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Introduction

Shortcomings of the Standard Model of particle physics have been es-

tablished in the literature both on the theoretical side (large number of free

parameters, fine tuning, lack of unification of interactions, . . . ) and on the ex-

perimental /observational side (neutrino oscillations, smallness of strong CP

violation in QCD, evidence of dark matter and dark energy, . . . ). Astrophys-

ical and cosmological observations provide the main compelling evidences for

new physics beyond the Standard Model. This fact led to the proposal of sev-

eral modifications and extensions of the Standard Model, which can already

be constrained by using current experiments and observations.

In this thesis we will focus mainly on light propagation in order to con-

strain particle physics models beyond the Standard Model.

The spectrum and the anisotropy pattern, in intensity and polarization,

of the Cosmic Microwave Background (CMB) is one of the main pillars of

modern cosmology. The black body spectrum and the anisotropy pattern

are so well observed and understood that little room is left for non-standard

interactions. We consider in detail how the coupling between photons and

pseudoscalars, in particular axions [1, 2] (particle introduced to solve the

strong CP-problem of QCD and which are also good candidates for dark

matter), can be constrained looking at linear and circular polarization of

CMB [3]. We modify the public Einstein-Boltzmann code CAMB [4] by

introducing a rotation of the linear polarization plane. We show how the

widely used approximation of describing the rotation of linear polarization

with a constant angle [5] (as used also by WMAP team [6]) may be a very

1



2 Introduction

crude approximation for most of the dynamical pseudoscalar field models. We

also estimate the effect of the photon coupling with ultralight pseudo Nambu-

Goldstone bosons as dark energy candidates [7]; effects on polarization seem

too small for current CMB missions (e.g. WMAP or PLANCK), but they

may be detected by the next generation of CMB experiments.

Many extensions involving non-renormalizable terms in effective field the-

ory predict modifications that grow with energy, therefore stronger con-

straints are obtained looking at photons of very high energies. In particular

theories trying to unify quantum mechanics with general relativity and many

supersymmetry models predict that Lorentz symmetry has to be modified at

energies of the order of the Planck scale (1028 eV). If standard dispersion rela-

tions of elementary particles are modified, then the propagation and therefore

also the energy spectrum of ultrahigh-energy cosmic rays (UHECRs) can be

considerably changed. It was already known that violation of Lorentz in-

variance could inhibit some reactions and change the energy thresholds for

others [8], but today it is already possible to establish real constraints using

the data from UHECR detectors, in particular upper limits on the flux of

photons obtained by the Pierre Auger Observatory [9]. We study in partic-

ular how it is possible to constrain Lorentz invariance violation in the QED

sector for photons [10] and electrons [11] improving current constraints by

several orders of magnitude.

This thesis is divided in two parts, the first one concerns photon coupling

with pseudoscalar particles and its effects on CMB polarization

• in the first chapter we present an introduction to CMB polarization;

• the second chapter is a general overview of particle physics models

involving pseudoscalar fields;

• in chapter 3 we discuss the constraints that CMB polarization imposes

on photon-pseudoscalar coupling.

In the second part of the thesis, developed thanks to the support of the Inter-

national Doctorate on Astroparticle Physics (IDAPP) program of the MiUR
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[12], we consider ultrahigh energy photons as a probe for possible Lorentz

invariance violation terms in the dispersion relation of photons, electrons and

positrons:

• chapter 4 is a short introduction to ultrahigh energy cosmic rays;

• in chapter 5 we present some Lorentz invariance violating terms and

summarize the current upper limits;

• in the last chapter we show how it is possible to constrain O(p/Mpl)

and O(p/Mpl)
2 modifications of the dispersion relation in the QED

sector by using the current upper limits on the flux of ultrahigh energy

photons.

In appendix we present a brief review concerning systematics of cosmic mi-

crowave background polarization [13].





Chapter 1

Cosmic microwave background

polarization

1.1 Introduction

Polarization of Cosmic Microwave Background (CMB) was predicted soon

after its discovery [14]: Thompson scattering of unpolarized photons on elec-

trons at last scattering surface generates linear polarization if the incident

intensities varies with direction (anisotropies). Thompson cross-section de-

pends on polarization [15]:

dσ

dΩ
∝
∣

∣

∣
ε̂ · ε̂′

∣

∣

∣

2

, (1.1)

where ε̂′ is the polarization direction of incident radiation, and ε̂ of outgoing

radiation. The incident light sets up oscillations of the target electron of

the electric field, so the scattered radiation intensity peaks in the direction

perpendicular to the incident polarization (see Fig. 1.1).

If incoming radiation field on the electron were isotropic, then radiation

would remain unpolarized. Conversely if the incident radiation field possesses

a quadrupolar variation in intensity the result is a linear polarization of the

scattered radiation [16].

Polarization measurements are quite challenging: since the level of po-

5



6 Cosmic microwave background polarization

Figure 1.1: Idealization of Thomson scattering process at last scattering.

Unpolarized incident radiation (ε̂′), represented here as superposition of two

opposite polarized waves, sets up oscillations of the target electron (e). In-

coming radiation polarized parallel to the outgoing direction cannot scatter

(dashed line), while the perpendicular components (continuous line) can.

Since the incoming radiation on the last scattering electron is not isotropic

the outgoing wave (ε̂) is linearly polarized.

larization is expected to be 1-10% of the amplitude of the temperature

anisotropies depending on the angular scale (see Fig. 1.2). The first detection

was announced in 2002 by the DASI (Degree Angular Scale Interferometer)

team [17], in 2006 WMAP (Wilkinson Microwave Anisotropy Probe) [18] re-

leased the first full sky maps. Actually there are several experiments confirm-

ing DASI detection (especially at small angular scales): AMiBA (Array for

Microwave Background Anisotropy), BOOMERanG (Balloon Observations

Of Millimetric Extragalactic Radiation and Geophysics), CAPMAP (Cosmic

Anisotropy Polarization MAPper), QuaD (Quest (Q and U Extra-Galactic

Sub-mm Telescope) at DASI), . . . , and next spring also the Planck satellite is
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Figure 1.2: Plots of angular power spectra for T T (black continuous line)

and E E (red dotted line); for BB we show a model with a tensor to scalar

ratio r = 0.1 (blue dot-dashed line) and the lensing signal (blue dashed

line). The cosmological parameters of the flat ΛCDM model used here are:

Ωb h
2 = 0.022, Ωc h

2 = 0.123, τ = 0.09, ns = 1, As = 2.3 × 10−9, H0 =

100h km s−1 Mpc−1 = 72 km s−1 Mpc−1.

planned to be launched. This increasing number of observations confirming

theoretical predictions reduces therefore the room for non-standard interac-

tions.

1.2 Stokes parameters

The complex electric field vector for a plane wave propagating along ẑ

direction at a point (x, y) in some transverse plane z = z0 is:

E = (Ex(t) , Ey(t))

=
[

êxεx(t)e
iϕx(t) + êyεy(t)e

iϕy(t)
]

e−ikt , (1.2)
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where the physical quantity is the real part of E. For a spatially flat

Friedmann-Robertson-Walker metric (ds2 = a2(η) [−dη2 + dx2]) the relation

between the electromagnetic tensor and the physical fields is:

Fµν = a(η)













0 −Ex −Ey −Ez
Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0













. (1.3)

In general we consider quasi-monochromatic waves: the amplitudes (εx(t)

and εy(t)) and the phases (ϕx(t) and ϕy(t)) are slowly varying functions of

time respect to the inverse frequency of the wave.

According to [19, 20] we introduce the covariance or equal time coherence

matrix:

J = a2

(

〈E∗
x(t)Ex(t)〉 〈E∗

x(t)Ey(t)〉
〈

E∗
y(t)Ex(t)

〉 〈

E∗
y(t)Ey(t)

〉

)

=
1

2

(

I +Q U − iV
U + iV I −Q

)

, (1.4)

where 〈· · · 〉 denotes the ensemble average, the average over all possible re-

alizations of a given quasi-monochromatic wave. Each element of the coher-

ence matrix is related to a particular combination of the Stokes parameters

I, Q, U andV :

I ≡ 1

a2

(

〈E∗
x(t)Ex(t)〉+

〈

E∗
y(t)Ey(t)

〉)

, (1.5)

Q ≡ 1

a2

(

〈E∗
x(t)Ex(t)〉 −

〈

E∗
y(t)Ey(t)

〉)

, (1.6)

U ≡ 1

a2

(

〈E∗
x(t)Ey(t)〉+

〈

E∗
y(t)Ex(t)

〉)

=
2

a2
〈εxεy cos (ϕx − ϕy)〉 , (1.7)

V ≡ − i

a2

(

〈E∗
x(t)Ey(t)〉 −

〈

E∗
y(t)Ex(t)

〉)

=
2

a2
〈εxεy sin (ϕx − ϕy)〉 . (1.8)
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For a pure monochromatic wave ensemble averages can be omitted and the

wave is completely polarized:

4 det J = I2 −Q2 − U2 − V 2 = 0 . (1.9)

The parameter I gives the total intensity of the radiation, Q and U describe

linear polarization and V circular polarization. Linear polarization can also

be characterized through a vector of modulus:

PL ≡
√

Q2 + U2 , (1.10)

and an angle θ, defined as:

θ ≡ 1

2
arctan

U

Q
. (1.11)

Sometimes it is also useful define the degrees of linear and circular polariza-

tion:

ΠL ≡
PL
I

and ΠC ≡
|V |
I
. (1.12)

Given the intensity of the polarized part P 2 = Q2 +U2 + V 2 = P 2
L + V 2 and

the total intensity I, the intensity of the non polarized part is:

INP ≡
√
I2 − P 2 , (1.13)

ΠNP ≡
√

1− Π2
L − Π2

V =
2
√

det J

trJ
. (1.14)

It is important to underline that I and V are physical observables, since they

are independent on the particular orientation of the reference frame in the

plane perpendicular to the direction of propagation n̂, while Q and U depend

on the orientation of this basis [21]. After a rotation of the reference frame

of an angle θ (R(θ)) they transform according to:

Q
R(θ)−→ Q cos(2θ) + U sin(2θ) ,

U
R(θ)−→ −Q sin(2θ) + U cos(2θ) .

(1.15)

Also linear polarization, like total intensity and circular polarization, can be

described through quantities independent on the orientation of the reference



10 Cosmic microwave background polarization

frame in the plane perpendicular to the direction of propagation of the wave.

In the context of CMB anisotropies, the linear polarization vector field is

usually described in terms of a gradient-like component (E mode) and of a

curl-like component (B mode).

If incoming radiation field on the electron were isotropic, then radiation

would remain unpolarized. Conversely if the incident radiation field possesses

a quadrupolar variation in intensity the result is a linear polarization of

the scattered radiation [16]. Expanding the incident intensity in spherical

harmonics:

I ′(n̂) =
∑

lm

aI′,lmYlm(n) , (1.16)

and integrating over all incoming intensities, we obtain the following expres-

sion for the outgoing Stokes parameters [21]:

I =
3σT
16π

(

8

3

√
πaI′,00 +

4

3

√

π

5
aI′,20

)

, (1.17)

Q =
3σT
4π

√

2π

15
ℜaI′,22 , (1.18)

U = −3σT
4π

√

2π

15
ℑaI′,22 , (1.19)

(1.20)

where σT is the total Thompson cross section.

In a similar way it is possible to describe the electric vector field in the

x−y plane through a superposition of left and right circular polarized waves

defining:

ê+ ≡
êx + iêy√

2
and ê− ≡

êx − iêy√
2

. (1.21)

In this new basis:

J = a2

(

〈

E∗
+(t)E+(t)

〉 〈

E∗
+(t)E−(t)

〉

〈

E∗
−(t)E+(t)

〉 〈

E∗
−(t)E−(t)

〉

)

=
1

2

(

I + V Q− iU
Q+ iU I − V

)

, (1.22)
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and

I ≡ 1

a2

(〈

E∗
+(t)E+(t)

〉

+
〈

E∗
−(t)E−(t)

〉)

, (1.23)

Q ≡ 1

a2

(〈

E∗
+(t)E−(t)

〉

+
〈

E∗
−(t)E+(t)

〉)

=
2

a2
〈ε+ε− cos (ϕ+ − ϕ−)〉 , (1.24)

U ≡ − i

a2

(〈

E∗
+(t)E−(t)

〉

−
〈

E∗
−(t)E+(t)

〉)

=
2

a2
〈ε+ε− sin (ϕ+ − ϕ−)〉 , (1.25)

V ≡ 1

a2

(〈

E∗
+(t)E+(t)

〉

−
〈

E∗
−(t)E−(t)

〉)

. (1.26)

The elements of the coherence matrix in the Fourier space are:

J̃ij = a2
〈

Ẽ∗
i (k, η) Ẽ∗

j (k, η)
〉

, (1.27)

where i, j = {+,−}. Stokes parameters and the degrees of polarization are

defined starting from the elements of J̃ as in real space.

The relation between the vector potential and the electric field for a wave

propagating in a charge-free region is:

E = −∂A
∂t

= −A′

a
, (1.28)

According to definition given in the previous section the Stokes Parameters

in terms of the vector potential are:

I =
1

a4

(〈

A′∗
+A

′
+

〉

+
〈

A′∗
−A

′
−

〉)

, (1.29)

Q =
1

a4

(〈

A′∗
+A

′
−

〉

+
〈

A′∗
−A

′
+

〉)

=
2

a4
ℜ
(〈

A′∗
+A

′
−

〉)

, (1.30)

U = − i

a4

(〈

A′∗
+A

′
−

〉

−
〈

A′∗
−A

′
+

〉)

=
2

a4
ℑ
(〈

A′∗
+A

′
−

〉)

, (1.31)

V =
1

a4

(〈

A′∗
+A

′
+

〉

−
〈

A′∗
−A

′
−

〉)

. (1.32)
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1.3 Rotational invariant description of Stokes

parameters

Considering the polarization of CMB I and V depend only on the par-

ticular region of the celestial sphere observed, while Q and U depend also

on the orientation of the reference frame in the plane perpendicular to the

observation direction n̂ = n̂ (θ, ϕ). So I and V can be directly expanded in

spherical harmonics:

I(n̂) =
∑

lm

aI,lmYlm(n̂) , (1.33)

V (n̂) =
∑

lm

aV,lmYlm(n̂) . (1.34)

In order to obtain a rotational invariant description of linear polarization

(independent from the orientation of the basis in the plane perpendicular to

n̂) it is useful to introduce two new quantity: E and B [22, 23].

A function sf(n̂) defined on the sphere is said to have spin s if under a

rotation of an angle θ of the reference frame changes according to:

sf(n̂)
R(θ)−→ e−isθsf(n̂) . (1.35)

Starting from a function sf(n̂) of spin s it is possible to obtain a function of

spin:

• s+ 1 using the spin raising operator ′∂ :

′∂ sf(n̂)
R(θ)−→ e−i(s+1)θ ′∂ sf(n̂) ,

• s− 1 using the spin lowering operator ′∂ :

′∂ sf(n̂)
R(θ)−→ e−i(s−1)θ ′∂ sf(n̂) .

When this operators act on tensor spherical harmonics the following relation

are useful:

′∂ ±sYlm =
√

(l − s) (l + s+ 1) ±(s+1)Ylm ,

′∂ ±sYlm =
√

(l + s) (l − s+ 1) ±(s−1)Ylm .
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From Eq. (1.15) we see that Q± iU is a spin-2 variable:

(Q± iU)(n̂)
R(θ)−→ e∓2iθ(Q± iU)(n̂) ,

so it can be expanded on spin-2 spherical harmonics:

(Q± iU)(n̂) =
∑

lm

a±2,lm ±2Ylm(n̂) .

Two spin-0 quantity are derived from (Q ± iU)(n̂) using spin raising and

lowering operators:

′∂ 2(Q+ iU)(n̂) =
∑

lm

a2,lm

√

(l + 2)!

(l − 2)!
Ylm(n̂) ,

′∂ 2(Q− iU)(n̂) =
∑

lm

a−2,lm

√

(l + 2)!

(l − 2)!
Ylm(n̂) .

Defining:

aE,lm ≡ −
√

(l + 2)!

(l − 2)!

a2,lm + a−2,lm

2
,

aB,lm ≡ −i
√

(l + 2)!

(l − 2)!

a2,lm − a−2,lm

2
,

we obtain:

E(n̂) =
∑

lm

aE,lmYlm(n)

= −1

2

[

′∂ 2 (Q+ iU) (n̂) + ′∂ 2 (Q− iU) (n̂)
]

, (1.36)

B(n̂) =
∑

lm

aB,lmYlm(n)

= − i
2

[

′∂ 2 (Q+ iU) (n̂)− ′∂ 2 (Q− iU) (n̂)
]

, (1.37)

where the explicit expressions for raising and lowering operators in this par-

ticular case are:

′∂ 2(Q+ iU)(n̂) =

(

− ∂

∂µ
+

m

1− µ2

)2
[

(1− µ2)(Q+ iU)(n̂)
]

, (1.38)

′∂ 2(Q− iU)(n̂) =

(

− ∂

∂µ
− m

1− µ2

)2
[

(1− µ2)(Q− iU)(n̂)
]

, (1.39)

with µ ≡ cos θ.
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1.4 Polarization properties under parity

Stokes parameters have definite behavior under parity transformation:

I
P−→ I ,

Q
P−→ Q ,

U
P−→ −U ,

V
P−→ −V .

Raising and lowering operators (1.38,1.39) change under parity transforma-

tions according to:

′∂ 2 (Q+ iU)
P−→ ′∂ 2 (Q− iU) ,

′∂ 2 (Q− iU)
P−→ ′∂ 2 (Q+ iU) ,

so, E and B, defined in equations (1.36,1.37), change according to:

E
P−→ E ,

B
P−→ −B .

The transformations properties of the coefficients aX,lm (X ∈ {I, E,B, V })
of the expansion of X in spherical harmonics can be easily obtained using

the parity properties of spherical harmonics Ylm(n)
P−→ (−1)l Ylm(n):

aI,lm
P−→ (−1)l aI,lm ,

aE,lm
P−→ (−1)l aE,lm ,

aB,lm
P−→ (−1)l+1 aB,lm ,

aV,lm
P−→ (−1)l+1 aV,lm .

Defined the power spectrum as:

CXY
l ≡ 1

2l + 1

∑

m

〈(aX,lm)∗ aY,lm〉 , (1.40)
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where X,Y ∈ {I, E,B, V }, from the previous relations we obtain the follow-

ing properties for power spectra under parity transformations:

CII
l

P−→ CII
l

CIE
l

P−→ CIE
l CEE

l
P−→ CEE

l

CIB
l

P−→ −CIB
l CEB

l
P−→ −CEB

l CBB
l

P−→ CBB
l

CIV
l

P−→ −CIV
l CEV

l
P−→ −CEV

l CBV
l

P−→ CBV
l CV V

l
P−→ CV V

l

In absence of parity-violating interactions, the ensemble of fluctuations is

statistically parity symmetric and therefore the parity odd correlators (CIB
l ,

CIB
l , CIV

l and CEV
l ) have to vanish.

A considerable effort had been devoted to the study of parity violating in-

teractions of the photons of CMBR through the observational constraints on

CIB
l and CEB

l [5]. Actually also the correlators CIV
l and CEV

l contains infor-

mation about parity violating interactions; they can be used to discriminate

between different parity violating interactions. Faraday Conversion (FC),

for instance, converts linear into circular polarization [24] and so generates

CEV
l 6= 0, while Faraday Rotation, which simply rotates the plane of linear

polarization, does not.

1.5 Boltzmann equation

In the synchronous gauge metric perturbations are described by [25]:

ds2 = a(η)
[

−dη2 + (δi,j + hij) dx
idxj

]

, (1.41)

g00 and g0i are by definition unperturbed. Metric perturbations can be de-

composed in a trace part h ≡ hii and a traceless part (consisting of three

pieces). hij = hδij/3 + h
‖
ij + h⊥ij + hTij:

ǫijk∂j∂lh
‖
lk = 0 , ∂i∂jh

⊥
ij = 0 , ∂ih

T
ij = 0 . (1.42)

Perturbations are expanded in Fourier modes characterized by the wavevector

k. Introduced the two fields h(k, η) and η̃(k, η) the scalar mode of hij can
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be written as Fourier integrals:

hij(k, η) =

∫

d3k eik·x
[

k̂ik̂jh(k, η) +
(

k̂ik̂j − δij/3
)

6η̃(k, η)
]

. (1.43)

Note the difference between η̃ describing the Fourier transform of metric

perturbations and the cosmic time η.

The Boltzmann equations for the evolution of the temperature and po-

larization scalar perturbations, in the synchronous gauge, are [26, 22]:

∆′
T + ikµ∆T = −h

′

6
− (h′ + 6η̃′)

3
P2(µ)

+κ′
[

−∆T + ∆T 0 + ivbµ−
1

2
P2(µ)Π

]

, (1.44)

∆′
Q±iU(k, η) + ikµ∆Q±iU(k, η) =

κ′
[

−∆Q±iU +
1

2
(1− P2(µ)) Π

]

, (1.45)

Π = ∆T,2 + ∆Q±iU,0 + ∆Q±iU,2 . (1.46)

where µ is the cosine of the angle between the CMB photon direction and

the Fourier wave vector, κ′ is the differential optical depth (κ′ ≡ neσTa/a0,

ne is the number density of free electrons, σT is the Thomson cross section)

P2(µ) is the Legendre polynomial of l−th order (P2(µ) = (3µ2 − 1)/3), and

the multipole moments of temperature and polarization are:

∆T (k, µ) =
∑

l

(−i)l (2l + 1) ∆T,lPl(µ) , (1.47)

∆Q±iU(k, µ) =
∑

l

(−i)l (2l + 1) ∆Q±iU,lPl(µ) . (1.48)

If the orientation of linear polarization changes of an angle θ the Stokes

parameters changes according Eq. (1.15). Assuming that the rotation angle

varies with conformal time (θ = θ(η)), the derivative of Q and U respect to

time is:

Q′(η) = 2θ′ [−Q sin(2θ) + U cos(2θ)] = 2θ′U , (1.49)

U ′(η) = −2θ′ [Q cos(2θ) + U sin(2θ)] = −2θ′Q . (1.50)
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So, for the evolution of linear polarization perturbation:

∆′
Q ∝ 2θ′∆U , (1.51)

∆′
U ∝ −2θ′∆Q . (1.52)

therefore:

∆′
Q±iU ∝ ∓i2θ′∆Q±iU . (1.53)

The effect of a physical mechanism rotating the linear polarization plane

was included for the first time in Boltzmann equations in order to study

Faraday rotation of CMB radiation [27, 28, 29, 30] . The Boltzmann equation

for spin-2 functions Q± iU is:

∆′
Q±iU(k, η) + ikµ∆Q±iU(k, η) =

κ′
[

−∆Q±iU +
1

2
(1− P2(µ)) Π

]

∓i2θ′(η)∆Q±iU(k, η) . (1.54)

Note that Eq. (1.54) corrects some typos in Eq. (1) of Ref. [31].

As we already discussed in section 1.3 that the quantity ∆Q±iU is related

to the rotation invariant polarization fields ∆E and ∆B through the spin

raising ( ′∂ ) and lowering ( ′∂ ) operators [32]:

∆E ≡ −1

2

(

′∂ 2∆Q+iU + ′∂ 2∆Q−iU

)

, (1.55)

∆B ≡ − i
2

(

′∂ 2∆Q+iU − ′∂ 2∆Q−iU

)

. (1.56)

If linear polarization is isotropically rotated of an angle θ = θ(η), then:

∆E2
= −1

2

[

′∂ 2
(

e−2iθ∆Q1+iU1

)

+ ′∂ 2
(

e2iθ∆Q1−iU1

)

]

= −1

2
cos(2θ)

(

′∂ 2∆Q1+iU1
+ ′∂ 2∆Q1−iU1

)

+
i

2
sin(2θ)

(

′∂ 2∆Q1+iU1
− ′∂ 2∆Q1−iU1

)

= ∆E1
cos(2θ)−∆B1

sin(2θ) , (1.57)
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and:

∆B2
= − i

2

[

′∂ 2
(

e−2iθ∆Q1+iU1

)

− ′∂ 2
(

e2iθ∆Q1−iU1

)

]

= − i
2

cos(2θ)
(

′∂ 2∆Q1+iU1
− ′∂ 2∆Q1−iU1

)

−1

2
sin(2θ)

(

′∂ 2∆Q1+iU1
+ ′∂ 2∆Q1−iU1

)

= ∆B1
cos(2θ) + ∆E1

sin(2θ) . (1.58)

Note that this is true only for isotropic angles of rotations, otherwise:

′∂ 2
(

e−2iθ∆Q1+iU1

)

6= e−2iθ ′∂ 2∆Q1+iU1
,

(e.g. this is not true for Faraday rotation (see section 1.6)). Therefore,

combining the two results:

∆E2
+ i∆B2

= ∆E1
[cos(2θ) + i sin(2θ)] + ∆B1

[− sin(2θ) + i cos(2θ)] .(1.59)

If ∆B1
= 0:

∆E2
+ i∆B2

= ∆E1
ei2θ , (1.60)

where:

θ(η) =

∫ η

0

dη∗θ
′(η∗) . (1.61)

Following the line of sight strategy for scalar perturbations we obtain, in

agreement with Ref. [31]:

∆T (k, η) =

∫ η0

0

dη g(η)ST (k, η)jℓ(kη0 − kη) , (1.62)

∆E(k, η) =

∫ η0

0

dη g(η)S
(0)
P (k, η)

jℓ(kη0 − kη)
(kη0 − kη)2 cos [2θ(η)] , (1.63)

∆B(k, η) =

∫ η0

0

dη g(η)S
(0)
P (k, η)

jℓ(kη0 − kη)
(kη0 − kη)2 sin [2θ(η)] . (1.64)

where g(η) is the visibility function, ST (k, η) is the source term for tem-

perature anisotropies, S
(0)
P (k, η) is the source term for polarization, and jℓ

is the spherical Bessel function of order ℓ. The polarization Cℓ auto- and
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cross-spectra are given by:

CEE
ℓ = (4π)2 9 (ℓ+ 2)!

16 (ℓ− 2)!

∫

k2dk [∆E(k, η0)]
2 , (1.65)

CBB
ℓ = (4π)2 9 (ℓ+ 2)!

16 (ℓ− 2)!

∫

k2dk [∆B(k, η0)]
2 , (1.66)

CEB
ℓ = (4π)2 9 (ℓ+ 2)!

16 (ℓ− 2)!

∫

k2dk∆E(k, η0)∆B(k, η0) , (1.67)

CTE
ℓ = (4π)2

√

9 (ℓ+ 2)!

16 (ℓ− 2)!

∫

k2dk∆T (k, η0)∆E(k, η0) , (1.68)

CTB
ℓ = (4π)2

√

9 (ℓ+ 2)!

16 (ℓ− 2)!

∫

k2dk∆T (k, η0)∆B(k, η0) . (1.69)

In the approximation in which θ = θ̄, with θ̄ constant in time, Eqs. (1.63)

and (1.64) simplify in

∆obs
E = ∆E(θ = 0) cos(2θ̄) , (1.70)

∆obs
B = ∆E(θ = 0) sin(2θ̄) , (1.71)

and the power spectra are given by [5, 33]:

CEE,obs
ℓ = CEE

ℓ cos2(2θ̄) , (1.72)

CBB,obs
ℓ = CEE

ℓ sin2(2θ̄) , (1.73)

CEB,obs
ℓ =

1

2
CEE
ℓ sin(4θ̄) , (1.74)

CTE,obs
ℓ = CTE

ℓ cos(2θ̄) , (1.75)

CTB,obs
ℓ = CTE

ℓ sin(2θ̄) . (1.76)

The expression for θ̄ to insert in Eqs. (1.71-1.76) is:

θ̄ =
gφ
2

[φ(η0)− φ(ηrec)] . (1.77)

Several limits on the constant rotation angle θ̄ have been already obtained

using current observation of CMBP (see Tab. 1.1).

This time independent rotation angle approximation is an operative ap-

proximation, clearly inconsistent since for θ = const the term proportional
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Data set θ̄ (2σ) [deg]

WMAP3 and Boomerang (B03) [33] −13.7 < θ̄ < 1.9

WMAP3 [34] −8.5 < θ̄ < 3.5

WMAP5 [6] −5.9 < θ̄ < 2.4

QUaD [35] −1.2 < θ̄ < 3.9

Table 1.1: Constraints on linear polarization rotation θ̄ in the constant angle

approximation.

to θ′ in the Boltzmann equation (1.54) vanishes and therefore there is no

rotation of the linear polarization plane. See section 3.6 for a comparison

of this approximation with a full Boltzmann description of the birefringence

effect for a dynamical pseudoscalar field.

