£
%2 Universita degli Studi di Ferrara

DOTTORATO DI RICERCA IN
Matematica e Informatica

CICLO XXVII

COORDINATORE Prof. Massimiliano Mella

A general purpose framework for
Grid resource exploitation

Settore Scientifico Disciplinare INF/01

Dottorando Tutore
Dott. Fella Armando Prof. Tomassetti Luca
(firma) (firma)

Anni 2012/2015

Contents

Introduction 3
1 Fundamentals of LHC Computing Grid 5
1.1 Basic LCG architecture 7
1.1.1 Grid Functionality and Services 7

1.1.2 Storage Element Services 7

1.1.3 File Transfer Services 9

1.1.4 Compute Resource Services 10

1.1.5 Workload Management 11

1.1.6 VO Management services 11

1.1.7 Database Services 12

1.1.8 Grid Catalogue Services 12

1.1.9 Job Monitoring Tools 13

1.1.10 Interoperability 14

1.2 EGEE Middleware 15
1.2.1 Site Services 15

1.2.2 VO or Global Services 18

2 Project background, the SuperB experiment case 23
2.1 The SuperB experiment 23
2.2 Computing requirements 24
2.2.1 Full Simulation 26

2.2.2 Fast Simulation 26

2.3 Distributed computing tools 27

CONTENTS

2.3.1 Distributed computing resources 29

2.3.2 The simulation production system 30

3 A general-purpose framework for Grid resource exploitation 33

3.1 Project goal, conceptual design and requirements 34
3.2 Distributed infrastructure: LCG services integration 36
3.3 Workload management system, 37
3.3.1 Jobworkflow 37
3.3.2 Grid job submission via Ganga system 39

3.4 Metadata management 46
3.4.1 The bookkeeping database 46
3.4.2 The generalization step: the session concept 49
3.4.3 Job and submission modeling 52

3.5 The job wrapper script a7
3.5.1 Communications with bookkeeping DB 58
3.5.2 Job wrapper algorithm description 62

3.6 The operations web portal 0L 67
3.6.1 Web portal technology and design 68
3.6.2 The portal architecture 69

4 Integration with Dirac system 85
4.1 Dirac system introductiono 0oL 86
4.2 Framework integration with Dirac system 90
4.2.1 Dirac capability check 90
4.2.2 Dirac merging project 94

5 A real use case: description and results 103
5.1 First simulation production cycle 104
5.2 Second simulation production cycle 106
5.3 Summary of results and conclusions 109

6 Conclusion 111

CONTENTS

Acknowledgments 113

A Glossary 115

CONTENTS

Introduction

Many research activities from several fields, such as high energy, nuclear
and atomic physics, biology, medicine, geophysics and environmental science,
rely on data simulation, which are high CPU-consuming task. Sequential
computation may require months or years of CPU time, so a loose-parallel
distributed execution is expected to give benefits to these applications. In
fact, the large number of storage and computation resources offered by a
distributed computing environment allow to consistently reduce the amount
of task completion time by splitting it in several parts and executing each

part on a single node.

The potential intensive use of distributed computing resources by a large
variety of research communities is reduced by the difficulties that researchers
can encounter in using the complex software infrastructure at the base of dis-
tributed computing itself. High energy physics experiments made a pioneer
work [1, 2, 3] on this but their results are still hardly available to small and
mid-size organizations that may have similar computational requirements,
mostly due to the large amount of needed technical expertise.

This document presents a prototype software-suite intended to be an in-
terface to distributed computing resources such as LHC [4] Computing Grid
LCG [5] [6] or Cloud [7] stacks. The lightweight and general-purpose frame-
work built on standard functionality has been designed for organizations re-
quiring an easy-to-use interface to such resources, but cannot afford the costs
of a specialized software environment in terms of expertise, development and

maintenance.

INTRODUCTION

This work is the outcome of the collaboration of various institutions tak-
ing part of the High Energy Physics experiment SuperB [8]; it was born to
be able to perform the huge amount of simulation tasks requested for SuperB
detector design, subsequently it grown up as an autonomous, general-purpose
project. I participated to the architecture definition, project design and de-
veloping of key functionality with the collaboration of Ferrara INFN and
University groups.

The dissertation is composed by the following chapter structure:

e Chapter one is entirely dedicated to the description of LCG model and
its components; it can be useful to non expert reader for the compre-
hension of the subject. Besides this vademecum of the Grid, the reader

can refer to the glossary appendix A at the end of the document

e Chapter two contains the description of the project background. The
original proto-framework was born to accomplish the computing re-
quirements of SuperB experiment to allow the simulation of detector

design in a distributed computing environment

e Third chapter hosts the description of the core elements of the project.
The goals, the conceptual design and Grid integration have been in-
troduced as starting point, subsequently the workload and metadata
management systems have been analyzed in deep touching all the ar-
chitectural and functional aspects. The description of the Job wrapper

and the Operations Web Portal conclude the chapter

e The description of the project integration with Dirac! platform is re-

ported in fourth chapter.

e The document concludes with the report of the framework results in a

real utilization case, the SuperB simulation campaigns

IDIRAC [9] (Distributed Infrastructure with Remote Agent Control) suite is a software
framework for distributed computing providing a complete solution to one (or more) user

community requiring access to distributed resources

Chapter 1

Fundamentals of LHC
Computing Grid

The "LHC Computing Grid, Technical design report” [10] contains a very
clear and complete description of the LCG project; the goals, the distributed
infrastructure, the services and the main components have been discussed at
a level of detail permitting to embrace the entire complexity of the model
avoiding detailed technical description. Despite the age of this document
it remains a complete and general view of the LHC distributed computing
model and fully satisfy the needs of this thesis. I'm citing here portions of
the "LHC Computing Grid, Technical design report” ! to contextualize the
Ph.D. work which is tightly dependent on LCG middleware.

Virtual Organization (VO) is defined as ”a temporary or permanent coali-
tion of geographically dispersed individual, group, organizational units or en-
tire organizations that pool resources, capabilities, and information to achieve
common objectives” [11].

”The LHC Computing Grid Project (LCG) was approved by the CERN
Council on 20 September 2001 to develop, build and maintain a distributed
computing infrastructure for the storage and analysis of data from the four

LHC experiments?.

'In specific parts of chapter 3 section 1 and chapter 4 section 1 have been reported
2The data from the LHC experiments will be distributed around the globe, according

1. Fundamentals of LHC Computing Grid

Figure 1.1: The Worldwide LHC Computing Grid (WLCG) project [12] is
a global collaboration of more than 170 computing centres in 40 countries,
linking up national and international grid infrastructures. The mission of the
WLCG project is to provide global computing resources to store, distribute
and analyse the 30 Petabytes (30 million Gigabytes) of data annually gen-
erated by the Large Hadron Collider (LHC) at CERN on the Franco-Swiss
border.

Developing common applications software for all experiments is an im-
portant part of the LCG Project. This includes core software libraries, tools
and frameworks for data management and event simulation as well as infras-
tructure and services for software development, and the support of analysis

and database management.

to hierarchical model. The raw data emerging from the data-acquisition systems will be
recorded on tape and initially processed at the Tier-0 centre of LCG located at CERN. The
data will be distributed to a series of Tier-1 centres, large computer centres with sufficient
storage capacity for a large fraction of the data, and with round-the-clock operation.
Analysis tasks requiring access to large subsets of the raw, processed, and simulated data
will take place at the Tier-1 centres. The Tier-1 centres will make data available to Tier-
2 centres, each consisting of one or several collaborating computing facilities, which can
store sufficient data and provide adequate computing power for end-user analysis tasks
and Monte Carlo simulation. Individual scientists will also access these facilities through
Tier-3 computing resources, which can consist of local clusters in a University Department

or even individual PCs.

1.1 Basic LCG architecture

1.1 Basic LCG architecture

The LCG architecture will consist of an agreed set of services and appli-
cations running on the Grid infrastructures provided by the LCG partners.
These infrastructures at the present consist of those provided by the En-
abling Grids for E-sciencE (EGEE) [13] project in Europe, the Open Science
Grid (OSG) [14] project in the U.S.A. and the Nordic Data Grid Facility in
the Nordic countries [15]. The EGEE infrastructure brings together many of
the national and regional Grid programmes into a single unified infrastruc-
ture. In addition, many of the LCG sites in the Asia-Pacific region run the
EGEE middleware [16] stack and appear as an integral part of the EGEE

infrastructure.

1.1.1 Grid Functionality and Services

The set of services that should be made available to the experiments have
been discussed and agreed in the Baseline Services Working Group set up
by the LCG Project Execution Board in February 2005. The report of the
group identified the services described here. The full details of the services,
the agreed set of functionality, and the interfaces needed by the experiments

is described fully in the report of the working group.

1.1.2 Storage Element Services

A Storage Element (SE) is a logical entity that provides the following
services and interfaces: Mass storage system, either disk cache or disk cache
front-end backed by a tape system. Mass storage management systems
currently in use include CASTOR, Enstore-dCache, HPSS and Tivoli for
tape/disk systems, and dCache [18], LCG-dpm [19], and DRM for disk-only

systems.

e SRM [17] interface to provide a common way to access the MSS no

matter what the implementation of the MSS. The Storage Resource

1. Fundamentals of LHC Computing Grid

Manager (SRM) defines a set of functions and services that a stor-
age system provides in an MSS-implementation independent way. The
Baseline Services working group has defined a set of SRM functionality
that is required by all LCG sites. This set is based on SRM v1.1 with
additional functionality (such as space reservation) from SRM v2.1.
Existing SRM implementations currently deployed include CASTOR-
SRM, dCache-SRM, DRM/HRM from LBNL, and the LCG dpm.

GridFTP service to provide data transfer in and out of the SE to
and from the Grid. This is the essential basic mechanism by which
data is imported to and exported from the SE. The implementation
of this service must scale to the bandwidth required. Normally the
GridFTP transfer will be invoked indirectly via the File Transfer Ser-

vice or through srmcopy.

Local POSIX-like input/output facilities to the local site providing
application access to the data on the SE. Currently this is available
through rfio, dCap, aiod, rootd, according to the implementation. Var-
ious mechanisms for hiding this complexity also exist, including the
Grid File Access Library in LCG-2, and the gLitelO service in gLite.
Both of these mechanisms also include connections to the Grid file cat-
alogues to enable an application to open a file based on Logical File
Name (LEN) or Global Unique IDentifier (GUID).

Authentication, authorization and audit/accounting facilities. The SE
should provide and respect ACLs for files and datasets that it owns,
with access control based on the use of extended X509 proxy certificates
with a user DN and attributes based on VOMS [20] roles and groups.
It is essential that a SE provide sufficient information to allow tracing
of all activities for an agreed historical period, permitting audit on the
activities. It should also provide information and statistics on the use

of the storage resources, according to schema and policies to be defined.

1.1 Basic LCG architecture

A site may provide multiple SEs providing different qualities of storage.
For example, it may be considered convenient to provide an SE for data
intended to remain for extended periods and a separate SE for data that is
transient - needed only for the lifetime of a job or set of jobs. Large sites
with MSS-based SEs may also deploy disk-only SEs for such a purpose or for

general use.

1.1.3 File Transfer Services

Basic-level data transfer is provided by GridF'TP. This may be invoked
directly via the globus-url-copy command or through the srmcopy command
which provides 3rd-party copy between SRM systems. However, for reli-
able data transfer it is expected that an additional service above srmcopy
or GridFTP will be used. This is generically referred to as a reliable file
transfer service (rfts). A specific implementation of this - this gLite FTS
has been suggested by the Baseline Services Working group as a prototype
implementation of such a service. The service itself is installed at the Tier-0
(for Tier-0-Tier-1 transfers) and at the Tier-1s (for Tier-1-Tier-2 transfers).
It can also be used for 3rd-party transfers between sites that provide an SE.
No service needs be installed at the remote site apart from the basic SE ser-
vices described above. However, tools are available to allow the remote site
to manage the transfer service. For sites or Grid infrastructures that wish to
provide alternative implementations of such a service, it was agreed that the
interfaces and functionality of the FTS will be taken as the current interface.
The gLite File Placement Service (FPS) takes data movement requests and
executes them according to defined policies. It maintain a persistent transfer
queue thus providing reliable data transfer even in the case of network outage
and interacts fully with the Fireman catalogue. The File Placement service
can be used without the interaction with the catalogue and is then referred
to as the File Transfer Service [21] (FTS)?.

3FTS release 3 is now in use by all the LHC experiments and by all the research

communities making use of Grid infrastructure

10

1. Fundamentals of LHC Computing Grid

1.1.4 Compute Resource Services

The Computing Element (CE) is the set of services that provide access to
a local batch system running on a compute farm. Typically the CE provides
access to a set of job queues within the batch system. How these queues are
set up and configured is the responsibility of the site and is not discussed

here. A CE is expected to provide the following functions and interfaces:

e A mechanism by which work may be submitted to the local batch
system. This is implemented typically at present by the Globus gate-
keeper in LCG-2 and Grid/Open Science Grid. NorduGrid (the ARC

middleware) uses a different mechanism.

e Publication of information through the Grid information system and
associated information providers, according to the GLUE schema, that
describes the resources available at a site and the current state of those
resources. With the introduction of new CE implementations we would
expect that the GLUE schema, and evolutions of it, should be main-

tained as the common description of such information.

e Publication of accounting information, in an agreed schema, and at
agreed intervals. Presently the schema used in both LCG-2 and Grid3/
OSG follows the GGF accounting schema. It is expected that this be

maintained and evolved as a common schema for this purpose.

e A mechanism by which users or Grid operators can query the status of
jobs submitted to that site.

e The Computing Element and associated local batch systems must pro-
vide authentication and authorization mechanisms based on the VOMS
model. How that is implemented in terms of mapping Grid user DNs
to local users and groups, how roles and subgroups are implemented,
may be through different mechanisms in different Grid infrastructures.
However, the basic requirement is clear - the user presents an extended

X509 proxy certificate, which may include a set of roles, groups, and

1.1 Basic LCG architecture

11

subgroups for which he is authorized, and the CE/batch system should
respect those through appropriate mappings locally.

It is anticipated that a new CE from glite, based on Condor-C, will also
be deployed and evaluated as a possible replacement for the existing Globus
GRAM-based CEs within LCG-2 and Open Science Grid.

1.1.5 ‘Workload Management

Various mechanisms are currently available to provide workflow and work-
load management. These may be at the application level or may be provided
by the Grid infrastructure as services to the applications. The general fea-
ture of these services is that they provide a mechanism through which the
application can express its resource requirements, and the service will de-
termine a site that fulfills those requirements and submit the work to that
site. It is anticipated that on the timescale of 2006-2007 there will be dif-
ferent implementations of such services available, for example, the LCG-2
Resource Broker, and the Condor-G mechanism used by some applications
in Grid3/OSG, and new implementations such as that coming from gLite
implementing both push and pull models of job submission. The area of job
workflow and workload management is one where there are expected to be
continuing evolution over the next few years, and these implementations will

surely evolve and mature.

1.1.6 VO Management services

The VOMS software will be deployed to manage the membership of the
VOs. It will provide a service to generate extended proxy certificates for
registered users which contain information about their authorized use of re-
sources for that VO.

12

1. Fundamentals of LHC Computing Grid

1.1.7 Database Services

Reliable database services are required at the Tier-0 and Tier-1 sites,
and may be required at some or all of the Tier-2 sites depending on experi-
ment configuration and need. These services provide the database back-end
for the Grid file catalogues as either central services located at CERN or
local catalogues at the Tier-1 and Tier-2 sites. Reliable database services
are also required for experiment-specific applications such as the experiment
metadata and data location catalogues, the conditions databases and other
application-specific uses. It is expected that these services will be based on
scalable and reliable hardware using Oracle at the Tier-0, Tier-1 and large
Tier-2 sites, and perhaps using MySQL on smaller sites. Where central
database services are provided, replicas of those databases may be needed at
other sites. The mechanism for this replication is that described by the 3D

project in the applications section of this report.

1.1.8 Grid Catalogue Services

The experiment models for locating datasets and files vary somewhat
between the different experiments, but all rely on Grid file catalogues with a

common set of features. These features include:
e Mapping of Logical file names to GUID and Storage locations (SURL)
e Hierarchical namespace (directory structure)
e Access control

The deployment models also vary between the experiments, and are de-
scribed in detail elsewhere in this document. The important points to note
here are that each experiment expects a central catalogue which provides
look-up ability to determine the location of replicas of datasets or files. This
central catalogue may be supported by read-only copies of it regularly and
frequently replicated locally or to a certain set of sites. There is, however,

in all cases a single master copy that receives all updates and from which

1.1 Basic LCG architecture

13

the replicas are generated. Obviously this must be based on a very reliable
database service. The central catalogues must also provide an interface to
the various workload management systems. These interfaces provide the lo-
cation of Storage Elements that contain a file (or LHC COMPUTING GRID
Technical Design Report dataset) (specified by GUID or by logical file name)
that the workload management system can use to determine which set of sites
contain the data that the job needs. This interface should be based on the
StorageIndex of gLite or the Data Location Interface of LCG/CMS. Both of
these are very similar in function. Any catalogue providing these interfaces
could be immediately usable by, for example, the Resource Broker or other
similar workload managers. The catalogues are required to provide authen-
ticated and authorized access based on a set of roles, groups and sub-groups.
The user will present an extended proxy-certificate, generated by the VOMS
system. The catalogue implementations should provide access control at the
directory level, and respect ACLs specified by either the user creating the
entry or by the experiment catalogue administrator. It is expected that a
common set of command-line catalogue management utilities be provided by
all implementations of the catalogues. These will be based on the catalogue-
manipulation tools in the lcg-utils set with various implementations for the

different catalogues, but using the same set of commands and functionalities.

1.1.9 Job Monitoring Tools

The ability to monitor and trace jobs submitted to the Grid is an essen-
tial functionality. There are some partial solutions available in the current
systems (e.g., the LCG-2 Workload Management system provides a com-
prehensive logging and book-keeping database), however, they are far from
being full solutions. Effort must be put into continuing to develop these ba-
sic tools, and to provide the users with the appropriate mechanisms through

which jobs can be traced and monitored.

14

1. Fundamentals of LHC Computing Grid

1.1.10 Interoperability

This section has outlined the basic essential services that must be pro-
vided to the LHC experiments by all Grid implementations. The majority of
these deal with the basic interfaces from the Grid services to the local comput-
ing and storage fabrics, and the mechanisms by which to interact with those
fabrics. It is clear that these must be provided in such a way that the appli-
cation should not have to be concerned with which Grid infrastructure it is
running on. At the basic level of the CE and SE, both EGEE and Grid3/0OSG
use the same middleware and implementations, both being based on the Vir-
tual Data Toolkit. In addition, both use the same schema for describing these
services, and have agreed to collaborate in ensuring that these continue to be
compatible, preferably by agreeing to use a common implementation of the
information system and information providers. Common work is also in hand
on other basic services such as VOMS and its management interfaces. In ad-
dition, both EGEE and OSG projects are defining activities to ensure that
interoperability [22] remain a visible and essential component of the systems.
The EGEE Resource Broker, as it is based on Condor-G, can submit jobs
to many middleware flavours including ARC (NorduGrid). When the Glue2
information system schema, being defined jointly by several Grid projects, is
available this will enable the EGEE Resource Broker to schedule resources
at sites running ARC. Further steps towards interoperability in the areas of
workload management and data management are planned by the NorduGrid
Collaboration. Other activities are being undertaken by the developers of
ARC to foster and support standards and community agreements. These in-
clude participation in the Rome Compute Resource Management Interfaces
initiative and in the Global Grid Forum. These activities will improve inter-
operability between different middleware implementations, and in the longer
term we can expect standards to emerge and be supported by future versions
of the software. For the medium term, however, the approach taken by the
LCG Project was to set up the Baseline Services Working Group to define a

set of basic services that can be deployed in all of the existing Grid infrastruc-

1.2 EGEE Middleware

15

tures, taking account of their different technical constraints. In some cases
the services are defined in terms of standard interfaces, while in other cases
a specific implementation is identified. In this way sites providing resources
to LCG will be able to provide these essential services in a transparent way

to the applications.

