multi-
frequency data, which maximize some measure of the non-Gaussianity.
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This implementation consists in quantifying the non-Gaussianity with
the neg-entropy. If H(y) = −

∫
p(y) log p(y)dy is the entropy associated

to the distribution p, the neg-entropy is defined as neg-entrpy(y) =
H(yG) − H(y), where yG is a Gaussian variable and has the covariance
matrix of y. Through a non-linear mapping, the role of the higher order
moments of y and this allows to search the maxima of the neg-entropy.
The algorithm was successfully tested for CMB cleaning procedure,
because the hypothesis of statistical independence is likely verified at
least between CMB and diffuse foregrounds. It was tested on real
and simulated data and both for temperature and polarization (for the
latter only simulated data were used). In addition to the statistical
independence the performance was also possible thanks to the high
resolution of the available CMB observations, which provide a big
amount of statistical realization (the pixels) for the method allowing
the decomposition of the data into the independent components.

6.3 A blind component separation method

The idea that stands behind this class of technics is that to recover the
components of a linear mixture even if the mixing matrix A in unknown.
The advantages that could be taken from this are striking: recovering blindly
the components it is possible to analyze data with limited or with not at all
knowledge about the emission laws of the components (furthermore, multi-
detector data can be analyzed all at once). This is why these technics go under
the name of blind source separation, or also independent component analysis
(ICA). The assumption that makes possible this way is that components are
statistically independent.

6.3.1 SMICA

Owning to the class of methods just presented, SMICA [41, 40, 28] stands
for Spectral Matching Independent Component Analysis. It is a living
software, in the sense that it is continuously updated and implemented
through the integration of new options and functions, with a consequent
increase of its performances.
This tools ensemble is mainly realized by the ADAMIS group at APC in
Paris.
I started to use SMICA during my first stage in Paris, as part of the program
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of the IDAPP doctorate, and I kept using it in Bologna to complete the
analysis on the IRIS maps, that will be explained in the next chapter.
SMICA is a component separation software that does not work in the pixel
space but rather in Fourier space (the spectral domain). In particular it is
based on spectral statistics.
To first order, the sky is modeled by a superposition of emission processes
(CMB, Galactic foregrounds, SZ, etc.), so an observation with a detector d is
given by

yd(θ,φ) =
Nc∑

j=1

Adjsj(θ,φ) + nd(θ,φ) , (6.16)

where sj is the emission template for the jth component, Nc is the number
of components, nd is the noise term and Adj contains the emission laws and
the detector properties.
In order to perform a multi-detector processing, a more useful formulation
consists in joining all the observations yd in one vector. A matrix-vector
formulation is write as

Y(θ,φ) = AS(θ,φ) +N(θ,φ) , (6.17)

where Y is the observations vector and S and N are built in the same way. The
Nd ×Nc matrix A is called the mixing matrix (Nd is the number of detectors).
In Fourier space the notation is equal, but θ and φ are substituted by the

frequency
−→
) . It is necessary to build a spectral density matrix 〈Y(

−→
) )Y(

−→
) )
†
〉

that represents the power spectrum of Y. Here 〈 〉 is the expectation operator
and † the transpose-conjugation. This spectral density matrix is averaged
over a certain number Q of bins on ):

RY(q) =
1
nq

∑

−→
) εDq

〈Y(
−→
) )Y(

−→
) )
†
〉 (6.18)

where q = 1, ...,Q are the bins, Dq is the set of frequencies contributing in the
bin q and nq is the number of these frequencies. Hence the linear model is
newly written as

RY(q) = ARS(q)A† + RN(q) (6.19)

with RS(q) and RN(q) are made in the same way of RY(q). SMICA is a blind
method, so the statistical independence is required on the emission vectors
and it takes the form

RS(q) = diag(C1(q), ...,CNc(q)) , (6.20)
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where
Cj(q) =

1
nq

∑

−→
) εDq

Cj(
−→
) ) (6.21)

is the binned power spectrum for the j-th component and Cj(
−→
) ) = 〈|sj(

−→
) )|2〉

is the spatial power spectrum of the same component. If the noise is
uncorrelated, its structure depends on Nd parameters

RN(q) = diag(σ2
1, ..., σ

2
Nd

) . (6.22)

In this way, the model depends on Q spectral density matrices RY(q), that
depend on A,Cj(q) and σ2

d. The estimation of these parameters is made by
finding the best match between the RY(q) matrices and a set of equal number
of empirical spectral density matrices R̂Y(q) defined by

R̂Y(q) =
1
nq

∑

−→
) εDq

Y(
−→
) )Y(

−→
) )
†
, (6.23)

the non parametric estimates of the corresponding RY(q). In particular, the
unknown parameters are found by minimizing the spectral mismatch defined
as

φ(β) =
∑

q

nqK(R̂Y(q),RY(q, β)) , (6.24)

where β = {A, {Cj(q)}, {σ2
d}} and K(R̂,R) is Kullback-Leibler divergence, a

measure of the difference between two positive matrices. It must be noticed
that minimizing this kind of mismatch is equivalent to maximizing the
likelihood of the data in a model where all components are Gaussian,
stationary and have constant harmonic spectra over the bins. Furthermore,
the flexibility in the choice of the parameters allows to aim to different goals
on the basis of their choice: SMICA can be adapted for different kinds of
data processing.
Anyway, in this method, in some cases, there is an issue: a factor of
degeneracy. When all the parameters in β are free to be determined, two
problems turn out: the mixing matrix cannot be recovered better than up to
a column permutation (basing the results only on the spectral mismatch),
so the components in the model cannot be ordered; for each component j, a
scalar factor can be exchanged between the j-th column of A and Cj(q) and
this factor cannot be determined only from the data.
After minimizing the mismatch and once the parameters are recovered, the
maps are reconstructed by the Wiener filter.
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The SMICA package is one of the component separation methods that
will be used during the reduction of the data that will be collected by
the PLANCK satellite. From a recent challenge on component separation
technics [83], it turned out that different methods result to be effective in
cleaning the CMB maps from contaminations, in reconstructing maps of
the diffuse Galactic emissions and in detecting point-sources and thermal
SZ effect signals. Therefore, the final component separation pipeline for
PLANCK will involve a combination of the methods tested.

