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ABSTRACT 

 

L’enorme varietà delle forme cristalline (cocristalli, polimorfi, sali, idrati e solvati) 

è tutt’oggi una sfida scientifica con importanti implicazioni pratiche nell’industria 

farmaceutica, nello stadio finale di sviluppo di un farmaco o di una formulazione 

farmaceutica e negli stadi iniziali di sintesi ed isolamento di un API (principio attivo) in 

una definita forma cristallina favorevole.  La scelta della forma cristallina ottimale di un 

API che influisca indisputabilmente sul programma di sviluppo del farmaco è direttamente 

relato alla solubilità dell’API in acqua. Siccome la solubilità in acqua di un API è il banco 

di prova per il trasporto e l’assorbimento del farmaco, attraverso un processo di screening, 

ottimizzazione e selezione è possibile controllare la velocità di dissoluzione dell’API e 

determinare l’entità della sua biodisponibilità e il profilo farmacocinetico, che sono 

strettamente relati alla solubilità ed alla forma cristallina. Pertanto comprendere le forze 

dell’impacchettamento cristallino ed il loro impatto sulle proprietà chimico-fisiche delle 

diverse forme cristalline dà accesso al controllo delle performance dell’API. L’ampia 

gamma di forme cristalline in cui il cristallo molecolare dell’API può esistere prevale sui 

suoi possibili polimorfi, sali, solvati e idrati in virtù del vasto numero di potenziali 

coformer, che non solo superano il limitato numero di controioni per la formazione di sali, 

ma sono anche molto più versatili e possono dare origine a più complesse interazioni 

molecolari basate su diversi legami ad idrogeno con l’API che portano a cambiamenti 

conformazionali e flessibilità per l’impacchettamento cristallino nel processo di 

cocristallizzazione. I cristalli molecolari di interesse farmaceutico sono propensi a superare 

la transizione di fase dell’API che da’ luogo al polimorfismo. Ma d’altro canto, per la 

flessibilità conformazionale causata dal riconoscimento intermolecolare basato sul legame 

ad idrogeno, sfruttano le nuove forme polimorfe dell’API che possono essere stabilizzate 

in presenza di coformer opportunamente scelti. Un altro vantaggio dei cristalli molecolari 

cocristallizzati con appropriati coformer è il controllo della risoluzione stereoselettiva degli 

API racemici. 

Il concetto di modificare le proprietà dell’API mediante formazione di cristalli 

molecolari che contengono un singolo API in combinazione con un coformer che può 

essere un altro API oppure un eccipiente funzionale capace di migliorarne le performance 

nel drug delivery o nelle formulazioni rispetto al cristallo dell’API originario è diventato 

un paradigma emergente per i programmi di sviluppo dei farmaci. Anche se le 



 

 
 

combinazioni di formulazioni a dose fissa vengono frequentemente prescritte in terapia, i 

cristalli molecolari multi-API o “farmaco-farmaco” sono forme solide dell’API 

relativamente poco sfruttate. Questi cristalli molecolari nei quali sono cocristallizzati API 

di natura diversa ma complementari in termini di effetto farmacologico o di meccanismo di 

azione hanno importanza potenziale per migliorare le proprietà chimico-fisiche di entrambi 

gli API, la loro performance biofarmaceutica e la sinergia della risposta farmacologica.  

Lo screening delle forme cristalline della metformina  ha prodotto due gruppi di sali 

molecolari. Il primo gruppo comprende i sali molecolari della metformina con un’ampia 

gamma di acidi organici riconosciuti innocui come additivi alimentari, il secondo sali 

molecolari di metformina cocristallizzati con coformers che sono essi stessi API 

(diclofenac, acido dicloroacetico, acido glicolico e acido salicilico) ed eccipienti funzionali 

(saccarina ed acesulfame).  

Prove preliminari per determinare la citotossicità dei cocristalli di metformina con acido 

dicloroacetico indicano una maggiore attività antitumorale in confronto all’effetto 

esercitato dai singoli farmaci e dalla loro miscela fisica.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

ABSTRACT 

 

Crystal form (cocrystals, polymorphs, salts, hydrates and solvates) assortment 

remains a scientific challenge that implicates practical issues in the pharmaceutical 

industry at the late stage of drug development of pharmaceutical formulations and in early 

stage of synthesis and isolation of an API in favorable defined crystalline form. Indeed, the 

selection of the optimal crystal form of an API that indisputably impacts the drug 

development program is directly related to the API’s aqueous solubility. Since the aqueous 

solubility of an API is the benchmark for its drug delivery and absorption, by crystal form 

screening, optimization and selection it is possible to control the dissolution rate of API, 

and thus to determine the extent of its bioavailability and pharmacokinetics profile which 

are intricately interrelated to solubility and crystal forms. Therefore, understanding the 

crystal packing forces and their impact upon physicochemical properties of different 

crystal forms is threshold for controlling the performance of the API. The array of crystal 

forms in which molecular crystal of API may exist prevails over its possible polymorphs, 

salts, solvates and hydrates due to the vast number of potential coformers which, not only 

extend over the limited counterions for salt formation, but also they are much more 

versatile in nature  and thus imply for more complex intermolecular interactions based on 

different H-bonding with API that lead to conformational changes and flexibility for 

crystal packing in process of cocrystallization. Molecular crystals of pharmaceutical 

interest are amenable to excel the phase transition in API which exert polymorphism. But 

on the other hand, due to the conformational flexibility caused by intermolecular 

recognition based on hydrogen bonding, they exploit the new polymorphic forms of the 

API that might be stabilized in the presence of favorable selected coformers. Another 

benefit of the molecular crystals cocrystalized with appropriate coformers is controlling the 

stereoselective resolution of the racemic APIs.  

The concept of modifying the properties of the API by the forming the molecular 

crystals containing single API in combination with coformer that is another API or 

functional excipient that improves the performance of the drug delivery or in the 

formulations, compared to the native API crystal, has become emerging paradigm for drug 

development programs. Moreover the combination of fixed-doses formulation have been 

frequently prescribed for therapy, the multi-API or “drug-drug” molecular crystals are 

relatively unexploited solid forms of APIs. This molecular crystals cocrystallized of the 



 

 
 

different by nature API, but complementary in terms of pharmacological effect or their 

mechanism of action have potential relevance for improving the physicochemical 

properties of both APIs, their biopharmaceutical performance and synergy in 

pharmacological respond.  

Crystal form screening of metformin yields two groups of molecular salts. The one 

comprises the molecular salts of metformin with a wide range of organic acids recognized 

as safe for food additives, the other is referred to molecular salts of metformin 

cocrystallized with coformers which are APIs (diclofenac, dichloroacetic acid, glycolic 

acid, and salicylic acid) and  functional excipients (saccharin and acesulfame).  

Preliminary testing of cytotoxicity of the molecular crystals of metformin with 

dicloroacetic acid indicate an increased anticancer effect comparing to the effect exerted by 

the native drugs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Part 1  

Crystalline organic solids of pharmaceutical relevance 

 

Organic crystals are described by unit cell that contains minimal number, but at least one 

molecule or ion which structural features and symmetry elements determine the nature of 

intermolecular interactions consequently of which molecules or ions are packed and 

oriented in three-dimensional space (Brittain & Byrn, 1999). Crystals of organic solids, 

depending on the arrangements and symmetry of their structural patterns, may be classified 

to one of the seven crystal classes defined by the relationship between the individual 

dimensions, a, b, and c of the unit cell and between the individual angles, α, β, and γ of the 

unit cell (Figure 1), to one of the 14 Bravais lattices (Table 1), and to one of the 230 space 

groups (Cullity, 1963).  

 

 
Figure 1.1. A unit cell and the lattice vectors 

 

Individual symmetries and the symmetries of the diffraction patterns for all the 230 

possible space groups are describes in the International Tables for Crystallography (Han, 

1987). There is evidence for preferences solids to crystallize in certain space groups. 

Statistical analyses of all organic and organometallic compounds included in Cambridge 

Structural Database (CSD) indicates that about 90% of them belong to the 17 most 

common space groups, but about 76% crystallize in only five (5) space groups, P21/c, 

P212121, P ̅, P2 and C2/c. Gavazzotti & Flack (2005) explained that this quite restricted 

number of space groups is result to the limited number of arrangements of symmetry 

operations: inversion through a point  ̅, the twofold screw rotation (2) and glide reflection 

(g) that organic molecules accomplished as a prerequisite for their strict packing into 

crystalline structures.     
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Table 1.1 The properties of the 14 Bravais lattices 

Crystal system Axial translation Axial angles Bravais lattice 

Cubic a = b = c α = β = γ = 90° 
simple 

body-centered 
face-centered 

Tetragonal a = b ≠ c α = β = γ = 90° 
simple 

body-centered 

Orthorhombic a ≠ b ≠ c 

α = β = γ = 90° 
 
 
 

simple 
body-centered 
face-centered 
side-centered 

Trigonal a = b = c α = β = γ ≠ 90° simple 

Hexagonal a = b ≠ c 
α = β = 90°, γ = 

120° 
simple 

Monoclinic a ≠ b ≠ c α = γ = 90° ≠ β 
simple 

side-centered 

Triclinic a ≠ b ≠ c α ≠ β ≠ γ ≠ 90° simple 

 

Organic crystals exist as single molecular  entities or as multicomponent systems. The 

classification of the crystalline organic solids is presented on the Figure 1.2.   

 
Figure 1.2. Classification of the organic solids (adapted from Stahly, 2007) 
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A common problem dealing with single component organic crystals is appearing of 

polymorphism as a propensity the molecules, during the crystallization, to be assembled 

(packed) in the crystal lattice in different spatial arrangements depending, either on the 

intermolecular interactions between several different functional groups (orientation 

polymorphism), or differences in structural flexibility of the molecules (conformational 

polymorphism) (Bernstein, 1993; Zerkowski et al., 1997; Chin et al., 1999). Different 

polymorphic forms of single-component crystal of one organic compound cause 

differences in physical properties listed in Table 1.2.  

Multicomponent organic crystals cover diverse structures formed by stoichiometric or 

nonstoichiometric non-covalent bonding between at least two molecules with different 

polarity (ionizable, neutral or zwitterionic), chemical nature (acidic or basic compounds) 

and physical state at ambient conditions (solid, or liquid) (Peterson, 2006). Comparing to 

single-component crystals of one organic compound, its multi-component crystals have 

different chemical composition due to the nature and physical state of the molecules of the 

other components that participate in diverse non-covalent interactions with  the molecules 

of the parent compound. 

Crystalline solvates and hydrates represent molecular solvent-solute type of adducts. Since 

small-sized molecules of water or any other solvents are capable to participate in hydrogen 

bonding, they can link in the structure of organic molecules. Based on the location of 

crystallized water, crystalline hydrates may be classified in the following classes (Giron et 

al., 2002; Morris & Rodigues-Hornedo, 1993): 

- isolated hydrates (e.g. cefadrine dehydrate; Florey, 1973); 

- ion-associated hydrates (e.g. dehydrate and trihydrate of disodium adenosine 5’-

triphosphate; Morris et al., 2001) 

- channel hydrates (e.g. theophylline monohydrate; Morris et al., 2001; Sugawara et al., 

1991), that may be additionally classified in the expanded channel or nonstoichiometric 

hydrates (e.g. cromolyn sodium; Chen et al., 1999) and the planar hydrates (e.g. 

nedocromil zinc; Zhu et al., 1997).   

The molecular structure, and the thermodynamic conditions (the water or solvent activity 

in crystallization medium, temperature, and pressure) are responsible factors whether the 

hydrates and/ or solvates will be formed. Some of the hydrates structures can belong to 

more categories of the hydrates (Zhu et al., 1997). 

Clathrates are host-guest multi-component crystals wherein quite mobile guest molecules, 

without specific interactions, partially or fully occupy rigid tridimensional cavities- or 
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cage-shaped crystal lattice of the host molecule that controls the orientation of the 

individual molecules or aggregates of molecules (Andreetti, 1984).  

 

Table 1.2. Property differences between single-component and multicomponent 
crystals and the different structures of their crystalline phases (polymorphs) 

 

Packing properties 

Molar volume and density 
Refractive index, optical properties 
Conductivity, electrical and thermal 
Hygroscopicity 

Thermodynamic properties 

Melting and sublimation temperatures 
Internal energy 
Enthalpy 
Heath capacity 
Entropy 
Free energy and chemical potential 
Thermodynamic activity 
Vapor pressure 
Solubility 

Spectroscopic properties 

Electrical transitions, UV-VIS spectra 
Vibrational transitions, Infrared and Raman spectra 
Rotational transitions 
Nuclear magnetic resonance chemical shifts 

Kinetic properties 
Dissolution rate 
Rates of solid state reactions 
Stability 

Surface properties 
Surface free energy 
Interfacial tensions 
Habit 

Mechanical properties 

Hardness 
Tensile strength 
Compactability, tabletability 
Handling, flow and blending 

 

Molecular salts are multicomponent crystals composed of electrostatic interactions 

between charged (ionizable) acidic and basic molecular moieties as a result of which the 

proton transfer is occurred in range from acidic to basic component in ionic state 

(deprotonated acid/ acidic anion to protonated base/ basic cation) (Aakeröy et al., 2007).  

Cocrystals (CCs) are subgroup of multicomponent crystals formed mainly through 

hydrogen bonding of at least two or more components: both neutral molecules; neutral 

molecule with cationic molecule; neutral molecule with anionic molecule; or neutral 

molecule with either positively or negatively charged ion. The term CC is synonym for 
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array of multicomponent crystals that have been explained with diverse terminology over 

the years: addition compounds (Grossmann, 1908), organic molecular compounds 

(Anderson, 1937), mixed binary molecular crystals (Remyga et al., 1969), molecular 

complexes (Damiani et al., 1965; Van Nieker&Saunder, 1948), solid-state complexes or 

heteromolecular complexes (Pekker et al., 2005). 

