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Abstract

In recent years, the satellite observation of aerosol properties has been

greatly improved. As a result, the derivation of Aerosol Optical Thick-

ness (AOT), one of the most popular atmospheric parameters used in

air pollution monitoring, over ocean and continents from satellite ob-

servations shows comparable quality to ground-based measurements.

Satellite AOT products is often applied for monitoring at global scale

because of its coarse spatial resolution. However, monitoring at lo-

cal scale such as over cities requires more detailed AOT information.

The increase spatial resolution to suitable level has potential for appli-

cations of air pollution monitoring at global-to-local scale, detecting

emission sources, deciding pollution management strategies, localizing

aerosol estimation, etc. In this thesis, we investigated, proposed, im-

plemented and validated algorithms to derive AOT maps with spatial

resolution increased up to 1×1 km2 from MODerate resolution Imag-

ing Spectrometer (MODIS) observations provided by National Aero-

nautics and Space Administration (NASA), while MODIS standard

aerosol products provide maps at 10×10 km2 of spatial resolution.

The solutions are considered on two perspectives: dynamical down-

scaling by improving the algorithm for remote sensing of tropospheric

aerosol from MODIS and statistical downscaling using Support Vector

Regression.



Abstract

Recentemente, gli algoritmi per l’osservazione dell’aerosol e delle sue

caratteristiche da piattaforma satellitare sono stati migliorati notevol-

mente.

Le stime dello spesso ottico dell’aerosol - Aerosol Optical Thickness

(AOT) - uno dei parametri più utilizzati per il monitoraggio dell’ in-

quinamento atmosferico, hanno oggi un’accuratezza ed una precisione

comparabile alle misurazioni effettuate con strumentazione a terra.

I prodotti satellitari di AOT hanno una risoluzione spaziale adatta

al monitoraggio a scala globale e non sono utilizzabili su scala locale

per applicazioni su scala urbana che richiedono invece una conoscenza

dettagliata della distribuzione.

La possibilità di aumentare la risoluzione consente di rendere il prodotto

adeguato ad applicazioni di monitoraggio della qualit dell’aria su di-

verse scale (da globale fino a locale), rilevare sorgenti di emissione,

definire strategie di gestione delle politiche ambientali, ecc..

In questa tesi sono stati esaminati, realizzati e validati algoritmi per

la stima di mappe di AOT con risoluzione spaziale fino ad 1km uti-

lizzando dati del sensore MODerate resolution Imaging Spectrometer

(MODIS) installato a bordo dei satelliti della agenzia spaziale statu-

nitense National Aeronautics and Space Administration (NASA). La

qualit dei prodotti satellitari a maggior risoluzione è stata valutata

in confronto con i prodotti MODIS Level 2 a 10km di risoluzione.

Le soluzioni sono state considerate con due prospettive: downscal-

ing dell’algoritmo nativo MODIS del prodotto AOT e downscaling

mediante tecniche statistiche di Support Vector Regression.
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Chapter 1

Introduction

Remote Sensing allows to measure physical properties of objects without actu-

ally being in contact with them. Using devices installed on board aircrafts or

satellites, Remote Sensing applied to the Earth Observation makes it possible to

monitor the Earth-Atmosphere system through the analysis of the interaction of

radiation with matter. The signal received is the sum of several contributions

due to scattering, absorption, reflection and emission processes. Image process-

ing techniques and specific algorithms are applied on that information to extract

(direct measurement) or estimate (indirect measurement) the environmental pa-

rameters and their characteristics which are used in a large variety of applications

for Earth Observation (Agriculture, Atmosphere, Forestry, Geology, Land Cover

and Land Use, Mapping, Oceans and Coastal).

For Atmosphere applications focusing on the Climate Change and on the hu-

man health, the Aerosol Optical Thickness (AOT) has been recognized as one of

the most important atmospheric variables to be monitored from global to local

scale. AOT is representative for the amount of particulates present in a vertical

column of the Earth’s atmosphere. Aerosol concentration can be measured di-

rectly by ground-based filters/sensors or predicted by processing data recorded by

airborne instruments or satellite-based sensors. Ground measurements have high

accuracy and temporal frequency (hourly) but they are representative of a lim-

ited spatial range around ground sites. Conversely, satellite estimation provides

information at global scale but lower measurement frequency (daily). Satellite

aerosol measurements have fifty years history since the first visual observations
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of atmospheric aerosol effects were made manually from the spacecraft Vostok by

Yuri Gagarin on April 12, 1961. During this period, thousands of satellites have

been launched by many governments and agencies. Nowaday, there are a large

number of satellites measuring aerosols of the Earth from space.

MODerate resolution Imaging Spectrometer (MODIS) is a multi-spectral sen-

sor on-board the two polar orbiting satellites Terra and Aqua, launched in 1999

and 2002, respectively and operated by the National Aeronautic and Space Ad-

ministration (NASA). These satellites provide observations nearly the entire globe

on a daily basis, and repeat orbits every 16 days. The swath about 2330 km long

is divided into granules, each of which is corresponding to 5 minutes recording

and hence has a length of 2030 km. The MODIS performs measurements in the

solar to thermal infrared spectrum region from 0.41 to 14.235 μm, separated into

36 bands at resolutions 1 km (29 channels), 500 m (5 channels) and 250 m (2

channels) at nadir (Salomonson et al. [1989]).

The MODIS aerosol products were derived from MODIS-measured spectral

radiance using physical algorithms (i.e. algorithm for remote sensing of tropo-

spheric aerosol from MODIS) since the 90s. The first aerosol products in Collec-

tion 003 was validated globally over ocean (Remer et al. [2005]) and over land

(Chu et al. [2002]) as well as used in regional validation exercises (Levy et al.

[2005]; Ichoku et al. [2002]). After that, the algorithms were upgraded to create

the products in Collection 004 (C004) (Kaufman and Tanré [1997]), Collection

005, Collection 051 (Remer et al. [2004]) and the newest Collection 006 released in

2004, 2006, 2008 and 2012, respectively. MODIS aerosol products are recognized

as confident products hence used largely in many applications and validations as

well as referred to in hundreds publications. The range of application is not lim-

ited in fields of radiation and climate (Yu et al. [2006]) but includes monitoring

surface air quality for health (Chu et al. [2003]; Al-Saadi et al. [2005]), estimat-

ing iron nutrients (from dust) deposited into the ocean (Gao et al. [2000]), and

assimilation for prediction of aerosol fields (Benedetti et al. [2009]).

The original methodology applied to derive AOT from MODIS follows model

driven approach which concentrates on modeling of the interaction between aerosol

and radiation to estimates aerosol properties. The standard MODIS aerosol prod-

uct was produced using the retrieval algorithm known as Algorithm for remote
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sensing of tropospheric aerosol from MODIS (Kaufman and Tanré [1997]; Remer

et al. [2004]). The algorithms are designed and separated for land and ocean. Dif-

ferent aerosol models were simulated and their calculated parameters were stored

in Look-Up Table (LUT). The algorithms assume that the aerosol properties

over targeted areas were presented by proper weightings of one fine-dominated

and one coarse-dominated aerosol models. Spectral reflectance from the LUT is

compared with MODIS measured spectral reflectance to find the best match that

is the solution to the inversion process. Beside LUT that is considered as the

core technique, ancillary data and many different screening processes played an

important role in this methodology. Those data and processing techniques were

considered and applied on the original MODIS datasets to select appropriate data

for inversion process.

Recently, machine learning approach applied in optical thickness processing

has been investigated and presented in various applications ranged from classifi-

cation of aerosol components (Ramakrishnan et al. [2005]), prediction based on

time series data (Chen and Shao [2008]; Lu et al. [2002]; Siwek et al. [2008],

Osowski and Garanty [2006]), to estimation of aerosol content and properties

from different sensors (Okada et al. [2001]; Han et al. [2006]). Regarding AOT

retrievals, the published results show that this approach provides a new efficient

methodology in reducing processing time (Okada et al. [2001]), dealing with data

uncertainties (Vucetic et al. [2008], Obradovic et al. [2010]) and improving the

accuracy over specific areas (Xu et al. [2005]; Vucetic et al. [2008]). Moreover,

the strong advantage of this approach is the flexibility in updating new inversion

models and the simplicity to extend to data collected by new generation sensors,

which would be costly if the model driven approach was applied. Following this

approach, data are collected from different sources which can be satellites, ground

measurements or simulated data. Because of different temporal and spatial reso-

lutions, collected data are integrated in order to solve the differences and create

samples which are used in the training phrase for creating empirical data models.

Neural Networks (NNs) (Okada et al. [2001]; Xu et al. [2005]; Vucetic et al. [2008];

Obradovic et al. [2010]) and Support Vector Regression (SVR) (Lary et al. [2009])

are techniques used largely for inversion process. Related researches have shown

that these approaches are competitive to physical algorithms but their limitations

3



are data dependence and complex modeling process requested.

Spatial resolution, representative of an area corresponding to a pixel, is an

important factor of aerosol products. The best available resolution provided

by MODIS standard aerosol products, up to now, is 10×10 km2. This chosen

resolution was due to a small Signal to Noise Ratio (SNR) between aerosol and

noises from measurement obtained on small areas such as 0.5×0.5 km2. However,

this ratio would be bigger ten times at least if the 10×10 km2 resolution was

selected (Kaufman and Tanré [1997]). Another reason is based on validation

results in which aerosol over an area of 50×50 km2 does not vary much except

over regions near major emission sources (Li et al. [2005]; Ichoku et al. [2002]).

Therefore, 10×10 km2 is considered as a suitable spatial resolution for global

monitoring.

In a big context, downscaling of spatial resolution has been recognized as

a popular and important methodology applied for General Circulation Models

(GCMs) which are used to assess climate changes. These numerical models

present various earth systems including the atmosphere, oceans, land surface

and sea-ice with coarse provided spatial resolutions. Downscaling techniques are

developed in order to bridge the gap between the resolution of climate models

(some hundreds kilometer square in general) and regional and local scale process.

Two fundamental approaches applied for the downscaling of large scale GCMs

output to a finer spatial resolution are dynamical and statistical downscaling.

Dynamical approach refers to the use of Regional Climate Models (RCMs) or

Limited Area Models (LAMs). These focus on parameterizing atmospheric pro-

cess of the large scale GCMs to produce higher resolution outputs. Statistical

downscaling investigated the relationship expressed as a stochastic and/or de-

terministic function between large-scale atmospheric variables and local/regional

climate variables. The statistical downscaling methods are generally classified

into three groups: regression models, weather typing schemes and weather gen-

erators (Fowler et al. [2007]). The downscaling applications can be found in

orographic/humidity/rainfall precipitation, extreme climate events and regional

scale climate.

Regarding MODIS aerosol products, downscaling spatial resolution aims at

providing more detailed aerosol information on observation areas, which is mean-
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ingful for regional monitoring such as over countries or urban areas in partic-

ular where assumption of aerosol stability over 50×50 km2 is not always cor-

rect. Moreover, the finer spatial resolution has great advantages in investigating

aerosol distribution, detecting emission sources and deciding pollution manage-

ment strategies. The challenges of this task, as mentioned above for applications

using MODIS data, is high noises come from measurement instruments. In ad-

dition, large uncertainties of land surfaces over urban and cities also impact on

aerosol estimation quality. Finally, appropriate algorithms as well as adaptations

of complex global algorithms to derive aerosol at a finer resolution have been

investigated in numerous contemporary works.

In literature, several researchers have focused on improving MODIS aerosol

algorithms or proposing new methodologies for aerosol derivation. Published ar-

ticles have shown achievements in which aerosol could be estimated at a finer

resolution than 10×10 km2. Grouped by regions, downscaling works were in-

vestigated and considered for New York city (Oo et al. [2008]), Sao Paolo and

Beijing (Castanho et al. [2007]), Hong Kong (Li et al. [2005]; Nichol and Wong

[2009]), Hong Kong and Pearl River Delta (Wong et al. [2009]). The spatial res-

olutions were considered at 3×3 km2 (Oo et al. [2008]), 1.5×1.5 km2 (Castanho

et al. [2007]; Castanho et al. [2008]), 1×1 km2 (Li et al. [2005]), and 500×500 m2

(Nichol and Wong [2009]; Wong et al. [2009]). Following this effort but insisting

on downscaling aerosol products at global scale, the MODIS team has planed to

release Collection 6 in 2012 with spatial resolution increased to 3×3 km2 (Re-

mer et al. [2010]). However, this version was announced to have lower prediction

quality than the current aerosol product at 10×10 km2. All of the reviewed ef-

forts follow the dynamical downscaling approach, in which surface reflectance is

parameterized and regional LUTs are developed for inversion processes.

In this thesis, we investigated, proposed, implemented and validated method-

ologies to derive AOT maps with spatial resolution increased up to 1×1 km2

from MODIS observations. The solutions are considered from two perspectives:

dynamical downscaling by improving the algorithm for remote sensing of tropo-

spheric aerosol from MODIS and statistical downscaling using Support Vector

Regression (SVR).

Initially, the global MODIS aerosol algorithms with some adaptations are ap-
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plied in smaller observation areas to derive AOT with spatial resolutionat 3×3

km2 (Nguyen et al. [2010a]; Nguyen et al. [2010b]) and then 1×1 km2. The algo-

rithms perform at the global scale instead of parameterizing for specific regions.

The validation carried out on data covered Europe in three years showed good

correlation coefficient and acceptable errors between retrieved AOT at 1×1 km2

with AERONET measurements (Campalani et al. [2011]). The proposed method-

ology was applied to develop a software package called PM MAPPER (MEEO

[2010a]).

Motivated from advances of machine learning approach in AOT retrieval, the

second approach investigated the usage of Support Vector Regression in deriving

AOT at 1×1 km2 of spatial resolution. This work is expected to provide a gen-

eral framework which will be easy to extend to other satellite sensors. In order

to evaluate the performance of SVR for AOT retrieval in comparison with the

MODIS algorithms, two SVR variants were firstly applied for AOT at 10×10 km2

(Nguyen et al. [2010c]). The evaluations for SVRs were carried out by year, by

season and by land cover properties on data collected in 2006, 2007 and 2008.

The experiment results show that the SVR approach outperforms the MODIS

algorithm. Among two SVR variants, “instance SVR” gives better results than

“aggregation SVR”. SVR approach is able to improve AOT prediction quality

especially over bright areas or locations with limited vegetation.

Based on validation results of SVR approach at 10×10 km2, the “instance

SVR” is selected for downscaling spatial resolutions up to 1×1 km2. However,

to apply the SVR for AOT downscaling from 10×10 to 1×1 km2 is not a trivial

task because of very large and noisy datasets to obtain 100 times more detailed

maps. Moreover, the application is extended from pixel domain to map domain

in which data models created by data collected on sparse locations are applied

on large and continuous map areas. To deal with the above mentioned problems,

the proposed methodology is based on SVR and domain knowledge (Nguyen

et al. [2011]; Nguyen et al. [2012]). In this approach, the satellite-based data and

ground-based measurements over areas of interest are collected and integrated

using temporal and spatial constraints. After that, filtering using new integration

conditions is applied to reduce the total amount of data and then clustering

technique separates them into four groups having different characteristics. Then,
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training datasets are selected by some strategies for each cluster and the SVR

technique is applied on them to create corresponding data models. Finally, in

the prediction framework, aerosol maps at spatial resolution of 1×1 km2 are

derived from MODIS L1B data using the SVR models retrieved in the previous

step. Experiments were carried out on data from 2007 to 2009, covering European

areas, in both pixel and map domain. Pixel domain refers to data collected around

ground stations while map domain aims at all validated data in satellite maps.

The validation in pixel domain shows that the SVR methodology outperforms

the MODIS algorithm. Extended to map application, the proposed SVR method

is robust in prediction and gives stable results in most of covering areas.

The thesis contribution is an software package to derive AOT at 1×1 km2 from

MODIS observations using the improved MODIS aerosol algorithms (Nguyen

et al. [2010a]; Nguyen et al. [2010b]; Campalani et al. [2011]). The AOT maps

obtained by this software have been used in SENSORE and AQUA projects in

which AOTs were utilized to predict Particulate Matter concentration (PM2.5/10)

over Emilia Romagna regions in Italy and over Austria (MEEO [2010b]; MEEO

[2012]). Besides, the methodology using SVR based on domain knowledge is

proposed for downscaling of MODIS aerosols. The validations show promising

results for the proposed approach (Nguyen et al. [2011]; Nguyen et al. [2012]).

The thesis will be organized into seven chapters. After the introduction sec-

tion, fundamental overview and review of related works for AOT retrieval algo-

rithms and downscaling techniques will be given in Chapter 2. Chapter 3 will

introduce the standard methodologies for MODIS AOT retrievals. Developed on

the state of the art techniques, the thesis’s works will be presented in Chapter

4, 5 and 6. Finally, the conclusion section will summarize the present work and

discuss future work. Details are as follows:

� Introduction

� Chapter 2 (Aerosol Optical Thickness Retrieval from Satellite Observation,

Physics and Machine Learning Perspectives) presents fundamental knowl-

edge including an overview of atmospheric aerosol, basics about satellite re-

mote measurements and critical procedures for AOT retrievals from satellite

observations. After that, the review of satellite aerosol retrieval algorithms
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in physics and machine learning approaches is presented. Finally, down-

scaling techniques for MODIS AOT retrieval in literature are reviewed and

summarized.

� Chapter 3 (Methodologies for Aerosol Optical Thickness Retrieval from MODIS

observations) shows the state of the art of methodologies for AOT retrieval

from MODIS observations. The chapter introduces theory of algorithms for

remote sensing of tropospheric aerosol from MODIS in Collection 5 (model

driven approach) and basics concepts of Support Vector Regression and

its application for AOT retrievals from MODIS measurements (data driven

approach).

� Chapter 4 (Downscaling Spatial Resolution of Aerosol Optical Thickness

from 10×10 km2 to 1×1 km2 using adapted MODIS aerosol algorithms)

presents the improvements of the MODIS aerosol algorithm to derive AOT

with spatial resolution at 1×1 km2 which then are used to develop a soft-

ware package called PM MAPPER. This algorithm performs at global scale

instead of parameterizing for specific regions. The validation for PM MAP-

PER AOT on data covering European areas over three years is presented.

� Chapter 5 (Aerosol Optical Thickness Retrieval at 10×10 km2 of Spatial

Resolution using Support Vector Regression) investigates potential of SVR

in AOT retrieval at 10×10 km2. The proposed methodology is applied in

data covering European areas over three years to derive AOT at 10×10

km2. The validations are carried out by year, by season, and by land cover

class.

� Chapter 6 (Downscaling Spatial Resolution of Aerosol Optical Thickness to

1×1 km2 using Support Vector Regression based on Domain Knowledge)

presents the methodology replied on SVR and domain knowledge to down-

scale AOT up to 1×1 km2. The proposed approach is developed and tested

on real data collected over European areas over three years from 2007 to

2009. Validations show good results in both pixel and map domains.

� Conclusions and Future Work
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Chapter 2

Aerosol Optical Thickness

Retrieval from Satellite

Observations, Physics and

Machine Learning Perspectives

1 Fundamental Concepts

1 .1 Atmospheric Aerosol

The atmospheric aerosol is an aggregate of liquid or solid particles suspended

in a gaseous medium long enough to be observed and measured. Aerosol can

be produced by anthropogenic (e.g. fossil fuels burning, land use, land cover

and management, fisheries, air pollution) or natural (e.g. dust storms, volcanoes,

forest fires) sources. The necessity of aerosol measurements has increased dramat-

ically in recent years in various disciplines. Many aerosol studies were originated

from applications in health and environment areas in which aerosol was measured

in order to ensure that the public and industrial work forces were not affected by

hazardous aerosols at undesirable concentration levels. Applications for aerosol

measurements can be found in chemistry, physics, biology, optics and engineering

disciplines.
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Atmospheric aerosols are characterized by size, shape, density, and chemical

composition, all of which form a wide range of aerosol types existing in many

different environmental and industrial settings. Atmospheric aerosol types with

different characteristics distribute themselves in three vertical layers as shown in

Figure 2.1. At each layer, aerosol has different characteristics in content, lifetime,

and mixing type. The stratospheric layer contains volcanic sulfuric acid aerosols

that travel at altitude of 10-15 km and make a circle around the Earth one or

two year after a volcanic eruption. The tropospheric layer holds dust, smoke

or industrial haze with 1-2 weeks lifetime. The boundary layer contains a large

variety of aerosols from anthropogenic and natural sources. In this layer, most

aerosols have a short lifetime (3-5 days) and internal mixing type (i.e. particles

interact each others and grow their sizes). To fully understand aerosol effects,

their characteristics must be known on local to global scales (Kaufman et al.

[2002]).

Figure 2.1: Vertical distribution of aerosol types in the atmosphere.

A variety of techniques have been used to obtain useful information about

aerosol. In general, aerosol particles are able to be measured directly by sensors

installed at ground based stations/aircrafts or interpreted from data recorded by

airborne/satellite based sensors. Ground measurements have usually high accu-
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racy and temporal frequency (from minutely to hourly) but they are representa-

tive of a limited spatial range around ground sites. Aircraft measurements are

limited to a few aerosol intensive measurements campaigns (e.g. the International

Global Atmospheric Chemistry (IGAC) in 1996, the Tropospheric Aerosol Radi-

ation Forcing Observation eXperiment (TARFOX) in 1999, and three Aerosol

Characterization Experiments (ACE 1-3) in 1998, 2000 and 2003, respectively).

Satellite instrument, up to now, is the unique tool providing routine measurement

(daily) of the Earth at the global scale.

Satellite aerosol measurements have fifty years history since the first visual ob-

servations of atmospheric aerosol effects were made manually from the spacecraft

Vostok by Yuri Gagarin on April 12, 1961. The hand-held spectrophotometers

were continuously used in the following missions to measure the vertical distri-

bution of aerosol, spectrometry of the twilight and daylight, and stratospheric

aerosol by cosmonauts in Vostok-2, Vostok-6, Voskhod, Soyuz-9, Apollo-Soyuz

in 1961, 1963, 1965, 1970 and 1975 respectively. The first automatic image of

aerosol was achieved by the Multi Spectral Scanner (MSS) on-board the Earth

Resources Technology Satellite (ERTS-1) in 1975 (Griggs [1975]). However, it

was with the launches of TIROS-N and Nimbus-7 satellites in 19 and 25 October

1978 that the era of satellite-based remote sensing of aerosol really began. The

first aerosol products were generated from Advanced Very High Resolution Ra-

diometer(AVHRR) on-board TIROS-N, while the longest measurements of global

aerosol from space, up to now, were provided by TOMS carried by Nimbus-7. In

the first 40 years of development, launched missions mainly focused on measure-

ments of atmospheric composition, meteorology and atmospheric structure and

dynamics. Since 1995, many instruments specified for air quality measurements

have been launched in orbit and hence lead to opportunities of measuring colum-

nar trace gases (e.g. ozone, nitric oxide, nitrogen dioxide, formaldehyde, glyoxal,

chlorine dioxide, chlorine monoxide, and nitrate radicals) in stratosphere and

troposphere.