If θ = θ̄ the degree of linear polarization is conserved from recombination

to nowadays. Conversely in the general case of a time dependent rotation

angle θ = θ(η) liner polarization is no more conserved and other phenomena

like depolarization, generation of circular polarization, . . . can be allowed.

1.6 Faraday rotation and conversion

A possible mechanism responsible for linear polarization plane rotation

is photon propagation through a plasma in presence of a magnetic field B

(generalized Faraday rotation). Properties of the wave will depend on the

direction of propagation relative to the direction of the magnetic field [36].

First we consider an electromagnetic wave propagating along the magnetic

field direction (see Fig.1.3a), in this case normal modes are circular polar-

ized waves. A linearly polarized wave can be composed of two orthogonal

circularly polarized modes shifted in phase. The circular modes will resonate

with either electrons or positrons gyrating around the magnetic fields. The

latter will again emit circular polarized wave, producing a phase shift in the

circular modes. Recombining the circular polarized modes after leaving the
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Figure 1.3: Faraday rotation (magnetic field component along the line of

sight) and Faraday conversion (magnetic field component perpendicular to

the line of sight).

plasma results in a rotated linear polarization of an angle (Faraday rotation):

∆θFR =
e3λ2

2πm2
ec

4

∫

dl ne(l)Bµ

≃ 8× 10−2 rad (1 + z)−2

(

λ0

1 cm

)2

∫

dl

1 kpc

( ne

0.1 cm−3

)

(

B

10µG

)

µ , (1.78)

where µ is the cosine of the angle between the line of sight direction and the

magnetic field B, ne is the number density of electrons, λ = λ0(1 + z)−1 is

the wavelength of radiation with wavelength today given by λ0.

Perpendicular to the magnetic field normal modes are linearly polarized

(see Fig.1.3b). The resonating electrons or positrons will themselves act as

antennas and emit a somewhat delayed wave, leading to a resulting phase-

shift between vertical and horizontal modes. This lead to a cyclic transfor-

mation of linear polarization U into V (Faraday conversion):

∆θFC =
e4λ3

π2m3
ec

5

(

β − 1

β − 2

)∫

dl nr(l)γminB
2(1− µ2)

≃ 3× 10−7 rad (1 + z)−3

(

λ0

1 cm

)3(
β − 1

β − 2

)

β=2.5
∫

dl

1 kpc

( nr

0.1 cm−3

)(γmin

300

)

(

B

10µG

)2

(1− µ2) , (1.79)

where nr is the number density of relativistic particles and β defines the

power-law distribution of the particles, in terms of the Lorentz factor γ, such
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that:

N(γ) = N0γ
−β for γmin < γ < γmax . (1.80)

Normal modes in a plasma are generally elliptically polarized, however

conversion is mainly produced by magnetic fields components perpendicular

to the line of sight, while Faraday rotation is produced by magnetic field

components along the line of sight [37].

The effect of Faraday conversion on CMBP and the possible generation

of a certain degree of circular polarization were discussed in Ref. [24]. Usu-

ally CMBP experiments are not sensitive to circular polarization, because it

cannot be generated through Thomson scattering (see section 1.2). However

first upper limits on circular polarization were already presented in 1983 by

P. Lubin, P. Melese and G. Smoot [38], see also Ref. [39] for an update on pos-

sible systematics. Today, as far as we know, measurement of the four Stokes

parameters, T , Q, U , and V can be performed only by few interferometric

experiments (e.g. AMiBA [40]).



Chapter 2

Pseudoscalar fields - an

introduction

2.1 Introduction

We briefly present here the main theoretical motivations, experimen-

tal/observational constraints, and cosmological implications for axions and

others ultralight pseudoscalar particles beyond the standard model. The exis-

tence of low mass particles is related to symmetries by the Nambu-Goldstone

theorem:

whenever a global continuous symmetry of the action is not respected by the

ground state, there appear massless particles, one for each broken generator

of the symmetry group.

Here we are interested mainly in theories where continuous symmetries are

just approximate, the potential is divided in a symmetric part V0(φ) and a

breaking term V1(φ). If the breaking term is small the new particle can have

small mass (pseudo Nambu-Goldstone bosons).

23
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2.2 Axions

This section is mainly based on Refs. [1, 2, 41], more details can be found

in Refs. [42, 43, 44, 45, 46, 47, 48, 49] and references therein. See Ref. [50]

for an original pedagogical review.

2.2.1 Theoretical motivations

Non-Abelian gauge theories have a rich vacuum state structure; degener-

ate vacuum configurations are classified by the topological winding number

n associated with them:

n =
ig3

24π2

∫

dx3 Tr ǫijkA
i(x)Aj(x)Ak(x) , (2.1)

where g is the gauge coupling, Ai is the gauge field (temporal gauge A0 = 0).

The correct vacuum state of the theory is a superposition of different states:

|Θ〉 =
∑

n

exp (−inΘ) |n〉 , (2.2)

Θ is an arbitrary parameter of the theory which must be measured; we refer

to |Θ〉 as the Θ-vacuum.

The effects of the Θ-vacuum can be recast into a single additional non-

perturbative term in the QCD Lagrangian:

LQCD = LPERT + Θ̄
g2

32π2
GaµνG̃a

µν , (2.3)

θ̄ ≡ Θ + Arg detM , (2.4)

where Gaµν is the gluon field strength tensor, G̃a
µν is its dual, M is the

quark mass matrix (detM would vanish if one of the quark were exactly

massless). Under the combined action of charge conjugation (C) and parity

transformation (P) the new term changes sign violating the CP invariance of

QCD (GaµνG̃a
µν ∝ Ecolor ·Bcolor the scalar product of a polar with an axial

vector is CP-odd). This new term leads to a neutron dipole moment of the

order:

|dn| ≃
∣

∣Θ̄
∣

∣ 10−16 e cm . (2.5)
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The present experimental bound to the electric dipole moment of the neutron

[51]

|dn| < 2.9× 10−26 e cm (2.6)

indicates Θ̄ < 10−10. The sum of two very different quantities Θ and

Arg detM must be surprisingly small; this value is small even compared

with the phase δ = 3.3 × 10−3 which appears in the Cabibbo-Kobayashi-

Maskawa matrix and which explains the observed effects in the K0 − K̄0

system. This is called the strong CP-problem of QCD.

In 1977 R. Peccei and H. Quinn [52] suggested a solution to this problem

introducing a new global chiral symmetry U(1)PQ which is broken at scale

fa by the vacuum expectation value of a complex scalar field

Φ = fae
i φ

fa , (2.7)

Θ̄ becomes a dynamical variable which is driven to zero by the action of its

classical potential.

The following year Weinberg [53] and Wilczek [54] pointed out, almost

simultaneously, that because U(1)PQ is a spontaneously broken global sym-

metry, there must be a Nambu-Goldstone boson (the axion) associated with

it.

Θ̄ is now replaced by φ/fa, including a kinetic term for the axion Eq. (2.3)

now becomes:

LQCD = LPERT +
1

2
∇µφ∇µφ+

g2

32π2

φ

fa
GaµνG̃a

µν . (2.8)

This lagrangian is the minimal ingredient for any axion model.

Even if axions were constructed to be massless they acquire an effective

mass by their interaction with gluons. This coupling induces a transition to

q q̄ states and thus to neutral pions, so axions mix with pions an pick up a

small mass:

m ≃ fπmπ

fa

z1/2

1 + z
∼ 0.6 eV

1016 eV

fa
, (2.9)

where fπ ≃ 92 MeV is the pion decay constant, mπ = 135 MeV is the pion

mass, and z ≡ mu/md ≃ 0.56 is the up/down quark mass ratio. Because
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of the mixing with π0, axions share not only their mass, but also their cou-

plings to photons and nucleons with a strength reduced by about fπ/fa. The

effective lagrangian for the interaction of the axion with ordinary matter

(nucleons, electrons and photons) is:

LINT = i
gφN
2mN

∂µφ
(

N̄γµγ5N
)

+ i
gφe
2me

∂µφ (ēγµγ5e)−
gφγ
4
φFµνF̃

µν , (2.10)

with:

gφN = CN
mN

fa
, gφe = Ce

me

fa
, gφγ = ξ

3

4

αEM

2πfa
, (2.11)

where CN , Ce, ξ are model dependent constants. Note that all coupling

constants are proportional to 1/fa, or equivalently, to m: the smaller the

axion mass, or the larger the PQ breaking scale, the more weakly the axion

couples (see Fig. 2.1).
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Figure 2.1: Predicted gφγ for KSVZ and DFSZ invisible axion models.
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In the first axion models (standard model axions), proposed at the end

of the seventies, the breaking scale was of the same order of the weak scale

(fa ∼ fweak ≃ 250 GeV), now this models are ruled out both by experiments

and observations. Taking fa ≫ fweak the axion mass becomes very small and

its interactions very weak (invisible axion models): two widely discussed mod-

els of this kind are the hadronic or KSVZ model (Kim; Shifman, Vainshtein,

and Zakharov) [55, 56] and the DFSZ model (Dine, Fischler, Srednicki; Zhit-

nitskii) [57, 58]. The main difference between these two models is that in

DFSZ axions couple to charged leptons in addition to nucleons and photons.

In these models fa ≫ fweak, so one may attempt to identify fa with the grand

unification scale fGUT ≃ 1016 GeV, however the cosmological bounds disfavor

this under particular assumptions for Θ̄ initial value (see section 2.2.3).

2.2.2 Experimental and astrophysical constraints

Coupling with photons plays a key role for most of the axion searches.

The most promising approaches uses the axion-two-photon vertex indeed,

allowing axions and photons to convert into each others in the presence of

an external magnetic or electric field (see Fig. 2.2).

Figure 2.2: Most of the axion searches make use of the Primakoff effect, by

which axions convert into photons in presence of an external electromagnetic

field. (Left) Dichroism in polarization experiments; (right) birefringence in

polarization experiments, light shining through walls experiments.

Currently the best laboratory limit comes from photon regeneration

experiments, in particular from experiments based on astrophysical sources
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of axions. Axion produced by the Sun core by the Primakoff effect are con-

verted back into photons in a strong magnetic field. Eventually these pho-

tons, which have the same energy spectrum as the incoming axions, could be

collected by a X-ray detector placed at the end of the magnetic field area.

The CAST (Cern Axion Solar Telescope) experiment obtained the constraint

[59]:

gφγ < 8.8××10−20 eV−1 for m < 0.02 eV , (2.12)

using a decommissioned LHC dipole magnet (B ∼ 9.0 T and L ∼ 9.26 m).

It is possible to constrain gφγ only in a specific mass range because axion

and photon fields must remain in phase over the length of the magnetic field;

coherence can be restored for higher axion masses by filling the magnetic

cavity with a buffer gas, such that the photons inside the magnet pipe acquire

an effective mass.

Another different approach to detect solar axions uses the intense Coulomb

field of nuclei in a crystal lattice, instead of an external magnetic field, to con-

vert axions into photons by the Primakoff effect (Bragg diffraction) [60, 61].

It was shown in Ref. [62] that the annual modulation observed by the DAMA

experiments can be interpreted in terms of a KeV-mass axion like particles

with gφe ∼ 2 × 10−11. However couplings of these orders between pseu-

doscalar particles and electrons are excluded by globular cluster limits on

stellar energy losses and by limits on solar neutrino flux (SNO) [63].

Galactic halo cold dark matter axions can be detected by their resonant

conversion into a quasi-monochromatic microwave signal in an electromag-

netic cavity permeated by a strong static magnetic field (microwave cavity

experiments). Due to the very low mass of dark matter axions the expected

signal is minuscule and therefore the sensitivity of the experiment crucially

depend on the quality of the microwave receiver. Today experiments such

as ADMX (Axion Dark Matter Experiment) are taking data and providing

very good upper limits for gφγ in the mass range between 10−4 eV and 10−6

eV [64].

An alternative to regenerating the lost photons is to detect directly the
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photon-axion conversion looking at changes in photon polarization propa-

gation through magnetic fields [65] (photon polarization experiments).

The two effects which modify polarization are:

• Dichroism. The component of the electric field parallel to the magnetic

field (E‖), but not the perpendicular component (E⊥), will be depleted

by the production of axions and thus there will be in general a small

rotation of the polarization vector of linearly polarized light (see left

side of Fig. 2.2).

• Birefringence. This rotation occurs because there is a mixing of virtual

axions in the E‖ state, but not in the E⊥ component (see right side of

Fig. 2.2). Hence initially linearly polarized light will become elliptically

polarized.

Note that a non-vanishing signal for dichroism is expected anyhow in

standard QED, arising from photon-photon scattering induced by an electron

loop. Using the well-known Euler-Heisenberg effective lagrangian [66, 67], the

linear polarization angle rotates of [65]

θQED =
α2

EM

30π

LωB2

m4
e

, (2.13)

if light propagates in a region of length L with magnetic field B.

In 2006 PVLAS collaboration reported a signature of magnetically in-

duced vacuum dichroism, which could have been interpreted as evidence for

light pseudoscalar field with mass m ∼ 10−3 eV and photon coupling of order

gφγ ∼ 10−15 eV−1 [68]. This result was in disagreement with more restrictive

limits on gφγ (e.g. CAST constraint) and one year later was retracted also

by the PVLAS collaboration. They conclude that the effects where instru-

mental artifacts, with no evidence for new physics [69]. Anyhow this claim

has inspired a lot of fruitful experimental and theoretical activity.

Stellar energy loss limits. Low mass weakly interacting particles are

produced in hot astrophysical plasmas, and can thus transport energy out

of stars. The coupling strength of the particles with normal matter and
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Figure 2.3: Exclusion plots in the m versus gφγ parameter space. Figure

taken from [49].

radiation is bounded by the constraint that stellar evolution lifetimes or

energy-loss rates not conflict with observations. A restrictive limit on the

axion-photon coupling constant comes from globular cluster stars1, the main

effect is accelerated consumption of helium; a reasonably conservative limit

is [2, 44]:

gφγ < ×10−19 eV−1 . (2.14)

In models where axion couples directly to electrons (e.g. DFSZ) processes

of the form γ e− → e− φ and γ Ze → Ze e− φ are more efficient than the

Primakoff effect, so it is possible to obtain quite strong constraints [41]:

gφe < 1.3× 10−13 . (2.15)

1A globular cluster is a gravitationally bound system of a homogeneous population of

low-mass stars allowing for a detailed test for stellar-evolution theory.
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2.2.3 Cosmology

The invisible axion with a large decay constant (fa ≃ 1021 eV) was found

to be a good candidate for cold dark matter component of the universe.

Figure 2.4: Potential for the field Φ: (a) T > fa , (b) fa > T > ΛQCD, (c)

ΛQCD > T .

At temperatures higher than fa the complex scalar field associated with

the Peccei-Quinn symmetry has its minimum at Φ = 0 (see Fig.2.4a). At

T ∼ fa the symmetry is broken and Φ is driven by the potential (see Fig.2.4b):

V (Φ) = λ

(

|Φ|2 − f 2
a

2

)2

. (2.16)

It has an absolute minimum at |Φ| = fa/
√

2; the ground state is characterized

by a non-vanishing vacuum expectation value 〈Φ〉 = fa/
√

2eiΘ , where Θ is

an arbitrary phase. Φ can be written in terms of two real fields ρ and φ

which represent the radial and the angular excitations:

Φ =
fa + ρ√

2
ei

φ

fa . (2.17)

The potential V (Φ) provides a large mass for ρ, a field which will be of

no further interest for low-energy considerations. The massless degree of

freedom is the axion Θ = φ/fa .

At temperatures much larger than the QCD scale (ΛQCD ≃ 200 MeV)

the axion is massless; however at temperatures T ∼ ΛQCD it develops a

mass due to its mixing with π0 and η mesons (non perturbative QCD effects
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associated with instantons). The temperature dependence of the axion mass

is approximatively given by [1, 70]:

m(T ) =















m(T = 0) ∼ fπmπ

fa
for T ≪ ΛQCD

m(T=0)
10

(

ΛQCD

T

)3.7

for T ∼ ΛQCD

m(T = 0) ∼ 0 for T ≫ ΛQCD

(2.18)

The axion potential is now of the form (see Fig.2.5):

V (φ) = m2f 2
a

(

1− cos
φ

fa

)

. (2.19)

-2Π -Π 0 Π 2Π

Φ� fa

Figure 2.5: The potential V (φ) for T ≪ ΛQCD.

Axions can be produced in the early universe; relic axions arise due to

three different processes:

• thermal relics, through the usual freeze-out processes (hot dark matter

candidates);

• non thermal relics, through the decay of axionic strings (cold dark

matter candidates);

• non thermal relics, through coherent production due to initial misalign-

ment of the axion field Θi 6= 0 (cold dark matter candidates) [71, 72, 73].
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Here we are interested in particular to misalignment axion production. Today

Θ is fixed at the CP-conserving value (Θ = 0), but at earlier times the initial

value of Θ must be chosen by a stochastic process. When temperature falls

below fa the axion field settles somewhere in the minimum of its mexican

hat potential, afterward when hat tilts at QCD phase transition the field

begins to oscillate (see Fig.2.4c). These cosmic oscillations of the axion field

correspond to a zero-momentum condensate of axions, they contribute to

CDM because of their intrinsically small velocities. Near the minimum the

axion potential of Eq. (2.19) is:

V (φ) ≃ 1

2
m2φ2 , (2.20)

and the equation of motion is:

Θ̈ + 3HΘ̇ +m2Θ = 0 . (2.21)

At higher temperatures T ≫ ΛQCD mass vanishes and the solution simply is

Θ = Θi = const. When the axion becomes greater than the expansion rate

(m & 3H) it begins to oscillate with frequency m (see Fig.2.6).

-10 -8 -6 -4 -2 0

-0.4

-0.2
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Figure 2.6: Evolution of the axion field Θ, in arbitrary units, near QCD scale

where the axion acquire mass and start to oscillate around its minimum.

The critical density associated with the misalignment production of ax-

ions strongly depends on the initial misalignment angle associated with the
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axion field Θi through the following relation [1, 2]:

Ωmish
2 ∼ 0.23× 10±0.6

(

fa
1012 GeV

)1.175

Θ2
iF (Θi) , (2.22)

h encodes the actual value of the Hubble parameter (H0 = 100h km s−1 Mpc−1)

and F (Θi) accounts for anharmonic effects if Θi ≫ 1. The demand Ωmis ≤
ΩDM provides an upper bound on f 1.175

a Θ2
i (assuming F (Θi) ≃ 1) [71, 72, 73]:

faΘ
1.7
i ≤ 2× 1011÷12 GeV . (2.23)

This condition becomes also an upper bound for fa under the assumption

that inflation occurred before the breaking of PQ-symmetry (fa ≤ fINF ) [1]:

in this scenario different regions have different values for Θi, so averaging

over all observable universe the value of Θi in equation can replaced by its

rms value (π/
√

3) and the limit fa ≤ 1011÷12 GeV is obtained. As can be

seen from Fig. 2, CAST disfavors values of gφ ∼ 10−11÷−12 GeV−1 with

a mass up to 0.02eV. Note however that our calculation cannot be applied

directly to this case since we assume φ homogeneous in our universe, whereas

it is not if the PQ symmetry breaking occurs after inflation: although taking

into account space inhomogeneities were a second order effect in cosmological

perturbation theory, cosmological birefringence might be larger than the one

computed in this chapter.

Our calculations apply without modifications to the case in which in-

flation occurs after PQ-symmetry breaking: the initial misalignment angle

Θi is homogeneous throughout our universe and can be much smaller than

π/
√

3. Such possibility allow the scale of PQ-symmetry breaking fa to be

much higher than 1011÷12 GeV and is motivated by anthropic considerations

[74, 75, 76, 77]. These smaller values of gφ can be constrained by present

data in CMB polarization in a much better way than CAST, in particular

for small masses.

The impact of pseudoscalar interaction with CMBP photons is therefore

complementary to its impact on the initial conditions for dark matter inho-

mogeinities. If the PQ-symmetry breaking would have occurred before or
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during inflation, initial conditions for dark matter perturbations are essen-

tially adiabatic and the rotation of CMBP gives a constraint on gφ. If the

PQ-symmetry breaking would have occurred after inflation, the rotation of

linear polarization does not produce a stringent constraint, but axion dark

matter start with isocurvature initial conditions leading to constraints on fa

(see [78] for an updated study of this topic).

2.3 Ultralight pseudo Nambu-Goldstone bosons

Many different models for pseudoscalar axion-like particles were proposed

in the past: Familons [79], Majorons [80], Stückelberg axions [81], . . . ; here

we briefly focus on accelerons [7] ultralight pseudo Nambu-Goldstone bosons

able to explain the current dark energy density. For more details on Ultralight

pseudo Nambu-Goldstone bosons acting as dark energy see [82, 83, 84, 85],

and, in general, for particle physics motivated quintessence models see Refs.

[86, 87, 88] and references therein. L. Amendola and R. Barbieri in Ref. [89]

studied the possibility that a field with mass between 10−33 eV and 10−23 eV

can contribute simultaneously to dark matter and dark energy.

Nowadays a growing number of observations indicate that the expansion

of the universe is accelerating. However it is still unclear what drives this

acceleration: while a cosmological constant Λ is the simplest explanation, its

value seems completely at odd with the naive estimate of vacuum energy due

to quantum effects. If gravity is described by Einstein’s general relativity

the acceleration must be due to a dark energy component that represents

roughly 70% of the total universe energy density.

The simplest physical model for an appropriate dark energy component is

a simple slowly-rolling scalar field (quintessence). In an expanding universe

a spatially homogeneous scalar field obeys:

φ̈+ 3Hφ̇− dV

dφ
= 0 , (2.24)
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with temporal derivative respect to cosmic time, or:

φ′′ + 2Hφ′ − a2dV

dφ
= 0 , (2.25)

respect to conformal time (H ≡ a′/a).

In order to have a slowly-rolling field today:

m ∼
√

d2V

dφ2

∣

∣

∣

∣

∣

0

∼ H0 ≃ 6.4h× 10−33 eV . (2.26)

This is an incredibly small number for particle physics, one possible solu-

tion is that the mass of the quintessence field is protected by an underlying

symmetry. Moreover scalars of such a low mass give rise to long-range forces

if they couple to ordinary matter; current limits imply that there must be

a suppression of these quintessence couplings through the imposition of an

approximate global symmetry.

One of the most well motivated quintessence models from particle physics

perspective was proposed by J.A. Friemann et al. in Ref. [7], and by M.

Fukugita and T. Yanagida in Ref. [91]. It is based on pseudo Nambu-

Goldstone bosons which arises in models with a an approximate global sym-

metry of the form:

φ→ φ+ const , (2.27)

The pseudoscalar field is described by the lagrangian density:

L = −1

2
∇µφ∇µφ−M4

(

1 + cos
φ

f

)

. (2.28)

Neglecting spatial fluctuations of the field the equation of motion is:

φ̈+ 3Hφ̇− M4

f
sin

φ

f
= 0 , (2.29)

near the potential minimum (φ/f = π) the previous equation becomes:

φ̈+ 3Hφ̇+m2φ = 0 , (2.30)

wherem = M2/f . Note that φ contributes to dark energy density only ifm .

3H. In order to fit current observation the quintessence model must behave
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today approximately as cosmological constant [92]. In the far future the

expansion rate of the universe becomes smaller than the axion mass (3H .

m), φ starts to oscillate and the universe becomes cold axion dominated.

The evolution of φ is determined solving the following system of equations:







φ̈+ 3Hφ̇− M4

f
sin φ

f
= 0 ,

H2 = 8π
3M2

pl

(ρRAD + ρMAT + ρφ) .
(2.31)

We solve numerically this system in the new variable x ≡= log t/ti, from a

fixed point in radiation dominated era (ti) to nowadays (t0):



















dΘ

dx2 +
(

3
a
da
dx
− 1
)

dΘ
dx
− e2xM

4t2i
f2 sin Θ = 0 ,

da
dx

= tiHiae
x
[

ΩMAT,1

(

ai

a

)3
+ ΩRAD,1

(

ai

a

)4

+8π
6

f2

H2
i t

2
iM

2
pl

e−2x
(

dΘ
dx

)2
+ 8π

3
M4

H2
i M

2
pl

(1 + cos Θ)
]1/2

.

(2.32)

where Θ = φ/f . See section 3.5 for some plots of the evolution of φ.

These cosmological pseudo Nambu-Goldstone bosons suitable to act as

dark energy candidates are potentially detectable through CMB cosmological

birefringence[5, 93]. No detailed investigation have been carried for the model

proposed by J. A. Frieman et al. [7] and this is the topic of section 3.5.





Chapter 3

Pseudoscalar fields - coupling

with photons

3.1 Introduction

In this chapter we study in detail the interaction of a pseudoscalar field

with photons. This coupling modifies the polarization of an electromagnetic

wave propagating along intervening magnetic fields, or through a slowly vary-

ing background field φ [94]. Here we are interested in the second case (see

Fig. 3.1), which does not require the presence of a magnetic field (note that

in the first case the polarization is also modified in absence of axions, e.g.

by Faraday rotation, see section 1.6 for more details). We consider the time

dependent pseudoscalar condensate acting as dark matter or dark energy and

study the impact of its time derivative on the polarization of the photons.

As a consequence of its coupling with a pseudoscalar field, the plane of linear

polarization of light is rotated (cosmological birefringence) [95, 96].

In the case of Cosmic Microwave Background (CMB) photons, we pay

attention to the rotation along the path between the last scattering surface

(LSS) and the observer, modifying the polarization pattern generated by

Thomson scattering at LSS [5]. This rotation induced by the pseudoscalar

interaction modifies the gradient and curl of the polarization pattern, creating

39
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Figure 3.1: Photon propagation in a cosmological axion field background.

B modes from E modes. The parity violating nature of the interaction

generates non-zero parity-odd correlators (T B and E B) which would be

otherwise vanishing for the standard Gaussian cosmological case [16, 23].

In particular the T B power spectrum may be very useful to constrain the

coupling constant gφ between photons and pseudoscalars, since it is larger

than the auto and cross power spectra in polarization; in general, these non-

standard correlators are already constrained by present data sets [6, 33, 34]

(see also Tab. 1.1).

We study two representative examples for the dynamics of a pseudo-

Goldstone field behaving as dark matter (cosine-type and exponential poten-

tial) and one where the pseudoscalar field explains the current dark energy

density. The case of a field growing linearly in time has been studied in [99].