The components coupled in structure of the multicomponent crystals  are assembled 

through supramolecular synthons in fashion of complementarity of the hydrogen bond 

donor and acceptor functional groups  forming homomeric or heteromeric structures  

(Etter, 1990; Etter, 1991, Aakeröy et al., 2004). The molecule of interest can crystallize in 

stoichiometric ratio with one or more coformer (CF) molecules in new crystalline structure 

of CC that acts as a different functional material due to the changes in physicochemical 

properties (e.g. solubility, melting point, morphology, thermal stability, hygroscopicity, 

etc., see in Table 1.2), while an active pharmaceutical ingredient (API) within the CC 

structure retains its chemical nature. Compounds that contain aromatic rings may form 

CCs by stacking (Seaton, et al., 2013) or charge transfer interactions (Samanta et al., 

2014). Recent researches carried out by Grepioni et al. (2014), Braga et al. (2011), Smith 

et al. (2013)  on multicomponent crystals revealed the ionic CCs involving inorganic salts 

and racemic drugs. 

Depending on the thermodynamic and kinetic conditions, one organic compound may 

crystallize in a variety of  solid phases which, as crystalline forms with different structural 

arrangement, may undergo to phase transition and appeare as polymorphs, each of them 

exhibiting different physical properties  (Figure 1.2).  

Differences in long-range periodicity of assembled molecules in structure of organic 

crystals,  arising by the differences in intermolecular forces, in turns cause differences in 

energy, and thus affect differences mainly in physical properties that consequently get 

implication to product development and formulation (selecting a crystalline form with 

prerequisite properties), processing (milling, granulation, drying, compaction, variations in 

cooling/ heating rates, seeding during the crystallization, that affect phase transition), 

performance (improved bioavailability due to altered solubility and dissolution profile, 

enhanced shelf-life as consequence of increased thermodynamic and kinetic stability), 

regulatory aspects (extending the process of the market authorization by substituting the 

solid form formulated in branded pharmaceutical product with the new crystalline form of 

the same composition) and intellectual right issue (patenting the new crystalline form) 

(Schultheiss & Newman, 2009; Morissette et al., 2004) . 
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The emerging interest for research in solid state of pharmaceuticals is a consequence to the 

intention pharmaceutical industry to synthetize and isolate APIs and excipients in solid 

forms, higher  demand for more than 80% of drugs as solid dosage forms to be available 

for oral administration in therapy, in spite of the fact that about 40% of them have low 

solubility that additionally cause 80-90% of drugs to be discarded from the R&D pipeline 

as a risk for proceeding in development drug delivery formulations and their clinical 

testing (Thayer, 2010). 

  

Crystal engineering  

Crystal engineering particularly addresses the molecular recognition phenomena in 

crystalline organic solids that are characterized by the regular extended in long-range and 

short-range highly ordered structures (Desiraju, 2013) in the crystal state, which is 

thermodynamically and kinetically the most stable condense phase of the matter (Goshe, 

2002).      

Braga et al. (2002) explained the crystal engineering as a concept that encompasses  

modeling, design, synthesis and application of crystalline solids with predefined and 

desired aggregation of molecules and ions. Its aim is to control the arrangement of the 

constitutive parts  (neutral and polarizable molecules or ions), and thus to attain the final 

goal that is related to obtaining functional solids in crystalline state.  

The major driving force to interplay molecules or ions are noncovalent bonds e.g. 

intermolecular interactions: hydrogen bonding (Gilli et al., 2007, 2010) and metal-ligand 

coordination (Sun et al., 2002), as well as π∙∙∙π stacking (Adams et al., 2001), hydrophobic, 

ionic, and van der Waals forces (Mueller-Dethlefs et al., 2000), and halogen bond 

(Metrangolo & Resnati, 2001; Auffinger et al., 2004) .  

Crystal engineering, well-known as “making crystals by design”, refers to two-steps 

“bottom-up” approach where, firstly by devising synthetic routes of the covalent chemistry 

in solution, molecules or ions (building blocks) are modulated and characterized in order 

their physicochemical properties and intermolecular bonding capacity to be convoluted to 

the periodical distribution and symmetry  of the supramolecular assembled building blocks 

which, secondly are spatially ranged into crystalline solids with desired properties (Braga 

et al. 2002). Molecular recognition between the functional groups encompassed in the 

structures of the “building blocks” with the well-defined molecular symmetries determines 

and controls the preference for their packing pattern into supramolecular lattice 

architecture with network topologies which crystallographic metrics (e.g. bond distances, 
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contact angles), through their systematic adjustment, tune the crystals functional properties 

allowing the design of functional materials (Nangia, 2010). 

Crystal engineering explains the process of designing crystals at a molecular level that 

utilizes the tools of supramolecular chemistry to control solid-state properties. Thus, the 

scope of supramolecular chemistry that focuses on the intermolecular bonds and mutual 

recognitions in solution, firstly was explained by the 1987 Nobel Prize Laureate in 

Chemistry, Jean-Marie Lehn (1988) as a “chemistry beyond the molecules”, and latter 

Desiraju (1989) applied it for defining the crystal engineering as: “Understanding of 

intermolecular interactions in the context of crystal packing and in the utilization of such 

understanding in the design of new solid with desired physical and chemical properties”  

In the process of crystallization of organic solids, Desiraju (1995) indicated that the 

molecules or ions are assembled in crystal lattice through robust patterns of intermolecular 

interactions known as “synthons” that is kinetically defined structural units which by 

repeating regularly and extend spatially result in the growth of the crystalline phase. 

Hence, synthons, depending on the nature of the interactions between functional groups 

and their allocation in the molecules or ions, convey the essential feature of the molecular 

structure to crystal structure, thus playing role in approximation of the whole 

supramolecular crystal structure defined by Lehn (1990) as “organized entity of higher 

complexity held together by intermolecular forces”. This means that by manipulation with 

supramolecular chemistry tools in process of engineering crystals the focus put on 

generating collective properties of the assembled crystalline supramolecular structures and 

understanding the relationship between such collective properties and those of the 

individual constituents (molecules or ions). 

Even though crystal engineering has become an emerging technology for designing 

molecular crystals, difficulties regarding the prediction of the crystal structure are caused 

by inability to control the multiplicity of possible orientations of the molecules in crystals, 

inaccuracies in estimating energies, and contribution of the variable interplay of the kinetic 

and the thermodynamical factors in process of nucleation and crystal growth.  

The critical challenge in crystal engineering is that it is not easy to predict the crystal 

structure from just a few, for intermolecular interactions, favorable functional groups as a 

part of molecular structure wherein their behavior during the crystallization is influenced 

by their nature and positions of all other functional groups. Allan et al 1997 reported that 

hydrocarbon aromatic moiety as a part of 3-aminophenol acts as functional group for 

generating supramolecular synthons N─H∙∙∙π which compete much more effectively with 

expected N─H∙∙∙O synthon found both in 3-aminophenol and 4-aminophenol.  
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Though, since last decades the studying on the mechanisms for crystal nucleation and 

growth have been advanced (Braga et al., 1994;  Hulliger 1994,  Perlstein et a. 1994, 

Carter et al. 1994), the ability to predict the organic crystal structure based on molecular 

structure, controlling the intermolecular forces that determine molecular packing patterns 

remain challenging, especially in designing the crystals that exhibit nonlinear optical 

properties (Gryl et al., 2015), ferromagnetic behavior (Wriedt et al., 2013), electrical 

conductivity (Huang et al., 2014) or solid-state reactivity (Atkinson et Al., 2011 ).     

Beside the skepticism of the Maddox’s (1988) statement “…general impossible to predict 

the structure of even the simplest crystalline solids from the knowledge of their chemical 

composition”, and previous incentive by that Feynman (1960) stirred up the scientific 

community asking “What would the properties of the materials be if we could really 

arrange the atoms the way we want them”, Schmidt (1971) in his research based on 

topochemical principles for minimum molecular movement in solid-state, correlated the 

structures obtained by solid-state reactivity of photodimerizable trans-cinnamic acid, and 

for first time coined the term crystal engineering. Referring to photochemical reactivity, 

Schmidt 1971 explained that the concept of crystal engineering enlightens that the 

properties and molecular recognition of the  individual molecules determine their 

distribution within the crystal lattices, as a consequence to which crystalline solids exhibit 

distinct physical and chemical properties compared to native molecules. In last two 

decades crystal engineering emerged mainly in two directions; organo-metalic chemistry of 

polymers known as metal-organic frameworks, MOFs (Janiak, 2003; Cahill et al., 2007) 

and cocrystals, CCs (Desiraju, 2013). 

The implications of crystal engineering extend far beyond organic and organometallic 

crystal design into supramolecular materials, nanotechnology, ligand-protein binding and 

crystal structure prediction (Nangia, 2010).  

Despite many attempts for a comprehensive crystal structure prediction that remain elusive 

(Dunitz, 2003; Dunitz & Gavazzotti, 2005), since recently rapid advances are evident as a 

result of development of the computational methods (Price, 2004) and application of 

empirical strategies for convergent and divergent syntheses (Dubey et al., 2014) and crystal 

growth characterized by  the state-of art instrumental techniques (Vogt et al., 2009, He et 

al., 2008).   

Moreover Moulton & Zaworotko (2001) indicated to the inability of the precise control of 

the positions of the atoms in crystals, among non-covalent bonds, the hydrogen-bonding 

interactions between complementary functional groups of the molecules form robust one-

dimensional (1D), two-dimensional (2D) or three-dimensional (3D) hydrogen-bonded 
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networks that control the degree of freedom for effective crystal packing in process of 

crystallization. 

Whether the  crystals will crystallize in single- or multicomponent crystals is enhanced, not 

only by the nature of the molecular constituents, but rather on the hierarchy fashion of the 

hydrogen bonds formation between potentially complementary functional groups (Bis et 

al., 2007, Kavuru et al., 2010; Shattock et al., 2008). 

 

Molecular recognition in PCCs 

Exploiting supramolecular synthons is a practical concept with aim to perceive and 

understand the design of PCCs. Properties of intermolecular interactions are appreciated in 

specific molecular recognition as an outcome of which specific synthons are formed. 

Process of molecular recognition is facilitated by balance of chemical and geometrical 

recognitions and it is hard to foresee which one might dominate in unknown crystal 

structure. The former is due to coupling of molecules or atoms in hierarchy fashion 

through strong, highly directional, specific and kinetically favored intermolecular 

interactions (Steiner, 2002). The latter considers Kitaigorodsky principle of close-packing 

based on molecular shape and size that leads to most stable structure (Kitaigorodsky, 

1955).  The concept of synthon is a qualitative and probabilistic descriptor that relies rather 

more on chemical nature of involved molecules then on topological or geometrical 

parameters. In the process of deriving a molecular structure based on crystallographic 

parameters, the strength of H-bonds in the structure of crystal impacts the topology and 

chemical nature of the synthons. This is retrosynthetic approach for designing crystal form 

the resolved structure of molecules which under the specific condition for crystallization 

forms network of crystal structure (Braga, 2004). 

In general, two basic types of molecular recognition that drive the formation of molecular 

crystals (e.g. polymorphs, solvates and CCs) are classified by complementarity for 

intermolecular interactions of the functional groups encountered in the molecular structure. 

The self-complementary of the same by nature functional groups impacts the formation of 

the homosynthons, while the complementarity of the different functional groups is 

responsible for heterosyntons (Nangia, 2010). The Scheme 1.3  represents the carboxylic 

acid and amide moieties capable for formation of homodimers via a two-point donor-

acceptor molecular recognition path (Almarsson, & Zaworotko, 2004). Two primary 

patterns of the self-assembled carboxylic acid are dimer and catemer supramolecular 

homosynthons. This ‘supramolecular isomerism” caused by diversity of hydrogen-bonding 

motifs involving carboxylic acid moieties is responsible for polymorphism that Kanters et 
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al. 1976 reported for two polymorphs of chloroacetic acid, one of which built-up by dimer 

motif (see Scheme 1.3), and another one composed by catemer supramolecular synthon 

that forms tetrameric supramolecular assembly. Apart of isomerism in dimer/catamer 

supramolecular homosynthons that causes polymorphism in carboxylic acids such as 

hydroxybenzoic acid (Gridunova, 1982), the oxalic acid (Derrisen & Smith, 1974), and the 

tetrolic acid (Benghiat & Leiserowiz, 1972), differences in packing arrangements of dimer 

motifs due to torsional flexibility of the molecular structures influence conformational 

polymorphism (Nangia, 2008, Bernstein & Hagler, 1978).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.3. Homosynthons and Heterosynthons 

 

Statistical analyses performed by Allen (2002), and that relates to hydrogen-bond motifs of 

4000 entries in the CSD of crystal structures in which at least one carboxylic acid moiety is 

present, revealed that supramolecular homosynthons (29.4% of dimer and 2.1% catamer 

motifs) are not dominant in solid state in comparison to heterosynthons recorded in the 

remaining crystal structures with carboxylic acid. However, among analyzed compounds 

    
a                                                                                                                  b 
a. supramolecular homosynthons as 
      exhibited by acid–acid and amide–amide dimers;  
b. supramolecular heterosynthons as exhibited by acid–amide dimers. 
 

 
                               Homosynthon                                Heterosynthons       

     a                                  b  
The self-organization modes seen in the two reported polymorphs of 
chloroacetic acid:  

a. centrosymmetric dimer;  
b. catemer motif, which leads to a tetrameric assembly 
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that include both carboxylic acid and aromatic nitrogen base that are deposited in CSD, 

46.7% of them exhibit heterosynthon motifs mainly of pyridine-carboxylic acid type. 