In the next chapter, it will be presented the work done on the IRIS map-
set [98] about removing a contamination signal: Zodiacal Light Emission
(ZLE) residuals. In this re-processing I used a basic version of SMICA in
order to recover and identify the emission template and the spectral behavior
of these residuals.
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Chapter 7

Subtracting the residuals of ZLE in
far-infrared maps

7.1 Introduction

The work I did in the context of removing foregrounds consists in the
subtraction of the residuals of a foreground emission from a IR data-set.
The entire IRIS map-set [98] was re-processed, in order to remove the
foreground residuals related to the Zodiacal Light Emission (ZLE). Indeed,
what is visible in these maps is not a pure foreground signal, it is a residual
of a previous subtraction. The same Zodiacal Light model realized for the
DIRBE data-set was used for the original realization of the IRAS maps, the
map-set from which was derived the IRIS set. Indeed, both in DIRBE and
in IRIS all sky maps, when displayed in Galactic coordinate, is well visible a
stretched S shaped pattern having reference to the ZLE pattern.
After highlighting briefly the results of the IRAS mission and the realization
of the IRIS map-set, the whole process and the results I obtained aiming to
clean the entire IRIS map-set from the ZLE residuals it will be discussed in
details.

7.2 The IRAS satellite

The Infrared Astronomical Satellite IRAS [5], was a joint project of the
US, UK and the Netherlands. The mission had a major impact on almost
every area of astronomy. From January to November 1983, the satellite
completed the primary mission, performing a survey of 98% of the sky at
four wavelengths: 12, 25, 60, 100 µm.
When IRAS ceased operation, it had already collected data to deliver: a
catalog of infrared point sources, a catalog of extended sources smaller
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than 8′, a catalog of low-resolution spectra and an atlas of absolute surface
brightness images of the entire infrared sky. These catalogs give the
characteristics of some 250,000 point sources and 20,000 small extended
sources down to a limiting flux density, away from confused regions of the
sky, of about 0.5 Jy at 12, 25 and 60 µm and about 1.5 Jy at 100 µm for point
sources, and about a factor of three brighter than this for small extended
sources. The angular resolution of the instrument varied between about 0.5’
at 12 µm to about 2’ at 100 µm. The positional accuracy of sources detected
by IRAS depends on their size, brightness and spectral energy distribution
but is usually better than 20”.
Moreover, the IRAS satellite made a significant contribution to our
understanding of Galactic diffuse emission by revealing some strange
structures in the sky, that can be observed in any direction [88]: the map at
100 µm is dominated by filaments known as infrared cirrus which, although
concentrated near the Galactic plane, can be found almost all the way up to
the Galactic poles. The primary, deleterious effects of the cirrus are that it can
generate well-confirmed point and small extended sources that are actually
pieces of degree-sized structures rather than isolated, discrete objects and
this can corrupt the 100 µm channel, and occasionally the 60 µm one, in the
measurements of true point sources.
From the first release of extended emission maps (the SkyFlux atlas) realized
along with the IRAS point source catalog, it was clear that significant
improvements of the sensitivity and photometric accuracy could be obtained
based on acquired knowledge of the instrument. These became real through
the second generation processing, which increased the sensitivity by a factor
up to five, lead to the IRAS Sky Survey Atlas (ISSA) published in 1991 and
1992 [69].
Since its publication, the ISSA has been widely used to study various aspects
of Galactic and extragalactic diffuse emission and it became an essential data
set for any multi-wavelength analysis of the interstellar medium. However,
the ISSA plates still suffer from defects (striping, calibration, zero level,
Zodiacal light) that can significantly limit their use. The aim of the Improved
Reprocessing of IRAS Survey (IRIS) was to deliver a data set with a better
Zodiacal light subtraction, a calibration and a zero level compatible with
DIRBE, and a better destriping.
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7.3 The IRIS map-set

The IRIS [98] data set is composed by 4 full-sky maps at different
wavelength: 12, 25, 60 and 100 µm (see FIg. 7.1). The thermal dust emission
is particularly well visible in this frequency range and thanks to the ∼ 4
arcmin resolution of the IRAS satellite, this would be a optimal set of maps
to study variations and characteristics of dust properties on all scales.
The necessity of a re-processing of the whole map set arises from the fact
that the ISSA plates suffer from calibration, zero level and striping problems
and these not allow a safe use of the maps. Further, a non-physical related
pattern is well visible at almost all wavelength: this is a residual of the
initial contribution of the ZLE component. These remaining features include
fine structure in the Zodiacal cloud (the Zodiacal dust bands, for instance),
planets, unknown asteroids and orbital debris that escaped the artifact
removal process.
This ZLE residual is well visible at 25 µm, where it reaches the maximum of
its contribution and, also for this reason, this channel has a particular role in
our analysis. The cleanest channel of the set is the 100 µm channel: here the
ZLE residual is totally negligible.

Figure 7.1: Full IRIS map-set. The flux is limited to 10 MJy/sr in order to emphasize
the ZLE related structure. Top-left: 12 µm; top-right: 25 µm; bottom-left: 60 µm;
bottom-right: 100 µm.
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7.4 The data-set used

The whole IRIS map-set was involved in the analysis. In addition to
this, in order to tune the subtraction process, a preliminary analysis was
done using some of the DIRBE map-set [68],[73]. The reason is that this data
set contains four maps at the same frequency as the IRIS map set, but its
frequency coverage is wider: the DIRBE map-set spans from 1.25 to 240 µm
in ten frequency bands.
In the context of component separation methods, or in a more general way, in
the context of modeling and removing foregrounds, increasing the number
of frequency bands of observation would bring a better understanding of the
spectral behavior of an emission process and so a more precise identification
and separation. So, before performing the analysis at the IRIS frequency, some
tests were done including also the 3.5, 4.9, 120 and 240 µm (in addition to
the four common channels) maps of DIRBE. Moreover, the lower resolution
of the DIRBE maps allowed us to start to work with lighter maps without
the need to degrade the maps themselves.
Further cross-analysis were done between IRAS, IRIS and DIRBE maps
at each common frequency, in order to collect useful informations for the
analysis, like zero levels and differences due to de-striping between IRAS
and IRIS.
After this first phase and tests, I started the preliminary operations that the
IRIS map-set needed and, in this discussion, I will focus on this data-set,
neglecting further comments on the DIRBE maps, when possible.