The demand for satellite aerosol measurement is increasing in the Earth sci-

ence, air quality management, and disaster management because satellite-based

observations are the only available technique to measure the distribution of aerosol

over the entire globe. Many biogeochemical and climate applications of aerosols
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are based on the newly-derived global aerosol data. Satellite aerosols have im-

proved understanding of global biogeochemical processes, managed aerosol source

regions, global transport patterns and atmospheric lifetimes of substances. In air

quality research, satellite aerosol has been used for the detection and quantifica-

tion of natural and man-made air pollution events. Figure 2.2 presents the image

obtain by NASA’s EO-1 satellite for the Eyjafjallajökull eruption in Iceland in

2010, which led to air travel disruption in northwest Europe for six days from 15

to 21 of April and also in May 2010, including the closure of airspace over many

parts of Europe.

Figure 2.2: Eyjafjallajökull eruption in Iceland (Image obtained by NASAs EO-1
satellite on 24 March 2010).

1 .2 Basics about remote measurements from satellites

1 .2.1 Satellite instruments

Nowadays, thousands of instruments on-board satellites have been observing the

Earth. They were launched and operated by governments or space agencies such

as the National Aeronautics and Space Administration (NASA), the National

Ocean and Atmosphere Administration (NOAA), the European Space Agency
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(ESA), le Centre National d’Etudes Spatiales (CNES) in France, the Japanese

Aerospace Exploration Agency (JAXA), the China Meteorological Administra-

tion, the Royal Netherlands Meteorological Institute (KNMI), and the German

Aerospace Centre (DLR). Since aerosol products obtained by TOMS and AVHRR

series in 1978, aerosol information has been inferred from data obtained by later

generation sensors. Aerosol required for atmospheric correction was yielded from

the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) thought this instrument

was developed for studying marine biogeochemical processes (Gordon and Wang

[1994]). With the launches of Terra and ESA EnviSAT satellites, more ad-

vanced instruments such as the MODerate resolution Imaging Spectro-radiometer

(MODIS), Multiangle Imaging SpectroRadiomete (MISR), MEdium Resolution

Imaging Spectrometer (MERIS), and Advanced Along-Track Scanning Radiome-

ter (AATSR) improved significantly aerosol retrievals from satellite observations.

The POLarization and Directionality of the Earth’s Reflectances (POLDER) in-

struments on ADEOS II provided polarization measurements of backscattered

solar light and hence added more capacities for aerosol retrievals. The new gen-

eration of laser satellites such as Lidar In-space Technology Experiment (LITE)

(Winker et al. [1996]), the Geoscience Laser Altimeter System (GLAS) (Spin-

hirne et al. [2005]), and the most recently launched Cloud-Aerosol Lidar and

Infrared Pathfinder Satellite Observations (CALIPSO) allows to derived more

aerosol characteristics such as vertical distribution of aerosols, backscatter, ex-

tinction, and depolarization ratios. Table 2.1 summaries common instruments

and satellites used to derived aerosol properties from space.

Satellites were launched in geosynchronous, medium, and low orbits which are

referred to as GEO (∼ 35,786 km), MEO (2,000 - 25,000 km), and LEO (<2,000

km), respectively. Aerosol measurements are often derived using data recorded by

sensors on GEO and LEO satellites (Figure 2.3a). GEO satellites orbit the Earth

once for every daily rotation of the Earth at a stationary position to the equator.

GEO satellites can provide multiple views (as short as every 5 minutes) of a large

region of the globe per day. The spatial resolution of sensors can be 1 km if a

large telescope is used. LEO satellites have altitudes range from 250 to 700 km

which allows to orbit the planet in approximate 90 minutes. Most of satellites

relevant to atmospheric composition measurements have sun-synchronous orbit
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(i.e. satellites always observe the day side of the Earth) that inclines about 96.1◦

to the west of the north pole at 705 km altitude. Because of the low orbit, each

LEO satellite measurements only provide a swath of the Earth surface at most

3,000 km of width. Any location on the Earth is only observed once a day or less.

In order to measure the complex, dynamic and multi-dimensional aspects of

the global aerosol system, multiple sensors are integrated by A-Train. A-Train is

a constellation of satellites flying on near-identical orbits as a pack, therefore it

provides near-simultaneous observations of the same part of the Earth through

dozens of sensors on eight satellites (Figure 2.3b).

(a) (b)

Figure 2.3: (a) Polar and Geostationary satellite orbit (b) NASA A-Train satellite
constellation (Aura, PARASOL, CALIPSO, CloudSat, and Aqua).

1 .2.2 Remote sensing measurements from satellites

Satellites provide remote measurements for the state of the atmosphere. Most

aerosol retrieval applications have been designed and developed using theory of

electromagnetic radiation scattered and/or absorbed by the atmospheric con-

stituents and the surface target. Figure 2.4 describes the signals measured by

satellite sensors. I0 is incoming solar radiation to TOA and plays a role as an

energy source. The gases and aerosols interact with the solar radiation, scatter

radiation I1 and I2 in the atmosphere, and transfer radiation I3 through the at-

mosphere to the Earth surface. I1 is scattered radiation in the atmosphere which

depends on the density of air, trace gases, and aerosols. I1 is formulated as a

function of height that presents the loss mechanism of source radiation. I2 is

14



scattered radiation going back to satellite field of view and able to be measured

by satellite sensors. The reflected radiation I4 from the Earth surface is an impor-

tant source used by Earth-viewing satellites to compare with I2 to retrieve aerosol

and gas features. The surface reflected radiation depends largely on the surface

characteristics. I5 is the satellite-retrieved TOA radiance from surface as a result

of attenuated I4 by scattering and absorption in the layer of interest. Generally,

I5 needs to be small for I2 to be detected. Another source contributing to satellite

measurements is upwelling IR radiance I6 from the surface as a result of surface

emissivity. I7 is TOA IR radiance that can be measured by IR satellite sensors

and often used for trace gas, water measurements, and cirrus cloud screening.

Figure 2.4: The basic scheme of radiative transfer processes for passive satellite
remote sensing (Hoff and Christopher [2009]).

1 .3 Critical procedures for AOT retrievals

Aerosol Optical Thickness (AOT) or Aerosol Optical Depth (AOD) considered in

this thesis refers to as aerosol measured in vertical direction of the atmosphere.

The total reflectance calculated from TOA radiance is considered as contributions

from atmospheric reflectance by gas molecules, aerosols and surface reflectance. If
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AOT retrievals are carried out at IR wavelengths instead of visible wavelengths,

the Earth emissivity will be taken in account. The aerosol radiance, referred

as “path radiance” in (Kaufman and Tanré [1997]), is obtained from TOA mea-

surements by separating the contributions of gas molecules (Rayleight) and the

Earth surface. Retrieval algorithms are applied to path radiance to derive aerosol

properties such as mass, ångström exponent, fine aerosol fraction from the total

measured reflectance.

The quality of AOT retrievals is varied by satellite and algorithm because of

their approaches in dealing with a significant degree of uncertainty from different

sources including cloud contaminated data, the Earth surface reflectance, and

inversion process.

� Cloud screening is an important process for distinguishing cloudy from

clear-sky pixels. This process is carried out before application of AOT re-

trieval algorithms because optical signals from aerosols are indistinguished

from clouds and hence it is not possible to apply AOT algorithms over

cloudy pixels. Moreover, cloud contamination impacts significantly on AOT

retrieval. The popular approaches for cloud screening are based on a set

of static thresholds (e.g. radiance or temperature) applied on pixel basis.

However, threshold techniques are not robust with sub-pixel clouds, high

reflectance surfaces, illumination and observation geometry, sensor calibra-

tion, transparency of clouds, etc. Over water pixels, the cloud detection is

more effective since the background reflectance is low and predictable. On

the other hand, the variability of surface reflectance over land pixels makes

cloud detection quite difficult and challenging.

� Surface reflectance, a part of contribution to total reflectance measured at

TOA, is separated to from total TOA measurements to obtain path radiance

used for AOT retrieval. Inaccuracies in calculating surface reflectance will

increase uncertainties of AOT retrieval algorithms, which affects mainly the

quality of satellite AOT derived over land where surfaces are complicated

and variant against over ocean where surfaces are more homogeneous. The

techniques to calculate surface reflectance strongly depend on satellite mea-

surement properties. For MODIS and MERIS measurements, the assump-
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tion is that the path radiance needs to dominate surface reflectance in TOA

measured reflectance in order to minimize those surface uncertainties that

impact on aerosol prediction from satellite measurements. Therefore, most

of AOT retrieval algorithms are applied on dark surfaces whose reflectance

is small. Also, surface reflectance is weak in the blue band (Hoyningen-

Huene et al. [2003]) and red band (Remer et al. [2005]), hence those bands

are used to derive aerosol properties. For multi-angle measurements (MISR,

(A)ATSR), the ratio of surface reflectance at different viewing geometries

are employed (Diner et al. [2008]) while for POLDER, polarized character-

istics of surface reflection and atmospheric scattering are used (Deuzé et al.

[2001]).

� The inversion process focuses on deriving aerosol and its properties (i.e.

composition, size, shape ...) from satellite measurements. The inversion

process is based on relationship between AOT and correlation inputs such

as TOA reflectance, climate parameters (e.g. solar/sensor zenith/azimuth

angle, scattering angle, geolocation, wind speed . . . ). Up to now, there

are two main approaches for inversion process, that is, model-driven ap-

proach based on physics theory and data-driven approach using statistics

or machine learning theory. Having a long history, model-driven approaches

have been applied in a large range of applications. Following this approach,

parameter of different aerosol models, representative for different aerosol

types, are calculated using radiative transfer theory and then stored in

LUT for aerosol retrievals. Based on measured parameters, different sim-

ulated aerosol models are applied to yield simulated reflectance which will

be compared to measured reflectance to find the best-fit case considered

as solution. Using the matched solution, AOT and its properties are de-

rived. The aerosol retrieval algorithms following a statistical approach, on

the contrary, develop empirical aerosol models from data collected in areas

of interest for a long period to predict AOT information. This approach

focuses on investigating the data relationship and using statistics and ma-

chine learning theory to constraint the quality of data models. The topic

of this thesis is downscaling AOT from MODIS using physics and machine
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learning approaches with focus on inversion process to derive aerosol infor-

mation at finer spatial resolution. Both the MODIS aerosol algorithms and

SVR algorithm are investigated but a big portion of this study is dedicated

to the second approach.

2 Review of satellite aerosol retrieval algorithms

Today, a large number of aerosol products have been provided freely or com-

mercially for applications in the field of atmospheric chemical modelling. They

have resulted from several aerosol retrieval algorithms processing satellite data

obtained by different instruments. This section reviews aerosol retrieval method-

ologies in physics and machine learning perspectives which details the theory

summarized in previous sections with practical examples. This section aims at

providing an overview of the state of the art and therefore providing the context

for this thesis.

2 .1 Physics algorithms

Physics algorithms in general are based on radiative transfer theory. Most of

them are tailored for specific sensors but some are general enough to apply to

a wide range of satellite instruments. Common aerosol retrieval algorithms cor-

responding to different instrument generations are summarized in Table 2.2 and

briefly described in what follows. Complete reviews can be found in (Heiberg

et al. [2010]; Lee et al. [2009]).

Geostationary satellite algorithm. Although geostationary satellite provides

measurements with coarse spatial resolution, it has been the unique tool for quan-

tifying aerosol properties from space with high temporal resolution. In this al-

gorithm, surface reflectance is obtained from “background image” acquired from

composited minimum reflectance values among numerous views of the same loca-

tion for a period. The AOT retrieval is based on comparison between imagery to

this “background image”. The AOTs obtained by VISSR onboard GOES have

uncertainty in the range of ± 18-34% (Knapp et al. [2002]).

Single-channel AVHRR algorithm. The AVHRR algorithms use the wave-
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length λ=0.63 μm and a LUT assuming certain types of aerosol models and

calculated by radiative transfer codes for AOT derivation. Modeling aerosol

types represented by aerosol models in LUT impact strongly in the quality of

retrieved aerosol. In the earlier algorithm (Stowe [1991]), non-absorbing aerosols

with a modified Junge size distribution are assumed. The results are validated

with shipborne sunphotometer measurements made within ± 2 hours the satellite

overpasses. The comparison shows a negative bias τsat = 0.64τsp − 0.02. How-

ever, in the current algorithm used to generate AVHRR aerosol products, the

log-normal aerosol size distribution is employed together with application of the

Fresnel model for bidirectional reflectance of calm ocean surfaces. As a result,

AOT retrievals agree with ground measurements to better than 10%. The liner

regression between them is τsat = 0.91τsp + 0.01 (Stowe et al. [1997]).

Dual-channel AVHRR algorithm. The two channel algorithms has been ap-

plied to the International Satellite Cloud Climatology Project (ISCCP) to gener-

ate the Global Aerosol Climatology Product (GACP)(Mishchenko et al. [1999]).

Besides AOT, the ångström exponent which is a parameter that denotes aerosol

size is also derived. The algorithm used both AVHRR channels (λ = 0.65, 0.85

μm). Aerosols are assumed to be spherical with the power-law size distribution

and a refractive index of 1.5-0.003i. This algorithm is susceptible to calibration

errors in both channels and cloud screening errors.

TOMS Algorithm. TOMS instruments onboard Nimbus-7, ADEOS, and Earth

Probe originally provide data for monitoring ozone depletion. Since the ratio of

two channels (λ = 0.331, 0.360 μm) is sensitive to absorbing aerosols, they can

be used to derive the Aerosol Index (AI) (Herman et al. [1997]). The advantages

of this technique is that the presence of subpixel clouds does not affect the de-

tection of aerosols. Daily global TOMS AI products have been used largely to

monitor the spatial and temporal variations of smoke, dust, and other types of

absorbing aerosols. The “near-UV algorithm” is used to extract additional quan-

titative aerosol parameters such as AOT and Single Scattering Albedo (SSA).

This algorithm uses two backscattered radiances at near-UV bands, a LUT as-

sumed by three aerosol models, and variability of the relationship between the

spectral contrast and the radiance at the longer wavelength. The long-term AOT

(1979 to present) over land and ocean had uncertainties about 30% in comparison
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with AErosol RObotic NETwork (AERONET) observations, while AOT of non-

absorbing aerosols agreed to within 20% (Torres et al. [2002]). The TOMS SSA

generally agrees within 0.03 of AERONET retrievals (Torres et al. [2005]). How-

ever, this retrieval is affected by the aerosol layer altitude, the single scattering

albedo, and cloud contamination.

Ocean Color Algorithms (SeaWiFS). Aerosol products are by-products from

the atmospheric correction for the ocean color algorithm (Gordon and Wang

[1994]). The TOA reflectance over ocean is a total of air molecules scattering,

aerosols, the interactions between molecular and aerosol scattering, ocean reflec-

tion, and water-leaving reflectance. The ocean color algorithm utilizes the fact

that the effects of all mentioned factors excepting aerosols are negligible at Near

Infrared (NIR) wavelengths. Therefore, aerosol information can be derived from

NIR bands by using a set of suitable aerosol models. The current SeaWiFS and

MODIS ocean color algorithms (Collection 4) use 12 aerosol models for generat-

ing the LUTs (Wang et al. [2005]). Using combination of two most appropriate

aerosol models (i.e. one fine and one coarse modes), the AOT and Ångström

exponent can be retrieved.

Polarization (POLDER). The POLDER instrument provides multi-band imag-

ing radiometer and polarimeter with eight narrow spectral bands in the visible

and near infrared. The spectral variation allows to derive aerosol size and AOT.

The polarization provides some information on the aerosol refractive index and

shape, which contributes to improve scattering phase function. This algorithm is

based on LUTs from POLDER directional, spectral, and polarized measurements

for several aerosol models. The accuracy in AOT retrievals was reported as 30%

(Herman et al. [1997]). The POLDER Ångström exponent correlated well with

AERONET data but underestimated by 30% (Goloub et al. [1999]) because it is

more sensitive to fine aerosols.

Multi-channel Algorithm (SeaWiFS, MODIS, MERIS). The MODIS aerosol

algorithms are designed to retrieve aerosol information from MODIS measure-

ments. The algorithms, separated over land and ocean, generate the most com-

prehensive aerosol products including AOT, fine mode fraction, effective radius

of aerosol particles, and mass concentration. The retrieval uncertainty of the

MODIS AOT products falls within±0.03±0.05τsat over ocean and±0.05±0.15τsat
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over land (Remer et al. [2005]). However, the modified aerosol algorithms in Col-

lection 5 products improves significantly accuracy as shown in later validation

studies (Levy et al. [2007]).

BAER (Bremen Aerosol Retrieval) algorithm aims at deriving aerosol optical

properties over land and ocean. It is a generic approach that have been applied

to MODIS, MERIS, SCIAMACHY, and SeaWiFS. In this algorithms, the blue

channel of satellite instrument is used to separate surface and atmospheric reflec-

tion, which works appropriately over dark surfaces but deserts are need individual

treatments. This technique, a variant of the “dark target” method proposed by

(Kaufman and Tanré [1997]) for MODIS, assumes a dynamic estimation of the

surface reflectance using a linear mixing model of vegetation and soil, tuned by

the Normalized Differential Vegetation Index (NDVI) of the satellite scene. The

derivation of AOT and its optical properties is based on LUT pre-calculated by a

radiative transfer model. Sensitivity tests have shown that the BAER algorithm

can reach an agreement of 20% between retrieved and ground-based AERONET

AOT at 0.421 μm. The error in AOT decreases with the zenith distance of the

sun and the satellite (Hoyningen-Huene et al. [2003]).

Multi-angle, Multi-channel (MISR). MISR observations provides measure-

ments of nine different view angles (i.e. one at nadir and eight symmetrical

views at 26.1, 45.6, 60.6, and 70.5 degrees forward and after of nadir) at four

spectral bands (0.443, 0.558, 0.672, and 0.866 μm). The combination of multiple

bands and multi-angles allows to estimate AOT and additional properties such as

the Ångström exponent, SSA, number fraction, and volume fraction. The algo-

rithms are designed for water, Dense Dark Vegetation (DDV), and heterogeneous

land (Martonchik et al. [1998]). Over dark water, water-leaving radiances at red

and near-infrared wavelengths are considered as zero, therefore it is similar to

the ocean color algorithm. The algorithm for DDV uses an angular shape for

the surface Bidirectional Reflectance Factor (BRF) with angular measurements.

In heterogeneous land, empirical orthogonal functions derived from the spectral

contrast by multi-angle observations are used to determine AOT and the aerosol

model. Validations of MISR AOTs using AERONET AOTs show a positive bias

of 0.02 with an overestimation of 10% over southern Africa (Diner et al. [2001]),

an overestimation over China (Christopher and Wang [2004]), and a linear rela-
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tionship of τsat = 0.92τsp+0.02 and a retrieval error of 00.4± 0.18τsp over United

States (Liu et al. [2004]).

2 .2 Machine Learning algorithms

The Machine Learning (ML) approach has recently been investigated to improve

quality of aerosol monitoring. ML techniques provide a more general frame-

work for aerosol retrieval than physical techniques, hence they can be applied

to data obtained by a large range of satellite instruments. ML techniques are

used in the inversion process and play a role as radiative transfer model in al-

gorithms based on physical approach. The approach is efficient in reducing pro-

cessing time (Okada et al. [2001]), dealing with data uncertainties (Vucetic et al.

[2008];Obradovic et al. [2010]), improving estimation accuracy (Xu et al. [2005];

Vucetic et al. [2008]; Nguyen et al. [2010c]), flexibly updating new inversion mod-

els, and easily extending to other types of sensors. However, its limitations are

data dependence and complex modeling process.

In terms of aerosol estimation field from satellite observations, there are var-

ious applications using Neural Network (NN). Böttger [2000] developed an algo-

rithm for aerosol and cloud characteristic retrievals from POLDER measurements

using NNs. The data obtained by radiative transfer simulation were used to cre-

ate empirical NN models for deriving aerosol, cloud optical thickness, and aerosol

type (i.e. refractive index and the mode radius of the cloud droplet size distribu-

tion). Following the same approach, Okada et al. [2001] used information in LUT

to train a NN system, then applied it on ADEOS/OCTS data to retrieve aerosol

properties over the ocean. Li et al. [2001] developed both NN and multi-threshold

techniques to detect smoke from forest fires using AVHRR measurements. Two

techniques were employed separately or in combination depending on the size of

an image and smoke conditions. The methodologies were validated to TOMS

AI data over Canada in 1998. AVHRR and TOMS smoke detections were rea-

sonable correspondent, but quite different and complementary. AVHRR is most

sensitive to low, dense smoke plumes located near fires, whereas smoke detected

by TOMS is dispersed, thin, elevated, and further away from fires. Another ap-

plication for SeaWiFS AOT and Ångström exponents in (Jamet et al. [2004])
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trained NN with radiative transfer computations and applied to Mediterranean

images in 2000 to derive monthly mean maps. In comparison with ground-based

measurement at three AERONET stations, higher agreement and improvements

compared to operational SeaWiFS aerosol products were found. Regarding the

MERIS instrument, NN model was created from simulated data to retrieve AOT

from TOA signals recored at 13 MERIS wavelengths in Beal et al. [2007]. The

validation on 61 MERIS images over AERONET sites showed good accuracy as

well as competition with results obtained by 31 MODIS images. Brajard et al.

[2007] estimate AOT over ocean case 1 waters using a topological NN (Kohonen

map). Different from previous studies, NN was trained with real data collected

from 85 MERIS images in 2003 and 2004 over the Mediterranean Sea. The algo-

rithm was validated using 5 day MERIS images and AERONET AOT on a small

island (Lampedusa) in the Mediterranean Sea. Utilizing Support Vector Machine

(SVM), Ma et al. [2009] classified cloud and aerosol from the Cloud-Aerosol Lidar

with Orthogonal Polarization (CALIPSO) measurements.

Regarding the AOT retrievals from MODIS measurements, many studies em-

ployed both NNs and SVR for aerosol retrieval. In Xu et al. [2005], data recorded

by MISR and MODIS are integrated with AERONET measurements to create

data samples. Satellite data were collected during 2002 and 2003 covering the

continental USA. These data are joined spatially and temporally with AOT mea-

surements from 34 AERONET stations over the continental USA. After that,

NN is applied for inversion process. The validation results showed that the ac-

curacy of AOT prediction was able to increase up to 10% when both MISR and

MODIS data were used instead of individual sensor’s measurements. Following

the same approach, Vucetic et al. [2008] compared performances of model-driven

approach (the MODIS algorithm) and data-driven approach (NN) in AOT re-

trievals from MODIS. The NN approach was applied on 3646 collocated MODIS

and AERONET observations over the continental USA. The experiments show

situations in which each approach presented its advantages and disadvantages.