Analogously to carboxylic acid moiety, both analyses in the CSD and reported results for 

chloracetamide and nootropic drug piracetam (2-oxo-1-pyrrolidinylacetamide), indicate 

that complementary hydrogen-bon donors and acceptors in the primary amides interplay 

one to another leading to formation of supramolecular homosynthon i.e. dimer that further 

impacts formation of supramolecular tapes or sheet structures. In case of chloroacetamide 

and piracetam, polymorphic forms that these compounds exhibit are result to isomerism of 

supramolecular carboxamide synthon that exist as catamer motifs (one polymorphic form 

of chlorocarboxamide 1-D tape structure, and one of three polymorphic forms of piracetam 

forming catamer chain structures based on cross-linked carboxamide homodimers) and 

homodimer (another polymorph of chlorcarboxamide with 1-D tape structure and two of 

three polymorphs of piracetam that form tape structures). In addition, analyses of structures 

with both included carboxylic acid and amide moieties which are deposited in CSD put in 

evidence the prevalence of acid-amide suprmolecular heterosynton. Hence, the preference 

and robustness of this heterosynton was confirmed in CC of anti-inflammatory drugs 

aspirin, and rac-flubiporfen with 4,4’-bipyridine, respectively (Bailey Walsh et al. 2003). 

The authors of this research reported that pyridine-carboxylic acid heterosynthon competes 

to carboxylic acid dimer homosynthon.  

Within the family of the PCCs composed of pyrazinecarboxamide (PZA), drug for 

treatment of tuberculosis: PZA with 2,5-dihydroxybenzoic acid, ref. code XAQQOW 

(McMahon et al. 2005); 2-aminosalycilic acid, ref.code URUGIY (Grobenly et al. 2011); 

succinic and fumaric acid, respectively (Cherukuvada&Nangia, 2012); and vanilic, gallic, 

1-hydroxy-2-naphtolic, and idnol-2-carboxylic acid, respectively (Adalder et al. 2012), 

structure determination showed that there is inconsistency in prevalence of acid-amide, 

aromatic NH─pyridine; hydroxyl-amide, amino-carbonyl heterosynthons, energetically 

more favored over the amide-amide homosynthons (mostly often with 50% probability for 

occurrence).  

Hierarchy of hydrogen bond prevalence of the amide based N─H moiety for interaction 

with C=O or ─OH hydrogen-bond acceptors in heterosynthon and homosynthon 

interactions was tested by Aakeröy et al. (2007) on the 5 CCs and 2 salts formed by 

selecting CC models from the group of 4-acetaminopyridine derivatives and CFs from 

derivatives of dicarboxylic acids. The obtained results revealed that the primary 

heterosynthon for CC formation is achieved by locking the neutral H-bonding interaction 

O─H(acid)∙∙∙N(pyr) between carboxylic acid and pyridine moiety, while charge-assisted 
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hydrogen-bond N─H+∙∙∙¯O form the heterosynthon which favors the salts formation. The 

remaining N─H donor (on the amide moiety) exerts preference for interaction with 

carbonyl moiety (C=O) from the amide group, thus forming amide-amide homosynthon 

over the carbonyl C=O moiety and acidic O─H moiety, respectively, both from the 

carboxylic group.        

Bis & Zaworotko (2005) reported the compliance of both experimental and statistical data 

of their research on cocrystallization of CC models from group of 2-aminopyridine 

derivatives with CF from the group of carboxylic acid derivatives. Their results indicate 

formation of rigid, two-point supramolecular heterosynthon, depicted as   
     graph set. 

Molecular recognition between 2-aminopyridinium and carboxylate moieties  is favored by 

the charge-assisted H-bonding interactions (N-H+
(pyr)∙∙∙¯O and N-H(amino)∙∙∙¯O) observed in 

the ten reported structures, though the same recognition may result through the neutral H-

bonding motifs.   

Aakeröy et al. (2007) reported that in amide-pyridine heterosynthon, hydrogen bond 

acceptor strength of pyridine N is slighthly less then amide C=O moiety. Babu et al. (2007) 

conveyed  research on utilizing oxidized pyridine amide to the corresponding pyridine N-

oxide (N+─¯O) which exhibit higher basicity and anionic character, and thus behaves as 

stronger H-bond acceptor. The authors evaluated the utility of heterosynthon carboxamide-

pyridine N-oxide that is sustained by syn(amide)─N∙∙∙O¯(oxide) hydrogen bond and 

auxiliary (N-oxide)C─H∙∙∙O(amide) interaction in CCs obtained from amide-containing 

molecules and APIs (e.g. barbituric acid, barbital, saccharin, 4-hydroxybenzamide, and 

carbamazepine) with pyridine N-oxide CFs (e.g. quinoxcaline N,N-dioxide, pyridine N-

oxide, picoline N-oxide, bipyridine N-oxide, etc.). The significantly different hydrogen 

bonding between the strongest H-bond donor CONH from amide and the strongest H-bond 

acceptor N+─O¯, found in the CCs, determines different physicochemical properties from 

those of the pure API and CF. The prevalence for formation of amide dimer is higher over 

the amide─N-oxide due to the competition of the OH group in CCs with 4-

hydroxybenzamide, intamolecular H-bonding (e.g. in CC with picoline N-oxide) and steric 

factors relating to dibenzaazepine ring in CCs with carbamazepine (butterfly-shaped 

molecule)  with pyridine N-oxide CFs (Babu et al., 2007).       

Determined crystal structures of four polymorphs of anti-epileptic drug carbamazepine 

(Morissette et al., 2004), as well as its two solvates (acetonate and dihydrate) (Fleischman 

et al. 2003)  indicate that presences of unsatisfied peripheral hydrogen-bond donor and 

acceptor pair in amide dimer of carbamazepine molecules, due to the steric (geometrical) 

constrains imposed by its dibenzazepine ring facilitate the formation of solvates with H-

12



 

 
 

bond acceptor solvents (e.g. DMSO, acetic, formic, butyric acid), and CCs (Vishweshwar 

et al., 2006) with CFs which are hydrogen-bond acceptors (e.g. benzoquinone,  

terephthaldehyde,  4,4’-bipyridine, and nicotinamide) and both hydrogen-bond donor and 

aceptor CFs (e.g. saccharin exerting hydrogen-donor effect through N─H∙∙∙O hydrogen-

bonds with carbonyl group from carbamazepine, while hydrogen-acceptor effect is result 

of through N─H∙∙∙O=S (H-bond acceptor from saccharine structure).   

Remenar et al. (2003) highlighted the outcome of undertaken high-throughput screening 

for expected and unexpected PCCs of antifungal drug itraconazole with set of dicarboxylic 

acids. Determined structures of obtained PCCs of cis-itraconazole with succinic acid and 

other 1,4-diacids with extended anti- conformations indicate to formation of 

supramolecular heterosynthons consisting of hydrogen-bonded trimers which are formed 

by bridging the triazole of each pair of drug molecules with one extended succinic acid 

molecule. Formation of this trimeric heterosynton is unexpected motif if the ∆pKa rule for 

acid-base complementarity is followed (1,4-diacids with the stronger piperazine base in 

itraconazole structure compared to triazole moiety). Moreover, the inability of itraconazole 

to cocrystalize with maleic acid affected by Z-regiochemistry, 1,3- and 1,5-dicarboxylic 

acids proves that the structural conformation in comparison with acid-base 

complementarity, is favorable driving force for cocrystallization of itraconazole with 1,4-

dicarboxylic acids resulting in formation of PCC which exhibits solubility and 

bioavailability profiles similar to that one obtained from the commercialized product 

Sporanox®, formulated by using amorphous itraconazole coated into the sucrose beads. 

Moreover, Shattock et al. (2008) reported that the statistical analyses of heterosynthons of 

aromatic nitrogen bases with carboxylic acids and alcohols, respectively, in 15 entries in 

CSD (CCs out of which two are salts, composed of CFs which contain a permutation of 

carboxylic, alcohol and aromatic nitrogen base functional groups) revealed higher 

prevalence of  the COOH∙∙∙Narom hydrogen-bond over the O─H∙∙∙Narom one.  

Experimental work carried out by Etter and Reutzel (1991) showed that by applying the 

hydrogen bond selectivity criteria, it is possible to map the molecular recognition 

properties of a class of acyclic imides that depend on adopting the cis-trans and trans-trans 

conformations in their homomeric and heteromeric crystal forms with unique hydrogen 

bond properties. The cocrystallization process was explained as competition between 

homomeric and heteromeric aggregation. Imide cocrystallization patterns are predicted 

based on the competition of CF molecules that are proton donors (e.g. phenols or 

carboxylic acid) to the unused carbonyl group from the homomeric cis-trans forms 

(combination of independent primary amide forming dimers and a tertiary amide acting as 

13



 

 
 

acceptor). In case proton donor of CF  forms eight-membered ring hydrogen bonded chains 

(e.g. primary amides or carboxylic acids), then heterodimer type of CCs are formed. The 

two carbonyl groups act as bidentante ligand in trans-trans imides forming the CCs with  

metal ions form group I and II and with with strong proton acceptor such it is 

triphenylphosphyne oxide.   

Difference of pKa values of the acid and base, ∆pKa = (pKa)base ─ (pKa)acid was proposed by 

Childs et al. (2007) as a rule of thumb to estimate the extent of proton transfer, and thus 

being indicator whether or not this lead to salt or CC formation. ∆pKa is a descriptor that 

could be exerted for predicting salt formation in case it is higher than 3 (Stahly, et al. 

2007), and CC formation in range of its negative values (Bhogala et al., 2005). Stahly 2007 

pointed out that ∆pKa rule is an empirical guidance for initial screening of salts or CCs 

because prediction for their formation is not reliable in range from 0 to 3.  

Wenger & Bernstein (2006) applied statistical analyses in CSD (Allen 2002) and 

cocrystallization screening for anti-epileptic drug gabapentin with oxalic acid (host-guest 

combinations including amino and carbonyl groups) aiming, in a geometrically predictable 

way, to determine the probability for every combination of specific ammonium cation 

donors and carboxylate (COO─) acceptor group to form three-center hydrogen bond which 

is commonly utilized is the main ring motif   
     (an eight-membered ring with four 

hydrogen-bond donors and two H-bond acceptors). The results showed that the high 

probability of charged groups (CO─) to form charge-assisted three-center hydrogen bonds 

is due to their contribution to square charge arrangement  which is utilized in   
     ring 

motif. 

MacDonald et al. 2001 reported the modular approach for controlling molecular packing 

and physicochemical properties of the crystalline materials designed by using organic salts 

of imidazole and mono-, di- and tetracarboxylic acid derivatives as a building blocks. The 

authors explained that the advantage in using organic salts instead of the neutral molecules 

is based on simultaneous formation of two different motifs; one strong ionic (charge-

assisted) N(+)─H∙∙∙O(─) between imidazolium cations  and carboxylate anions form 

carboxylic acid and O─H∙∙∙O H-bonds between neutral moieties that are spatially 

modulated and tuned. 1D-chains are derived by imidazolium carboxylate salts in which the 

self-assembled ions form unique motif formed by the strong charge-assisted H-bond. In 

case dicarboxylic acids are used, exclusively generated “head-to-tail” chains of the strong 

O─H∙∙∙−O hydrogen bonds are formed by self-assembled monoanions which are acceptors 

for multiple hydrogen bonds. Imidazolium cations act as multidentate hydrogen bond 
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donors additionally forming three C─H∙∙∙O hydrogen bonds which link anions in adjunct 

2D polar imidazole carboxylate layers composed of intersecting chains. 

Lemmerer et al. 2011 reported that carboxylic acid–pyridine heterosynthons was applied as 

scaffold in formation of PCC of anti-tuberculostatic drug isoniazid (isonicotinic acid 

hydrazide) with terephthalic acid 2:1. Authors reported that this heterosynthon in the 

structure of PCC  exists in two geometric forms. One is related to co-planar conformation 

of the acid with pyridine ring, forming   
     ring-shaped hydrogen-bond motif (O─H∙∙∙N 

supported by C─H∙∙∙O) that generates finite triad which are linked along c-axis by 

extended assemblies formed by  homosynthons C(3) and ring-type homosynthon   
      

along the a- and b-axes. Báthori et al. 2011 reported that in addition to discrete carboxylic 

acid-pyridine synthon (following the Etter’s rule, the best donor and the best acceptor),  

homomeric amide-amide dimers   
     are  present in the structures of the PCCs between 

isonocotinamide and, respectively, diclofenac and clofibric acid.  

Guanidinium-carboxylate is type of robust heterosynthon that is reported by Nanuubolu et 

al. (2013) from their research on polymorphic forms of metformin embobnate salts. This 

synthon, closely resembled in hydrogen-bonding motif of urea-carboxylate, is beneficial 

over the previous one due to additional electrostatic attractions, and high protonation of the 

guanide moiety as result of resonance stabilization that lead to charge-assisted hydrogen 

bond interaction between guanidinium and carboxylate moieties.  

Seaton et al (2013) reported that in acid/acid type of CCs formed by the derivatives of 

benzoic acid the magnitude of acidic proton (hydrogen atom) is proportional to Hammett 

constants used to describe the electron withdrawing ability of the substituents in structures 

of benzoic acid. Results indicate that the higher the difference of Hammett constant, the 

higher the probability two benzoic acid derivatives to form CCs. 

Childs et al. 2009 analyzed similarity relationships of crystal packing motifs in 50 crystal 

structures of carbamazepine aiming to propose a semiquantitative predictive model as 

qualitative guidelines for the rational design of PCCs. The applied molecular descriptors 

implied to similarities based on the shape and polarity of the carbamazepine and cofomers 

and preference of carboxamide-carboxylic acid heterodimeric synthons favor CC 

formation.  

Shattock et al. 2008 in their statistical analyses of the hierarchy of supramolecular 

heterosynthons in the context of APIs, carboxylic acids and alcohols, reported that 

heterosynthons between aromatic nitrogen (N) compounds and carboxylic acid and 

alcohols, respectively: COOH/OH∙∙∙Naroma in the absence of other hydrogen bond donors 

and acceptors showed hierarchical prevalence over the corresponding supramolecular 
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homosynthons in carboxylic acid COOH∙∙∙COOH and alcohol OH∙∙∙OH dimers. However, 

when competing hydrogen bond moieties such COOH, OH and Naroma are included in the 

same crystal structure, there is a lack of statistical evidence of predictability of the 

supramolecular heterosynthons. 