1.2 EGEE Middleware

The EGEE middleware deployed on the EGEE infrastructure consists
of a packaged suite of functional components providing a basic set of Grid
services including job management, information and monitoring and data
management services. The LCG2.x middleware, currently deployed in over
100 sites worldwide originated from Condor, EDG, Globus, VDT and other
projects. It is anticipated that the LCG-2 middleware will evolve in summer
2005 to include some functionalities of the glite middleware provided by
the EGEE project. This middleware has just been made available as this
report is being written, and has not yet passed certification . The rest of this
chapter will describe, respectively, the LCG-2 middleware services and the
glLite ones. The middleware can in general be further categorized into site

services and Virtual Organization (VO) services as described below.

1.2.1 Site Services
Security

All EGEE middleware services rely on the Grid Security Infrastructure
(GSI). Users get and renew their (long-term) certificate from an accredited
Certificate Authority (CA). Short-term proxies are then created and used
throughout the system for authentication and authorization. These short-
term proxies may be annotated with VO membership and group informa-
tion obtained from the Virtual Organization Membership Services (VOMS).

Access to (site) services is controlled by the Java authorization framework

16

1. Fundamentals of LHC Computing Grid

(Java services) and LCAS (C services). When necessary, in particular for
job submission, mappings between the user Distinguished Names (DN) and
local account are created (and periodically checked) using the LCAS and
LCMAPS services. When longer-term proxies are needed, MyProxy services
can be used to renew the proxy. The sites maintain Certificate Revocation

Lists (CRLs) to invalidate unauthorized usage for a revoked Grid user.

Computing Element

The Computing Elements (CEs), often dubbed head nodes, provide the
Grid Interfaces to Local Resource Managers (a.k.a. site batch systems). They

normally require external network connectivity.

LCG-2 Computing Element The LCG-2 Computing Element (CE) han-
dles job submission (including staging of required files), cancellation, sus-
pension and resume (subject to support by the Local Resource Management
System - LRMS), job status inquiry and notification. It only works in push
mode where a job is sent to the CE by a Resource Broker (RB). Internally
the LCG-2 CE makes use of the Globus gatckeeper, LCAS/LCMAPS and
the Globus Resource Allocation Manager (GRAM) for submitting jobs to the
LRMS. It also interfaces to the logging and book-keeping Services to keep
track of the jobs during their lifetime. An updated version is due in summer
2005. The LCG-2 CE interfaces with the following LRMS: BQS, Condor,
LSF, PBS and its variants (Torque/Maui), and many others.

gLite Computing Element The glite Computing Element (CE) handles
job submission (including staging of required files), cancellation, suspension
and resume (subject to support by the LRMS), job status inquiry and noti-
fication. The CE is able to work in a push model (where a job is pushed to a
CE for its execution) or in a pull model (where a CE asks a known Workload
Manager - or a set of Workload Managers - for jobs). Internally the gLite
CE makes use of the new CondorC technology, GSI and LCAS/LCMAPS, as

1.2 EGEE Middleware

17

well as the Globus gatekeeper. The CE is expected to evolve into a VO-based
scheduler that will allow a VO to dynamically deploy their scheduling agents.
The glite CE also make use of the 3ogging and book-keeping services to keep
track of the jobs during their lifetime.

The gLite CE interfaces with the following LRMS: PBS and its variants
(Torque/Maui), LSF and Condor. Work to interface to BQS (IN2P3) and
SUN Grid Engine (Imperial College) is under way.

Storage Element

The Storage Element (SE) provides the Grid interfaces to site storage (can

be Mass Storage or not). SEs normally require external network connectivity.

LCG-2 Storage Elements The LCG-2 SE can either by a "classic” SE or
an SRM SE. The classic SE provides a GridFTP (efficient FTP functionality
with GSI security) interface to disk storage. The RFIO protocol can be
used for accessing directly the data on a classic SE. An SRM SE provides
the GridFTP interface to a Storage Resource Manager (SRM), a common
interface to Mass Storage Systems such as the CERN Advanced Storage
Manager (CASTOR) or dCache/Enstore from DESY and FNAL. Recently,
a more lightweight and simpler SRM has been made available, the LCG Disk
Pool Manager (DPM), which is targeted at smaller disk pools. The DPM is

a natural replacement for the classic SE.

GFAL The Grid File Access Library (GFAL) is a POSIX-like I/O layer for
access to Grid files via their Logical Name. This provides open/read/write/-
close style of calls to access files while interfacing to a file catalogue. GFAL
currently interfaces to the LFC [23] and the LCG-RLS catalogs. A set of
command line tools for file replication called lcg-utils have been built on top

of GFAL and catalogue tools supporting SRMs and classic SEs.

gLite Storage Element A gLite Storage Element consists of a SRM (such
as CASTOR, dCache or the LCG Disk Pool Manager) presenting a SRM 1.1

18

1. Fundamentals of LHC Computing Grid

interface, a GridFTP server as the data movement vehicle and glite 1/0O
for providing a POSIX-like access to the data. glite itself does not provide
a SRM nor a GridFTP server which must be obtained from the standard

sources.

Monitoring and Accounting Services

The monitoring and accounting services retrieve information on Grid ser-
vices provided at a site as well as respective usage data, and publish them.
User information (in particular related to job execution progress) may be

published as well.

gLite Monitoring and Accounting Services glite relies on the same
services as described in Section 0. In addition, an R-GMA-based service dis-
covery system is provided. The gLite accounting system (DGAS) is subject
to evaluation. DGAS collects information about usage of Grid resources by
users, groups of users (including VO). This information can be used to gen-
erate reports/billing but also to implement resources quotas. Access to the
accounting information is protected by ACLs. More information on DGAS
is available at Ref [24].

1.2.2 VO or Global Services

Virtual Organization Membership Service

The Virtual Organization Membership Service (VOMS) annotates short-
term proxies with information on VO and group membership, roles and ca-
pabilities. It originated from the EDG project. It is in particular used by
the Workload management System and the FireMan catalogue for ACL sup-
port to provide the functionality identified by LCG. The main evolution from
EDG/LCG is support for SLC3, bug fixes and better conformance to IETF
RFCs. A single VOMS server can serve multiple VOs. A VOMS Adminis-

trator Web interface is available for managing VO membership through the

1.2 EGEE Middleware

use of a Web browser. There is no significant functional difference between
the VOMS in LCG-2 and in glite. VOMS 1.5 and higher supports both
MySQL and Oracle. For a detailed description of VOMS and its interfaces,
see Refs. [25] and [26].

Workload Management Systems

gLite Workload Management System The Workload Management sys-
tem in glite is an evolution of the one in LCG-2. As such, it relies on BDII
as an information system. It is interoperable with LCG-2 CEs. The Work-
load Management System (WMS) operates via the following components and
functional blocks: The Workload Manager (WM) or Resource Broker, is re-
sponsible of accepting and satisfying job management requests coming from
its clients. The WM will pass job submission requests to appropriate CEs
for execution, taking into account requirements and preferences expressed
in the job Description. The decision as to which resource should be used
is the outcome of a matchmaking process between submission requests and
available resources. This not only depends on the state of resources, but also
on policies that sites or VO administrators have put in place (on the CEs).
Interfaces to Data Management allowing the WMS to locate sites where the
requested data is available are available for LCG RLS, the Data Location
Interface (DLI - used by CMS) and the Storagelndex interface (allowing for
querying catalogs exposing this interface - a set of two methods listing SEs
for a given LFEN or GUID, implemented by the FiReMan and AliEn cata-
logs). The WMproxy component, providing a Web service interface to the
WMS as well as bulk submission and parametrized job capabilities is foreseen
to be available before the end of the EGEE project. The user interfaces to
the WMS using a Job Description Language based on Condor Classads is
specified at Ref. [27]. The user interacts with the WMS using a Command
Line Interface or APIs. Support of C++ and Java is provided (for a detailed
description of the WMS and the interfaces, see Refs. [28] and [29])

20

1. Fundamentals of LHC Computing Grid

File Catalogs

Files on Grids can be replicated in many places. The users or applications
do not need to know where the files actually are, and use Logical File Names
(LFNs) to refer to them. It is the responsibility of file catalogs to locate and
access the data. In order to ensure that a file is uniquely identified in the

universe, Global Unique Identifiers (GUIDs) are usually used.

EDG and RMS The services provided by the RMS, originating from
EDG, are the Replica Location Service (RLS) and the Replica Metadata
Catalogue (RMC). The RLS maintains information about the physical loca-
tion of the replicas. The RMC stores mappings between GUIDs and LFNs.
A last component is the Replica Manager offering a single interface to users,
applications or Resource Brokers. The command line interfaces and APIs
for Java and C+4+ are respectively available from Refs. [30] and [31]. It is
anticipated that the EDG RMS will gradually be phased out.

LCG File Catalogue The LCG File catalogue (LFC) offers a hierarchical
view of logical file name space. The two functions of the catalogue are to
provide Logical File Name to Storage URL translation (via a GUID) and to
locate the site at which a given file resides. The LFC provides Unix style
permissions and POSIX Access Control Lists (ACL). It exposes a transac-
tional API. The catalogue exposes a so-called Data Location Interface (DLI)
that can be used by applications and Resource Brokers. Simple metadata
can be associated with file entries. The LFC supports Oracle and MySQL
databases. The LFC provides a command line interface and can be interfaced

through Python.

Information Services

Information services publish and maintain data about resources in Grids.
This information in LCG is modelled after the Grid Laboratory Uniform
Environment schema (GLUE).

1.2 EGEE Middleware

21

BDII The Berkeley Database Information Index (BDII) [32] is an imple-
mentation of the Globus Grid Index Information Service (GIIS), but allowing
for more scalability. Information provided by the BDII adheres to the GLUE
information model. Interfacing with BDII is made of ldap operations for
which commands and API exist. Both LCG-2 and gLite currently rely on
BDII for proper operation.

Logging and Bookkeeping The Logging & Bookkeeping services (LB),
which tracks jobs during their lifetime in term of events (important points
of job life, such as submission, starting execution, etc.) gathered from the
WM’s and the CE’s (they are instrumented with LB calls). The events are
first passed to a local logger then to bookkeeping servers. More information
on the Logging and Bookkeeping services are available at Ref. [33].

At present time the project organization in charge for the LCG develop-
ment is called EGI-Inspire [34] versus EGEE the one reported in the docu-

ment.

22

1. Fundamentals of LHC Computing Grid

Chapter 2

Project background, the

SuperB experiment case

I'm giving here a short presentation of SuperB experiment in terms of
computational needs and user community aspects. It will allows the reader
to better understand the origin of the thesis project. In particular the needs
of SuperB VO in terms of distributed computing tools will be described trying

to characterize the target VO for our general-purpose framework.

2.1 The SuperB experiment

The SuperB Project was formally born in 2005 when INFN inserted in
its three-years planning document the intention of building a high luminos-
ity [35] flavour particle factory in Italy. In the course of the years SuperB
has evolved from an intention into a full-fledged project, with a Conceptual
Design Report published in 2007, progress reports in 2009, and a formal
collaboration structure setup in 2010 with hundreds of members from sev-
eral countries. All aspects of the project, physics potential, accelerator ring
design, detector design, successfully passed several international reviews. In
2010 SuperB was inserted in the Italian Research Ministry National Research

Plan as Flagship Project, and a good fraction of the required funds were al-

23

24

2. Project background, the SuperB experiment case

Table 2.1: Computing resource estimate for the first 5 years of SuperB data

taking.
Year 1 2 3 4 5

Peak 0.25 0.7 1.0 1.0 1.0 10%°cm2s7!
Luminosity per Year 3.75 10.51 15.01 15.01 15.01 ab?
integrated 3.75 14.26 29.26 44.27 59.28 ab~!

Raw Data 39.4 149.7 307.3 464.9 6224 PB

Mini 1.2 45 92 140 187 PB
Data Sets y\riop 28 106 21.8 33.0 44.1 PB
User 04 13 28 42 56 PB
Disk 94 314 513 685 771 PB
Storage yne 437 168.0 3482 5307 7131 PB

Reconstr. 009 034 069 104 1.40 MHS06
Simulation 0.28 1.06 2.18 3.30 4.42 MHS06

CPU Skimming 0.06 0.26 0.59 0.95 132 MHS06
Analysis 0.11 043 088 133 1.78 MHS06
Total 0.54 2.09 4.34 6.63 8.91 MHS06

located, although not the full amount. The decision to build SuperB on the
land of the University of Rome Tor Vergata led, in 2011, to the formation
of the Cabibbo Laboratory consortium [36] between INFN and TorVergata
university, with the explicit mission of constructing and managing a new
research infrastructure for flavour physics. A ministerial cost and schedule
review of the accelerator project was held in fall 2012. A combination of a
more realistic cost estimates and the unavailability of funds due of the global
economic climate led to a formal cancellation of the project on Nov 27, 2012.
For a number of years, an Italian led, INFN hosted, collaboration of
hundreds of scientists from Canada, Italy, Israel, France, Norway, Spain,
Poland, UK, and USA has worked to the detector and accelerator design.

2.2 Computing requirements

During 5 years of data taking, the SuperB detector was expected to pro-
duce more than 500PB of raw data. To this, event reconstruction and Monte
Carlo simulation [37] will add another 300PB.

2.2 Computing requirements

25

Table 2.1 shows the computing resource estimate for the first 5 years of
SuperB data taking. Integrated luminosity parameter is a measure of effi-
ciency of a collider experiment as the higher the integrated luminosity, the
more data is available to analyze. The data set and storage sizes included
replication factors, contingency, on-disk fractions and support storage. Raw
data was expected to be processed at the same rate at which they was pro-
duced, with no more than 48 hours of latency; the corresponding simulated
data sets were produced within a month. As a consequence, the CPU re-
quired for these activities was proportional to the peak luminosity. The
CPU required to reprocess the data collected in the previous years scaled

with the integrated luminosity.

To cope with these large data volumes, SuperB relied on predictable
progress in computing technology to provide cost reduction and performance
increase. The effective exploitation of computing resources on the Grid has
become well established in the LHC era, and would have been enable SuperB

to access a huge pool of world wide distributed computing resources.

Crucial issues for SuperB were the ability to efficiently use modern CPU
architectures, and to efficiently and reliably access very large amounts of data

spread over multiple geographically distributed sites.

So far, the SuperB computing effort has been devoted to the develop-
ment and support of simulation software tools and computing infrastructure
needed to design and validate the detector, to the initial definition of a com-

puting model, and to computing R&D.

The SuperB collaboration has developed a set of tools to perform fairly
detailed and sophisticated detector and physics studies. This toolset included
a detailed Monte Carlo simulation (Fullsim [38]) based on Geant4 [39], a fast
parametric simulation (Fastsim [40]) which directly leverages the original
analysis code base, and a production system that could exploit the computing
resources available on the European and US Grids to perform very large-scale

simulation productions.

26

2. Project background, the SuperB experiment case

2.2.1 Full Simulation

The core simulation software of FullSim has been re-written from scratch,
aiming at having more freedom to better profit from both the Babar! [41]
legacy and the experience gained in the development of the full simulation
for the LHC experiments. Geant4 was the underlying technology and C++
the programming language.

In the following, are summarized the most important characteristics. The
geometry description was based on GDML [42]. The event generators can be
either be embedded into the simulation software or interfaced through an in-
termediate exchange format. The simulation output was saved in ROOT [43]
files; hits from the different sub-detectors, which represent the simulated
event as seen from the detector, was saved for further processing. A staged
simulation has been implemented, where snapshots of particles taken at a
specific detector boundaries, can be read back and used to start a new simu-
lation process without the need of re-tracking particles through sub-detectors
that sit at inner positions.

FullSim was also used to generate detailed background frames that could
be used by FastSim executable by propagating those particle though the
simplified detector geometry and overlaying the resulting hits to the ones
coming from signal events.

The typical computation time was of the order of 100s per event.

2.2.2 Fast Simulation

The FastSim relied on simplified models of the detector geometry, mate-
rials, response, and reconstruction to achieve an event generation rate a few
orders of magnitude faster than was possible with a Geant4-based detailed

simulation, but with sufficient detail to allow realistic physics analyses. In

IBabar experiment can be considered the SuperB precursor. It collected physics data
in the period 1999-2008. FullSim and FastSim codes have been written for the first time
during the BaBar life-time

2.3 Distributed computing tools

27

order to produce more reliable results, FastSim incorporated in the some mea-
sure the effects of expected machine and detector backgrounds. It was easily
configurable, allowing different detector options to be selected at runtime,
and was compatible with the BaBar analysis framework, allowing sophisti-
cated analyses to be performed with minimal software development. In brief,
the simulation proceeded through four main steps: particles generation, de-
tector configuration and response, particles reconstruction and analysis of
the event.

The typical computation time was of the order of 1s per event? when all

background mixing was activated.

2.3 Distributed computing tools

Even at early stage in its lifetime, the SuperB experiment needed very
large samples of Monte Carlo simulated events to evaluate the machine back-
ground, to optimize the detector design, and to estimate the physics analysis
performances. Since producing these samples was beyond the capacity of a
single computing farm, the SuperB collaboration developed a suite of tools
to fully exploit the existing world wide Grid computing infrastructure. The
SuperB distributed computing tools were built upon the LHC Computing
Grid which is widely adopted in the High Energy Physics (HEP) community
and has a long term support by the Grid initiatives. The SuperB Virtual
Organization (VO) was enabled at several sites located in countries partic-
ipating in the project; both Grid flavors, EGI and OSG were in use within
the SuperB VO, so all services needed to be able to support multi-flavor Grid
middlewares.

Figure 2.1 shows the main elements of the SuperB distributed computing

system: actual processing and data movement were performed in the Simula-

2In particle physics, an event refers to the results just after a fundamental interaction
took place between subatomic particles, occurring in a very short time span, at a well-

localized region of space

28

2. Project background, the SuperB experiment case

| NAGIOSVO][LB service

roduction Mass data
System transfer ser\m:e

)\

Figure 2.1: Distributed systems bird’s-eye view.

)

l Analysis System ‘

tion Production System, the distributed Analysis System and the Mass data
transfer service. The Bookkeeping and Data Placement databases holded
metadata related to Fastsim and FullSim applications, and information about
dataset structures and data placement on Grid resources. The monitoring
system used the Nagios [44] tools suite to implement a Service Availability
Monitoring (SAM) [45] to maintain a per-VO status of the Grid elements in
the GridMon database. Finally, the Logging and Bookkeeping (LB) service
provided detailed job status information from the Grid-internal processes.

The Simulation Production System, the monitoring tool-suite and the
information systems just introduced are the proto-components of the general-
purpose framework has been developed.

The Simulation Production System has been developed to manage the
production of very large Monte Carlo samples in a distributed environment.
It supported both Fastsim and FullSim, is tightly integrated with the book-
keeping database, permitting a fine tuning of operational tasks via web por-
tal.

The web interface provided basic monitoring features by means of query-
ing the bookkeeping database and interacting with the Logging and Book-

keeping gLite service. The user could retrieve the list of jobs as a function

2.3 Distributed computing tools

29

of their unique identifier (or range of them), their specific parameters, the
execution site, status, and so forth. The monitor section provided a per job
list of output files and a direct access to the corresponding log files. The
output file size, execution time, computing resource load status, and the list
of the last finished jobs (successfully or with failures) were also provided.