7.4.1 Preliminary operation

Before doing any kind of analysis it is necessary to setup the maps
properly. First thing to notice is a small number of undefined pixels in
the IRIS maps and this makes any kind of calculation impossible to be
performed. We decided to fix the missing values of the undefined pixels by
giving to these pixels the average value of the neighbors pixels, in order to
avoid to supply them a flagging value and to have a kind of consistency for
the diffuse sources component separation process (point sources, like point
holes, are not well treated by SMICA as I used it).
After that operation, I looked for point sources (PS) subtraction. To have
a complete PS mask, I built a map in HEALPix format (with nside=1024),
using the complete IRAS PS catalog. All the pixels corresponding to sources
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were set to zero in the PS mask. After that, I smoothed this map with a
Gaussian beam of FWHM = 4 arcmin (that is about the lowest resolution
reached in the IRIS map-set) and included in the mask all the pixels under
a threshold level equal to 0.95 (the values in the mask map go from 0 to 1).
Only after that I masked all the PSs on the whole set with the mask described
above.
At this point there is the need to choose a strategy for the Galactic plane
treatment. This phase is very delicate and potentially it has a key-role in the
whole process. That is because of the strong dependence I encountered in
the SMICA processing in relation with the choice of the masked input maps
supplied.
In order to make an optimal choice, I tested several different masks on the
maps, in order to find a good Galactic cut and at the same time to satisfy a
series of requirements.

Figure 7.2: The kp2 mask used to cut Galactic plane structures.

First of all, the Galactic mask determines the fraction of uncut input
map. This aspect has a double face: on one side it controls the amount of
Galaxy that is going to take part in the process, on the other, delimitating
the Galactic plane shape, it puts some constraints also on the ZLE pattern,
because of the crossing of this component on the Galactic plane. Because
of the weight that the used mask has on the component separation process,
I decided to choose the right mask working on the 25 µm map: the most
ZLE-dirt channel of the set.
This choice (Fig. 7.2) permitted me to identify, with good precision, the big
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Figure 7.3: The 20 degrees zodiacal mask used to select the region with the ZLE
related residual oscillations.

oscillations of the ZLE residual pattern.
I noticed also two compact sources along the ZLE pattern. This confined
regions of the sky doesn’t carry any problem for what concern the
identification of the component in the SMICA processing, but they were
crucial during the reconstruction of the maps: SMICA works in the Fourier
space, so once the components are recovered the maps are reconstructed
through a filtering process and newly set in the original format. During this
phase, harmonic transforms generate spurious 2 oscillations around these
two compact sources, giving a non-physical and non-negligible contribution
to the rebuilt map of the component of interest.
At this point, the maps are full of holes, related to the cut Galactic regions
and to the subtraction of point sources. I filled these holes with a diffusive
filler: it diffuses the values of the border regions surrounding the holes.
After this process, the SMICA input maps look like the one in Fig. 7.4.

7.5 The analysis process

7.5.1 Phase I: SMICA

Several runs were performed with SMICA, with different composition of
maps, masks and boundary conditions. I also tried multi-detector analysis in
SMICA: we built a data-set including the IRIS map set and same maps of the
DIRBE map-set. The analysis with DIRBE map-set alone was very useful
to understand which was the best method to follow in order to separate
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Figure 7.4: The 25 µm channel of the IRIS mapset after removing Galactic plane
structures and point sources and after filling the holes with the diffusive filler. This
is a typical map used as input map for a SMICA run.

the ZLE contribution to the maps. The DIRBE map-set is wider than the
IRIS one, ranging from 1.25 to 240 µm, and this fact hides two potential
advantages: on one side, having a wider frequency range, it is possible to
make a more detailed reconstruction of the spectral emission of the Zodiacal
Light, while on the other, one can perform runs in SMICA setting a model
with more than 4 components (with the IRIS data-set you cannot go over 4
components, because you have only 4 different channels).
We found out that with 4 component SMICA reaches the best estimation of
the ZLE template and power, even if a very light signal of this component
is still present in another map of the SMICA outputs. Anyway we verified
that this further residual is totally negligible on the whole map-set. A 3
component model works quite well too, but in this case the results show a
well visible Galactic contamination in the map of the ZLE component, so we
discarded this option and focused on a 4 component model.
We tuned our analysis running several times SMICA with medium
resolution maps (nside=512 in HEALPix format) and we did the final
processing chain with higher resolution maps, nside=1024. The IRIS
realization of maps at higher resolution (nside=2048), shows some
inconsistency due to several undefined pixel, that were causing spurious
oscillations during more than one step of the processing chain.
So, once the components separation process ended, we picked up the SMICA
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output map of the ZLE component and prepared it for the subtraction. The
aim of this phase is to clean the component map in order to leave on the
map itself only what have to be really subtracted from the original map. In
other words, we act on the component map with masks: one for the Galactic
plane, because even if it was masked on the original maps some residual
of the diffusive filling is still visible on output, and the other mask for the
ZLE residual. This last mask is a sort of safety mask: it is shaped on the ZLE
pattern and its task is to force to zero the regions around the ecliptic poles,
in order to not subtract any power from the original maps in that regions
(see Fig. 7.3).
After this operations, we can easily subtract the unwanted component from
the original map set.