MacDonald & Whitesides (1994) reported that by incorporating a variety of functional 

groups into majority of the derivatives with planar or nearly planar molecular structures 

from the identified three classes of diamides (cyclic ureas, cyclic diacylhydrazides and 

diketopiperazines), in process of crystallization there is a preference molecules to be 

packed and crystallized in rigid linear structures with tape motif due to the following 

structural features that influence functional properties of the crystals to be predicted: (i) 

equal number of donor and acceptor sites, (ii) rigidity of the diamide ring, (iii) size of 

diamide ring, (iv) steric bulk of substituents, (v) proximity of the configuration of donors 

and acceptors and (vi) competing hydrogen-bonding groups. 

The computational methodology that Issa et al. 2009 proposed was based on the 

comparison of the lattice low-energies of 12 PCCs of 4-aminobenzoic acid, 8 PCCs of 

succinic acid and 6 PCCs of caffeine, with the sums of the lattice low-energies of their 

components. The minimization of the lattice energy, computed using the anisotropic 

intermolecular atom-atom potentials, with the electrostatic model and the intramolecular 

energy penalty for changes in specified torsion angles derived from ab initio calculations 

on the isolated molecules indicate that many of the CCs of these three CC formers are 

more stable than the sum of the lattice energies of their component structures. But, due to 

sufficiently small margin of this energy difference, comparing to the relative polymorphic 

energy differences and errors of computational model, the accurate prediction of the CC 

formation depends on approximations for accuracy of the chosen model for computing the 

CC energy landscape that determine the relative thermodynamic stability of the most stable 

CC structure. The thermodynamic stability is the driving force for CC formation; higher 

stability of CC then the crystals of its components implies to CC formation prevalence.  

 

Role of Hydrogen bonds in designing multicomponent crystals 

Systematical study on the nature of hydrogen bonds and intermolecular interactions driven 

by H-bonding is an essential and prerequisite factor for assessment of recognizable motifs 

of molecules (synthons) in solution and possible prediction of structural architecture of the 

CCs in solid state.   The role of the proton transfer (PT) in the Brønsted-based H-Bond 

Theory, comprehensively elaborated by Gilli & Gilli 2007; 2010 as a Dual H-bond Model, 

aligned to charge-transfer ascribed in the alternative interpretation of the Lewis-based H-
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bond Theory, put the focus to the prediction of H-bond energies and  geometries and to 

unification of H-bonds in account to intermolecular interactions responsible for designing 

of the molecular crystals. 

The Dual H-bond model refers to a bimolecular proton-transfer (PT) reaction pathway 

wherein the same proton is shared between two adjacent acceptors (─D: and :A), each 

carrying an electron pair and participating in competing bond with the central proton. 

Depending on the H-bond strength, the PT pathway in process of H-bond formation passes 

through one minimum or two minima in the reaction coordinate, thus depicting the three 

different profiles of PT reaction pathway described in Table 1.3. 

The overall H-bond energy, EHB, is the smaller of the two bond-dissociation energies, 

D0(D─H) and D0(H─A), by which ─D: and :A are competitively bonded to the proton. 

The H-bond properties are function of the linear combinations of two variables, sum and 

difference of proton affinity (pa), that relate to mean donor/acceptor electronegativity and 

energy difference between tautomeric D─H∙∙∙꞉A and ¯D∙∙∙꞉H─A+. On the base of 

thermodynamic data, Gilli et al. (2000; 1994; 1996; 2009) indicated that strong H-bonds 

can be classified in the following four chemical classes (the Chemical Leitmotifs) 

depending on specific chemical condition when ∆D0 = ∆pa = ∆PA (gas phase) = ∆pKa 

(condensed phase e.g. water) ≈ 0: 

i. ( )CAHB – double charge-assisted H-bonds: (D─H∙∙∙꞉A) formed by acid and base 

with close donor-acceptor pKa matching; 

ii. (─)CAHB – negative charge-assisted H-bonds: [D∙∙∙H∙∙∙D]¯ formed by two acids 

having lost one proton (identical pKa) 

iii. (+)CAHB – positive charge-assisted H-bonds: [A꞉∙∙∙H∙∙∙꞉A]+ formed by two bases 

having gained one proton (identical pKa) 

iv. RAHB – resonance-assisted H-bonds: (D─H∙∙∙꞉A) formed by acidic donor and 

basic acceptor connected by a short π-conjugated and delocalized fragment which 

affects pKa value; 

All four Chemical Leitmotifs of strong H-bond fulfill the condition of PA/pKa Equalization 

(Gilli et al., 2009; Gilli & Gilli, 2009).  

Moreover, 

v. Ordinary H-bonds, encompassing all H-bonds that are neither charge- nor 

resonance-assisted, are week, dissymmetric, and mostly electrostatic in nature.  
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The H-bond strengths of any specific H-bond electronegativity class of the couple of donor 

D─H (e.g A─H acids) and acceptor ꞉A (e.g. B bases) with fixed sum of proton affinities 

depend on the D─H /꞉A proton affinity difference ∆PA = PA(D¯) – PA (꞉A) (in gas phase) 

which is in relationship with ∆pKa =pKAH (D─H) – pKBH+(A─H+) (in water). The 

estimation of the H-bond strength by PA/pKa Equalization Method is possible by using the 

pKa Slide Rule, which is a graphical tool for predicting H-bond strengths from the ∆pKa 

differences: ∆pKa = pKAH(donor) - pKBH+(acceptor).  

Bertolasi et al. 2011 applied the pKa-Equalization Method for estimating relationship of 

∆pKa, H-bond energy (EHB) and H-bond distances (d’D∙∙∙A, accounting for D─H─A angle 

changes) in 14 adducts formed by picric acid with aromatic N-bases and reported that short 

and high energy H-bonds are present in adducts where ∆pKa is not far from zero and H-

bond energies (EHB) exponentially depend on the lengths of the H-bonds.    

 

Table 1.3  H-bonds strengths as a function of PT reaction pathways 
Possible Profiles of PT in 

reaction pathway Strength of H-bonds Properties of H-bonds 

One assessable asymmetric 
single well (aSW) High-barrier (HB) H-bonds 

Weak, long, dissymmetric, ordered 
both in solution and in crystals, 
essentially electrostatic: 
D─H∙∙∙꞉A 

Two symmetric or slightly 
asymmetric double well  

(sDW, saDW) 

Low-barrier H-bonds (LBHB) 

Strong, short, and tautomeric 
exchanged in solution and dynamic 
disordered in crystals, partly  covalent 
(three-center-four-electron 
interactions) 

Medium-barrier H bonds (MBHB) 

Moderate strength, tautomeric 
exchange in solution and static 
disorder in crystals, partially covalent 
bonds 

One symmetric single well 
(sSW) No-barrier H bonds 

Very strong and short, symmetric and 
linear, ordered both in solution and 
crystals, essentially covalent (three-
center-four-electron interactions): 
D∙∙∙H∙∙∙A 

 

Bertolasi et al 2011; 2012 proposed the “electron pair saturation rule” for rationalizing the 

crystal packing of three type of CCs: picric acid with planar N-bases, TCNQ with planar N-

bases, and TCNQ with azo dyes (Gilli et al. 2013). According to the Lewis-based H-bond 

Theory, all electron donors - the Lewis base ꞉A (n = neutral lone pair donors; n¯= 

negatively charged lone pair donors, σ = neutral donors of σ-bonding pairs; π = neutral 

donors of π-bonding pairs) have a propensity to be engaged in electron donor-acceptor 

(EDA) interactions with all available electron acceptors - the Lewis acid D─H (σ* = 
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neutral acceptors with vacant σ* molecular orbital (MO); π* = neutral acceptors with 

vacant π* MO; π*(k) = neutral acceptors with vacant π* MO of ketonic type). The 

electron-pair saturation rule can be formulated as “all the electron donors of a closed-shell 

molecule, either nonbonding pairs of lone pairs or π-bonding pairs of multiple bonds, will 

display a definite tendency to become engaged in EDA interactions with all electron 

acceptors present as far as these are available; if acceptors are insufficient to saturate all 

donors, the latter will be saturated in order of decreasing EDA interaction strength”. This 

saturation process of the maximum number of n donors by all available acceptors by means 

of charge-transfer (CT) or (EDA) interactions appear to be the main driving force in the 

formation of all molecular crystals. 

The results of the three studied CT or EDA CCs indicate that in CCs with picric acid 

dominate H-bonds which, described according to the Lewis Theory, are a σ*←n EDA 

interactions (D─H←꞉A) that lead to packing geometry of planes or ribbons of planar 

molecules, while moderate π*←π potentiality causes parallel stacked packing (Bertolasi et 

al. 2011). In contrast, CCs of TCNQ exhibit moderate H-bonds and increased π*← π 

potentiality (Gilli et al. 2012), while in CCs with azo-dyes the H-bonds are absent, while 

the crystal packing has been dominated by π*← π interactions (Gilli et al. 2013). As an 

outcome of this research, CT or EDA interactions contribute to change our views on 

interacting molecules in molecular recognition processes, from spheroidal bodies attracting 

in a continuous molecular field, to similar objects interacting only by few scattered and 

complementary docking points. 

In order to describe and label hydrogen bonds and topological analysis of the motifs in 

hydrogen-bonded molecular solids, Etter et al. (1990) for the first time proposed the graph-

set notation   
     based on the following four descriptors: G (chains - C, dimers - D, rings 

- R, and intramolecular hydrogen bonds - S) where n is the number of atoms, a the number 

of hydrogen bond acceptors, and d the number of hydrogen-bond donors. This graph-set 

notation in combination with “hydrogen bond rules” is based on estimation the prevalence 

for H-bond donors and H-bond acceptors interaction. To enable the design of hydrogen 

bonded CCs of pyridine and benzenpolycarboxylic acid, Dale et al. (2004) revealed 

guidelines for criteria for hydrogen-bonding that refer to (i) all best proton donors and 

acceptors are engaged in hydrogen-bonding, (ii) prevalence six-membered rings to form 

intramolecular, rather than intermolecular hydrogen bonds; and (iii), once intramolecular 

hydrogen bond is established, the best proton donors and acceptors remaining available for 

intermolecular hydrogen bonding. 
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Significance of molecular CCs of pharmaceutical interest 

 

For last twenty years in academic and industrial communities, the research in PCCs has 

been emerging due to the fact that, through the noncovalent modification of the crystalline 

phases without changing the molecular structure of the APIs themselves, selected without 

particular restriction of the magnitude of the their polarity (from neutral up to ionizable) 

and cocrystallized in the unit cell of the PCC together with appropriate CFs, selected  from 

compounds that extended the traditional counterions for salt selections, the physical 

properties of solid APIs are controlled (Datta & Grant, 2004; Morisette et al., 2004). 

Wide range of the definitions and accuracy for the nomenclature of the CCs have been 

resulted by different approaches of the scientists who invented the names based on the 

composition of resolved CC structure and properties of the components within the CC. 

Moreover Bond (2007) proposed the definition of a CC as a multicomponent molecular 

crystal that has scientific prove, and the subclass of PCCs for first time was coined by 

Vishweshwar & Zaworotko (2006), emphasizing that one CC component is an API in 

molecular or ionic form and another one, CF, is a solid substance under the ambient 

condition. The term CC is used to denote togetherness of two or more molecular 

components, each of which must be solid at ambient temperature and unnecessarily to 

retain any degree of its individual crystalline identity within the CC. Following the concept 

of togetherness, Dunitz 2003 defined CCs a subset of multicomponent crystals that 

“encompasses molecular compounds, molecular complexes, solvates, inclusion 

compounds, channel compounds, clathrates and possibly a few types of multi-component 

crystals”. However, aligning to this standpoint and emphasizing the formation of CCs as 

unique crystalline phases, Stahly (2007) proposed the following definition: “co-crystals 

consist of two or more components that form unique crystalline structure having unique 

properties”. The attraction for PCCs evolved from the variety of crystal forms of API 

which exhibit alteration of physicochemical properties of clinical relevance comparing to 

the properties of the native API.    

Moreover the term PCCs is scientifically ambiguous for being distinguished among other 

multicomponent crystals, it is seemingly that its nomenclature is overwhelmed by the legal 

concerns. Hence, the PCCs meet the following criteria of regulatory affairs: patentability 

(e.g. new and unique crystalline phase), namely novelty (e.g. new composition of API-CF), 

non-obviousness (selection of CF based on synthon theory in the strategy for PCCs design 

is unlikely as criteria for counter ions identification for salt formation) and utility (benefits 

of altered properties that impact the performance and functionality). 
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Hence, so far, the PCCs are only recognized by the US FDA within the final guidance that 

was issued in April 2013. According to this guidance, the PCCs are determined as drug 

product intermediate of the dissociable “API-excipient” molecular complexes wherein the 

same API molecules interact with the crystal lattice of the molecules of CFs defined as 

excipients. This means that, comparing to novel salts of an API which are regulated by the 

FDA as NCEs, and thus undergo to entire testing of their properties, PCCs are analogues to 

API-excipent physical mixtures or complexes (e.g. such are inclusion compounds of drugs 

with cyclodextrins) and are considered not to be new drugs, consequently allowing them to 

be eligible for approval under an ANDA procedure.  

This definition allows to generic pharmaceutical companies to meet IPR requirements for 

issuing patents for PCCs as competitive products that are still considered to be the same 

API as the original one. Hence, PCCs cannot circumvent the patent for the original API. 

Therefore, use of PCCs can delay or divert generic competition during the product 

lifecycle management extending the market authorization and exclusivity of the 

pharmaceutical products formulated with PCCs.  

In addition, this FDA’s definition compulsorily requires PCC must provide assurance that 

complete dissociation of the API occurs prior to reaching the site of absorption or receptor 

for obtaining pharmacological response.   