A simple authentication and authorization layer, based on an LDAP [46]
directory service allowed to apply a user-role based policy to access the sys-

tem.

2.3.1 Distributed computing resources

The LHC Computing Grid (LCG) architecture was adopted to provide
the minimum set of services and applications upon which the SuperB dis-
tributed production system has been built. Authentication and authorization
is provided by VOMS service, LFC is the file catalog, WMS was used for bro-
kering purpose and for Grid flavor interoperability features, transfers were

performed via Leg-Utility, gLite CLI was used for job submission tasks.

Figure 2.2: SuperB VO computing resources: the enabled LCG data centers.

The SuperB distributed computing infrastructure included several sites
in Europe and North America, see Fig. 2.2. About thirty sites have been

enabled for the SuperB Virtual Organization, among which four were Tierl

30

2. Project background, the SuperB experiment case

and 15 Tier2.EGI and OSG Grid flavour resources were available at the time

of the simulation production system development.

Site Min (cores) | MaX (cores) | Disk (rs) | SRM layer| Grid Org. |
RAL(T1) 200 1000 25 Castor EGI
Ralpp 50 500 5 dCache EGI
Queen Mary 300 2000 150 StoRM EGI
Oxtord Univ. 50 200 1 DPM EGI
IN2P3-CC(T1) 500 1000 16 dCache EGI
Grif 50 300 2 DPM FGI
in2p3-lpsc 50 100 2 DPM ECI
in2p3-ires 50 100 2 DPM EGI
CNAF({T1) 500 1000 180 StoRM EGI
Pisa 50 500 0.5 StoRM ECI
Legnaro 50 100 1 StoRM EGI
Napoli 500 2000 15 DPM EGI
Bari 160 260 08 StoRM/Lustre EGI
Ferrara 10 50 0.5 StoRM ECI
Cagliari 10 50 1 SIORM EGI
Perugia 10 50 1 StoRM EGI
ITorino 50 100 2 DPM EGI
Frascati 30 100 2 DPM ECI
Milano 50 100 2 SIORM EGI
|Catania* ? ? StoRM FGI
Slac 400 400 10 NFS 0SG
Caltech 200 400 45 NFS 0SG
Fnal 50 400 1 dCache 056G
OhioSC* ? ? ? dCache 0S5
\Victoria 50 100 5 dCache EGI
McGill* 100 200 1 SIORM EGI
Cyfronet 100 500 10 DPM EGI

Total 3570 11510 440

* VO enabling procedure in progress

Figure 2.3: SuperB VO computing resources: the enabled LCG data centers.

2.3.2 The simulation production system

The design of the simulation production suite foresaw CNAF Tierl as
central service site including the unique submission point, the production
tools, the bookkeeping database and the Grid service permitting authentica-
tion, file cataloging and data management. The jobs were submitted using
Ganga [47] suite to all the remote sites via WMS brokering. It was duty
of job during running stage to update bookkeeping DB and manage for in-
put accessing at closest SE. At job completion time the output files were

transferred to the central and unique target site, CNAF; all the data han-

2.3 Distributed computing tools

31

dling operations were performed via LCG Utilities making use of LFC file
catalogue service. A detailed description of the workflow is illustrated in
Fig. 2.4.

Figure 2.4: The site centralized architecture of SuperB production system

The job workflow included also procedures for correctness check, monitor-
ing, data handling and bookkeeping metadata communication. A replication
mechanism allowed to store the job output to the local site SE (CNAF). The
job input data management included an off production step: the application
software release and background files were transferred to all involved sites

and accessed by the jobs at running time. The job submission procedure

32

2. Project background, the SuperB experiment case

included a per site customization to adapt the job actions to site peculiari-
ties: e.g. file transfer from/to different data handling systems StoRM [48],
dCache, DPM and Hadoop [49].

The figure 2.5 shows from left to right the interactions between the web
portal and the job wrapper with the bookkeeping DB. The yellow boxes

represent the actions taken by the web portal at job definition and completion

| SBX dulabase Cifline
4 Meritar |
i
4 !

time.

@ RESTAI _M8em=aoo,
¥ imarioce i direm 3

‘,"")_"_q_',_.." Datazase Manager
s
Updztes Inee Oupus mbles 't Queries to
Ins2rts Inee job ables dares Ino Job mbles : 1
s Lk L & |ob tatbes ! monior & ﬂeu'le\oe. '
| ¢ 4

/
- " :?’= % -
f Bawh e 4 |: P T (e
i natzdon) T Y Done ;| o
. / / il il b P

| Production Software Layer

Figure 2.5: Bookkeeping DB interactions during the job life cycle

Chapter 3

A general-purpose framework

for Grid resource exploitation

The general-purpose suite presented here is the evolution of the one de-
veloped during the SuperB experience. The components of the project that
more then other have been refactored are the bookkeeping data base, the
web user interface (Operations web portal) and the job wrapper application.
In fact the new platform has to be seamlessly customizable by VO specific
requirements in terms of application environment and parameters, metadata
structure and distributed resources to be involved in computation campaign.

We can now take as reference for the VO that can benefit from the frame-
work adoption the SuperB VO. The storage resource needs, computational
power needs, the community size, members geographical distribution and
application task to be run on computing infrastructure in SuperB VO can
be taken as upper limit for the definition of the target VO for the tool suite
we are describing.

The effort in developing a distributed simulation production system for
SuperB experiment has brought to the study and the development of a gen-
eral purpose design based on minimal and standard set of Grid services,

capable to fit the requirements of many different Virtual Organizations.

The generalization process applied to the SuperB framework includes the

33

34 3. A general-purpose framework for Grid resource exploitation

following main components:

e design and implementation of a new bookkeeping DB structured to

allow the management of generic computation process

e development of a new web portal for operation management which is

capable to fit dynamically the DB information

e development of a job wrapper able to manage the new requirements in

terms of flexibility and extensibility

The definition of the ER schema for the new DB and the development
of the new web user interface (from now on the operations web portal) pro-
ceeded in parallel with the rewriting of the job wrapper software.

In the following sections we will deepen the design of the new database,
we will see an overview of the functioning of the job wrapper and analyze in
depth the new web portal for the operations management, from now on the

operations web portal.

3.1 Project goal, conceptual design and re-

quirements

The project described in this thesis refers, as background computational
environment, to the science Grid and more in specific to the LHC Computing
Grid. The project intends to provide an all-in-one tool suite permitting the
exploitation of distributed resources to small-/mid-size VO such as experi-
ments, organizations, or communities in general. Such a tool suite should
allow an easy, quick and highly customizable access to the Grid resources
while keeping the technical details hidden to the client organization. The un-
derlying idea is to minimize the platform requirements in terms of hardware
and human resources, development efforts and Grid service customization
and configuration. The project was designed to manage client applications

built-up to perform Parallel, Embarrassingly parallel (EP), Coarse-grained

3.1 Project goal, conceptual design and requirements

35

(often EP) calculations. The design has been kept light and it is based on a
minimum set of standard Grid services.

The operations web portal provides a session section dedicated to VO spe-
cific task definition. The session interface compilation should be the first act
of the VO manager permitting to customize its specific work environment;
this step will brought the framework to be adapted to the VO specification.
More in detail it includes the setup/configuration of job run time environ-
ment, VO application parameters, input and output dataset and distributed
resources. The following list summarizes the technical framework require-

ments:

e The Grid initiatives that can host the framework are EGI and all the
ones compatible with EGI middleware: Open Science Grid(OSG), West
Grid, Nordu Grid, Latin American Grid initiative (GISELA), other

e The user VO need to be defined and enabled at the involved Grid sites

e Jobs should run where the data to be accessed reside (data driven

paradigm)

e Job input files should be of the order of 10GB, Job output files should
be lesser then of 3GB size each, maximum Job RAM consumption has
been tested is 1GB

e A gLite User Interface should host the framework suite including the
backend sub-systems: Ganga, PostgreSQL9, Apache, Leg-Util library
and CLI (sce next sections for details)

e At least 1 Storage Element should be available to store jobs result

e At least 1 Storage Element should be available for job input retrieval

per site

36

3. A general-purpose framework for Grid resource exploitation

3.2 Distributed infrastructure: LCG services
integration

The system design includes a main EGI site hosting the job submission
manager, the bookkeeping database and the operations web portal, all resid-
ing in a User Interface Grid element. Jobs submitted to remote sites transfer
their output to the Storage Element of a predefined target site and update
the bookkeeping database. Each site may implement different Grid flavors.
One of the main problem interfering with the Grid concept itself regards the
cross Grids interoperability: many steps forward have been done toward a
solution and nowadays the choice of using the EGI Workload Management
System (WMS) permits to transparently manage the jobs life through the
different Grid middlewares. The Grid services involved in system work-flow
resulted to be widely adopted and long-term supported by Grid initiatives,
moreover a particular attention has been given in identifying the multi-flavor

Grid services compliance. A briefly description follows:

e Job brokering service: the Workload Manager System (WMS) in addi-
tion to the job brokering specific tasks, manages jobs across different
Grid infrastructures (OSG, EGI, NorduGrid, WestGrid, etc), performs
job routing, bulk submission, retry policy, job dependency structures
(Direct acyclic graph DAG job), etc.

e Authentication and accounting system: Virtual Organization Member-
ship System (VOMS) is a service developed to solve the problems of
granting users authorization to access the resources at the Virtual Or-

ganization level, providing support for group membership and roles.

e File meta-data catalog: the LCG File Catalog (LFC) is a catalog con-
taining logical to physical file mappings. In the LFC, a given file is
represented by a Grid Unique Identifier (GUID). Data handling: LCG-
Utils permits to perform data handling tasks in a fully LFC/SRMV2

compliant solution.

3.3 Workload management system

37

e Job management system: GANGA is an easy-to-use front-end for job
definition and submission management implemented in Python. It pro-
vides interfaces for different backends (Local Resource Management
System (LRMS) like LSF or PBS, gLite, Condor [50], UNICORE [51],
Dirac, etc) and includes a light job monitor system with a user-friendly
interface. The framework has been configured to use LCG back-end,
cross-compatibility among different Grid-middleware is guaranteed by
the WMS service.

e Storage resource manager: SRM provides data management capabili-
ties in a Grid environment to share, access and transfer data among
heterogeneous and geographically distributed data centres. StoRM,
dCache, DPM, Lustre [52] and Hadoop are some implementations in
use by the remote sites involved in the production distributed system

deployment at present time.

3.3 Workload management system

3.3.1 Job workflow

The structure of services and job workflow follow a semi-centralized de-
sign, as shown in figure 3.1: job management service, bookkeeping database
and default storage repository are hosted in a central site. Jobs executed
into remote sites update the bookkeeping database with status, logging and
timing information and transfer their output back to central repository or
to a predefined site, discriminating on execution metadata. The submission
model is based on direct job brokering on computational resource without the
use of pilot model (see Chapter 4). The resource availability monitor permits
the system to individuate free resources and efficient sites since the adoption
of multiple algorithms: Nagios service for service availability monitor, effec-
tive site banning procedure based on last job bunch efficiency per site. The

level of simplicity the system and use cases can maintain assured very good

38 3. A general-purpose framework for Grid resource exploitation

whole performance in real scenario, see Chapter 5. Job stage-in and stage-
out! have been managed via pure LCG-Utility tool suite; SRMV2 protocol
is at the base of all the file access tasks, a fail-over command chain and retry

mechanism guarantee a high efficiency in transfers operations, see 3.5.

S s Ty o N

Remote Sile

;
/ N
/
/ 4
;
/
= . e T
S .
S e b

Froduction Tools
Submission Site

A Sie
Targel . Site
(INEN CRAF k Site

Figure 3.1: Job life-cycle schema.

\

The job work-flow shown in figure 3.1 is synthesized in the following three

steps:

e Pre-submission steps: the VO managers should install the VO specific
software all over the enabled Grid sites into the official software area?.
The job input files that need to be accessed during stage-in phase by
the job should be transferred to the site’s SEs, these transfers should
be performed via ClientSRM or LCG-Utils commands taking care the

files will be registered into the LFC catalog using replication model.

IThe stage-in and stage-out phases are respectively the action of application input files

retrieving on the WN and the application output files transfer to the target site SE
2CVMFS [53] system provide a unique storage area exported all over the sites with the

scope of collecting the VO software areas

3.3 Workload management system

39

e Job preparation and submission: operations web portal provides the
interfaces for job preparation in terms of definition of specific session
setup, executable parameters and distributed resources selection. The
portal interacts with LCG resources with an official VOMS proxy iden-
tity, it allows job submission and monitor tasks to be performed in
complete integration with proper Grid environmentSubmission type is
limited to bulk approach and it is managed by a Ganga engine specifi-

cally configured for such a task.

e Job running time: Ganga engine submits the job to the WMS ser-
vice capable to route it to the requested CE and takes care of Grid
middlware interoperability. The job will be scheduled on a WN by
the Computing Element® and starts running. It performs a general
environment check, subsequently performs the transfer of input files
from local SE to the WN disk area reserved for it’s own computation,
launches the VO specific executable and finally sends back to target
site SE the generated output and log files. During the entire life cy-
cle the job communicates its own status updates to the database via
REST [56] based web service. Input and output file transfers are per-
formed by LCG-Utilities commands allowing file registration to the

catalog service, LFC.

3.3.2 Grid job submission via Ganga system

Ganga [54] is a user interface which supports large-scale data analysis in
both distributed environments and local clusters. Ganga software architec-
ture has been designed to be modular, plug-able and in general adaptable
to fulfill the VO requirements. The software implementation is object based
and the used programming language is Python.

As it is shown in figure 3.2 Ganga provides various interfaces (plug-in)

3The CE provide the submission request to the LRMS which performs the scheduling

on site computational resources

40

3. A general-purpose framework for Grid resource exploitation

&
GUI (CLl script

M..“"x l J-’")','.../.
GPI

Ganga Core
Application Plugins f;} .&V& ;F":';E‘E:: Jab Plugins

credentials MyPracy

- Mol management

- Persistency Manager

Job File

- Repository Workspace
muetadata Inputicutput files

Figure 3.2: Ganga architecture schema: user can interact with the Ganga
Public Interface (GPI) via Ganga User Interface (GUI) or command line
interface using iPython [55] language or Python scripting procedure.

allowing job submission to a very comprehensive set of environments: jobs
can be executed on user local host, via common LRMSs (LSF, PBS, SGE,
Condor, other), to the main Grid middlwares (gLite, ARC and OSG) and
act as bridge to application environment specifically developed in HEP sce-
nario like Dirac and Panda. Moreover Ganga is able to maintain a state-full
picture of the jobs submitted by the user, in fact the job repository and
File Workspace permit the Ganga system to keep a persistent and histori-
cal job metadata record in terms of job characteristics and i/o operations.
Advanced features like automatic job resubmission can be performed thanks
to this repository implementation. Finally Ganga system provides a fruitful
job definition /debugging environment taking advantage of the python native
capabilities. Grid computational resources have been accessed via glite suite
with the use of WMS when the target site is not the local, otherwise Ganga is
able to identify the specific batch system (LRMS) and submit directly to it.

3.3 Workload management system

41

The brokering system permits to distinguish CREAM CEs [57] from LCG2
CEs. The WMS functionality include migration of stuck jobs to new, JDL
defined, sites and in general to access Logging and Bookkeeping job histori-
cal information. This will increase brokering quality. The framework we are
discussing here will take advantage of these new features just maintaining
Ganga submission engine up to date as Ganga project is tightly integrated
with LCG middleware developing and releasing process.

The job submission management is delegated entirely to Ganga system.
Various studies and configuration tests have been performed with the aim
of customize Ganga system to be able to work as a simple and efficient
submission manager. The lines of intervention can be summarized in the

following main groups:

e sub services clean-up procedure: the deactivation of all the services
around the core submission routine (job monitoring dacmons, user in-
teractive interface, job specific feedbacks, integrity checks, automatic

Ganga specific resubmission policy)

e bulk as unique active submission method: specialization in bulk sub-
mission procedure included decreasing of Ganga submission response

time

e Grid job specific information collection: Grid job Id is an example of
information the bookkeeping DB need to store, it can be retrieved from

the submission process itself

Ganga developer team expressed interests in this use case and an active
collaboration on the specific subject started. A Ganga specific script has
been developed to allow run time customization and site specific JDL file
generation.

The results of the use of Ganga system in this particular role have been
optimal in terms of submission reliability and robustness: a negligible failure
rate in submission operations has been registered during stress tests and real

case simulation job submission.

42

3. A general-purpose framework for Grid resource exploitation

A typical bulk job submission has a size range since 50 to 500 single jobs
per site; each job is identified by a run number (run-number) so the bulk job
is identified by the first run-number and last run-number. For each set of VO
parameters characterizing a set of submissions (called request) and for each
target grids site, the job wrapper receives as input a specific configuration file
and the run-numbers included in the bulk submission range(see sction 3.4 for
a detailed description). Ganga provides the application programming inter-
face (API) allowing the fine-grained control of job submission in terms of in-
put/output sandbox management, data handling and submission methods®.
A python script has been developed to perform the job wrapper submissions,

it receives as input the following parameters:

1. path of job wrapper configuration file generated by the operations web

portal
2. the configuration file name
3. minimum run-number
4. maximum run-number
5. grid site name

6. the name of the application production: a reference of the application

and its parameters (see section 3.6)

7. the name of the session: a reference to the VO specific requirements

(see section 3.6)

8. the type of job: test or normal

The script implements a loop on run-number using the script parameters
(3) and (4), the script code is reported in the following. The loop at line 25
configures the submission: the i-th job takes as parameters the configuration

file, the run-number and the job type (normal or test). During the loop cycle

4Ganga provides the same level of expression as the Job Definition Language (JDL)

provides

10

11

12

13

14

16

17

18

19

20

21

3.3 Workload management system

43

Ganga allows to select few other additional parameter as the computational
backend like localhost, LCG, Dirac, LFC, etc. At submission task completion
the script waits for each Grid job id in return from each job submission; as last
action the script runs an UPDATE query to the bookkeeping DB providing
the Grid job id.