Figure 7.5: This is one of the SMICA output maps (the components separated).
Galactic structures are well visible, while the ZLE pattern is totally missing.

7.5.2 Phase II: Filtering

Even if we had good results by subtracting the ZLE residuals from
the IRIS map-set, after the SMICA analysis, in some maps, there is still
some contamination from the unwanted component. This persisting traces
are probably due to a non optimal estimation of the ZLE pattern and/or
power. The source of this discrepancy could lie in the difficulty by SMICA
in separating Galactic and ZLE contribution beyond a certain level and
could be also caused by a degeneracy between these two components near
the center of the Galactic plane, just when the ZLE cross the Milky Way disc
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Figure 7.6: The SMICA output map corresponding to the ZLE residual oscillations.
It is possible to see some residual contamination from unwanted contributions, in
particular along the edge of the masked regions.

in the line of sight of the Galactic center.

Figure 7.7: The 25 µm map in ecliptic coordinates, ready for the FFT filtering. In the
map, the contribution of the ZLE emission recovered from a fist run with SMICA
have just been subtracted. Flux is constrained to make well visible the residuals
along the ecliptic plane.

Because of that, we decided to build a filter able to clean in a more
efficient way the maps after the subtraction. The original idea is that
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to fit the ZLE residual oscillation with some function, in a narrow stripe
perpendicular to the ecliptic, and to minimize the distance of each pixel
from the fitting function (that is nothing but the actual averaged value of the
pixels) to the linear fit set up between the pixels values at the high and low
latitude border of the stripe. After spending some time trying to fit the ZLE
oscillation with polynomial functions, we decided to leave the pixel space
and to try fixing this in the Fourier space. So the idea remains the same, but
the fitting function is substituted by a filtered Fourier transform of the map in
the stripe considered. In details we do like this: we project the map from
Galactic to ecliptic coordinates and we scan the ecliptic plane cutting it into
limited stripes binning on 0.1 degree in longitude. Of course, the stripes are
centered on the ecliptic plane and they have a height ranging from 0.12 rad
and 0.17 rad, depending on the features of the ZLE residuals pattern (these
further residuals have a non constant position with respect to the ecliptic
plane, so it is necessary to work on delimited regions).
In order to work in the Fourier space, we use the FFT function in IDL
environment. In the harmonic space we do define a variable filter, that can
be used both for highpass filtering and for lowpass filtering:

F =
1

1 + (y/λ)µ
(7.1)

where λ and µ are parameters that set the frequency cutoff of the filter, while
y is the array, with constant values, on which the filter is built.

Figure 7.8: Left panel: plot of the array y used to build the filter in Eq. 7.1. Right
panel: plot of the filter F itself.

We tried first to use the filter for highpass filtering, setting the cutoff
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frequency just above the ZLE residual oscillations correspondence frequency.
Such a thing permits to keep features that correspond to small scale
structures, discarding all the large scale structures with frequency, in the
harmonic space, below the cutoff frequency (the ZLE oscillations). Of course,
this method rejects also the monopole power, so there is the need of defining
a compensation tool in order to rise back the monopole power of the map. The
simplest (and well working) thing capable of that is a linear fit from edge to
edge of the considered stripe.
After some tests, it turned out that highpass filtering was not so good for all
the maps: it works great for the highest frequency map, while it doesn’t fit
at all our needs on the 60 µm map. Given that, we decided to proceed in
a different way for this map: we set a lowpass filter, with the same cutoff
frequency of the highpass filter, but instead of rejecting the frequency over
the cutoff, we subtract the passing frequencies (low frequencies) from the
map, leaving the highest and then compensate for the subtraction of the
monopole power.
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Figure 7.9: A snapshot of how the FFT filter works on the map: the black points
represent the pixels values in the stripe of the input map considered, the red points
are the Fourier anti-transform (back in pixel space) after the application of the low-
pass filter (in Fourier space), while the blue line is the correction to apply in order
to recover the medium emission level of the considered region. See text for more
details.

7.6 Results obtained

The maps that we obtain after this chain of processes show a significant
quality improvement. The large scale structure of the ZLE was mainly
already subtracted during the realization of the IRAS and the IRIS map-sets,
using the DIRBE model of Zodiacal Light. In this analysis we assumed the
ZLE large scale structures as completely subtracted and we focused on its
medium scale spurious signals.
Medium scale features of ZLE residuals showed a power comparable to that
of discrete structures in our own Galaxy and this affects any kind of precise
analysis that can be performed on the IRIS maps. As it is visible in Fig. 7.10,
plotting the map power versus Galactic latitude, the residuals presented a
clear oscillating pattern. This is not constant at all and varies in amplitude
and shape along the ecliptic plane in a non predictable way. Indeed, an
ecliptic projection of the ZLE components (or the map itself, see e.g. Fig. 7.8)
shows that the residuals have variable ecliptic latitude. This complicated the
filtering phase, that could not be generalized for a all-sky analysis, because
the integration interval is set through ecliptic coordinates and a variation of
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Figure 7.10: A snapshot of how the FFT filter works on the map: the black points
represent the pixels values in the temporary stripe of the input map considered, the
red points represent the map after the filter correction. For clarity, for this plot, was
chosen a region in which the IRIS maps were completed through the DIRBE maps
at the same frequency. The minor resolution of the DIRBE maps, permits to have a
more clean view of the values distribution of the pixels.

this (e.g. if one extreme of the interval in the ZLE oscillation pattern and
not just out of it, as it has to be) leads to a biased non-optimal frequency cut
operated by the FFT filter.
We have not encountered relevant features of the ZLE at small scales.
After two different phase of analysis, the oscillations that were visible in the
original maps have been recognized and subtracted from the IRIS map-set,
with great precision, leaving untouched the rest of the map.
The cleaned map-set here showed would be part of the ancillary data for
many kind of astrophysical analysis. In our case, the IRIS map-set is an
optimal companion to associate to the future measurement that the HFI
instrument, aboard the Planck satellite, will provide. Indeed, the highest
frequencies of HFI are mainly devoted to the observation of the foregrounds
and its frequency coverage terminates (857 GHz) almost where the IRIS
frequency range starts (3 THz).
At these frequencies the main emission mechanism is thermal dust. The HFI
channels well provide a great measure on which one could base a spectral
analysis in order to recover a better spectral behavior of the dust emission,
with respect to what we have now. Following this way, the IRIS map-set
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could provide a great support to such analysis and could help to obtain a
more detailed spectral emission, since the dust emission is still strong and
well visible in the maps themselves.
The results obtained will be presented in [97]. Furthermore, in the same
work, a stronger subtraction of the ZLE residuals will be presented, in which
a further ZLE large scale structure subtraction is performed.