However, NN is very competitive with the MODIS algorithm and can be consid-

ered as a feasible technique for AOT retrievals. A complete summary of related

studies from this research group are presented in Obradovic et al. [2010]. Be-

sides the topic of AOT retrievals, Lary et al. [2009] investigated the use of NN
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and SVR for AOT correction in order to remove bias of the standard MODIS

AOT products. The proposal algorithms applied on data at the global scale. The

experiment results showed SVR outperformed NN techniques and was able to

improve correlation coefficient between AERONET AOT and MODIS AOT from

0.86 to 0.99 for MODIS Aqua and from 0.84 to 0.99 for MODIS Terra.

3 Review of downscaling techniques for MODIS

AOT retrievals

Downscaling has been recognized as a popular and important methodology ap-

plied for General Circulation Models (GCMs) which are used to assess climate

changes. These numerical models present various earth systems including the at-

mosphere, oceans, land surface and sea-ice with coarse spatial resolutions. Down-

scaling techniques are developed in order to bridge the gap between the resolution

of climate models (some hundreds kilometre square in general) and regional and

local scale process. Two fundamental approaches applied for the downscaling

of large scale GCMs output to a finer spatial resolution are dynamical and sta-

tistical downscaling. Dynamical approach refers to the use of Regional Climate

Models (RCM) or Limited Area Models (LAMs). These focus on parameterizing

atmospheric process of the large scale GCMs to produce higher resolution out-

puts. Statistical downscaling investigated the relationship expressed as a stochas-

tic and/or deterministic function between large-scale atmospheric variables and

local/regional climate variables. The statistical downscaling methods are gener-

ally classified into three groups: regression models, weather typing schemes and

weather generators. The full review and comparisons in advantages and disad-

vantages between two downscaling approaches are presented detailed in Fowler

et al. [2007].

Regarding the downscaling aerosol products from MODIS observations, in

literature, several studies focused on improving MODIS aerosol algorithms or

proposing new methodologies for aerosol derivation. Published articles have

shown achievements in which aerosol could be estimated at a finer resolution

than 10×10 km2. Grouped by regions, downscaling studies were investigated
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and considered for New York city, Sao Paolo, Hong Kong, Hong Kong and Pearl

River Delta with the spatial resolutions at 3×3 km2, 1.5×15 km2, 1×1 km2, and

500×500 m2, respectively. Oo et al. [2008] used the MODIS algorithm with pro-

posed ratio of VIS (0.66 μm) and MIR (2.12 μm) as 0.73 instead of 0.59 over

New York city. The validation showed that obtained AOT can be achieved at

3×3 km2 or more detail 1.5×1.5 km2 of spatial resolution and still keep good

accuracy in comparison with AERONET AOT. Focusing on new aerosol models,

Castanho et al. [2008] proposed the use of local surface reflectance and aerosol

critical reflectance techniques to automatically estimate aerosol optical property

(i.e. SSA). The methodology is applied to retrieve AOT from MODIS data col-

lected from 2002 to 2005 and then compared with collocated data measured by

AERONET in Sao Paulo. The good results could be achieved when the dynamic

methodology using two aerosol optical models was applied (slope 1.06 ± 0.08,

offset 0.01 ± 0.02, R2 ∼ 0.6). Li et al. [2005] generated a new LUT with ac-

commodate aerosol models to HongKong city using MODIS measurements with

empirical SSA around 0.91 - 0.94 instead of 0.97 as in the standard MODIS algo-

rithms. The AOT validated to Microtops II sunphotometer observations showed

retrieval errors within 15% to 20%. In comparison with Particulate Matter con-

centration (PM10), obtained AOT data were much better correlated than MODIS

AOT at 10×10 km2. Nichol and Wong [2009] continued to downscale AOT re-

trieved from MODIS over Hongkong city to 0.5×0.5 km2. In this methodology,

Minimum Reflectance Technique (MRT) was used to estimate surface reflectance,

while LUT was calculated using SBDART code for the AOT retrieval. The val-

idation using MODIS data collected in 2007 at the HongKong AERONET site

showed good linear fitting correlation coefficient (R2) of 0.93. The same approach

was applied and presented promising results over Pearl River Delta region, China

(Wong et al. [2009]). Following this trend but deciding on downscaling aerosol

products at global scale, the MODIS team has planed to release Collection 6 in

2012 with spatial resolution increased to 3×3 km2 (Remer et al. [2010]). How-

ever, this version was announced to have lower prediction quality than the current

aerosol product at 10×10 km2. All of reviewed studies follow dynamical down-

scaling approach, in which surface reflectance was parameterized and regional

LUTs were developed for inversion processes.
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Table 2.1: Instruments and satellites used to derived aerosol properties form
space.

Instrument Satellite LifeTime Species Orbit Tem./Spa.
resolutions
(day/km2)

Spectral
range (μm)

VISRR GOES-1∼12 1975-pre. Visible/IR imagery Geo. ?/1×1-8×8, de-
pend on wave-
length

5(0.65 12.5)

AVHRR TIROS-N 1978-pre. H20, Cloud imagery PS 0.5/ 1.1×1.1 4(0.58 11.5)
NOAA6 16 1979-pre. H20, Cloud imagery PS 0.5/ 1.1×es1.1 5(0.58 - 12)

TOMS Nimbus-7 1978-1993 O3 PS ?/47×47 6(0.308 -
0.36)

ADEOS 1996-1997 - - - 6(0.308 -
0.36)

EP-TOMS Earth Probe 1996-pre. - - ?/39×39 6(0.308 -
0.36)

POLDER ADEOS 1996-1997 Aerosol properties PS ?/6×6 9(0.443 -
0.910)

POLDER-2 ADEOS 2002-2003 - - - 9(0.443 -
0.910)

POLDER-3 PARASOL 2004-pre. - - - 8(0.44 - 0.91)
SeaWiFS OrbView-2 1997-pre. ? PS 1/ 4.5×4.5 8(0.412 -

0.865)
MODIS Terra 1999-pre. H2O, clouds, aerosols PS 1-2/ 0.25×0.25,

0.5×0.5, 1×1
36(0.4 - 14.4)

- Aqua 2002-pre. H2O, clouds, aerosols PS, A-
Train

- -

MISR Terra 1999-pre. Aerosols PS 9/ 0.275×0.275,
0.55×0.55,
1.1×1.1

4(0.45 - 0.87)

AATSR ENVISAT 2002-pre. Surface T PS ?/1×1 7(0.55 - 12)
MERIS - - AOD - 3/1.2×1.2 15(0.4 - 1.05)
SCIAMACHY - - O3, NO2, H2O, N2O,

CO, CH4, CHOCHO,
OClO, H2CO, SO2,
aerosols, P, T

- 3/30×60 0.24 - 2.4

CALIOP CALIPSO 2006-pre. Lidar profiles of
aerosols

PS, A-
Train

?/0.03-0.06
(vertical), 0.333
(horizontal)

2(0.532 -
1.064)
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Table 2.2: Aerosol retrieval algorithms for different satellite instruments (AOT -
Aerosol Optical Thickness, AAI - Absorption Aerosol Index, SSA - Single Scat-
tering Albedo, α - Ångström exponent, η - fine aerosol fraction.

Instrument Satellite Aerosol Retrieval Algorithm Aerosol Products Aerosol Spa-
tial Resolution
(km2)

VISRR GOES-11̃2 Geostationary Satellite Algo-
rithm (Knapp et al. [2002])

AOT ?

AVHRR TIROS-N Single-channel AVHRR algorithm
(Stowe [1991]; Stowe et al. [1997])

AOT ?

- NOAA 61̃6 Dual-channel AVHRR Algorithm
(Stowe et al. [1997]; Mishchenko
et al. [1999])

AOT, α ?

TOMS Nimbus-7 TOMS algorithm (Herman et al.
[1997])

AI, AOT, SSA 40×40

- Earth Probe TOMS algorithm (Herman et al.
[1997]; Torres et al. [2002])

AI, AOT, SSA -

POLDER ADEOS Polarization algorithm (Herman
et al. [1997])

AOT, α 20×20

POLDER-2 ADEOS - - -
POLDER-3 PARASOL - - -
SeaWiFS OrbView-2 Ocean Color Algorithm (Gordon

and Wang [1994])
AOT, α ?

MODIS Terra Multi-Channel Algorithm (Remer
et al. [2005])

AOT, α, η 10×10

- Aqua - - -
MISR Terra Multi-Angle, Multi-Channel Al-

gorithm (Martonchik et al. [1998];
Diner et al. [2008])

AOT, α, SSA, η, and
mass concentration

17.6×17.6

AATSR ENVISAT (Grey et al, 2006) ? ?
MERIT - Multi-Channel Algorithm (von

Hoyningen-Huene et al. [2006])
? ?

SCIAMACHY - Limb Sounding (Graaf and
Stammes [2005])

AOT 60×30

CALIOP CALIPSO Active Sensing Algorithm AOT, α 40×40
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Chapter 3

Methodologies for Aerosol

Optical Thickness Retrieval from

MODIS observations

In this chapter, the methodologies for AOT retrieval from MODIS observations

are presented. Firstly, background information of instruments and released data

products are introduced. After that, algorithms over ocean and land for remote

sensing of tropospheric aerosol from MODIS applied in Collection 5 are summa-

rized. SVR with fundamental mathematics theory for building regression models

from data will be presented in the next sections together with brief description

of SVR application for AOT retrieval.

1 Background Information

1 .1 Characteristics of the MODIS and AERONET in-

struments

The MODerate resolution Imaging Spectrometer (MODIS) is a multi-spectral

sensor on-board the two polar orbiting satellites Terra and Aqua, launched in

1999 and 2002, respectively and operated by the National Aeronautic and Space

Administration (NASA). Terra and Aqua with the descending (southward) and

28



ascending (northward) orbit cross the equator about 10:30 and 13:30 local sun

time, respectively. Each MODIS views the Earth with a swath width of 2330

km, therefore these satellites provide observations nearly the entire globe on a

daily basis, and repeat orbits every 16 days. The swath is divided into granules,

each of which is corresponding to 5 minutes recording. Therefore, each granule is

corresponding to a map of 2030 pixels of 1 km width in the direction of satellite

path and 1354 pixels of non-uniform width (i.e. The real pixel size projected

on the earth far away from nadir is larger than those at nadir because of the

influence of instrument scan and the Earth’s curvature). The MODIS performs

measurements in the solar to thermal infrared spectrum region from 0.41 to 14.235

μm, separated into 36 bands at resolutions 1 km, 500 m and 250 m at nadir. The

MODIS aerosol retrievals use seven wavelength bands and other bands for cloud

and other screening procedures as shown in Table 3.1.

Table 3.1: Characteristics of MODIS channels used in aerosol retrieval

Band# Bandwidth (μm) Weighted Cen-
tral Wavelength
(μm)

Resolution
(m)

NeΔρ
(×10−4)

Maxρ Required
SNR

1 0.620-0.670 0.646 250 3.39 1.38 128
2 0.841-0.876 0.855 250 3.99 0.92 201
3 0.459-0.479 0.466 500 2.35 0.96 243
4 0.545-0.565 0.553 500 2.11 0.86 228
5 1.230-1.250 1.243 500 3.12 0.47 74
6 1.628-1.652 1.632 500 3.63 0.94 275
7 2.105-2.155 2.119 500 3.06 0.75 110

The spectral reflectance ρλ of the wavelength λ are defined as a function of

measured spectral radiance Lλ, the solar zenith angle θ0 and the solar irradiance

F0,λ as follows:

ρλ = Lλ
π

F0,λcos(θ0)
(3.1)

The “Noise Equivalent Different Spectral Radiance” (NeΔL) is a property of the

instruments. Using it, Noise Equivalent Different Spectral Reflectance (NeΔρ)

and Signal to Noise Ratio (SNR) can be calculated (see Table 3.1).

The AErosol RObotic NETwork (AERONET) is a global system of ground-

based Remote Sensing aerosol network established by NASA and PHOTONS
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(University of Lille 1, CNES, and CNRS-INSU) (AERONET [2011]). The net-

work imposes standardization of instruments, calibration, processing and distri-

bution. The main products are AOT, inversion products, and precipitable water

in diverse aerosol regimes. Aerosol Optical Thickness is measured by the CIMEL

Electronique 318A spectral radiometers, sun and sky scanning sun photometers

in four or more wavelengths to include 0.440, 0.670, 0.870, and 1.020 μm, in every

15 minutes during midday and more often during sunrise and sunset. The global

distribution of AERONET stations is illustrated in Figure 3.1

Figure 3.1: The global distribution of AERONET ground stations (AERONET
[2011])

1 .2 Data Description

The MODIS Level 1B (L1B) data acquired by MODIS sensors on board the Terra

and Aqua satellites represent measurements of a spectrum region from 0.415 to

14.235 μm divided into 36 channels at 1 km, 500 m, and 250 m resolution at nadir.

A scene covers an area on the Earth surface of 2030 km in the direction of the

satellite orbit and of 1354 km of non-uniform width. The spectral reflectance are

calibrated and provided in products named MOD02/MYD02 for Terra/ Aqua. In
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addition, the corresponding geo-location product containing geodetic coordinates,

ground elevation, solar and satellite zenith and azimuth angles for each 1 km

sample is provided together with L1B data, known as MOD03/ MYD03 for Terra/

Aqua.

The MODIS Level 2 (L2) refers to two processed products, that is, MOD035/

MYD035 Wisconsin cloud mask product and MOD07/ MYD07 atmospheric pro-

file product. The MODIS cloud mask products provide information of cloud

contamination by labeling every pixels of data as either confident clear, probably

clear, uncertain, or confidently cloudy. The algorithm used 17 of 36 MODIS spec-

tral bands for making tests of cloud contamination. The MODIS Atmospheric

Profiles products (MOD07/ MYD07) include ozone information, atmospheric sta-

bility, temperature and moisture profiles, and atmospheric water vapor. In this

product, all parameters are provided at 5×5 km2 spatial resolution for Terra and

1×1 km2 spatial resolution for Aqua when cloud-free.

MOD04 L2 is the aerosol products derived by the MODIS software package

Collection 005. MOD04 L2 products characterized by spatial resolution of 10×10

km2 provide AOT estimations at seven wavelengths (0.470, 0.550, 0.670, 0.870,

1.240, 1.630 and 2.130 μm) over ocean and three wavelengths over continental

areas (0.470, 0.550 and 0.670 μm) together with respective geometry information

and other various parameters.

All MODIS L1B, L2 atmospheric products, and aerosol products are written

in Hierarchical Data Format (HDF) with each parameter stored as a Scientific

Data Set (SDS). Besides, the ancillary data from NCEP (National Center for

Environmental Prediction) including the GDAS 1◦ × 1◦ 6 hourly meteorological

analysis and TOVS/TOAST 1◦ × 1◦ daily ozone analysis are considered in the

MODIS algorithm.

AERONET collaboration provides the global AOT data computed for three

data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level

2.0 (cloud-screened and quality-assured). Level 1.0 AOT is unscreened and may

not have final calibration applied. Level 1.5 AOT has automatically cloud screen-

ing but maybe not have final calibration. Level 2.0 data are applied the pre- and

post-field calibrations, cleared automatically of cloud and inspected manually.
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2 Algorithm for remote sensing of tropospheric

aerosol from MODIS: Collection 5

The MODIS aerosol algorithm includes two independent algorithms for deriv-

ing aerosol over ocean and land. Both algorithms use calibrated, geolocated

reflectances provided by MOD02/MYD02 and MOD03/MYD03 products for Ter-

ra/Aqua. The MODIS cloud masks in MOD35/MYD35 and meteorological data

are considered as inputs for algorithms as well. The theoretical basis of the algo-

rithms has not changed from inception but some improvements have been carried

out and organized by “Collection”. Both algorithms output the AOT and related

information at different wavelengths. This section presents theoretical basis of

the latest MODIS aerosol algorithms: Collection 5.

2 .1 Algorithm over ocean

The algorithm for aerosol retrieval over the ocean in Collection 5 (C005-O) is

presented in (Remer et al. [2004]). The algorithm follows the LUT approach

using aerosol and surface parameters pre-computed by radiative transfer codes.

The algorithm assumes that a proper weighting of one fine and one coarse logno-

mal aerosol modes can represent the ambient aerosol properties over the target.

The simulated reflectance calculated from LUT is compared to MODIS measured

spectral reflectance to find the best fit which will be considered as the solution

of the inversion process. Although the inversion process is core of the algorithm,

other procedures such as cloud screening, glint and sediment masking are con-

sidered and applied in order to guarantee the quality of the aerosol retrievals.

Figure 3.2 presents a flowchart of the over ocean aerosol algorithm. Reflectances

of the six wavelengths used in this algorithm (ρ0.55, ρ0.66, ρ0.86, ρ1.24, ρ1.6, ρ2.13) are

calculated for 10 km boxes of 20×20 pixels at 500 m resolution and considered as

inputs for the algorithm. The box sized 10 km determines spatial resolution for

the final aerosol products. The ocean algorithm requires 400 pixels in the box to

be ocean pixels identified by MOD35/MYD35 mask as a condition of algorithm

application.
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Figure 3.2: Flowchart of the over-ocean aerosol retrieval algorithm (Remer et al.
[2005])
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2 .1.1 Selection of pixels: cloud, glint and sediment masking

The cloud screening does not use the standard MOD35/MYD35 product as the

primary cloud mask because this product cannot eliminate completely cloudy

pixels, mistakes heavy aerosol as cloud, mis-retrieves important aerosol events

over ocean, and allows cloud contamination. In the over-ocean aerosol algorithm,

the main cloud mask is based on the difference in spatial variability between

aerosols and clouds (Martins et al. [2002]). The algorithm exams the standard

deviation of ρ0.55 in a box of 3×3 500 m pixels. If this value is greater than 0.0025,

all pixels are labeled as cloud and discarded. However, if heavy dust check using

the ratio ρ0.47/ρ0.66 is less than 0.75, the center pixel will be considered as dust

and included in the retrieval even if the spatial variability is high. The spatial

variability test sometimes fails at the centers of large, thick clouds or also cirrus

which can be spatially smooth. The given solution uses the test ρ0.47 > 0.40 to

identify cloudy pixels, in addition. This threshold is extremely high and then,

maybe discards non-absorbing aerosol and heavy aerosol loading (τ > 5.0).

Cirrus clouds are identified by infrared and near-infrared tests. Three infrared

tests provided by the standard MODIS cloud mask MOD35 include IR cirrus test,

6.7 μm test, and Delta IR test (Ackerman et al. [1998]). If any one of three tests

fails, the pixel is labeled as cloud. The near-infrared cirrus test is based on the

reflectance in the 1.38 μm channel and the ratio ρ1.38/ρ1.24 (Gao et al. [2002]).

The final mask applied to the data is the sediment mask which determines

whether ocean scenes are contaminated by river sediments and discards those

pixels (Li et al. [2003]). Spectral reflectances over water with suspended sediments

have high values in the visible but not in the wavelengths longer than 1 μm, which

distinguishes clear and sediment ocean water.

All pixels that evaded the cloud mask tests and the sediment mark are sorted

according to their ρ0.86 value in order to discard the 20% darkest and 25% bright-

est pixels. The filter aims at eliminating residual cloud contamination, cloud

shadows, or other unusual extreme condition in the box. If there are at least 10

good pixels remained after all, they will be used to calculate reflectance mean

and standard deviation for six wavelengths. Otherwise, no retrieval is attempted

and all aerosol products in the 10-km box are given fill values.
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The glint angle is defined as

Θglint = cos−1[(cosθscosθv) + (sinθssinθvcosφ)] (3.2)

where θs, θv, and φ are the solar zenith, the satellite zenith, and the relative

azimuth angles between the sun and satellite, respectively. The ocean algorithm

was designed to retrieve only over dark ocean, away from glint. If θglint > 40o,

glint contamination can be avoided. Otherwise, several consistency checks of the

spectral reflectances are carried out to exit the procedure or continue onto the

inversion after assigning appropriate quality flags.

2 .1.2 Inversion Process

The inversion process uses the six reflectances measured from MODIS (0.55 -

2.13 μm) as inputs and derives three parameters: the AOT at one wavelength

(τ tot0.55), the reflectance weighting parameter at one wavelength (η0.55), and the

effective radius which is the ratio of the third and second moments of the aerosol

size distribution. The inversion is based on a LUT that consists of four fine

modes and five coarse modes (et. al. [108]) and is constructed using the radiative

transfer code of Ahmad and Fraser [1982]. Each AOT mode is described by TOA

reflectances in six wavelengths calculated for a variety of geometries, a rough

ocean surface with nonzero water-leaving radiance only at 0.55 μm (ρs0.55 = 0.005),

and several values of τ tot0.55 for each single-mode aerosol model.

The procedure require a fine mode and a coarse mode for each retrieval. The

reflectance calculated from LUT is a weighting combination of the reflectance

values for an atmosphere with a pure fine mode “f” and the reflectance of an

atmosphere with a pure coarse mode “c”. In practice, η = τ f0.55/τ
tot
0.55, which

represents the fraction of total optical thickness at 0.55 μm contributed by the

fine mode.

ρLUT
λ = ηρfλ(τ

tot
0.55) + (1− η)ρcλ(τ

tot
0.55) (3.3)

For each of 20 combinations of one fine mode and one coarse mode, the inver-
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sion finds the pair of τ tot0.55 and η0.55 that minimizes the error (ε) defined as

ε =

√√√√∑6
λ=1 Nλ(

ρmλ −ρLUT
λ

ρmλ +0.01
)2∑6

λ=1 Nλ

(3.4)

where Nλ is the sum of good pixels at wavelength λ, ρmλ is the measured MODIS

reflectance at wavelength λ, and pLUT
λ is calculated from the combination of modes

in the LUT and is defined by Equation 3.3. The wavelength 0.88 μm was chosen

as the primary wavelength for accuracy consideration because it is less affected

by variability in water-leaving radiances and exhibits a strong aerosol signal. The

20 solutions are then sorted by values of ε. The solution may not be unique. The

average solution averages all solutions with ε < 3%. If no solution has ε < 3%, it

averages the three best solutions. When the solution is found, related parameters

can be inferred.

The final checks are employed before the final results are output. The retrieved

AOT will be in a range of -0.01 to 5. Negative optical depths are possible and

occur only in situations with low optical depth. They are not actually physical

but are there to de-bias long term statistics. Those values are reported with lower

quality flags.