In order to contribute the draft version of US FDA guidance for regulatory classification of 

PCCs released in 2011, upon the growing number of patent applications in the field of 

APIs CCs, the expert group in solid state chemistry in the published report (Aitipamula et 

al. 2012) has voiced concerns regarding ambiguous classification of many of the  

multicomponent crystals by the three mutually exclusive classes of the pharmaceutical 

solids: pharmaceutical salts (PSs), and polymorphs. Therefore, Aitipamula et al. 2012 

underlined the following reasons why some of PCCs, PSs, and their solvates/ hydrates and 

polymorphs overlap with one another (Figure 1.4), and thus, due to their diversity in 

nature (e.g. ionic CCs i.e. CCs of salts, zwitterionic CCs) why it is not possible to 

distinguish PCCs form PSs and why they proposed PCCs should naturally be grouped 

together with salt forms:  

 

Proton transfer (position, location) in salt-CC continuum. 

PCCs and PSs have been envisaged as two extremes of a continuum of multicomponent 

solids ranging from fully charge delocalized, and nonionized molecular species (neutral 

PCCs) to fully charge separated, and ionized species (PSs). For some cases of acidic and 

basic molecules that cocrystallize, despite the crystalline environment of each of the 
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components and the magnitude of the differences in their strengths for dissociation (∆pKa), 

in a particular range of ∆pKa it is not always possible to distinguish the extent of proton 

transfer, and thus whether the formed solid is a PS or a PCC. This occurs because either 

the proton is shared or the structure contains equilibrated mixture of disordered ionized and 

non-ionized states  in the salt-CC continuum (Childs et al. 2007). This is the intermediate 

state of variable degree of ionized and neutral traits for components into ionic CCs (e.g.  

fluoxetine cation and chloride anion from fluoxetine hydrochloride salt cocrystallized with 

neutral molecules of carboxylic acids (Childs et al. 2004), alkali and alkaline earth metal 

halides cocrystallized with barbituric acid (Braga et al., 2010, 2011, 2012), and ionized 

fluconazole cocrystallized with one molecule neutral and one ionized maleic acid in 1:2 

molar ratio (Kastelic et al., 2010).  

 

 
 

Figure 1.4. Salt – Cocrystal continuum  

(with permission of Aitipamula, S. , Cryst. Growth Des. 2012, 12) 

 

While the long-range Coulombic interactions between charged pairs that form ionic 

crystals differently affect their properties (e.g. aqueous solubility and stability) comparing 

to their neutral counterparts which, connected by H-bonds, could at least partially control 

the structural traits, it is expected that in continuum of particular range of ∆pKa, mixture of 

the ionized structures formed by anisotropic, non-directional ionic interactions, and 

structures formed by neutral molecules that interplay through directional hydrogen bonding 
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interactions exert combined and very often unpredictable properties leading to a behavior 

that is neither strictly typical of purely PS crystals or purely neutral PCCs, nor easily 

described as intermediate states. The structure determination by neutron diffraction of the  

urea/ phosphoric acid 1:1 salt (Wilson, 2001), revealed that increase temperature is a 

crucial factor for PT (shifting of the average hydrogen position) from structures with ionic 

character (in range of low temperatures) to neutral CC (in range of high temperatures) (Li 

et al., 2006; Steiner et al., 2001).   Differences in bond lengths, ΔDC─O, for two values of 

the symmetric carboxylate anion and dissymmetric and neutral (protonated) carboxylic 

group measured in single crystals of 2-aminopyrimidine with CFs from series of carboxylic 

acids (Aakeröy et al., 1994) are in correlation with ∆pKa and determine the degree of PT. A 

small value for DC─O (carboxylate anion) and high value of ∆pKa lead to salt formation 

while large DC─O values (neutral carboxylic group or protonated carboxylate group) for 

negative ∆pKa influence CC formation. Based on the experimental crystallographic and 

spectroscopic data for determination of the hydrogen atom position along a single 

hydrogen bond, Childs et al. 2007 highlighted that change in polarity that accompanies the 

inclusion or exclusion of water (hydrate formation) and the subsequent change in crystal 

structure environment are responsible for the different ionization states of the multiple 

solids of the complexes of amphiprotic drug theophylline (both proton donor and acceptor) 

with acids and amine bases. Apart of the determined PCCs for complexes of theophylline 

with acids, 5-sulfosalicylic acid and hydrochloric acid, the structure refinement of its 

hydrated complex with ethylendiamine (2:1:1 theophylline : ethylendiamine : water), 

commercially well known as an aminophylline, indicates to ionized interactions between  

two theophylline molecules and halves of the two ethylenamine molecules, along with one 

water molecule packed in asymmetric unit cells since the proton has been transferred to the 

nitrogen base of the etilendiamine molecule. Beside of aminophylline hydrate salt, 

aminophylline anhydrous crystal is composed of equilibrated solid-state wherein 75% of 

the components are ionized and 25% non-ionized, the latter  which, in addition, is equally 

shared between two different states. This mixture of ionized and non-ionized state causes 

that it is not possible classification of anhydrous aminophylline to be assigned either to PS, 

or PCC class. 

 

Defined stoichiometry  

Both PSs and PCCs are formed without of stoichiometric restriction for content of the CC 

model compound and CF (e.g. pyridine and formic acid in 1:1 molar ratio form neutral CC 

via O─H∙∙∙N hydrogen bond and salt in 1:4 ratio where pyridinium cation and formate 
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anion are bound with three formic acid molecules (Wiechert et al., 1999); pyridine and 3,5-

dinitrobenzoic acid form CC in 1:2 molar ratio an salt monohydrate in 1:1:1 (Arora et al., 

2005) and 2,3-lutidine and fumaric acid form CC in 2:1 and salt in 1:2 (Haynes et al., 

2006)). Based on the complementarity interaction in a O─H∙∙∙N hydrogen bond, Aakeröy 

et al. 2007 demonstrated the preference for CC formation in “expected stoichiometry” of 

1:1 and 1:2 established between monocarboxylic acid and N-heterocyclic compounds with 

difference in basicity (pyrazole and benzimidalozle, pyridine, pyrimidine compounds) and 

2:1 stoichiometry in CCs of neutral dicarboxylic acid which is less demanded for forming 

two symmetry-related O─H∙∙∙N H-bonds with more competitive H-bond donor site such as 

benzimidazol derivative, more basic than pyrazole. Charge-assisted O─∙∙∙H─N+ interaction 

lead to salt formation and solvated forms with unexpected stoichiometries.  

 

Solubility 

The changing of equilibrated solubility and dissolution rate of API has impact on the extent 

of its absorption that directly affects its bioavailability (Dokoumetzidis, & Macheras, 

2006). Alteration of the API solubility from PCC causes reversible transformation into 

parent API which by nature can be free base or acid (Rodrigues-Hornado et al., 2005, 

Stanton et al, 2011). When the solubility of the PCC exceed the solubility of the API 

(maximum measurable concentration of soluble API in saturated solution), and both CF 

and API are completely dissociable in solution, thus the solubilizing effect is absent, and 

dissolution rate enhances the API concentration beyond the value of its equilibrated 

solubility.  As a consequence of this supersaturated state of API in solution, precipitation 

of the API that is in equilibrium with solid PCC as thermodynamically more stable crystal 

form at the normal atmospheric conditions is very likely to be occurred in vitro. In case 

PCC or API form hydrates, Qu et al., 2006 demonstrated that carbamazepine exerts 

dihydrate-anhydrate phase boundary at water activity of approximately 0.64 and 25oC, and 

it precipitates in hydrate form (Rodrigues-Hornado et al., 2005). 

Like common counter-ion effect that occurs in PSs, multiple ionization of API and CF in 

solution of the PCCs may exhibit common-component effect, self-association and 

complexation. This behavior in solution is determined by solubility product Ksp (defined as 

a product of API and CF solution concentrations calculated from the slope of a line yielded 

from the plot of API concentrations in equilibrium with PCC as a function of reciprocal CF 

concentrations, Nehm et. al. 2006)  and a pHmax that determines the thermodynamic 

stability region of the CC  (Nehm et al., 2006). Ksp is a constant that describes the strength 

of CC solid-state interactions of API and CF in relation to their interactions with the 
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solvent. The value of Ksp for CC reflects association of the high CF concentration with low 

degree of the API in solution.  

pH-solubility relationship of free acid/base and the salt form determines the type of the 

formed salt, dissociation into acid/base forms, common ion effect and dissolution patterns 

in physiologically relevant pH conditions. At pHmax both the free base and the salt can co-

exist as solids. Phase conversion of base to its crystalline salts is occurred in supersaturated 

solution of base at pH that decreases below pHmax by addition in excess of the acid, and in 

reverse mode for conversion of a salt to the free base (Serajuddin, 2007). The solubility of 

PCCs composed by neutral molecules of APIs and CFs might be pH dependent in range of 

pH wherein the APIs and CFs are partially ionized. Apparent solubility product pKsp for 

salts in presence of common ion determines an extent of the salt solubility (higher 

solubility and higher pKsp have less impact to common ion effect, and vice versa). Similar 

to salts, and unless PCC does not dissociate into API and CF in solution, in presence of 

high complexation in solution the drug is highly solubilized with the higher concentration 

of CF (Good & Rodríguez-Hornedo, 2009; Jayasankar et al., 2009; Nicoli et al., 2008), the 

high value for pKsp of PCC requires high concentration of CF (in excess of its molar ratio 

in PCC) in order to increase the PCC solubility equivalent to solubility of the API (Nehm 

et al. 2006). 

Good & Rodríguez-Hornedo, 2009 proposed a method for predicting solubility and 

thermodynamic stability of the PCCs using the experimental measurements of the 

solubility of the PCC of carbamazepine (low water soluble drug model) in pure solvent 

wherein solid phases of the PCC (either stable or metastable) and its components 

(carbamazepine and CF) coexist in equilibrium with solution. Determined solubility of 

carbamazepine PCC in equilibrium condition corresponds to transition concentration (Ctr) 

known as eutectic point that determine the thermodynamic stability of carbamazepine PCC 

relative to its components (Rodríguez-Hornedo et al., 2006; Klussmann et al. 2008; Childs 

et al., 2008; Chiarella et al. 2007). Calculated values for pKsp of carbamazepine PCC using 

the measured concentrations at Ctr indicate that solubility of carbamazepine PCC is directly 

proportional to the solubility of the CC components, Ctr for CF increases with the solubility 

of CF and carbamazepine PCC, respectively, and 10-fold increased CF solubility then 

solubility of carbamazepine influences increased solubility of carbamazepine PCC 

compared to the solubility of the native carbamazepine. In this study Good & Rodríguez-

Hornedo, 2009 reported that seven carbamazepine PCC exhibit aqueous solubility 2-152 

times greater than the solubility of the stable carbamazepine dihydrate form.  
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Stanton et al, 2011 reported that many of the highly soluble in water PSs and PCCs showed 

rapid precipitation in physiological media forming less soluble free APIs and CFs. Authors 

demonstrated that rapid dissolution of carboxylic acid PCCs of AMG 517 (Amgen 

compound) was followed by slow crystallization. This patterns of changing the solubility 

has been described as ‘spring and parachute’ effect (Cheney et al. 2010). The ‘spring’ 

explained the fast dissolution rate, while ‘parachute’ effect refers to the slow kinetics of 

conversion to the less soluble form. The initial, fast dissolution rate prevails in vivo 

conditions exerting higher values for AUC (Stanton et al, 2011).  By using the precipitation 

inhibitors, Guzmán et al., 2007 reported that it is possible to prevent PSs or PCCs from 

their supersaturated solutions in gastric media to precipitate out in intestinal fluid.  

The assessment of PCCs stability with respect to solid-solid conversion of its component 

forms under the normal atmospheric conditions of temperature and humidity in the work of 

Schartman 2009 indicates to relationships between conversion of the PCC to its 

components in solvent systems (Childs et al., 2004; Task et al., 2005; McNamara et al., 

2006), hydrate-anhydrate phase boundaries determined by the modified slurry method 

(Zhu et al., 1996; Zhu and Grant, 1996) and the relative stability of polymorphs (Giordano 

et al., 2001, Gu et al., 2001, Getsoian et al., 2008). 

 

Perspective for research and utilization of PCC in designing drug delivery systems 

 

The PCCs have opened new paradigm in solid-state modification of physicochemical 

properties of APIs. Bioavailability of API in context of structure-property-performance 

relationships is directly determined by its solubility and dissolution/permeability rate, that 

API exerts when it is cocrystallized in the unique structure of the PCC. The erratic 

solubility of APIs selected from the WHO Model List for Essential Medicines caused, only 

for period of 2010-2011, out of all 263 drug candidates for ANDA submissions to US-

FDA in process of approval for market authorization, only 20.9 % to belong to APIs from 

the group of BCS’s (Biopharmaceutical Classification System) Class II referring to APIs 

which exert low solubility/high permeability, and no one to the BCS Class IV of low 

solubility/slow permeability APIs (Nair et al. 2012).  Table 1.4 covers the examples of 

PCCs in respect to the solubility/permeability relationship of the APIs according to BSC 

and potential utilization of nutraceutical and drug for obtaining functional PCCs of drug-

drug type. 

Even though crystal engineering has become emerging technology for designing molecular 

crystals, difficulties regarding the prediction of the crystal structure are caused by inability 
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to control the multiplicity of possible orientations of the molecules in crystals, the 

inaccuracies in estimating energies, and contribution of the variable interplay of kinetics 

and thermodynamics in process of nucleation and crystal growth. 