This is the python script has been developed performing the job submis-

sion via Ganga:

#!/usr/bin/envpython
import sys

import os

import time

import commands

import string

from GangaTest.Framework.utils import sleep_until_state

from Ganga.Utility.Config import makeConfig, getConfig

conf_path=sys.argv[l]#pathofconfigurationfileforseverus
conf_file=sys.argv[2]#configurationfileforseverus
minrun=sys.argv [3]#minimumrunnumber
maxrun=sys.argv [4] #maximumrunnumber
site=sys.argv[5]l#sitename
prod_series=sys.argv[6]#productionseries
session_name=sys.argv[7]#sessionname

mode=sys.argv [8]#jobtype

if (len(sys.argv)<8):
print "usage: base_ganga.gpi <conf_path> <file.conf> <
min_run> <max_run> <site> <prod_series> <session_name>
<mode>"

sys.exit ()

split=ArgSplitter ()
for i in range(int(minrun), int(maxrun)+1):

split.args.append([conf_file,str (i) ,model)

44 3. A general-purpose framework for Grid resource exploitation

27 #first argument: file.conf, second argument: runnumecome

28 #third argument: the mode(normal or test)

29

30 #Merge the output of the collection

31 m=TextMerger ()

32 m.files=[’stdout.gz’,’stderr.gz’]

33 m.ignorefailed=True

34 #Createthejob

35 j=Job (O

36 Jj.name="%s %s %s " % (prod_series, str(minrun), str(
maxrun))

37 j.application=Executable (exe=File(’/datal/script_webui/
severus/exe.sh’))

38 j.inputsandbox = [File(’/datal/script_webui/severus/
severus.tgz’), File(conf_path + > / ’> + conf_file)]

39 j.splitter = split

4 j.backend = "LCG"

41

42 if site==" GRIF":

43 j.backend.requirements.other=[’other.GlueCEUniqueId == "

grid36.lal.in2p3.fr:8443/creampbssuperbvo.org"’]
44
45 elif site==" UKILT2QMUL":

46 j.backend.requirements.other=[’other.GlueCEUniquelId

ce03.esc.qmul.ac.uk:2119/ jobmanagerlcgsgelcg_long"’]

47

48 elif site=="INFNT1":

49 j.backend.requirements.other=[’RegExp("cr.cnaf.infn.it",
other.GlueCEUniqueId) && !(RegExp("ceO4lcg",other.
GlueCEUniqueId))’]

50

51 elif

52

53 else:

54 print " \n\n SITE NAME NOT RECOGNIZED, CHECK THE SITE
LIST IN base_ganga.gpi\n\n"

55 jobs.clean(confirm=True,force=True)

56 sys.exit ()

58

59

60

61

62

71

72

73

74

75

3.3 Workload management system

45

j-merger=m

j.submit ()

print "\n\n WAITING FOR GRID JOB IDs\n\n"
for a in j.subjobs:
while a.backend.id== ’ ’:
runMonitoring (jobs=jobs.select(j.id,j.id))
time.sleep (1)
print "JOB"
print a.application.args[0]
print a.backend.id
whoami=commands.getoutput ("whoami")
cmd_db=" /usr/bin/mysql -usbkprodw -psbkFromFe -host=
bbrserv09.cr.cnaf.infn.it --database=sbk4 e \" start
transaction ; UPDATE %s _J ob SET grid_ job_id=\’%s
\’ WHERE prod_series=\’%s \ ’ AND runnum=%s ;
UPDATE %s_Job SET status =\’submitted \ °’ ,
ts_submitted=NOW() WHERE prod_series=\’%s \ > AND
runnum=%s and status =\’ prepared \ ’ ; commit ; \"
" % (session_name,a.backend.id, prod_series, a.
application.args[1],session_name, prod_series, a.

application.args[1])
print cmd_mysql
out_mysql=commands.getoutput (cmd_mysql)

print out_mysql

print "End Ganga"

Listing 3.1: Ganga script for job wrapper submission using LCG backend

46

3. A general-purpose framework for Grid resource exploitation

3.4 Metadata management

3.4.1 The bookkeeping database

Both the job submission system and the individual user require a way to
identify data files of interest and to locate the storage system element hold-
ing them. Moreover the prompt availability of information on the execution
status of jobs and their specific meaning and parameters is crucial to the
users in order to plan their activities and summarize the results. To make
this possible, the developed framework needs a data bookkeeping system to
store the semantic information associated to data files and keep track of the
relation-ships between executed jobs and their parameters and outputs. This
same bookkeeping database is extensively used by the job management sys-
tem itself in order to schedule subsequent submissions and bring completion
level of requests and site availability information up to date. The book-
keeping database was modeled according to the general requirements of a
typical simulation production application; its design is sufficiently general to
accommodate several use cases from many fields of science although being
self-consistent and structured at the same time. Moreover, the schema can
be easily extended in order to take into consideration new applications speci-
ficity, nevertheless by keeping core functionality unaffected. At the moment,
its design adheres to the relational model and the current implementation
makes use of PostgreSql rDBMS in a centralized way.

As discussed in the next section 3.5, the bookkeeping database needs to
interact either with the operations web portal or the job in execution on
the Worker Nodes. Depending on the sender/receiver these communications
arc therefore managed by a direct interface to PostgreSQL or a REST in-
terface. The latter case is required from remote sites because typically only
outbound communication over http/https is allowed. Strong authentication,
by means of X509 proxy certificates over https, is used to grant jobs access
to the database. It is important to stress that such an intensive use of the

bookkeeping database by our framework is crucial and permits to distinguish

3.4 Metadata management

47

it from others portal-like solutions available to the Grid communities.

The bookkeeping DB developed within the SuperB life time has been
completely re factored introducing a level of abstraction called ”session” and
cleaning-up all the SuperB customizations. With respect to the SuperB
use cases, the new DB has to include two, dynamically defined, sessions, the
FastSim and the FullSim. The Entity-Relationship schema of the old SuperB
DB is reported in figure 3.3; the schema can be divided in three subset of
entities: the ones related to FastSim, the ones related to FullSim and the
ones modeling the functions shared by the two sessions.

Analyzing the FastSim and FullSim entities we can find a symmetric
schema, but for one entity of difference in FullSim sub-schema. The shared
entities between the two use cases are: Job, Log, Output, Production, Soft_Ref.
The entities structure is the same, but for few fields in the Job one.

Said that, we try to lead back the Fast and Full use cases in a unique set of
entities which could model a general-purpose job production. The common

characteristics identifiable between the two use cases are:

e the existence of an application to be executed in a local or distributed

computing resource environment.

e the VO activity organization is structured in macro set called ” produc-
tions”, see next section for a detailed description of the components of

a job submission campaign modeled in the bookkeeping DB

e the goal of both the use cases is to keep track of job life cycle informa-

tion, application execution and data management

Observing in particular the FastSim entities we can add other important

elements for the generalization process:

e the "request” entity represents single queries within the same produc-
tion in terms of size and kind of application output and application
parameters (the description of the entire bookkeeping DB functional

schema will be presented in the next section)

48

3. A general-purpose framework for

Grid resource exploitation

] Full_Gdver ¥

= P %
e inhine e ¥ i v
e AR Aar: VAHUIAH ' e
v alae WAHU-IHIB Foa_sedas VARCHARIT
= T untum M1 ninram KT
 eanermse |0 VASCHAREE] B g 0 A= R
e TRAT
»
Ame 1ML AR
S smius VAL BHE " e
TEg VARCHARIZA] - B b
S VASTRARY rEecse wAHD AR Kt _aaize A HLHAHEIRA)
i 24
riata ¥ AHL - SHIZLG semacom KINTHI 207 pg TASLHAS EI]
S 3 o Sl HTE 1Y 56 13 VARCHARED
- 5 | Ful_Geemeiny L ek g T
T Lu_7 WAHLHAHEE LA e o
= geomen foe YASCHARKS] e T
B = b VAT SRR
. © palus_reasen VARUHAFLT
+ = e o [ob IO VARCFARIZIE
_ Geomerry b | e b SARHAR
Wec_phy VAHUHAHIZLE I v Iy WHUHAHESE
prrgea 902128 WRCHARZ Ls] § < psks sV ARCHAF(ZSE!
b J;I ¥ [t WAICHATH S A AR VEAGASRIRS
= b G R s
- 3 e e SHECIH AT 205)
Wl DEEIMALHE 20 i BT
5 T = = & = 5 T Srwnge T
i . st . ¢ G
£ecd aaks VAT - AR prod_soean VARCHAS(EY Al YRCHAHC
syl sall g bs VARRHARDERY il ARGHARES L&
SHULSHIZ e
| Fastlob_Merge v .
T UFFTAMA It VARCHAR 48] o anes VHUHRHIZ =
SREHARY] 3 8o roioara VAHLHAHEES! e W = morge v
[2 1aq avers BIGINT)Z] Sremg AHTHA] 3 mage [AT
AnaT VA | e ety e ARCHAR
wreils s I + Meged_the_nams NA-LHAS EL]
2 raquzslors VAHUHAFILA] 2 Dl eman shn WARCHIMESE)
prleryINT 2 = L
i e BT
by ULCIRALIL 21
i & oM MUK -]
> |
|
Sl NI B !
s T .
-2 prograss NN) = 2
sl PR L i Bl X
ottt e s NARIAR o Esn VAR TRAT
e A ey
i = TR
Uk VRG22 3 i |
5 g kR AR <haanei_fype VALHAS 220]
2 eaneemar I VIFGHARIS] o eriama VAREHARE)
W b ek AR HAR RE L
35t 31 B T T bee—e=
. + rgaron gt N A-LHA= 2]
SR
) b— 263 VASC-AFIES]
dica BT}
o matn ¢ SRT- 8255 w
= S gaa_raanin YBHUHEHI 6]
530 00100 WAAZ-ARZES)
L i 1 ol INTE Y
+ + L evmn_nm M1
o i | Fari Frad_fratpsis ¥ + camnand lins VA CHAT 25,
. m'ﬁm A '_“" pnl_eprins VAT TEAT D) S b VATT - AT "
skt _ sk e INTQY anzyse W-LHAHEZ L emlus_rancn VAHUHAROT0G
bng_danzin 5T 1 2 & mirauraucs INTH1 7 ol ok 4 VARCHARIZE S
R = sl T = ey BT —14 2 e by VARGHARKT]
: SAme | MES AR

5 Weacdvial_raswi o INTy 4
Sftvazgd_susmitd
Sitvasod Faked 1T
Caranibi by P
)

]

e Y AFEHA= (23]
prod_serss YARUHA-CE .

prad rect VARCHAR(ZSE

2 i YAHUHAHTESS
o Img T

© ras_de pat_name WA=L A< 2

A MA ST -AT 4R

be_jragamid TR=RTAME

L FASLHAHIET

Tl WARGAMES
- 5o0_ckg WARCHARIZSS
28R “an ¢ ARGHGRI

i

M7 (O] FestsenRat v
|
I
I

Figure 3.3: The model Entity-Reletionship for the SuperB bookkeeping DB.

e the presence of a parametric application

e aset of distributed computing resources along with load and availability

calculation algorithm

3.4 Metadata management

49

3.4.2 The generalization step: the session concept

The VO manager switching on the operations web portal for the first time
is asked to create a session and to define a set of Grid resources. These are
the minimal set of information that the framework needs to be able to start
a job submission campaign (hereinafter called: production). A session is an
entity including all the information regarding a production in relationship

with a specific application release and application environment setup.

\ Unigue and

: iE Fastslm sess cn
etatic entitiee

INFN-BARI 7o 1 D\
INFN-FERRARA { Si [Parameter TR | e :
VICTORIA-LCGZ b ite : 2rameter !
INFN-T1 I Sitz list i Parameter Values Prod_Reauest Request l
- I
I I SubParameter Output Site Reguest I
s | :
FastSim | ol Ses_s “‘?n I Soft Ref Env Var Submission = Stat | Log 1
I Seggian list e M : L
FullSim . :
—— i Sten 81 Step #2
[
1
]
[

I

I

I

- ; i1
FullSim zession |
I

Bookkaeping DB % Dyndimic DB part:the ececiong created by

- . _ thevOmanager _ _ l

Figure 3.4: Representation of static and dynamic parts of bookkeeping DB:
session entities on the right side are created dynamically in two steps by the

VO manager using the operations web portal.

The figure 3.4 shows a conceptual representation of the bookkeeping DB
divided in static and dynamic entities. The static entities contains all the
information related to distributed computing resources (Site box) and in-
formation regarding the Session management, list of sessions and sessions
metadata (Session box). The FastSim and FullSim SuperB use cases are
two meaningful examples of sessions. The dynamic entities are the sessions
themselves which contain application and production information; a session
is divided in two sub boxes identifying the chronological order in which the
information will be provided by the VO manager (in two steps).

Let’s proceed with describing an overview of the entities modeling a job
campaign in the Session container. In the figure 3.5 the boxes in the rows

above contain the boxes underlying it. We can see a set of Production entities

50

3. A general-purpose framework for Grid resource exploitation

contained in a session, each Production identify a time period in which a
massive job submission will be performed using an established application
release.

A set or Request is contained in a Production. The Request concept has
been introduced for the FastSim use case to define the required number of
physics events to be simulated, the number of events per job and the number
of jobs. These three information are tightly related one to the other and

dependent by the job execution time.

(PRODUCTION || proouction |

J

REQUEST REQUEST REQUEST

SUBMISSION SUBMISSION SUBMISSION
| JoB QFEJ ‘§‘§

Figure 3.5: A representation of Session entities: the entities in the row above

contain the entities in the row below.

In a generic VO scenario the event concept can be setup to be meaningful
or not, in any case the number of jobs and the duration time per job will
be defined besides all the information regarding job input and output files
location and application parameters. VO manager can choose among differ-
ent ways of access the input file by the job for the specific Request he/she is
defining: the access can be of type NONE, DIR, FILE or LIST:

e NONE: the job do not need any input file, the input_path environment

variable will be empty

e DIR: input_path contains the logical file name of the directory contain-

ing the input file; the job is in charge to select the right input file

e FILE input_path contains the logical file name of the input file

3.4 Metadata management

The following Logical File Name represent the template composition for
an output file reference; subsequently the output LFN for the FastSim ses-
sion. For the latter the application parameters PRODSCRIPT, DG and
GENERATOR, will take part of the LEN path:

e output_dir_lfn = Ifn:/grid/VO_NAME/production/SESSION _
NAME/PROD_SERIES/output/RUNNUM/

e output_dir Ifn = Ifn:/grid/superbvo.org/production/fastsim
/first_cycle/output/PRODSCRIPT/DG/GENERATOR/RUNNUM/

The last two setup regarding the Request entity are the priority and the
minimum run-number. The operations web portal, discussed in detail in the
next session, can be configured to perform automatically the job submission
taking care of the size of the job bulk, the submission target site, and the
priority request to be referred for job definition. The latter choice is taken
using the priority request parameter. Finally the minimum run-number is
the starting integer that identify univocally the job in a request, can be used
by the VO manager with a job classification purpose or as a meaningful
parameter for the application itself: this is the case of the FastSim session,
the run-number in the run-number range defined in the Requests is used as
the seed for the Monte Carlo simulation algorithm.

The Production and the Request entities have a status and its manage-
ment is delegated to the system policy or to the VO manager. The Jobs
entities have been gathered in Submission entities. Each Submission is iden-
tified by the couple: submitter user id and submission timestamp. The ER
schema for the entities Submission, Job, Output and Log will be reported
and commented in the following section.

The entities Session and Site have a n:n relation-ship, it is represented in

figure 3.6. The session entity has the following fields:

e session name

52 3. A general-purpose framework for Grid resource exploitation

| site v
site VARGHAR(3Z]
—| Session_Site v il
- label VARCHAR(32)
| Session v session_name VARCHAR(32)
8 | description VARCHAR|255)
session_name VARCHAR(32) site VARCHAR(32))
2 threshold_submitted INT(11)
» visibde TINYINT(1) | » enabled BIT{1) -
» threshodd_running INT{11)
> » supported BIT(1)

- threshold_failed INT{11)
» bunch_dimension INT{11)
»>

Figure 3.6: Session e Site: entities and relationship.

e visible: flag used to report the session access by the operations web
portal. It is useful to hide obsolete sessions which is necessary to be
kept inaccessible, but still have a value from the historical point of

view.

The entity Session-Site have been collected information regarding the

enabling/disabling of a site for a session:
e session name: name of the session
e site: name of the site
e cnabled: flag used to declare site enablement for a certain session

e supported: flag declaring the application support availability at a cer-
tain site. It is used during the distributed computing resource setup
phase and during the resources validation phase, vice-versa during a
sustained production cycle the sites will stay in supported AND en-

ables status or in disable status.

A session in the bookkeeping DB is composed by a fixed set of entities;

let’s give in table 3.1 the complete list with a description:

3.4.3 Job and submission modeling

The relationships and entities modeling the job and the submission con-

cepts have been represented in figure 3.8. As we shortly reported in the

3.4 Metadata management

Table 3.1: Entities belonging by a Session in bookkeeping DB

Tables Description
Soft_Ref Application information: version, tag, release, logical
file name, etc
Env_Var Environment variables related to the execution task
Parameter The execution parameters for the application in this ses-
sion

Parameter_Values | The default values or the list of possible values for each

parameter
SubParameter | Define the dependence link among parameters
Production The list of production defined in the session
Prod_Site The list of enabled site for a production
Request Define a specific set of application parameters. A Pro-

duction can contain more Requests
Prod_Request List of Requests defined in a specific Production and

other requirements

Site_Request List of Sites in connection with a specific Request
Submission List of Submission
Job Contains information about every single submitted job
in the session
Output Every job can generate one or many output files
Log For each job a log file is generated
Stat Statistical information about job submitted

previous section the Job entities have been gathered in Submission entities.
Each Submission is identified by the couple: submitter user id and submis-
sion timestamp. The Submission layer between the Request and the Job
layers has been introduced to allow a high level of control on a unique, crit-
ical action that can involve several sites and an elevated number of identical
jobs: during testing phase for resource validation purpose or for application
validation purpose is very important to be able to manage such a level of job
collection.

At submission time the record insertion in submission table is managed
automatically by a trigger that intercept the BEFORE INSERT event for
each job.

Let’s now describe how the job status system has been conceived during

54 3. A general-purpose framework for Grid resource exploitation

the job life-cycle, since the job creation to the job completion time. The job

status-flow schema is reported in figure 3.7.

Ganga submission Jab wrapper:Job
script: j.submit Job wrapper Joh complete
: parformed executlon starts succassfully
SBRA job
metadatn
insertion -\ i
PREPARED SUBMITTED I RUNNING DONE
X X - —
. P _ =~ \ ERROR
- -v.--..’: “‘_,."'--f.._.- > {
, . = - -t -
TIMEOUT e = = = T R = o T2 FF e FAILED
Job wropper: Manual 5BK4 | SYS-FAILED
3 \
proxy explratlon managemant oction “

Figure 3.7: The graphical schema of job status during the job life cycle.

Every job in the bookkeeping DB could be in a status included in: PRE-
PARED, SUBMITTED, RUNNING, DONE, FAILED, SYS-FAILED and
TIMEOUT; allover the job status system a set of timestamp have been de-
fined in Job entity:

e ts_prepared: the timestamp of creation/insertion of job record in book-
keeping DB, the job status is PREPARED, it is used with the user-id

to identify univocally the related session
e ts_submitted: the timestamp at status update to SUBMITTED
e ts_running: the timestamp at status update to RUNNING

e time: the timestamp updated to the last job record modification, it re-
ports the transition to DONE or FAILED status. It is used to calculate
the job wall clock time (wct)

Other fields of relevance in job entity are:

e status_reason: it is used as a text buffer transferred by the job wrapper
to the bookkeeping DB reporting information about the software exe-
cution. It is of particular interest for the production manager because
it can receive important information about the progress of job during

the running phase

3.4 Metadata management

55

FastSim_Prod_Regquest

FastSim_Soft_Ref

Fastsim [] FastSim_Submission ¥
_Stat , |} ts_prepared TIMESTAMP

uid VARCHAR(24)
< prod_seres VARCHAR(32)

FastSim

; >
_Productioniy g

wi |
&|tel
M

prod_series VARCHAR(32)
¢ runnum INT{11)
< requesi_name CHAR(32)
<»1s_prepared TIMESTAMP

—}< “ uid VARCHAR{24)

< site VAACHAR(32)

< soft_rekase VARCHAR(32)

» status VARCHAR({32)

< status_reason VARCHAR(255)
< grid_job_id VARCHAR(255)

—< < error_msg VARCHAR(255)

< avent_num INT(11)
«» time TIMESTAMP
> wet DECIMAL(15,2)
» ts_subnitted TIMESTAMP
<> ts_nunning TIMESTAMP

$0— —I<] > PRODSCRIPT VARCHAR(32)

> GENERATOR VARCHAR(&4)
<» DG VARCHAR(18)
<> TCL VARCHAR(48)

H ‘| < request_name CHAR(32)

Fast5im | Reguest

1
A .
7] FastSim Output v
! prod_series VARCHAR(32))
runnum INT(11)
' type VARCHAR(255)

< location_path VARCHAR(255)

& file_name VARCHAR(255)

< logical file_path VARCHAR(255)
< size INT(11)

>

] FastSim_Log v
: prod_series VARCHAR(32)
runnum INT(11)
> log_path VARCHAR(255)
% log LONGBLOB
¢ .