2 .2 Algorithm over land

The reflectance over land, obtained at the top of the atmosphere (TOA), is a

function of successive order of radiation interactions in surface-atmosphere sys-

tem. The TOA angular spectral reflectance ρλ(θ0, θ, φ) depends on solar zenith

θ0, view zenith θ and relative azimuth angles φ. It is contributed from scatter-

ing of radiation (the atmospheric path reflectance), the surface reflection directly

transmited to the TOA (the surface function) and the reflection of radiation from

outside the sensor’s Field of View (FoV) (the environment function) that is often

neglected. Therefore, an approximation is defined as:

ρ∗λ(θ0, θ, φ) = ρaλ(θ0, θ, φ) +
Fλ(θ0)Tλ(θ)ρ

s
λ(θ0, θ, φ)

1− sλρsλ(θ0, θ, φ)
(3.5)

36



where Fdλ is the normalized downward flux for zero surface reflectance, Tλ repre-

sents upward total transmission into the satellite FoV, sλ is atmospheric backscat-

tering ratios, and ρsλ is the angular spectral surface reflectance.

In Equation 3.5, except for the surface reflectance, each term in the right

hand represents the aerosol constribution in the cloud free conditions. Therefore,

the global aerosol can be described by a set of aerosol types and loading whose

conditions are pre-calculated and stored in LUT.

The algorithm takes observations of MODIS spectral reflectances to retrieval

aerosol properties (AOT at 0.55 μm, Fine model Weighting at 0.55 μm (FW

or η0.55), and the surface reflectance at 2.1 μm (ρs212). Similar to the over-

ocean aerosol algorithm, the land algorithm assumes that one fine-dominated

aerosol model and one coarse-dominate aerosol model can be combined with

proper weightings to represent the ambient aerosol properties over the target.

Using LUT, the algorithm determines the conditions that best similarity to the

MODIS-observed spectral reflectance ρmλ , that is the solution to the inversion.

The flowchart of the over-land aerosol algorithm is presented in Figure 3.3.

2 .2.1 Selection of Pixels

The spectral data include the 0.66 and 0.86 μm channels (MODIS channels 1 and

2 at 250 m resolution), the 0.47, 0.55, 1.2, 1.6 and 2.1 μm channels (channels

3, 4, 5, 6 and 7 at 500 m), and the 1.38 m channel (channel 26 at 1 km). The

geo-location data are at 1 km and include angles, latitude, longitude, elevation

and date. The L1B reflectance values are corrected for water vapor, ozone, and

carbon dioxide before proceeding. The measured reflectances are organized into

10-km boxes of 20x20 or 40x40 pixels, depending on the channel.

All pixels in the considered box are evaluated pixel by pixel to identify whether

the pixel is cloudy, snow/ice, or water. The land algorithm is applied to coastal

boxes that include both land and water pixels but retrieval aerosol quality will

decrease. The standard MODIS cloud mask product (MOD/MYD35) provide

all masking information. Besides, spatial variability cloud mask was added to

remove thin and cirrus cloudy pixels. Enhanced snow/ice mask using a window

of 8 contiguous pixels to label the center pixel as snow/ice if all neighbors are
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Figure 3.3: Flowchart of the over-land aerosol retrieval algorithm (Remer et al.
[2004])
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snow/ice. The subpixel water is identified, in the second time, if its Normalized

Difference Vegetation Index (NDVI) is smaller than the threshold 0.10.

The over land aerosol algorithm follows Dense Dark Vegetation (DDV) ap-

proach that applies aerosol retrievals over “dark pixel”. Dark pixels are selected

using their reflectance at 2.13 μm (0.01 ≤ ρ2.13 ≤ 0.25). The pixels remained

after masking and and dark target selection are sorted in term of their visible

reflectance ρ0.66. The pixels with the darkest 20% and brightest 50% of ρ0.66 are

discarded in order to remove pixels possibly contaminated by cloud shadows, odd

surfaces at the dark or bright end. The remaining 30% of the pixels will be used in

the procedure A if there are at least 12 of these pixels remaining from the original

400 in the 20x20 box. The mean measured reflectance is calculated from these

selected pixels in four wavelengths (ρ0.47, ρ0.66, ρ2.1, ρ1.2). Depending on whether

the number of dark target pixels is bigger than 12, Procedure A, the inversion

for dark surfaces, or Procedure B, alternative retrieval for brighter surface, will

be selected.

2 .2.2 VIS/SWIR surface reflectance assumptions

Over land, the surface reflectance at ρs0.66 and ρs0.47 are derived using VIS/SWIR

relationship which depends on the scattering angle Θ and the Normalized Differ-

ence Vegetation Index at SWIRNDV ISWIR defined in Equation 3.6 and Equation

3.7.

Θ = cos−1(− cos θ0 cos θ + sin θ0 sin θ cosφ) (3.6)

where θ0, θ, and φ are the solar zenith, sensor view zenith, and relative azimuth

angles, respectively.

NDV ISWIR = (ρm1.24 − ρm2.12)/(ρ
m
1.24 + ρm2.12) (3.7)

where ρ1.24 and ρ2.12 are the MODIS measured reflectances of the 1.24 and 2.1

μm, respectively.

The surface reflectance at 0.66 μm are derived directly from 2.12 μm, while

0.47 μm surface reflectance is estimated indirectly from 0.66 μm because the

relationship of 0.47 to 0.66 μm is stronger than to 2.12 μm.
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ρs0.66 = f(ρs2.12) = ρs2.12 ∗ a0.66/2.12 + b0.66/2.12

ρs0.47 = g(ρs0.66) = ρs0.66 ∗ a0.47/0.66 + b0.47/0.66
(3.8)

where
a0.66/2.12 = aNDV ISWIR

0.66/2.12 + 0.002Θ = 0.27,

b0.66/2.12 = 0.00025Θ + 0.033,

a0.47/0.66 = 0.49, and

b0.47/0.66 = 0.005

(3.9)

where in turn

aNDV ISWIR

0.66/2.12 = 0.48;NDV ISWIR < 0.25,

aNDV ISWIR

0.66/2.12 = 0.58;NDV ISWIR < 0.75,

aNDV ISWIR

0.66/2.12 = 0.48 + 0.2(NDV ISWIR − 0.25); 0.25 ≤ NDV ISWIR ≤ 0.75

(3.10)

2 .2.3 Aerosol Models and LUT

The AOT at nearly 14,000 AERONET sky retrievals (both spherical and spheroid

assumptions) satisfying AERONET team recommended threshold of τ0.44 > 0.4

are collected. Retrievals are based on assumption that spheres generally de-

scribed sites dominated by fine (radius < 0.6 μm) aerosols, whereas spheroids

generally represented sites dominated by coarse (radius > 0.6 μm) aerosols. The

cluster analysis upon the spherical retrievals are performed, hence three aerosol

types representing the global fine-dominated aerosol regimes were pointed out.

These are a “nonabsorbing” aerosol model (Single Scattering Albedo - SSA or

ω0 ∼ 0.95) corresponding to urban/industrial aerosol in the industrialized north-

ern hemisphere, and “absorbing” aerosol model (ω0 ∼ 0.85) found in sooty and/or

savanna-burning regions of South America and Africa, and a “moderately absorb-

ing” aerosol model representative of biomass burning and incomplete fossil fuel

burning in the developing world. Performed in a similar way, analysis of spheroid

retrievals showed that a single model represented global dust aerosol. Each aerosol

“model” is comprised of two lognormal modes, either dominated by the fine mode

(the three spherical models) or the coarse mode (the spheroid model).

The average aerosol properties of each aerosol type were used to calculate
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scattering/extinction properties using a Mie code or T-matrix code that were

integrated over size distribution. From these properties, the spectral dependence

of τ and phase functions were characterized.

Based on dominant aerosol type resulted from clustering analysis, an aerosol

type was assigned to each AERONET site (as a function of season). This in-

formation was extrapolated to all regions and mapped onto a 1o longitude x 1o

latitude grid such that a fine aerosol type is assigned for each grid point, globally.

The algorithm over land performs an inversion of three channels (0.47, 0.66,

and 2.12 μm) to retrieve τ , η, and the surface reflectance. The inversion process

is based on LUT. In the C005 algorithm, the LUT is indexed in relation to the

channel 0.55 μm and computed at the four central wavelengths (0.466, 0.553,

0.644, and 2.119 μm). The aerosol model-dependent parameters of equation 3.5

are calculated for several values of aerosol total loadings and for a variety of

geometry. The LUT represent spherical aerosol models (Continental, moderately

absorbing, absorbing, and nonabsorbing) and the one spheroid model (dust).

The scattering and reflectance parameters are calculated for seven aerosol

loadings (τ0.55 = 0.0, 0.25, 0.5, 1.0, 2.0, 3.0, and 5.0). TOA reflectance is calcu-

lated for nine solar zenith angles (θ0 = 0.0, 6.0, 12.0, 24.0, 36.0, 48.0, 54.0, 60.0,

and 66.0), 16 sensor zenith angles (θ = 0.0 to 65.8, approximate increments of

6.0), and 16 relative azimuth angles (φ = 0.0 to 180.0 increments of 12.0). All of

these parameters are calculated assuming a surface reflectance of zero.

When surface reflectance is present, the second term in equation 3.5 is nonzero.

The flux is a function of the atmosphere, while the atmospheric backscattering

term s and the transmission term T are functions of both atmosphere and the

surface. The radiative transfer code is run two additional times with two distinct

positive values of surface reflectance to calculate s and T. Then, these values of

Fd, s, and T are included within the LUT for each τ index, wavelength, and

aerosol model.

2 .2.4 Inversion for dark surfaces and brighter surfaces

The algorithm assigns the fine aerosol mode using location and time as men-

tioned above. From the LUT, ρa, F , T and s (for the fine and coarse mode) are
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interpolated for angle, resulting in six values for each parameter, corresponding to

aerosol loading. For different values of FW between -0.1 and 1.1 (intervals of 0.1),

the algorithm attempts to find the AOT at 0.55 μm and the surface reflectance

at 2.12 μm matching the MODIS measured reflectance at 0.47 μm. The solution

is the one where the error ε at 0.66 μm is minimized. In formula,

ρm0.47 − ρ∗0.47 = 0

ρm0.66 − ρ∗0.66 = ε

ρm2.12 − ρ∗2.12 = 0

(3.11)

where

ρ∗λ = η(pfaλ + F f
d,λT

f
λ ρ

f
λ/(1− sfλρ

s
λ)) + (1− η)(ρcaλ + F c

d,λT
c
λρ

c
λ/(1− scλρ

s
λ))

(3.12)

where in turn, λ = 2.12, 0.66 and 0.47 μm, ρa = ρa(τ), F = F (τ), T = T (τ),

s = s(τ) are functions of τ indices in the LUT, and ρs0.66, ρ
s
0.47 are described in

Equation 3.8. The primary products are AOT (τ0.55), FW (η0.55), and the surface

reflectance (ρs2.12), and the error ε.

The Procedure B is applied to derived AOT at pixels having 2.12 μm re-

flectance brighter than 0.25. The Continental aerosol is assumed, therefore the

LUT reflectance is calculated using one aerosol mode with η = 1.0. The primary

products for Procedure B are AOT (τ0.55) and the surface reflectance (ρs2.12)

2 .2.5 Derivation of Fine Mode AOD, Mass Concentration and other

secondary parameters

After inversion processes, besides primary products (τ0.55, η0.55, and ρs2.12), the

secondary products can be calculated. These include the fine and coarse model

optical depths (τ f0.55, τ
c
0.55), mass concentration M, the spectral total, fine, and

coarse model optical thickness (τλ, τ
f
λ , τ

c
λ) and Ångström exponent α. They are

defined as:
τ f0.55 = τ0.55η0.55

τ c0.55 = τ0.55(1− η0.55)
(3.13)
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M = M f
c τ

f
0.55 +M c

c τ
c
0.55 (3.14)

where M f
c and M c

c are mass concentration coefficients for the fine and coarse

models.

τλ = τ fλ + τ cλ

τ fλ = τ f0.55(Q
f
λ/Q

f
0.55)

τ cλ = τ c0.55(Q
c
λ/Q

c
0.55)

(3.15)

where Qf
λ and Qc

λ represent model extinction coefficients at wavelength λ

α = ln(τ0.47/τ0.66)/ln(0.466/0.644) (3.16)

2 .2.6 Low and Negative Optical Depth Retrievals

The C005 algorithm allows negative τ retrievals. As result of positive and negative

noise in the MODIS observations, the underestimation and overestimation of

surface reflectance and aerosol properties, retrievals of negative τ is statistically

imperative in order to avoid bias. However, a large negative retrieval is not

acceptable. The strategy for negative values of τ is presented in Figure 3.2

3 Aerosol Retrieval Using Support Vector Re-

gression

The basic idea underlying the data analysis approach followed by SVR is to use

a set of preliminary data, characterized by already known target values, to derive

regression criteria to be applied on a new set of items. In the prediction procedure

applied to new datasets, prediction values are assigned to them conforming to

the analogies with the preliminary known data. In the last decade numerous

applications of the SVR methods have been made in several domains of chemistry

and physics, among the latter ones several are in the domain of signal processing

in which statistical methods are well suited. In the following, after recalling

briefly the mathematical basis of the method, we will explain how to apply the
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SVR technique to retrieve AOT information from MODIS observations.

3 .1 Basic concepts of Support Vector Regression

SVR was proposed using the idea of Support Vector Machine (SVM) developed

for classification application. A SVM constructs hyperplanes in a high- or infinite-

dimensional space to separate training datasets. The optimal hyperplanes will

have the largest distance to the nearest training data point of any class (i.e. maxi-

mum margin hyperplanes), which reduces the generalization error of the classifier.

In the similar way, SVR constructs maximum margin hyperplanes in a high- or

infinite- dimensional space for the regression purpose. The optimization prob-

lem for hyperplanes can be solved more easily in its dual formulation, therefore

a standard dualization method utilizing Langrange multipliers is applied. This

method provides a Support Vector expansion in which hyperplanes are described

by a linear combination of a specific subset of the training patterns called Support

Vectors (SVs). The nonlinear SVR is achieved by simply preprocessing the train-

ing patterns by a map Φ into some high dimension space called feature spaces F

using kernel functions k(xi, x) and then linear SVR algorithm can be applied. In

the next sections, the mathematics and solution for ε-SVR are presented, together

with brief description of its implementation in practice.

3 .1.1 The framework

Given training data {(x1, y1), . . . , (xl, yl)} ⊂ X where X denotes the space of the

input patterns (i.e. X ⊂ �d). The ε− SV R (Vapnik [1995]) is to find a function

f(x) that has at most ε deviation from the actually obtained target yi from the

training data and is as ‘flat’ as possible in order to minimize the expected risk.

In the case of linear function f(x), it is taken in the form:

f(x) = 〈w, x〉+ b with w ⊂ X, b ∈ � (3.17)

where 〈., .〉 denotes the dot product in X. In the case of 3.17, flatness is to find

the function f(x) that presents an optimal regression hyperplane with minimum
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w. The problem can be written as a convex optimization problem:

minimize
1

2
‖w‖2

subject to

{
yi − 〈w, x〉 − b ≤ ε

〈w, x〉+ b− yi ≤ ε

(3.18)

The assumption in 3.18 is that a function f actually exists and approximates

all pairs (xi, yi) with ε precision. The convex optimization problem is feasible.

However, in the case of infeasible constraints of the optimization problem or

allowing of some errors, the slack variables ξi, ξ∗i are introduced. Then, the

problem can be formulated as follow:

minimize
1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )

subject to

⎧⎪⎨
⎪⎩

yi − 〈w, x〉 − b ≤ ε+ ξi

〈w, x〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(3.19)

The constant C > 0 determines the trade-off between the flatness of f and the

amount up to which deviations larger than ε are tolerated. This is corresponding

to ε-insensitive loss function |ξ|ε described by

|ξ|ε :=
{

0 if |ξ| ≤ ε

|ξ| − ε otherwise
(3.20)

The situation is presented graphically in Figure 3.4. Only the points outside

the shaded tube are penalized and contribute to the cost function.

3 .1.2 The dual problem and quadratic program

The SVR problem can be solved by classical Lagrangian optimization techniques.

A Lagrangian function L is constructed from objective function and corresponding

constraints in 3.19 by introducing a dual set of variables. The solution is to find a

saddle point which minimizes L with respect to the primal variables w and b, and

maximizes L with respect to the dual variables. This is known as the Lagrangian
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Figure 3.4: The soft margin loss setting for a linear SVM (Scholkopf and Smola
[2002])

primal problem. The Lagrangian function is constructed and formulated as follow:

L :=
1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )−
l∑

i=1

(ηiξi + η∗i ξ
∗
i )

−
l∑

i=1

αi(ε+ ξi − yi + 〈w, xi〉+ b)

−
l∑

i=1

α∗
i (ε+ ξ∗i + yi − 〈w, xi〉 − b)

(3.21)

where ηi, η
∗
i , αi, α

∗
i are Lagrangian multipliers. The dual variables in 3.21 have

to satisfy positivity constraints

α∗
i , η

∗
i ≥ 0 (3.22)

in which α∗
i refers to αi and α∗

i .

From the saddle point condition, the partial derivatives of L with respect to

the primal variables (w, b, ξi, ξ
∗
i ) are set to zero for the condition of optimality.

∂bL =
l∑

i=1

(α∗
i − αi) = 0 (3.23)

∂wL = w −
l∑

i=1

(αi − α∗
i )xi = 0 (3.24)
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∂ξ∗i L = C − α
(∗)
i − η

(∗)
i = 0 (3.25)

Substituting 3.23, 3.24, and 3.25 into 3.21 yields the dual optimization prob-

lem known as the Lagrangian dual problem. The primal problem of finding a

saddle point for L(w, b) is transformed into the easier one of maximizing L(α∗
i )

that only depends on Lagrange multipliers.

maximize

{
−1

2

∑l
i,j=1(αi − α∗

i )(αj − α∗
j )〈xi, xj〉

−ε
∑l

i=1(αi + α∗
i ) +

∑l
i=1 yi(αi − α∗

i )

subject to
l∑

i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C]

(3.26)

In the formula 3.26, the dual variables ξi, ξ
∗
i are eliminated through the con-

dition 3.25. From the Equation 3.24, the w can be calculated as

w =
l∑

i=1

(αi − α∗
i )xi thus f(x) =

l∑
i=1

(αi − α∗
i )〈xi, x〉+ b (3.27)

The w is described as a linear combination of the training pattern xi, therefore

the complexity of the function’s representation by SVs is independent of the

dimensionality of the input space X, and depends only on the number of SVs.

The Karush-Kuhn-Tucker (KKT) conditions (Karush [1939]; Kuhn and Tucker

[1959]) are used to calculate b. Following these, at the point of solution the prod-

uct between dual variables and constraints has to be zero.

αi(ε+ ξi − yi + 〈w, xi〉+ b) = 0

α∗
i (ε+ ξ∗i − yi + 〈w, xi〉+ b) = 0

(3.28)

and
(C − αi)ξi = 0

(C − α∗
i )ξ

∗
i = 0

(3.29)

Therefore,

ε− yi + 〈w, xi〉+ b ≤ 0 and ξi = 0 if αi < C (3.30)
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ε− yi + 〈w, xi〉+ b ≥ 0 if αi > 0 (3.31)

In conjunction with an analogous analysis on α∗
i , b is identified with the

following constrain

max{−ε+ yi − 〈w, xi〉|αi < C or α∗
i > 0} ≤ b ≤

min{−ε+ yi − 〈w, xi〉|αi > 0 or α∗
i < C}

(3.32)

In summary, the solution for the optimal hyperplanes (w, b) can be given by

Lagrangian approach (3.27 and 3.32). The hyperplanes are described by train-

ing pattern xi where dual variables α∗
i are not zero. Those examples are called

Support Vector as illustrated in Figure 3.5. The expansion of w in term of xi is

sparse, which means we do not need all xi to describe w.

Figure 3.5: SVs and bounded SVs

3 .1.3 Non-linear Support Vector Regression and Kernel Method

The SV algorithm nonlinear is based on the principle of the Cover’s theorem for

separability of patterns which states that a classification problem cast in high-

dimensional nonlinear space is more likely to be linearly separable. Therefore,

non-linear SVR, similar to nonlinear SVM, is designed to operate in two stages:
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� performance of a map Φ : X → F for the feature vector xi from input space

X into a high dimensional feature space F .

� construction of optimal separating hyperplanes in the high-dimensional

space.

As described in the previous section, the SV algorithm only depends on dot

product between pattern xi. Hence, the operation in high dimensional space

do not have to be performed explicitly if a function k(x, x′) is found such that

k(x, x′) := 〈Φ(x),Φ(x′)). k(x, x′〉 is called a kernel function. The SV optimization

problem in 3.26 is restated as follows:

maximize

{
−1

2

∑l
i,j=1(αi − α∗

i )(αj − α∗
j )k(xi, xj)

−ε
∑l

i=1(αi + α∗
i ) +

∑l
i=1 yi(αi − α∗

i )

subject to
l∑

i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C]

(3.33)

Likewise the expansion of f in 3.27 can be written as

w =
l∑

i=1

(αi − α∗
i )Φ(xi) and f(x) =

l∑
i=1

(αi − α∗
i )k(xi, x) + b (3.34)

Some common kernel functions are listed here:

� The homogeneous polynomial kernels k with p ∈ N : k(x, x′) = 〈x, x′〉p

� The inhomogeneous polynomial kernels k with p ∈ N, c ≥ 0: k(x, x′) =

(〈x, x′〉+ c)p

� The hyperbolic tangent kernels k with some κ > 0 and c < 0: k(x, x′) =

tanh(κ〈x, x′〉+ c)

� The Gaussian radial basis function kernels k with σ: k(x, x′) = e−
‖x−x′‖2

2σ2

3 .1.4 Implementation

The convex programming algorithms described above can be used directly on

moderately sized sample datasets (up to 3000). However, it is difficult on larger
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datasets because of computer’s memory and CPU limitation in computation and

storage of the dot product matrix k(xi, xj). Therefore, the implementation re-

quires specific techniques, mostly relying on heuristics for breaking the big prob-

lem down into smaller chucks.

The first solution was introduced by Vapnik [1982]. The method is to start

with an arbitrary subset (a chunk) that fits into memory, train the SVR algorithm

on it, keep the SVs and fill the chuck up with data whom the current estimator

would make errors on (i.e. data lying outside the ε-tube of the current regression).

The system is retrained and the iteration is continued until all KKT-conditions

are satisfied. This chucking algorithm just postponed the underlying problem

of dealing with large datasets but this problem is not completely avoided. A

variation of this solution was proposed to use only a subset of the variables as

a working set and optimize the problem with respect to them while freezing the

other variables (Osuna et al. [1997]).