Figure 7.11: The 12 µm final map after the re-processing through SMICA and the
FFT filter.

Figure 7.12: The 25 µm final map after the re-processing through SMICA and the
FFT filter.
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Figure 7.13: The 60 µm final map after the re-processing through SMICA and the
FFT filter.

Figure 7.14: The 100 µm final map after the re-processing through SMICA and the
FFT filter.

7.6.1 A more detailed view on improvements

In order to better appreciate the improvements obtained, it is worth
zooming on some regions in the sky and to enhance the contrast scale. The
regions here showed were selected on the basis of the contamination level
before the ZLE residual subtraction. The channel at 25µm was chosen for
this comparison test, because of the high level of contamination by the ZLE
residuals. On the other hand, in Fig. 7.18, a patch of the 100µm map was
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displayed, in order to verify the negligibility of the contamination in this
channel.

Figure 7.15: Left panel: a patch in the 25 µm map, in which the ZLE residuals are
clearly visible. Right panel: the same patch of the final map at 25 µm, after the
re-processing through SMICA and the FFT filter.

Figure 7.16: Same of Fig. 7.15, but for a different patch in the sky. The low resolution
stripe comes from the DIRBE map at the same frequency. The DIRBE data represents
the 2% of the sky of the IRIS maps [98].
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Figure 7.17: Same kind of comparison as of Fig. 7.15, but a wider region in the sky is
here displayed. The big horizontal power oscillations are part of the ZLE residuals
(left panel map) that have been removed (right panel).

Figure 7.18: Same kind of comparison used for the previous figures, but at 100µm.
It is clear that the contamination was negligible in this channel.

7.6.2 A preliminary statistical analysis of the reprocessed maps

An alternative and more quantitative estimate of the obtained results
involves a statistical analysis of the maps. In particular, a multifrequency
angular power spectrum analysis of the maps is in progress and here some
of the preliminary results are presented.
In Chap. 2 we saw how many informations about CMB temperature
anisotropies it is possible to recover from the temperature power spectrum.
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The same principle it is here applied in order to compare the IRIS maps with
the reprocesses maps: differences in the power spectra will indicate at any
scale the excess of power due to the ZLE residuals. Further, comparing the
spectra, it is possible to verify if the detection of the ZLE residuals involved
only reasonable angular scales for what concerns the emission processes.
That means that if the detection is good, the high multipole region in the
power spectra of the cleaned maps must result the same of that of the original
maps. In other words, a good component subtraction leaves the small scale
structures unchanged.

Figure 7.19: Comparison between the angular power spectrum of the original IRIS
map at 25µm (black line) and the aps of the same map after the reprocessing. A
Galactic cut of |b| ≤ 30◦ is performed on both the maps.

From the differences of the spectra in Fig 7.19 appears clear the
improvement obtained. The power at large and medium scale is lower in the
reprocessed maps. At ) ∼ 30, the spectrum of the cleaned map is ∼ 50 mK2

weaker than the spectrum of the original map. It is also well visible the
multipoles interval in which the subtraction had effects. At ) ∼ 300 there
is a neat break of the quantity of power subtracted to the original maps:
under this angular scale, the contribution of the ZLE residuals was totally
negligible and the small structures were not involved in the process. In Fig
7.21 it is shown the absolute difference in K2 between the spectrum of the

164



original map and the spectrum of the cleaned map, at 25µm.
Anyway, further investigations are needed in order to verify with an high
level of confidence the results obtained.

Figure 7.20: Comparison between the angular power spectrum of the original IRIS
map at 25µm (black line) and the aps of the same map after the reprocessing. No
Galactic cut is applied.

Figure 7.21: Absolute difference between the spectra showed in Fig. 7.20. Precisely
the spectrum of the cleaned map is subtracted from the spectrum of the original
map.
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Chapter 8