Figure 3.8: ER schema for job, submission, output and log entities.

e error_msg: provide the error message for the intercepted exceptions

during the job wrapper execution

e grid_job_id: the unique string identifying the job in LCG context. It is

provided as result of Ganga job submission

For what is regarding the Log and Output entities, the logical file names

of the files have been stored in logical file_path field for Output entity and in

log_path for Log entity. For all the test jobs and the jobs selected by expert

section in the web portal the log file content has been recorded entirely in

the filed log. It allows a quicker and sure method to provide job execution

information to the VO experts.

The session ER schema

The entire ER schema for the FastSim session has been reported in fig-

ure 3.9 as a representative example of a dynamically generated session.

56

3. A general-purpose framework for Grid resource exploitation

Sita

! prod sedies VARCHAR(3EZ)
! request_name UHAHEZ)
¢ ste VARCHAR{32)

Site

7 prod_saries VARCHAR(32)
¢ sile VARGHAR(32)
 onabled ENUM(0' 1)

> tasat FNLIN(D' M)

{

' prod_series VACHAR(32)
@ scft_release VARCHARRZ)
& lirns TMESTAMP

% status VARCHAR32)
Guid VARCHAA(2)

> note VAHUHAR{255)

¢ soft_release VAHLHAHEZ)
< sull_name VARGHAR[32)
<> soft_version VARCHAR(3Z)
<»soft_revision VARCHAR(32)
“»swn_info TEXT

< soft_fn VARCHAR{2GG)

<> oxe_path VAACHAR(|253)

! sntt_release VARCHAR(S 2]
' name VARCHAR(32]
< valie VARCHAR(255)

< working_dir VAACHAR(253)

| prod_seres VARCGHAR(32)
 request_name CHAR{3IZ)

< labe VARCHAR(Z55)

o uid VARCHAR(24)

e slalus VARCHAR)|24)

< time TIMEETAMP

< prority INT!1 1)

> minninnum B GINT(20)

o req_sverts BGINT(20)

2 evarts_per_job INT(11)
“rnumoer of jobs INT{11)

<> progress ENUM|...)

o wap_evenl_lirie DEGIMALITE 0)
> max_wet DZCIMAL(15,0i
&inpu_made ENJML...)
Z»inpu_path V ARCHAR|255]

& wulpal_dr_lln VARGHAR(258)
& output_dr VARCHA {255)
g VAICHAR(ES)
<> nate VARCHAR(255)

| prod_series VARCHAR;32)
§ nnum INTI17)

| typ2 VARCHA(255)

< raquest_name C-AR(32)
< location_path VARCHAS(255)

< tlg_name VARUAAH[Z35)

< kgcel_ile_pah VARCHARZ25G)
< size INT[11)

sile

' pred_serias VARCHAR(32)
| requesi_nama CHAR(32)
| &_prapard | IMES | AME
| uid VARCHAR{24)

¢ site VARCHAR(32)

& nprepared INT(11)

% nsubmrcted N1{17)

< mrunming NT(11)

<& ndona INT(* 1]

& nfailed 'NT(11)

= nsystailed INT(11)

< mlimweoul INT{11)

& eprepared INT(11)

<= asuhmitad NT(11)

< erunning NT(11)

< e0ona INT(1]

& sfailed INT(11)

> ssvstailed INT(11)

< etimeout INT{11)
 otal_events IN1{11)

& total_jous INTI11)

> total_wst DECIMAL(*E 2)
o -

| | Sie
| |

¢ requast_name CHAR(3Z]
< ime TMESTAMP
i ! » prod_series VARCHAR(3Z)
< *RODECAPT YARCHAR(255)
¢ INT(11)
“» GEMERATOR VARCHAR(2EE)
equeat_name CHAR
<3 W& VARCHAR(25RR) il Y 52
Gite d TIMFETAMP
< TCLVAFCHAR(255) ey
e & ud VARCHAR24)
% ste VARCHAR(32)
T _______ —jg @ soft_ralease VARCHAR(3Z)
PR B R e < sratue VARCHAR(32)

3 gi_job_id VA ALHAH[ZE3)
& emor_msg VARCHAR{255)
< event_num IMT(11)

< time TIMESTAMP

3 Wet DECIMAL(15,2)

<0 tz_submittad TMEETAMP
< ts_mnning TMESTAMF

& DG VARCHAR(15)
£ TCI VAACHAR R

— — — —j uid VARCHARI24)

< s'atus raason VARCHAR)255]

<3 PRODSCRIPT VARCHAR(32)
< GENERATOR VARCHARG4)

© name VARCHAR(255)
% subparam INT(1)

 fname VARCHAR|255]
1 halug Y AHLHAH[2ES)

) nama VARCHAR(255)
& Lype VARGHAR2E5)

% db_type WVARCHAR(255)
£ lahal V ARCHAR!255)

< ordemum INT|17)

< hlde_orn_mankor INT(1)

¥ name VARCHAR(255)
¢ value VAICHAR(253)
> detautt_value | INYINI[T)
% label VARCHAR{25)

] :
" te_preparcd TIMESTAMP

4 prod_series VARCHAR|32)

O
|
|
|
|
|
|

4

© prod_ceres VAACHAR(32)

¥ ronnur INT{ 1)

2:Joq_path VARCHAR(255)
103 LONGELOE

Figure 3.9: The FastSim session ER schema in new bookkeeping DB.

3.5 The job wrapper script

57

3.5 The job wrapper script

The development of a job wrapper that could run on Grid or local re-
sources is justified by several reasons. A general-purpose project needs to be

able to manage the widest set of scenarios in terms of:

e application setup: parameters and sub-parameters with complex de-
pendence schema and environment setup (specific environment vari-
ables, scope environment variable like PATH and LD_LIBRARY _PATH,
ete)

e input and output management: an heterogeneous set of transfer meth-
ods need to be implemented in response to the heterogeneous Grid
site setup: direct access (network file system protocols), direct transfer
via standard protocols or via Grid middleware typical methods (Lcg-
utility)

e process monitoring capabilities: standard output and error general

management and signal handling
e bookkeeping DB communication: REST methodology implementation

The first job wrapper version has been developed in Bash scripting lan-
guage. The porting from Bash to Python language occurred as a solution for
lack of software maintainability and flexibility. Python is an object oriented
interpreted language fulfilling the project requirements in terms of facility
in conducting bug-fixing operations, facility in code extension/evolution and
robustness as the ability of managing failures (i.e.:exception management).

The job wrapper name is Severus, the following listed dot is the step-by-

step workflow of the job wrapper:
e cnvironment setup: to satisfy application needs and specific job re-
quirements

e application software installation: transfer the package to the worker

node hosting the job execution

58 3. A general-purpose framework for Grid resource exploitation

e SE selection for input file retrieval: the nearest SE (in terms of Round
Trip Time (RTT)) is identified

e transfer of input file from the SE to the WN where the job has been
scheduled

e application launch
e job status update to RUNNING in bookkeeping DB
e at application completion time check the exit status

e copy of the log file to the target SE or to the bookkeeping DB depending

on job type (test or normal)

e update the bookkeeping DB with the logical file name or the physical
file name of the log file

e copy of the output files to the target SE

e update the bookkeeping DB with the logical file name or the physical
file name of the output files

e job status update to DONE or FAILED in bookkeeping DB and appli-

cation wall clock time estimation

3.5.1 Communications with bookkeeping DB

We decided to develop a communication layer between the job wrapper
and the bookkeeping DB to provide the framework of on-premise monitor
system. An evaluation phase has been performed to design the monitor
architecture of the general purpose framework allowing to choose the simpler
and quickly architecture to capture job life-cycle status and logs at run-time.
The logging and bookkeeping service provided by LCG infrastructure have
been subject of various measurements test and framework integration tests.
We finally decided to collect status and logs information directly from the
job wrapper. The framework uses these information both to populate the
monitor section of the operations web portal and as information base for

submission decision system (see section 3.6).

3.5 The job wrapper script

59

The communication layer implements the REpresentational State Trans-
fer (REST) model. REST is a set of practices describing an architectural
style for web service implementation; it has been chosen due to its char-
acteristics: the simplicity, robustness and standardization (long-aged http
protocol based). It could be considered a light weight alternative to RPC,
SOAP, CORBA solutions, maintaining the same power of expressiveness.

The set of architectural principles that REST defines among others are:

e the model application is client-server

e the functionality and the states of the service are represented by re-
sources, each resource is identified by an URI. In web service design the
resources in REST implementation are the methods in SOAP/COR-
BA/RPC implementation

e the client and server communications must be stateless: each com-
munication has to include all the necessary information (context, pa-
rameters, data) to be understood with no need of counting on other

information support increasing the system scalability and availability
e the application status must evolve as a flux of hyper link

e client and server interfaces need to be uniform in terms of representa-

tion of resources allowing an independent development process

e REST model encourage the use of cache mechanism to mitigate the

loss of performance due to the stateless constraint

e the system can be stratified adding inter-layer services/devices between
client and server (proxy, cache service, gateway, other). So to add new
characteristics to the system like security, Quality of Service, scalability,
High Availability, etc

The framework implementation of REST model regards the communica-

tions between job wrapper and bookkeeping DB; the used REST flavor is an

60

3. A general-purpose framework for Grid resource exploitation

implementation in PHP language for SQL resource management called PHP
REST SQL [58]. The HTTP methods (GET, PUT, POST, DELETE) have
been used on a resource identified by an URI, the following is an example of
such an URI: http://server-host/tablel /table2/field1/field2. The client side
REST layer sends the request via an http-client implementation like curl or
wget, the server side elaborates the request (method, URI) and obtain an

SQL query to be execute at information system level.

All the communications between jobs and DB in the framework need to
be authenticated and authorized. The LCG standards are based on x509 cer-
tificate in a Public Key Infrastructure (PKI) using the Secure Socket Layer
(SSL) as communication channel for HT'TP protocol. Every job in LCG is
created with an x509 certificate with a limited expiration time to 12 hours
called proxy certificate associated with the submitter user. For interoperabil-
ity reason, such a certificate has been extended with VOMS user information
obtaining, as side effect, the non-compliance with rfc standards. The “me-
diator” of all the authentication process in a web service scenario is the web
server, in our case Apache web server has been used as web portal publisher
and REST bookkeeping DB frontend. Unfortunately the proxy certificate
as it is described above is not processable just with Apache mod_ssl module
due to the non-compliance with rfc. The mod_gridsite [59] Apache module
has been developed within LCG community to permit the fully comprehen-
sion of the proxy certificate by the Apache web server. It enables a native
Grid Security Infrastructure(GSI) layer and permits to configure Grid Access
Control List (GACL) [60] based on certificate VOMS extension.

The figure 3.10 shows the relation-ships among the Apache environment
and Gridsite specific functionality. In particular the cooperation between
mod _gridsite and mod _ssl allows the system to overcome the problem of cer-
tificate non-rfc compliance. The second layer from the bottom, the green one

shown the mod_gridsite implementation of Grid Access Control list.

Said that the authentication and authorization functionality for the job-

DB communication has been based on Grid Security Infrastructure that rely

10

11

12

13

14

3.5 The job wrapper script

61

GridSite / Apache
Architecture

grst-admin.cgi: page editing,
file upload, ACL editing etc.

mod_gridsite: .shtml, mod_jk: mod_gridsite:
html headers mod_perl| | ISP with file PUT
and footers €61, PHP Tomcat and DELETE
4) A)

mod_gridsite: GACL access control + GACL > env vars

&

A

mod_ssl: plain
HTTP HTTPS > env vars

— mod_gridsite: GSI / VOMS
g—| OpenSSL callback wrappers

Figure 3.10: Gridsite/Apache architecture.

on Apache ssl and gridsite modules for VOMS proxy certificate management
and rely on Gridsite capability in implementing access control list natively

on certificate VOMS extension. The following code is a real example of Grid

ACL file used in the project:

<?xml version="1.0"7>

<gacl version="0.1.0">

<entry>

<voms >

<fqan>/superbvo.org/Role=ProductionManager/Capability=NULL

</fqan>
</voms>

<allow>

<read/><1list/><write/>

</allow>

</entry>

<entry>

<voms >

62

3. A general-purpose framework for Grid resource exploitation

15

16

17

18

19

20

21

22

<fqan>/superbvo.org/Role=NULL/Capability=NULL</fqan>
</voms>
<allow>

<read/><list/>
</allow>

</entry>

</gacl>

Listing 3.2: Grid ACL file for REST communications between job and DB

The ProductionManager role has been granted to write,read and list ac-
cess to DB resource, a NULL role authentication has been granted for read

and list actions only.

3.5.2 Job wrapper algorithm description

Severus job wrapper is launched by the Ganga submission engine (see

section 3.3.2) with the following input parameters:
e the configuration file path
e the job run-number
e the job type (normal or test)

Reporting here shortly the description of the configuration file content is
of help for understanding the script execution steps. The configuration file

is divided into macro sections, I'm reporting here a subset of such sections:

e OPTIONS contains the general parameters

Modulename: session name

— Prodseries: production name

— Requestname: the request including the submission for this job

Savelogdb: log file storing policy (into DB yes/no)

3.5 The job wrapper script

— Test: job type (test or normal)

e SOFTWARE: contains all the parameters allowing the job wrapper to
identify and transfer the correct version/revision and the executable
path

e REST: contains the information related to layer REST like Hostname,
Port and Proxy certificate path

e TARGETSITE: contains the information related to the Site and its
Storage Element defined as the target for the application output files
and logs

e INPUT: contains the input mode defined in the Request (see sec-
tion 3.4.2) and the input path

e OUTPUT: contains the Logical File Name of the location for output
storing task, the output path (the physical one (PEFN)) to be used in
the case the direct access by the WN is available

e SMODULENAME: takes the name by the content of the parameter
MODULENAME in the macro section OPTION. It contains the appli-

cation parameters. The number of parameters is variable

The figure 3.11 shown the Severus execution steps (from left to right)
reporting the involved objects and files. The first performed action is the
Logger object instantiation, it will take care to collect log information during
job execution time. Once the configuration file has been parsed the following

objects will be instantiated:
e the REST manager object
e the Fxecute manager object for the specific session

e the Site object, the correct object implementation will be selected de-
pending by the configuration file information loading the class

<sitename>.py

64

3. A general-purpose framework for Grid resource exploitation

e the Session object, same as for the Site object loading the class

<session>.py

e one ore more Targetsite object representing the site where the output

files will be transferred

Now the object FileManager is initialized, such an object is on duty for
file transfer operations, it implements the lcg-util functionality or eventually
the direct file access wherever it is available. Hence Severus performs the
transfer of application package (compressed archive) from the site SE to the
job working area, it starts the transfer of input files. At this point the script
is ready to launch the VO application, the method <sessionname>.execute()
is launched accessing the application parameters from the SESSION section
of the configuration file. At application completion time the FileManager
will take care of the transfers of output and log files to the TARGETSITE.
Throughout the script execution the job status is being updated in book-

keeping DB via REST communication using the homonym object.

65

3.5 The job wrapper script

& Doy
= 1 I : FUnamI
[¢ 1 -
. . Ad unsyny _ ¥ I
1 [\ ped Adunsiny | y I

NOCISSIS == | 1s3¥ ¥39507 _

NOISS3S T sopony B ssboeoar

I
I
i
i
I
| 1anary 2l So14 SR U Aaluuep
= 0] 3|l SIEM1JOS Jndin s e
indino A Adaon 2 I'4 T
I
|
|
I
I

(- Jaanaawa nOISSIS IrpoLu b pvas Ve I
ayis PEOG:] —- 1
ETHE] A4 puoas A r_c_
13978vL Buisied SN1DADS !
a|npoL ¥
Adog T

1] peo 000 hewd
| _ | ! T
' S—— i 3118 f =3
I N I 1 Srpun WINNNY - = |
" _ L pes -

iiiiiii - y |
[yaovNvw | pr— #
20 5um] By HHDUDY 552300 | F4 Trv S5

_ . le=5
L0 | o] p g w gy spo-0o po g muaphiay ARk _.. | W
- _
_. a3Ls NOLLNI3XT b _ 0 -4
ERD] 1 W .. J

Figure 3.11: Block diagram for Severus job wrapper execution flow.

66

3. A general-purpose framework for Grid resource exploitation

Filemanager class

As we described in the previous section the Filemanager object is on duty
for file transfer tasks. It checks the transfer method (the one defined in the
Request) and acts in respect of this. In the majority of the cases files have
been defined as entry in LCG File Catalog (LFC) so we can refer to that via

multiple identifiers:
e LFN - Logical File Name: define the file independently by its location

e GUID - Global Unique IDentifier: a unique string created at file gen-

eration time

e SURL - Storage URL: also known as physical file name (PNF) contains
information about the SE or the SRM related to the file

e TURL - Transport URL: contains information about the transport layer
like protocol and port besides SE hostname and absolute pats as in the
SURL

The Filemanager class takes advantage of the LCG Utility suite® to handle
the file movement operations to/from SE. Is of worth mentioning here, among
the other implemented mechanisms, the data transfer fail-over strategy. It
allows to minimize the transfer failures in the case of files registered in LFC.

In the diagram reported in figure 3.12 is shown the step-by-step decision
process regulating the launch of lcg-utilities methods in various failures sce-

narios. The first run of lcg-util suite is the lcg-cr, it copies the file to/from

> LCG Utils is a suite of client tools for data movement written for the LHC Computing
Grid. The tools are based on the Grid File Access Library [61], which is also included. The
tools allow users to copy files between CE (Compute Element), WN (Worker Node) and a
SE (Storage Element) and to register entries in the file catalog and replicate files between
SEs. Some commands use logical file names and require a connection to a BDII-based cata-
log; exceptions are file copies and deletions, which take endpoints based on the SRM URL.
This document does not contain examples of commands that require access to file catalog.
The usage of such command is explained in the LCG User Guide”, citation from OSG

twiki page, https://twiki.grid.iu.edu/bin/view/Documentation/Release3/LegUtilities.

3.6 The operations web portal

67

N
leg-er | — <\\O|(E'/\, B
2 , T 1

T s
lcg-cp --nabdii = - okl = | leg-rf |

—~—
T 1
4 b 5

<ok 2| leg-rf
SN

1 /,'\\ N
gloubs-url-copy | (:\ok?;}—-L
i

Figure 3.12: Fail-over flux diagram for file transfers to/from SEs.

the SE and register it into the LFC. This method can fail due to different
reasons: the BDII® or the SE or the LFC are not available. We decided to
perform separately a file copy (leg-cp) and the file registration in LFC (lcg-
rf). If leg-cp fails we perform a copy specifying taht the bdii must not be
included in the process (leg-cp —nobdii), if it works we conclude with the file
registration (lcg-rf). If the lcg-cp —nobdii fails we finally proceed with the
low level copy via gridftp tool (globus-url-copy) and subsequently with the

file registration step.

3.6 The operations web portal

An automated submission procedure is of the utmost importance in order
to speed up and simplify the user operations completion. As a matter of fact,
the major hurdle in accessing the Grid infrastructure for non-expert users is
given by its intrinsic complexity and their lack of expertise.

To accomplish this task, a web-based user interface has been developed,
which takes care of the bookkeeping database interactions, the job wrapper
script preparation according to the VO manager’s input, and the job man-
agement; it also provides advanced monitor functionality and procedures to

query the stored metadata.