Recently, the Sequential Minimal Optimization (SMO) algorithm was pro-

posed in which subsets with size of 2 were selected iteratively and the target

function was optimized with respect to them (Platt [1999]). The key point is

that for a working dataset of 2, the optimization subproblem can be solved ana-

lytically without explicitly invoking a quadratic optimizer. This method has been

reported to have good convergence properties and easy implementation.

3 .2 Application of Support Vector Regression in Aerosol

Optical Thickness Retrievals

In application of AOT retrievals, SVR is applied in the inversion process to con-

struct models from training datasets and then to use them for predicting AOT

information of new datasets. The SVR models represent the relationship be-

tween satellite observations and AOT information. Other procedures such as

cloud screening, pixel selection, or map prediction application need to be carried

out independently. The SVR application in AOT retrievals can be summarized

in four main steps:

� Collection of data covering interested areas for a long period in order to

construct SVR data models for future prediction. Data can be obtained
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from simulation systems or measurements by ground/satellite-based instru-

ments. Depending on application, data often consist of reflectances/ra-

diances, geolocation, meteorological factors, and target AOT information.

The selected data should have strong correlations with target information.

� Processing data by application of certain screening processes (e.g. cloud

screening, cloud tests, glint mask, sediment mask, etc ) to select appropriate

pixels, integration to combine data recorded by different instruments, and

feature extraction to design input for the regression. This step aims at

creating sample datasets {(x1, y1), . . . , (xl, yl)}, in which xi refer to as data

features and yi represent target AOTs, for the SVR algorithms.

� Construction of SVR models by application of the SVR algorithm on train-

ing datasets. It includes choosing SVR types, implementation of the SVR

algorithm, setting SVR configurations for selected training datasets, and

validation of developed SVR models.

� Application of SVR constructed models for prediction of AOT information

on new datasets.

4 Summary

The multi-spectral sensor MODIS on-board the two polar orbiting satellites Terra

and Aqua provides observations nearly the entire globe on a daily basis. The

MODIS performs measurements in the solar to thermal infrared spectrum region

from 0.41 to 14.235 μm, separated into 36 bands at resolutions 1 km (29 channels),

500 m (5 channels) and 250 m (2 channels) at nadir (Salomonson et al. [1989]).

MODIS observations are divided into granules each of which covers an area of

2030×1354 km2. Various data products derived from MODIS measurements are

provided (e.g. MODIS L1B data, MODIS L2 products, MOD04 L2).

The global system of ground-based Remote Sensing aerosol network AERONET

provides AOT information, inversion products, and precipitable water in diverse

aerosol regimes. AOT is measured in four or more wavelengths to include 0.440,

0.670, 0.870, and 1.020 μm, in every 15 minutes during midday and more often
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during sunrise and sunset. AERONET AOT products have three data quality

levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud-

screened and quality-assured).

Following model driven approach, “algorithm for remote sensing of tropo-

spheric aerosol from MODIS” (Kaufman and Tanré [1997]; Remer et al. [2004]) is

applied to derive the standard MODIS aerosol products. The algorithms are de-

signed separately for land and ocean. Different aerosol models were simulated and

their calculated parameters were stored in LUT. The algorithms assume that the

aerosol properties over targeted areas were presented by proper weightings of one

fine-dominated and one coarse-dominated aerosol models. Spectral reflectance

from the LUT is compared with MODIS measured spectral reflectance to find

the best match that is the solution to the inversion process. Beside the LUT ap-

proach that is considered as the core technique, ancillary data and many different

screening processes played an important role in this methodology. Those data

and processing techniques were considered and applied on the original MODIS

datasets to select appropriate data for inversion process.

Conversely, data driven approach for AOT retrieval from MODIS is carried

out by machine learning technique such as SVR. The basic idea underlying the

data analysis approach followed by SVR is to use a set of preliminary data, charac-

terized by already known target values, to derive regression criteria to be applied

on a new set of items. In the prediction procedure applied to new datasets,

prediction values are assigned to them conforming to the analogies with the pre-

liminary known data. The linear SVR technology constructs maximum margin

hyperplanes in a high- or infinite- dimensional space for the regression purpose.

The nonlinear SVR is achieved by preprocessing the training patterns by a map

into some high dimension space called “feature space” using kernel functions and

then linear SVR algorithm can be applied. In AOT retrieval application, SVR

plays a role as radiative transfer model in algorithms based on model driven

approach.

In the next chapters, our work based on standard methodologies mentioned

above will be presented. Downscaling techniques using an adapted MODIS

aerosol algorithms and its validation will be described in the next chapter and

then it will be followed by methodologies for AOT retrieval at 10×10 and 1×1
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km2 using SVR.
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Chapter 4

Downscaling Spatial Resolution

of Aerosol Optical Thickness

from 10×10 km2 to 1×1 km2

using adapted MODIS aerosol

algorithms

This chapter presents the improvements of the MODIS aerosol algorithm to derive

AOT with spatial resolution at 1×1 km2 which is then used to develop a software

package called PM MAPPER (Campalani et al. [2011]; MEEO [2010a]). This

algorithm performs at global scale instead of parameterizing for specific regions.

The algorithm is an extension version of former methodology applied to derive

MODIS AOT maps at 3×3 km2 (Nguyen et al. [2010a]; Nguyen et al. [2010b]).

The validation was carried out on data covering European areas from 2007 to

2009.

1 Methodology

The proposed idea is simple and straightforward in which the MODIS aerosol

algorithms described in Chapter 2 were applied directly on smaller data boxes in
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order to obtain AOT information at increased spatial resolutions. Besides, the

first cloud masking process was carried out by a software program called SOIL

MAPPER instead of the MODIS cloud mask in MOD35/MYD35 products.

1 .1 Selection of pixels by Land Cover Classification

The recently developed SOIL MAPPER is a fully automatic, unsupervised, soft-

ware package which, from the analysis of multispectral optical satellites data, al-

lows to generate Land Cover (LC) classification maps. The algorithm is based on

spectral fuzzy rule-based per-pixel classification method, originally presented and

discussed in Baraldi et al. [2006], consisting of two levels of processing. Firstly,

input reflectances are used to calculate features including Brightness (Bright),

Normalized Difference Vegetation Index (NDVI), Normalized Different Bare Soil

Index (NDBSI), Normalized Difference Snow Index (NDSI). After that, linguistic

labels (low, middle, high) are assigned to fuzzy sets providing a complete parti-

tion of feature space consisting of the scalar variables mentioned above. In this

step, kernel spectral rules are computed flatly in order to group data into different

raw clusters. The second step is based on a built-in hierarchy of values of spectral

rules and feature fuzzy sets to stratify data to a list of kernel spectral categories.

Based on this list, we are able to determine a set of 57 different classes, out of

which 40 refer to different land types, from dense vegetation to bare soil, and the

remaining classes refer to cloud, water, ice, snow etc. Most recent upgrading of

the SOIL MAPPER consisted in extending its capabilities to generate standard-

ized outputs from various optical satellite sensors, thus allowing comparison of

land classifications deduced from different satellite-flown sensor images. When

applied to MODIS data, the SOIL MAPPER software uses reflectances recorded

in seven wavelengths (0.66, 0.87, 0.47, 0.55, 1.64, 11.03, and 12.02 μm) as input

to process land cover maps which identify land, water, and cloudy-free pixels in

order to apply aerosol retrieval algorithms, and provide land surface information.

1 .2 Modification of the MODIS Aerosol Algorithm

In order to retrieve AOT concentration maps at higher spatial resolution than

10×10 km2, the original aerosol algorithms over both land and ocean have been
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modified in three points. The first is a major change while the second and third

are minor changes.

� The algorithms are applied on smaller boxes sized 1×1 and 2×2 pixels of

the MODIS reflectances at 1 km and 500 m resolution respectively, instead

of those sized 10×10 and 20×20, as presented in the original MODIS aerosol

algorithm. Consistently with this modification, we adapt all thresholds by

the linear reduction. One of the important thresholds used by the MODIS

algorithm over land is the number of good pixels in a box which must be

identified before applying the aerosol derivation procedure. Good pixels are

used to estimate aerosol and they are identified when 50% of brightest and

20% of darkest pixels of the total cloud-free pixels in a box are discarded.

This procedure is intended to eliminate noise and bright pixels that are

not suitable to derive aerosol. In the original method of elaboration of the

MODIS data, the threshold number is 12 pixels for each box sized 20×20

pixels at 500 m resolution. In our approach, with smaller boxes sized 2×2

pixels for the case of 1×1 km2 of resolution, the new threshold for a box is 1

pixel which may decrease the quality of the aerosol retrieval in later steps.

� The second cloud masking over land and ocean for MODIS algorithms is

based on the methodology proposed by Martins et al. [2002]. In our ap-

proach, the cloud mask is calculated over whole map instead of for each

block sized 20×20 500-m pixels as used in the MODIS algorithm. This

adaptation will provide a homogeneous cloud mask which is convenient to

process data to obtain AOT maps with a fine spatial resolution.

� The condition to apply ocean algorithm or land algorithm on boxes is

changed. In the original version, if all pixels in the considered box be-

long to the water class, then the ocean algorithm is applied, otherwise land

algorithm is performed. Our work uses a condition that if the land aerosol

derivation procedure fails at the first time but the percentage of the water

pixels in the box is bigger than 50%, then the aerosol algorithm over ocean

is applied again. This improvement focuses on retrieving more information

along coastlines when the methodology was firstly applied to obtain AOT

at 3×3 km2 (Nguyen et al. [2010a]; Nguyen et al. [2010b]). However with
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small processing data boxes (i.e. a box sized 1×1 km2), this rule is less

important.

2 Implementation and PM MAPPER applica-

tion

The software of the MODIS aerosol algorithms over land and ocean at 10×10 km2

of resolution are implemented and provided in the International MODIS/AIRS

Processing Package (IMAPP) by University of Wisconsin-Madison (CIMSS [2011]).

The IMAPP MODIS Level 2 software package provides a complete atmosphere

processing system processing MODIS data acquired by direct broadcast from

Terra and Aqua spacecrafts and deriving cloud mask (MOD35/MYD35), cloud

top properties and cloud phase (MOD06CT/MYD06CT), atmospheric profiles

(MOD07/MYD07), aerosol (MOD04/MYD04), sea surface temperatures and nea-

infrared water vapor. Regarding to aerosol retrievals, the following main modules

are involved

� The IMAPP MODIS flat file extractors (FLATFILE) create binary flat files

and header files in ENVI readable format from input L1B 1km, 500m, 250m

and geolocation MODIS Direct Broadcast or DAAC formatted HDF files.

� The cloud mask module (CLOUDMASK) creates the MODIS cloud mask

48 bit array for each pixel in a given scene.

� The IMAPPMODIS aerosol module (AEROSOL) creates the MODIS aerosol

product, which consists of these 6 arrays at a resolution of 10×10 1 km

MODIS pixels for daytime only scenes.

� The IMAPP MODIS binary to HDF file module (BINTOHDF) converts

the flat binary files that are the standard IMAPP output format into HDF

files for the aerosol products.

The required platforms are g77 gnu (gcc 3.2.1) compiler and Linux operating

systems. In addition, the aerosol module refers to a set of static files describing

LUT and ancillary data of NCEP GDAS1 (i.e. model profiles of temperature,
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humidity, etc) and TOVS/TOAST ozone files. Most of main modules are written

in Fortran programming language and run in sequence by bash script programs.

This release requires ∼ 2.7 GB of disk space for the software, ancillary data files

and the input/output test datasets.

The IMAPP MODIS software package were re-designed and modified in order

to obtain AOT products at 1×1 km2, which is called the PM MAPPER software

package. The cloud mask module is replaced by the SOIL MAPPER software.

Other modules are modified to work on data boxes sized 1×1 km2. The modifica-

tion of spatial variability cloud mask and aerosol retrieval conditions are carried

out in the aerosol module. Figure 4.1 presents the flowchart of MODIS aerosol

algorithm in comparison with the PM MAPPER application. Meanwhile, an ex-

ample of the MODIS AOT map at 10×10 km2 and corresponding PM MAPPER

AOT map at 1×1 km2 is illustrated in Figure 4.2.

Figure 4.1: The flowchart for aerosol retrieval of the IMAPP MODIS package
(left) and the PM MAPPER software (right).
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(a) (b)

Figure 4.2: (a) The MOD02 L2 AOT map at 10×10 km2 and (b) The PM MAP-
PER map at 1×1 km2 of MODIS image acquired on January 29, 2008 at 09:55
UTC.
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3 Validations

In this section the validation results of the 1-km AOT retrievals of PM MAP-

PER which takes MODIS Level 1B data as input and yields AOT information

at increased resolution. PM MAPPER has passed through several intermediate

steps that went from 10×10 to the current 1×1 km2 of spatial resolution. In

(Nguyen et al. [2010c]), AOT products at 3×3 km2 have been validated by direct

comparison with MODIS retrievals and showed a higher ability to retrieve pixels

over land and coastlines. The validation of the new 1 km products has given the

occasion to investigate the process of the validation itself, which in fact impli-

cates the nontrivial comparison of spatially varying satellite data with temporally

varying ground measurements. This is in itself ongoing work.

3 .1 Datasets

Validation data consist of AOT measured by AERONET sites, MODIS AOT

at 10×10 km2, and AOT at 1×1 km2 obtained by the proposed method. The

considered data covering European areas were collected in three years from 2007

to 2009. The Level 2.0 AOT measurements of 105 AERONET sites over Europe

have been used. The location of the selected sites can be observed in Figure 4.3.

The proposed methodology was applied on MODIS data involving a total of ca.

5500 granules to derive AOT maps at 1×1 km2. Corresponding MODIS AOT at

10×10 km2 of resolution in MOD04 L2 products were collected.

3 .2 Validation Method

As pointed out by Ichoku et al. [2002], the comparison of a geolocated raster

map against time-series of measurements of a point in the ground cannot be

achieved by matching the single pixels over the points. In the satellite maps, AOT

represents for an area and may not be well matched with a sunphotometer point

measurement. In case of an extremely high spatial resolution the pixel may well

approximate a point, but sometimes clouds may obscure a pixel directly over a

sunphotometer site instead of nearby pixels. Moreover the satellite overpass times

rarely coincide with the AERONET measurement, several minutes separates the
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Figure 4.3: The distribution of AERONET ground stations used to validate the
satellite products.

two acquisitions on average. For these reasons it is far more appropriate and

meaningful to compare spatial averages from MODIS with temporal averages

from AERONET. For a proper validation then a spatio-temporal window should

be used to extract the data from which statistics are collected and compared (see

Figure 4.4).

In general, the same amount of airmass should be captured in a shorter

time period by a sunphotometer in areas where the motion of the atmosphere

is faster. Several window sizes have been used in literature to compare MODIS

and AERONET data. In Ichoku et al. [2002], 50×50 km2 boxes are chosen to

match a 1-hour sunphotometer data segment. In Lary et al. [2009], 30 minutes

of AERONET measurements are paired with MODIS pixels within a great cir-

cle distance of 0.25 ◦ and within a solar zenith angle of 0.1o, while in Vucetic

et al. [2008] a 30×30 km2 box is used to match 1 hour of AERONET samples.

The effect of different spatial windows from 30×30 up to 90×90 km2 has been

tested in Ichoku et al. [2002], but the increased resolution can now allow tests

on smaller areas. The effects of the temporal window applied on the AERONET

measurements has not been tested yet, instead. For all these reasons, the maps
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Figure 4.4: Matching a satellite map with ground data.

are validated by varying the size of the window on both the temporal and spatial

axis.

For each satellite imagery of validation dataset, the pixels within 30 km were

retrieved and stored in a database along with the relative AERONET ground

measurements and other ancillary data as the distance of each pixel, timestamps

and land cover information. The database stores about 20×106 satellite pixels,

relative to about 50,000 satellite/AERONET matches. Customized queries to

this database were then the mean for the validation. A minimum of 20% ca. of

the available pixels was set for a valid match because a lower presence of satellite

pixels was not considered enough to represent the whole area.

The validation of the satellite products has been iterated over different spatio-

temporal windows, defined by the radius (R) and time semi-interval (T). Each

match compares the average of the satellite pixels within a radius of R around an

AERONET site and the average of the corresponding AERONET samples within

±T minutes from the satellite overpass (see Figure 4.4).

To measure the association between the satellite and AERONET retrievals of

AOT, following parameters were extracted
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- Pearson’s Correlation Coefficient r. It is quite sensitive to outliers and

non-normality, e.g. the typically positively skewed AOT distribution, how-

ever still a good indicator with large sample sizes (between 102 and 104).

- Root Mean Square Error (RMSE). It is to evaluate the precision of

satellite retrievals (r alone may not detect biased correlations);

- Mean Error (ME). It is to distinguish between under- and over-estimations

of satellite retrievals.

AERONET measurements are interpolated to 550 nm to match the band of

the satellite retrievals. In Lary et al. [2009] the log-log interpolation is used, but

after some accuracy test on an AERONET data sample, log-linear interpolation

in the frequency axis was used. The transformation formula is:

AOT550 = e
log(AOTf1

)+(550−f1)·
log(AOTf2

)−log(AOTf1
)

f2−f1 (4.1)

where f1 and f2 respectively the nearest lower and higher frequencies with avail-

able AERONET measurements to 550 nm.

3 .3 Results

Figures 4.5, 4.6, and 4.7 show the general results for the PM MAPPER 1×1 km2

maps along with the results of original MODIS 10×10 km2 maps. Samples over

a discrete grid made of T=±{10, 20, 30, 40, 60, 120} min. and R={3, 6, 10, 15,
20, 25, 30} km have been smoothed via thin plate spline to create the continuous

surfaces. The surface shows that no relevant trend exists on the temporal axis,

although there is a slight systematic decrease of correlation of less than 0.05%

every 10 minutes. As the radius of the area which selects the pixels gets smaller

instead, PMMAPPER products suffer the more noisy nature of its pixels, whereas

MODIS original products are more stable due to their coarser spatial resolution.

1-km AOT retrievals lose about 15% of correlation on the shorter radii (see Fig.

4.5). The same behaviors can be observed for RMSE and ME (see Figures 4.6

and 4.7).
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Figure 4.5: Interpolated Pearson’s r surfaces and relative contour maps of
AERONET AOT against (a) PM MAPPER 1×1 km2 AOT and (b) MODIS
10×10 km2 resampled AOT.
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Figure 4.6: Interpolated RMSE surfaces and relative contour maps of AERONET
AOT against (a) PM MAPPER 1×1 km2 AOT and (b) MODIS 10×10 km2

resampled AOT.
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Figure 4.7: Interpolated ME r surfaces and relative contour maps of AERONET
AOT against (a) PM MAPPER 1×1 km2 AOT and (b) MODIS 10×10 km2

resampled AOT.

Each discrete point in the 3D space is the statistic obtained from a dataset

of the satellite and AERONET arithmetic means matched by the corresponding

spatial and temporal constraints. The details for the chosen best case (T=10 min,

R=20 km) can be observer in Figure 4.8. Both PM MAPPER and MODIS maps

show a very good correlation (> 0.86) with the AERONET measurements. The

Quantile-Quantile plot - which shows quantiles of the AERONET dataset against

the corresponding quantiles of the satellite dataset - points out how AOT tends to

be overestimated by MODIS for high values (> 0.5), while PM MAPPER seem to

introduce a small positive bias for a wider range of AOT values (> 0.1). There is

no highly remarkable difference between the two scatterplots, but the regression

line equations show that the PM MAPPER retrievals are slightly more biased

than MODIS (0.036 to 0.024), while the slope (0.97) is quite closer to unity than

the original MOD04 products (0.927).

Table 4.1 shows the results for a fixed spatio-temporal window of±10 min. and

20 km, which has been chosen as best case for both correlation with AERONET

and stability along the temporal axis. The overall results are compared with
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Figure 4.8: Scatter plot and Quantile-Quantile plot of AERONET against both
PM MAPPER 1×1 km2 AOT (above) and MODIS resampled 10×10 km2 AOT
(below) for a spatio-temporal window of ±10 min/20 km.

several filtered ones: by year (which are not showed here since not particularly

relevant), season and land cover respectively. Looking at the table, both MODIS

and PM MAPPER satellite products seem to better reproduce AOT during cold

months (e.g. Winter period in comparison with Summer period). During Fall

the PM MAPPER retrievals are curiously almost unbiased with respect to the

other seasons. Trends have been searched by selecting the pixels over different

land cover classes. Four macro-classes were used for this purpose and the results

show excellent satellite retrievals over vegetation and rangeland, whereas 1-km2

products performed worse on barren lands and particularly built-up areas. This

trend is more remarkable on the PM MAPPER imagery.

4 Conclusion

The chapter presents the improvements of the MODIS aerosol algorithm to derive

AOT with spatial resolution at 1×1 km2 which then are used to develop a soft-

ware package called PM MAPPER (Nguyen et al. [2010a]; Nguyen et al. [2010b];
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Table 4.1: Overall and filtered validation scores for both PM MAPPER 1×1 km2

and MODIS 10×10 km2 AOT (R=20 km from AERONET site, T=±10 minutes
from satellite overpass).

PM MAP. MODIS

OVERALL
# 4820

0.862 0.864 r
0.068 0.060 RMSE
0.032 0.012 ME

Winter
# 732

0.894 0.894
0.054 0.048
0.027 0.014

Spring
# 1444

0.855 0.858
0.075 0.064
0.037 0.014

Summer
# 1891

0.839 0.841
0.076 0.065
0.039 0.016

Fall
# 753

0.881 0.879
0.045 0.044
0.009 -0.001

Vegetation
# 3203

0.882 0.874
0.052 0.052
0.012 0.001

Rangeland
# 1110

0.868 0.875
0.076 0.066
0.032 0.012

Dark Barren Land
# 431

0.776 0.836
0.127 0.091
0.080 0.045

Barren/Built-Up
# 384

0.681 0.759
0.097 0.079
0.018 0.003

MEEO [2010a]). The adaptation is replied on three main points which are ap-

plication of the standard MODIS aerosol algorithms on smaller data boxes sized

1×1 km2, modification of spatial variability cloud mask, and change of condition

to apply ocean algorithm or land algorithm. Besides, the land cover classification

maps are used for the first cloud screening process instead of the MODIS MOD35

cloud products. The implementation of PM MAPPER is based on the IMAPP

software package provided by University of Wisconsin-Madison (CIMSS [2011]).

The validation of the 1×1 km2 AOT products of the PM MAPPER software
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package was carried out over Europe for years from 2007 to 2009 (Campalani et al.

[2011]). Both the comparisons with the ground sunphotometers of the AERONET

network and the MODIS 10 km AOT products have shown a highly satisfactory

level of correlation. PM MAPPER 1×1 km2 AOT products are hence validated.