Conclusions

The richness and the amount of informations that it is possible to recover
through the observations of the Cosmic Microwave Background (CMB)
are of tremendous impact on the modern cosmology. Through the new
generation satellite missions, we are reaching great precision in determining
the cosmological parameters of the standard model.
All the CMB observables are full of informations regarding different phases
of the evolution of the Universe and each of them gives us information on
different aspects of several primordial epochs. Even if not yet observed, the
CMB spectral distortions potentially provides informations from very early
to late stages of the Universe. A code, named KYPRIX, was developed
in order to compute the evolution of the photon distribution function
through the Kompaneets equation in cosmological context. In this thesis,
the updating work done on the code, some tests and some cosmological
applications are shown.
The update and the implementations on the code KYPRIX were completely
performed. The details on the update are presented in Section 3.3, while
the physical implementations in Section 3.4. The robustness of the code,
its stability and its precision are well proved by the tests done on critical
quantities, like the energy conservation test. Details on some important tests
are shown in Section 3.5. The code is capable to simulate and predict spectral
distortions that could be generated in the primordial Universe and/or during
its late stages of evolution, like chemical potential distortions in the first case
and distortions related to a reionization of the Universe in the latter case.
The results of the simulations presented in Section 3.6 clearly show
that KYPRIX can predict CMB spectral distortions with an accuracy that
dedicated experiments will not overtake in the next two/three decades.
Further, the code can take into account different cosmological scenarios:
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it is now implemented to take into account the cosmological constant
contribution, more options are provided for what concerns recombination
and reionization processes, allowing to get more constraining results ever
updated with the precious informations that high resolution CMB observer
like Planck can provide on these processes.
Unfortunately, foreground emissions affects the CMB signal on any
observables. In order to study the cosmological signals it is necessary
to subtract any unwanted emission from the observation. During
this phase, it is crucial to know as better as possible the spatial and
spectral characteristics of the foreground emission considered. Sensitive
multifrequency observations are the fundamental brick on which one builds
an accurate model for any astrophysical emission. It is hard to have a
complete frequency coverage at all the desired frequencies, so it is usual
to extrapolate the emission laws deduced by observations to frequencies in
which there are not observations.
The Planck Sky Model (PSM) is a collection of tools able to simulate or
predict several realization of the sky in the context of CMB experiments
and one of its main applications consists in testing component separation
technics on it. It is clear that the PSM must be continuously updated and
tested. In Section 5.6 the results of some tests performed on the PSM are
showed. In particular, the tests involved the last two realization of Galactic
emissions of the PSM. In order to verify and validate the models, each
of them was compared in temperature and polarization with the Galactic
foreground templates and maps recovered from the WMAP data through a
MEM component separation technic, at all the five WMAP frequencies. The
most crucial channel was the low frequency one, the W band (centered at
23 GHz). From the analysis of the temperature maps of the PSM Galactic
emission, it turned out that the only weakness of the new Galactic model
(with respect to the previous one) lies in the emission templates in the W
band. The test shows the need of some implementations of the Galactic
emission, especially for what concerns compact sources on the Galactic
plane. In the other channels, the new Galactic model improved the precision
of predictions and simulations. For what concerns polarization, the new
model presented big improvements with respect to the previous one at all
the frequencies tested.
The PSM it is necessary to be a performing tool, not only because it had to
simulate the sky we will see through the Planck satellite, but, as said, also
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because many softwares are being tested on it. Indeed, about component
separation technics, big leaps forward have been done and in these years
more than in any other time. In this context, SMICA is one of the component
separation tools that will be used to extract CMB data from the Planck satellite
observations. In Chap. 7 a practical example of foreground subtraction
process is showed. To be precise, the dataset used, the IRIS maps, was
affected by residuals of a foreground, not by the foreground itself. More in
details, the IRIS maps suffered from a non-optimal Zodiacal Light Emission
(ZLE) subtraction and the spurious signal well visible in the 12 and 25
µm maps represents the residuals of this subtraction. In Section 7.5 the
phases of the reprocess of the IRIS maps are described. These consist of two
separated stages: the first one is performed through SMICA, it permits the
identification of pattern and power of the ZLE residuals with great precision
at all the frequencies of the mapset; the second part of the process consists
in filtering delimited regions of the maps, in which the subtraction was not
optimal. For this task, a Fast Fourier Transform filter was purpose-made.
The results obtained are showed in the same chapter and big improvements
are visible just by eye, comparing the IRIS maps with the reprocessed set.
A further deeper analysis is in progress. Through a statistical analysis of the
reprocessed maps, it is possible to quantify the improvements obtained at
all the angular scale and to verify that the component separation process
involved only the component of interest, the Zodiacal Light Emission
residuals.
The reprocessed mapset is of crucial importance in the context of the Planck
experiment. In particular the High Frequency Instrument aboard the satellite
will observe Galactic contamination at frequency near to these of the IRIS
set, that in this case would be extremely useful during the modeling of the
high frequency Galactic foreground.

169



170



Bibliography

[1] http://arcade.gsfc.nasa.gov/cmb spectrum.html.

[2] http://background.uchicago.edu/∼whu/araa/araa.html.

[3] http://background.uchicago.edu/∼whu/physics/tour.html.

[4] http://lambda.gsfc.nasa.gov/.

[5] http://lambda.gsfc.nasa.gov/product/iras/.

[6] http://map.gsfc.nasa.gov/mission/observatory freq.html.

[7] http://www.astro.ucla.edu/∼wright/cosmo 01.htm.

[8] C. Baccigalupi et al. Power spectrum of the polarized diffuse galactic
radio emission. A.&A., 372:8, 2001.

[9] J. Bahcall and R. Wolf. Fine-structure transitions. Ap. J., 152:701, 1968.

[10] A.J. Banday, K.M. Gorski, C.L. Bennet, G. Hinshaw, A. Kogut, and G.F.
Smoot. Noncosmological signal contributions to the cobe dmr 4 year
sky maps. Ap. J. L., 468:85, 1996.

[11] A. Benoı̂t et al. The cosmic microwave background anisotropy power
spectrum measured by archeops. A.&A., 399:L19, 2003.

[12] A. Benoı̂t et al. First detection of polarization of the submillimetre
diffuse galactic dust emission by archeops. A.&A., 424:571, 2004.

[13] M. Bersanelli and N. Mandolesi. Design concept of the Planck-LFI
instrument. Ap. L. & C..37..171B, 2000.

[14] J. Bobin, J-L. Stark, and J. Fadili. IEEE transaction on image processing.
In press, 2007.

[15] F. Bouchet and R. Gispert. Foregrounds and cmb experiments i. semi-
analytical estimates of contamination. New Astronomy, 4:443, 1999.

171



[16] W.N. Brouw and T.A.Th. Spoelstra. Linear polarization of the galactic
background at frequencies between 408 and 1411 mhz. reductions.
A.&A.S.S., 26:129, 1976.

[17] C. Burigana, L. Danese, and G. DeZotti. Analytical description of
spectral distortions of the cosmic microwave background. A.&A.,
303:323, 1995.

[18] C. Burigana, L. Danese, and G. De Zotti. Formation and evolution of
early distortions of the microwave background spectrum - a numerical
study. A.&A., 246:49, 1991.

[19] C. Burigana et al. Constraints on the cosmic star formation history
from the far-infrared background. MNRAS, 287:L17, 1997.