We compare the polarization power spectra obtained describing the rotation

of linear polarization with a time dependent angle with the ones obtained

considering a constant rotation angle.
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3.2 Equations of motion

The lagrangian density L for the photons and the pseudoscalar field φ is

[100] (following the notation of [101]):

L = −1

4
FµνF

µν − 1

2
∇µφ∇µφ− V (φ)− gφ

4
φFµνF̃

µν . (3.1)

where gφ is the coupling constant, F µν the electromagnetic tensor, F̃ µν its

dual (F̃ µν ≡ 1
2
ǫµνρσFρσ), and φ the pseudoscalar field. The Euler-Lagrange

equation for the scalar field is:

∇µ
∂L

∂ (∇µφ)
=
∂L
∂φ

, (3.2)

so:

2φ ≡ ∇µ∇µφ =
dV

dφ
+
gφ
4
FµνF̃

µν , (3.3)

Similarly for the vector potential:

∇µ
∂L

∂ (∇µAν)
=

∂L
∂Aν

, (3.4)

so:

∇µF
µν = −gφ(∇µφ)F̃ µν , (3.5)

Also the Bianchi identity is verified:

∇µF̃
µν = 0 . (3.6)

Using the definition of the electromagnetic tensor F µν ≡ ∇µAν − ∇νAµ

Eq. (3.5) becomes:

2Aν −∇ν (∇µA
µ)−Rµ

νAµ = −gφ
2

(∇µφ)ǫµν
ρσFρσ , (3.7)

where ǫµν
ρσ is the complete antisymmetric tensor, it contains the determinant

of the metric g and [· · · ] guarantees anti-symmetry in the four indexes [103]:

ǫαβγδ =
√−g [αβγδ] , (3.8)

ǫαβγδ = −
(√−g

)−1
[αβγδ] . (3.9)
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In order to evaluate the d’Alembert operator of the vector potential we ex-

plicitly write:

2Ai = gµν∇µ∇νAi

= gµν∇µ (∂νAi − ΓσνiAσ)

= gµν [∇µ (∂νAi)−∇µ (ΓσνiAσ)]

= gµν
[

∂µ∂νAi − Γρµν∂ρAi − Γρµi∂νAρ − ∂µ (ΓσνiAσ)

+ΓρµνΓ
σ
ρiAσ + ΓρµiΓ

σ
νρAσ

]

. (3.10)

For a spatially flat Friedmann-Robertson-Walker universe the metric is:

ds2 = −dt2 + a2(t)dx2 = a2(η)
[

−dη2 + dx2
]

, (3.11)

where t is the cosmic time, η is conformal time and x denotes the space

coordinates; working in conformal time its useful to define:

gµν =













−a2 0 0 0

0 a2 0 0

0 0 a2 0

0 0 0 a2













and gµν =













−a−2 0 0 0

0 a−2 0 0

0 0 a−2 0

0 0 0 a−2













,

so
√−g = a4. The connection coefficients are defined as:

Γλµν ≡
1

2
gλρ
(

∂gρµ
∂xν

+
∂gρν
∂xµ

− ∂gµν
∂xρ

)

, (3.12)

the non-vanishing ones are:

Γηηη = Γηxx = Γηyy = Γηzz =
a′

a
, (3.13)

Γiηj = Γijη =
a′

a
δij . (3.14)

The Ricci tensor is:

Rµκ ≡ Rλ
µλκ

=
∂Γλµκ
∂xλ

−
∂Γλµλ
∂xκ

+ ΓσµκΓ
λ
λσ − ΓσµλΓ

λ
κσ , (3.15)
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the non-vanishing components are:

Rηη = −3
a′′a− a′ 2

a2
, (3.16)

Rxx = Ryy = Rzz =
a′′a− a′ 2

a2
. (3.17)

Following the conventions of Ref. [103] the relation between the electromag-

netic tensor and the physical fields E and B is:

Fµν = a













0 −Ex −Ey −Ez
Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0













, (3.18)

F µν =
1

a3













0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0













, (3.19)

while for its dual:

F̃µν = a













0 Bx By Bz

−Bx 0 Ez −Ey
−By −Ez 0 Ex

−Bz Ey −Ex 0













, (3.20)

F̃ µν =
1

a3













0 −Bx −By −Bz

Bx 0 Ez −Ey
By −Ez 0 Ex

Bz Ey −Ex 0













. (3.21)

The invariants of the electromagnetic tensor are:

FµνF
µν =

2

a2

(

B2 − E2
)

, (3.22)

FµνF̃
µν =

4

a2
(E ·B) . (3.23)

Therefore Eq. (3.3) for the pseudoscalar field can be written as:

∂2φ

∂η2
+ 2H∂φ

∂η
−∇2φ+ a2dV

dφ
= gφE ·B . (3.24)
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Expressing Eq. (3.5) and the Bianchi identity (Eq. (3.6)) in terms of E and

B we obtain the modified Maxwell equations:

∇ · E = −gφ (∇φ) ·B , (3.25)

∂

∂η
(aE)−∇× (aB) = −gφ

[

∂φ

∂η
aB + (∇φ)× aE

]

, (3.26)

∇ ·B = 0 , (3.27)

∂

∂η
(aB) +∇× (aE) = 0 . (3.28)

We consider in particular a plane wave propagating along n̂ in Coulomb

(radiation) gauge (∇ ·A = 0, A0 = 0). In the quantum-mechanical descrip-

tion the photon field can be expressed as [21, 104]:

Âi =

∫

d3k

(2π)3

[

âs(k)Ã(k, η)ǫsi(k)e
ik·x + â†s(k)Ã

∗(k, η)ǫ∗si(k)e
−ik·x

]

, (3.29)

where ǫsi(k) are the photon polarization 4-vectors, s labels the photon polar-

ization, the creation and annihilation operators âs(k) and â†s(k) satisfy the

canonical commutation rules.

Assuming the direction of propagation aligned with the z axis, neglecting

the spatial variation of the pseudoscalar field φ = φ(η), and writing polar-

ization in terms of left and right circular polarized waves (s ∈ {+,−}), the

two relevant components of Eq. (3.7) for the electromagnetic vector potential

are:

Ã′′
±(k, η) +

[

k2 ± gφφ′k
]

Ã±(k, η) = 0 . (3.30)

3.2.1 Energy-momentum tensor

Following the conventions of Ref. [103, 105] we define the energy momen-

tum tensor:

Tµν = −2
δL
δgµν

+ gµνL , (3.31)

T µν = 2
δL
δgµν

+ gµνL , (3.32)

since δgµν = −gµρgµσδgρσ (e.g. see [106]).
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For the scalar field described by the Lagrangian:

Lφ = −1

2
φ,µφ

,µ − V (φ) , (3.33)

we obtain:

Tφ µν = φ,µφ,ν + gµνL , (3.34)

so:

Tφ
0
0 = −(φ′)2

2a2
− V ≡ −ρφ , (3.35)

Tφ
i
i =

(φ′)2

2a2
− V ≡ pφ . (3.36)

For the electromagnetism Lagrangian:

LEM = −1

4
FµνF

µν , (3.37)

we obtain:

TEMµν = FµαFν
α − 1

4
gµνFαβF

αβ , (3.38)

so:

TEM
0
0 = −E2

a2
− 1

2a2

(

B2 − E2
)

= −E2 + B2

2a2
= −ρEM . (3.39)

For the Lagrangian defined in Eq. (3.1) and including the coupling between

pseudoscalars and photons we have the following energy-momentum tensor:

TPSµν = FµαFν
α − 1

4
gµνFαβF

αβ + φ,µφ,ν −
1

2
gµνφ,αφ

,α − gµνV (φ)

−gφ
2
φFαβF̃αβgµν . (3.40)

3.2.2 Chern-Simons Lagrangian

The Lagrangian density describing interaction between pseudoscalars and

photons in Eq. (3.1) is:

LPS = −gφ
4
φFµνF̃

µν . (3.41)
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It can be written also in a different form [95], using the definition of the

electromagnetic tensor and integrating by parts:

LPS = −gφ
2
φF̃ µν∇µAν

=
gφ
2

[

Aν∇µ

(

φF̃ µν
)

−∇µ

(

φF̃ µνAν

)]

. (3.42)

According to Eq. (3.6) ∇µF̃
µν = 0, so, within a divergence:

L̄PS =
gφ
2

(∇µφ)AνF̃
µν . (3.43)

Note how only the gradient of φ enters the field equations, and not φ itself.

This last equation is not manifestly invariant under gauge transformations

Aµ → Aµ+∂µλ, note however that LPS is changed by an irrelevant divergence

by gauge transformations.

The Chern-Simons Lagrangian (e.g. see Ref. [102]) is:

LCS = −gφ
4
pµAνF̃

µν , (3.44)

where the vector pµ can be a constant vector field which violates Lorentz

invariance by defining a preferred reference frame which violates Lorentz

invariance, otherwise it is possible to define pµ = −2∇µφ, where φ is a

dynamical scalar field. In this case the gauge and Lorentz invariance are

preserved, and:

LCS = −gφ
2

(∇µφ)AνF̃
µν = L̄PS . (3.45)

3.3 Cosine-type potential

In this section we assume that dark matter is given by massive axions.

The pseudoscalar field φ is g governed by the potential (see chapter 10 of

Ref. [1] and section 2.2.3):

V (φ) = m2 f
2
a

N2

(

1− cos
φN

fa

)

, (3.46)

where N is the color anomaly of the Peccei-Quinn symmetry. Here we are

interested in the regime where the axion field oscillates near the minimum
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of the potential (for simplicity we shall consider N = 1 in the following):

φ/fa ≪ 1 and the potential can be approximated with V (φ) ≃ m2φ2/2. In

this case φ(t) satisfies the equation:

φ̈+ 3Hφ̇+m2φ = 0 . (3.47)

When m > 3H the scalar field begins to oscillate, and the solution in a

matter dominated universe (ȧ/a = 2/3t) is [71]:

φ(t) = t−1/2
[

c1J1/2(mt) + c2J−1/2(mt)
]

mt≫1≃ φ0

mt
sin(mt) , (3.48)

where the time-independent coefficients of the Bessel functions c1 , c2 depend

on the initial conditions.

The averaged energy and pressure densities associated with the field are:

ρφ =
φ̇2

2
+

1

2
m2φ

2 mt≫1≃ φ2
0

2t2

[

1 +O
(

1

mt

)2
]

, (3.49)

Pφ =
φ̇2

2
− 1

2
m2φ

2 mt≫1≃ φ2
0

2t2
×O

(

1

mt

)2

, (3.50)

where ¯ denotes the average over an oscillation period of the axion con-

densate. Note that we are implicitly assuming that the pseudoscalar field is

homogeneous. In the context of axion physics, this means that in our ob-

servable universe we have just one value for the misalignment angle, which

means that the PQ symmetry has occurred before or during inflation.

We fix the constant φ0 comparing ρφ with the energy density in a matter

dominated universe:

ρM =
3H2M2

pl

8π
=
M2

pl

6πt2
=⇒ φ0 =

Mpl√
3π

, (3.51)

φ(t) ≃ Mpl√
3πmt

sin(mt) , (3.52)

where Mpl ≃ 1.22× 1019 GeV is the Planck mass.
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Using the relation between cosmic and conformal time in a universe of

matter:

t =
η0

3

(

η

η0

)3

, (3.53)

we find the following approximation for φ(η):

φ(η) ≃
√

3

π

Mpl

mη0

(

η
η0

)3 sin

[

m
η0

3

(

η

η0

)3
]

, (3.54)

and

φ′(η) ≃
√

3

π

Mpl

η

{

cos

[

m
η0

3

(

η

η0

)3
]

− 3η2
0

mη3
sin

[

m
η0

3

(

η

η0

)3
]}

. (3.55)

If m is not too small the value of H ≡ a′/a obtained with the scalar field

density in the Friedmann equation coincides with that of a matter dominated

universe H = 2/η once the average through oscillations is performed [107]

(see Fig. 3.2). The derivative can be replaced in Eq. (3.30) for the evolution

of the electromagnetic vector:

Ã′′
±(k, η) + k2 [1±∆(η; gφ,m, k, η0)] Ã±(k, η) = 0 , (3.56)

defined the function:

∆(η; gφ,m, k, η0) ≡
√

3

π

gφMpl

kη

{

cos

[

m
η0

3

(

η

η0

)3
]

− 3η2
0

mη3
sin

[

m
η0

3

(

η

η0

)3
]}

. (3.57)

This term, induced by axion-photon coupling, oscillates with frequency pro-

portional to the mass of the axion and its amplitude decreases with time.

In the next two subsections we study analytically and numerically Eq. (3.56)

for different values of the parameters m and gφ; we exclude the region where

the mass of the pseudoscalar field is so small that the field starts to oscillate

after equivalence (m < 3Heq), and the region corresponding to a PQ sym-

metry broken at energies higher than Planck scale (fa > Mpl): see Fig. 3.3.
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Figure 3.2: Evolution of H/Hrec in function of conformal time for m =

10−28eV (dashed line), m = 5 × 10−27eV (dotted line) and for a matter

dominated universe (continuous line), from recombination (ηrec) to 3.5ηrec.

Present time corresponds to η0 = ηrec

√
1 + zrec ≃ 33.18ηrec.

3.3.1 Adiabatic solution

Adiabatic solutions of Eq. (3.56) are:

Ãs =
1√
2ωs

e±i
∫

ωsdη , (3.58)

where ωs(η) = k
√

1± gφφ′(η)

k
= k
√

1±∆(η) and s = ± .
The first and second derivative respect to conformal time are:

Ã′
s = Ãs

(

−iωs −
ω′
s

2ωs

)

, (3.59)

Ã′′
s = Ãs

(

−ω2
s +

3ω′2
s

4ω2
s

− ω′′
s

2ωs

)

. (3.60)
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Figure 3.3: Plane (log10m [eV] , log10 gφ
[

eV−1
]

): region excluded by CAST

[59] (blue with oblique lines), region where the mass of the pseudoscalar field

is too small (m < 3Heq) (yellow with horizontal lines), region where PQ

symmetry is broken at energies higher than Planck scale (fa > Mpl) (yellow

with vertical lines), and (m, gφ) values expected in main QCD axion models

(red with dots).
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The adiabatic solution (3.58) is a good approximation for the vector potential

when the terms 3ω′2
s

4ω2
s

and ω′′

s

2ωs
are small compared to ω2

s :

3ω′2
s

4ω4
s

=
3∆′2

16k2 (1±∆)3 ≪ 1 , (3.61)

ω′′
s

2ω3
s

=
±2(1±∆)∆′′ −∆′2

8k2 (1±∆)3 ≪ 1 . (3.62)

If both condition are satisfied and ∆≪ 1:

Ã± ≃ 1
√

2k (1±∆/4)
exp

[

±ik
(

η ± 1

2

∫

∆dη

)]

=
1

√

2k (1± πgφφ′k)
exp [±i (kη ± 2πgφ)] . (3.63)

In the adiabatic regime the coupling between photons and axions produces

a frequency independent shift between the two polarized waves, which cor-

responds to a rotation of the plane of linear polarization:

θadiabatic =
gφ
2

[φ(η0)− φ(ηrec)] . (3.64)

This result agrees with the one obtained in Ref. [94], which therefore holds in

the adiabatic regime. More important than this, θadiabatic = θ̄, i.e. Eq. (3.64)

agree with the rotation angle which is approximated by Eq. (1.77) in the

Boltzmann section 1.5. This agreement is not a coincidence and shows the

usefulness of studying the gauge potential as done in this section: the es-

timate based on the adiabatic approximation of the rotation angle due to

cosmological birefringence can be also obtained by studying the gauge po-

tential As.

Typically φ(ηrec)≫ φ(η0); from last scattering to now ρ ≃ m2φ
2

so, in a

matter dominated universe:

φ(η) ≃
√

3

8π

MplH(η)

m
≃
√

3

2π

Mpl

mη0

(

η0

η

)3

. (3.65)

An estimate of the angle θadiabatic is:

θadiabatic ≃ gφ

√

3

8π

Mpl

mη0

[

(1 + zrec)
3/2 − 1

]

. (3.66)
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Note the dependence of θadiabatic on the coupling constant and on the mass

of the pseudoscalar field: for fixed gφ the effect is larger for smaller masses.

The amplitude of the electromagnetic field changes according to:

∣

∣

∣
Ẽ

∣

∣

∣

2

=

∣

∣

∣Ã′

∣

∣

∣

2

a2
≃ ωs

2a2
, (3.67)

so the degree of circular polarization evolves according:

Π̃C =

∣

∣

∣
Ã′

+

∣

∣

∣

2

−
∣

∣

∣
Ã′

−

∣

∣

∣

2

∣

∣

∣
Ã′

+

∣

∣

∣

2

+
∣

∣

∣
Ã′

−

∣

∣

∣

2

=

√
1 + ∆−

√
1−∆√

1 + ∆ +
√

1−∆
≃ ∆

2
=
gφφ

′

2k
. (3.68)

Note that according to [97, 98] it is better to define the Stokes parameters

starting from the number of photons. In this case:

Ĩ2 =
1

2a4

(

〈Ã′∗
+Ã

′
+〉+ k2〈Ã∗

+Ã+〉+ 〈Ã′∗
−Ã

′
−〉+ k2〈Ã∗

−Ã−〉
)

, (3.69)

Q̃2 =
1

2a4

(

〈Ã′∗
+Ã

′
−〉+ k2〈Ã∗

+Ã−〉+ 〈Ã′∗
−Ã

′
+〉+ k2〈Ã∗

−Ã+〉
)

, (3.70)

Ũ2 = − i

2a4

(

〈Ã′∗
+Ã

′
−〉+ k2〈Ã∗

+Ã−〉 − 〈Ã′∗
−Ã

′
+〉 − k2〈Ã∗

−Ã+〉
)

, (3.71)

Ṽ2 =
1

2a4

(

〈Ã′∗
+Ã

′
+〉+ k2〈Ã∗

+Ã+〉 − 〈Ã′∗
−Ã

′
−〉 − k2〈Ã∗

−Ã−〉
)

. (3.72)

In the adiabatic approximation we can use the relation:

Ãs = −
(

iωs +
ω′
s

2ωs

)−1

Ã′
s , (3.73)
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therefore the equations for the Stokes parameters become:

Ĩ2 =
1

2a4
{[ 1 +

k2

ω2
+ +

(

ω′

+

2ω+

)2

]

〈Ã′∗
+Ã

′
+〉+

[

1 +
k2

ω2
− +

(

ω′

−

2ω−

)2

]

〈Ã′∗
−Ã

′
−〉
}

,

Q̃2 =
1

2a4
{[ 1 +

k2

(

−iω+ +
ω′

+

2ω+

)(

iω− +
ω′

−

2ω−

)

]

〈Ã′∗
+Ã

′
−〉

+[ 1 +
k2

(

−iω− +
ω′

−

2ω−

)(

iω+ +
ω′

+

2ω+

)

]

〈Ã′∗
−Ã

′
+〉
}

,

Ũ2 = − i

2a4
{[ 1 +

k2

(

−iω+ +
ω′

+

2ω+

)(

iω− +
ω′

−

2ω−

)

]

〈Ã′∗
+Ã

′
−〉

−[ 1 +
k2

(

−iω− +
ω′

−

2ω−

)(

iω+ +
ω′

+

2ω+

)

]

〈Ã′∗
−Ã

′
+〉
}

,

Ṽ2 =
1

2a4
{[ 1 +

k2

ω2
+ +

(

ω′

+

2ω+

)2

]

〈Ã′∗
+Ã

′
+〉−

[

1 +
k2

ω2
− +

(

ω′

−

2ω−

)2

]

〈Ã′∗
−Ã

′
−〉
}

.

Note that these expressions coincide with the standard definition of Stokes

parameters given in section 1.2 (Eqs. (1.29-1.32)) when ω2
± = k2.

Always in the adiabatic approximation the degree of circular polarization

evolves according to:

Π̃C2 =
Ṽ2

Ĩ2

≃ 1−
√

1 + ∆
√

1−∆

1 +
√

1 + ∆
√

1−∆
×
√

1 + ∆−
√

1−∆√
1 + ∆ +

√
1−∆

≃
(

∆

2

)3

=

(

gφφ
′

2k

)3

. (3.74)

So if we include the term k2

(

∣

∣

∣
Ã+

∣

∣

∣

2

−
∣

∣

∣
Ã−

∣

∣

∣

2
)

in the definition of V the degree

of circular polarization would be proportional to O(k−3). On the contrary,

the linear polarization rotation angle θ does not change whether we use the

definition of Stokes parameters given in Eqs. (1.29-1.32) or the new one (Eqs.

(3.69-3.72)).
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3.3.2 CMBP constraints on the (m, gφ) plane

In a flat universe dominated by dust (w = 0) plus a component with

w = −1 (cosmological constant) the evolution of the scale factor in terms of

cosmic time is [108]:

a(t) =

(

ΩMAT

1− ΩMAT

) 1
3

sinh

[

3

2

√

1− ΩMATH0t

] 2
3

, (3.75)

where ΩMAT is the density parameter for matter nowadays. The Hubble

parameter is:

H = H0

√

1− ΩMAT coth

(

3

2

√

1− ΩMATH0t

)

, (3.76)

and:

t0 =
2

3
√

1− ΩMATH0

arcsinh

√

1− ΩMAT

ΩMAT

. (3.77)

The pseudoscalar field evolves according to:

φ(t)
mt≫1≃ φ0

[

sinh
(

3
2

√
1− ΩMATH0t

)]

× sin



mt

√

1− (1− ΩMAT)

(

3H0

2m

)2


 . (3.78)

The energy density is:

ρφ =
φ̇2

2
+

1

2
m2φ

2

mt≫1≃ m2φ2
0

2
[

sinh
(

3
2

√
1− ΩMATH0t

)]2 ∝ a−3 . (3.79)

Assuming that the axion-like particles contribute to the cold dark matter

density ρφ, 0 = ΩMAT ρCR, 0:

m2φ2
0

2
[

sinh
(

3
2

√
1− ΩMATH0t0

)]2 = ΩMAT

3H2
0M

2
pl

8π
, (3.80)

and using:

a(t0) = 1 =⇒
[

sinh

(

3

2

√

1− ΩCH0t0

)]2

=
1− ΩMAT

ΩMAT

,
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we can estimate φ0:

φ0 =

√

3(1− ΩMAT)

π

H0Mpl

2m
. (3.81)

Therefore the evolution of the pseudoscalar field as a function of cosmic time

is:

φ(t) =

√

3(1− ΩMAT)

π

H0Mpl

2m sinh
(

3
2

√
1− ΩMATH0t

)

× sin



mt

√

1− (1− ΩMAT)

(

3H0

2m

)2




=

√

3ΩMAT

π

H0Mpl

2ma3/2(t)

× sin



mt

√

1− (1− ΩMAT)

(

3H0

2m

)2


 . (3.82)

Note how this equations reduces to Eq. (3.52) in a matter dominated universe:

ΩMAT = 1, H0/(2a
3/2) = 1/(3t). The linear polarization plane, from last

scattering surface, rotates according to:

θ(t) =
gφ
2

[φ(t)− φ(trec)] . (3.83)

The Boltzmann equation contains the derivative of the rotation angle respect

to of conformal time (cfr. Eq. (1.54)), so we need the relation between cosmic

and conformal time. For a particular model with ΩMAT = 0.3 it is possible

to fit numerically the relation between cosmic and conformal time from last

scattering to nowadays:

t ≃ η0

3.45

(

η

η0

)3.09

. (3.84)

Replacing this expression in Eq. (3.82) we obtain the evolution of the pseu-

doscalar field as a function of conformal time φ = φ(η).

The linear polarization angle is not constant in time, but it oscillates with

varying amplitude. If the field represents a fraction ΩMAT of the universe
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Figure 3.4: Plane (log10m [eV] , log10 gφ
[

eV−1
]

): region excluded by CAST

[59] (blue with vertical lines), region where |θA(ΩMAT = 0.3,m, gφ)| > 10 deg

(red region with horizontal lines), region where the mass of the pseudoscalar

field is too small in order to explain dark matter (m < 3Heq) (yellow with

horizontal lines), and region where PQ symmetry is broken at energies higher

than Planck scale (fa > Mpl) (yellow with vertical lines) and values expected

in main QCD axion models (red with dots).
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energy density, then the amplitude of these oscillations is:

θA(ΩMAT,m, gφ) =
1

4

√

3ΩMAT

π

gφMplH0

m

(

1

a
3/2
0

− 1

a
3/2
rec

)

≃ 1

4

√

3ΩMAT

π

gφMplH0

m
z3/2
rec . (3.85)

Fixed ΩMAT, it is possible to constraint a certain region of the (m, gφ)-plane

requiring θA(ΩMAT,m, gφ) to be smaller of a certain angle, typically of the

order of few degrees (see Tab. 1.1). The excluded region considering current

limits on CMB birefringence is shown in Fig. 3.4.

Fixed a particular value for the pseudoscalar field mass and for its cou-

pling with photons we can also estimate how the polarization angular power

spectra are modified by a rotation of the linear polarization plane. We mod-

ified the source term for linear polarization in the public Boltzmann code

CAMB [4] following Eqs. (1.63) and (1.64). The linear polarization rotation

angle is given by Eq. (3.83) and the evolution of the pseudoscalar field by

Eq. (3.82). The new power spectra are compared with the standard unro-

tated ones in Fig. 3.6 fixed m = 10−22 eV and gφ = 5 × 10−21 eV−1, and in

Fig 3.7 fixed m = 10−22 eV and gφ = 10−20 eV−1.

3.4 Exponential potential

We consider in this section a pseudoscalar field with an exponential po-

tential:

V (φ) = V0 exp (−λκφ) , (3.86)

with κ2 ≡ 8πG . It is known [109] that such potential with λ2 > 3(1 +

wF) leads to a component which tracks the dominant background fluid with

equation of state pφ = wφρφ. In order to satisfy the nucleosynthesis bound

we choose λ = 4.5. During the matter dominated era the scalar field behaves
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Figure 3.5: Evolution of the linear polarization rotation angle θ(η) for the

oscillating behavior for m = 10−22 eV and gφ = 10−20 eV−1, in terms of

the natural logarithm of the scale factor (from log a = −8.2 to nowadays

log a0 = 0) in a ΛCDM model with ΩMAT = 0.3.

as:

ρφ =
φ̇2

2
+ V0 exp (−λκφ) = f ρMAT ≡ f

ρMAT,0

a3
, (3.87)

Pφ =
φ̇2

2
− V0 exp (−λκφ) , (3.88)

where ρMAT = ρDM + ρbaryons + ρφ.

For λ = 4.5 the contribution of the pseudoscalar field to universe energy

density is shown in Fig. 3.8. The value of Ωφ changes with time, but it is

almost constant (Ωφ ≃ Ωφ ,0 = 0.148) from recombination (log arec ≃ −7) to

nowadays.

The derivative of the pseudoscalar field respect to conformal time is pro-

portional to a−1/2 and the evolution of the scale factor in the matter domi-

nated phase is a(η) = (η/η0)
2 so:

φ′ =
√

f ρMAT,0
η0

η
. (3.89)

Substituting this relation in Eq. (3.30) we obtain the following expression for
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Figure 3.6: Cosine-type potential case. E E (a), BB (b), T E (c), T B (d),

and E B (e) angular power spectra for m = 10−22 eV and gφ = 5×10−21 eV−1

(black solid line), the black dotted line is the standard case in which there is

no coupling between photons and pseudoscalars (θ = 0). For the BB power

spectrum (b) we plot for comparison also the polarization signal induced

by gravitational lensing (black dotted line), and primordial BB signal if

r = 0.1 (blue dot-dashed line). The cosmological parameters of the flat

ΛCDM model used here are Ωb h
2 = 0.022, Ωc h

2 = 0.123, τ = 0.09, ns = 1,

As = 2.3× 10−9, H0 = 100h km s−1 Mpc−1 = 72 km s−1 Mpc−1.
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Figure 3.7: Cosine-type potential case. E E (a), BB (b), T E (c), T B (d),

and E B (e) angular power spectra for m = 10−22 eV and gφ = 10−20 eV−1

(black solid line), the black dotted line is the standard case in which there is

no coupling between photons and pseudoscalars (θ = 0). For the BB power

spectrum (b) we plot for comparison also the polarization signal induced

by gravitational lensing (black dotted line), and primordial BB signal if

r = 0.1 (blue dot-dashed line). The cosmological parameters of the flat

ΛCDM model used here are Ωb h
2 = 0.022, Ωc h

2 = 0.123, τ = 0.09, ns = 1,

As = 2.3× 10−9, H0 = 100h km s−1 Mpc−1 = 72 km s−1 Mpc−1.
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Figure 3.8: For λ = 4.5 Dashed line: ΩDM + Ωbaryons, dotted line: ΩRAD,

thin continuous line: Ωφ, thick continuous line: wφ, in terms of the natural

logarithm of the scale factor (from log a ≃ −40 to nowadays log a0 = 0).