5Berkeley Database Information Index Read, used to maintain information for the Grid

computing infrastructure, http://en.wikipedia.org/wiki/BDII

68

3. A general-purpose framework for Grid resource exploitation

3.6.1 Web portal technology and design

The operations web portal has the typical architecture of a web appli-
cation project: the user’s browser accesses the site on the web server, the
server side code builds the web pages relying on information residing on a
back-end DB. As for project design the web server resides in the same Oper-
ating System (the gLite User Interface) as the information system so there is
no interest in creating a web service layer allowing web server to communicate
with the back-end DB.

The following list contains the technologies adopted for the development

of the operations web portal, the server and the client sides:

e Server side

— PHP - versione
— PHP database wrapper

— Smarty Template Engine
e Client side

— jQuery
— jQuery UI
— jQuery DataTables

— Google Charts tools

Smarty template engine provides the possibility to separate the logic pro-
gramming (pure PHP) by the interface programming (HTML, Javascript,
jQuery [62] [63]); in particular introduces the concept of templates: files
containing interface programming code associated with PHP files. The fig-
ure 3.13 shows the relational schema among Smarty templates, PHP files and
Javascript files during the access to the portal monitoring section.

The jQuery suite was born with the aim of facilitating the Javascript writ-

ing code implementing complex techniques like Ajax. jQuery UI has been

3.6 The operations web portal

developed in particular for graphical effects programming and complex inter-
actions like drag and drop, elements ordering and widget. The DataTables
functionality include advanced capabilities in managing tables like length

dynamic paging, data loading via Ajax and multi-colomn ordering.

™ L
.f"-;»‘.f".’- b GET index.php?content=jobmonitor
o,
E‘(‘:‘li‘ drequest.php
[f;l_;.ﬁﬁl r_‘r-.'::1.|f.t~..'>nr.. php
: shawjephp showjob gl
E.'wmcniwr.ah
require(] e : P distiay) i‘l’

Jauery ele
15 librere s

ho .'1

— hezder tpl
TPL o o

iS jobmonitor.js

isplay] - Lol — navizabon.tp
3 = TRL /
index.php Tartude{)

= jobmonitor.tpl

TPL &, TPL
nidex Lpl S hameta
foater 1ol ™

TR

Il

TRL

Figure 3.13: Diagram example of relation-ships among PHP scripts, the
Smarty templates and the Javascripts for the jobmonitor request in the web

operations portal.

3.6.2 The portal architecture
The web portal is structured in the following main sections:
e home: the user’s home page containing the status of last activity

e session: the section for the management and creation of a Session (de-

signed, still not implemented)

e productions: the section for the management and creation of a Pro-

duction

e prodrequest: the section for the management, creation and update of

the Request

70

3. A general-purpose framework for Grid resource exploitation

expertinit: the section for the job submission dedicated to expert users

shiftinit: the section for the job submission dedicated to users on shift

program

jobmonitor: the section dedicated to the monitoring functionality

sitemgr: the section for distributed resource management

As we discussed in section 3.4 the framework has to be adaptable respect-
ing the VO requirements in terms of session definition, the web portal has
to adapt too. The figure 3.14 shows the main blue bar containing two VO
defined sessions FastSim and FullSim, each one has a private menu allowing
the access to all the portal sections. Each link in the menu has the parameter

sn identifying the session to be considered.

FastSim
Productions
Production Requests
Expert Init

Shift Init
Job Monitor

Figure 3.14: The operations portal modifies its own main menu structure

with respect to the defined sessions.

User home page

The home page provides information about user groups and privileges,
statistics of job submission per session and last activity list.
As it is shown in the figure 3.15, in the left side box the user information

have been collected:

e user identifier

3.6 The operations web portal

71

YOUR SESSIONS' STATISTICS:

session Job launched Jol graph = vents total wot (5]
P I wianzen
e e oo

vour LasT T ACTIVITIES:

Show | 10 18] entries Search:
time v type session Info

22:26:15 JOBSUBMISSION FastSim _ 6 jobs (6 events) -
11:52:49 JOBSUBMISSION FastSim _ 10 jobs (300000 events) ™
18:02:40 JOBSUBMISSION FastSim ﬁ=|[- 3 jobs (3 events) -
16:35:15 cossuemission Fusim [7 ioo: (7 events) -
a2:0i:41 copcustission Festzm AR i ot (750000 cvents) -
o201 sossusmission Fassim [o iot: (50 cvents) B
1zzzz21 cossuerussion Fusim | :o-: (1 cvents) -
1z:2e:23 sopsuemission Fastsim | : i (1 cvens) =
11:52:31 JOBSUBMISSION FulltSim _ 1 jobs (1 events) =
asi23 ocesusmission R [NN : - 2 e =

Showing 1 to 10 of 10 entries

Fardt | | Prévious | (1 | Nest | | Lase

Figure 3.15: The home page provides information about user groups and

privileges, a per session job submission statistics and the list of activity.

e the user proxy certificate validity is shown by a green/red led
e the LDAP groups the user belongs to

e a per session user’s privileges

The box SESSSIONS’ STATISTICS includes information like the total
submitted jobs, the total amount of generated output (here in terms of
events) and the wall clock time used. The stripe graph shows the sum-
mary of the job status. The LAST ACTIVITY box includes the actions of
Submission creation, Request creation and Production creation. For each
Submission activity the direct link to the related monitoring web page is

provided.

Session management

The section of the Operations web portal dedicated to the VO Session

definition and configuration is not still developed, but has been designed.

72

3. A general-purpose framework for Grid resource exploitation

The Session class and its functions are completely integrated in the server

side software. The Session web section is shown in figure 3.16.

D e T W T w

I 1 Il an
. |
[T A = e

et
- ki i

o Wi Pekee

e

S [N A 2
— — yJom
o lsra ot

. T v G 0 AT

i AT DY VAR 5 Y e -
AT 5 56 UE SRR T EA 3 b

Figure 3.16: Draft schema of the web page dedicated to the Session definition

and configuration. The blue boxes show implementation details.

The SOFTWARE RELEASE box at the top of the web page is ded-
icated to the insertion and visualization of application releases; the revi-
sion, working directory and package name can be edited and selected. The
ENVIRONMENT box at the bottom of the web page allows the insertion
and visualization of Application environment variable like JAVA_HOME or
LD_LIBRARY _PATH per Operating System version. The JOB PARAME-
TERS box is the harder to be designed in fact its goal is to provide a form

capable to model the insertion of any kind of application parameters with

3.6 The operations web portal

73

parameters dependence. The shown example includes the possibility of pa-
rameter creation, type and size, one level parameters dependence, required
flag and user instructions. Finally the box GENERAL OPTIONS dedicated
to usability and interface customization actions like enable/disable of session

entry in navigation menu.

Production and request management

The figure 3.17 shows Production web interface for the Session FastSim.

Productions [FastSim]

™ shuw Lest proscions

Snaw 13 bwdentries Swarch:
Prad series stolis Selt Helesse Job sitmt RtEquests actiors noze
2010 v @ VD 25311 _ 2 ag_ests (D zper, @ valld, 2 runrirg, © cloes:; dose &
A @ o ds an | e g
010 Septvmdses 307] LEERTS D oo O B 56] e =
o s e @ vrse I =
2010_Septumber 3L o vias3n I ;oo 0 e 0 ald Onenirg 43 sean] spen
10 Teptembre M1 twar LEESTE I - &
Sruwing 1 Lo 6 ol 6 enl-ies
Firs. | | Prasviv | (1) [Mest | | Lot
e S ——]
Al fapm Firids are raquirnd. u Typa if thi new 14 [
= :
Produdion Series; 2011 _Neweriber 55 of the

=
series. On suceess, itwill create the coore(ies)
P DTyt P Inta the bookkezzing datzbaze.

([Create ew F1ouua)

Figure 3.17: The web section for Production creation and management.

The web page includes the section of the operations portal dedicated to
the Production management (PRODUCTION LIST box) and a section for
the creation of new Production(CREATE PRODUCTION box). The Pro-
duction list has been obtained using the plugin datatables (see section 3.6.1)
by the productionlist.php script in JSON format. At Production creation
time a couple of Productions will be created, the official one and its twin
the test Production. Enabling the flag ”show test productions” the test

Production for each official one will be shown with the suffix name ” _test”.

74

3. A general-purpose framework for Grid resource exploitation

Statistics about job status of the submitted jobs per Production are shown
in the stripe graph. Production creation needs the insertion of Production
name and application software release/revision. The Productions with no
associated Requests only can be canceled. A Production can be set to sta-
tus open or closed and vice versa with no logical constraints by the VO
manager; a Production in ”closed” status can not be modified in terms of
Requests or metadata. The visualization/status control and creation are the
two main sections of the Request management interface. The section RE-
QUESTS LIST is dedicated to Request management per Production, the
section CREATE REQUEST is dedicated to the configuration and Request

creation process.

| PRODUCTION m £
List of [2] 2030 _July requests | show test requests
show | 10 Fe entries hide /show enlmns Search:
Aratpsis * wenerator Geometry reqevents GvZMOD DS mnnnnem st i operamssns
] romemiCocctsl 8030kar SL 64 PacProcudtion 3680 1 17600 LODEONCO raning eviane so @

PrOGREsS: Mo wrerti: 2IELATE00 Juks” status per she

Robs per stanu: e s

B1 HomRweciCocktsd BOBGar Blao-40. CocMall DG 4 MbSupirtBec MoPdr 3TGN0N00 BI0OC 4790 LODIOOCO recing ot @

Showing 1 ta 2 of 3 entriea First | | Previows | (B | Neas | | Las

Figure 3.18: The section REQUEST LIST for the Request management in-

terface in operations web portal.

The REQUESTS LIST section is composed by a table containing all the
Requests for the selected Production, its own parameters and various statisti-
cal graphs. The figure 3.18 reports an example of such a section. The graphs
have been created using Google Chart Tools API, the datatable jQuery plu-
gin allows to collect statistical information.

Operating on ”Lock” icon on the right side of each Request raw the VO
manager can modify the configuration of a Request in Open state, validate,

delete or close the Requests observing the constraints reported by the follow-

3.6 The operations web portal

75

ing figure 3.19, the Request status diagram.

Hoanual Automabic changa Mamal
change: nead al firat job change: meed
privieges au bmizsion privieges
r/_ : /_F_\\\ ."’/ _\
OPEN ™ VALID "> RUNNING * CLOSED
|
/
\'n — 7] ‘/'(
t

Figure 3.19: The Request status diagram.

Let’s now analyze the steps of the Request configuration and creation
process. The section CREATE REQUEST is shown in figure 3.20 The section

is divided in various parts:
e IMPORT: the request configuration can be imported choosing among
the Requeste already created in this Session;
e JOB PARAMETERS: application parameter section;
e REQUEST SETTINGS: includes the following set of fields

— priority
— min-runnum for all the jobs in the Request

— amount of output elements (events in FastSim Session) to satisfy

the Request
— amount of output elements per job
— the estimated number of jobs to be submitted
— the estimated job duration
e INPUT: the input mode need to be selected among NONE, DIR, FILE
or LIST. In case of a value different by NONE the LFN need to be

inserted

e OUTPUT and LOG: includes the following set of fields

— the output directory (LFN)

76 3. A general-purpose framework for Grid resource exploitation

— the log file path (LFN)

— the output and log path for the associated test Request (as for the
Production, the Request is created with the test twin jrequest-

name;,_test)

— one or more sites as targets for output transfers

o OTHER: free note

Salect custon B3t 2nd job Carsmete ¥ vELEs or IMPat em oo anater production requsst

areduztior: 2020041y T3] resues | [MadRec Cocisall. 30800ar_Eg- D Coteral . BG_&, MicSupe o Hafar] &4 (rizen

fraksio: Cancmaber: Coamakr Baokgrz.rd:
| tadRecz ICackial Bl [eoedsarbeag-4D Cadkol B3] (Do v | slesg b Faravupertl FE]

@ A v

sondertad purumdae sinse| ikl mil b i

Epectsd evew: bire (rechi mas wet
f] Vs

FgLt mode:
[MeNE

Oumpet & Leg:

ap: elreemary {ie]]
1n: g1 2 F5uerbea. g procueda v Fasts AEOI0_ Lhyoues. 2 HadReodi Cocem s G _0,30506ar_Brxg-HD_Cozknall N3USNLETS

Fe

[
: Lilvrentas Pl G G RIS AR $ ks LB T
u
v AR APkl (TR < im0 Cnrkes |hag e 1. s b
assaciated tet request
i u
T P R P R
a
T imana e
o
Dot P TLNE Ry
£ L EviBon 11052 Liemi BN
- f (IR L] renann I NERL GG Ak
() %N FERMARS i [CINRN LL D [CII0FH MIAND ATLAZZ TIIFH NATOLT ATLAS
O 7w PER_CIa. = IR T O ZhFN TORDND JImAL Loz
CIUC-LTZ-gMLL T LKE-SCUTHERI-0N-HER [UKI-SCUTHGRID-RALFF () UNINA-EGEE IVICTORZ-LCET

LR Iad ARRa 4
| oerer:

nme (e 255 chamdens]

Figure 3.20: The CREATE REQUEST section allowing the insertion of a

new Request.

Please refer to Metadata management section 3.4 for detailed information

about Request related entities.

3.6 The operations web portal

7

Job submission

Before starting describing the involved interfaces let’s recall few concepts
and strategies the job submission is based on in the framework: we imple-
mented a unique submission method among the ones glite middlware makes
available, it is the bulk. One bulk submission is in direct correspondence
with the entity Submission, subsequently one Request is composed by one
or more bulk submissions to one ore more target sites. Application software
and application parameters are the same for each bulk submission. Said that
whatever web page designated for job submission has to perform an ajax call

to the submissioninit.php script providing:

e the Session name, sn

e the action to be performed:

— summary: returns the HTML preview of the list of the bulk sub-

missions set up

— postpone_submit: inserts the jobs metadata (with status "pre-
pared”) in the bookkeeping DB and creates the submission scripts

(this action is for development purpose only, can be inhibited)

— submit: performs the postpone_submit actions and create the
proxy certificate that will be used by Ganga to perform the gLite

job submission
e the javascript object "subparam” containing all the job metadata

Subsequently the system will generate n submission scripts (n is the num-
ber of target sites) which are on duty for Ganga script launch, n Severus
configuration files and a general launch script that will execute all the sub-
mission scripts. The list of all generated files is passed to the submission-
init.php script that will execute the general launch script. The figure 3.21
reports the progress submission window shown to the VO manager during

the submission operations.

78

3. A general-purpose framework for Grid resource exploitation

Submin staius per she;

fon {ser gt wesuli FastSim/ sebelszlsnscr ot 200 _uy CYFROMET-LOG2 10001643_12001692.chp W opEass) kg
1 e kg

fenat st wesul/ FastSim b isslonscriots 2010_uy /IHIP3 | RES_10001793_10001T47,ohe
ot st oSl FaskSim seber slonseriots 200y INFH 245 100017981 03T 2ho. .

{FarirSin e im0l LKSOUTHERD-Cl HER 100
it Rt sk FarSin sebekisisnserints 200Uy LRLSCUTHIGRID RALFR_10000343 10002187, ph.

(cRoloNoRaRoloRal

N

Figure 3.21: Progress window shown during automatic bulk submissions.

Submission web section for expert users The Expert Init section is
the job submission interface for expert users (figure 3.22). The user has to
select one or more target site, every Session enabled site can be selected. The

user can define one or more bulk submissions, for each one need to provide:

the number of jobs to be submitted

the Request of reference

if the job need to be inserted directly in the bookkeeping DB

if it is a test job or not

If the user chose to submit a test bulk the interface will give the oppor-
tunity to detach the submission from the Request. The entire set of job

parameters can be redefined.

3.6 The operations web portal

79

 BNPERT L1 FOR M8 SURMTSSION

Productian:
Gelect & predusctan from list. | 2010 July B8 siowtede details

Subrission Siles:

| CIN_gWs e L CIT_HEE_CF X [CYFRONET 1062 » L GRIF « L) GRISL_UATRA X
L neraec « L NaPE TRES o L *WIPTAPAC - L WEN BARE o | SNFN-CAGLIARE
[INFR-FLaRARS X [Nin-FRasLAll » [C -NFR-LNL-2 [-WR-MLAMO-A LASE [INn-NaRs_ a1 a5 X
L TWFN TERLTTA o L INFN PR L RFNTE L NFR TORING b L raL1€cn o
[us-Liz-gmuL « [URL-SOUTHERIO-OXHLE [URL-S0UTHGRII-HALFE = C umima-Laie o _| VICTORIA-LOG2
CMICTORIA ACED S Wy

zelzct all | supported | wone
Jud Dtails:

Teeldob? O Sumberofrurs: | 100] Sumber o evenls 80000 Mequests | [HacheeniCackeall, S98her Bing b0 Corimil, 6 8, Mivsi 2]

_J Lo fikes to ke stcrec in the bookeening databese

Teel Jub? = Yumber of rures: U Mumber o” eveeils 1 Aequests | [BkNuNu, B+B-_Blay -AD_Cucalad, DC_0 i
Acrabysis; Guneralor; Gurel-y Eachygrourds
[BrakNuN @) [ReR_megEncaccml 8] [nor 3] | A Rackgmurds tifuaceh 3]

o Froduction decuest sxiszsl

o Lo Fikes Lo L slied in the Lokesying dalabass L Lo

{ Suhmin Cam Aad Coace surimary |

Figure 3.22: The Expert Init interface.

Submission web section for shift users The Shift Init section is the
job submission interface for users on shift. When the Production have to be
performed during a long period of time (a certain number of weeks) due to
large amount of requested output, the VO can organize a cycle shifts for job
submission management.

Before starting the interface description we need to present the method
adopted to calculate the site status. The status of a site is its ability to
schedule a job and run it all over the available worker nodes. In other words, if
the site farm is empty the jobs will be scheduled as soon as they will be routed
by WMS, CE and local batch system, on the contrary a certain number of
jobs will remain in pending status waiting for resource availability. Severus
job wrapper communicates to the bookkeeping DB when it is start running
so the framework can classify the site in three status GREEN, YELLOW and
RED. If number of pending jobs (in prepared or submitted status) is lesser
then the half of the number of submitted jobs (half bulk size) the site status
is GREEN, if it is in between the half and the submitted jobs, the site status
is YELLOW, otherwise it is RED. The site entity in the bookkeeping DB

80

3. A general-purpose framework for Grid resource exploitation

collects per site the "bunch_dimension”, the "failed” and the "max_running”
values: the fist one is the fixed bulk size for the specific site’, the second
is the number of accepted job failures before the site could be flagged as
“unavailable” and the third one is the maximum number of jobs in running
state at the specific site.

The framework calculates the following three values for cach site:

e site status: GREEN, YELLOW and RED will be the led’s color per

site in shift init web interface

e site availability: a site becomes unavailable if and only if the number of

failed jobs exceeds the ”failed” value for that site in bookkeeping DB

e overload: a site is considered overloaded if the number of job running
exceeds the threshold value ”max_running” for that site in bookkeeping
DB

The next submission on a certain site will have a full bulk size given by
"bunch_dimension” if the site status is GREEN, half of it if the site status
is YELLOW and zero if the site status is RED. Submission is enabled all
over the non overloaded sites in function of their statuses. As last submis-
sion control parameter defined in bookkeeping DB we needed to introduce
a maximum running job for all the jobs running all over the sites enabled
in a Session. This parameters allows to establish a framework and Grid
infrastructure limit in managing job communications with bookkeeping DB.