[20] C. Burigana et al. Beam distortion effects on anisotropy measurements
of the cosmic microwave background. A.&A.S.S., 130:551, 1998.

[21] C. Burigana et al. PLANCK LFI: Comparison between galaxy
straylight contamination and other systematic effects. A.&A., 373:345,
2001.

[22] C. Burigana, L. La Porta, P. Reich, and W. Reich. A statistical analysis of
a galactic all sky survey at 1.4 ghz. Astronomische Nachrichten, 327:491,
2006.

[23] C. Burigana, A. De Rosa, L. Valenziano, G. Morgante, F. Villa,
R. Salvaterra, P. Procopio, and N. Mandolesi. Spectral distortions
of cmb. Observation of the Universe from the Moon - LNF INFN, 2007.

[24] C. Burigana, A. De Rosa, L. Valenziano, R. Salvaterra, P. Procopio,
G. Morgante, F. Villa, and N. Mandolesi. Future experiments from the
moon dedicated to the study of the cosmic microwave background.
9th ILEWG International Conference on Exploration and Utilisation of the
Moon, 2007.

[25] C. Burigana and R. Salvaterra. What can we learn on the thermal
history of the universe from future cosmic microwave background
spectrum measurements at long wavelengths? MNRAS, 342:543, 2003.

[26] C. Burigana, R. Salvaterra, and A. Zizzo. Cosmological implications
of future CMB spectrum experiments. AIP Conference Proceedings,
703:397, 2004.

172



[27] C. Burigana, L. Valenziano, A. De Rosa, R. Salvaterra, P. Procopio,
G. Morgante, F. Villa, and N. Mandolesi. Perspectives for future
experiments and studies on cosmic background radiation from the
moon. Italian Vision for Moon Exploration Observation of the Universe
from the Moon Studio Osservazione dell’Universo dalla Luna, 2007.

[28] J-F. Cardoso et al. Component separation with flexible models.
application to the separation of astrophysical emissions. astro-
ph/0803.1814, 2008.

[29] J.S. Chang and G. Cooper. J. Comput. Phys., 6, 1970.

[30] E.J. Copeland, M. Sami, and S. Tsujikawa. Dynamics of dark energy.
arxiv.org/abs/hep-th/0603057v3, 2006.

[31] B. Crill et al. Boomerang: A balloon-borne millimeter-wave telescope
and total power receiver for mapping anisotropy in the cosmic
microwave background. Ap. J.S., 148:527, 2003.

[32] F. Cuttaia et al. Analysis of the pseudocorrelation radiometers for
the low frequency instrument onboard the planck satellite. MSDA,
5498:765, 2004.

[33] L. Danese and C. Burigana. Theoretical aspects of the cmb spectrum.
1994LNP...429...28D, 1994.

[34] L. Danese and G. De Zotti. On distortions in the rayleigh-jeans region
of the cosmic background radiation spectrum. A & A, 84:364, 1980.

[35] L. Danese and G. De Zotti. The relic radiation spectrum and the
thermal history of the universe. Rivista del nuovo Cimento, (7):277,
1977.

[36] L. Danese and G. De Zotti. Double compton process and the spectrum
of the microwave background. A.&A., 107:39, 1982.

[37] P. de Bernardis et al. Detection of anisotropy in the cosmic microwave
background at horizon and sub-horizon scales with the boomerang
experiment. ARXIV:astro-ph/0011468, 2000.

[38] P. de Bernardis et al. Multiple peaks in the angular power spectrum
of the cosmic microwave background: Significance and consequences
for cosmology. Ap. J., 564:559, 2002.

173



[39] G. De Zotti. The spectrum of the microwave background as a probe
of the early universe. PrPNP, 17:117, 1986.

[40] J. Delabrouille and J.-F. Cardoso. Diffuse source separation in cmb
observations. ARXIV 2007astro.ph..2198D, 2007.

[41] J. Delabrouille, J-F. Cardoso, and G. Patanchon. Multi-detector multi-
component spectral matching and applications for cmb data analysis.
MNRAS, 346:1089, 2003.

[42] J. Delabrouille et al. A full sky, low foreground, high resolution cmb
map from wmap. submitted to A.&A., arXiv:0807.0773v1 [astro-ph],
2008.

[43] C. Dickinson et al. High-sensitivity measurements of the cosmic
microwave background power spectrum with the extended very small
array. MNRAS, 353:732, 2004.

[44] B.T. Draine and A. Lazarian. Diffuse galactic emission from spinning
dust grains. Ap. J. L., 494:L19, 1998.

[45] A.R. Duncan. Polarimetric investigations of the galactic plane at ghz
frequencies. ADS - 1999ASPC..168...66D, 1999.

[46] H.K. Eriksen et al. Cosmic microwave background component
separation by parameter estimation. Ap. J., 641:665, 2006.

[47] D.P. Finkbeiner. A full-sky Hα template for microwave foreground
prediction. Ap. J.S.S., 146:407, 2003.

[48] D.P. Finkbeiner, M. Davis, and D.J. Schlegel. Extrapolation of galactic
dust emission at 100 microns to cosmic microwave background
radiation frequencies using firas. Ap. J., 524:867, 1999.

[49] D.J. Fixsen and E. Dwek. The zodiacal emission spectrum as
determined by cobe and its implications. Ap. J., 578:1009, 2002.

[50] D.J. Fixsen et al. Calibration of the cobe firas instrument. Ap. J., 420:457,
1994.

[51] D.J. Fixsen et al. Ap. J., 47:576, 1996.

[52] D.J. Fixsen et al. The cosmic microwave background spectrum from
the full cobe firas data set. Ap. J., 473:576, 1996.

174



[53] D.J. Fixsen et al. The spectrum of the extragalactic far infrared
background from the cobe firas observations. Ap. J., 508:123, 1998.

[54] D.J. Fixsen et al. Arcade 2 measurement of the extra-galactic sky
temperature at 3-90 ghz. arXiv0901.0555F, 2009.