 

Table 1. 4  PCCs in respect to the solubility/permeability relationship of the APIs 
according to BCS; potential drug-drug type of PCC and nutraceuticals CC 

 
Classification API CF Modulated properties Reference 

BCS Class I 
High solubility 
High permeability 

Fluoxetine 
hydrochloride Succinic acid two fold increase in 

solubility Childs et al. 2004 

Caffeine  
 

Oxalic, Malonic, Maleic 
and Glutaric acid 

improved hydration 
stability Trask et al. 2005 

Caffeine  
 4-hydroxybenzioc acid Improved thermal stability Aitipamula et al., 2012 

Theophylline Oxalic acid Improved hydration 
stability Zhanga, 2012 

BCS Class II 
Low solubility 
High permeability 

Ibuprofen & 
Flurbiprofen Nicotinamide Increased dissolution Chow et al. 2012 

*AMG-517  Aliphatic & aromatic 
carboxylic acids 

Enhanced dissolution 
patterns  Stanton & Bak, 2008  

Carbamazepine 
(Tegretol®) Saccharin Enhanced dissolution and 

suspension stability Hickey et al., 2007 

Itraconazole 
(Sporanox®) Succinic acid Improved dissolution Remenar et al. 2003 

Griseofulvin Acesulfame 

Monohydrated PCC 
Increased thermodynamic 
stability 
Increased solubility 

Aitipamula et al., 2012 

Ethenzamide 4-hydroxybenzioc acid Increased 
solubility/dissolution Aitipamula et al., 2012 

BCS Class III 
High solubility 
Low permeability 

Adefovir Dipivoxil Saccharin Kinetic stability, pH 
independent dissolution  Gao et al., 2011 

Pyrazinamide Dicarboxylic acids Enhanced solubility Luo & Sun, 2013 

Metformin Embonic acid Decreased solubility Babu et al., 2013 

BCS Class IV 
Low solubility 
Low permeability 

Furosemide Caffeine Enhanced solubility Goud et al., 2012 

Norfloxacin Isonicotinamide Solvated form 
Enhanced solubility Basavoju et al., 2006 

Drug-Drug PCC 

Meloficam Aspirin Increased solubility of 
meloxicam Cheney et al. 2011 

Pyrazinamide Diflunisal 
increased solubility of 
diflunisal, reduced side 
effects  

Évora et al. 2011 

Lamivudine Zidovudine Increased 
solubility/dissolution Bhatt et al., 2009 

Nutraceuticals CC 

Quercetin Caffeine Enhanced solubility   Smith eta l., 2011 

Curcumin Resorcinol 
Pyragallol Enhanced solubility Sanphui et al., 2011 

Petrostilbene  Piperazine 
Improved hydration and 
thermal stability, increased 
solubility 

Bethune et al., 2011 

*Antagonist of transient receptor potential vaniloid 1 (TRPV1) 

 

The physical proprieties of APIs in form of CCs are altered without chemical modification 

of the API.  CC design become approach of the first choice for APIs that do not form 

useful salts (e.g. nonionizable and highly lipophilic APIs) or require improvement of the 

physical properties, mainly solubility and dissolution rate that directly impact the 
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bioavailability and pharmacokinetic profiles, and  thermodynamic stability that influences 

the shelf-life due to the changes in crystal packing caused in specific range of values for 

temperature and humidity. This unpredictability or lack of obviousness of crystal structures 

and physical properties impel the challenges for legal issues in terms of obtaining and 

managing patent protection for any of crystalline form for an API. Anyhow, the decision 

for designing API in form of CC could be justified by the improvement of the physical 

properties that are desirable over the properties of the API itself (e.g. obtaining CC of API 

which exist in amorphous form, improve melting points, enable improved chemical purity, 

reduce chemical degradation by light exposition, remove the risk of hydrate formation in a 

formulation, and improve the solubility to enable enhanced bioavailability). In addition, the 

advantage of PCCs comparing to PSs is sought in vast opportunities for selection of a 

“pharmaceutically acceptable” conformer from the group of nontoxic substances included 

in US-FDA’s GRAS list (Generally Accepted As Safe) of substances approved as food 

additives which number and structure versatility exceed over pharmaceutically acceptable 

salt former (only acids and bases). 

The efficient design of PCCs with desired properties, favorable for solving drug delivery 

problems, relies on understanding the structure-property-performance relationships. 

Therefore, strategic shift from property enhancement to property modulation address the 

comprehensive approaches for substituting serendipitously discovery of PCC with 

systematic design based on mastering the techniques for PCC screening that enable single 

crystal growth of PCCs, applying convenient in silico technologies for molecular modeling 

and structure prediction, as well protocols for scale-up efficient bulk cocrystallization, 

environmental impact, purity and stability (Sun, 2013). 

 

PCCs design strategies 

Determination of the particular CF candidate or set of CFs to crystallize with targeted API 

as a drug model is well-known as PCC screening. Various screening methods are related to 

the two main and complementary approaches. Firstly, to select methods for growing PCCs 

with quality, suitable for absolute structure determination using the single-crystal 

diffraction, and second one for studying the propensity for PCCs formation based on 

physicochemical and thermodynamical properties. 

Solvent evaporation is suitable method for growing single crystals of PCC by evaporation 

of the pure solvent of solvent mixture wherein API and CF with similar solubilities form 

stoichiometric solution (Basavoju et al., 2008; Bis et al., 2007; Weyna et al., 2009). On the 

contrary, non-equivalent solubility of API and CF in solution lead to formation of single 
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component crystals because supersaturation is obtained with respect to less soluble 

component (either API or CF, depend of their solubilities) or both one of less soluble 

reactant and PCC (Blagden et al., 2008). This last approach has been utilized by Childs et 

al., 2008 for so-called reaction crystallization method for screening carbamazepine PCCs 

from a set of 18 different CFs. This method is performed by adding the API into the 

saturated or nearly saturated solution of CF reaching the level of supersaturation of the 

solution with respect to formed PCC. 

Cooling crystallization method based on the precipitation of the PCC once it is formed in 

the point of supersaturation solution in heating-cooling cycle was successfully applied for 

obtaining PCC of caffeine with p-hydroxybenzoic acid in methanol (He et al., 2010). 

Over the past few years, great progress in PCCs screening is achieved by utilizing grinding 

of the stoichiometric mixture of API and CF that represent mechanochemical solid-state 

reactions for producing PCCs (Friśčić & Jones, 2009; Trask&Jones, 2005). One of the two 

common techniques for grinding relates to neat grinding of API and CF which exhibit 

significant vapor pressure in the solid state that is driving force for formation of 

intermediate distinct phases (a gas, a liquid or an amorphous) with respect to starting 

crystalline phases of API and CF. This technique, being modified by grinding of API and 

CF in presence of droplets of solvent is known as liquid-assisted grinding, or kneading. 

Task et al., 2004 reported that the nature of solvent and the solubility of one of the 

component in the solvent is crucial factor for controlling the polymorphism in PCC of 

caffeine with glutaric acid. This is the cost-effective and environmentally friendly method 

for reliable and rapid PCC screening  (Basavoju et al. 2008; Braga & Grepioni, 2005; Task 

et al., 2004, Weyna et al. 2009). In addition to these methods, hot-stage thermal 

microscopy method, so-called Kofler technique in the study carried out by Berry et al., 

2008 for initial screening of PCC with nicotinamide in combination with one of several 

APIs, was exerted as beneficial, particularly in heating-cooling cycle for visualizing and 

mapping the phase transformation that contribute the binary phase diagram and 

thermodynamic properties in process of PCC formation. Since recently, advantages for 

indomethacin-saccharin PCC screening have been highlighted by applying supercritical 

fluid technology in the research done by Padrela et al., 2009. Ultrasound-assisted 

crystallization that contribute the solution crystallization method, has been utilized by Aher 

et al., 2010 as novel method for obtaining PCC of caffeine and maleic acid  2:1.   
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Part 2 
 

History of metformin 

The origin of the globally well reputed drug metformin is from the medicinal plant Galega 

Officinalis (Leguminosae) which, since medieval ages has been used in traditional 

medicine for treatment of many illnesses and symptoms, nowadays ascribed as 

consequence of the type 2 diabetes. Before the World War I, in France, Watanabe 

performed the first chemical analyses on the composition of this medicinal plant detecting 

the presence of guanidine, a compound which shows hypoglycemic activity in animals. In 

order to avoid the high toxicity of the guanidine base, other two French scientists, Muller 

(1927) and Simonnet (1927) prepared less toxic extracts of this plant wherein they 

identified the structure of the alkaloid gelagine (isoamylene guanidine) and tested its 

hypoglycemic activity. In order to improve its hypoglycemic effects and avoid adverse 

effects, synthetic ancestors, decamethylen diguanide (Synthalin A) and dodecamethylene 

diguanide (Synthalin B) were developed and clinically used.     

For the first time, in 1927, the German scientists Hesse at al. and Frank et al. synthesized 

the biguanide derivatives including the dimethylbiguanide and tested their non-toxicity and 

glucose-lowering effect on animal models, but not on humans. The first who explored the 

antidiabetic properties of dimethylbiguanide in clinical development was the French 

pharmacologist Jane Sterne, who in 1956 proposed the generic name “Glucophage” 

(glucose eater) for metformin. In the published results in 1956, Stern addressed the 

metformin effect on lowering blood glucose in patients with type 2 diabetes, but not in 

health population. Although numerous studies on pharmacovigilance has monitored the 

safety profile of metformin, its natural ancestor, Gelega Officinalis, up-to-date is being 

cited both as medicinal plant in British Herbal Pharmacopoeia (1976) and in Handbook of 

Medicinal Herbs (Duke JA, 2002) as well it is appeared on the U.S Poisonous Plant 

Database (U.S. FDA Center for Food Safety & Applied Nutrition) as a poisonous weed. 

This contradicted status could be justified by the famous quote of the founder of 

Toxicology, Paracelsus, that “the right dose differentiates a poison from a useful 

medicine”. 

The successive research on aryl biguanide derivative phenformin and alkylbuformine 

buformine which exerted effect of increased lactic acidosis shed reputation of metformin 

until the published result from UK Prospective Diabetes Study (Lancet 1998) claimed that 
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early use of metformin reduced risks of myocardial infarction and increased survival in 

overweight and obese type 2 diabetic patients beyond that expected for the prevailing level 

of glycaemic control. As a result metformin became the first-choice treatment for obese 

patients with type 2 diabetes. 

Since 1995, metformin enjoyed the status of blockbuster drug under the franchise to Bristol 

Mayer in US and brand name “Glucophage”. 

Metformin market outlook 

The Drug Trend Report from 2013 indicated that the diabetes therapy class had the highest 

per-member-per-year spend, at $270.62, and the highest trend, at 14.5%. Based on the sale 

of metformin generic forms from Teva and Mylan, together with branded lucophage, that 

in total was $1.57 billion in 2011,  metformin was ranked on thirteen position among top 

20 generic molecules (FiercePharma web portal in 2012)  

Global drug market for diabetes care values a $45 billion, and it gradually grows in 

demographics favor. Worldwide population affected by diabetes form 382 million people 

today is expected to be increased to 592 million by 2035, as a prevalence rises from 8.3% 

to 10.1%.of the population. Though the type 1 diabetes has tendency to rise, the growing 

prevalence of Type 2 diabetes increases due to an increasingly urbanized, sedentary, and 

obese global population.  

According to the diabetes market outlook report (Conover et al 2014), it is expected 

diagnosis and treatment rates to climb, particularly in emerging markets, where access to 

care is improving. Branded drugs that share the diabetes market with annual growth rate of 

12% is going to grow to $58 billion in 2018 from $33 billion in 2013. This is slightly 

higher tendency than the 10.5% 10-year historical market growth rate (which incorporates 

sales of generic products like metformin), but lower than growth in more recent years.  

The Glucophage, Bristol-Myers Squibb’s brand of the drug whose generic name is 

metformin, was the only one brand of metformin on the U.S. market until 2002 when the 

patent of metformin expired and other pharmaceutical manufacturers gained approval from 

the U.S. FDA to market their own generic forms of metformin. Up to now there are at least 

15 manufacturers which hold market authorization for selling generic forms of metformin 

on U.S. market. 

Several generic versions of the drug metformin (previously sold only as Glucophage or 

Glucophage XR) are now available. The combinations of metformin and glyburide 
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(Glucovance) and metformin and glipizide (Metaglip) are available as generic drugs. 

Dinsmoor  in 2008 reported that the combinations of metformin and rosiglitazone 

(Avandamet), metformin and pioglitazone (Actoplus Met), metformin and sitagliptin 

(Janumet), and metformin and repaglinide (PrandiMet), however, are still sold only as 

brand-name products.  

Among the top 200 products in 2012 listed by total prescriptions, Bartholow ranked the 

generic forms of metformin in following order: Metformin from Zydus on the position 40; 

Metformin from Teva on the position 41; metformin from Mylan on the position 73; 

Metformin from Aurobindo on the and position 97. 

 

Physicochemical properties of metformin 

Metformin basicity and structure relationships 

As a representative of the biguanide class of compounds, metformin exhibits strong basic 

properties (stronger base then ammonia). It is a diacid base. In biguanide structure, formed 

by the two condensed guanidine moieties, the positive charge is distributed among four 

almost equivalent amino groups forming a π-conjugated system that determines MET to 

exist in three resonance-stabilized forms, i.e. as neutral molecule (MET), monoprotonated 

(METH+) or diprotonated (METH2
2+) cation with high difference in values of primary and 

secondary dissociation constants. 

                                                                                                                                              

 

 

 

* Monoprotonated MET                           Neutral MET                          Diprotonated MET                 
* (Hariharan, et al., 1989, ActaCryst. C45, Childs, et al., 2004, Cryst.Growth.Des. 4, 3) 

 

Figure 1.5 MET resonance-stabilized forms 

 

The pKa values of MET reported in the NIST database (Martell et al., 2004) are the 

following: 

Metformin = L;  

[HL]/[L][H] pKa1(N−H+) ~ 12.40;  

[H2L]/[HL][H] pKa2(N−H+)  = 2.96 

(NIST database) 
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Margetic (2009) reported that both in the gas phase and in the solution, basicity is in 

correlation with increasing number of amino groups in the molecule of biguanides. Hence, 

metformin with three amino groups is a stronger base than guanidines that have two amino 

groups which are stronger bases than amidines with only one amino group, while amidines 

are stronger bases than imines which have no amino group. The pKa values in acetonitrile 

obtained for biguanides (27–32) were larger than for the corresponding guanidines (23–26) 

reported by Kaljurand et al. (2005). 

The high basicity of pKa1 and the difference between the pKa values qualify MET as 

organosuperbase and determine the stability of its monoprotonated form METH+ within a 

wide range of pH. 