The main differences between the Expert Init and the Shift Init interfaces

are:
e the selection of target sites Shift Init interface is bound by the site

status residing in bookkeeping DB

e the number of jobs for each bulk submission varies in function of the

site ”bunch_dimension” and the site status

"The bulk size varies with respect to the reserved resourced for the VO per site

3.6 The operations web portal 81

refreshai every| 10 3 seconds SUBMIT O ALL SELECTED SITES
. Lot Subimissicn Site Land Thesshatd
=] Mame et Rabrrlazinn Cratan drthan
Burct - B = Do = Bl (YOT) Bres - Sub - B 7T Bend - Fuil - e
C xv_wer_ce K 1e-300 o -
= e -5 -0 -0 & @ -0 -8 i taasi00
il | &
=] EYTROMETACED o el 550 b
T e . e R el] 8 -n8-1n (L] |
i, T @
oRar e -10-551 b
- pxtiseg Wm0 <M= 150 @ -0-0 i sar8a1
(! GHISU_UNINA X 2-10-30 e -
- = o-9-0-0 o U-0-0 v LBL]
M mesce [=—a—i] i .
- 6 -5 -16- 8 0 « -0-0 14m07103)
@ oy [] i >
B -5 .-% -0 =T . (%
@ s v — c-om 8 +
Bl e 1 @ - @a-a e
NN ERRARA X 1-1-309 e -
= e I] L] ga-0-0)] B
el o
w INFR-LNLT W i =LL=30 L
gy O -0 -Se-@ §201 0 -90-0 i [s4rs2)
e, o
" INER-RILANG-ATLASC o el 20-10-300 -
pasasy 9= 0 ~Wm- 9 Bw e -9 - @ v |a00/103)
INFR-MAFOLL-ATLAS N 1200 - +
s -8 -0 -8 61 @-0-38 " te0sa)
= . |=——=—= - C]
T -0 -0- % & € - o - @ ¥ (D]
@ mewem] se-ic-1000 +
e o -0 .l08- 0 feo @ -0 -0 10a/103)
WewTL v | E—) | e | 16030900 8 >
- Simeusy 8 - D -08- @ 0 0-=rg: =i Y [200i00)
" INERTORING] o -
0 =D -3 -0 0 [[r30r3a)
]
RAL- E-1E- 9 -
A X e) e e (0 Sin 14847103)
WAL o | S—| _— e &
B =0 -00-0 e 0 -103- 0 {10 maca)
@ UGSOUTHGRIB-OKAIP — e 8 .
o0 -0 .98 1 faee) & -0-08 v 1007163}
W UKSBUTHERIB-RALPP v/ | — s o -
’ o -0 -50-0 0 L] e o ¥ [50/50]
. [~
B UNINA-TGEL X -3 -
B -0-9-0 © -0 -@8 ™ (L]

Figure 3.23: The ShiftInit interface with the list of selectable sites and sub-

mission management functions.

e the number of output elements per job is fixed to the one defined in
the Request

e the job parameters can not be redefined, they are locked to the related

Request

The Shif Init interface is organized in three main tabs showing the list
of Requests (submission will be performed as the selected Request), the list
of sites with submission management and the submission preview window.

The figure 3.23 shows the tab containing the list of sites including site status,

82 3. A general-purpose framework for Grid resource exploitation

availability, last submission, job status graph, site load and the submission

action buttons (per site or ”On all selected sites” in the up-right corner).

Job monitor

One of the main purpose of the operations web portal is the monitoring of
the framework in terms of jobs all over the distributed resources. This func-
tion is implemented in the Job Monitor section. At first access this interface
presents the window allowing job filtering and search. The figure 3.24 shows
the filter box, it includes filters for user-id, production name, request name,
run-number range, job status, sites, job in status submitted or running since

number of hours, job in selectable status in a time range.

[p———

Usr | evievello F sites: o .
Frofuctior: | 2010_uly sl W i TiE e e muitiple site selection
T e WA CIFRENET-.CE2 MG T
Rionre tom ORGS0 WEKERE : Hid b =
F; e me FIFa 1P
. Same @ sraparce (@ submirrsd Brnnisg @done @ filed @ osfailed Freeoor . 1 AR NN CAGLIAR -
e Sstect all | none | pending | notdone = A INH-FERRARA 2 IHEH-FRASCHT
iy Gt O ier + gt 3 I INH-LHLL I INPH-AHILANE- ATLASE.
rwlnijie stetes) suamitzed 3 | frommore than 24 % hown * I IHTH-HAPELI-ATLAS I INFH-PERGLY
calictia 5 d] o o 5 I P FIHEH-TY
5 = * I ToRIND FRaLLCE2
Uk T ¥ LKL S0UTHGRIC 06 HEF
¥ UK)-SOUTHGRIG-RALPP 9 LI -EXGEE
i A ICTOM-LIGE o VICTORIA-LCGE-5L4
il Ewiz
L Salic all | e
= red % i =

pregared il i W selection of © particukir request o from ove 2o gl job parcimseers” valuss
submitted e +

running
 terminat seieeL B 1Eques... |
EnTited dufine jaos paremsle: vale. »
L
- Rreclrsts;)
e Sy Bt HID Cocdar, OG_II, Mecuperhiise NoPairtri] e
Har »
Mot FEE S sy 5
Generator: | -all - #
Geamaerys | oAl +
Beckyound: [-all- k|

Figure 3.24: The window for the filtered search of jobs in the Job Monitor

section.

3.6 The operations web portal

83

2 shaw fitter dizlog o refresh last search
Stow ([10 18] ermes hide s o cobumns Serech:
A0B0 jus fuursl malching e searc uileria,
FIRRUmM y euents ARakyals Genaratar Gonenotry Eackgran sStarss Glld St we (8]
:. L1l|r|h‘a HacRezc iCacktail EQDDDar Btag-HD Cockzail DG 4 MixSuperaidog Wafs - dome alkd CYFRONET-CG2 2940
10092548 e
S Hatfe: (Cocktall BOBGEar Blay-HD Cockiall BG4 T dome gkl CrRSHES.G32 T3sa0
:\:nrlh\“ HacRezc HCocktall EOBDoar_SL DG 4 PacProducte doime ik O RONET-CGZ Bei.un
e Hanrne Eackeall oAl nn_4 fretTan T dane g CEERONET 67 280,
eulane
b HaReo ICockiall B3BORar SL b6 Pabrutule dome gl CYRSHESCE2 £i500
:. I.1||r||n“ HacRezc ICaoktall EOBDDar 5L DG 4 PacProductcs doive aikd CYFRONET-LCE2 FIF.00
s HanResicackeall Fonar_ad 4 PeTanT dane gl CEELONET o2 13050
clane
rl. Mﬂrlh“ HacRezciCaktail EoBDoar 5L DG 4 PacProductcn daive Gl C¥FRONET-CE2 E£7.00
BECH RN RiF g HE_Cnesmil [en Hizsainrraiig Talles gl I BT 5 an
walvar
e Bt BB~ BLay-HE Cuceaall 50 HixSuperablag dome gikl DemAR .10
Showing 1081 58 1,090 of 2,050 eatres |First| | brevious (107 zea | 080 10 zi1] meet||es)
Labbe yeneratead in 65 (destrged s 20

Figure 3.25: Example of search result performed in Job Monitor section.

The result of a search is shown in figure 3.25. The job status reason
communicated by Severus job wrapper can be directly accessed as a bubble
tip moving the mouse on the status value for each job. Clicking the job run-
number the job detail view is shown; it includes all job metadata information,
the job running log (if available) and job output files in terms of LFN,GUID
and SRM.

Distributed resource management

The Site Management portal section allows to insert a new Site charac-

terized by the following metadata:

e site thresholds: limits for prepared, running and failed jobs
e bunch_dimension

the enabled sessions

the supported sessions

the enabled Production for each sessions

84 3. A general-purpose framework for Grid resource exploitation

The interface shown in figure 3.26 allows the selection from the left side

column of the site allowing its own metadata update operations.

SITE MANAGEMENT

| Desorption: e
Fresnned | unning | Falled Buach gimassen
e 50 5 50

ESECEION/PRCDUCTION STTE INFO

INZPY-TRES Ehaw | 1€ gjcmm: Sy
INZPI-LPSC assaing® Mdncd job i
bl © - o o I pe—
TNEN-CASLIART -
INFN-FERRARA i feb gragh [P——
o 118 Subrrittec by evianal
RAERR] [ooe e il eem— —
TNENLNE2
B e @ 9 [R
INEN-MILANOL ATLASE
preduction 4 atow o8 graph e
R @ ‘-m;:— Mnﬂnpwn‘_

INFNTL
THFN - TORIND
RAL-LCC2

Figure 3.26: Site

Shrawing 1 to 2ol 2 enbries

rirst) (vrevicus (@) (ot | (Lot

Management web section. VO manager can enable a site

for a Session or a Production.

The section ADD SITE allows the VO manager to insert new sites in
bookkeeping DB, it is shown in figure 3.27

| Thrsna e sunetee: |3

Amerizhi: |

R

Figure 3.27: The Site Management section dedicated to new site definition.

Chapter 4
Integration with Dirac system

Dirac (Distributed Infrastructure with Remote Agent Control) starts within
the LHCD [64] experiment as a framework for Monte Carlo production in a
Grid Computing environment. Since its first release, Dirac used Pilot Job
paradigm! the consequence of this approach was a considerable increase in
the overall efficiency of the production system. Over the years, Dirac was
expanded by adding advanced job management, data management, user man-
agement and many other features, until Dirac became the official LHCb tool
for handling the entire stack of distributed computing operations, including
the user analysis jobs.

Since 2012 a large part of Dirac development has been dedicated to port
the core system to be able to satisfy general purpose requirements, agnos-
tic with respect to the specificity of LHCb. At present time Dirac can be
customized to specific requirements adding new plugins. In fact all specific
functions are integrated in Dirac via an Extension.

Dirac framework resulted to share the goal with the project discussed in

'In pilot-based infrastructures, users submit their jobs to a centralized queue or job
repository. These jobs are handled asynchronously by submitted Grid jobs (called ”pilot”).
Pilot jobs start them execution asking to a pilot aggregator to obtain a user task from the
centralized queue, when the pilot job completes the task requests a new user task to the
pilot aggregator and so on until the queue is empty. A pilot job it is not committed to

any particular task, and may not be even bound to a particular user.

85

86

4. Integration with Dirac system

this dissertation, it is a general-purpose framework for distributed computing
resource exploitation oriented to big sized VO. Dirac architecture is complex
and several sub components technology have been self-own developed like
the Dirac File Catalog and the monitoring system. On the other hand Dirac
is capable to exploit cloud stacks, is integrated with File Transfer System
(FTS), adopt an efficient job workload management (pilot job, filling mode
described in the following sections). We decided to perform a Dirac evalua-
tion phase with the goal of integrating the bookkeeping DB, monitor system

and site management in Dirac architecture.

4.1 Dirac system introduction

Resource management

Dirac is capable to interact with EGI, OSG and ARC Grid flavors. The
gLite middleware is fully supported (which ensures full interoperability with
EGI and OSG), support to the ARC middleware has recently been added.
An additional module named VMDirac [65] ensures support for Cloud Com-
puting resources. Originally developed as part of the experiment Belle II [66],
VMDirac provides an interface to mostly used Cloud Computing platforms:
the Amazon Elastic Compute Cloud [67] (EC2) and Open Cloud Computing
Interface [68] (OCCI), a standard interface adopted by several Cloud Com-
puting platform like OpenStack [69], OpenNebula [70] and CloudStack [71].
Configuring an SSH access, Dirac can use even resources like desktop PCs
or clusters. Dirac can interact directly with most used batch systems such
as LSF, BQS, SGE, PBS/Torque and Condor. Dirac, by means of two open
source software, BOINC [72] (platform for distributed computing on a desk-
top computer) and VirtualBox [73] (virtualization software), can execute job
payloads even on desktop and laptop computers. In this way a middle-big
sized organization can use computational resources just available but often
under-used (e.g. computers used for secretarial tasks), increasing the com-

puting power in a manner completely transparent to the VO.

4.1 Dirac system introduction

87

User management

User authentication is based on X.509 certificates, ensuring a fully com-
patibility with the required safety standards in a Grid Computing environ-
ment. Each user action is performed using its personal grid certificate.
VOMS service is completely supported. Robot certificates authentication
was successfully tested by Biomed VO. Each user can be member of more

groups, each group with its own permissions and VOMS roles.

Workload management

The Dirac Central Task Queue (CTQ) collects all jobs submitted by users.
According to jobs in CTQ), pilot jobs are launched on the available computing
resources. The pilot job starts executing a routine that inspects the environ-
ment (hardware and software). Once the inspection is completed, the pilot
jobs ask to CTQ for a payload to execute, according to characteristics of
Worker Node. CTQ takes into account of jobs priority before assigning a
payload to pilot job. This mechanism ensures the implementation of VO’s

priority policies.

Data management

EGI Storage Elements are fully supported, including access via SRM and
GridFTP. Dirac provides a custom (DISET-based) Storage Element service,
useful to simply add new Storage Elements, avoiding the complexity of in-
stallation and maintenance of a standard glite storage service. Dirac storage
elements can be used by jobs in a transparent way, like a normal gLite SE.
Data transfer can be managed both using standard gLite copy commands (eg.
leg-cp) as well via File Transfer Service (FTS) for big data movement. Dirac
is fully compatible with LCG File Catalog (LFC), but in addiction provides
a custom File Catalog, named Dirac File Catalog (DFC). Such a catalog is
SRMv2 compatible and provides advanced functionality like structured meta-

data management and advanced replica management. LHCb experiment, is

88

4. Integration with Dirac system

using DFC as default system and LFC as backup solution.

Monitoring

The Resource Status System (RSS) is a Dirac component that provides
advanced monitoring capabilities of available resources. Monitoring can be
configured with high granularity and allow the disabling of resources in ac-
cording to established metrics. The RSS can be interfaced with third party

monitoring systems (eg. Nagios).

Interfaces

Dirac provides a Command Line Interface (CLI) and a Web-based inter-
face. Both CLI and Web-portal can be extended and customized. Webportal
offers a graphical interface to File Catalog: using DFC even metadata can be
managed. Dirac is equipped with a complete and extensible python API set:
a GangaDirac layer based on this API is available. A REST interface is avail-
able, allowing Dirac integration with every programming language and Dirac
access via mobile devices (eg. smartphone, tablets). Dirac REST interface

is active in Barcelona Dirac instance.

Dirac architecture

Dirac has a modular structure: several components (Systems) interact
each other via a custom secure protocol named DISET. Dirac is distributed:
every ”System” implements a set of functionality, different Systems can be
installed on one or different servers, every System can be replicated on several
machines. Dirac is fault tolerant due to Systems replication and distribution
across geographically distributed sites. ”Setup” is a set of cooperating Sys-
tems in order to provide a set of functionality: Dirac can manage several
concurrent Setups (eg. a production Setup, a testing Setup, a development
Setup). Dirac allows to configure and manage a distributed computing in-
frastructure, but simplifying management and minimizing human effort. In

Dirac systems there are three kind of components: Agent, Service, Database.

4.1 Dirac system introduction 89

6 @

System

N

Figure 4.1: Dirac Sytems are made of Agents, Services and DBs.

& \
WMS System
CS System

DIRAC Setu
\ 8]

Figure 4.2: A Dirac Setup is a set of cooperating Systems.

An 7Agent” is a stateless component, executed periodically according to
configured polling time. Agent is used to perform active actions like script
execution, job submission, file transfers, etc. A ”Service” manage informa-
tion, taking data from databases or other sources (eg. configuration files)
and exposing methods to retrieve them. A ”Database” stores information

needed by system. Database back-end can be only MySQL.

Dirac community

Dirac community is made up of several VOs and computing centers. Be-

low a list updated to December 2012.

90

4. Integration with Dirac system

Table 4.1: Entities belonging by a Session in SBK4

Subject Type
LHCb collaboration/experiment
Belle 11 collaboration /experiment
BEPC collaboration/experiment
BES 11T collaboration /experiment
BYOMED @ CREATIS - Lyon | topical community
Lyon Computing Center regional community
CESGA regional community
CTA collaboration /experiment
GISELA regional community
GLAST collaboration/experiment
ILC/CLIC collaboration/experiment
IOIT @ Hanoi regional community

4.2 Framework integration with Dirac system

4.2.1 Dirac capability check

The first step of the integration process was the Dirac capabilities check
and comparative tests with our project in order to measure the use case
target compatibility.

A comparative test between the framework, object of this dissertation,
and Dirac system was made in order to give a quantitative performances
measurement. There where several tasks to keep under control during the
test: assure that the sites involved in the test were correctly configured, store
the input files and the applications in DFC, replicate these files on the Storage
Element of the sites, prepare the JDL for job submission, test Severus script
in charge of running the simulation application on the Worker Node. A total
of 1000 jobs were submitted, 100 for each of the 10 sites involved. FEach
job simulated 10000 events in FastSim session for a running time of about
3 hours per job. The input data were 5 files, for a total of 3GB, previously
uploaded in DFC and replicated on several Storage Elements. The output
data, were saved at INFN-T1 and registered in DFC, saving the output of

each job in a specific folder. Test results about Dirac after 48 hours:

4.2 Framework integration with Dirac system

91

87,8% jobs successfully executed

8,5% jobs failed

3,7% jobs still in waiting

up to 753 jobs simultaneously running

filling mode not enabled

Table 4.2: General-framework vs Dirac comparative test results

General framework Dirac
Site done | expired | failed | ratio | done | waiting | failed | ratio
CYFRONET 100 0 0 100% | 100 0 0 100%
IN2P3-CC 100 0 0 100% 20 0 80 20%
IN2P3-LPSC 33 67 0 33% 100 0 0 100%
INFN-BARI 97 0 3 97% 100 0 0 100%
INFN-FRASCATI | 99 0 1 99% 59 37 4 59%
INFN-LNL-2 99 0 1 99% 100 0 0 100%
INFN-MILANO 100 0 0 100% | 100 0 0 100%
INFN-PISA 100 0 0 100% | 100 0 0 100%
INFN-T1 97 3 0 97% 100 0 0 100%
UKI-LT2-QMUL 0 100 0 0% 99 0 1 99%
TOTAL 825 170 5 82,5% | 878 37 85 87,8%

Dirac and the General-framework performance are comparable. The
framework has been optimized for test purpose, while Dirac has been used
below of his best performances due to a lack of a fine-tuning caused by a
non complete knowledge of the product at the time of the test. Test re-
sults show that Dirac is able to manage simulation productions as well as
the General-framework, but in order to support an integration step of Dirac
with the developed framework, Dirac should demonstrate to have some ad-
ditional features. In fact other two major Dirac features have been tested:
massive data management (FTS transfers) and efficiency gain enabling the
filling mode.

The Dirac capability in managing data transfers via F'T'S have been tested
using the routes (FTS channels): INFN-T1, INFN-Bari, IN2P3-CC(Lyon,
France), RAL-LCG2(Manchester, UK). Dirac was able to perform test trans-

fer successfully.

92 4. Integration with Dirac system

FTS management via Dirac offers two pros with respect to F'T'S standard

usage via glite:

e performing FTS actions are easier using Dirac with respect to standard
gLite tools: glite needs the full path (SURL), while Dirac needs only

source and destination site

— gLite glite-transfer-submit -m <proxy _server>

-s <fts_server> <source_file> <destination_file>

— Dirac dirac-dms-fts-submit <lfn> <sourceSE>
<destinationSE>

e Dirac automatically updates the File Catalog inserting information of
new available copy of transferred files, while using gLite this operation

on File Catalog must be manually performed

Filling mode is the pilot job strategy allowing the exploitation of site
WN until the pilot job proxy certificate is not expired. As we described in
the previous section the pilot job once it is scheduled on the WN makes a
request to the Task Queue Director for a user job (called payload) and run
it. If the Filling Mode is active the pilot job can exploit all its proxy life-time
to execute jobs/payloads as soon as the Central Queue can provide them.