[55] D.J. Fixsen, A. Kogut, S. Levin, et al. The temperature of the cosmic
microwave background at 10 ghz. Ap. J., 612:86, 2004.

[56] D.J. Fixsen and J.C. Mather. The spectral results of the far-infrared
absolute spectrophotometer instrument on cobe. Ap. J., 581:817, 2002.

[57] J.E. Gallegos et al. Cosmosomas: a circular scanning instrument to
map the sky at centimetric wavelengths. MNRAS, 327:1178, 2001.

[58] B. Gold et al. Five-year wilkinson microwave anisotropy probe
observations: Galactic foreground emission. eprint arXiv:0803.0715,
2008.

[59] K.M. Gorski et al. HEALPix: A framework for high-resolution
discretization and fast analysis of data distributed on the sphere. Ap.
J., 622:759, 2005.

[60] R.J. Gould. The cross section for double compton scattering. Ap. J.,
285:275, 1984.

[61] H.P. Gush, M. Halpern, and E. Wishnow. Rocket measurement of the
cosmic-background-radiation mm-wave spectrum. PRL, 65:537, 1990.

[62] A. Guth. The inflationary universe : the quest for a new theory of
cosmic origins. Addison-Wesley, 1998.

[63] M.M. Hedman et al. A limit on the polarized anisotropy of the cosmic
microwave background at subdegree angular scales. Ap. J., 548:L111,
2001.

[64] S.R. Hildebrandt et al. Cosmosomas: a circular scanning instrument
to map the sky at centimetric wavelengths. arXiv:0706.1873v1, 2007.

[65] G. Hinshaw et al. Five-year wilkinson microwave anisotropy probe
(wmap) observations: Data processing, sky maps, and basic result.
Ap. J.S., Feb-2009 (accepted).

175



[66] M.P. Hobson, A. Jones, A. Lasenby, and F. Bouchet. Foreground
separation methods for satellite observations of the cosmic microwave
background. MNRAS, 300:1, 1998.

[67] A. Hyvarinen. IEEE Signal Processing Letters, 6:145, 1999.

[68] The infrared and submillimetre sky after COBE; Proceedings of the
NATO Advanced Study Institute. Preliminary results from the FIRAS
and DIRBE experiments on COBE, 1992.

[69] Ipac. IRAS Sky Survey Atlas (ISSA). Jet Propulsion Laboratory (IPAC),
1994.

[70] N. Kaiser and J. Silk. Cosmic microwave background anisotropy.
Nature, 324:529, 1986.

[71] W.J. Karzas and R. Latter. Electron radiative transitions in a coulomb
field. Ap. J.S., 6:167, 1961.

[72] B.G. Keating et al. A limit on the large angular scale polarization of
the cosmic microwave background. Ap. J. L., 560:L1, 2001.

[73] Thomas J. Kelsall et al. Investigation of the zodiacal light from 1 to 240
um using cobe dirbe data. Proc. SPIE, 2019:190, 1993.

[74] A. Kogut. Diffuse microwave emission survey. astro-ph/9607100, 1996.

[75] A. Kogut. Spatial correlation between hα emission and infrared cirrus.
Astron. J., 114:1127, 1997.

[76] A. Kogut. Wmap polarization results. New Astronomy Review, 47:977,
2003.

[77] A. Kogut et al. Wmap first year observations: Te polarization. Ap. J.S.,
148:161, 2003.

[78] E. Kolb and M. Turner. The early universe. Addison-Wesley, 1990.

[79] E. Komatsu et al. Five-Year Wilkinson Microwave Anisotropy
Probe (WMAP) Observations: Cosmological Interpretations.
arXiv:0803.0547v2 [astro-ph], 2008.

[80] A.S. Kompaneets. Zh.E.T.F., 31:816, 1956.

176



[81] J.M. Kovac et al. Detection of polarization in the cosmic microwave
background using DASI. Nature, 420:772, 2002.

[82] L. La Porta and C. Burigana. A multifrequency angular power
spectrum analysis of the leiden polarization surveys. A.&A., 457:1,
2006.

[83] S.M. Leach et al. Component separation methods for the planck
mission. A.&A., 2008.

[84] E.M. Leitch et al. DASI Three-Year Cosmic Microwave Background
Polarization Results. Ap. J., 624:10, 2005.

[85] A.P. Lightman. Double compton emission in radiation dominated
thermal plasmas. Ap. J., 244:392, 1981.

[86] A. Linde. Inflation and quantum cosmology. Academic Press, Boston,
1990.

[87] M. Longair. On the interpretation of radio source counts. MNRAS,
133:421, 1966.

[88] F.J. Low. Infrared cirrus and zodiacal dust bands. Bulletin of the
American Astronomical Society, 16:511, 1984.

[89] F. Lucchin. Introduzione alla cosmologia. Zanichelli, 1998.

[90] D. Maino et al. All-sky astrophysical component separation with fast
independent component analysis (FASTICA). MNRAS, 334:53, 2002.

[91] M. Maris, C. Burigana, and S. Fogliani. Zodiacal light emission in the
planck mission. A.&A., 452:685, 2006.

[92] J.C. Mather et al. Spectra and sky maps from the cobe far infrared
spectraphotometer (firas). Bulletin of the A.A.S., 22:1216, 1990.

[93] J.C. Mather et al. Measurement of the cosmic microwave background
spectrum by the cobe firas instrument. Ap. J., 420:439, 1994.

[94] J.C. Mather, D.J. Fixsen, et al. Calibrator Design for the COBE Far-
Infrared Absolute Spectrophotometer (FIRAS). Ap. J., 512:511, 1999.

[95] A. Mennella et al. Analysis of thermally-induced effects in planck low
frequency instrument. AIP Conference Proceedings, 616:229, 2002.

177



[96] A.R. Mitchell and D.F. Griffiths. The finite difference method in partial
differential equations. Wiley, Chichester, 1980.
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