The satellite retrievals show a stronger association with the ground measurements

during Fall and Winter. Some trend has been found also for different land use

classes: e.g. the AOT retrieval over vegetation outperforms the retrieval over

barren land and built-up areas. The method to validate satellite products via

ground truth comparison has been investigated, showing no important sensibility

of the result to the time interval which defines the ground data segment, whereas

a stronger trend is shown as the radius that selects the satellite pixels approaches

zero. After that, a radius of 20 km and a time semi-interval of ±10 minutes are

then assessed as the best choice for satellite validation with AERONET ground

stations.
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Chapter 5

Aerosol Optical Thickness

Retrieval at 10×10 km2 Spatial

Resolution using Support Vector

Regression

This chapter presents the application of SVR for AOT retrieval at 10×10 km2

from MODIS (Nguyen et al. [2010c]). The proposal is motivated by the better

performance of SVR with respect to NNs in finding a global solution instead of

a local one, and in coping with huge and high dimensional satellite data. In this

thesis, a SVR method was investigated, applied, and then validated on Collection

005 datasets covering Europe in a period from 2006 to 2008.

1 Methodology

The methodology applied for AOT retrievals based on SVR technique consists of

three main steps: (i) collection and processing of satellite-based data (MODIS)

and ground-based sensor measurements (AERONET) over Europe for a period

of three years, (ii) integration and combination of data from two sources having

different temporal and spatial resolutions, and (iii) application of SVR technique

for aerosol estimation.
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1 .1 Datasets

The MODIS aerosol products MOD04 L2 covering European areas from 2006 and

2008 were collected. These data represent radiance/reflectance of 36 wavelengths

averaged at 10×10 km2 of resolution at nadir. Besides, it provides correspond-

ing geolocation data including geodetic coordinates, ground elevation, solar and

satellite zenith and azimuth angles for each 10×10 km2 sample. AOT are esti-

mated in seven wavelengths (0.470, 0.550, 0.670, 0.870, 1.240, 1.630 and 2.130

μm) over ocean and three wavelengths over continental areas (0.470, 0.550 and

0.670 μm) at 10×10 km2 of spatial resolution.

AERONET data level 2.0, cloud-screened and quality-assured, of 105 sites

distributed in Europe in the period of three years, 2006, 2007, and 2008, were

collected. AOT at 0.500 μm, the closest to MODIS AOT at 0.550 μm, was used

to generate SVR aerosol predictors.

1 .2 Data Integration

The satellite data and ground based measurements have differences of temporal

and spatial resolution. Hences, data combination aims at obtaining data col-

located in space and synchronized in time. The combination methodology is

carried out as mentioned in Section 4.4, Chapter 4. The condition follows sug-

gestion in Ichoku et al. [2002] for the best fit of MODIS data and AERONET

at 10×10 km2. The MODIS data are considered if their distances to AERONET

sites are within a radius of 30 km, while the contemporaneous measurements of

AERONET instruments are selected and averaged within a temporal window of

60 minutes around the satellite overpasses. The satellite data are collected if they

are cloud-free and number of good pixels is bigger than 20% out of total pixels

legal to integration conditions.

The AERONET-MODIS combinations are separated into two datasets: in-

stance dataset and aggregate dataset (see Figure 4.4). The first one consists

of 66,225 samples, each of which is a combination of measurements on a sin-

gle MODIS pixel with an averaged AERONET AOT value. In instance case,

many MODIS pixels collected around an AERONET at same acquisition time

are matched to an AERONET AOT value. One sample is represented as a vector
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that includes the following information: AERONET AOT at 0.500 μm, MODIS

geometric data (solar zenith angle, solar azimuth angle, sensor zenith angle, sen-

sor azimuth angle, scattering angle) and seven MODIS reflectances (0.646, 0.855,

0.466, 0.553, 1.243, 1.632, and 2.119 μm). The aggregate dataset contains 5,289

samples. A sample is created by combining an averaged AERONET AOT with

averaged MODIS geometric data and averaged MODIS reflectances calculated

on all cloud-free pixels acquired at the same time around this AERONET site.

These vectors are stored in the same format as the ones in the instance dataset.

1 .3 Support Vector Regression for Inversion Process

SVR was applied to instance dataset and aggregate dataset in order to create

different data models for AOT retrievals, called instance SVR and aggregate SVR,

respectively. The SVR with epsilon loss function and Radial Basic Function

(RBF) kernel provided by LIBSVM (Chang and Lin [2011]) was employed. The

accuracy was measured on three year data cross validation in which we repeated

selections of two year data for training and one year data for testing. Root Mean

Square Error (RMSE) and CORRelation coefficient (CORR) were calculated from

SVR AOT and AERONET AOT. SVR regularizations (C, γ, ε) were searched

in appropriate range with exponentially growing sequences. For each case, cross

validation was applied on a training data set and the best accuracy was picked. At

the end of searching process, the chosen regularizations minimized mean square

error in the training phase. Both instance and aggregate SVRs were used to

bring out data models for AOT prediction at pixels of 10×10 km2. The aggregate

SVR data model was made by the smaller dataset (aggregate dataset), while the

instance data models dealt with a large training data and difficulties in searching

regularization. Experiments on both instance and aggregate SVRs were made to

investigate their accuracy and computing time.

Moreover, SVR AOT were separated by different land cover types in order

to investigate surface effect on aerosol retrievals. Concerning the land cover

analysis, a spectral rule based software system, introduced as the SOIL MAPPER

(MEEO [2011]), was used to distinguish surface types. In this experiment, a

compact classification mode with 12 land cover classes was used. Cloud, snow,
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and unclassified pixels were discarded, whereas the nine remaining classes (see

Table 5.4) were utilized to evaluate the SVR prediction on a land cover basis.

A land cover class for each pixel sized 10×10 km2 was determined when the

classification system was applied on reflectances averaged from all cloudy-free

pixels of 1×1 km2 in this box.

2 Experiments and Results

The experiments focused on assessing accuracy of SVR AOT in comparison with

AERONET AOT. The AOTs obtained by aggregate SVR, instance SVR, and

MODIS aerosol algorithm were considered at different conditions: by year, by

season, and by surface type. The accuracies of both instance and aggregate SVR

estimators are slightly better than those of the MODIS algorithm, as summa-

rized in Table 5.1. Based on RMSE and CORR between predicted AOTs and

AERONET AOTs, averaged in 3 year data, instance SVR achieves the highest

accuracy, then aggregate SVR follows and finally the MODIS algorithm. This

order is justified by the increase of RMSE (0.077, 0.084, and 0.090, respectively)

and the decrease of CORR (0.835, 0.812, and 0.807, respectively). The MODIS

and SVRs AOT data in 2008 seem to have low quality as shown by the low-

est correlation with AERONET AOT. However, instance SVR in this case still

outperforms (CORR=0.802) the aggregate SVR (CORR=0.758) and MODIS al-

gorithm (CORR=0.764).

Table 5.1: MODIS algorithm, Aggregate SVR, and Instance SVR accuracy by
year

Year # Obs.
MODIS Aggregate SVR Instance SVR

RMSE CORR RMSE CORR RMSE CORR
2006 21, 555 0.095 0.831 0.087 0.847 0.086 0.850
2007 24, 251 0.087 0.827 0.081 0.831 0.074 0.853
2008 20, 455 0.087 0.764 0.084 0.758 0.072 0.802
Total 66,225 0.090 0.807 0.084 0.812 0.077 0.835

Table 5.2 shows in detail the consuming time of aggregate SVR and instance

SVR for the above experiment. Executions were tested on a computer with Intel
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(R) Core(TM)2 CPU 6400 @2.13 GHz, 2Gb RAM and Ubuntu 8.10 platform.

Instance SVR spent about 240 seconds to predict 66,255 data, while aggregate

SVR uses much smaller amount of time, 26 seconds. This difference is mainly

due to the number of samples in aggregate dataset used for training in aggregate

SVR less than instance dataset used in instance SVR (132,522 data compared

to 10,778), which induces data models with smaller sizes. The performance time

will be meaningful for further SVR applications that aim at increasing spatial

resolution of aerosol retrievals.

Table 5.2: Aggregate SVR vs. Instance SVR in consuming time performance

Year # Obs.
Aggregate SVR Instance SVR

# Training Time(s) # Training Time(s)
2006 21, 555 3, 549 7.4563 44, 706 66.59
2007 24, 251 3, 378 8.9790 42, 010 106.69
2008 20, 455 3, 851 9.4843 45, 806 70.94
Total 66,225 10,778 25.9196 132,552 244.22

We carried out the same further experiments on data sets separated by seasons

and surface types to consider effects of meteorological conditions and surface

reflectance on aerosol retrievals. Data in pairs of years were used for training

SVRs, while data on the remaining year were classified by seasons and surface

classes for testing purposes.

Table 5.3 present the validation results by season. Three months (i.e. December-

January-February (DJF), March-April-May (MAM), June-July-August (JJA) and

September-October-November (SON)) are grouped to be presentative for a sea-

son. Moreover, relative error (RERR) defined in the equation 5.1 is calculated in

order to measure error percentage between predicted and target values.

rerr =
1

n

n∑
i=1

|predictedAOTi − aeronetAOTi|
|aeronetAOTi| (5.1)

In the coldest period (ie. DJF), aerosol retrievals obtained by all algorithms

have the lowest RMSE but the highest RERR in comparison with aerosol predited

in other months. Because RMSE presents absolute error while RERR shows

error percentage, AOT in DJF should have low values. For all algorithms, the

73



performance of aerosol retrievals is worst in the period DJF but similar over

all warmer seasons (ie. MAM, JJA and SON). Based on RMSE and RERR,

a relationship between aerosol retrievals and aerosol values can be infered. We

calculated averages of AOT (MEAN) for all seasons. Over the coldest season

DJF, AOT is often low (MEAN ∼ 0.115) while AOT is quite similar over other

seasons (MEAN ∼ 0.223, 0.212 and 0.175 for MAM, JJA and SON, respectively).

Therefore, aerosol prediction have the highest error in DJF and similar errors in

MAM, JJA and SON. The seasonal performance in fact presents the dependence

of AOT prediction on AOT magnitude for considered algorithms. The instance

SVR has the most competitive accuracies that are better than those of aggregate

SVR and MODIS algorithm in all seasons.

Table 5.3: Instance SVR, Aggregate SVR and MODIS algorithm accuracy by
season

Season # Obs.
Instance SVR Aggregate SVR MODIS

CORR RMSE RERR CORR RMSE RERR CORR RMSE RERR
DJF 7125 0.693 0.059 0.514 0.629 0.066 0.583 0.677 0.061 0.503
MAM 17932 0.863 0.078 0.344 0.839 0.084 0.367 0.840 0.091 0.406
JJA 23859 0.808 0.082 0.385 0.771 0.089 0.404 0.762 0.099 0.461
SON 15406 0.794 0.080 0.378 0.778 0.084 0.416 0.800 0.086 0.437

MODIS used two algorithms for land and ocean because of different physical

interactions between aerosol and matters. Among all surface types listed in Table

5.4, only the water class refers to water pixels while remains represent land pixels.

MODIS ocean algorithm gained high accuracy (RMS=0.067, CORR=0.822), but

it can be further improved by instance SVR (RMS=0.062, CORR=0.850). Out

of land surface types, four classes Peat Bog, Evergreen Forest, Agricultural Areas

and/or Artificial non Agricultural, Areas Scrub/Herbaceous Vegetation have a

small number of samples, so their results should not be considered. In all remain-

ing cases, instance SVR is more accurate than the MODIS algorithm. The clear

improvement can be observed at Artificial Surfaces and/or Open Spaces with lit-

tle or no Vegetation surface, which is consistent with results of previous studies

that showed the poor performance of the MODIS algorithm on bright surfaces

(Nguyen et al. [2010a]). Aggregate SVR has the worst accuracy on water pixels.

It can be explained as result of the small contribution of water pixels on aver-
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aged data used for training aggregate SVR model, that did not occur to instance

SVR. This phenomenon influences pixels belonging to other surface types except

Deciduous Forest and/or Agriculture Area class that has a large data set and

therefore can be represented well by averaged values.

Table 5.4: MODIS algorithm, Aggregate SVR, and Instance SVR accuracy by
land cover class

LC Class # Obs.
MODIS Aggregate SVR Instance SVR

RMSE CORR RMSE CORR RMSE CORR
Water 2, 981 0.067 0.822 0.071 0.799 0.062 0.850
Peat Bogs 91 0.112 0.622 0.151 0.527 0.129 0.550
Deciduous For-
est

2, 734 0.086 0.692 0.072 0.681 0.065 0.700

Evergreen Forest 19 0.054 0.489 0.065 0.584 0.053 0.714
Deciduous For-
est and/or Agri-
cultural Area

34, 316 0.080 0.824 0.075 0.824 0.702 0.833

Agricultural Ar-
eas and/or Arti-
ficial non Agri-
cultural Areas

25 0.103 0.895 0.086 0.926 0.080 0.950

Scrub/Herbaceous
Vegetation
and/or Agricul-
tural Areas

5, 302 0.082 0.825 0.083 0.806 0.075 0.829

Artificial Sur-
face and/or
Open Spaces
with little or no
Vegetation

5, 961 0.096 0.746 0.085 0.769 0.078 0.808

Scrub/Herbaceous
Vegetation

134 0.060 0.892 0.075 0.871 0.066 0.882

3 Conclusion

In this chapter, a data driven approach that applies the SVR technique on MODIS

and AERONET data to predict AOT information has been presented. Satellite
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and ground-based data covering the European areas from 2006 to 2008 were

collected and then integrated to solve spatial and temporal differences. After that,

SVRs were applied on instance dataset and aggregate dataset to make different

non-linear regressions for aerosol retrievals. The experiment results show that

SVR approach is competitive with respect to the MODIS algorithm and able to

improve prediction accuracy over areas having no or little vegetation. Out of

two SVR models, instance SVR outperforms the aggregate SVR, but the time

execution is longer. In fact, with 10×10 km2 of spatial resolution, each MODIS

image consists of 135×203 pixels. Increasing spatial resolution up to 1×1 km2

(see the next chapter), more than two million pixels in an image would need to

be processed. Also, the slow performance of instance SVRs hints at the need for

further investigations of data selection and application of pruning techniques in

the training phase.
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Chapter 6

Downscaling Spatial Resolution

of Aerosol Optical Thickness to

1×1 km2 using Support Vector

Regression based on Domain

Knowledge

1 Introduction

In this chapter, the methodology to derive aerosol optical thickness at 1×1 km2

over land from MODIS Level 1B data is presented. This work aims at providing

more detail AOT information for local monitoring. Different from related works

in literature (Oo et al. [2008]; Castanho et al. [2007]; Li et al. [2005]; Nichol

and Wong [2009]; Wong et al. [2009]) as well as our downscaling work described

in Chapter 3 using a physical approach (Nguyen et al. [2010a]; Nguyen et al.

[2010b]), the proposed methodology exploits SVR technique and domain knowl-

edge for aerosol optical thickness retrievals. The investigation of SVR on AOT

retrival from MODIS data at 10×10 km2 shows promissing results in the previous

chapter and hence motivates the usage of SVR to deal with downscaling problem.

However, the application of SVR for AOT from 10×10 to 1×1 km2 of spatial res-
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olution is not a trivial task because of a very large and noisy dataset as a result of

increasing the resolution 100 times. Moreover, the application is extended from

pixel domain to map domain in which data models created by data collected on

sparse locations are applied on large and continuous map areas.

The proposed approach is developed and tested on real data collected over

European areas in three years from 2007 to 2009. Validations show good results

in both pixel and map domains. Although the former versions of this approach

are published in Nguyen et al. [2011] and Nguyen et al. [2012], some changes are

applied in the methodology and validation is re-done in a larger dataset in order

to provide uniform results.

2 Methodology

In this section, the methodologies to create SVR models and to predict AOT maps

from MODIS data are presented. Firstly, satellite-based data and ground-based

measurements in the areas of interest are collected. Secondly, data from difference

sources are integrated to solve the differences of temporal and spatial resolution.

After that, filtering and clustering techniques exploiting physical aspects of data

are applied in order to reduce the total amount of data, and to separate them into

groups having different characteristics. In the fourth step, data are selected for

training process using some strategies. Then, SVR is applied on training datasets

to create data models for different clusters. The flowchart of model generation is

presented in Figure 6.1. Finally, in the map prediction framework, aerosol maps

at 1×1 km2 of spatial resolution are derived from MODIS Level 1B data using

SVR models.

2 .1 Data Collection

The collected data consist of MODIS L1B data, MOD04 L2, Land Cover (LC)

map, and AERONET data Level 2.0 covering Europe areas in three years from

2007 to 2009. Datasets are used to develop empirical data models as well as

to input for the map prediction framework. The description of datasets can be

found in Section 3.1.2 (Chapter 3) and Section 5.2 (Chapter 5).
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Figure 6.1: SVR approach for the AOT inversion problem.

2 .2 Data Integration

Satellite- and ground-based data are collected from different sources have different

temporal and spatial resolutions which can be solved by the integration process.

Satellite data include MODIS L1B data (MOD02 and MOD03) and LC maps at

1×1 km2 of resolution, MODIS aerosol products (MOD04 L2) at 10×10 km2 of

resolution. Ground-based data are obtained from AERONET distributed sites.

All satellite maps are acquired at the same time and location, thus only re-

sampling process is applied to refine MOD04 L2 products to 1 km2 of spatial res-

olution. However, satellite-based and ground-based data have different temporal

resolution (every day versus every 15 minutes, respectively) and different spatial

resolution (1354 by 2030 of 1-km-pixel maps in comparison with site points).

Therefore, time and location constraints are applied for data integration. As

proposed in Ichoku et al. [2002] for MODIS and AERONET AOT integration,

satellite data are considered if pixels are located over land, cloudy-free and their

distances from AERONET sites are within radius R of 30 km. Meanwhile, the
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contemporaneous measurements of AERONET instruments are selected and av-

eraged within a temporal window T of 30 minutes around the satellite overpasses.

All pixels are populated in a database with 1×1 km2 of spatial resolution. This

database refers to the same one used in PM MAPPER validations mentioned in

Chapter 4.

Satellite-based and ground-based integration is applied to create data samples

for data modeling process. The usage of integrated data aims at improving the

aerosol retrieval quality by utilizing the high accuracy of ground measurements

as validated in Xu et al. [2005]Vucetic et al. [2008], Lary et al. [2009], Obradovic

et al. [2010] and Nguyen et al. [2010c]. Following the instance SVR approach

(see Chapter 5), a sample is a combination of a satellite pixel’s attributes and an

arithmetic mean of AERONET AOT values that satisfied collocation and time

synchronization constraints. A sample’s features consist of the AERONET AOT

at 0.553 μm, latitude, longitude, sensor zenith angle, solar zenith angle, relative

azimuth angle, scattering angle, four reflectances at 0.646. 0.466, 1.243, and 2.119

μm, and land cover class. The feature selection is based on inputs of LUT in the

MODIS algorithm.

AERONET AOT at 0.553 μm (AOT553) is not measured directly from AERONET

sites and it is calculated using log-linear interpolation from two AOT values of

the closest channels 0.500 and 0.670 μm ( AOT500 and AOT670 , respectively), as

follows:

AOT553 = elog(AOT500)+(553−500)
log(AOT670)−log(AOT500)

670−500 (6.1)

The scattering angle Θ was defined as:

Θ = cos−1(− cos θ0 cos θ + sin θ0 sin θ cosφ) (6.2)

where θ0, θ and φ are the solar zenith, sensor view zenith and relative azimuth

angles, respectively.

2 .3 Data Filtering

Using the proposed integration in Ichoku et al. [2002] for 1 km pixels, the re-

sulting dataset becomes huge and has lower quality. This poses difficulties for
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the modelling step. In order to deal with this problem, the validation results de-

scribed in Chapter 4 are utilized to select more suitable datasets. The validation

over data covering European areas in three years from 2007 to 2009 (see Chapter

4) investigates different spatial and temporal windows for integration of satellite

data and ground-based measurements. The objective is to find intergration con-

straints to obtain the best quality datasets and to reduce as much as possible the

number of samples. The optimal parameters are a spatial window radius of 20

km and temporal window of 10 minutes (see Figures 4.5 and 4.6). The resulting

datasets have better quality and smaller amount of samples than those obtained

by the original conditions in Ichoku et al. [2002]. Therefore, these conditions are

proposed to select data for aerosol applications at 1×1 km2 of spatial resolution.

2 .4 Data Clustering

The clustering technique is considered to divide and conquer big datasets and to

classify aerosol prediction quality. Data are separated into specific groups and

then used for modeling. The technique is based on priority of criteria applied

over land surfaces excluding water, clouds, ice and snow to choose pixels for

aerosol derivation in the physical approach (Kaufman and Tanré [1997]). The

priority is originated from the fact that in the MODIS aerosol algorithm Collection

004 over land, the surface reflectance is determined using the relationship of

surface reflectance at 0.49, 0.66, and 2.1 μm. Figure 6.2 presents the practical

relationship between surface reflectance at 0.49 μm (full symbols) and 0.66 μm

(empty symbols) to that at 2.1 μ over different land cover types. Depending on

surface types, the variability of surface reflectance is different (e.g. vegetation

surface is less variable than soil areas) and hence affects the estimation of surface

reflectance for aerosol retrieval process. The quality of AOT retrieval will decrease

in order as follows:

first priority for 0.01 � ρ∗2.1 � 0.05

second priority for ρ∗3.8 � 0.025

third priority for 0.01 � ρ∗2.1 � 0.10

fouth priority for 0.01 � ρ∗2.1 � 0.15

(6.3)
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where ρ∗2.1 and ρ∗3.8 are TOA reflectance at wavelength 2.1 and 3.8 μm.

The clustering technique is proposed using the first, third, and fourth priori-

ties. Samples are separated into four groups based on thresholds in the mid-IR

band 2.13 μm (from 0.01 to 0.05, from 0.05 to 0.10, from 0.10 to 0.15, and larger

than 0.15). It aims at specializing SVR models for particular data groups.

Figure 6.2: Scatter diagram between the surface reflectance at 0.49 μm (full
symbols) and 0.66 μm (empty symbols) to that at 2.2 μm for several surface type
(Kaufman and Tanré [1997])

2 .5 Selection of Training and Testing Datasets

For each cluster, data in two years are selected to create training datasets while

data in the year which is not included are used for testing models. This pro-

cess is repeated for three year of data. The big integration datasets (about 400

thousands samples of each year) will pose difficulties in the modeling step using

SVR if all data are employed for training process. Moreover, these datasets con-

sist of samples whose AERONET AOT values just range from 0 to 0.8 and are
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dominated by small values (see Table 6.1). Imbalance in the datasets will lead

to bias in the modelling process. Therefore, the selection of samples for training

SVR models is based on two crucial factors: AERONET location and AOT size.