The advantage provided by this technique consists in:

e make the most of the time available on the WN to perform many more

payload as possible

e perform the matchmaking (the match between available resources and
the resource requirements for a payload) only once for a set of payloads,

rather than having to performed it once for each payload

The figure 4.3 shows the Pilot job submission cycle in Dirac. The blue
boxes perform the task queue manager, the scheduler and the submitter
modules, the pilot job running in the worker node is on duty for payload

retrieval from Task queue (green line).

4.2 Framework integration with Dirac system

93

“Stannasd DIRAC job submission cyele
Pilats to

Panding joas subrmit Gric pilots

/ Grid

DIRAC Task 4N Pilot N pilot
Nueues Scheduler " Director

Figure 4.3: Dirac job submission cycle: Pilot job strategy.

A test was carried out in order to measure the actual gain in the perfor-
mances offered by this operating mode. The test consisted in the submission
of a test payload (the calculation of the Fibonacci series up to the 40th
digit), submitting at INFN-T'1 a series of 100, 1000 and 10000 job simulta-
neously. The test was first carried out with the filling mode disabled, then
was repeated with the filling mode activated.

Graphs 4.4, 4.5 and 4.6 summarize the results of this test, from which it
can be seen how the filling mode involves a significant decrease in the total
execution time of the payloads?, but also a more rapid emptying of the tail
of payloads to execute (related to the area under the lines in graphs, where
the number of jobs to be executed is projected against time). This effect

becomes more evident as the number of submitted payloads increases.

m
%

i Ny s
iw Lo |
; "

& & .'\ i

: e o |

T o - S R :

Figure 4.4: Filling mode test running 100 jobs. Pilot jobs run in 85,2% of

normal jobs time.

2The time the last payload is completed

94

4. Integration with Dirac system

1000 jude

Figure 4.5: Filling mode test running 100 jobs. Pilot jobs run in 44,7% of

normal jobs time.

1000 jahs

Figure 4.6: Filling mode test running 100 jobs. Pilot jobs run in 36,1% of

normal jobs time..

4.2.2 Dirac merging project

The goal of this work is to obtain a Dirac system flavor tightly integrated
with specific VO operations. Such integration regards the concept of Session
and its own components: Production, Request and Submission; the typical
VO computing model including Dirac system at present time includes also a
disconnected bookkeeping DB and a logic layer acting as a bridge between
the two environments. The pure workload management (Dirac) and the VO
operations in terms of application and metadata management can interact
directly in Dirac. That guarantee the highest level of synergy that subse-

quently brings the system to an increased level of usability and robustness.

4.2 Framework integration with Dirac system 95

The results of the Dirac evaluation phase described in the previous section

have been evaluated taking into account the following factors:

e Dirac advanced features (mass data transfer, pilot job management,

cloud interface and Dirac plug-able architecture)
e the developers and community support: very responsive
e the results of tests

e cxpertise gained inside the collaboration in managing and extending

Dirac

We took the decision of starting the merging of our project peculiarities
in the Dirac core architecture. The development of a new Dirac module was

started. It has been organized in three sub-projects:

1. Create an interface between Dirac and Bookkeeping Database.

2. Extend Dirac web-portal creating new web-sections to allow the follow-

ing actions:
e Configuration and management of available sites for Production
executions.
e Production definition and initialization.
e Productions monitoring.
e Creation and monitoring of Requests.
e Submission and monitoring of jobs belonging to a given request.

3. Execution of Severus job wrapper in the context of Dirac pilot job

strategy.

The modular structure of Dirac can be used to extend its functionality
by adding new modules. The initial goal of the new Dirac module is to bring
together Dirac with the Bookkeeping DB and the Job Wrapper 4.7 in order to

4. Integration with Dirac system

- —— —_— “

r ———— —
! Information
System

bt O D I RAC

I N

|
> 8QLAlchemy SuperBDIRAC
I

‘!_. !
Tr

Data Placement DB S e

S i

| REST | T —
Py “By_liNnc

/ Job Wrapper | Distributed e

L (Severus)) Resou rces_ ; %_:____.__;CLUSTERIJ
- O N

Ot o pmmman

Simple, standard and long term solution

Flexible enough to fulfill needs of a generic VO ’

Figure 4.7: Bird’s eye view on the Dirac merging project including Dirac
system on the right-up corner, the framework elements (bookkeeping DB,
REST communication layer and Severus job wrapper) on the left side and

all the enabled distributed resources at the bottom.

allow the creation, monitoring and execution of the jobs for which metadata

are structured in a Session architecture typical of our project.

One of the key constraint the design of the final Dirac flavor need to re-
spect is the separation between cores functions and the bookkeeping DB. In
fact the VO have to maintain the capacity of modify /upgrade the DB with
no limitation in terms of dependence with Dirac. This requirement have to
be taken into account during the integration with Dirac. On the other side
Dirac doesn’t provide a generic interface to SQL database. Therefore the
first problem to face was the decision on how to interface Dirac with book-

keeping DB. Several solutions are available in Python allowing SQL database

4.2 Framework integration with Dirac system

97

interface. Two tools has been evaluated for such a goal: psycopg [74] and
SQLAlchemy [75]. Both psycopg and SQLAlchemy are released under an
open source license (LGPL3 [76] license for psycopg, MIT [77] license for
SQLAlchemy) so they are immediately usable. Psycopg relies on official
Python DB API, can interface a PostgreSQL database and is able to map
DB in python objects (Tuples in records, lists in array, dictionaries in hstore
(Postgresql data type)). SQLAlchemy is an SQL toolkit and Object Rela-
tional Mapper (ORM) for Python. It is based on a data mapper pattern,
so classes can be mapped to the database in multiple ways. SQLAlchemy
natively support many of SQL dialects, so it’s able to interact with follow-
ing SQL database: Drizzle, Firebird, Microsoft SQL Server, MySQL, Oracle,
PostgreSQL, SQLite and Sybase. Psycopg use raw SQL code to perform
queries. SQLAlchemy by default maps database entities to python objects.
In this way the interaction with database is just like interacting with a normal
python object, even though also raw SQL code can be used. SQLAlchemy
is the most elegant and powerful solution since the ORM? allows to write
pure python code, avoiding use of raw SQL commands. The possibility to
change DB backend without requiring any modification to source code but
only modifying the connected DB is very important in the attempt to de-
velop a code usable for a long time. Adopting psycopg allows to reuse all SQL
queries just available, while using SQLAlchemy all queries must be coded us-
ing ORM paradigm. The great flexibility provided by SQLAlchemy with
respect to psycopg was considered very important. The final decision was to
adopt SQLAIchemy.

30bject Relational Mapping (ORM) is a programming technique in which a metadata
descriptor is used to connect object code to a relational database. ORM converts data
between type systems that are unable to coexist within relational databases and Object

Oriented Programming (OOP) languages.

98

4. Integration with Dirac system

Job wrapper updates in Dirac

Since Severus was developed before Dirac evaluation test, it did not use
any Dirac features. For this reason, some modifications have been necessary
to allow its execution inside Dirac architecture based on pilot jobs. In our
project jobs have planned to be launched from the same site where the VO
application and its input files reside. As a consequence of this, input data files
and software were supposed to be always locally accessible. Configuration
file for Severus and job submission plan are supposed to be generated by web
operational portal.

In order to exploit Severus from Dirac the file manager class has been
modified to update the above mentioned characteristics: file access method
needs to include standard glite command use at central site too, the VO
application need to be uploaded in the central Storage Elements and regis-
tered on DFC (not just in LFC) to allow the access via Grid tools in place of
a local access only. The modified Severus version was successfully used via
Dirac to perform a functionality test.

Summarizing, the job wrapper has been modified to meet Dirac system

requirements for the following aspects:

e stage-in and stage-out managed via Dirac or via other protocols (eg.

ftp, scp, curl etc.) as fallback options

e ccntral framework site has been uniformed with all other sites with

respect to the methods for input and application files access

The new Dirac module

The main component of the new module is the SimulationSystem, which
is made of two components: the SBKService and the Dirac Web portal ex-

tension.

SBKService A generic SQL DB connector has been developed as a Dirac

service, it is called SBKService. As we discussed in the previous section the

4.2 Framework integration with Dirac system

99

SQLAlchemy technology has been adopted to map the PostgreSQL rDBMS,
the implementation of bookkeeping DB. SBKService exposes only Dirac com-
pliant methods, so interactions with different databases is simply an interac-
tion with another Dirac service. The figure 4.8 shows the abstraction on DB
interaction implemented by SQLAlchemy technology: the new Dirac service
makes use of the Managers software layer to perform read/write requests to
the entity mapper layer, SQLA Mappers.

SOLA Mappers

P "
SBK Service ST i

WY

o] :
: I
i i ! !
< ————1"] o
o —] |
1 -\\\
! i
| [l
Webs Partal - =] = \
; i Vel i | .
Job e : < > v §
A =, -
! Ay |
>roduction i .
monitoring = ¥ ! ! //
vl vl
5] /
7= P i
A TATELDE S | i
| vl ! a '
29 | 1
Y |

Figure 4.8: Mapping layers for bookkeeping DB in Dirac using SBKService
and SQLAlchemy technology.

Dirac web portal extension A Dirac web portal extension has been
developed to replicate operational web portal functionality, using the same
technologies adopted in Dirac: Pylons [78] and ExtJS*. A site monitoring
page is available (see figure 4.9), showing data from bookkeeping DB: site
description (OS, grid flavor, architecture), site status in terms of software
availability and certification, job submission thresholds, queue occupancy,
site availability. Simulation jobs monitoring page (see figure 4.10) shows job

status as reported in bookkeeping DB.

4ExtJS is a pure JavaScript application framework for building interactive web appli-

cations using modern techniques such as Ajax, DHTML and DOM scripting.

100 4. Integration with Dirac system

Figure 4.9: Web interface reporting the distributed sites metadata using the

new Dirac module.

G eintda

Figure 4.10: Web interface reporting jobs metadata using the new Dirac

module.

Functional test The goal of functional test is proving the correct inte-
gration of bookkeeping Db and Severus job wrapper in Dirac system. In
particular we need to verify the functioning of job wrapper communications
with bookkeeping DB and the correctness of metadata information inclusion
in Dirac web portal. Dirac job monitoring and distributed resource moni-
tor have to be compliant with DB Session schema in terms of contents and
entities relation-ships. Correct job execution is out of test scope.

The Production and Request parameters have been defined in bookkeep-
ing DB via operations web portal. Such information will be retrieved by
a specific Python script encapsulating the Dirac client functions. It uses
Dirac API to prepare and submit jobs. Dirac server receives job submission
commands from the Dirac client, then it starts the normal procedure for job
management in Dirac: scheduling, pilot submission, payload retrieval and ex-
ecution and stage-out. Job status updating is performed as usual by Severus
script (the Dirac compliant) via REST communication with bookkeeping DB.
Jobs were submitted to the Grid resources by Dirac server. Submission site
was INFN-T1. FastSim session has been chosen as the more representative
session for this test. Every job simulated 3000 events: this value was chosen
to have an execution time longer than 10 minutes. Three main bunch sub-

missions of 400 jobs were performed at INFN-T1 to obtain a total of 1200

4.2 Framework integration with Dirac system 101

simulation jobs. Two different job failures have been reproduced to verify
the correct interactions between job and DB or Dirac web portal and DB.
Bookkeeping database has been properly updated for every job in every
test. All status updates have been promptly displayed in operational web
portal as well in Dirac web portal, with no appreciable delay between two
portals. SQLAlIchemy didn’t introduce any appreciable delay or information
loss, at least in this functionality test. Success rate was established as ratio
between status saved in bookkeeping DB and status displayed in Dirac web
portal: its value was 100% in all submissions. The new Dirac module could be
considered a success in integrating bookkeeping DB and monitoring specific

requirements in Dirac architecture.

102 4. Integration with Dirac system

Chapter 5

A real use case: description

and results

The general-purpose platform for Grid resources exploitation has been
validated and tested in a real use-case back in the context that was its original
incubator, the SuperB experiment. As we discussed in Chapter 2 the SuperB
project needed two types of Monte Carlo applications, the Full- and the Fast-
simulations. Both processes can produce several types of events, depending
on a set of parameters given to the application at run time, and may use a

few files as input.

The INFN-Tier 1 site at CNAF in Bologna, Italy, has been chosen as
the central EGI service site; it provides the User Interface to the Grid on
which and the core functionality of the framework have been deployed. The
distributed computing infrastructure used for these simulation productions
includes 15 sites in Italy, France, UK, USA and Canada, which deploy three
different Grid middleware (EGI/gLite, OSG/Condor, Westgrid/gLite). Each
site has been carefully configured by enabling the SuperB VO, installing the
applications software and registering the required input files in their Storage

Elements.

The two sessions related to FastSim and FullSim use cases have been

configured in bookkeeping DB, subsequently the productions and the requests

103

104 5. A real use case: description and results

have been initialized.

The framework has been successfully used for intense production cycles of
both Full- and Fast Simulation. More than 11 billion simulated events have
been produced. Over an effective period of 4 weeks, approximately 180000
jobs were completed with a 8% failure rate., mainly due to executable errors
(0.5%), site misconfigurations (2%), proxy expiration (4%), and temporary
overloading of the machine used to receive the data transfers from the remote
sites (2%). The peak rate reached 7000 simultaneous jobs with an average
of 3500. The total wall clock time spent by the Monte Carlo applications is
195 years.

In the next paragraphs the results from two production cycles will be

reported in details.

5.1 First simulation production cycle

During this production phase, over 1.7 billion simulation events, equiv-
alent to ~ 0.2ab~!(Inverse attobarn!), have been produced using the dis-
tributed computing environment.

The Full Simulation production has been divided in two categories: sim-
ulation of background frames for Fast Simulation (bgframes) and full simu-
lation for background studies (bgstudies).

The background frames production consists in just one Production _Series,
named ’cyclel_bgframes’. The full simulation for background studies consists
in four Production_Series depending on geometry, physics list and genera-
tor’s parameter MinDeltaEnergy: cyclel _full HP, cyclel_full DeltaE_0.002,
cyclel_full_Deltak_0.05, and cyclel_full.

The entire Full Simulation production has been run at CNAF in about

12 days. Table 5.1 shows the production summary.

'Inverse attobarn: is a unit of area 107*®m? originally used in nuclear physics for
expressing the cross sectional area of nuclei and nuclear reactions, today it is also used in
all fields of high energy physics to express the cross sections of any scattering process, and

is best understood as a measure of the probability of interaction between small particles.

5.1 First simulation production cycle 105

Table 5.1: Cycle 1: Full Simulation Production Summary

cyclel_bgframes

Geometry Status Jobs Events
SuperB done 4000 108
SuperB failed 1 250
SuperB sys-failed 1 250

cyclel_bgstudies

Geometry Status Jobs Events
shielded done 4840 604000
shielded sys-failed 1 100
unshielded done 785 196250
unshielded failed 2 500

unshielded sys-failed 13 3250

The Fast Simulation production has been divided in two types (requests):

simulation of ”Generics” and ”Signal Mode” events.

For Generics, four generators (B0BObar, B4+B-, ccbar and uds) and three
geometry configurations have been used. Events with- and without- back-
ground mixing have been produced. In the ”Signal Mode” production four
physics channels events have been simulated (BtoKNuNu, KplusNuNu, BtoK-
starNuNu, and BtoTauNu) with background mixing,.

Results are summarized in table 5.2.

Fast Simulation production has involved nine remote sites; about 82% of
submitted jobs have used the Grid infrastructure and/or exploited remote

resources, as illustrated in figure 5.1 for the Generics production.

Over a period of 2 weeks, approximately 20000 jobs were completed with
an average ~ 8% failure rate, mainly due to site misconfigurations (2.6%),
proxy expiration (2.0%), and temporary overloading of the machine used to
receive the data transfers from the remote sites at CNAF (3%). The peak

rate reached 3200 simultaneous jobs with an average of 500.

106

5. A real use case: description and results

Table 5.2: Cycle 1: Fast Simulation Production Summary

cyclel_Generics

Bkg Jobs Events
Y 4508 104.340 x 10°
N 14672 1472.100 x 106

Total 19180 ~ 1.58 x 10°

cyclel_Signal

Signal Jobs Events
BtoTauNu 30 3 x 108
BtoKNuNu 60 6 x 108

BtoKstarNuNu 60 6 x 10°
BtoKplusNuNu 688 68.8 x 10°
Total 838 83.8 x 10°

5.2 Second simulation production cycle

During this production cycle over 10.3 billion simulated events have been
produced.

The Full Simulation production has been devoted to produce 1M of RadB-
haBha background? events to be then used by the Fast Simulation. Only
CNAF resources have been used for 8 days. Fast Simulation has been used
then to produce Pairs background events at CNAF for a couple of days.

After this preliminary background production, efforts have been devoted
to the effective Fast Simulation production in the distributed environment.

The Fast Simulation production has been divided in several ’analyses’,
each consisting of several Requests. The analysis groups have simulated
events that will be used for a specific physics analysis and requires different

generators and geometries. In addition, RadBhaBha background mixing has

2RadBhaBha is a generator of simulated background frames. Such background events
need to be taken in consideration during the complete collision simulation in FastSim

methodology

5.2 Second simulation production cycle

107

2000 3000 4000 5000
| |

1000
|

GRIF IN2P3 BARI NL PISA CNAF SLAC QMUL RAL

0

Figure 5.1: Jobs submitted to remote sites for the Generics Production.

been always used while pairs mixing has been used for selected datasets.

Table 5.3 summarizes the produced analyses and requests (all possible

combinations of generator and geometry and mixing).

Fast Simulation production has involved 15 remote site; figure 5.2 shows
the distribution of produced events among remote sites. About 69% of sub-
mitted jobs have used the Grid infrastructure and/or exploited remote re-
sources. This value is lower than the first cycle because the CNAF farm has
been upgraded allowing the exploitation of more slots and also because at

the end of the cycle jobs have been submitted to the local CNAF queue only.
Over an effective period of 4 weeks, approximately 162000 jobs were com-

pleted with a ~ 10% failure rate, mainly due to executable errors (0.5%), site

misconfigurations (2%), proxy expiration (5.0%), and temporary overloading

108 5. A real use case: description and results

Table 5.3: Cycle 2: Fast Simulation Analysis and Requests Summary

Analysis Generator Geometry Bkg
B+B-* DG_4 All
HadRecoilCocktail B0BObar* DG 4a NP
DG_Babar
B+B-* DG4 All
SLRecoilCocktail BOBObar* DG 4a NP
DG_Babar
Generics B+B-* DG4 All
BOBObar* DG 4a NP
BtoKNuNu B4+B-_K+* DG_4 All
BOBObar_K0* DG_4a NP
BtoKstarNuNu B+B-_Kstar+* DG4 All
BOBObar_Kstar0* DG_4a NP
B+B-_K+*
B+B-_Kstar+* DG 4 All
KplusNuNu B0BObar_K0* DG_4a NP
BOBObar_Kstar0*
B+B-_tau*

of the machine used to receive the data transfers from the remote sites at
CNAF (2%). The peak rate reached 6000 simultancous jobs with an average
of 3200. The total WCT spent by the simulation executables is ~ 195 years.

It is important to notice that in the second production cycle, most of the
requests have been run several times with different implementations of the
background mixing code for pairs, which have different performances and
levels of precision. Figure 5.3 shows the histograms (bins of 1 hour) of jobs
status with respect to time for all the production period (above) and for the
last 2 weeks (below); the most reliable events are those of the last productio