Here ΩDM,0 + Ωbaryons,0 = 0.852 and Ωφ,0 = 0.148.

the evolution of the electromagnetic potential:

Ã′′
± +

(

k2 ± gφ
√

f ρMAT,0
η0

η
k

)

Ã± = 0 . (3.90)

This is a particular differential equation, called Coulomb wave equation1

defining q± ≡ ∓gφ
√

f ρMAT,0η0/2 = ∓q and x ≡ kη it becomes:

d2Ã±

dx2
+

(

1− 2q±
x

)

Ã± = 0 . (3.91)

The solution of this equation can be written in terms of regular (F0(q, x))

1The Coulomb wave equation is [110]:

d2w

dx2
−
[

1− 2q

x
− L(L + 1)

x2

]

w = 0 ,

with x > 0,−∞ < q <∞, L a non negative integer. Here, in order to solve Eq. (3.91), we

are particular interested to the particular case L = 0.
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and irregular (G0(q, x)) Coulomb wave functions [84, 110]:

Ã+ = f+F0(q+, x) + g+G0(q+, x)

= f+F0(−q, x) + g+G0(−q, x) ,
Ã− = f−F0(q−, x) + g−G0(q−, x)

= f−F0(q, x) + g−G0(q, x) ,

where f+, f−, g+, g− ∈ C; in a compact notation:

Ã±(q, x) = f±F0(∓q, x) + g±G0(∓q, x) . (3.92)

The Stokes parameters contain the derivative respect to conformal time η,

so we evaluate:

Ã′
±(q, x) = k

[

f±
∂F0(∓q, x)

∂x
+ g±

∂G0(∓q, x)
∂ x

]

. (3.93)

The solution given in Eq. (3.92) verifies the Wronskian condition (Ã±Ã
′∗
± −

Ã′
±Ã

∗
± = i) if the following relation holds:

f ∗
±g± − f±g∗± =

i

k
=⇒ ℑ

(

f ∗
±g±

)

=
1

2k
. (3.94)

3.4.1 Vanishing coupling (gφ = 0)

If there is no coupling between the electromagnetic tensor and the pseu-

doscalar field (gφ = 0) Eq. (3.30) reduces to:

Ã′′
± + k2Ã± = 0 . (3.95)

Obviously the solution is:

Ã±(x) = f± sin (x) + g± cos (x) , (3.96)

and the derivative respect conformal time η is:

Ã′
±(x) = k [f± cos (x)− g± sin (x)]

=
k

2

[

eix (f± + ig±) + e−ix (f± − ig±)
]

. (3.97)
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The elements of the coherence matrix J̃ are:

J̃±± =
k2

2a4

〈

|f±|2 + |g±|2 +
(

|f±|2 − |g±|2
)

cos 2x

−
(

f ∗
±g± + f±g

∗
±

)

sin 2x
〉

,

J̃±∓ =
k2

2a4

〈

f ∗
±f∓ + g∗±g∓ +

(

f ∗
±f∓ − g∗±g∓

)

cos 2x

−
(

f∓g
∗
± + f ∗

±g∓
)

sin 2x
〉

.

For a pure monochromatic wave ensemble averages can be omitted and the

elements oscillate with period 2x due to the presence of both forward (Ã′ ∝
e−ix) and backward (Ã′ ∝ e+ix) moving waves.

In order to describe the propagation of an electromagnetic wave in a

region with no coupling between photons and field φ (vacuum) we can use

only forward moving waves, therefore setting f± = −ig± in Eq. (3.97) we

obtain:

Ã′
±(x) = −ikg±e−ix . (3.98)

The dependence from g± can be replaced by the value of at Ã′
± at a particular

time (e.g. recombination time):

Ã′
±(x) = Ã′

±(xrec)e
−i(x−xrec) . (3.99)

In this particular situation the elements of the coherence matrix does not

depend on x:

J̃ =
1

a4





〈

Ã′∗
+(x)Ã′

+(x)
〉 〈

Ã′∗
+(x)Ã′

−(x)
〉

〈

Ã′∗
−(x)Ã′

+(x)
〉 〈

Ã′∗
−(x)Ã′

−(x)
〉





=
1

a4





〈

Ã′∗
+(xrec)Ã

′
+(xrec)

〉 〈

Ã′∗
+(xrec)Ã

′
−(xrec)

〉

〈

Ã′∗
−(xrec)Ã

′
+(xrec)

〉 〈

Ã′∗
−(xrec)Ã

′
−(xrec)

〉





=
(arec

a

)4

J̃rec . (3.100)

So the Stokes parameters evolve according to:

Ĩ =
(arec

a

)4

Ĩrec , Q̃ =
(arec

a

)4

Q̃rec ,

Ũ =
(arec

a

)4

Ũrec , Ṽ =
(arec

a

)4

Ṽrec .
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Obviously the degrees of polarization are constant (Π̃L = Π̃L, rec and Π̃C =

Π̃C, rec) and also the angle of linear polarization does not change with time.

If there is no coupling between the pseudoscalar field and photons the elec-

tromagnetic wave propagates freely and the polarization does not change.

3.4.2 Non-vanishing coupling (gφ 6= 0)

In the general case, when the coupling does not vanishes (gφ 6= 0), we

expand the solution (3.92) for large value of x neglecting terms proportional

to O(x−2).

The Coulomb functions can be expanded for large values of x [110]:

F0 = g cos θ + f sin θ , (3.101)

G0 = f cos θ − g sin θ , (3.102)

similarly for the first derivative respect to x:

F ′
0 = g∗ cos θ + f ∗ sin θ , (3.103)

G′
0 = f ∗ cos θ − g∗ sin θ , (3.104)

with θ ≡ x− q log 2x+ arg Γ(1 + iq) and:

f =
∞
∑

k=0

fk , g =
∞
∑

k=0

gk ,

f ∗ =
∞
∑

k=0

f ∗
k , g∗ =

∞
∑

k=0

g∗k ,

where:

f0 = 1 , fk+1 = akfk − bkgk ; (3.105)

g0 = 0 , gk+1 = akgk + bkfk ; (3.106)

f ∗
0 = 0 , f ∗

k+1 = akf
∗
k − bkg∗k −

fk+1

x
; (3.107)

g∗0 = 1− q

x
, g∗k+1 = akg

∗
k + bkf

∗
k −

gk+1

x
; (3.108)

ak =
(2k + 1)q

2(k + 1)x
, bk =

q2 − k(k + 1)

2(k + 1)x
. (3.109)
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Restricting to the first and second order:

f = 1 +
q

2x
+

5q2 − q4

8x2
+O

(

1

x3

)

, (3.110)

g =
q2

2x
+

2q3 − q
4x2

+O
(

1

x3

)

, (3.111)

f ∗ = − q
2

2x
+

4q3 − 2q2 + q

4x2
+O

(

1

x3

)

, (3.112)

g∗ = 1− q

2x
− q4 + 3q2

8x2
+O

(

1

x3

)

. (3.113)

Summarizing the asymptotic expansion of FL(q, x) and FL(q, x) for large

values of x is:

F0(q, x) ≃
q2

2x
cos θ +

(

1 +
q

2x

)

sin θ , (3.114)

G0(q, x) ≃
(

1 +
q

2x

)

cos θ − q2

2x
sin θ , (3.115)

and for the first derivative:

F ′
0(q, x) ≃

(

1− q

2x

)

cos θ − q2

2x
sin θ , (3.116)

G′
0(q, x) ≃ −

q2

2x
cos θ −

(

1− q

2x

)

sin θ . (3.117)

Therefore, expanding Coulomb functions for large value of x and neglect-

ing O
(

1
x2

)

terms, Eq. (3.92) becomes:

Ã±(q, x) ≃ f±

[

q2

2x
cos (x± α (q, x)) +

(

1∓ q

2x

)

sin (x± α (q, x))

]

+g±

[

(

1∓ q

2x

)

cos (x± α (q, x))− q2

2x
sin (x± α (q, x))

]

,

(3.118)

where α (q, x) ≡ q log 2x− arg Γ(1+ iq). The derivative respect to conformal
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time is:

Ã′
±(q, x) ≃ k

{

f±

[

(

1± q

2x

)

cos (x± α (q, x))− q2

2x
sin (x± α (q, x))

]

+g±

[

− q
2

2x
cos (x± α (q, x))−

(

1± q

2x

)

sin (x± α (q, x))

]}

=
k

2

[

ei(x±α(q,x))

(

1± q

2x
+ i

q2

2x

)

(f± + ig±)

e−i(x±α(q,x))

(

1± q

2x
− i q

2

2x

)

(f± − ig±)

]

. (3.119)

In general both forward moving waves (Ã± ∝ e−ikη) and backward moving

waves (Ã± ∝ eikη) must be taken into account for propagation of light in a

medium. Chosen a particular value for the constants f± and g± that verifies

the Wronskian relation (3.94) the evolution of polarization is fixed.

If we assume, according with [111, 112], that the photon pseudoscalar

conversion is a small effect due to low energy of CMB photons, the production

of backward moving waves can be neglected (see [113] for the use of this

approximation). The Eq. (3.119) setting f± = −ig± becomes:

Ã′
± (q, x) ≃ −ikg±

(

1± q

2x
− i q

2

2x

)

e−i(x±α(q,x)) , (3.120)

and in terms of the value at recombination time:

Ã′
± (q, x) ≃ Ã′

± (q, xrec)

[

1± q

2

(

1

x
− 1

xrec

)

−iq
2

2

(

1

x
− 1

xrec

)]

exp {−i [x− xrec ±∆α]} , (3.121)

where we have introduced

∆α ≡ α(q, x)− α(q, xrec) = q log (η/ηrec)

=
q

2
log (a/arec) . (3.122)

In the usual definition for the Stokes parameters describing linear polarization

(see Eqs. (1.30-1.31)) Ã(q, x) appears in the combination:

〈Ã′∗
+(q, x)Ã′

−(q, x)〉 ≃ e2i∆α〈Ã′∗
+(q, xrec)Ã

′
−(q, xrec)〉 . (3.123)
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The plane of linear polarization is rotated of an angle ∆α independent

on k whose dependence on the difference between the present value of φ

and the corresponding one at recombination is the same of the adiabatic

approximation (see Eq. (3.64)) and of Eq. (1.77).

If we use the Stokes parameter definition given in Eqs. (3.70-3.71) also

terms like k2〈Ã∗
±Ã∓〉 contribute to linear polarization, but the final effect

does not change:

k2〈Ã∗
+(q, x)Ã−(q, x)〉 ≃ e2i∆αk2〈Ã∗

+(q, xrec)Ã−(q, xrec)〉 , (3.124)

and therefore:

〈Ã′∗
+(q, x)Ã′

−(q, x)〉+ k2〈Ã∗
+(q, x)Ã−(q, x)〉 ≃

e2i∆α
[

〈Ã′∗
+(q, xrec)Ã

′
−(q, xrec)〉+ k2〈Ã∗

+(q, xrec)Ã−(q, xrec)〉
]

,(3.125)

linear polarization plane it is always rotated of an angle ∆α.

Concerning circular polarization, using the definition of V given in Eq. (1.32),

the degree of circular polarization changes from recombination to nowadays:

Π̃C,0 ≃
∣

∣

∣

∣

Π̃C,rec + q

(

1

x
− 1

xrec

)

(

1− Π̃2
C,rec

)

∣

∣

∣

∣

. (3.126)

Instead V2, introduced in Eq. (3.72), contains both terms of the form 〈Ã′∗
±Ã

′
±〉

and k2〈Ã∗
±Ã±〉. They transform according to:

〈Ã′∗
±(x)Ã′

±(x)〉 ≃
[

1± q
(

1

x
− 1

xrec

)]

〈Ã′∗
±(xrec)Ã

′
±(xrec)〉 ,

k2〈Ã∗
±(x)Ã±(x)〉 ≃

[

1∓ q
(

1

x
− 1

xrec

)]

k2〈Ã∗
±(xrec)Ã±(xrec)〉 .

Note that, in this case, the two contributes delete:

〈Ã′∗
+(x)Ã′

+(x)〉+k2〈Ã∗
+(x)Ã+(x)〉 ≃ 〈Ã′∗

+(xrec)Ã
′
+(xrec)〉+k2〈Ã∗

+(xrec)Ã+(xrec)〉 ,
(3.127)

therefore, at first order in x, no circular polarization is generated if we use

definition of the Stokes parameter given in Eq. (3.72).
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Figure 3.9: Evolution of the linear polarization rotation angle θ(η) in the

exponential potential case for gφ = 10−28 eV−1, in terms of the natural loga-

rithm of the scale factor (from log a = −7 to nowadays log a0 = 0) in a flat

CDM model with Ωφ ≃ 0.148.

3.4.3 CMBP constraints on the coupling constant gφ

In the particular approximation in which we neglect backward moving

waves we can constrain the parameter q using the upper limits on isotropic

frequency-independent rotation of the linear polarization plane of CMBP.

Current measures and constraints on the polarization pattern of anisotropies

produce an upper limit on the linear polarization rotation angle of the order

of few degrees (see Tab. 1.1). We now use these constraints and our analytic

expression:

|θ| =
|q|
2

log(1 + zrec)

≃ 1

4

√

3

2π
Ωφ,0 |gφ|Mpl log(1 + zrec) , (3.128)

to obtain an upper bound for q, which can be turned into a upper bound on

gφ; if |θ| . 6 deg, then:

|gφ| . 10−30 eV−1 , (3.129)

where we have assumed: Ωφ,0 ≃ 0.148 and zrec ≃ 1100.
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Figure 3.10: Exponential potential case. E E (a), BB (b), T E (c), T B (d)

and E B (e) angular power spectra for gφ = 10−28 eV−1 (black solid line); the

black dotted line is the standard case in which there is no coupling (θ = 0).

For the BB power spectrum (b) we plot for comparison also the polarization

signal induced by gravitational lensing (black dotted line), and primordial

BB signal if r = 0.1 (blue dot-dashed line). The cosmological parameters of

the flat CDM model used here are Ωb = 0.0462, Ωc = 0.9538 (Ωφ ≃ 0.148),

τ = 0.09, ns = 1, As = 2.3× 10−9, H0 = 72 km s−1 Mpc−1.
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Figure 3.11: Exponential potential case. E E (a), BB (b), T E (c), T B

(d) and E B (e) angular power spectra for gφ = 2 × 10−28 eV−1 (black solid

line); the black dotted line is the standard case in which there is no coupling

(θ = 0). For the BB power spectrum (b) we plot for comparison also the

polarization signal induced by gravitational lensing (black dotted line), and

primordial BB signal if r = 0.1 (blue dot-dashed line). The cosmological

parameters of the flat CDM model used here are Ωb = 0.0462, Ωc = 0.9538

(Ωφ ≃ 0.148), τ = 0.09, ns = 1, As = 2.3× 10−9, H0 = 72 km s−1 Mpc−1.
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The angle of linear polarization θ(η) appearing in Eqs. (1.63) and (1.64)

can be replaced with:

|θ(η)| ≃ 1

2

√

3

2π
Ωφ,0 |gφ|Mpl log

(

η

ηrec

)

, (3.130)

(see Fig. 3.9 for the temporal evolution of the linear polarization angle) and

the polarization power spectra are evaluated using the expression given in

section 1.5, see angular power spectra of Figs. 3.10 and 3.11.

3.5 Ultralight pseudo Nambu-Goldstone bosons

dark energy

Even before acceleration of the universe was discovered, the cosmolog-

ical implications of an universe dominated by ultralight Pseudo Nambu-

Goldstone were studied in Refs. [7, 90] and [91] (see section 2.3 for further

details). This model is still in agreement with observations [92] and can

be probed by a future experiment experiment reaching stage 4 of the Dark

Energy Task Force (DETF) methodology (which includes Planck CMB mea-

surements, future surveys of SNIa, baryon acoustic oscillations, and weak

gravitational lensing). This analysis does not take into account cosmological

birefringence of CMB polarization that we discuss here.

We solve numerically this system of equations from radiation dominated

epoch to nowadays:







φ̈+ 3Hφ̇− M4

f
sin φ

f
= 0

H2 = 8π
3M2

pl

(ρRAD + ρMAT + ρφ)
(3.131)

For M ∼ 10−3 eV and f . Mpl/
√

8π the pseudoscalar field mimes the

cosmological constant contribution.2 Anyway in the future, when the expan-

sion rate of the universe will become smaller, the field will start to oscillate

2There are indications form string theory that f cannot be larger than Mpl/
√

8π [114,

115].
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Figure 3.12: Dotted line: ΩRAD, dashed line: ΩMAT, thin continuous line:

Ωφ, thick continuous line wφ, in terms of the natural logarithm of the scale

factor (from log a ≃ −15 to nowadays log a0 = 0). Fixed M = 8.8 × 10−4

eV, f = Mpl/
√

8π, Θi = 0.87 and Θ̇i = 0.

and the universe will become cold dark matter dominated. Fixed a particular

value for f , M , Θi and Θ̇i in Figs. 3.12 and 3.13 we show the evolution of

the different components of the universe energy density and the cosmological

evolution of the pseudoscalar field (see Figs. 3.14 and 3.15).

The pseudoscalar field becomes dynamical only recently. In oder to esti-

mate the effects of this quick dynamical evolution of the scalar field on the

polarization power spectra we fit the numerical solutions for wφ and Θ with

the following functions:

wφ(η) ≃ b1 exp

[

b2
η

η0

]

+ b3 , (3.132)

Θ(η) ≃ c1 exp

[

c2
η

η0

]

+ c3 . (3.133)

The approximate global symmetry φ→ φ+ const of this pseudo Nambu-

Goldstone model suppresses most of possible interactions with ordinary mat-

ter, but it leaves open one possibility: a pseudoscalar electromagnetic inter-
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Figure 3.13: Dotted line: ΩRAD, dashed line: ΩMAT, thin continuous line:

Ωφ, thick continuous line wφ, in terms of the natural logarithm of the scale

factor (from log a ≃ −15 to nowadays log a0 = 0). Fixed M = 8.5 × 10−4

eV, f = 0.3Mpl/
√

8π, Θi = 0.25 and Θ̇i = 0.

action in which φ couples to E · B [87]; the coupling constant inverse is of

the order of the energy braking scale f :

Lφγ = − 1

4f
φF µνF̃µν . (3.134)

For a wave propagation from η1 to η2 the plane of linear polarization

rotates (in the adiabatic approximation) of:

θ(η1, η2) =
gφ
2

[φ(η2)− φ(η1)]

=
1

2f
[fΘ(η2)− fΘ(η1)]

=
1

2
[Θ(η2)−Θ(η1)] . (3.135)

Assumed θ(ηrec) = 0 we are interested to the time dependent rotation angle:

θ(η) =
1

2
[Θ(η)−Θ(ηrec)] . (3.136)
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Figure 3.14: Left side: evolution of PNGB field φ/f in terms of the natural

logarithm of the scale factor from log a ≃ −15 to nowadays log a0 = 0. Right

side: variation of PNGB field φ/f from radiation era to nowadays (see [92]),

fixed M = 8.8× 10−4 eV, f = Mpl/
√

8π, Θi = 0.87 and Θ̇i = 0.

Fixed M = 8.8 × 10−4 eV, f = Mpl/
√

8π, Θi = 0.87 and Θ̇i = 0 we use

the following fit for the parameter wφ of the equation of state:

wφ(η) = −1 + 5× 10−5 exp

[

6.9
η

η0

]

. (3.137)

The linear polarization rotation angle is described by the function:

θ(η) = 7× 10−5 exp

[

7.4
η

η0

]

rad . (3.138)

see Fig. 3.16. Using this expression we evaluate the linear polarization

angular power spectra E E (see Fig. 3.18a), BB (see Fig. 3.18b), T E (see

Fig. 3.18c), T B (see Figs. 3.18d), and E B (see Figs. 3.18e).

Fixed M = 8.5 × 10−4 eV, f = 0.3Mpl/
√

8π, Θi = 0.25 and Θ̇i = 0 we

use the following fit for the parameter wφ of the equation of state:

wφ(η) = −1 + 6× 10−8 exp

[

16
η

η0

]

. (3.139)

The linear polarization rotation angle is described by the function:

θ(η) = 2× 10−4 exp

[

9.3
η

η0

]

rad . (3.140)
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Figure 3.15: Left side: evolution of PNGB field φ/f in terms of the natural

logarithm of the scale factor from log a ≃ −15 to nowadays log a0 = 0. Right

side: variation of PNGB field φ/f from radiation era to nowadays (see [92]),

fixed M = 8.5× 10−4 eV, f = 0.3Mpl/
√

8π, Θi = 0.25 and Θ̇i = 0.

see Fig. 3.17. Using this expression we evaluate the linear polarization an-

gular power spectra E E (see Fig. 3.19a), BB (see Fig. 3.19b), T E (see

Fig. 3.19c), T B (see Figs. 3.19d), and E B (see Figs. 3.19e).

In this case of a pseudoscalar field acting as dark enrergy φ becomes

dynamical only very recently, so there is a big difference in considering a

dynamical or a constant rotation angle. Power spectra modifications can be

easily overestimated if the rotation of linear polarization is simply described

by a time independent rotation angle. Howerver, at least in some cases (e.g.

M = 8.5× 10−4 eV, f = 0.3Mpl/
√

8π, Θi = 0.25 and Θ̇i = 0), power spectra

modifications are almost of the same order of current constraints (see Fig.

3.20 for T B and E B power spectra).

Complementary constraints on dark energy models can be obtained look-

ing at behavior of perturbations. Besides the background evolution such

dark energy perturbations are therefore a key point to distinguish the cos-

mological constant Λ from others dark energy models [116]. We define the
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Figure 3.16: Evolution of the linear polarization rotation angle θ(η) for a

ultralight pseudo Nambu-Goldstone boson acting as dark energy, in terms

of the natural logarithm of the scale factor (from log a = −7 to nowadays

log a0 = 0) in a ΛCDM model with ΩMAT = 0.3. Fixed M = 8.8× 10−4 eV,

f = Mpl/
√

8π, Θi = 0.87 and Θ̇i = 0.
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Figure 3.17: Evolution of the linear polarization rotation angle θ(η) for a

ultralight pseudo Nambu-Goldstone boson acting as dark energy, in terms

of the natural logarithm of the scale factor (from log a = −7 to nowadays

log a0 = 0) in a ΛCDM model with ΩMAT = 0.3. Fixed M = 8.5× 10−4 eV,

f = 0.3Mpl/
√

8π, Θi = 0.25 and Θ̇i = 0.
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pressure/density ratio, the density perturbation and velocity potential as:

wφ ≡
pφ
ρφ

=
φ̇2

2
− V (φ)

φ̇2

2
+ V (φ)

, (3.141)

δφ ≡
δρφ
ρφ

=
φ̇δφ̇+ V,φδφ
φ̇2

2
+ V (φ)

, (3.142)

θφ ≡
k2δφ

aφ̇
. (3.143)

In order to evolve dark energy perturbations it is necessary to specify also

pressure perturbations [117]:

δpφ = c2φδρφ + 3H(1 + wφ)
θφρφ
k2

(

c2φ −
ṗφ
ρ̇φ

)

= c2φδρφ + 3H(1 + wφ)
θφρφ
k2

[

c2φ − wφ +
ẇφ

3H(1 + wφ)

]

, (3.144)

where we have used ρ̇φ = −3Hρφ(1 + wφ).

The equations for the evolution of perturbations in the synchronous gauge

(see section 1.5) are [25]:

δ̇φ = − ḣ
2
(1 + wφ)−

θφ
a

(1 + wφ)− 3H(c2φ − w)δφ

−9H2(1 + wφ)
θφ
k2

[

c2φ − w +
ẇφ

3H(1 + wφ)

]

, (3.145)

θ̇φ = −H(1− 3c2φ)θφ +
k2

1 + wφ

c2φ
a
δφ . (3.146)

used
δpφ

δρφ
δφ =

δpφ

ρφ
; in terms of derivative respect to conformal time η:

δ′φ = −h
′

2
(1 + wφ)− θφ(1 + wφ)− 3H(c2φ − w)δφ

−9H2(1 + wφ)
θφ
k2

[

c2φ − wφ +
w′
φ

3H(1 + wφ)

]

, (3.147)

θ′φ = −H(1− 3c2φ)θφ +
k2

1 + wφ
c2φδφ . (3.148)

In the modified Boltzmann code it is necessary to insert the correct initial

conditions for perturbations. In Fig. 3.12 we see that the parameter wφ
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departs from −1 (cosmological constant case) at low z, we obtain an over-

estimate of the effect of dark energy perturbations considering wφ = w0. In

this case the equations for evolution of perturbations are:

δ′φ = −(1 + wφ)

(

h′

2
+ θφ

)

− 3H(c2φ − w)δφ

−9H2(1 + wφ)
θφ
k2

(

c2φ − wφ
)

, (3.149)

θ′φ = −H(1− 3c2φ)θφ +
k2

1 + wφ
c2φδφ . (3.150)

Expanding the perturbations in power series of kη:

δφ = A (kη)2 , (3.151)

θφ = B (kη)3 , (3.152)

h = C (kη)2 , (3.153)

and remembering that in radiation dominated universe H = η−1, Eq. (3.149)

becomes:

3Bk3η2 = −(1− 3c2φ)Bk
3η2 +

c2φk
2

1 + wφ
A (kη)2 , (3.154)

therefore:

B =
Ac2φk

(1 + wφ)(4− 3c2φ)
. (3.155)

Inserting these relations in Eq. (3.150) we obtain:

A = −
C(1 + wφ)(4− 3c2φ)

8 + 6c2φ − 12wφ
. (3.156)

The initial conditions for dark energy perturbations used in the modified

Boltzmann code are:

δφ = −
C(1 + wφ)(4− 3c2φ)

8 + 6c2φ − 12wφ
C (kη)2 , (3.157)

θφ = −
c2φ

8 + 6c2φ − 12wφ
Ck4η3 , (3.158)

where C is related to initial conditions for the synchronous gauge [25].
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3.6 Comparison with constant rotation angle

approximation

In this section we compare the angular power spectra obtained modify-

ing the public code CAMB [4] considering the correct dynamic of the pseu-

doscalar field (θ = θ(η)) as described in section 1.5, with the ones obtained in

the constant rotation angle approximation (θ = const) for the three different

potential considered in the previous sections:

• oscillating behavior: Figs. 3.21 and 3.22;

• monotonic behavior: Figs. 3.23 and 3.24;

• ultralight pseudo Nambu-Goldstone bosons acting as dark energy: Fig. 3.25

and 3.26.

In section 1.5 we have already shown how the power spectra in the con-

stant rotation angle approximation [Eqs. (1.72)-(1.76)] can be obtained from

the general expressions [Eqs. (1.65)-(1.69)].

Power spectrum modifications obtained starting directly form the Boltz-

mann equations and taking into account the temporal evolution of the pseu-

doscalar field are usually smaller than effects predicted considering a constant

rotation angle equal to the total rotation angle from last scattering to nowa-

days. If the cosmological pseudoscalar field evolves quickly, then the constant

rotation angle approximation clearly leads to an overestimate of the effects.

It is important to stress that the constant rotation angle approximation

is clearly an operative approximation. The additional term in the Boltzmann

equations concerning a physical mechanism rotating the linear polarization

plane is (see Eq. 1.54):

∓i2θ′(η)∆Q±iU(k, η) . (3.159)

therefore for θ = const the new term vanishes.
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Figure 3.18: Ultralight pseudo Nambu-Goldstone bosons case fixed M =

8.8× 10−4 eV, f = Mpl/
√

8π, Θi = 0.87 and Θ̇i = 0. E E (a), BB (b), T E

(c), T B (d) and E B (e) angular power spectra (black solid line), approx-

imating the rotation angle with the constant, and for θ = 0 (black dotted

line). For the BB power spectrum (b) we plot for comparison also the polar-

ization signal induced by gravitational lensing (black dotted line), and BB

signal induced by lensing (black dotted line). The cosmological parameters of

the flat ΛCDM model used here are Ωb h
2 = 0.022, Ωc h

2 = 0.123, τ = 0.09,

ns = 1, As = 2.3× 10−9, H0 = 100h km s−1 Mpc−1 = 72 km s−1 Mpc−1.
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Figure 3.19: Ultralight pseudo Nambu-Goldstone bosons case fixed M =

8.5 × 10−4 eV, f = 0.3Mpl/
√

8π, Θi = 0.25 and Θ̇i = 0. E E (a), BB

(b), T E (c), T B (d) and E B (e) angular power spectra (black solid line),

approximating the rotation angle with the constant, and for θ = 0 (black

dotted line). For the BB power spectrum (b) we plot for comparison also

the polarization signal induced by gravitational lensing (black dotted line),

and BB signal induced by lensing (black dotted line). The cosmological

parameters of the flat ΛCDM model used here are Ωb h
2 = 0.022, Ωc h

2 =

0.123, τ = 0.09, ns = 1, As = 2.3 × 10−9, H0 = 100h km s−1 Mpc−1 =

72 km s−1 Mpc−1.
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Figure 3.21: Cosine-type potential case. E E (a), BB (b), T E (c), T B (d)

and E B (e) angular power spectra for m = 10−22 eV and gφ = 5×10−21 eV−1

(black solid line) and approximating the rotation angle with the constant

value θrec (red dashed line). The cosmological parameters of the flat ΛCDM

model used here are Ωb h
2 = 0.022, Ωc h

2 = 0.123, τ = 0.09, ns = 1, As =

2.3× 10−9, H0 = 100h km s−1 Mpc−1 = 72 km s−1 Mpc−1.
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Figure 3.22: Cosine-type potential case. E E (a), BB (b), T E (c), T B (d)

and E B (e) angular power spectra for m = 10−22 eV and gφ = 1×10−20 eV−1

(black solid line) and approximating the rotation angle with the constant

value θrec (red dashed line). The cosmological parameters of the flat ΛCDM

model used here are Ωb h
2 = 0.022, Ωc h

2 = 0.123, τ = 0.09, ns = 1, As =

2.3× 10−9, H0 = 100h km s−1 Mpc−1 = 72 km s−1 Mpc−1.
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Figure 3.23: Exponential potential case. E E (a), BB (b), T E (c), T B

(d) and E B (e) angular power spectra for gφ = 10−28 eV−1 (black solid

line) and approximating the rotation angle with the constant value θrec (red

dashed line); the black dotted line is the standard case in which there is no

coupling. The cosmological parameters of the flat CDM model used here are

Ωb = 0.0462, Ωc = 0.9538 (Ωφ ≃ 0.148), τ = 0.09, ns = 1, As = 2.3 × 10−9,

H0 = 72 km s−1 Mpc−1.
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Figure 3.24: Exponential potential case. E E (a), BB (b), T E (c), T B

(d) and E B (e) angular power spectra for gφ = 2 × 10−28 eV−1 (black solid

line) and approximating the rotation angle with the constant value θrec (red

dashed line); the black dotted line is the standard case in which there is no

coupling. The cosmological parameters of the flat CDM model used here are

Ωb = 0.0462, Ωc = 0.9538 (Ωφ ≃ 0.148), τ = 0.09, ns = 1, As = 2.3 × 10−9,

H0 = 72 km s−1 Mpc−1.