Samples at each AERONET site are divided into four groups, called AOT groups,

with AOT value thresholds 0.2, 0.4, and 0.6. After that, the same data amount

is selected randomly from all available AERONET sites in each AOT group so

that new training datasets still keep the ratio of data in each AOT group to total

as in the original datasets. All selections used random selection. The maximum

number of samples for each year in training datasets are limited at about 25000

since LIBSVM (Chang and Lin [2011]) is used for implementation. However,

testing datasets includes all data in a year.

Table 6.1: Statistics of AOT values in integration datasets.

Year # Total % (0.0 - 0.2) % (0.2 - 0.4) % (0.4 - 0.6) % (> 0.6)
2007 550,690 69.20 24.50 5.94 0.37
2008 492,640 75.45 21.71 2.49 0.35
2009 387,392 73.99 22.71 3.16 0.15

2 .6 Support Vector Regression for Inversion Process

SVR is applied on training dataset of each cluster to create a corresponding data

model. This takes advantages of the divide-and-conquer strategy and therefore, it

is easier to control, improve, and evaluate the SVR performance on each cluster.

The inversion problem is stated as follows. Given a training dataset including l

samples:

{(x1, y1), . . . , (xl, yl)} ⊂ X ×� (6.4)

where X denotes the space of the input patterns (i.e. X ⊂ �d), the target yi

refers to as AERONET AOT at 0.553 μm. The input is expressed as a record of

latitude, longitude, sensor zenith angle, solar zenith angle, relative azimuth angle,

scattering angle, reflectance at 0.646 μm, reflectance at 0.466 μm, reflectance at

1.243 μm, reflectance at 2.119 μm, and land cover class. The ε-SVR, introduced

in Chapter 2, is to find the optimal function f(x) that has at most ε deviation

from the actually obtained target yi from the training data. The ε-SVR with ep-
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silon loss function and Radial Basic Function (RBF) kernel provided by LIBSVM

(Chang and Lin [2011]) is used in this work.

The SVR algorithm is well known by generation performance which can be

achieved by good settings of the ε-SVR parameters (i.e. regularization C, ε of

the lost function, and p in the kernel function RBF). Because of high cost in

cross validation for parameter selection on large datasets, those parameters are

estimated using a practical approach proposed in Cherkassky and Ma [2004].

Following this method, the parameter C can be chosen equal to the range of

output yi values of training data. In order to limit the sensitivity of C to possible

outliers in the training data, C is proposed as

C = max(|ȳ + 3σy|, |ȳ − 3σy|) (6.5)

where ȳ and σ are the mean and the standard deviation of the y values of training

data.

Parameter ε is estimated using the assumption that the value of ε should be

proportional to the input noise variance. Based on the empirical results, the

practical ε is proposed as:

ε = tσ

√
ln l

l
(6.6)

where t, l and σ are the empirical dependency on the number of training data

(proposed as 3), the number of samples in the training data and the variance of

additive noise δ, respectively. δ is described by:

y = f(x) + δ (6.7)

where δ is independent and identically distributed (i.i.d) zero mean random noise,

x is a multivariate input and y is scalar output, f(x) is regression function.

σ̄ is denoted as the practical noise variance estimated from the training data

which will be used as σ in 6.6 for ε selection:

σ̄ =
l
1
5k

l
1
5k − 1

1

l

l∑
i=1

(yi − ȳi)
2 (6.8)
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where k is window size, proposed in the 2 - 6 range, of k-nearest-neighbours

regression, ȳi is a local average of training data estimated from k nearest neigh-

bours.

The width parameter p in RBF kernel is presented as follows:

K(xi, xj) = e
− ‖xi−xj‖2

2p2 (6.9)

where xi is a training data.

p is appropriately selected to reflect the input range of the training/test data.

For the multivariate d-dimensional problem, p is proposed to be calculated as

pd ∼ (0.1− 0.5) where d input variables are pre-scaled to [0, 1] range.

Based on mentioned theory, the SVR parameter selection is carried out in two

steps:

� Initializing values of C, ε and p from training data using the methodology

described above.

� Tuning parameter ε by changing empirical dependency parameter t in 6.6

which was proposed as 3. The ε calculated by this methodology in our

training dataset is very small, which makes most training data become sup-

port vectors. In this case, data models become complex and overfitting

to training datasets. The small ε is due to a large training dataset, very

small target values, and repeated target values on many samples as a re-

sult of integration process in which many satellite pixels are matched to

one AERONET sites. The changing reduced number of support vectors to

approximately 50% - 60% of total number of training data. Moreover, the

new ε did not increase Mean Square Error (MSE) much with respect to the

old one in cross-validation tests.

2 .7 Map Prediction Framework

The map prediction framework is developed to derive AOT maps from MODIS

L1B data using generated SVR models. The detail of software development can

be found in Limone [2011]. The algorithm flowchart is presented in Figure 6.3.
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As mentioned in Section 2.1.2 in Chapter 2, cloud screening process is a crucial

task to guarantee aerosol retrieval quality. In the map prediction framework, LC

maps distinguish types of pixels and perform the first cloud screening. This is due

to the fact that the aerosol estimation algorithm over land is applied on pixels

of land instead of cloud, water, ice, snow. Because the AOT estimation on cloud

contamination or bright pixels from satellite reflectance is not correct, we apply

a second cloud screening process using the cloud masking procedure developed

for retrieval of aerosol properties by MODIS.

Figure 6.3: The map prediction framework.

The second cloud screening algorithm is based on spatial variability of re-

flectances on TOA in the visible wavelengths. Clouds show high spatial variabil-

ity in the range from hundred meters to few kilometers, while aerosol in general

is very homogeneous. The original algorithm is proposed in Martins et al. [2002]

for cloud masking over ocean but this procedure has been extended to land and

applied in both aerosol algorithms in Collection 005 (Remer et al. [2004]). The

land algorithm generates a cloud mask using spatial variability of the 0.47 and

1.38 μm channels with thresholds 0.0025 and 0.003, respectively. If the standard
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deviation calculated for each group of 3×3 pixels is greater than the correspond-

ing threshold, then the area of the entire 3×3 pixel box is considered as clouds.

In addition, tests on visible channel reflectance thresholds are carried out. If the

reflectance at 0.47 μm and 1.38 μm are greater than 0.4 and 0.025, respectively,

the pixel is considered as a cloudy pixel. In our approach, all calculations are

applied at 1 km pixels for both 0.47 μm and 1.38 μm channels instead of 500 m

and 1 km pixels, respectively as in the Collection 5 algorithm.

After cloud scanning processes, selected pixels are grouped into four clusters in

order to apply the corresponding SVR data model to predict aerosol optical thick-

ness. The final process collects predicted pixels, integrates with geo-information

and then generates the AOT map.

3 Experiments and Results

3 .1 Pixel Domain

Pixel domain refers to as pixels collected in areas around AERONET sites and

used to create and test SVR models. Three experiments are designed in order to

validate the proposed methodology, compare performance at 1×1 km2 of spatial

resolution between SVR and MODIS algorithm, and investigate the relationship

between SVR AOT and MODIS AOT.

The collected data, covering Europe in three year from 2007 to 2009, con-

sist of MODIS L1B data and LC map at 1×1 km2 of resolution, MOD04 L2

at 10×10 km2 of resolution, and AERONET data Level 2.0. After integrating

satellite-based and ground-based measurements, there are samples at 31, 36 and

33 AERONET sites for 2007, 2008, and 2009, respectively. The sites distribution

is presented in Figure 6.4.

The statistics on the total dataset and clusters are presented in Table 6.2.

There are 1,425,733 samples for three years. In the clustering step, those samples

are grouped into four groups based on proposed thresholds of the mid-infrared

band 2.13 μm. The clusters 1, 2, and 3 which are considered as having good pixels

for AOT estimation hold most of the data, i.e. 19.63%, 48.34% and 23.14% of

the total, respectively.
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Figure 6.4: Distribution of AERONET sites over the Europe area used in data
modeling.

For each cluster, selection of training and testing datasets follows the method-

ology mentioned in Section 6.2.5. After that, SVR is applied on training datasets

to create data models and then use them to predict AOT in testing datasets.

The evaluation was carried out on each cluster using Mean Error (ME), Root

Mean Square Error (RMSE) and CORRelation coefficient (CORR), all of which

are calculated from AOT values obtained by the SVR method and AERONET

measurements.

Instance and aggregate validations were carried out. In “instance validation”,

all AOTs predicted by SVRs around every AERONET site are matched directly

to a corresponding AERONET AOT and validated. In “aggregate validation”,

all SVR AOTs are aggregated by acquisition time and AERONET site, then

averaged and validated to corresponding AERONET AOT values. The aggregate

validation gives more stable results than instance validation when data at different

spatial resolutions are compared. Results for each clusters are averaged from

results of three years.

Table 6.3 and 6.4 show number of samples used in training phase (#Training),

averaged amount of Support Vectors by year (#SVs/Year), number of samples
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Table 6.2: Statistics on total dataset.(#: Number of samples, %: Percentage of
the total)

Year # AER site # Raw data # Clus.1 # Clus.2 # Clus.3 # Clus.4
2007 31 549,441 98,760 264,693 125,272 60,770
2008 36 491,323 113,347 238,651 104,334 34,991
2009 33 384,969 67,875 185,911 100,364 30,819
# 1,425,733 279,928 689,255 329,970 126,580
% 19.63 48.34 23.14 8.88

in testing dataset (#Ins./#Agg), and accuracy of SVR AOT in comparison with

AERONET measurements on the pixel domain (CORR, RMSE, ME). Using the

proposed approach, four clusters achieve acceptable accuracy. For instance val-

idation, the prediction error increases gradually from cluster 1 to 4 (i.e. RMSE

∼ 0.0550, 0.0621, 0.0751, 0.0851, respectively), which shows decrease trend of

AOT retrieval quality by group as mentioned in theory. SVR models underes-

timate AOT values, which is represented by negative ME. The general results

on CORR, RMSE, and ME, calculated on overall pixels, are 0.7855, 0.0672 and

-0.0029, respectively. For aggregate validation, the same results and conclusion

can be observed. The final CORR, RMSE and ME obtained by the second val-

idation are 0.8518, 0.058, and -0.0023 which are better than the first validation

results since aggregated AOT values are used. These results are considered as

good for AOT estimation at 1×1 km2 of spatial resolution where inputs are very

variant and noisy.

Table 6.3: Instance validation between SVR AOT and AERONET AOT on dif-
ferent clusters.

Clus. # Training # SVs/Year # Ins. CORR RMSE ME
1 58,721 28,606 279,928 0.8069 0.0550 -0.0039
2 70,246 31,372 689,255 0.8041 0.0621 -0.0033
3 46,169 26,779 329,970 0.7291 0.0751 -0.0003
4 48,413 21,211 126,580 0.6746 0.0851 -0.0102
All 1,422,349 0.7855 0.672 -0.0029

In order to compare SVR performance with the MODIS algorithm, instance

and aggregate validations on the same dataset were carried out for MODIS AOT
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Table 6.4: Aggregate validation between SVR AOT and AERONET AOT on
different clusters.

Clus. # Training # SVs/Year # Agg. CORR RMSE ME
1 58,721 28,606 1,803 0.8330 0.0567 -0.0032
2 70,246 31,372 2,169 0.8459 0.0571 -0.0019
3 46,169 26,779 1,747 0.7976 0.0647 0.0001
4 48,413 21,211 1,004 0.6574 0.0825 -0.0090
All 2,213 0.8518 0.058 -0.0023

and AERONET AOT. MODIS AOT obtained from MOD04 L2 products are

resampled at 1×1 km2 of spatial resolution for comparison. The results of both

validations are shown in Table 6.5. Based on comparison with AERONET AOTs,

SVR AOTs are more accurate than MODIS AOTs. In instance validation, general

CORR/RMSE are 0.786/ 0.672 for SVR and 0.773/ 0.080 for MODIS, while in

aggregate validation, these values are 0.852/0.058 versus 0.835/0.063. The SVR

models underestimate AERONET AOTs while MODIS overestimates them (i.e.

Instance/Aggregate ME ∼ -0.0029/-0.0023 versus 0.0019/0.0031 for SVR and

MODIS, respectively). The overestimation of the MODIS alogrithm for small

AOT values was stated in Remer et al. [2005] as well.

Figures 6.5 and 6.6 present scatterplots of SVR AOT - AERONET AOT and

MODIS AOT - AERONET AOT in instance and agrregate cases. The bias can be

observed in SVR models much more then MODIS models. The bias in SVR may

be explained by imbalance datasets used for modelling (i.e. the samples of small

AOT dominate in datasets) while in MODIS algorithm, the much bigger AOT

values can be expressed by coarse aerosol modes hence the MODIS algorithm is

less biased in these AOT ranges. The solution for SVR in this case will need

further investigation.

The last experiment aims at investigating the relationship between SVR AOT

and MODIS AOT around all AERONET sites. These results will be milestones to

explain the results of the next validation in which SVR AOT maps are compared

directly with MODIS AOT maps. Because AERONET AOT is considered as

ground truth to validate both SVR and MODIS algorithms, this experiment just

imply the relative difference between SVR AOT and MODIS AOT. The difference

of AOT increases from cluster 1 to 4 but bigger difference can be observed at pixels
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(a) SVR - AERONET (b) MODIS - AERONET

Figure 6.5: Instance scatterlots

(a) SVR - AERONET (b) MODIS - AERONET

Figure 6.6: Aggregate scatterlots
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Table 6.5: Instance and Aggregate Validation between MODIS AOT and
AERONET AOT on different clusters.

Clus.
Instance Validation Aggregate Validation

# Ins. CORR RMSE ME # Agg. CORR RMSE ME
1 279,928 0.8164 0.0588 -0.0147 1803 0.8169 0.0641 -0.0098
2 689,255 0.8010 0.0714 0.0010 2169 0.8266 0.0632 0.0029
3 329,970 0.7131 0.0931 0.0123 1747 0.8030 0.0711 0.01137
4 126,580 0.5790 0.1172 0.0156 1004 0.7127 0.0873 0.0149
All 1,422,349 0.7729 0.0803 0.0019 2213 0.8346 0.0634 0.0031

of clusters 3 and 4. The SVR AOT has underestimation trend in comparison with

MODIS AOT, which is represented by negative ME (i.e. Instance/ Aggregate

ME ∼ -0.0048/-0.0054). The general CORR/ RMSE calculated on overall pixels

are 0.766/ 0.081 and 0.819/ 0.066 for instance and aggregate cases, respectively.

However, only instance validation can be carried out over map domain (see details

in the next section).

Table 6.6: Instance and Aggregate Validation between SVR AOT and MODIS
AOT on different clusters.

Clus.
Instance Validation Aggregate Validation

# Ins. CORR RMSE ME # Agg. CORR RMSE ME
1 279,928 0.8421 0.0531 0.0108 1803 0.8065 0.0640 0.0066
2 689,255 0.8149 0.0705 -0.0043 2169 0.8192 0.0642 -0.0048
3 329,970 0.6906 0.0951 -0.0126 1747 0.7762 0.0749 -0.0112
4 126,580 0.5150 0.1221 -0.0258 1004 0.5768 0.1002 -0.0238
All 1,422,349 0.7664 0.0813 -0.0048 2213 0.8194 0.0663 -0.0054

3 .2 Map Domain

Map domain refers to all cloud-free pixels on images recorded by MODIS. The

experiment carried out in map domain aims at evaluating quality of SVR models

when they are used to derive AOTmaps fromMODIS L1B data. The validation of

algorithms performing on map domain is challenging because there is no confident

target for comparison. MOD04 L2 product, which provides aerosol monitoring at

the global scale, is used in these experiments. However, as shown in the previous

section, re-sampled MODIS AOT also presents low quality in comparison with
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ground truth AERONET AOT for some cases (e.g. pixels of cluster 4). In this

section, two experiments are considered. The first one validates directly SVR

AOT maps with MODIS AOT maps, while the second considers this relationship

by country in order to investigate spatial performance of SVR methodology.

3 .2.1 Validation by Map

The MODIS L1B data in three years from 2007 to 2009 covering European areas

are collected. The validation dataset consists of 163 images spreading over months

of a year since AOT estimation strongly depends on season (see Table 6.7). After

applying the map prediction framework, we received 163 AOT maps at 1×1 km2

of spatial resolution. Corresponding MOD04 L2 maps are collected and resampled

into 1 km maps by simply dividing one 10×10 km2 pixel to one hundred of 1×1

km2 pixels with same AOT values.

In the first experiment, every two corresponding maps are compared di-

rectly. Since the algorithms work on different spatial resolutions and use different

methodologies for scanning good pixels, the two AOT maps are not completely

overlapped. Therefore, the CORR and RMSE are calculated only on match pix-

els which have both SVR AOT and MODIS AOT. Moreover, only AOT maps

with matching percentages bigger than 10% are considered in validation. An il-

lustration of AOT map estimated by our SVR and MODIS algorithm is shown

in Figure 6.7.

Table 6.7: Statistics of validation data.

Years # Map # Jan-Apr # May-Aug # Sep-Dec
2007 55 18 20 17
2008 50 17 22 11
2009 58 17 25 16
Total 163 52 67 44

Table 6.8 presents the numerical results of the experiment on validation datasets.

SVR AOT of clusters 1 and 2, occupying a big quantity of data (45.42% and

44.01%, respectively), have good correlation coefficient and small error in com-

parison with MODIS AOT (CORR/RMSE ∼ 0.753/0.054 and 0.750/0.063, re-

spectively). The worst case happens to cluster 4 with COR ∼ 0.505 and RMSE
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(a) (b)

Figure 6.7: (a) The MOD04 L2 over-land AOT map at 10×10 km2 and (b) The
SVR over-land AOT map at 1×1 km2 MODIS image acquired on January 29,
2008 at 09:55 UTC.
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∼ 0.1158. Regarding the validation between SVR AOT and MODIS AOT in

pixel domain (see Table 6.6), the results obtained are consistent. In details, the

decrease of CORR can be observed in clusters 1, 2, 3, and 4 while RMSE slightly

increases. The overall CORR/RMSE are 0.7523/0.0614 in map domain versus

0.7664/0.0813 in pixel domain. However, ME over map domain is bigger than

ME in pixel domain. The domination of pixels at clusters 1 and 2 can explain for

this phenomenon. These results are generally compable between the two valida-

tions, which implies the stability of the proposed methodology when it is extended

from pixel domain to map domain in a real application.

Table 6.8: SVR - MODIS validation for different clusters on the map domain
(Clus.: cluster, #T: total number of pixels, %T: percentage of cluster pixels to
total, #M: number of matched pixels, %M: percentage of matches to total number
of cluster)

Clus. # T %T #M %M COR RMSE ME
1 19,433,481 45.42% 16,266,684 0.842275 0.753316 0.054772 0.020683
2 18,832,321 44.01% 18,217,527 0.942983 0.750185 0.063028 0.014063
3 3,871,651 9.05% 3,773,566 0.924000 0.691041 0.081333 -0.001737
4 651,759 1.52% 370,262 0.776989 0.504973 0.115876 -0.008600
All 42,802,004 38,629,156 0.876382 0.752327 0.061459 0.016858

Moreover, additional comments shoud be given for ratio of pixels of different

clusters. As shown in Table 6.8, clusters 1 and 2 hold most of pixels (45.42%

and 44.01% of total, respectively). It is a result of strictly scanning process of

good pixels in the map prediction framework. However, this process is necessary

when estimation is carried out directly on values of 1 km pixel instead of averaged

values of all good pixels at 500 m selected in a box sized 10×10 km2 as in the

MODIS algorithm.

Figure 6.8 presents the validation results of all datasets sorted by time. Season

trends can be observed all three years from the AOT chart. SVR AOT maps in

cold seasons (i.e. Jan-Mar/ Sep-Dec) have high correlation with MODIS AOT

maps than in warm seasons (i.e. Apr-Jun, Jul-Sep). The biggest difference can

be seen on maps in summer, which is represented by high RMSE and low CORR

between SVR and MODIS AOT maps.
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Figure 6.8: CORR and RMSE of Validation Datasets on Map Domain

3 .2.2 Validation by Country

In the second experiment on map domain, the validation is separated by country

in order to investigate performance of the proposed SVR methodology in differ-

ent spatial areas. Considered datasets consist of SVR AOT maps at 1×1 km2

and MOD04 L2 maps at 10×10 km2 of spatial resolutions. Moreover, a shapefile

which is a geospatial vector data format for storing geometric location and asso-

ciated attribute information is included in our validation datasets. The shapefile

presenting European country’s borders is applied to filter data over Countries.

The shapefile is a geospatial vector data format for storing geometric location

and associated attribute information. The validation methodology includes the

following steps.

Collection of validation datasets. The experiment uses the same datasets

as in the previous one, detailed in Table 6.7.

The SVRmap prediction framework is applied on selected validation datasets

and yields AOT maps at 1×1 km2. Corresponding MOD04 L2 maps at

10×10 km2 are selected and re-sampled into 1×1 km2 spatial resolution.

All satellite maps and European shapefile are projected on the Earth surface

grid using the same projection Lat/Lon WGS84.
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� All maps and the shapefile are overlapped. Then, corresponding data are

recorded by Country. Figure 6.9 presents an example of SVR AOT map,

MODIS AOT map, and corresponding overlaid shapefile that is created for

two specific maps after they are projected on the Earth grid.

� For each Country, validation is carried out by calculating number of over-

lapped pixels (# Pixel), number of cover maps (# Map), CORR, RMSE

and ME between corresponding SVR AOT and MODIS AOT.

(a) SVR AOT map @ 1×1
km2

(b) MODIS AOT map @
10×10 km2

(c) Projected shape file

Figure 6.9: AOT maps and shapefile of the MODIS image acquired on April 25,
2008 at 10:00 UTC.

Table 6.9 presents validations results by Country in which country’s validation

parameters are calculated for each year and then averaged in three years. Out of

34 European countries considered, validation datasets cover 31 countries except

Iceland (IS), Malta (MT), and Cyprus (CY). Over validation datasets, the number

of overlapped pixels of 1 km is about 28 millions in which the biggest proportions

are hold by areas of Poland (PL), France (FR), Germany (DE), Romania (RO),

Italy (IT), Sweden (SE), Hungary (HU), and Finland (FI) (more than one million

pixels for each country). Meanwhile, the smallest amounts are in areas such as

Liechtenstein (LI), Luxembourg (LU), and Ireland (IE) (445, 23677, and 33257,

respectively), which will be hence skipped in the following discussion.