Rainbolt et al. (2010) reported that protonation of the Lewis basic nitrogen and formation 

of iminium ion in alkanoguanidines increase their electrophylicity for nucleophylic 

addition reaction with acidic gas carbon dioxide from atmosphere. Thus, through non-

covalent interactions with carbon dioxides alkanoguanidines convert either in ionic liquids, 

or form crystalline carbonate salts. This capacity that strong organic bases exerts in 

capturing carbon dioxide has been confirmed with our research on providing crystallization 

protocols for isolation in crystals of the neutral form of metformin. As a result of our 

research, we succeeded  to crystallize only carbonate and hydrogen carbonate salts of 

metformin for which the crystal structures have been determined  (data in process of 

publication). The affinity of carbon dioxide (CO2) uptake, indicated by Heldebrant et al. 

(2011), make biguanides and alkanoguanides as promising reagents for fuel gas streams 

and materials for energy sources. 

 

Antioxidant capacity of metformin 

In the comprehensive study for confirming antioxidant properties of metformin, Trouillas 

et al. (2013) outlined that concomitant metformin consumption and formation of its 

oxidation products in pH 2.8, 7.15 and 11.6, respectively is depending on radiation dose 

that caused radical-induced oxidation of metformin.   In presence of HO• and O•
2

‒ at pH 7, 

O•
2

‒  at pH 7.15 and 11.6 and acidic form of HO•
2

‒ at pH 2.8, the lower value of radiolytic 

yield for metformin consumption at pH 2.3 then the obtained values in neutral and basic 

environment, indicates to dismutation process in which part of metformin is regenerated 

during the radical reactions. Reaction between  one molecule of metformin and HO• radical 

leads to no regeneration of metformin. By applying the Density Functional Theory (DFT), 

the calculated bond dissociation enthalpies (BDE) for carbon atoms from methyl groups of 

metformin,  even in values higher compared to O─H BDEs for polyphenol type of 
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antioxidants, showed that methyl groups are equivalent targets for HO• attack confirming 

that N-dimethyl moiety of metformin is reactive site. After attacking HO• to metformin, 

and consequently formation of primarily carbon-centered radical ([MTF─H]•) located on 

C8 (or C9) which undergo to conformational reorganization (depending of the pH value it 

is easily for diportonated metformin) through N7-C8(C9) bond formation and 

transformation to cyclic radical which in bi radical reaction in presence of other radical 

species is transformed to neutral metformin molecule in solution. This dismutation 

mechanism described by Trouillas et al. (2013) allows regeneration of metformin and 

confirm its antioxidative property in relation to pH value. 

 

Metformin in metal-organic chemistry (Chelating properties of metformin) 

Zhu et al. (2002) synthetized and crystallized the metal-organic red cooper complex of 

deprotonated metformin (an anionic ligand). Metformin as a bidentate ligand which lacks 

aromatic character, through four N atoms of two ligands, chelates copper in  unusual 

pseudoaromatic square-planar ring coordinative structures characterized by the high value 

for affinity constant (equilibrium constant). The deprotonation of the ligand causes 

extensive delocalization in π conjugation of the conjugated C─N─C system, reducing the 

bond angle at the central N atom to nearly 120°. Electron delocalization in the chelate 

complex of metformin and copper in the study of Logie et al. (2012) was tested  in the 

cellular action of biguanides to regulate AMPK, glucose production, gluconeogenic gene 

expression, mitochondrial respiration, and mitochondrial copper binding. In contrast, 

regulation of S6 phosphorylation is prevented only by direct modification of the metal-

liganding groups of the biguanide structure, supporting recent data that AMPK and S6 

phosphorylation are regulated independently by biguanides. Logie et al. (2012) explained 

that apolar dimeric metformin complex with Cu2+ which exhibits hydrophobic property, 

and thus slowly passes the plasma membranes inside the cells, is a crucial factor in the 

complex I (NADH-ubichinone-reductase) responsible for the respiratory chain located in 

the inner mitochondrial membrane (Logie et al. 2012, Rena et al. 2012).  

Other metal-organic complexes of metformin were reported, that include cobalt (Rafat et 

al, 2014) and technetium and rhenium (Marchi et al. 1999).  

Since Li et al. (2009) confirmed on animal model the antidiabetic effects of Vanadium (III, 

IV, V)-chlorodipicolinate (dipic-Cl) complexes, Chatkon et al. (2014) synthetized 

crystalline double salt of polyoxovanadate i.e. decavanadate (V10O28
 6─) anions with two 

metformium monocations, and a hydrolyzed product of metformin, protonated guanylurea 

(HGU+) enganed with two crystallized water molecules: (HGU+)4(HMet+)2(V10O28
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6─)∙2H2O. The ions and the two water molecules of solvation are engaged in extensive 

multiple H-bonded network, and crystallize in the triclinic space group P‒1 (Z = 1).   

The FTIR spectroscopic study on interface properties  for testing the hydrogen-bonding 

properties of  the non-water soluble decavanadate salt of metformin in the water and 

sodium bis (2-ethylhexyl) sulfosuccinate (AOT) reverse micelles, carried out by Chatkon 

et al. (2013), showed that decavanate counter anion (V10O28
6─) affects the solubility of the 

salt in aqueous solution and in reverse micelles due to effect of metforminium 

monoprotonated cations on hydrogen-bonding pattern in water phase of the reverse 

micelles.  

Fabbrizzi et al (1978) on their study of biguanide complexes with nickel(II) and copper(II) 

in solution reported that the process of formation of metal-nitrogen π bonds in complexes 

between square coordination of the metal ions and delocalized planar configurations of 

monoprotonated biguanide cations is accompanied with high exothermicity  characterized 

by negative changes for configurational and translational entropy due to release of water 

molecules of solvation.   

 

Metformin as a chemoselective catalyst in Henry reactions 

For first time Alizadeh et al. (2012) utilized the metformin in neutral form to catalyze the 

Henry reaction (nitro-aldol reaction of aldol-type C─C bond formation) of a variety of 

aliphatic, aromatic and heteroaromatic aldehydes with nitromethane without resulting the 

side reactions such as aldol-condensation, Cannizzaro reaction, nitroalkene formation, 

Michael reaction, retro-aldol reaction and Nef reaction. The benefits of metformin to 

catalyze the Henry reactions are in unnecessity to use organic solvents, its recycling use in 

repeated reactions in which reversible proton transfer occurs between metformin and acidic 

substrate, and its easy removal. These advantage contribute this catalyzed Henry reaction 

with metformin to be classified as green or environmentally friendly. 

Metformin salts        

Metformin is a drug marketed  as hydrochloride, embonate (pamoate) and p-

chlorophenoxy acetate salt.  

Measurements by UV spectroscopy for the hydrochloride salt of metformin at pH 1, pH 4, 

pH 7 and pH 13 shown that its UV spectra is pH dependent. The maximum of the 

absorption at around 230 nm is due to π-π* transition and it is not affected by the single 

protonation that only may induce a decrese in intensity (Prugnard & Noel). Clement (1999) 

comparative study on monoprotonated metformin, phenfomin and buformin in forms of 

hydrochloride salts by applying 15N NMR spectroscopy indicated that for all three 
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biguanides, the protonation occurs at the position of the most basic nitrogen atom N-2 and 

that the neutral metformin in solution predominantly exists in form of 1. This result has 

been confirmed by Hariharan et al. (1989) whose crystallographic study on last resolved 

structure of metformin hydrochloride revealed that the imino group attached to C5 is a site 

for protonation, due to which intermolecular H-bonds are formed. Moreover, results of 

Hariharam study showed that two guanide groups laid in planes between which the angle 

has value of 67.9° which corresponds to dihedral-angle values reported for related 

structures. Crystallographic analyses underlined that intermolecular N─H∙∙∙N type of 

hydrogen bond does not exist in structure of metformin hydrochloride though previously 

Shapiro et al. (1959) has reported that this type of hydrogen bond is responsible for 

hypoglycemic activity of biguanides. The molecules of metformin hydrochloride in the 

unit cell are stabilized by N─H∙∙∙N and N─H∙∙∙Cl types of hydrogen bonds, chlorine atoms 

are interspersed between layers of metformine molecules along the b axis and each 

chlorine participate in five hydrogen bonds. The crystals of metformin hydrochloride 

belong to a monoclinic group and on macroscopic scale they are white needles in shape. 

Metformin hydrochloride as a solute in its aqueous solution was used in the work of 

Maheshwari et al. (2009) as hydrotropic agent to enhance the solubilization of the aqueous 

solubility of the poorly-water soluble drug atenolol from its dosage forms. The statistically 

validated data  indicate that metformin hydrochloride in concentration range of 50-

300μg/ml obeyed to Beer’s law and did not interfere with excipients from atenolol 

formulation at 275 nm. The reported results of analysis by the method proposed by 

Maheshwari et al. are in compliance with the method proposed for metformin assay in the 

British Pharmacopea and are beneficial in terms of avoiding organic solvents. 

Results from the assessment of thermal stability of metformin hydrochloride salts obtained 

by Sharma et al. (2010) highlighted that 10% of the drug will decompose within 208 h on 

30 ºC. The decompensation constant calculated from the slope of the Arrhenius plot for 

temperature-concentration indicates that metformin decomposition follows a zero order 

kinetic. This work of Sharma et al. anticipates that storage and processing conditions for 

formulations with metformin hydrochloride salt influence its thermal stability.   

Sensitivity (0.02 mg/L detection limit in human plasma), and highly reproducibility of the  

reversed phase high-performance liquid chromatography  with a new precolumn 

derivatization method using 9,10-anthraquinone-2-sulfonyl chloride as the derivatization 

agent developed by Juan et al. (2006) overcomes the disadvantages associated with 

complexity for performing and costs  for  reverse-phase, ion-pair liquid chromatography 
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(LC) (Vasudevan. et al., 2001), LC–mass spectrometry (MS)–MS (Zhang et al., 2001), or 

cation exchanging with normal phase (Koseki et al., 2005).  

Poor flowability and compressibility of needle-shaped and large size (˃400 μm) crystals of 

metformin hydrochloride was improved in work of Barot et al. (2012) by its 

recrystallization in solution of  2% polyvinylpyrrolidone (PVP K30), well known excipient 

for pharmaceutical formulations and crystallization inhibitor to its effect to adsorb to the 

surface of the particles modifying only the crystal habits (size and shape). The values for 

the selected as dependent variables  (flowability - Carr’s index and  tensile strength  

calculated from the Kawakita equation and Heckel plot, respectively)  obtained  for 

optimized batch by method of 32 factorial design showed that bulk powder (mean size 184 

μm for spherical particles) of recrystallized metformin hydrochloride salts with 2% PVP in 

comparison to commercial, untreated metformin salt, exerts higher degree of densification, 

lower porosity under zero pressure, less resistance force required for compression. These 

results are promising in terms of favorable properties of bulk powder of recrystallized 

metformin hydrochloride salt in presence of 2%PVP for high-dose sustained release tablet 

formulations. 

Inconsistent flow behavior of the batches of blends of metformin hydrochloride salts with 

other excipients which were undergone to milling, after the processing and during the 

storage at different temperatures and relative humidity ambient was investigated by 

Vippagunta et al. (2010). The results for surface energy values obtained by the density 

functional theory (DFT) method, together with X-ray diffraction patterns, thermally 

stimulated current measurements, and dynamic vapor sorption isotherms indicated to 

detectible defects on the surfaces of its crystals which were absent in the samples of the 

storage (aged) sample. Vippagunta et al. underlined that these change on the surface of 

metformin hydrochloride crystal is a factor for difference in flow behavior.  

Amorha et al. (2013) studied the concomitant in vitro dissolution profiles of 500 mg 

(Glucophage® 500mg) and 10 mg (Zestril® 10) and reported that  lisinopril decreases the 

percentage of released metformin at pH 1.2, 4.5, and 6.8. Increased percentage of released 

lininopril in presence of metformin is statistically significant only at  pH 1.2 and 6.8. These 

results anticipate the alertness of optimizing the dosage regimen in therapy with metformin 

and lisinopril. 

First reported metastable polymorph of metformin hydrochloride was reported by Childs et 

al. (2004) who succeeded obtaining single crystals of form B grown from the mixture of 

metformin hydrochloride and ethylene glycol by manipulating the temperature of the hot-

stage during the crystal growth process. The thermodynamic study of  highly metastable 
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Form B indicate its rapid crystal growth in constrained in situ conditions and complete 

conversion to more stable Form A over a 24 to 36 h period at temperatures between 0°C 

and 140°C. By comparing the determined structures of Form A and Form B, both collected 

at 100 K, Shild et al. pointed out the 5.5 % difference in density what is in agreement with 

previous work of  Gavezzotti & Filippini (1995) who reported that 93% of polymorphic 

pairs included in  the Cambridge Crystallographic Database differ in density less than 5%. 

Both polymorphs crystallize in monoclinic (P21/c) space group with one complete 

metformin cation and one chloride anion in the asymmetric unit. The charge-assisted 

hydrogen bonds N-H∙∙∙Cl confined to a layer are in the bc plane of Form B, and the ac  

plane for Form A. In the metastable Form B a centrosymmetric 0D dimer is presented by 

the hydrogen bonds between cations, while in Form A neutral N-H∙∙∙N bonds form one-

dimensional (1D) rod motif. The differences in values for torsion or dihedral angle (N5‒

C2‒N1‒C1), ‒53.7° and 129.1° for Form A and Form B, respectively, influence the 

differences in conformations of the metformin cations in structures of both polymorphs. In 

the Form A, the  ‒C(NH2)2 group is close to ‒N(CH3)2 group resulting in more compact 

packing in the asymmetric unit, while Form B has a more extended molecular backbone.  