Pseudoscalar fields - coupling with photons 87

Figure 3.25: Ultralight pseudo Nambu-Goldstone bosons case fixed M =

8.8 × 10−4 eV, f = Mpl/
√

8π, Θi = 0.87 and Θ̇i = 0. E E (a), BB

(b), T E (c), T B (d) and E B (e) angular power spectra (black solid line),

approximating the rotation angle with the constant value θrec (red dashed

line). The cosmological parameters of the flat ΛCDM model used here

are Ωb h
2 = 0.022, Ωc h

2 = 0.123, τ = 0.09, ns = 1, As = 2.3 × 10−9,

H0 = 100h km s−1 Mpc−1 = 72 km s−1 Mpc−1.
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Figure 3.26: Ultralight pseudo Nambu-Goldstone bosons case fixed M =

8.5 × 10−4 eV, f = 0.3Mpl/
√

8π, Θi = 0.25 and Θ̇i = 0. E E (a), BB

(b), T E (c), T B (d) and E B (e) angular power spectra (black solid line),

approximating the rotation angle with the constant value θrec (red dashed

line). The cosmological parameters of the flat ΛCDM model used here are

Ωb h
2 = 0.022, Ωc h

2 = 0.123, τ = 0.09, ns = 1, As = 2.3 × 10−9, H0 =

100h km s−1 Mpc−1 = 72 km s−1 Mpc−1.



Chapter 4

Ultrahigh-energy cosmic rays

Up to now we mainly focused on Standard Model extensions that can

be tested at small energies, in particular photon coupling with pseudoscalar

particles. Other extensions predict effects visible mainly at high energy. In

this second part of the thesis we consider ultrahigh-energy cosmic rays and

quantum gravity inspired modifications of the QED dispersion relations.

4.1 Introduction

Cosmic rays are observed today in an energy range extending over almost

twelve decades in energy (from hundreds of MeV to 1020 eV) and more than

thirty orders of magnitude in flux [118, 119].

At low energies the energy spectrum (Fig. 4.1) changes with variations

in solar activity, while it behaves as a power-law at energies above GeV:

∝ E−γ with γ ∼ 2.7. At energy E ∼ 4× 1015 eV a “knee” is observed in the

spectrum, which becomes steeper: the power law index γ increases from 2.7

to 3.0. The slope changes again at the so called “ankle” (E ∼ 5 × 1018 eV)

where the spectrum flatten again to a power law index γ ∼ 2.8.

Here we are interested in particular in ultrahigh-energy cosmic rays, par-

ticles with energy higher than EeV ≡ 1018 eV.

In the conventional “bottom-up” scenario all high energy particles are

89
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Figure 4.1: Cosmic rays energy spectrum. Figure taken from [119].

accelerated in astrophysical environments, typically in a magnetized astro-

physical shock wave. In order to be accelerated particles has to be confined

in accelerators, so the maximal attainable energy is given by the requirement

that the gyroradius rg of a particle of energy E, momentum p, and charge

eZ is smaller than the size R of the magnetized region:

rg ≡
p

ezB
< R , (4.1)

where B is the component of the magnetic field perpendicular to the motion

of the particle. For ultra-relativistic particles E ≃ p, so the following upper
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limit on attainable energy is obtained [120]:

E < 1018 Z

(

R

kpc

)(

B

µG

)

eV . (4.2)

Note that this is only an upper limit since we are neglecting the finite life

time of the accelerator and energy loss processes (synchrotron radiation, pro-

duction of secondary particles, . . . ).

Anyway at ultrahigh-energies even more powerful acceleration processes

than shock acceleration seem to be needed, and the explanation of the pro-

duction mechanism for these events draws a lot of theoretical interest.

4.2 Propagation and interactions

In this section main concepts concerning cosmic rays propagation are

summarized following Ref. [118, 119].

We consider the propagation of a cosmic ray of energy E, momentum p,

and mass m through a background of particles of energy ε, momentum pb,

and mass mb. The squared center of mass energy is:

s = (E + ε)2 − (p + pb)2

= m2 +m2
b + 2Eǫ (1− µββb) , (4.3)

where µ is the cosine of the angle between p and pb, β2 ≡ 1 −m2/E2, and

β2
b ≡ 1−m2

b/ε
2 .

The energy loss of the cosmic rays can be described through the interac-

tion length l(E):

1

l(E)
≡
∫

dε nb(ε)

∫ 1

−1

dµ
1− µββb

2
σ(s) , (4.4)

or through the energy attenuation length lE(E):

1

lE(E)
≡
∫

dε nb(ε)

∫ 1

−1

dµ
1− µββb

2
σ(s)η(s) , (4.5)

where nb(ε) is the number density of background particles per unit energy

at energy ε, σ(s) is the cross section of the particular interaction considered
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between cosmic ray and background particle, and η(s) is the fraction of the

cosmic ray energy transfered to the recoiling final state particle of interest

(inelasticity):

η(E) = 1− 1

σ(s)

∫

dE ′E ′ dσ

dE ′
(E ′, s) , (4.6)

E ′ is the energy of the recoiling particle in units of the incoming cosmic ray

energy E.

If deflections from linear propagation are negligible (small deflection an-

gles) the evolution of the number densities for a set of species ni(E), for an

isotropic background distribution, are given by one dimensional Boltzmann

equations (transport equation):

∂ni(E)

∂t
= Φi(E)

−ni(E)

∫

dε nb(ε)

∫ 1

−1

dµ
1− µβbβ

2

∑

j

σi→j (s = Eε(1− µβbβi))

+

∫

dE ′

∫

dε nb(ε)

∫ 1

−1

dµ
∑

j

1− µβbβj
2

nj(E
′)
dσj→i

dE
(s = Eε(1− µβbβj), E) ,

(4.7)

where Φi(E) is the injection spectrum.

Assuming a continuous energy loss rate b(E) ≡ dE
dt

= E
lE(E)

the density of

the leading particle is given by the diffusion equation:

∂n(E)

∂t
= φ(E)− ∂

∂E
[b(E)n(E)] . (4.8)

The differential flux today at energy E is:

j(E) =
1

4π

∫ t0

0

dt′
1

(1 + z)3

dEi(E, z)

dE
Φ (Ei (E, z) , z) , (4.9)

where Ei (E, z) is the particle energy at injection redshift z in the continuous

energy loss approximation when it reaches us with energy E:

Ei(E, z) = E +

∫ ti

t0

b(E)dt . (4.10)
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In terms of redshift z the Hubble parameter is defined as H = (z + 1)−1 dz
dt

,

so:

dt =
dz

(1 + z)H(z)
=

dz

(1 + z)H0

[

ΩMAT (1 + z)3 + ΩRAD (1 + z)4 + ΩΛ

]1/2
,

(4.11)

where we have used the Friedmann equation for a spatially flat universe with

matter energy density parameter ΩMAT, radiation energy density parameter

ΩRAD and cosmological constant energy density parameter ΩΛ. So, using the

relation between cosmic time and redshift given in Eq. (4.11), the expressions

for the differential flux and for the energy at injection redshift become:

j(E) =
1

4π

∫ ∞

0

dz
1

(1 + z)4H

dEi(E, z)

dE
Φ (Ei (E, z) , z) , (4.12)

Ei (E, z)− E =

∫ z

0

|b(E)| dt
dz
dz . (4.13)

If lE(E) is much smaller than the horizon size, then the redshift and evolution

effects can be ignored, for an homogeneous production spectrum Φ(E), the

differential flux is:

j(E) ≃ Φ(E)lE(E) . (4.14)

4.2.1 Nucleons and nuclei

The energy loss of ultrahigh energy nucleons and nuclei during propaga-

tion is mainly due to collision with photons of background radiation.

In 1966, soon after the discovery of the Cosmic Microwave Background,

K. Greisen [121], G. T. Zatsepin V. A. Kuzmin [122] studied the effect of this

low energy photon background on propagation of UHECR. When a nucleons

with energy E, momentum p and mass m propagates though a background of

low energy photons with energy ε and momentum ω photo-pion production

(N γb → N ′ π) is kinematically possible if:

s ≥ (mN′ +mπ)
2

(E + ε)2 − (p + ω)2 ≥ (mN′ +mπ)
2

m2
N + 2Eε (1− µ) ≥ (mN′ +mπ)

2 .
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For an head on collision of the initial particles µ = cos π = −1, the threshold

energy for the reaction N γb → N π0 is:

E ≃ 2mNmπ +m2
π

4ε
≃ 7× 1019

(

10−3 eV

ε

)

eV . (4.15)

Above this energy the nucleons interaction length quickly drops below 10 Mpc

decreasing of more than two orders in magnitude compared to lower energies

(Greisen-Zatsepin-Kuzmin cutoff). Assuming a photo-pion production cross

section of the order σNγ ∼ 100µb and nCMB ∼ 410 cm−3 for the the density

of CMB photons, a rough estimate of the interaction length is: lGZK ∼
(σNγnCMB)−1 ∼ 2× 1025 cm = 8 Mpc .

The decay of neutral pions into photons is the main sources of UHE

photons in more conventional cosmic rays models. Other more exotic non-

acceleration models predict a certain flux of UHE photons due for example to

annihilation of primordial relics or super heavy dark matter. Instead charged

pions decay contributes to the neutrino’s flux.

At lower energies the main energy loss process is pair production by pro-

tons (p γb → p e+ e−) with a kinematic threshold of:

E ≃ me(mp +me)

ε
≃ 5× 1017

(

10−3 eV

ε

)

eV . (4.16)

Propagation of neutrons below 1020 eV is strongly limited by β−decay

(n→ p e− ν̄e); the neutron range of propagation Rn is of the order of:

Rn =
τnE

mn

≃ 0.9

(

E

1020 eV

)

Mpc . (4.17)

The main energy losses processes for ultrahigh energy nucleons are photo-

disintegration in the interaction with low energy photons with a interaction

length of the orders of 10 Mpc (A + γb → A′A′′) and the same energy

loss process of nucleons, e.g. electron-positron pair production (Z + γb →
Z e+ e−).



Ultrahigh-energy cosmic rays 95

4.2.2 Photons and electrons

Also in the electromagnetic sector the main energy loss mechanism is due

to interaction with low energy background photons, the leading processes

are:

1. pair production (γ γb → e+ e−);

2. inverse Compton scattering (e± γb → e± γ);

3. synchrotron radiation.

The kinematic threshold for pair production is:

s ≥ (2me)
2

2Eε(1− µ) ≥ 4m2
e , (4.18)

so, for an head on collision (µ = −1):

E ≥ m2
e

ε
≃ 2.6× 1014

(

10−3 eV

ε

)

eV . (4.19)

The total cross section evaluated from QED is well known and is given by

(e.g. see [123]):

σPP =
3

16
σT
(

1− β2
)

[

(

3− β4
)

ln
1 + β

1− β − 2β
(

2− β2
)

]

, (4.20)

where σT is the Thomson cross section and β the velocity of the outgoing

e+ e− pair in the center of mass frame:

σT =
e4

6πm2
e

∼ 0.6 b and β =

√

1− 4m2
e

s
.

The total cross section peaks near the threshold, and in fact right at the

threshold for β → 0 (Thomson regime):

σPP(β → 0) ≃ 3

8
σTβ . (4.21)

The most effective targets for photons of energy E are background photons

of energy ε ≃ m2
e/E. So, for ultrahigh-energy photons the the universal radio
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background is very important, unfortunately it is difficult to distinguish the

galactic and extragalactic components and this give rise to some uncertainties

on the predicted interaction lengths.

In the extreme Klein-Nishina limit (β → 1 or s ≫ m2
e) β ≃ 1 − 2m2

e/s,

so:

σPP(β → 1) ≃ 3

4
σT
m2

e

s

(

2 ln
s

m2
e

− 2

)

∝ 1

s
ln s ∝ 1

E
. (4.22)

Note that if the energy E of the incoming photon increases, then also the

mean free path increases (Klein-Nishina suppression). In this limit either e+

or e− carries most of the initial energy.

Inverse Compton scattering has no threshold and the total cross sec-

tion is given by (e.g. see [123]):

σICS =
3

8
σT
m2

e

sβ

[

2

β(1 + β)

(

2 + 2β − β2 − 2β3
)

− 1

β2

(

2− 3β2 − β3
)

ln
1 + β

1− β

]

,

(4.23)

here β is the velocity of the outgoing e±: β = (s−m2
e) / (s+m2

e). Most

of the energy range of interest is in the extreme Klein-Nishina limit since

σICS(β → 0) ≃ 0, instead:

σICS(β → 1) ≃ 3

8
σT
m2

e

s

(

1 + 2 ln
2

1− β

)

∝ 1

s
ln s ∝ 1

E
. (4.24)

In this limit most of the electron energy goes to the photon; the power

transfered from e± to γ for interaction is:

PICS = −dE
dt

= − 2

9π
uγ

(

e

me

)4

p2 , (4.25)

where p is the electron momentum and uγ is the energy density of low energy

photons.

In the extreme Klein-Nishina limit when ultrahigh-energy photons inter-

act on background photons an electron positron pair is created where either

e+ or e− carries most of the initial energy. The leading particle then under-

goes inverse Compton scattering loosing almost all its energy, since inelas-

ticity for inverse Compton scattering is larger than 90%, and the scattered
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background photon carries out almost all the energy of the initial UHE pho-

ton. This two steps process is called (electromagnetic cascade) and plays an

important role on the propagation of ultrahigh-energy photons and electrons.

The effective penetration length of the cascade is larger than just the mean

free path of the single interactions, so the ultrahigh-energy flux can be con-

siderably larger than the flux predicted considering only the absorption due

to pair production.

Long range extragalactic magnetic fields affect the propagation of UHECR

via synchrotron radiation; the expression of the total power emitted is

very similar to Eq. (4.25) for inverse Compton scattering:

PSYN = −dE
dt

= − 2

9π
uB

(

e

me

)4

p2 , (4.26)

where uB = B2/8π is the energy density of the magnetic field B. Sufficiently

strong extragalactic magnetic fields can inhibit the development of the elec-

tromagnetic cascade if the synchrotron cooling time scale is smaller than the

time scale of inverse Compton scattering.

Higher order processes with more than two final particles become impor-

tant at higher energies. Double pair production (γ γb → e+ e− e+ e−) begins

to dominate on pair production above 1022 eV; for electrons the contribution

of triplet pair production (e γb → e e+ e−) is negligible up to 1022 eV.

4.3 Observational data

UHECRs cannot be detected directly because their flux is too low (less

than one particle per km2 per year), and even if one of them crossed a detector

it would be very difficult do determine its energy or composition. Since the

pioneering works of Pierre Victor Auger in the thirties UHECR have been

detected using their interactions with the Earth’s atmosphere.

Primary UHECRs interact with the upper layers of the atmosphere and

generate extensive air-showers, cascades of secondary particles, partly ab-

sorbed in the atmosphere and partly reaching the ground. These air-showers
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can be detected through surface detectors sampling a small amount of the bil-

lions of particles of the shower reaching the ground, or through fluorescence

telescopes measuring the energy deposited in the atmosphere by shower’s

particles (nitrogen atoms excited by charged particles of the shower emit a

spectrum of ultra-violet fluorescence light while returning to ground state).

Experiments combining both detection techniques are called hybrid detectors:

the surface detectors observe the time development of a transverse section

of the shower, while fluorescence telescopes observe the air-shower longitudi-

nally.

All the informations collected by these detectors must be analysed in

order to reconstruct the properties of the primary particle which originated

the shower.

• The energy of the primary particle.

UHECR energy spectrum should dramatically steepen above EGZK ∼
5× 1019 eV for any distribution of protons and nuclei sources, but the

HiRes (High Resolution Fly’s Eye detector) and the AGASA (Akeno

Giant Air-Shower Array) experiments gave conflict results on the ex-

istence of the GZK cutoff. A cutoff is consistent with the few events

above 1020 eV seen by HiRes [124, 125], but there is a tension with

the 11 events above 1020 eV detected by AGASA [126, 127]. The first

data releases of the Pierre Auger Observatory seem to to support the

existence of a cutoff [128].

• The direction of the primary particle.

Before 2007 arrival directions appeared approximately isotropic, but

now there are some claims of correlation with large scale structures

[129].

• The nature (chemical composition) of the primary particle.

The chemical composition of the primary particles is mainly recon-

structed looking at the number of muons detected in ground arrays

(heavier is the primary nucleus more muons are produced Nµ ∝ A)
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and observing the atmospheric depth of the shower maximum (Xmax)

in fluoressence telescopes.

In particular showers initiated by UHE photons develop differently from

showers induced by nuclear primaries. Since the the number of particles

produced in electromagnetic interactions is lower compared to hadronic

ones, the air showers generated by photons reach shower maximum

Xmax at much greater depth than their nuclear counterpart. Particu-

larly it is already possible to put upper limits on the fraction of photons

on the 10% level at energies above 1019 eV using Auger hybrid observa-

tions [9], AGASA [130, 131, 132] and Yakutsk [132, 133] data. Above

1020 eV, the current upper limit is ∼ 40% [132]. In fact, the latest

upper limits from the surface detector data of the Pierre Auger obser-

vatory are already at the level of ∼ 2% above 1019 eV [134, 135]. In the

next few year these constraints will improve with statistics: The Pierre

Auger experiment can reach a sensitivity of ∼ 0.3% within a few years

and ∼ 0.03% within 20 years around 1019 eV, and a sensitivity at the

10% level around 1020 eV within 20 years [136].





Chapter 5

Lorentz invariance violation -

an introduction

We present in this chapter a very brief and highly incomplete introduction

to violation of Lorentz invariance; for extensive review see Refs. [137, 138,

139, 140] and references therein.

5.1 Introduction

One of the most important problems in theoretical physics concerns the

lack of a unified theory for interactions and in particular the quest for a

quantum gravity theory.

Direct observations of quantum gravity effects are difficult to obtain be-

cause of the big difference between terrestrial energies and the natural quan-

tum gravity scale (Mpl ≃ 1.22×1028 eV). However in the last years there was

an effort not only in developing new theoretical models for quantum grav-

ity, but also an effort in studying observational phenomena where quantum

gravity phenomena could play a role (quantum gravity phenomenology). A

partial list of such “windows on quantum gravity” is [141]:

• deviations from Newton’s law at very short distances;

• Planck-scale fuzziness of spacetime;
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• possible production in TeV-scale quantum gravity scenarios of mini

black holes at colliders or in cosmic rays;

• quantum gravity induced violations of discrete symmetries of the Stan-

dard Model, as well as spacetime symmetries.

Here we will focus in particular on quantum gravity induced violations of the

Lorentz symmetry [137]:

• cumulative effects: long baseline dispersion and vacuum birefringence

(signals from γ-ray bursts, active galactic nuclei, pulsars, galaxies . . . );

• new threshold reactions (photon decay, vacuum Čerenkov effect, . . . );

• shifted existing threshold reactions (GZK cutoff, . . . );

• Lorentz violation induced decays not characterized by a threshold (pho-

ton splitting, . . . );

• maximal velocity (synchrotron peak from supernova remnants, . . . ).

Different quantum gravity models suggest that Lorentz violation is not

exact, but there is no firm calculated prediction from any model for the size

of the violation [142].

The most common systematic approach for studying Lorentz violation

is to construct a Lagrangian that contains the Lorentz violating operators

of interest. In the early nineties S. M. Carroll, G. B. Field and R. Jackiw

studied the Chern-Simons lagrangian in 3 + 1 dimensions [102]:

LCS ∝ kµAνF̃
µν , (5.1)

the new term is gauge invariant but not Lorentz invariant and produces a

frequency independent rotation of the plane of linear polarization [33] (see

section 3.2.2). Almost ten years later D. Colladay and V. A. Kostelecky [143]

proposed a systematic extension of the Standard Model of particle physics

incorporating all possible Lorentz violations in the renormalizable sector.
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That model provided a framework for computing in effective field theory the

observable consequences for many experiments/observations. The minimal

Standard Model extension (mSME) proposed in [143] consists of the Standard

Model of particle physics plus all Lorentz violating operators (with mass

dimension ≤ 4) that can be written without changing the field content or

violating the gauge symmetry. The leading terms in the QED sector are the:

• dimension 3 terms:

−baψ̄γ5γ
aψ − 1

2
Habψ̄σ

abψ , (5.2)

• dimension 4 terms:

−1

4
kabcdFabFcd +

i

2
ψ̄ (cab + dabγ5) γ

a←→D bψ , (5.3)

the dimension one coefficients ba, Hab and the dimensionless kabcd, cab, dab are

constant tensors characterizing the Lorentz violation. If rotation invariance

is preserved they are all constructed from a given unit timelike vector ua and

the Minkowski metric ηab (ba ∝ ua, Hab = 0, kabcd ∝ u[aηb][cud], cab ∝ uaub,

dab ∝ uaub).

R. C. Myers and M. Pospelov [144] started the study of Lorentz violation

effective field theory in higher mass dimension sector (see also Ref. [142] for

further developments). They considered in particular dimension five oper-

ators where Lorentz violation is described by a background four-vector ua

(u · u = 1). The constructed operators satisfy six generic criteria [144]:

1. quadratic in the same field;

2. one more derivative than the usual kinetic term;

3. gauge invariant;

4. Lorentz invariant except for the appearance of ua;

5. not reducible to lower dimension operators by the equation of motion;
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6. not reducible to a total derivative.

Conditions (2) and (5) ensure that these operators lead to O(E3) modifi-

cations (rather than O(E2m) and O(Em2) - m is the particle mass).We

also assume that these operators are suppressed by a factor 1/Mpl and that

m,E ≪Mpl.

For vector particles we consider the U(1) gauge field, the leading kinetic

term is: L0 = 1
4
FµνF

µν , the equations of motion are Maxwell equations

(∂aF
ab = 0), fixed the gauge ∂ · A = 0: 2Aa = 0 (or k2Aa(k) = 0 in

momentum space). Remembering Maxwell equations and Bianchi identities

(∂[aFbc] = 0) one finds that there is only one term producing a nontrivial

modification of the dispersion relation:

• dimension 5 terms (photons):

− ξ

2Mpl

umFma (u · ∂)
(

unF̃
na
)

. (5.4)

The equation of motion becomes:

2Aa =
ξ

2Mpl

ǫabcdu
b (u · ∂)2 F cd . (5.5)

For a photons moving along the z axis with ka = (E, 0, 0, p), the equation

for transverse polarization along the x and y axis in the Lorentz frame where

ua = (1, 0, 0, 0) is:

(

E2 − p2 ∓ ξ

Mplp3

)

(ǫx ± iǫy) = 0 , (5.6)

so, we have the following Lorentz invariance violating dispersion relation for

photons:

E2
± = p2 ± ξ

Mpl

p3 . (5.7)

Photons of different polarization have opposite Lorentz violating term.

For fermions we work with Dirac spinor, the leading kinetic term is L0 =

ψ̄
(

i /∂ −m
)

ψ. There are only two terms with the desired form:
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• dimension 5 terms (electrons):

− 1

2Mpl

umψ̄γm (ζ1 + ζ2γ5) (u · ∂)2 ψ . (5.8)

The modified dispersion relations are:

E2
± = p2 +m2 +

2 (ζ1 ± ζ2)
Mpl

p3 , (5.9)

where ± refer to the electron helicity. If we write η± = 2 (ζ1 ± ζ2) for electron

Lorentz violation parameters, those for positrons are:

ηpositron
± = −ηelectron

∓ , (5.10)

since a positron of energy, momentum, and spin angular momentum (E, p, J)

correspond to the absence of an electron with (−E, −p, −J).

All this dimension five terms violate CPT symmetry as well as Lorentz

invariance, they would be forbidden if CPT were preserved.

A simpler approach to a phenomenological description of Lorentz vio-

lation is via deformation of the dispersion relations. Two mass scales are

introduced: M ∼Mpl the scale of quantum gravity and µi a particle physics

mass scale (possibly the mass of the particle). If rotation invariance is pre-

served the dispersion relation for the particle i can be written as:

E2
i = m2

i + p2
i + p2

i fi (Ei, pi;µi,M) , (5.11)

where Ei and pi are the energy and the momentum of the particle. Lorentz

violation parameters depend on the particle type and indeed it turns out

that they must sometimes be different but related in certain ways for par-

ticles with opposite helicity/polarization and for particles and antiparticles.

A dispersion relation that is not boost invariant can hold only in one frame;

we assume that this frame coincides with that of the cosmic microwave back-

ground.
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5.2 Astrophysical constraints on QED Lorentz

violation

Today dimension three and four operators are already tightly constrained:

O(10−46), O(10−27) while we would expect them of O(1) (for a compilation

see, e. g., Ref. [145]). E.g. see Ref. [146] for CMB polarization birefringence

constraints on Lorentz invariance violating terms for photons. This is why

much attention was focused on dimension 5 and higher non-renormalizable

operators (which are already Planck suppressed). In this section we will focus

mainly on dimension five Lorentz violation operators.

Time of flight. Photon time of flight constraints limit differences in the

arrival time at Earth for photons originating in a distant event. The arrival

time difference for wavevectors k1 and k2 is:

∆t = ξ1
k2 − k1

Mpl

d . (5.12)

It increases with the distance of the source d and with the energy difference.

A possible problem is that it is not known if photons of different energies

are produced simultaneously; however, since time of flight is a propagation

effect, a survey at different redshifts can separate Lorentz violation effect

from intrinsic source effect. Constraints of the order |ξ1| < O(102) were

obtained using the high energy radiation emitted by some γ-ray bursts and

active galaxies [147].

Birefringence. Birefringence constraints arise from the fact that Lorentz

violation parameters for right and left circular polarized photons are oppo-

site for dimension five Lorentz violation operators. Dispersion relation for

photons introduced in Eq. (5.7) leads to a rotation of the linear polarization

plane through the frequency dependent angle:

θ(k, d) =
ω+(k)− ω−(k)

2
≃ ξ1

k2

2Mpl

d . (5.13)

Since detectors have a finite bandwidth (k1 ≤ E ≤ k2) an order of magnitude

constraint can be obtained from the fact that if the angle of polarization



Lorentz invariance violation - an introduction 107

rotation were different more than π/2 over the detector energy range, then

the instantaneous polarization at the detector would fluctuate sufficiently

for the net polarization of signal to be suppressed well below the observable

value [148]:

ξ1 .
πMpl

(k2
2 − k2

1) d
. (5.14)

A more refined limit can be obtained by calculating the maximum observable

polarization angle. In Ref. [149] recent polarimetric observations of the Crab

Nebula in the hard X-ray band by INTEGRAL [150] showing the absence

of vacuum birefringence effects were used to constrain Lorentz violation for

photons |ξ1| < 9× 10−10 at 3σ confidence level. The same considerations ap-

plied to optical or UV photons of the afterglow from distant γ-ray bursts lead

to the constraint |ξ1| < 2× 10−7 [152]. A former, more stringent constraint,

|ξ1| < 2× 10−15 [148], was based on polarization of MeV γ-rays which could

not be confirmed [141].