In term of correlation coefficient between SVR AOT and MODIS AOT, values

range from 0.503 to 0.921 and can be divided into two groups. The first one which

includes Norway (NO), Portugal (PT), and Finland (FI) has low CORR (0.503,

0.684 and 0.695). The second group consists of 25 remained countries in which
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22 countries have CORR bigger than 0.800. Low correlations can be explained

by rare AERONET sites where data are collected to produce data models over

NO, PT and FI (see Figure 6.4). However, in most of the considered regions, the

SVR models achieve good results in map domain. RMSE varies by Country and

ranges from 0.0485 to 0.111. In table 6.9, results are presented in ascending order

of RMSE. The average CORR and RMSE over considered countries are 0.831 and

0.064. Positive ME in average (0.005) presents the overestimation of SVR AOT

with respect to MODIS AOT.

4 PM MAPPER and SVR Aerosol Optical Thick-

ness at 1×1 km2, some comparisons

In order to make a comparison between PM MAPPER AOT and SVR AOT at

1×1 km2, additional validation for PM MAPPER AOT was carried out. The

overall validation for PM MAPPER AOT was already presented in Chapter 4,

while the evaluation for SVR AOT at 1×1 km2 was described in the previous

sections. Therefore, this additional validation evaluates PM MAPPER AOT over

both pixel and map domains using the validation datasets and methodologies used

in Section 6.3.

Figures 6.10 and 6.11 present validation results on pixel domain between

PM MAPPER AOT and SVR AOT at 1×1 km2 with respect to AERONET

AOT. For instance validation, SVR AOT is more accurate than PM MAPPER

AOT (CORR/RMSE ∼ 0.786/0.067 and 0.069/0.109, respectively). However, the

PMMAPPER AOT is less biased than SVR AOT, although PMMAPPER values

have more spread. Aggregate validation results imply similar conclusions with

CORR/RMSE ∼ 0.852/0.058 and 0.839/0.065 for SVR AOT and PM MAPPER

AOT, respectively.

Figure 6.12 presents the validation results on map domain for PM MAPPER

AOT. It can be used for comparison with a similar validation between SVR AOT

and MODIS AOT shown in Figure 6.8. Since PM MAPPER AOT is derived from

the improved MODIS aerosol algorithms, it is well correlated with MODIS AOT.

The overall average CORR/RMSE between PM MAPPER AOT and MODIS
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(a) SVR - AERONET (b) PM MAPPER - AERONET

Figure 6.10: Instance scatterlots

(a) SVR - AERONET (b) PM MAPPER - AERONET

Figure 6.11: Aggregate scatterlots
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AOT are 0.909/0.035, while those between SVR AOT and MODIS AOT are

0.752/0.061 (i.e. SVR AOT is less close to MODIS AOT two times in comparison

with PM MAPPER AOT).

Observing the RMSE and CORR trend on all datasets, there is not much

difference by dataset for the pair of PM MAPPER AOT and MODIS AOT maps,

while strong variability can be observed between SVR AOT and MODIS AOT

maps (see Figure 6.8). It can be explained by two points: (i) PM MAPPER is

developed from the MODIS aerosol alogrithm and (ii) PM MAPPER and MODIS

algorithms provide global models while SVR algorithm creates a regional model

(for European areas). Therefore, besides the reason of using different techniques

for AOT downscaling, the variability between SVR AOT and MODIS AOT also

reflects effects of local measurements in SVR with respect to global AOT retrieval

represented by MODIS AOT maps.

Figure 6.12: CORR and RMSE of Validation Datasets on Map Domain for
PM MAPPER AOT

5 Conclusion

In this chapter, the methodology to estimate aerosol optical thickness at 1×1 km2

from MODIS L1B data using SVR based on domain knowledge is presented. In
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the proposed approach, the satellite-based data and ground-based measurements

over areas of interest are collected and integrated using temporal and spatial

constraints. After that, filtering using new integration constraints is applied

to reduce the total amount of data and then a clustering technique is ised to

separate them into four groups having different characteristics. Training datasets

are then selected by some strategies for each cluster and the SVR technique is

applied on each cluster to create corresponding data models. Finally, in the

prediction framework, aerosol maps at spatial resolution of 1×1 km2 are derived

from MODIS L1B data using the SVR models.

Experiments were carried out on data from 2007 to 2009, covering European

areas, in both pixel and map domain. The evaluation results show that the

proposed approach deals well with two problems: (i) very large and noisy datasets

and (ii) the going from pixel domain to map domain. The validation results in

pixel domain show that the SVR methodology performs better than the MODIS

algorithm. Extended to map application, the proposed SVR method is robust in

prediction, which is justified by the similarity of CORR and RMSE in map and

pixel domain. In the validation by country which looks at the spatial performance

of SVR, the SVR prediction is stable in most of the covered areas as well.

Finally, some comparisons between PM MAPPER AOT and SVR AOT were

carried out on the mentioned validation datasets. The validation results show that

on pixel domain, SVR AOT is more accurate but more biased than PMMAPPER

AOT in comparion with AERONET AOT. On map domain, PM MAPPER AOT

maps are two times closer to MODIS AOT maps than SVR AOT maps to MODIS

AOT maps. The validation between PM MAPPER and SVR AOT with another

aerosol products such MISR AOT in the map domain are suggested because it

will give more independent and objective results.
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Table 6.9: Validation Results by Country

Code Name # Pixel # Map COR RMSE ME
EE Estonia 261,462 99 0.868396 0.048515 0.019100
PT Portugal 138,970 24 0.683860 0.048736 0.013472
SE Sweden 1,897,810 130 0.803948 0.051939 0.004872
LV Latvia 451,078 108 0.859885 0.054171 0.021641
LU Luxemburg 23,677 113 0.948417 0.055878 0.022818
ES Spain 756,017 86 0.800025 0.056285 -0.007739
CZ Czech Republic 630,426 149 0.885758 0.057078 -0.005350
CH Switzerland, Helvetia 160,721 131 0.855811 0.057325 -0.007667
DE Germany 2,989,088 160 0.898717 0.057624 0.003829
FR France 3,681,009 141 0.850485 0.057637 0.011961
SK Slovakia 455,353 134 0.822694 0.059075 0.010408
FI Finland, Suomi 1,162,321 78 0.695238 0.059263 0.032473
DK Denmark 159,357 145 0.781215 0.059312 0.006878
AT Austria 708,399 139 0.825595 0.059605 0.008826
PL Poland 3,770,511 159 0.899658 0.060347 0.001062
RO Romania 2,576,598 121 0.888492 0.060698 0.017723
LT Lithuania 738,917 128 0.894415 0.062264 0.009214
NL Netherlands 196,872 129 0.921203 0.062742 0.016241
BE Belgium 256,262 121 0.883091 0.065659 0.001484
BG Bulgaria 767,033 92 0.889166 0.065968 0.005143
HU Hungary 1,373,091 131 0.852861 0.068059 0.021919
MK Macedonia 146,586 91 0.911175 0.068472 -0.008624
NO Norway 359,867 106 0.503442 0.070029 -0.019578
IT Italy 2,274,898 125 0.875706 0.070847 -0.000461
GR Greek 318,130 100 0.890871 0.071205 -0.017578
UK United Kingdom 427,402 76 0.902495 0.071457 -0.024617
HR Croatia 690,709 118 0.773915 0.071615 0.036812
LI Liechtenstein 445 122 0.778836 0.071988 -0.021929
SI Slovenia 290,881 121 0.803320 0.072788 0.032711
IE Ireland 33,257 38 0.852035 0.102796 -0.058150
TR Turkey, West 216,173 74 0.741390 0.110665 -0.048890
All 27,855,941 163 0.830815 0.063549 0.004831
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Chapter 7

Conclusions and Future Work

This thesis aims at downscaling aerosol optical thickness from 10×10 km2 to 1×1

km2 from MODIS observations using physics and machine learning approaches.

The finer spatial resolution brings great advantages for investigating aerosol distri-

butions, detecting emission sources and making pollution management strategies.

However, the challenges of this task are high noise coming from the measuring

instruments, large uncertainties related to land surfaces over urban areas and

cities, and finding appropriate downscaling algorithms which are still being in-

vestigated. In this thesis, the solutions are considered under two perspectives:

dynamical downscaling by improving the algorithm for remote sensing of tro-

pospheric aerosol from MODIS data and statistical downscaling using support

vector regression.

Initially, the global MODIS aerosol algorithms including some adaptations

are applied over smaller observation areas to derive AOT with spatial resolution

at 3×3 km2 (Nguyen et al. [2010a]; Nguyen et al. [2010b]) and 1×1 km2. The

downscaling algorithms perform at the global scale instead of over specific re-

gions. The validation carried out on data covering Europe in three years showed

good correlation coefficient and acceptable errors between achieved AOT at 1×1

km2 with AERONET measurements (Campalani et al. [2011]). The proposed

methodology was applied to develop a PM MAPPER software package (MEEO

[2010a]). The AOT maps obtained by this software have been used in the SEN-

SORE and AQUA projects in which AOTs were utilized to predict Particulate

Matter concentration (PM2.5/10) over the Emilia Romagna region in Italy and

103



over Austria (MEEO [2010b]; MEEO [2012]).

Since the proposed downscaling techniques follow the model driven approach,

strong knowledge from domain experts will be required to improve and update

new models or extend to other satellite sensor’s measurements. On the other

hand, the data driven approach using statistics/machine learning techniques in

AOT retrieval provides a more flexible framework. Moreover, this approach has

the advantage to reduce processing time, deals with data uncertainties and im-

proves the accuracy in specific areas. Therefore, the second approach investigated

the usage of SVR in deriving AOT at 1×1 km2 of spatial resolution. In order

to evaluate the performance of SVR for AOT retrieval in comparison with the

MODIS algorithms, two SVR variants were firstly applied for AOT at 10×10

km2 (Nguyen et al. [2010c]). The evaluations for SVRs were carried out by year,

by season and by land cover properties. The experiment results showed that in

some situations, the SVR approach outperformed the MODIS algorithm. Among

two SVR variants, instance SVR gave better results than aggregate SVR but had

higher computational time. The SVR approach improved AOT prediction quality

especially over bright or scarce vegetation areas.

Based on the validation results of the SVR approach at 10×10 km2, the in-

stance SVR is selected for downscaling spatial resolutions down to 1×1 km2.

However, the application of SVR for AOT from 10×10 to 1×1 km2 is not a triv-

ial task because of very large and noisy datasets as a result of pursuing 100 times

more detailed maps. Moreover, the application is extended from pixel domain to

map domain in which data models created by data collected on sparse locations

are applied on large and continuous map areas. To deal with the above men-

tioned problems, the proposed methodology is used SVR and domain knowledge

(Nguyen et al. [2011]; Nguyen et al. [2012]). In this approach, the satellite-based

data and ground-based measurements over areas of interest are collected and in-

tegrated using temporal and spatial constraints. After that, filtering using new

integration conditions is applied to reduce total amount of data and clustering

technique separates obtained data into four groups having different characteris-

tics in order to “divide and conquer” a big dataset. Then, training datasets are

selected by some strategies for each cluster and the SVR technique is applied on

them to create corresponding data models. Finally, in the prediction framework,
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aerosol maps at spatial resolution of 1×1 km2 are derived from MODIS L1B data

using the SVR models retrieved in the previous step. Experiments were carried

out on data covering European areas from 2007 to 2009, in both pixel and map

domain. Pixel domain refers to data collected around ground stations while map

domain aims at all validated data in satellite maps. In pixel domain validation,

the SVR methodology outperformed the MODIS algorithm. Extended to map

application, the proposed SVR method was robust in prediction and gave stable

results in most of areas covered.

Two proposed downscaling approaches are able to derive AOT maps at 1×1

km2 from MODIS measurements with an acceptable quality. However, each ap-

proach has both advantages and disadvantages. In the first approach, AOT maps

at 1×1 km2 is well correlated to MODIS AOT at 10×10 km2. Since the down-

scaling algorithms perform at global scale and did not apply any regional adap-

tation, the quality of PM MAPPER AOT at 1×1 km2 is acceptable but worse

than MODIS AOT at 10×10 km2 in a validation which compares both PM MAP-

PER AOT and MODIS AOT with AERONET AOT measurements. The overall

CORR/RMSE/ME are 0.862/0.068/0.032 and 0.864/0.060/0.012 for PM MAP-

PER AOT and MODIS AOT (see Table 4.1, Chapter 4). It can be explained

by effects of MODIS instrument noise when AOT at finer spatial resolution is

derived. However, PM MAPPER AOT is little less biased than MODIS AOT.

The slope/intercept of the linear regression line are 0.970/0.036 and 0.927/0.024

for aggregate validation between PM MAPPER - AERONET AOT and MODIS

AOT - AERONET AOT, respectively (see Figure 4.8, Chapter 4).

In the second approach using SVR replying on domain knowledge, the SVR

AOT is more accurate than MODIS AOT in comparison with AERONET AOT.

The overall CORR/RMSE/ME are 0.786/0.068/-0.0029 and 0.773/0.089/0.0019

for instance validation (0.852/0.058/-0.0023 and 0.835/0.063/0.0031 for aggregate

validation) of SVR - AERONET AOT and MODIS - AERONET AOT, respec-

tively (see Figures 6.5 and 6.6, Chapter 6). However, the SVR AOT is more

biased than MODIS AOT (i.e. slope/intercept ∼ 0.616/0.059 and 0.892/0.019

for instance validation (0.614/0.058 and 0.874/0.023 for aggregate validation) in

comparison with AERONET AOT (see Figures 6.5 and 6.6, Chapter 6).

The downscaling technique using the adapted MODIS aerosol algorithms pro-
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vides AOT maps at 1×1 km2 at global scale. In order to improve the accuracy

of PM MAPPER AOT, some regional adaptations should be investigated and

embedded into the current global algorithms. In this way, regional models are

created and customized for specific areas. In the downscaling approach using

SVR and domain knowledge, the bias problems of data models appear because

samples with small AOT values dominate the training datasets. Therefore, the

bias can be reduced if more samples with large AOT values were collected and

used in the training phase.

In future, another aerosol product such as MISR AOT will be used for valida-

tions of PM MAPPER and SVR AOT in order to obtain more independent and

objective results. Further investigations on the modeling process will be carried

out to improve the quality of AOT retrievals using the SVR approach. Besides

the usage of SVRs, additional techniques for spatial data will be considered to

improve the prediction quality over all satellite maps. From the view point of

applicability, the performance time will be considered more in depth and the

proposed methodologies will be applied on data recorded by different satellite

sensors.

106



Appendix

1 Satellite Datasets

Satellite datasets populated in database for 1×1 km2 include 2600 PM MAP-

PER AOT maps over Europe ranging from 01/01/2007 to 31/12/2008 and 7500

MOD04 L2 maps obtained by Collection 005 over Europe from 01/01/2006 to

31/12/2009.

2 List of AERONET ground stations over Eu-

rope

Table 1: List of 105 AERONET sites over Europe

Name (Lon, Lat) Elev. Description

Abisko (18.816999,68.349998) 390 Abisko-Sweden

Ahi-De-Cara (-3.22972,37.116669) 2103 AhideCara-Spain

Amsterdam-

Island

(77.573334,-37.810001) 30 AmsterdamIsland-

Netherlands

Andenes (16.00861,69.278328) 379 Andenes-Norway

Arcachon (-1.16322,44.663528) 11 Arcachon-France

Armilla (-3.24222,37.133331) 691 Armilla-Spain

ATHENS-NOA (23.775,37.987999) 130 Athens-Greece

Autilla (-4.60306,41.997219) 873 AutilladelPino-Spain
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Avignon (4.87807,43.932751) 320 Avignon-France

Barcelona (2.11697,41.38567) 125 Barcelona-Spain

Belsk (20.79167,51.83667) 190 Belsk-Poland

Birkenes (8.25231,58.388451) 230 Birkenes-Norway

BORDEAUX (-0.57917,44.788029) 40 Bordeaux-France

Bucarest (26.525,44.450001) 44 Bucarest-Romania

Bucharest-Inoe (26.02972,44.348061) 93 Bucharest-Romania

Caceres (-6.34347,39.47858) 397 Caceres-Spain

Carpentras (5.05833,44.083328) 100 Carpentras-France

Clermont-

Ferrand

(2.96194,45.759998) 1464 ClermontFerrand-

France

CRETE (25.66783,35.337669) 140 Crete-Greece

Creteil (2.44278,48.788502) 57 Cretil-France

Davos (9.8438,46.81292) 1596 Davos-Switzerland

Dunkerque (2.36812,51.035351) 0 Dunkerque-France

Eforie (28.632219,44.075001) 40 Eforie-Romania

El-Arenosillo (-6.73347,37.105) 0 ElArenosillo-Spain

Ersa (9.35929,43.00367) 80 Ersa-France

ETNA (15.01943,37.613499) 736 Mt.Etna-Italy

EVK2-CNR (86.813332,27.958611) 5050 Nepal-Italy

Fontainebleau (2.68028,48.40667) 85 Fontainebleau-France

FORTH-

CRETE

(25.282419,35.332691) 20 ForthCrete-Greece

Gerlitzen (13.90667,46.678329) 1900 Gerlitzen-Austria

Gotland (18.950001,57.916672) 10 GotlandIsland-

Sweden

Granada (-3.605,37.164001) 680 Granada-Spain

Hamburg (9.97333,53.568329) 105 Hamburg-Germany

Helgoland (7.88736,54.17786) 33 HelgolandIsland-

Germany

Helsinki (24.960649,60.203732) 52 Helsinki-Finland

Helsinki-

Lighthouse

(24.926359,59.948971) 20 HelsinkiLighthouse-

Finland
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Hornsund (15.55,77) 0 Hornsund-Norway

Hyytiala (24.295891,61.846451) 191 Hyytiala-Finland

IFT-Leipzig (12.43528,51.352501) 125 Leipzig-Germany

IMAA-Potenza (15.72,40.599998) 820 Potenza-Italy

IMC-Oristano (8.5,39.91) 10 IMCOristano,Sardinia-

Italy

IMS-METU-

ERDEMLI

(34.255001,36.564999) 3 Turkey

Irkutsk (103.086639,51.799801) 670 Irkutsk-Russia

ISDGM-CNR (12.33198,45.436981) 20 ISDGM-

CNR,Venezia-Italy

Ispra (8.6267,45.803051) 235 Ispra-Italy

Izana (-16.49906,28.30932) 2391 Izana-Spain

Kanzelhohe-Obs (13.907,46.678001) 1526 Kanzelhoehe-Austria

Karlsruhe (8.4279,49.0933) 140 Karlsruhe-Germany

Kuopio (27.63361,62.89241) 105 Kuopio-Finland

Kyiv (30.49667,50.363609) 200 Kyiv-Ukraine

Laegeren (8.35139,47.480282) 735 Laegeren-Switzerland

Lampedusa (12.63167,35.51667) 45 Lampedusa-Italy

Lannion (-3.46194,48.730831) 15 Lannion-France

Lecce-University (18.111389,40.33511) 30 Lecce-Italy

Le-Fauga (1.2846,43.384232) 193 LeFauga-France

Lille (3.14167,50.611671) 60 Lille-France

London-UCL-

UAO

(-0.1311,51.524269) 46 London-

UnitedKingdom

Longyearbyen (15.649,78.222832) 30 Longyearbyen-

Norway

Mace-Head (-9.9,53.330002) 20 Galway-Ireland

Mainz (8.3,49.999001) 150 Mainz-Germany

Malaga (-4.4775,36.715) 40 Malaga-Spain

Messina (15.56683,38.197498) 15 Messina-Italy

Minsk (27.601,53.919998) 200 Minsk-Belarus

Modena (10.94528,44.631672) 56 Modena-Italy
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Moldova (28.815599,47.000099) 205 Kishinev-Moldova

Moscow-MSU-

MO

(37.509998,55.700001) 192 Moscow-Russia

Munich-Maisach (11.258,48.209) 520 Munich-Germany

OHP-

OBSERVATOIRE

(5.71,43.935001) 680 OHPObservatoire-

France

Oostende (2.925,51.224998) 23 Oostende-Belgium

Palaiseau (2.20833,48.700001) 156 Palaiseau-France

Palencia (-4.51569,41.988571) 750 Palencia-Spain

Palgrunden (13.1515,58.755329) 49 Granvik-Sweden

Paris (2.33333,48.866669) 50 Paris-France

Pic-du-midi (0.1413,42.937222) 2898 PicduMidi-France

Pitres (-3.22222,36.933331) 1252 Pitres-Spain

Porquerolles (6.16139,43.001389) 10 PorquerollesIsland-

France

REUNION-ST-

DENIS

(55.48333,-20.883329) 0 LaReunion-France

Rome-Tor-

Vergata

(12.64733,41.83955) 130 Rome-Tor-Vergata

Rossfeld (7.62475,48.33514) 167 Rossfeld-France

SAGRES (-8.87352,37.04771) 26 SAGRES-Italy

Saint-Mandrier (5.94417,43.06694) 44 SaintMandrier-France

Salon-de-

Provence

(5.12028,43.60556) 60 SalondeProvence-

France

Sevastopol (33.51733,44.615829) 80 Sevastopol-Ukraine

Seysses (1.25972,43.50333) 179 Seysses-France

SMHI (16.15,58.580002) 0 Norrkoping-Sweden

Sodankyla (26.62957,67.366623) 184 Sodankyla-Finland

Tarbes (0.08333,43.25) 350 Tarbes-France

Tenerife (-16.633329,28.033331) 10 Tenerife-Spain

The-Hague (4.32682,52.110481) 18 TheHague-

Netherlands

Thessaloniki (22.959999,40.630001) 60 Thessaloniki-Greece
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Tomsk (85.046997,56.477329) 130 Tomsk-Russia

Toravere (26.459999,58.255001) 70 Travere-Estonia

Toulon (6.00944,43.135559) 50 Toulon-France

Toulouse (1.37389,43.574718) 150 Toulouse-France

Tremiti (15.49011,42.117962) 4 Tremiti-Italy

TUBITAK-

UZAY-Ankara

(32.778,39.890999) 924 Ankara-Turkey

Tuz-Golu (33.336109,38.749439) 907 Tuz-Golu

Ussuriysk (132.163498,43.700401) 280 Ussuriisk-Russia

Valladolid-Sci (-4.7148,41.6562) 701 Valladolid-Spain

Venise (12.5083,45.3139) 10 Venice-Italy

Villefranche (7.32889,43.683891) 130 Villefranche-France

Xanthi (24.918949,41.14677) 54 Xanthi-Greece

Yakutsk (129.366669,61.661671) 118 Yakutsk-Russia

Yekaterinburg (59.544998,57.03833) 300 Yekaterinburg-Russia

Zvenigorod (36.775002,55.695) 200 Zvenigorod-Russia
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L. A. Remer, D. Tanré, and Y. J. Kaufman. Algorithm for Remote Sensing of

Troposheric Aerosol from MODIS: Collection 5. MODIS ATBD, 2004. ix, 2,

3, 32, 38, 52, 86
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