Vacuum Čerenkov effect. The spontaneous emission of photons by

charged particles in vacuum (e → e γ) is forbidden in Lorentz invariant

physics, but it can be allowed if electron dispersion relation is sufficiently

modified. If ξ1 ≃ 0 the threshold energy for this process is [138]:

p ≃
(

m2
eMpl

2η

)1/3

≃ 11 TeV η−1/3 . (5.15)

The inverse Compton Čerenkov constraint uses the electrons of energy up to

50 TeV, inferred via the observation of 50 TeV γ rays from the Crab nebula

which are explained by inverse Compton scattering. This leads to the bound

η . 10−2 for at least one of the fermion parameters.

Synchrotron emission. For negative values of η the electron has a

maximal group velocity less than the speed of light, hence there is a maximal

synchrotron frequency that can be produced. This yield to the constraint

[138]:

η . −Mpl

me

(

0.34 eB

neωobs

)3/2

. (5.16)
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The Crab synchrotron emission has been observed to extend at least up to

energies of about 100 MeV, the magnetic field in the emission region has

been estimated on a value between 0.15 and 0.6 mG. Then we infer that at

least one of the two parameters η+ or η− must be grater of −7× 10−8.

In Ref. [151] the information provided by multiwavelength observation

were compared with a full and self consistent computation of the broad band

spectrum of the Crab nebula. η+ and η− have been both constrained to have

a magnitude smaller than 10−5 at 95% confidence level.

Constraints based on modified reaction threshold (e.g. pair produc-

tion) were so far obtained from observations of multi-TeV γ rays from blazars

at distances ≥ 100 Mpc, resulting constraints are of the order |ξ1| . 1 [153];

see next section for stronger constraints based on propagation of ultrahigh

energy cosmic rays.

In Fig. 5.1 are summarized different constraints for O(E/Mpl) modifica-

tions of electron and photon dispersion relations.

CPT symmetry alone could exclude dimension five operators, moreover

the constraints on O(E/Mpl) modifications of the dispersion relation are

becoming quite strong. Therefore the interest in dimension six operators is

increasing and it is already possible to constrain O(E2/M2
pl) modifications of

the dispersion relations (see next chapter).
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Figure 5.1: Astrophysical constraints on O(E/Mpl) QED Lorentz violation:

time of flight constraints |ξ1| < O(102) (green lines), birefringence constraints

|ξ1| < 9×10−10 (blue lines), Crab nebula constraints |η±| < 10−5 (red dotted

lines), vacuum Čerenkov constraints η . 10−2 for at least one of the fermion

parameters (brown dotted line), synchrotron emission constraints η & −7×
10−8 for at least one of the fermion parameters (brown dot-dashed line). The

order of magnitude of the region allowed by propagation of ultrahigh energy

photons is marked in yellow (see next chapter).





Chapter 6

Lorentz violation and

ultrahigh-energy photons

6.1 Introduction

Many modern extensions of the Standard Model of particle physics, in-

cluding string theory and various other approaches aiming at unification of

quantum mechanics with general relativity, suggest that the Lorentz sym-

metry may be broken or modified at energy and length scales approaching

the Planck scale. While such effects necessarily have to be tiny at energies

up to the electroweak scale in order to satisfy laboratory constraints [145],

they can be magnified at higher energies as they can occur in astrophysics.

The observation of standard radiation processes as they are predicted in the

absence of Lorentz invariance violation then often allows to derive strong

constraints on Lorentz invariance violating (LIV) effects [137, 140].

LIV effects could, for example, change the propagation and thus spectra

and composition of the highest energy particles observed in Nature [8, 154].

This was shown in case of ultrahigh-energy cosmic rays producing pions by

the Greisen-Zatsepin-Kuzmin (GZK) effect [155] above the threshold at ∼
7 × 1019 eV and in case of pair production of high energy photons with the

diffuse low energy photon background [154].
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While the thresholds of electron-positron pair production by high energy

γ−rays on low energy background photons have not yet been experimentally

confirmed beyond doubt, constraints on LI breaking for photons have been

established based on the very existence of TeV γ−rays from astrophysical

objects [156].

Here we exploit the fact that if pair production of high energy γ−rays

on the cosmic microwave background (CMB) would be inhibited above ∼
1019 eV, one would expect a large fraction of γ−rays in the cosmic ray flux

at these energies, independent on where the real pair production threshold

is located. Based on the fact that no significant γ−ray fraction is observed,

we derive limits on LI violating parameters for photons and electrons that

are more stringent than former limits. Moreover, we also show how the

excluded parameter ranges would be extended if ultrahigh energy photons

were detected in the future.

For the coefficients of LIV terms linearly suppressed with the Planck scale

values larger than ∼ 10−5 for electrons and positrons are currently ruled out

by the observation of synchrotron radiation from the Crab Nebula [151]. We

find that the observation of photons above ≃ 1019 eV would rule out that

any one of the three LIV coefficients for electrons, positrons and photons has

absolute value & 10−14. This is in agreement with Ref. [157] which considers

a two dimensional subset of the general three-dimensional parameter range.

In contrast, we will find that for LIV terms quadratically suppressed

with the Planck scale, arbitrarily large values of one of the LIV terms for

electrons and positrons can not be ruled out by UHE photon observations if

the coefficients of the two other LIV terms have absolute value . 10−6.

6.2 Fraction of UHE photons

Neutral pions created by the GZK effect decay into ultrahigh energy pho-

tons. They subsequently interact with low-energy background photons of the

CMB and the universal radio background (URB) through pair production,
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Figure 6.1: Fluxes for uniform E−2.6 proton injection between 1019 and 1021

eV up to redshift 3. AGASA data [162] are shown as triangles, HiRes

data [124] as crosses. Solid lines: with CMB and the minimal version of

the universal radio background, based on observations [163]; from top to

bottom: protons, neutrinos per flavor, and photons. Dashed lines: without

any pair production by photons above 1019 eV; from top to bottom: protons,

photons, and neutrinos per flavor.

γ γ → e+ e−. This leads to the development of an electromagnetic cascade

and suppresses the photon flux above the pair production threshold on the

CMB of ∼ 1015 eV. Above ∼ 1019 eV the interaction length for photons is

smaller than a few Mpc, whereas for nucleons above the GZK threshold at

∼ 7 × 1019 eV it is of the order of 20 Mpc. As a result, the photon frac-

tion theoretically expected is smaller than ∼ 1% around 1019 eV, and smaller

than ∼ 10% around 1020 eV [158, 159], in agreement with experimental upper

limits (see section 4.3).

The breaking of Lorentz invariance, by modifying the dispersion relations

for photons and/or electrons, would affect the energy threshold for pair pro-

duction. If the changes in the dispersion relations are sufficiently large, pair
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Figure 6.2: The ratio of the integral photon to primary cosmic ray flux above

a given energy as a function of that energy for the two scenarios shown in

Fig. 6.1.

production can become kinematically forbidden at ultrahigh energies and

such photons could reach us from cosmological distances. As a consequence,

at least if ultrahigh energy cosmic rays consist of mostly protons, one would

expect a significant photon fraction in cosmic rays above 1019 eV, in conflict

with experimental upper limits. Figs. 6.1 and 6.2, which were obtained with

the CRPropa code [160, 161], show that the ratio of the integral photon to

primary cosmic ray flux above 1019 eV would be ≃ 20%, and thus higher than

the above mentioned experimental upper limits. In this scenario, we have

used a relatively steep proton injection spectrum ∝ E−2.6. Harder injection

spectra also give acceptable fits above ∼ 1019 eV, as well as higher photon

fractions due to increased pion production [159]. Whereas for pair produc-

tion without LI breaking, the predicted photon fraction always stays below

experimental upper limits, harder injection spectra and larger maximal en-

ergies in the absence of pair production would overshoot the experimental

limits even more than in Figs. 6.1 and 6.2.
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Therefore, LI violating parameters for photons and electrons can be con-

strained by the requirement that pair production be allowed between low

energy background photons and photons of energies between 1019 eV and

1020 eV. We will assume that pion production itself is not significantly mod-

ified and that the modifications of the dispersion relations of electrons and

positrons are significantly smaller than for photons (this only in section 6.5).

This is consistent since the photon content of other particles is on the percent

level [164].

6.3 Modified dispersion relations

We indicate the 4-momenta for ultrahigh-energy photons with (ω,k), for

low-energy background photons with (ωb,kb), for electrons with (Ee,pe), and

for positrons with (Ep,pp).

The following modifications to the Lorentz invariant dispersion relations

are considered:

ω2
± = k2 + ξ±n k

2

(

k

Mpl

)n

, (6.1)

ω2
b = k2

b , (6.2)

E2
e,± = p2

e +m2
e + ηe,±

n p2
e

(

pe

Mpl

)n

, (6.3)

where n ≥ 1, Mpl ≃ 1019 GeV is the Planck mass, me ≃ 0.5 MeV is the

electron mass, and the + (−) sign in Eq. (6.1) for photons indicates right

(left) polarization, while in Eq. (6.3) for electrons denotes positive (negative)

helicity.

The LIV parameters ξ±n for the two photon polarizations are not inde-

pendent; they are related by effective field theory considerations [144, 142]

as ξ+
n = (−1)nξ−n for n = 1, 2. Because of this relation, the photon disper-

sion relation can be expressed in terms of the single parameter ξ+
n which we

denote as ξn in the following.

Effective field theory predicts the relation ηp,±
n = (−1)nηe,∓

n between the

LIV parameters for fermions and anti-fermions for n = 1 and n = 2 [148, 142].
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It is, therefore, not necessary to introduce new parameters in the modified

dispersion relation for positrons which can thus be written as

E2
p,± = p2

p +m2
e + (−1)nηe,∓

n p2
p

(

pp

Mpl

)n

. (6.4)

Thus, for the remainder of this chapter we can restrict ourselves to the pa-

rameters ηe,±
n , for which we simply write η±n .

As a result, LIV modifications in the QED sector are described by three

parameters at a given suppression by the power n = 1, 2 of the Planck scale,

namely by one for photons (ξn) and two for electron and positron (η+
n and

η−n ). Note, however, that in some particular cases, kinematics is governed

by just one parameter for the pair: If the final state of a certain process

consists of an electron-positron pair with opposite helicity, due to the relation

ηp,±
n = (−1)nηe,∓

n , only either η+
n or η−n appears.

6.4 Threshold equations

If Lorentz invariance is preserved, the main process influencing the prop-

agation of UHE photons is pair production: Photons with energy higher

than m2
e/kb produce an electron-positron pair interacting with low-energy

background photons of energy kb. For interaction with CMB photons (kb ≃
6× 10−4 eV) the lower threshold is ∼ 4× 1014 eV, and the UHE photon flux

is highly suppressed due to this interaction.

If the dispersion relations for photons and fermions are modified by LIV

terms, then the lower threshold for this process can be modified and pair pro-

duction can also become forbidden above a certain upper threshold. More-

over, other processes, usually forbidden if Lorentz invariance is preserved,

can become allowed. In particular, photon decay (γ → e− e+) and photon

splitting (γ → N γ) can play an important role in the propagation of UHE

photons. Note that if pair production is forbidden above a certain upper

threshold, than photon decay must also be forbidden: If the production of

an electron positron pair is kinematically forbidden for two photons (pair pro-
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duction), then it will be forbidden also for a single photon (photon decay),

otherwise pair production on an infinitely soft background photon would be

allowed [157].

The characteristic timescale of these processes is relevant for their relative

importance: In particular, for UHE photons the photon splitting timescale

is usually larger than the propagation timescale [157, 156], therefore, in the

following we will focus mainly on pair production and photon decay processes.

Which and how many LIV parameters are involved in pair production or

in photon decay processes depends on the polarization of incoming photon(s)

and on the helicity of the outgoing electron and positron, see Tab. 6.1. Al-

though right at the threshold, where the electron positron pair is produced

without angular momentum, only the s-wave contributes to the process and

certain helicity combinations are forbidden, above the threshold also higher

partial waves contribute and all possible channels (all partial waves) must be

considered.

Note that the kinematics of pion decay π0 → γ γ is not significant modi-

fied. Using the exact relation for energy-momentum conservation, the kine-

matic relation for the decay of a neutral pion of mass mπ into two γ−rays

of energy-momentum (ω1,k1) and (ω1,k2), respectively, and equal helicity is

2ω1ω2 − 2k1 · k2 + ξn(k
n+2
1 + kn+2

2 )/Mn
Pl = m2

π. For |ξn| . 1, the absolute

values of the LI violating terms are always much smaller than the ones of

ω1ω2 and k1 · k2, which themselves are much larger than m2
π in most of the

phase space.

6.4.1 Pair production (γ γb → e− e+)

Exact energy momentum conservation implies that

(ω± + ωb)
2 − (k + kb)

2 = (Ee,± + Ep,±)2 − (pe + pp)
2 . (6.5)

The left-hand side is maximized for a head-on collision of the two photons,

while the right-hand side is minimized for parallel final momenta of the

pair [156, 165]. Expanding in terms of the LIV parameters, and writing
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pe = (1 − y)k and pp = yk as functions of the asymmetry y in the final

momenta, for right polarized photons we obtain the equation:

[

ξn − (−1)n η∓n y
n+1 − η±n (1− y)n+1] k2

(

k

Mpl

)n

+4kkb −
m2

e

y(1− y) = 0 , (6.6)

where all four combinations of η∓n and η±n can occur in the square bracket.

Note that due to the relation ηp,±
n = (−1)nηe,∓

n , for electrons, the sign index

± in η±n refers to the helicity, whereas for positrons it refers to the inverse

helicity. As a consequence, equal sign indices in the two terms correspond

to opposite helicities for electron and positron, whereas opposite sign indices

correspond to equal helicities. For left polarized UHE photons ξn must be

replaced with (−1)nξn. The second term inside square brackets refers to

positrons and the third one to electrons. By definition, in the third term η+
n

refers to electrons of positive helicity, and η−n to electrons of negative helic-

ity. In contrast, in the second term η+
n refers to positrons of negative helicity,

whereas η−n refers to positrons of positive helicity. Therefore, Eq. (6.6) re-

duces to Eq. (3) of Ref. [157] in the channel where electrons and positrons

have opposite helicities, where kinematics depends only on either η+
n or η−n .

Alternatively, one also obtains this equation in the channel where electrons

and positrons have the same helicities, if one assumes the relation η+
n = η−n

between electron LIV parameters with opposite helicity.

When all LIV parameters vanish, we find the usual Lorentz invariant

lower threshold (kLI = m2
e/kb) for a symmetric final configuration y = 1/2, .

For given values for LIV parameters we determine numerically the lower

and upper thresholds of this process using Eq. (6.6) and its derivative with

respect to k and y [156].

Defining x ≡ 4y(1− y)k/kLI, Eq. (6.6) can be rewritten as

αnx
n+2 + x− 1 = 0 , (6.7)
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where, for right polarized photons,

αn ≡
ξn − (−1)n η∓n y

n+1 − η±n (1− y)n+1

22(n+2)yn+1 (1− y)n+1

m
2(n+1)
e

kn+2
b Mn

pl

, (6.8)

and for left polarized photons ξn must be replaced by (−1)nξn.

If n ≥ 1, Eq. (6.7) has at most two positive solutions, corresponding to a

lower or an upper threshold. If there were more than two positive solutions,

there would be two or more stationary points for x > 0, but the derivative

of Eq. (6.7) vanishes for

(n+ 2)αnx
n+1 + 1 = 0 , (6.9)

and the solutions of this equation are

xs = [(n+ 2)αn]
− 1

n+1 exp

[

i
π + 2πs

n+ 1

]

(if αn > 0) , (6.10)

xs = [(n+ 2) |αn|]−
1

n+1 exp

[

i
2πs

n+ 1

]

(if αn < 0) , (6.11)

where s = 0, . . . , n. These expressions are real and positive only for s = 0,

therefore there cannot be more than one stationary point. This excludes the

possibility that there could be more than two thresholds for pair production.

We will argue that current upper limits on the photon fraction of UHE

cosmic rays in the energy range between ≃ 1019 eV and ≃ 1020 eV require

that pair production has to be kinematically allowed for both UHE pho-

ton polarizations shown in Tab. 6.1, otherwise at least one channel would

be unabsorbed and one would expect & 10% photons. This will rule out

certain ranges in the parameter space of the three LIV parameters ξn and

η±n . However, in order to be conservative, we will rule out only parameter

combinations for which the photon is stable. This is because for unstable

photons, the absence of photons in the observed ultra-high energy cosmic

ray flux could be due to photon decay, γ → e− e+, at least as long as any

electron-positron pairs in the decay products cannot recreate a significant

photon flux by inverse Compton scattering on the CMB. On the other hand,

the observation of a UHE photon would rule out photon decay because this
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process would occur on microscopic time scales once it is allowed. We will,

therefore, also consider photon decay in the following.

We follow the procedure described in Ref. [156] in order to determine

numerically the lower and upper thresholds of this process using Eq. (6.6)

and its derivative with respect to k and y.

In particular for n = 1 the equation for energy-momentum conservation

is (see Eq. 6.6):

F (x, y) =
[

ξ1 + η∓1 y
2 − η±1 (1− y)2] m4

e

k3
bMpl

x3 + x− 1

y(1− y) = 0 , (6.12)

This equation can be solved for x = x(y); so lower threshold corresponds to

a global minimum of x(y):

dx(y)

dy

∣

∣

∣

∣

T

= 0 and
d2x(y)

dy2

∣

∣

∣

∣

T

> 0 . (6.13)

Threshold is by definition a solution for the kinematic equation, F (x, y) is

identically zero, hence its total derivative respect to y vanishes:

dF (x, y)

dy

∣

∣

∣

∣

T

=
∂F (k, y)

∂x(y)

dx(y)

dy

∣

∣

∣

∣

T

+
∂F (x, y)

∂y

∣

∣

∣

∣

T

= 0

=⇒ ∂F (x, y)

∂t

∣

∣

∣

∣

T

= 0 ,

d2F (x, y)

dy2

∣

∣

∣

∣

T

=
∂2F (x, y)

∂x2(y)

dx(y)

dy

∣

∣

∣

∣

T

+
∂F (x, y)

∂x(y)

d2x(y)

dy2

∣

∣

∣

∣

T

+
∂2F (x, y)

∂y2

∣

∣

∣

∣

T

= 0

=⇒ −
(

∂2F (x, y)

∂y2

)

/

(

∂F (x, y)

∂x(y)

)∣

∣

∣

∣

T

> 0 .

Besides ∂F (x, y)/∂x(y) > 0 for lower threshold (e.g. see Fig. 6.8).

Similarly for upper threshold, global maximum of x(y):

dx(y)

dy

∣

∣

∣

∣

T

= 0 and
d2x(y)

dy2

∣

∣

∣

∣

T

< 0 , (6.14)

also upper threshold is by definition a solution for the kinematic equation,
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F (x, y) is identically zero, hence its total derivative respect to y vanishes:

dF (x, y)

dy

∣

∣

∣

∣

T

=
∂F (k, y)

∂x(y)

dx(y)

dy

∣

∣

∣

∣

T

+
∂F (x, y)

∂y

∣

∣

∣

∣

T

= 0

=⇒ ∂F (x, y)

∂t

∣

∣

∣

∣

T

= 0 ,

d2F (x, y)

dy2

∣

∣

∣

∣

T

=
∂2F (x, y)

∂x2(y)

dx(y)

dy

∣

∣

∣

∣

T

+
∂F (x, y)

∂x(y)

d2x(y)

dy2

∣

∣

∣

∣

T

+
∂2F (x, y)

∂y2

∣

∣

∣

∣

T

= 0

=⇒ −
(

∂2F (x, y)

∂y2

)

/

(

∂F (x, y)

∂x(y)

)∣

∣

∣

∣

T

< 0 .

Besides ∂F (x, y)/∂x(y) < 0 for upper threshold (e.g. see Fig. 6.8).

Summarising possible candidates for the thresholds (both lower and up-

per) are the solutions of the system:















F (k, y) = 0
∂F (k,y)
∂y

= 0
∂2F (x,y)
∂y2

< 0

(6.15)

it is possible to distinguish lower thresholds from upper ones considering

∂F (x, y)/∂x(y).

In this n = 1 case it is worthwhile not to consider directly F (x, y), but

G(x, y) ≡ y(1 − y)F (x, y). Figs. 6.3 and 6.4 show graphically the solution

of the system (6.15) in the (x,y) plane fixed two particular sets of values for
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the LIV parameters.

G(x, y) = y(1− y)
[

ξ1 + η∓1 y
2 − η±1 (1− y)2

] m4
e

k3
bMpl

x3

+4y(1− y)x− 1 = 0 , (6.16)

∂G(x, y)

∂y
=

4m4
e(η

±
1 − η∓1 )

k3
bMpl

x3y3 − 3m4
e(3η

±
1 − η±1 )

k3
bMpl

x3y2

−2
4Mplk

3
b +m4

ex
2(ξ1 − 3η±1 )

k3
bMpl

xy

+
4k3

bMplx+ (ξ1 − η±1 )m4
ex

3

k3
bMpl

= 0 , (6.17)

∂2G(x, y)

∂y2
=

12m4
e(η

±
1 − η∓1 )

k3
bMpl

x3y2 − 6m4
e(3η

±
1 − η∓1 )

k3
bMpl

x3y

−2
4Mplk

3
b +m4

ex
2(ξ1 − 3η±1 )

k3
bMpl

x < 0 . (6.18)

6.4.2 Photon decay (γ → e− e+)

For the reaction γ → e− e+ 4-momentum conservation implies:

ω2
± − k2 = (Ee,± + Ep,±)2 − (pe + pp)

2 , (6.19)

and proceeding as for pair production we obtain for right polarized UHE

photons:

[

ξn − (−1)n η∓n y
n+1 − η±n (1− y)n+1] k2

(

k

Mpl

)n

− m2
e

y(1− y) = 0 . (6.20)

The corresponding equation for left polarized photons is obtained by substi-

tuting ξn with (−1)nξn.

Note that Eq. (6.6) for pair production reduces to Eq. (6.20) for photon

decay when the energy of the background photon kb vanishes.

Photon decay is kinematically forbidden in the Lorentz invariant case, but

it can become allowed, above a certain energy threshold, for certain values
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Figure 6.3: Determination of upper and lower threshold for pair production

fixed (ξ, η∓1 , η
±
1 ) = (−10−5, 0, 0). In the (x, y) plane, where x ≡ 4y(1 −

y)k/kLI gives the new threshold in terms of the Lorentz invariant one and

y ≡ pp/k is the asymmetry between electron and positron final momenta,

we solve graphically the system (6.15) plotting in black G(x, y) = 0 and in

red red ∂G(x, y)/∂y = 0. Lower threshold is (1.1, 0.5) and upper threshold

is (2.9, 0.5).
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Figure 6.4: Determination of upper and lower threshold for pair produc-

tion fixed (ξ, η∓1 , η
±
1 ) = (−10−5, 10−5,−10−5). In the (x, y) plane we solve

graphically the system (6.15) plotting in black G(x, y) = 0, in red red

∂G(x, y)/∂y = 0, and with a dashed line ∂2G(x, y)/∂y2 = 0. Lower threshold

is (1.05, 0.5) and asymmetric upper thresholds are (6.3, 0.08) and (6.3, 0.92).
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of the LIV parameters. We again search numerically for this threshold by

employing Eq. (6.20) and its derivatives with respect to k and y.

If a photon of a certain energy is detected, at least one photon polarization

must be stable, i.e. cannot decay into any helicity configuration of the final

pair.

Eq. (6.20) can be rewritten as:

αnx
n+2 − 1 = 0 , (6.21)

and its solutions are of the form

xs = α
− 1

n+2
n exp

[

i
2πs

n+ 2

]

(if αn > 0) , (6.22)

xs = |αn|−
1

n+2 exp

[

i
π + 2πs

n+ 2

]

(if αn < 0) , (6.23)

where s = 0, . . . , n+1. Note that these expressions give at most one positive

solution xs, therefore, there cannot be more than one threshold for photon

decay.

6.5 Lorentz violation for photons and ultrahigh-

energy photons

As first step we consider how photon propagation is modified when the

LIV parameters for electrons and positrons are negligible (η±n ≪ ξn).

The kinematic condition for pair production, according to Eq. (6.7), is:

F0(x;α
0
n) ≡ α0

nx
n+2 + x− 1 = 0 , (6.24)

defined:

α0
n ≡

ξn
2n(n+2)yn+1(1− y)n+1

m
2(n+1)
e

kn+2
b Mn

pl

. (6.25)

If α0
n ≥ 0, Eq. (6.24) admits one real positive solution xln(α

0
n) < 1 for each

value of α0
n > 0. Therefore, for photons with a positive LI violating term in
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Figure 6.5: Regions where pair production is kinematically allowed

(F0(x;α
0
1) ≥ 0) for α0

1 = 0 (Lorentz invariant case).
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Figure 6.6: Regions where pair production is kinematically allowed

(F0(x;α
0
1) ≥ 0) for α0

1 > 0.
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Figure 6.7: Regions where pair production is kinematically allowed

(F0(x;α
0
1) ≥ 0) for α0

1 < 0.

the modified dispersion relation Eq. (6.1), pair production is kinematically

allowed above a threshold kLIx
l
n(α

0
n) < kLI, see Figs. 6.5 and 6.6.

Otherwise, if the coefficient of xn+2 in Eq. (6.24) is negative, this equa-

tion has real solutions only if |α0
n| ≤ α0 ,cr

n ≡ (n+ 1)n+1 / (n+ 2)n+2. In

particular, if |α0
n| = α0 ,cr

n there is only one real solution and pair produc-

tion is kinematically allowed only for a particular value of the momentum of

the ultra-high-energy photon. If |α0
n| < α0 ,cr

n , there are two real solutions,

0 < xln (α0
n) < xun (α0

n), and thus pair production is only allowed in the range

of energies kLIx
l
n (α0

n) ≤ ω ≤ kLIx
u
n (α0

n) (see Fig 6.7). These different cases

are summarized in Fig. 6.8.

Requiring pair production to be allowed, we obtain constraints only from

photons with a negative sign in the modified dispersion relation, because for

photons with a positive LI breaking term, pair production is allowed for any

value of α0
n above kLIx

l
n(α

0
n) < kLI. We also stress that photons with negative

LI breaking term are stable against photon decay (γ → e+ e−) and photon

splitting (γ → N γ).

Requiring the interaction of ultra-high-energy photons, 1019 eV . k .
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Figure 6.8: Plot of F0(x;α
0
1) fixed different values of α0

1. Dashed line: photons

with a positive LI breaking term α0
1 = 2/27; continuous line: photons with

unbroken LI, α0
1 = 0; dotted line: photons with a negative LI breaking term,

with α0
1 = −6/27, −4/27, −2/27, in ascending order. Pair production is

kinematically allowed for values of x for which the curves are positive.

1020 eV, with CMB photons of energy ωb ≃ 6 × 10−4 eV corresponds to re-

quiring that pair production is kinematically allowed for 2.3 × 104 . x .

2.3× 105. Since photons with a negative LI breaking term in the dispersion

relation have both a lower and an upper energy threshold for pair produc-

tion, denoted by xln(α
0
n) and xun(α

0
n), respectively, we have the two conditions

xln(α
0
n) . 2.3 × 104 and 2.3 × 105 . xun(α

0
n). These will lead to constraints

on α0
n and thus ξn.

Constraints on Lorentz invariance breaking to first order in the Planck

mass. In this case n = 1 and the first condition, xl1 (α0
1) . 2.3 × 104 is

always true if the lower threshold exists, α0
1 > −α0 ,cr

1 = −4/27. The second

condition 2.3 × 105 . xu1 (α0
1) is fulfilled if α0

1 & −1.9 × 10−11. These two

necessary conditions can be translated into a constraint for ξ1 using the

definition for α0
n, Eq. (6.25), and kLI ≃ 4.4× 1014 eV :
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α0
1 ≡ ξ1

kLI

4ωb

(

kLI

Mpl

)

& −1.9× 10−11 ; ξ1 & −2.4× 10−15 . (6.26)

In this case effective field theory requires LI violating terms in the dis-

persion relation with opposite sign for left and right polarized photons [144].

Therefore, in order to avoid photon fractions in cosmic rays & 5 times higher

than observed above ∼ 1019 eV, pair production has to be allowed for both

polarizations, and thus for both signs in the dispersion relation. Thus the

constraint obtained for ξ1 < 0 is valid also for positive LI violating terms:

|ξ1| . 2.4× 10−15.

Constraints on Lorentz invariance breaking to second order in the Planck

mass. In this case n = 2 and the first condition, xl2 (α0
2) . 2.3×104 is always

true if the lower threshold exists, α0
2 > −α0 ,cr

2 = −27/256. The second

condition 2.3 × 105 . xu2 (α0
2) is fulfilled if α0

2 & −8.2 × 10−17. These two

necessary conditions then lead to the following constraint for ξ2

α0
2 ≡ ξ2

kLI

4ωb

(

kLI

Mpl

)2

& −8.2× 10−17 ; ξ2 & −2.4× 10−7 . (6.27)

For interactions with the URB, kLI ≃ 6×1019 eV, we obtain the constraint as-

suming the existence of at least one solution with xln(α
0
n) . 2. This eventually

leads to the conditions |ξ1| . 7.2×10−21 at first order, and −ξ2 . 8.5×10−13

at second order. These are several orders of magnitudes more restrictive than

the constraints Eqs. (6.26) and (6.27) obtained in the CMB case. Therefore,

if the constraints from interactions with the CMB are violated, there would

also be no interaction with the URB and so no pair production on any rele-

vant background. Thus the constraint from pair production with the CMB

is not modified by the presence of the URB.
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6.6 Lorentz violation in QED and ultrahigh-

energy photons

Current upper limits on the photon fraction in the energy range between

≃ 1019 eV and ≃ 1020 eV already establish strong constraints on the LIV

parameters in the cases n = 1 and n = 2 (see previous section, and Ref. [157]).

If photon decay is forbidden, pair production must be kinematically al-

lowed for both high energy photon polarizations, otherwise the predicted

photon flux would be too high. According to the current non-detection of

UHE photons [136] this leads to the condition that the lower threshold for

pair production must be below ≃ 1019 eV and the upper threshold for pair

production must be above ≃ 1020 eV. At the threshold the pair can be pro-

duced only in s-waves, whereas higher partial waves are forbidden. Above

the lower threshold and below the upper threshold the pairs can also be

produced in higher partial waves which, therefore, also have to be consid-

ered. In fact, at energies that are factors of a few away from the thresholds,

say at ≃ 3 × 1019 eV, the pair is produced with relative velocities not much

smaller than the speed of light and, without doing a detailed calculation,

higher partial waves are thus not expected to be significantly suppressed.

Therefore, according to Tab. 6.1, all three LIV parameters enter the prob-

lem. The experimental upper limits on the UHE photon flux require that a

given combination (ξn, η
+
n , η

−
n ) of LIV parameters is ruled out if at least one

photon polarization state is stable against decay and does not pair produce

for any helicity configurations of the final pair. Taking into account higher

partial waves for pair production then leads to conservative constraints be-

cause only these parameter combinations are ruled out that do not lead to

pair production into any of the final state configurations shown in Tab. 6.1.

If a UHE photon were detected and its polarization were not measured,

then there should be at least one polarization state that is stable over macro-

scopic time scales. Then the LIV parameter region where photon decay is

kinematically allowed for at least one helicity configuration of the final state
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electron-positron pair, for both photon polarizations, would be ruled out.

Note that at the threshold for pair production, where only the s-wave

channel is allowed, according to Tab. 6.1, only opposite helicities for electron

and positron contribute and the kinematics depends on only one fermionic

LIV parameter, either η+
n or η−n . In contrast, at the threshold for photon

decay, where the photon, electron and positron momenta are all parallel,

only equal helicities for electron and positron contribute and the kinematics

depends on all two fermionic LIV parameters, since total angular momen-

tum cannot be conserved if electron and positron have opposite helicity. For

photon decay, therefore, even at the threshold only the assumption of an ad-

ditional relation between the electron LIV parameters for different helicities,

e.g. η+
n = η−n , leads to a reduction of the kinematics to only one fermionic

LIV parameter.

6.6.1 Case n = 1 – O(p/Mpl) modifications of the dis-

persion relations

For first order suppression in the Planck scale, the excluded LIV pa-

rameters resulting from the current non-detection of a photon component of

cosmic rays in the energy range between 1019 eV and 1020 eV are shown in

Fig. 6.9. The excluded parameter region is symmetric with respect to a sign

change of the photon LIV parameter ξ1 because pair production must be al-

lowed for both photon polarizations which correspond to opposite signs of ξ1

for n = 1. Note that if the absolute values of the LIV parameters η+
1 and η−1

for electrons and positrons are smaller than the one for the LIV parameter

for photons, parameters of size |ξ1| & 10−14 are ruled out.

For the parameter range shown in Fig. 6.10 photons of energy E ∼ 1019 eV

and of both polarizations would be unstable. Thus, if a ∼ 1019 eV photon

were detected without determining its polarization, this parameter range

would be excluded. The allowed parameter range has the structure of a

double-cone and is symmetric with respect to a sign change of the photon

LIV parameter ξ1 because opposite photon polarizations correspond to op-
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Figure 6.9: Case n = 1. Region excluded by present upper limits on the

UHE photon flux (1019 eV . ω . 1020 eV).

posite signs of ξ1 and within our conservative treatment only one photon

polarization needs to be stable. As a result, the region that would be ex-

cluded by a ∼ 1019 eV photon detection is also symmetric with respect to

a sign change of ξ1. The resulting constraints would be very strong: If, for

example, |ξ1| ≪
∣

∣η±1
∣

∣, then
∣

∣η±1
∣

∣ & 10−16 would be excluded.

The sign and parameter combinations entering the kinematics in Tab. 6.1

lead to additional symmetries of parameter ranges excluded and allowed by

pair production and/or photon decay under sign changes of η+
1 or η−1 and

under exchange of η+
1 and η−1 .

As Figs. 6.9 and 6.10 show, combining both constraints from UHE photon

flux limits and detection of an UHE photon it would be possible to rule out

all LIV parameters of absolute value larger than 10−14.

Fig. 6.11 shows, for the same range of LIV parameters studied in Figs. 6.9
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Figure 6.10: Case n = 1. Region excluded if a 1019 eV photon were detected

(shaded). The allowed region has the shape of a double-cone centered at the

origin and opening towards the positive and negative ξ1-directions.

and 6.10, a typical two dimensional section, η+
1 = η−1 , of the excluded regions.

This section is relevant if only one leptonic LIV parameter enters the kine-

matics Eqs. (6.6) and (6.20). According to Tab. 6.1 this occurs very close to

the threshold where only s-waves contribute to pair production and electrons

and positrons thus have opposite helicity [157]. Alternatively, the section

η+
1 = η−1 is relevant also away from the threshold if the general (restrictive)

assumption is made that the LIV parameter for a positive helicity electron is

equal to the LIV parameter for a negative helicity electron (η+
1 = η−1 ). Note,

however, at least in the n = 1 case considered, that the order of magnitude

of the largest LIV parameters allowed does not depend on any particular

relation assumed between η+
1 and η−1 : Parameters of absolute value larger

than 10−14 are always ruled out.
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Figure 6.11: Case n = 1, η+
1 = η−1 . Combined constraint using both the

current upper limits on the photon fraction in the energy range between 1019

eV and 1020 eV (blue shaded, checkered region), and assuming that a 1019

eV photon were detected (yellow shaded region).

Fig. 6.12 shows, for the case η+
1 = η−1 , how the uncertainties in the photon

fraction limits influence the constraints on LIV parameters. Lowering the

maximum energy, up to which we consider the bounds on the photon flux

meaningful, from 1020 eV to 5 × 1019 eV, the excluded region is slightly

reduced.

6.6.2 Case n = 2 – O(p2/M 2
pl) modifications of the dis-

persion relations

The relations between the LIV parameters of photons with opposite polar-

ization (ξ+
2 = ξ−2 ), and between the LIV parameters of electrons and positrons
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Figure 6.12: Case n = 1, η+
1 = η−1 . Combined constraint using the current

upper limits on the photon fraction in the energy range between 1019 eV

and 1020 eV (gray plus blue shaded, checkered regions), in the energy range

between 1019 eV and 5× 1019 eV (blue region), and assuming that a 1019 eV

photon were detected (yellow shaded region).
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Figure 6.13: Case n = 2. Region excluded by present upper limits on the

UHE photon flux (1019 eV . ω . 1020 eV).

(ηp,±
2 = ηe,∓

2 ) have opposite sign with respect to the n = 1 case, because sec-

ond order Planck scale suppressed modifications of the dispersion relations

correspond to CPT-even LIV operators. Therefore, for given polarizations

of the incoming photon and given helicities of the final electron positron

pair, the signs of the parameters appearing in the kinematic equations for

pair production and for photon decay are different from the case n = 1, see

Tab. 6.1. As a result, the region of the LIV parameter space ruled out for

n = 2 is not only smaller than the one for n = 1, but also has a different

shape. In particular, it does not exhibit the symmetry under sign changes of

either one of the three LIV parameters ξ2, η
+
2 or η−2 .

The current non-detection of UHE photons require that photons in the

energy range between 1019 eV and 1020 eV are subject to pair production, and

the resulting excluded range of n = 2 LIV parameters is shown in Fig. 6.13.
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Figure 6.14: Case n = 2. Region excluded if a 1019 eV photon were detected.

Note that if
∣

∣η+
2

∣

∣ and
∣

∣η−2
∣

∣ for electrons and positrons are smaller than |ξ2|,
then ξ2 . −10−6 is ruled out.

Fig. 6.14 shows the excluded region if a 1019 eV photon were detected in

the future, and Fig. 6.15 represents the combination of the two regions that

would then be excluded.

Differently from the n = 1 case the excluded region does not surround

the origin in all directions, therefore these two conditions do not rule out

all LIV parameters larger than a certain value. The shape of the excluded

region now strongly depends on the particular relation between the electron

LIV parameters. We consider here, for the same range of LIV parameters,

three different two dimensional sections of the excluded region of Fig. 6.15,

namely η+
2 = η−2 , η+

2 = −η−2 , and η−2 = 0.

The first one, shown in Fig. 6.16, corresponds to the particular case

where the LIV parameters for electrons do not depend on helicity (η+
2 = η−2 ),
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Figure 6.15: Case n = 2. Combined constraint using both the current upper

limits on the photon fraction in the energy range between 1019 eV and 1020

eV (blue shaded, checkered region), and assuming that a 1019 eV photon

were detected (uncheckered region).

such that only one leptonic LIV parameter enters the kinematics Eqs. (6.6)

and (6.20). As for the case n = 1, Tab. 6.1 shows that this section is relevant

very close to the threshold where electron and positron have opposite helicity

since only s-waves contribute to pair production [157]. In this case all LIV

parameters of absolute value larger than ∼ 10−6 are ruled out in agreement

with Ref. [157]. Away from the threshold, the section η+
2 = η−2 is relevant

only under the restrictive assumption that the electron LIV parameters are

equal for both polarizations. For this particular section we also estimate in

Fig. 6.17 how uncertainties on the energy range of the upper limits on the

flux of UHE photons modify the constrained region.

An orthogonal cut corresponds to the case where the LIV parameter
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Figure 6.16: Case n = 2, η+
2 = η−2 . Combined constraint using both the

current upper limits on the photon fraction in the energy range between 1019

eV and 1020 eV (blue shaded, checkered region), and assuming that a 1019

eV photon were detected (yellow shaded region).
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Figure 6.17: Case n = 2, η+
2 = η−2 . Combined constraint using the current

upper limits on the photon fraction in the energy range between 1019 eV and

1020 eV (gray plus blue regions), in the energy range between 1019 eV and

5 × 1019 eV (blue shaded, checkered region), and assuming that a 1019 eV

photon were detected (yellow shaded region).
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Figure 6.18: Case n = 2, η+
2 = −η−2 . Combined constraint using both the

current upper limits on the photon fraction in the energy range between 1019

eV and 1020 eV (blue shaded, checkered region), and assuming that a 1019

eV photon were detected (yellow shaded region).
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Figure 6.19: Case n = 2, η−2 = 0. Combined constraint using both the

current upper limits on the photon fraction in the energy range between 1019

eV and 1020 eV (blue shaded, checkered region), and assuming that a 1019

eV photon were detected (yellow shaded region).
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for positive helicity electrons is opposite equal to the LIV parameter for

negative helicity electrons, η+
2 = −η−2 , see Fig. 6.18. The shapes of the two

excluded regions are modified with respect to Fig. 6.16: The region of the

LIV parameter space ruled out by the detection of a 1019 photon increases,

while the region excluded by the current upper limits on the flux of UHE

photon decreases. However, also in this case, all LIV parameters of absolute

value larger than ∼ 10−6 can be ruled out.

Fig. 6.19 represents the excluded region in the η−2 = 0 plane: The shapes

of the two excluded regions change, moreover, it is no more possible to rule

out all LIV parameters of absolute value larger than ∼ 10−6. If |ξ2| . 10−6,

arbitrarily large
∣

∣η+
2

∣

∣ are currently not excluded, and even if a ∼ 1019 eV

photon were detected in the future, arbitrarily large positive η+
2 could still

not be excluded.

Note that this is true not only in the η−2 = 0 plane, but whenever the

absolute values of the LIV parameters of both the photon (ξ2) and of one of

the lepton sector (η+
2 or η−2 ) are smaller than ∼ 10−6, see Fig. 6.15: It is then

no more possible to exclude all LIV parameters with modulus larger than a

certain threshold.

As an application, the current constraints based on the non-detection

of UHE photons rule out any possible interpretation of flares of the active

galaxy Markarian 501 in terms of quantum gravity effects [166] within the

effective field theory approach with exact energy-momentum conservation

assumed in the present work. Such an interpretation would be based on an

energy dependent index of refraction in vacuum such that the speed of light

is modified to v(ω) = 1+ξ1(ω/Mpl)+ξ2(ω/MPl)
2 and would require ξ1 . −25

or ξ2 . −3× 1016, clearly ruled out by our constraints. Note, however, that

the constraints obtained here do not apply to particular scenarios, such as

quantum-gravitational foam models, in which energy fluctuates due to non-

trivial particle recoil off excitations in the string/D-particle foam [167, 168].
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6.7 Conclusions

In this chapter we derived general constraints on LIV dispersion relations

in the QED sector from the propagation of UHE photons. The kinematics

of pair production and photon decay is discussed in terms of all three LIV

parameters ξn, η
+
n and η−n both for linear (n = 1) and for second order (n = 2)

suppression with the Planck scale.

The upper limits on the flux of UHE photons require that combinations

of the LIV parameters for which the UHE photons are stable and cannot

pair produce on low-energy (e.g. CMB) photons are excluded. Similarly, the

detection of photons of ∼ 1019 eV would exclude those combinations of the

LIV parameters for which both photon polarizations are unstable.

For terms in the dispersion relation linearly suppressed by the Planck

scale the resulting constraints are very strong: Using the non-detection of an

UHE photon flux and anticipating the detection of a ∼ 1019 eV photon, it

will be possible to exclude all LIV parameters with absolute value & 10−14.

In contrast, in the n = 2 case, the LIV parameter region excluded using

these arguments based on UHE photon propagation does not completely

surround the origin. If UHE photons are eventually detected, the maximum

absolute value allowed for LIV parameters in the photon sector will be ∼
10−6, whereas currently only values smaller than ∼ −10−6 are ruled out.

However, even if UHE photons were detected, constraints on the electron

parameters can be evaded for some particular combinations: If, for example,

the modulus of one of the two parameters η+
2 or η−2 is smaller than ∼ 10−6,

then the modulus of the other parameter is constrained neither by the upper

limit on the UHE photon flux nor by a putative future detection of a ∼
1019 eV photon. However, the case where the moduli of both η+

2 and η−2 are

& 10−6 can still be excluded once UHE photons are detected.





Conclusions

In this thesis we have shown how light propagation can be used in order

to constrain particle physics models beyond the Standard Model. We have

studied in particular the effects of non standard physics on the polarization of

cosmic microwave background radiation and on the flux of ultrahigh energy

γ-rays.

In the first part we have discussed the consequences of coupling between

cosmological pseudoscalar fields and photons. In particular we have paid at-

tention to the rotation of linear polarization plane from last scattering surface

to nowadays. This rotation, induced by the photon-pseudoscalar interaction,

modifies the gradient and curl of the polarization pattern (E and B follow-

ing [22]), creating B modes from E modes. The parity violating nature of

the interaction generates also non-zero parity-odd correlators (T B and E B)

which would be otherwise vanishing in the standard Gaussian cosmological

case [16, 23]. In particular the T B power spectrum may be very useful to

constrain the coupling constant gφ between photons and pseudoscalars, since

it is larger than the auto and cross power spectra in polarization; these non-

standard correlators are already constrained by present data sets [6, 33, 34].

We have modified the public code CAMB [4] in order to take into account

the rotation of linear polarization plane by a cosmological pseudoscalar field

coupled with photons. We have studied in detail two representative exam-

ples for the dynamics of a pseudo Nambu-Goldstone field behaving as dark

matter (cosine type and exponential potential) and one behaving as dark

energy (ultralight pseudoscalar field). In these three cases the polarization
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power spectra generated by the modified version of CAMB for cosmological

birefringence have been compared with the ones obtained in the widely used

approximation in which the linear polarization rotation angle is assumed con-

stant in time. The cosine type potential leads to an oscillating behaviour of

the pseudoscalar field (e.g. axion), in this case we have shown how CMB cos-

mological birefringence constraints, based on current data sets, can become

important for small masses. In the exponential potential case the pseu-

doscalar field monotonically decreases; present CMB observations constrain

the coupling constant gφ to small values as O (10−30) eV, if backward mov-

ing waves can be neglected. For ultralight pseudo Nambu-Goldstone bosons

acting as dark energy effects are smaller and further detailed investigation is

needed.

We are planning to extend these considerations to scalar fields predicted

by particle physics models (e.g. dark energy chameleons, . . . ) in order to

study how theoretical predictions change with respect to those based on

pseudoscalar fields.

In the second part of this thesis we have used the current upper limits on

the flux of ultrahigh-energy photons in order to constrain Lorentz violating

terms in the dispersion relations of photons, electrons and positrons. Many

Quantum Gravity theories suggest indeed the breaking of Lorentz invariance

with the strength of the effects increasing with energy. The most promising

experimental tests of such theories, therefore, exploit the highest energies at

our disposal which are usually achieved in violent astrophysical processes: the

propagation of photons, electrons and positrons at ultrahigh energies (above

∼ 1019 eV) can be considerably changed if the dispersion relations of these

particles are slightly modified. First we have pointed out that the current

non-observation of photons in the ultrahigh energy cosmic ray flux at such

energies can put strong constraints on such modified dispersion relations.

Written the photon dispersion relation in the form ω2 = k2 + ξnk
2(k/MPl)

n,

with new terms suppressed by a power n of the Planck mass MPl, we have

shown that first and second order terms of size |ξ1| & 10−14 and ξ2 . −10−6,
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respectively, would lead to a photon component in cosmic rays above 1019 eV

that should already have been detected. Subsequently we have generalized

these constraints to all three Lorentz invariance breaking parameters that

can occur in the dispersion relations for photons, electrons and positrons at

first and second order suppression with the Planck scale. We have also shown

how the excluded regions in these three-dimensional parameter space would

be extended if ultrahigh energy photons were detected in the future.

In principle, Lorentz violation for other elementary particles can be con-

strained by using similar arguments. We are planning to estimate the effects

of modified dispersion relation for neutrinos, in this case, ultrahigh-energy

neutrino telescopes data can be used in order to improve bounds on possible

Lorentz violation terms for these particles.





Appendix A

Systematics of CMBP

We present here a summary of conventions and some results of Refs. [169,

170, 171] following the presentation given in Ref. [13].

Polarization effects are divided into two categories:

1. those which are associated with transfer between polarization states

of the incoming radiation, mainly induced by the detector system (see

section A.1);

2. those which are associated with the anisotropy of CMB polarization

and temperature, mainly induced by the finite resolution or beam of

the telescope (see section A.2).

A.1 Detector system

In this section we describe the action of detector on the polarization of

the radiation passing through it. We refer mainly to three papers:

1. “Benchmark parameters for CMB polarization experiments,” W. Hu,

M. M. Hedman and M. Zaldarriaga [169];

2. “Systematic errors in cosmic microwave background polarization mea-

surements,” D. O’Dea, A. Challinor and B. R. Johnson [170];
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3. “A study of CMB differencing polarimetry with particular reference to

Planck,”J. P. Hamaker, J. P. Leahy [171].

Polarization transfer: an introduction to Jones matrices [169]

The polarization state of the radiation is described by the intensity

(or coherency) matrix
〈

EiE
∗
j

〉

where E is the electric field vector and the

brackets denote time averaging. As a hermitian matrix, it can be decomposed

into the Pauli basis:

P = C
〈

EE†
〉

= C (II +Qσ3 + Uσ1 + V σ2)

= C

(

I +Q U − iV
U + iV I −Q

)

. (A.1)

The instrumental response to the radiation modifies the incoming state before

detection and is generally described by a transfer or Jones matrix:

Eout = JEin . (A.2)

Schematics and matrix operators for selected radiometer components are

listed in Fig. A.1.

The polarization matrix is then transformed as:

Pout = JPinJ
† . (A.3)

With an estimate of the transfer matrix of the instrumental response Ĵ, the

incoming radiation can be recovered as:

P̂in = Ĵ−1Pout(Ĵ
†)−1

= (Ĵ−1J)Pin(Ĵ
−1J)† . (A.4)

The errors in the transfer matrix determination will then mix the determined

Stokes parameters .

Ideally the transfer matrix of the components that split and couple the

radiation into the detector is proportional to the identity matrix: Ĵ ∝ I. In
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Figure A.1: Schematics and matrix operators for selected radiometer com-

ponents. Adopted from [172].
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g1

ε1 ε2

g2

OMT

Q U Vφ

Figure A.2: Block diagram for simple polarimeters. The orthomode trans-

ducer (OMT) separates two orthogonal linear polarization states with a leak-

age (polconversion) between the two characterized by (ǫ1, ǫ2). After ampli-

fication with gain fluctuations (g1, g2) the polarization state is detected by

one or more of the following techniques: differencing the lines to produce

Q, correlating the lines to produce U , correlating the lines with a phase shift

φ = π/2 to produce V . The roles of Q and V may be interchanged by placing

a quarter-wave plate at the front end. Figure taken from [169].
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reality it contains systematic errors so that Ĵ−1J ∝ J. Let us parameterize

these errors as [173]:

Ĵ−1J =

(

1 + g1 ǫ1e
iφ1

ǫ2e
−iφ2 (1 + g2)e

iα

)

, (A.5)

where:

• g1,2 are fluctuations in the gains of the two lines;

• α is the phase difference between the lines;

• ǫ1,2 express the non-orthogonality or cross-coupling between the lines;

• φ1,2 are the phases of these couplings.

First consider the simple differencing of the time averaged intensity in the

two lines under the assumption that g1,2, ǫ1,2, α≪ 1,

δQ = δ [〈E1E
∗
1〉 − 〈E2E

∗
2〉]

= (g1 + g2)Q− (ǫ2 cosφ2 − ǫ1 cosφ1)U + (g1 − g2)I , (A.6)

so:

• common-mode gain fluctuations act as a normalization error a = (g1 +

g2);

• the cross-couplings act as a rotation ω = (ǫ2 cosφ2 − ǫ1 cosφ1)/2;

• differential gain fluctuations leak temperature into polarization γ1 =

(g1 − g2).

For a simple correlation polarimeter the errors in the determination

becomes:

δU = δ [〈E1E
∗
2〉+ 〈E2E

∗
1〉]

= (g1 + g2)U + (ǫ2 cosφ2 − ǫ1 cosφ1)Q

+(ǫ1 cosφ1 + ǫ2 cosφ2)I , (A.7)

so again:
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• a = (g1 + g2);

• ω = (ǫ2 cosφ2 − ǫ1 cosφ1)/2;

but:

• the leakage from I into U is γ2 = (ǫ1 cosφ1 + ǫ2 cosφ2).

Instead of differential gain fluctuations, the cross-coupling between the lines

is responsible for the monopole leakage in a correlation system. Notice that

under the assumption:

• α≪ 1 ;

• vanishing intrinsic circular polarization (V = 0);

the phase error α does not appear to first order.

When α = π/2 the correlation polarimeter actually measures V not U .

In general, the phase error α rotates U into V . A complex correlation

polarimeter actually takes advantage of the (U ,V ) rotation to measure

(Q,U) simultaneously:

1. circular polarization states are coupled into the lines using, for example

a quarter wave plate before the OMT (this effectively converts Q into V

in the instrument basis). The Jones matrix of the quarter wave plate

is:

J1/4(θ) =
1√
2

(

− cos 2θ − i sin 2θ

sin 2θ cos 2θ − i

)

, (A.8)

where θ gives the orientation of the plate with respect to the OMT

(ideally θ = π/4).

2. After amplification, the signal can be coupled into two different corre-

lators, which include different phase shifts between the lines.

3. These additional phase shifts can be represented with the transfer func-

tion:

Jphase(φ) =

(

1 0

0 eiφ

)

. (A.9)
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For one correlator φ is set to zero, yielding an estimate of U , while the

other correlator has φ = π/2, providing an estimate of Q.

Considering the effect of certain imperfections:

• the actual transfer matrices of the two correlations are:

JU = Jline(g1, g2, ǫ1, ǫ2)J1/4(π/4 + β) ,

JQ = Jphase(π/2 + ψ)Jline(g1, g2, ǫ1, ǫ2)J1/4(π/4 + β) ,

• the assumed transfer matrices are:

ĴU = J1/4(π/4) ,

ĴQ = Jphase(π/2)J1/4(π/4) ,

Then the errors become:

δ(Q± iU) = [(g1 + g2)± 2iβ](Q± iU) + ψU + (ǫ1 + ǫ2)Θ . (A.10)

there is an asymmetry between Q and U which is first order in the phase

error ψ. More generally, a technique that simultaneously measures Q and

U may have separate transfer properties (calibration, rotation, etc.) that

appear as a coupling of opposite spin states Q+ iU and Q− iU . We will call

such effects spin flip terms.

Receiver Müller matrices [170]

The Müller matrices describe the propagation of the Stokes parameters

through the receiver element of a given observing system. Gathering the

Stokes parameters in a Stokes vector s ≡ (I,Q, U, V )T , we have for the

observed Stokes vector:

sobs =













MII MIQ MIU MIV

MQI MQQ MQU MQV

MUI MUQ MUU MUV

MV I MV Q MV U MV V













s. (A.11)
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We adopt the convention here that Müller matrices are always expressed

in the instrument basis. It is convenient to work with the complex Müller

matrix whose elements have definite spin, i.e.

pobs =













MII MIP MIP ∗ MIV

MPI MPP MPP ∗ MPV

MP ∗I MP ∗P MP ∗P ∗ MP ∗V

MV I MV P MV P ∗ MV V













p = Mp , (A.12)

where we have defined the complex Stokes vector:

p =













I

Q+ iU

Q− iU
V













=













I

P

P ∗

V













. (A.13)

The components of this matrix are related to those in equation (A.11) as

follows:

• for the total intensity I

MIP = 1
2
(MIQ − iMIU), MIP ∗ = 1

2
(MIQ + iMIU),

• for the polarization P

MPI = MQI + iMUI , MPV = MQV + iMUV ,

MPP = 1
2
(MQQ +MUU) + 1

2
i(MUQ −MQU),

MPP ∗ = 1
2
(MQQ −MUU) + 1

2
i(MUQ +MQU) ;

• for the polarization P ∗

MP ∗I = M∗
PI , MP ∗V = M∗

PV ,

MP ∗P = M∗
PP ∗ , MP ∗P ∗ = M∗

PP ;

• for the polarization V

MV P = 1
2
(MV Q − iMV U), MV P ∗ = 1

2
(MV Q + iMV U) .
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Transformation properties of the Müller matrix under rotations of the in-

strument: 1. rotate the instrument by ψ; 2. simultaneously back-rotate the

observed polarization; so we are describing the measured polarization in the

original sky basis);

1. in its basis (rotated basis), the instrument sees incoming radiation with

complex Stokes vector:












1 0 0 0

0 e−2iψ 0 0

0 0 e2iψ 0

0 0 0 1

























I

P

P ∗

V













= Λ(ψ)p , (A.14)

2. the observed polarization in the sky (non rotated) basis is:

pobs(ψ) = Λ†(ψ)MΛ(ψ)p . (A.15)

Only the diagonal elements of M are invariant under M 7→ Λ†(ψ)MΛ(ψ).

In the case of an ideal instrument, M is equal to the identity matrix and

any systematic errors that affect the Stokes parameters will lead to small

perturbations from this:

pobs = Mp =













MII MIP MIP ∗ MIV

γ1 + iγ2 1 + a+ 2iω f1 + if2 w1 + iw2

γ1 − iγ2 f1 − if2 1 + a− 2iω w1 − iw2

MV I MV P MV P ∗ MV V

























I

P

P ∗

V













(A.16)

So:

δ(Q+ iU) = δPobs

= Pobs − P
= (γ1 + iγ2)I + (a+ 2iω)P + (f1 + if2)P

∗ + (w1 + iw2)V ,

in general:

δ(Q± iU) = (a± 2iω)(Q± iU) + (f1 ± if2)(Q∓ iU) + (γ1 ± iγ2)I + (w1 ± iw2)V .

(A.17)
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• a: miscalibration of the polarization amplitude;

• ω: a rotation of the polarization orientation;

• f1 and f2: transformations between the two polarization spin states;

• γ1 and γ2: leakage from total intensity to Q and to U ;

• w1 and w2: leakage from circular polarization.

Under a rotation of the instrument as described above:

pobs = Λ†(ψ)MΛ(ψ)p

=













MIII MIPP MIP ∗P ∗ MIV V

e2iψ(γ1 + iγ2)I (1 + a+ 2iω)P e4iψ(f1 + if2)P
∗ e2iψ(w1 + iw2)V

e−2iψ(γ1 − iγ2)I e−4iψ(f1 − if2)P (1 + a− 2iω)P ∗ e−2iψ(w1 − iw2)V

MV II MV PP MV P ∗P ∗ MV V V













we find:

δ(Q+ iU) = δPobs

= e2iψ(γ1 + iγ2)I + (a+ 2iω)P + e4iψ(f1 + if2)P
∗ + e2iψ(w1 + iw2)V

in general:

δ(Q± iU) = (a± 2iω)(Q± iU) + (f1 ± if2)(Q∓ iU)e±4iψ + (γ1 ± iγ2)Ie
±2iψ

+ (w1 ± iw2)V e
±2iψ. (A.18)

This suggests that the f , γ and w errors can be controlled with instrument

rotation as these terms have different spin properties to the fields they are

perturbing.

Receiver errors

Polarization Müller matrix elements for two common polarimeters that

have particular relevance to CMB polarimetry:
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Incident
radiation

Incident
radiation

OMT 

HWP

Phase
Shifter

OMT

D1 D2

D2D1

1st Hybridizer

2nd Hybridizer

Figure A.3: Block diagrams for a pseudo-correlation receiver (left) and a

rotating half-wave-plate receiver (right). For the pseudo-correlation re-

ceiver, the incident radiation is split into two orthogonal components by

the ortho-mode transducer (OMT), and then propagates through a 90◦ hy-

bridizer. A time dependent phase shift is introduced along one arm, and

the radiation passes through a second 90◦ hybridizer before being detected.

For the rotating half-wave-plate receiver, the incident radiation simply

passes through a rotating half-wave-plate before being split by the OMT and

detected. Figure taken from [170].
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• the pseudo-correlation receiver;

• the rotating half-wave-plate receiver.

The propagation of radiation through a receiver can be described by a Jones

matrix, J, such that the electric field after passing through the receiver, Erec,

is

Erec = JE, (A.19)

where E is the incident electric field. (In this section only, the elements of E

are the complex amplitudes of the two linear polarizations, A and B, which,

for an ideal optical system, couple in the far-field to the x and −y components

of the electric field of the incident radiation.) The Müller matrix for the

receiver can be found from the relations:













I

Q

U

V













obs

= M













I

Q

U

V













, (A.20)

(

I +Q U + iV

U − iV I −Q

)

obs

= J

(

I +Q U + iV

U − iV I −Q

)

J†.

(A.21)

For a receiver with several components, the Jones matrix of the receiver is

the product of the matrices for each component (provided that reflections

can be ignored).

For the pseudo-correlation receiver, the ideal Jones matrix is

Jpc = Jhybrid,2JphaseJhybrid,1Jomt

=
1√
2

(

1 i

i 1

)(

1 0

0 eiϕt

)

1√
2

(

1 i

i 1

)(

1 0

0 1

)

=
1

2

(

1− eiϕt i(1 + eiϕt)

i(1 + eiϕt) −1 + eiϕt

)

, (A.22)
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where ϕt is the time-dependent phase shift, assumed to be continuous here.

After passing through the receiver:

Erec,A =
1

2

[

(1− eiϕt)Ex + i(1 + eiϕt)Ey

]

,

Erec,B =
1

2

[

(−1 + eiϕt)Ey + i(1 + eiϕt)Ex

]

,

where Ex and Ey are components of the incident electric field. The power in

the two components, in the ideal, noiseless case, for a particular pointing is:

D1 ≡ 〈|Erec,A|2〉
= 1

2

[

(ExE
∗
x + EyE

∗
y)− (ExE

∗
x − EyE

∗
y) cosϕt− (ExE

∗
y − E∗

xEy) sinϕt
]

= 1
2
(I −Q cosϕt− U sinϕt) ,

D2 ≡ 〈|Erec,B|2〉 = 1
2
(I +Q cosϕt+ U sinϕt) .

The output of the pseudo-correlation receiver does not depend on Stokes

parameter V (circular polarization), in the ideal noiseless case.

We can now follow systematic errors introduced in the Jones matrices

through to the observed Stokes parameters. We parametrize the systematic

errors in the various receiver components as follows:

Jomt =

(

1 + g1 ǫ1e
iθ1

ǫ2e
iθ2 (1 + g2)e

iα

)

,

Jphase =

(

1 0

0 ei(ϕt+δφ)

)

,

Jhybrid,j =
1√
2

(

(1 + Aj)e
iaj i(1 +Bj)e

ibj

i(1 + Cj)e
icj (1 +Dj)e

idj

)

, (A.23)

where j = 1, 2 labels the two hybridizers. Each parameter corresponds

to a potential, physical systematic error (g1 and g2 represent gain errors in

the two arms of the OMT, ...). Following the same process as in the ideal

case, we find the effect of these errors on the observed Stokes parameters.

Assuming that the systematic errors do not vary significantly over the time

of the observation, and expanding to linear order, the errors are related to
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the parameters introduced in equation (A.17) by:

a = 1
2
(A1 +B1 + C1 +D1 + A2 +B2 + C2 +D2)

+g1 + g2 ;

2ω = 1
2
(a1 + b1 − c1 − d1 + a2 + c2 − b2 − d2)

+ǫ2 cos θ2 − ǫ1 cos θ1 − δφ ;

γ1 = g1 − g2 + 1
2
(A1 + C1 −B1 −D1) ;

γ2 = ǫ1 cos θ1 + ǫ2 cos θ2 + 1
2
(a1 + d1 − b1 − c1) ;

f1 = 0 ;

f2 = 0 ;

w1 = 1
2
(B1 + C1 − A1 −D1) + ǫ1 sin θ1 + ǫ2 sin θ2 ;

w2 = 1
2
(b1 + d1 − a1 − c1 + 2α) . (A.24)

As expected, we see that differential gain errors g1 − g2 lead to instrumental

Q polarization (γ1). ‘Spin-flip’ errors, coupling P to P ∗, are absent at first

order but appear at second order in the perturbation and higher. It should

be noted that the validity of the perturbative expansion depends in part

on the relative amplitudes of the polarization and total-intensity fields. For

example, we are implicitly assuming that any parameter that contributes to

a at first order and to γ1 at only second order is sufficiently small to suppress

the total-intensity leakage caused to well below the level of the polarization

leakage.

For the half-wave-plate receiver, with the plate rotating at an angular

velocity ϕ, the ideal Jones matrix is:

Jrhwp = JomtJ
I
rotJhwpJrot

=

(

1 0

0 1

)(

cosϕt − sinϕt

sinϕt cosϕt

)

×
(

1 0

0 −1

)(

cosϕt sinϕt

− sinϕt cosϕt

)

=

(

cos 2ϕt sin 2ϕt

sin 2ϕt − cos 2ϕt

)

. (A.25)
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This leads to similar ideal detector outputs as the pseudo-correlator, but

with Q and U modulated at a frequency of 4ϕ:

D1 = 1
2
(I +Q cos 4ϕt+ U sin 4ϕt) ,

D2 = 1
2
(I −Q cos 4ϕt− U sin 4ϕt) .

Systematic errors in the OMT are parametrized as in Eq. (A.23), and for the

other components,

Jhwp =

(

1 + h1 ζ1e
iχ1

ζ2e
iχ2 −(1 + h2)e

iβ

)

,

Jrot =

(

cos (ϕt+ δφ) sin (ϕt+ δφ)

− sin (ϕt+ δφ) cos (ϕt+ δφ)

)

. (A.26)

Propagating these errors through to the observed Stokes parameters, we find

the only non-zero polarization couplings are:

a = g1 + g2 + h1 + h2 ,

2ω = ǫ1 cos θ1 − ǫ2 cos θ2 − 4δφ ,

− ζ1 cosχ1 − ζ2 cosχ2 . (A.27)

The observation that P couples only to P actually holds exactly for this re-

ceiver, and not just to first order. By comparing equations (A.24) and (A.27)

we can begin to draw some useful conclusions as to the relative suitability

of these receivers for CMB polarimetry. The half-wave-plate receiver has

the considerable advantage of having no total intensity leakage, given the

assumptions made. The large difference in the amplitude of the temperature

and polarization signals means that such leakage is potentially very damag-

ing, and hence any systematic errors that contribute to γ1 and γ2 will have

very strict tolerance limits.

Planck polarimetry [171]

Description of a single receptor

In the domain of (quasi-)monochromatic time-varying electromagnetic and
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electrical signals a single receptor is described by the equation:

v = r†E , (A.28)

where r is the receptor vector, it consists of 2 complex numbers definable by

4 real parameters:

• δR characterises the orientation of the dipole;

• ǫR characterises the ellipticity of the dipole;

• g characterises the complex gain of the amplifier;

r = gR(δR)

(

cos ǫR

−i sin ǫR

)

= g

(

cos δR cos ǫR + i sin δR sin ǫR

sin δR cos ǫR − i cos δR sin ǫR

)

. (A.29)

In the Stokes domain the output power is:

PR = 〈v∗v〉 = r†Pr

= GR [I + (Q cos 2δR + U sin 2δR) cos 2ǫR − V sin 2ǫR]

= w













I

Q

U

V













, (A.30)

where:

• GR ≡ ‖g‖2 is the receptor’s intensity gain;

• ΛR ≡ cos 2ǫR is polarimetric efficiency for linear polarization;

• δR is misorientation.

Müller matrix describing a two receptor horn

In the output we measure only the powers in the ‘a’ and ‘b’ channels, i.e. the

diagonal elements of the coherency matrix, which equal the output I ± Q;

these outputs are combined in data reduction to obtain estimates of I and
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Q. So we are interested only in the upper part of the Müller matrix for a

Planck horn channel:

(

I

Q

)

obs

= GH

(

1 MIQ MIU MIV

MQI MQQ MQU MQV

)













I

Q

U

V













, (A.31)

where GH is the horn’s intensity gain. The Müller Matrix is a combination

of the w vectors for ‘a’ and ‘b’ receptors:

M =
1

2

(

wa + wb

wa −wb

)

=

(

Ga +Gb Ga cos 2δa cos 2ǫa −Gb cos 2δb cos 2ǫb · · ·
Ga −Gb Ga cos 2δa cos 2ǫa +Gb cos 2δb cos 2ǫb · · ·

· · · Ga sin 2δa cos 2ǫa −Gb sin 2δb cos 2ǫb −Ga sin 2ǫa +Gb sin 2ǫb

· · · Ga sin 2δa cos 2ǫa +Gb sin 2δb cos 2ǫb −Ga sin 2ǫa −Gb sin 2ǫb

)

.

(A.32)

A.2 Local contamination

An experiment necessarily has finite resolution and thus there is an ad-

ditional class of contamination associated with the resolution or beam of the

experiment [169]. Radiation from the sky is then coupled into one line of the

detector through a perfectly polarized beam:

B(n̂;b, e) =
1

2πσ2(1− e2) exp
[

− 1

2σ2

((n1 − b1)2

(1 + e)2
+

(n2 − b2)2

(1− e)2

)]

, (A.33)

where:

• b is the offset between the beam center and the desired direction on

the sky;

• σ is the mean beamwidth;
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• e is the ellipticity.

These parameters are different for the different polarizations, and the differ-

ence in the beams enters into the Q measurement:

B(n̂;ba, ea)−B(n̂;bb, eb) . (A.34)

To first order in the sums and differences of the ellipticities and pointing

errors:

σp = (ba + bb)/2 ,

σbd = (ba − bb)/2 ,

es = (ea + eb)/2 ,

q = (ea − eb)/2 , (A.35)

we obtain:

Q̂(n̂;σ) ≈ Q(n̂;σ) + σp · ∇Q(n̂;σ) + σbd · ∇I(n̂;σ) + σ2q[∂2
1 − ∂2

2 ]I(n̂;σ) ,

(A.36)

where the average beam B(n̂) = B(n̂; 0, 0) and we drop second derivative

terms in Q.

In theory, the only Müller matrix that one should deal with is that for a

complete horn channel. It is a function of pointing coordinates Θ, an orien-

tation angle ψ between sky and Planck coordinates and signal frequency or

spectrum β. In practice subsystem Müller matrices are useful for evaluative

modeling. We shall distinguish two types:

Circuit matrices that describe subsystems with single dual-polarization

input and output.

Beam matrices that describe a collector stage or a complete horn with the

entire polarized sky as input.
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A.3 B-mode contamination

Implications of polarization transfer and local contamination on the B-

modes of the polarization [169].

The polarization and contamination fields may in general be decomposed

into harmonics appropriate to their properties under rotation or spin.

[S1 ± iS2](n̂) = (∓1)s
∫

d2l

(2π)2
[Sa ± iSb](l)e±isφl , (A.37)

where cosφl = lx/l.

• Q ± iU is a spin ±2 field and we will follow the conventional nomen-

clature that its harmonics are named E ± iB;

• the calibration a, rotation ω, and quadrupole leakage to be spin-0 fields;

• the pointing p1 ± ip2 and dipole leakage d1 ± id2 to be ±1 fields;

• the monopole leakage γ1 ± iγ2 to be ±2 fields;

• the spin-flip f1 ± if2 to be ±4 fields.

Under the assumption of statistical isotropy of the fields, their two point

correlations are defined by their (cross) power spectra:

〈S(l)∗S ′(l′)〉 = (2π)2δ(l− l′)CSS′

l , (A.38)

where S, S ′ are any of the fields.

We will calculate the contamination to the B-mode polarization power

spectrum assuming no intrinsic B-modes and generally will plot:

∆B ≡
(

l(l + 1)

2π
CBB
l

)1/2

, (A.39)

in units of µK.

The changes to the B-mode harmonics due to the calibration, rotation,

spin-flip and pointing take the form:

δB(l) =

∫

d2l1
(2π)2

S(l1)E(l2)WS(l1, l2) , (A.40)

with l2 = l− l1 and:
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• calibration Wa = sin[2(φl2 − φl)] ,

• rotation ω = 2 cos[2(φl2 − φl)] ,

• pointingWpa
= σ(l2×l̂1)·ẑ sin[2(φl2−φl)]Wpb

= σ(l2 ·̂l1) sin[2(φl2−φl)] ,

• spin-flip Wfa
= sin[2(2φl1 − φl2 − φl) Wfb

= cos[2(2φl1 − φl2 − φl)] .

Here l1 = l1l̂1.

These relations imply contamination to the BB power spectrum of:

δCBB
l =

∑

SS′

∫

d2l1
(2π)2

CSS′

l1
CEE
l2

(σ)W ∗
SWS′ , (A.41)

where:

CEE
l (σ) = CEE

l exp(−l(l + 1)σ) , (A.42)

is the EE power spectrum smoothed over the average beam.

Similarly the change due to temperature leakage can be described by:

δB(l) =

∫

d2l1
(2π)2

S(l1)I(l2)WS(l1, l2) , (A.43)

with:

• monopole leakage Wγa
= sin[2(φl1 − φl)] Wγb

= cos[2(φl1 − φl)] ;

• dipole leakage Wda
= −(l2σ) cos[φl1 + φl2 − 2φl] Wdb

= (l2σ) sin[φl1 +

φl2 − 2φl] ;

• quadrupole leakage Wq = −(l2σ)2 sin[2(φl2 − φl)] ;

leading to:

δCBB
l =

∑

SS′

∫

d2l1
(2π)2

CSS′

l1
CII
l2

(σ)W ∗
SWS′ , (A.44)

for the power spectrum contamination.
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A.4 Scientific impact

For definiteness, let us take as a fiducial model: a baryon density of Ωbh
2 =

0.02, cold dark matter density of Ωch
2 = 0.128, a cosmological constant of

ΩΛ = 0.65, reionization optical depth τ = 0.05, an initial amplitude of

comoving curvature fluctuations of δζ = 4.79×10−5 (σ8 = 0.92), and a scalar

spectral index of n = 1 in a spatially flat universe.
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(b) Monopole Leakage g-lensing
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Figure A.4: Coherence dependence of B-mode contamination (a) for calibra-

tion a with rms Aa = 10−2 (b) for monopole-leakage γa, γb with Aγa
= Aγb

=

10−3 added in quadrature. The beam scale is Full Width at Half Minimum

(FWHM) = (8 ln 2)1/2σ = 1′ to remove beam effects and the FWHM coher-

ence (8 ln 2)1/2α is stepped from 256′ to 4′ in factors of 2. Other effects follow

the trend of calibration errors not monopole leakage. For a coherence large

compared with the CMB acoustic peaks, B contamination picks up their un-

derlying structure. Here and in the following figures, the gravitational lensing

and minimum detectable gravitational wave (Ei = 3.2 × 1015GeV) B-modes

are shown for reference (thick shaded lines). The scaling with Ei of the peak

in the B-mode spectrum is shown on the right hand axis. Figure taken from

[169].
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Figure A.5: Beam dependence of B-mode contamination for (a) pointing

with an rms Apa
= Apb

= 10−2 (in units of the Gaussian beam width) added

in quadrature (b) quadrupole leakage with an rms Aq = 0.002 (in units of

differential beam ellipticity). The coherence α is set to max(σ, 10′/(8 ln 2)1/2)

and the beam is stepped from 128′ to 2′ in factors of 2. Figure taken from

[169].
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Figure A.6: All effects for a beam and coherence of FWHM = (8 ln 2)1/2σ =

10′. (a) Polarization distortion for an rms of A = 10−2 from calibration a,

rotation ω (0.6◦ rms), pointing (pa,pb) (2.5′′ rms) , and spin flip (fa,fb). (b)

Temperature leakage for an rms of A = 10−3 from monopole (γa,γb), dipole

(da,db) and quadrupole (q) terms. The “b” component of each effect is shown

with dashed lines. Figure taken from [169].
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Abstract of the thesis

Photon Propagation as a Probe

for Fundamental Physics.

In this thesis we show how light propagation can be used in order to

constrain particle physics models beyond the Standard Model. We study in

particular the effects of non standard physics on the polarization of cosmic

microwave background radiation and on the flux of ultrahigh energy γ-rays

(Eγ > 1019 eV).

In the first part we discuss the effects on cosmic microwave background

polarization of coupling between photons and pseudoscalar fields acting as

dark matter (e.g. axions) or as dark energy (e.g. ultralight pseudo Nambu-

Goldstone bosons). In particular we describe how the public code CAMB

can be modified in order to take into account the rotation of the linear polar-

ization plane from last scattering surface to nowadays, produced by photon

propagation in a cosmological background of pseudoscalar particles. Polar-

ization power spectra are compared with the ones obtained in the widely

used approximation in which the rotation angle is assumed constant in time.

We show how polarization-polarization and temperature-polarization angu-

lar power spectra can be very useful to constrain the coupling constant gφ

between photons and pseudoscalars.

191



192 Abstract

In the second part of this thesis we use the current upper limits on the flux

of ultrahigh-energy photons in order to constrain Lorentz invariance violating

terms in the dispersion relations for elementary particles. Theories trying to

unify quantum mechanics with general relativity and many supersymmetry

models predict indeed that Lorentz symmetry has to be modified at energies

of the order of the Planck scale (1028 eV). If standard dispersion relations of

elementary particles are modified, then the propagation and therefore also

the energy spectrum of ultrahigh-energy cosmic rays can be considerably

changed. We study in particular how it is possible to constrain Lorentz

invariance violating terms for photons and electrons (suppressed both at

first and second order of the Planck mass) improving current constraints by

several orders of magnitude.

The main results are summarized in the following papers:

• F. Finelli and M. Galaverni, “Rotation of Linear Polarization Plane

and Circular Polarization from Cosmological Pseudoscalar Fields,”

arXiv:0802.4210 [astro-ph], submitted.

• M. Galaverni, F. Finelli, “Systematics of Cosmic Microwave Back-

ground Polarization,” Internal Report IASF-BO 454/2007.

• M. Galaverni and G. Sigl, “Lorentz Violation in the Photon Sector and

Ultra-High Energy Cosmic Rays,” Phys. Rev. Lett. 100, 021102 (2008)

[arXiv:0708.1737 [astro-ph]].

• M. Galaverni and G. Sigl, “Lorentz Violation and Ultrahigh-Energy

Photons,” Phys. Rev. D 78, 063003 (2008) [arXiv:0807.1210 [astro-

ph]].



Resumé de la thesè

Propagation des Photons comme une Sonde

pour la Physique Fondamentale.

Dans cette thèse, nous montrons comment la propagation de la lumière

peut être utilisée en vue de contraindre les modèles de physique des particules

au-delà du modèle standard. Nous étudions en particulier les effets de la

physique non standard sur la polarisation du rayonnement du fond diffus

cosmologique et sur le flux de photons d’ultra-haute énergie (Eγ > 1019 eV).

Dans la première partie nous discutons les effets sur la polarisation du

fond diffus cosmologique du couplage entre les photons et les champs pseu-

doscalaires, qui agissent en tant que matière noire (par exemple les axions)

ou en tant que énergie noire (par exemple les pseudobosons ultra-légers de

Nambu-Goldstone). En particulier, nous décrivons comment le code pub-

lic CAMB peut être modifié afin de prendre en compte la rotation du plan

de polarisation linéaire à partir de la surface de dernière diffusion jusqu’à

maintenant, produite par la propagation des photons dans un fond cos-

mologique de particules pseudoscalaires. Les spectres de puissance de po-

larisation sont comparés avec ceux obtenus dans l’approximation largement

utilisée, dans laquelle l’angle de rotation est supposé constant dans le temps.

Nous montrons comment les spectres de puissance polarisation-polarisation
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et température-polarisation peuvent être très utiles pour contraindre la con-

stante de couplage gφ entre photons et pseudoscalaires.

Dans la deuxième partie de cette thèse, nous utilisons la limite supérieure

experimentelle actuelle sur le flux de photons d’ultra-haute énergie afin de

contraindre les termes qui violent l’invariance de Lorentz dans les relations de

dispersion pour les particules élémentaires. Les théories qui tentent d’unifier

la mécanique quantique avec la relativité générale et nombreux modèles de

supersymétrie prédisent en effet que la symétrie de Lorentz doit être modifié

à des énergies de l’ordre de l’échelle de Planck (1028 eV). Si les relations de

dispersion standard des particules élémentaires sont modifiées, alors la prop-

agation et donc aussi le spectre d’énergie des rayons cosmiques d’ultra-haute

énergie peuvent être considérablement changés. Nous étudions en particulier

comment il est possible de contraindre les conditions qui violent l’invariance

de Lorentz pour les photons et les électrons (supprimées à la fois au pre-

mier et deuxième ordre de la masse de Planck) en améliorant les contraintes

actuelles de plusieurs ordres de grandeur.

Les principaux résultats sont résumés dans les articles suivants:

• F. Finelli and M. Galaverni, “Rotation of Linear Polarization Plane

and Circular Polarization from Cosmological Pseudoscalar Fields,”

arXiv:0802.4210 [astro-ph], submitted.

• M. Galaverni, F. Finelli, “Systematics of Cosmic Microwave Back-

ground Polarization,” Internal Report IASF-BO 454/2007.

• M. Galaverni and G. Sigl, “Lorentz Violation in the Photon Sector and

Ultra-High Energy Cosmic Rays,” Phys. Rev. Lett. 100, 021102 (2008)

[arXiv:0708.1737 [astro-ph]].

• M. Galaverni and G. Sigl, “Lorentz Violation and Ultrahigh-Energy

Photons,” Phys. Rev. D 78, 063003 (2008) [arXiv:0807.1210 [astro-

ph]].



Riassunto della tesi

La Propagazione dei Fotoni come Sonda

per la Fisica Fondamntale.

In questa tesi mostriamo come la propagazione dei fotoni possa essere

utilizzata per vincolare possibili estensioni del Modello Standard della fisica

delle particelle. Studiamo in particolare gli effetti di questa fisica non stan-

dard sulla polarizzazione della radiazione cosmica di fondo a microonde e sul

flusso di fotoni ad altissime energie (Eγ > 1019 eV).

Nella prima parte analizziamo le modifiche alla polarizzazione della ra-

diazione cosmica di fondo dovute all’interazione tra fotoni e campi pseu-

doscalari, che agiscono o come materia oscura (es. assioni) o come energia

oscura (es. ultralight pseudo Nambu-Goldstone bosons). Mostriamo come

il codice pubblico CAMB possa essere modificato per tenere conto di una

rotazione del piano di polarizzazione lineare prodotta dalla propagazione dei

fotoni in un background cosmologico di particelle pseudoscalari che varia nel

tempo dalla superficie di ricombinazione a oggi. Gli spettri di potenza an-

golare della polarizzazione della radiazione cosmica cos̀ı ottenuti sono quindi

confrontati con quelli ricavati nell’approssimazione di angolo di rotazione

costante nel tempo. Mostriamo inoltre come gli spettri temperatura-polarizza-

zione e polarizzazione-polarizzazione possano rivelarsi molto utili per vinco-
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lare la costante di accoppiamento gφ tra i fotoni e le particelle pseudoscalari.

Nella seconda parte della tesi si utilizzano gli attuali limiti sul flusso di

fotoni ad altissime energie per vincolare termini che violano la simmetria

di Lorentz nella relazione energia impulso per particelle elementari. Infatti

diverse teorie che cercano di unificare la meccanica quantistica con la rela-

tività generale e molti modelli di supersimmetria prevedono che, per energie

dell’ordine della scala di Planck (1028 eV), la simmetria di Lorentz debba

essere modificata. Se le relazioni di dispersione standard sono alterate, al-

lora anche la propagazione e di conseguenza lo spettro dei raggi cosmici ad

altissima energia può essere modificato notevolmente. In questa tesi mostri-

amo come sia possibile costringere notevolmente l’ampiezza di termini che

non soddisfano l’invarianza di Lorentz, benché soppressi al primo o al sec-

ond’ordine nella scala di Planck; si considerano nello specifico modifiche alla

relazione di dispersione dei fotoni e degli elettroni.

I principali risultati sono riassunti nei seguenti articoli:

• F. Finelli and M. Galaverni, “Rotation of Linear Polarization Plane

and Circular Polarization from Cosmological Pseudoscalar Fields,”

arXiv:0802.4210 [astro-ph], submitted.

• M. Galaverni, F. Finelli, “Systematics of Cosmic Microwave Back-

ground Polarization,” Internal Report IASF-BO 454/2007.

• M. Galaverni and G. Sigl, “Lorentz Violation in the Photon Sector and

Ultra-High Energy Cosmic Rays,” Phys. Rev. Lett. 100, 021102 (2008)

[arXiv:0708.1737 [astro-ph]].

• M. Galaverni and G. Sigl, “Lorentz Violation and Ultrahigh-Energy

Photons,” Phys. Rev. D 78, 063003 (2008) [arXiv:0807.1210 [astro-

ph]].
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