Embonate or pamoate is another salt of metformin that was patented for many years in 

France (FR2037002A1), but in recent study of Nanubolu et al. (2013) its polymorphism 

was reported. Authors  revealed that the two polymorphic forms are in enantiotropic 

relation;  Form I is theromdinamically more stable at higher temperatures, while Form II at 

room temperature, and this latter displays lower solubility and lower intrinsic dissolution 

rate comparing to the former Form I. Moreover, a polymorphic mixture of Forms I and II 

at room temperature in water converts to more stable Form II after one day. Crystal 

packing analyses of the determined structures for Form I and II consist of metformin and 

enbonate in 2:1 stoichiometric ratio. Form I crystalizes in monoclinic P21/c and Form II in 

triclinic P‒1 space group. The analyses of hydrogen bonding motifs underlined that in both 

forms between metformin monoprotonated and first carboxylate of the embonate exists a 

two-point dimer synthon with symmetry independent metformin; R2
4(16) motif of N4B‒

H4N∙∙∙O5 and N5A‒H6N∙∙∙O5, and four-point tetramer synthon; R4
2(8) motif of N2B‒

H8N∙∙∙O3 and N4B‒H9N∙∙∙O3 including another carboxylate of embonate form and 

independent metformin. The difference in arrangement of these two similar synthons have 

been confirmed in work of  Nanubolu et al. as important feature for difference in packing 

due to which metformin embonate exists in two polymorphic forms. Form I is formed by 

connecting one dimeric unit to another screw-related dimer through single N‒H∙∙∙O 

interaction in which participate the NH donor of metforminium cation and the O acceptor 
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of the carboxylate (N4A‒H3N∙∙∙O6). This mode of packing propagates infinite zig-zag 

arrangements along the b-axis. In Form II, one dimeric unit is linked to its inversion-

related dimeric unit by two point motifs R2
2(8) including two N4A‒H3N∙∙∙O6 interactions 

leading to ladder patterns of arrangements along a-axis. The conformation proposed by 

Childs et al. for Form B (value of torsion angle 129.1°) was confirmed to exist in two 

metformin molecules included in both polymorphs of metformin embonate salts, Form I 

with values for torsion angles ‒156.8° and  ‒151.5°, and Form II with values for torsion 

angles ‒161.5° and  ‒148.1°. Additional DFT computations for relative conformer energy, 

in the work of Nanubolu et al., confirmed the crystallographic analyses that the stable 

conformer of monoprotonated metformin (metforminium cation) in solid state is that one 

with value for the torsion angle around 150° (N1‒C3‒N3‒C4) and the lower energy.       

In addition, the survey in the Cambridge Structural Database (CSD) revealed that there are 

12 deposited structures of metformin salts wherein metformin exists as monocation 

(monoprotonated): two polymorphs of hydorchloride, bromide, nitrate and acetate salts and 

five structures where it is dication (diportonated): oxalate, sulfate, perchlorate, squarate 

and calixarene-sulfonate salts.  

In acetate and nitrate salts, monoportonated metformin exists in the same, most stable  

conformation as it was explained in hydrochloride and embonate salts (Childs et al; 

Nanubolu et al.), while in bromide salt its conformation correspond to the less stable at 

Form B (Childs et al.). Pérez-Fernández et al. (2013) reported salicylate salts of metformin 

prepared from metformin hydrochloride and sodium salicylate 

Quality specification for metformin hydrochloride described in the monograph of the 

European Pharmacopoeia (Ph EUr)  includes tests for description, identification (IR, 

PhEur), solubility (Ph Eur), melting point (Ph Eur), Loss on drying (Ph Eur), heavy metals 

(Ph Eur), content (Ph Eur, 98.5-101.0%), impurities (HPLC), residual solvents (GC), and 

particle size. 

 

Mechanism of action of metformin in diabetes mellitus type 2  

Conducted research by Inzucchi et al. 1998 showed that biguanide group of drugs affect 

the inhibition of liver glucose production. However, the mechanism of action of metformin 

remains unclear in spite of its wide application as a first line oral therapy in diabetes type 2 

(Goodarzi et al. 2005). Previously demonstrated metformin mode of action through 

activation of the kinase AMPK (Shaw et al. 2005, Zgou et al, 2001) has been disputed by 

the recent study done by Foretz et al. 2010 involving livers and primary hepatocytes with 
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missed either  AMPK or its upstream activating enzyme LKB14.The experiments from this 

study are associated  with the Miller et al. work on the inhibition of the glucagon signaling 

pathway caused by metformin, since the abnormal secretion of the hormone glucagon, 

having partial role in controlling glycogenesis and gluconeogenesis during the fasting state, 

is a major factor for hyperglycemia in individuals with diabetes mellitus type 2 (D’Alessio 

et al. 2010, Jiang et al. 2003, Unger et al. 2012).Unlike sulfonylureas, metformin did not 

stimulate insulin release, but increased its peripheral uptake and also reduced the release of 

glucose from the liver. Cellular effects of biguanides are associated their metal-binding 

properties. Logie et al (2012) demonstrated that biguanide/copper interactions, stabilized 

by extensive π-electron delocalization, enables biguanides to regulate AMPK, glucose 

production, gluconeogenic gene expression, mitochondrial respiration, and mitochondrial 

copper binding. In contrast, regulation of S6 phosphorylation is prevented only by direct 

modification of the metal-liganding groups of the biguanide structure, supporting recent 

data that AMPK and S6 phosphorylation are regulated independently by biguanides. 

Anticancer activity of Metformine  

Recently, Pollac (2013) proposed that metformin or related biguanides may have 

antineoplastic activity. The study performed on breast cancer cells (Zakhikani et al. 2006) 

showed that metformin-induced inhibition of oxidative phosphorylation leads to AMPK 

activation and to AMPK-dependent antiproliferative effects, which are mediated by 

processes such as AMPK-mediated inhibition of fatty acid synthesis (Algire et.al. 2010) 

and AMPK-mediated inhibition of mRNA translation (Larson et al, 2012). Pernicova et al. 

2014 reported that combination of tumor genetics, patient metabolic profile and the cellular 

microenvironment determine the antitumor effect of treatment with metformin. In the work 

of Giovannuci et al. 2010 is reported that metformin reduced the risk of cancer incidence 

to the patients with diabetes mellitus by approximately 40% compared with the other 

antidiabetic treatments.  

Metformin exerts direct effects  in cancer through interplay of 5' AMP-activated protein 

kinase, AMPK-independent and AMPK-dependent mechanisms (Liu et al. 2014). The 

LKB1-dependent and AMPK-dependent suppression of the mammalian target of 

rapamycin 9mTOR pathway is possibly most potent antineoplastic effect of metformin 

because mTOR inhibition interrupts protein synthesis, and consequently tumor cell 

proliferation. Inhibition of proto-oncogene c-MYC and hypoxia-inductible factor 1α (HIF-

1α) via AMPK and proteins level in breast cancer models indicate to its antiproliferative 
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effects (Blandino et al. 2012). Independently of  AMPK, metformin inhibits mitochondrial 

complex I responsible for production of reactive oxygen species, oxidative stress and DNA 

damage, therefore it reduce the risk of mutagenesis (Aigire C et al 2012). 

Anti-inflammatory activity of metformin in treatment of psoriasis  

Glossmann et al. 2013 outlined the arguments that the metformin could be useful as an 

add-on therapy to methotrexate for the treatment of psoriasis and, perhaps, for rheumatoid 

arthritis as well.  

Their claim is based on the biochemical data suggesting that both drugs may share a 

common cellular target, the AMP-activated  protein kinase (AMPK). Clinical observations 

as well as experimental results argue for anti-inflammatory, antineoplastic and 

antiproliferative activities of metformin and a case-control study suggests that the drug 

reduces the risk for psoriasis. Patients with psoriasis have higher risk of metabolic 

syndrome, type 2 diabetes and cardiovascular mortality. Glossmann et al. expect that 

addition of metformin to methotrexate can lead to positive effects with respect to the The 

Psoriasis Area Severity Index (PASI score), reduction of the weekly methotrexate dose and 

of elevated cardiovascular risk factors in patients with metabolic syndrome and psoriasis.  

 
Biopharmaceutical profile of metformin 

 

Metformin (MET) is a low-molecular-weight hydrophilic compound with value for 

distribution coefficient logD of ‒3.37 at pH 4 and water solubility higher than 100 mg/mL 

within the entire physiological pH range (Bretnall & Clarke, 1998).  The major window of 

absorption for metformin is the proximal small intestine, and the primary route of 

elimination is through the kidneys (Trucker et.al, 1981). Based on Caco-2 cell model for 

testing process of permeation through cell membrane proposed by Nicklin et al.(1996), the 

absorption of MET is proposed to occur by diffusion in extent of 91-95% by paracellular, 

and  5-9% by transcellular, respectively.    

After oral administration, metformin is slowly absorbed from the proximal small intestine 

(e.g., duodenum) and mainly excreted from urine (>90%) without undergoing significant 

biotransformation (Scheen, 1996; Bell and Hadden, 1997). The intestinal absorption of 

metformin is the rate-limiting step of its disposition, due to its slower rate of absorption 

than of plasma elimination. (Scheen, 1996; Bell and Hadden, 1997). The absorption of 

metformin is dose-dependent and incomplete (Scheen, 1996; Bell and Hadden, 1997). A 
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lower dose affects higher extent of metformin absorption rather than higher dose does 

(Tucker et al., 1981), and an inverse relationship was observed between the amount of 

metformin ingested (from 0.25 to 2.0 g) and its bioavailability (from 86 to 42%) (Scheen, 

1996; Bell and Hadden, 1997). Dose-dependent absorption kinetics supported the 

suggestions that  metformin absorption is mediated by an active, saturable absorption 

process (Scheen, 1996; Bell and Hadden, 1997; Klepser and Kelly, 1997). However, the 

further investigations remain as a challenge to reveal which of  the transporters are 

responsible for the active uptake process of metformin in the intestine. 

The transport activity of the organic cation transporters (OCTs), polyspecific transporters 

expressed in the liver and kidney where they are responsible for elimination of the organic 

cations from systemic circulation (Koepsell, 1998), in general is significantly decreased at 

lower pH (Wang et al., 2002), and the acidic environment in the gut lumen (pH 4.0-7.0) 

may limit their ability in metformin absorption.  A novel organic cation transporter, plasma 

membrane monoamine transporter (PMAT), transports many classic organic cations (e.g., 

monoamine neurotransmitters, 1-methyl-4-phenylpyridinium) in a pH-dependent manner 

and its mRNA is expressed in multiple human tissues (Engel and Wang, 2005). The study 

of Zhou et al (2007) showed that metformin is avidly transported by PMAT, the 

concentration-velocity profile of PMAT-mediated metformin uptake is sigmoidal, and is 

greatly stimulated by acidic pH, with the uptake rate being ~4-fold higher at pH 6.6 than at 

pH 7.4.  

After single oral doses administration of  MET (0.5 and 1.5 g), Trucker et al. (1981) 

showed that the maximal plasma concentration and urinary rate of excretion have been 

reached about 2 h. In urinary tract, the drug is reabsorbed about 30% in unchanged form, 

and through the fecal  the unchanged forms is recovered about 30%. Urinary recoveries 

were significantly lower after the higher dose. Absolute oral bioavailability was estimated  

50-60% of the dose. Beside the results reported by Shu et al. 2008 that addressed genetic 

variations  on organic cation transportes  (OCT) in enterocytes, small intestine, and 

hepatocytes in facilitation of the process of absorption of metformin, Zhou et al. (2007) 

reported that the significant differences in oral absorption of metformin in patients with 

genetic variation of OCT and the specific OCTs have not been identified. Metformin-

associated lactic acidosis is the major side effect of metformin (Lalau, 2010).  

The bioavailability of APIs is determined by their solubility and permeability. Lipinski et 

al (2000, 2001) reported that for the well water soluble APIs formulated in dosage forms 

for oral administration, the crucial factor is their permeability.  
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Biopharmaceutical Classification System (BCS) outlines two benchmarks for the high 

water solubility of APIs: one considers to 85% dissolution of the dose within 30 min at all 

pH values from 1 to 7.5, and another is related to the solubility of the released dose in not 

more the 250 mL. The high-solubility and low-solubility compound differ one to another in 

range of million-fold (0.1 μg/mL–100 mg/mL). One API is classified as highly intestinal 

permeable if more than 90% of its administered dose is absorbed in comparison with 

intravenous administration. Kerns et al. (2008) pointed out that the difference between a 

high-permeability and a low-permeability compound can be 50-fold (0.001–0.05 min−1) 

The permeability of the APIs formulated in oral dosage forms depends on several factors, 

such as intestinal permeability, solubility in gastrointestinal system, drug release from the 

dosage form, liability to efflux and metabolism (Thakker, 2008). 

Kerns et all. (2008) reported that the strategies for improving the permeability encompass 

modification of the API molecules  through reduction of ionizability, increase of 

lipophilicity, reduction of polarity or reduction of hydrogen bond donors or acceptors. 

Another strategy address to changing in formulation in relation to substitution or 

involvement of the functional excipients, such are permeability enhancers, surfactants or 

pharmaceutical complexing agents. 

According to Biopharmaceutics Classification System, MET belong to class III  (BCS III) 

of compounds, which exert high solubility, poor permeability (Cheng et al., 2004, Blume 

et al. 1996). Several studies (Cheng et al. 2004, Kortejarvi et al. 2007, Jantratid et al. 

2006, )  enlightened that the controlling factor for the process of absorption of the 

pharmaceutical dosage forms is not the solubility of API in formulation, in case API 

belong to BSC III. Moreover, the absorption of these compounds form BSC III is affected 

by the gastrointestinal (GI) transit time (Sinko et al. 1991, Zhou et al. 2007 , Tsume et al. 

2010). Sinco et al. (1991) observed that though the in vitro release profiles are slower than 

in vivo release profiles, compared to the fraction of dose absorbed, both are faster, thereby 

confirming that the permeability and transit time in the intestine are rate limiting to 

absorption and not to solubility. Hence, in order to compare bioequivalence of the two 

dosage forms formulated with APIs from BSC III, the release time must be within the 

boundaries of the absorption window in the intestine (Homsek et al., 2010).   

On the basis of comparative in vitro release profiles of API from two different dosage 

forms formulated with the same doses, it is possible the predicted changes in dosage forms 

that not affect in vivo performance to be approved by applying the biowaiver approach 

(Homsek et al., 2010). Biowaiver concept allows minimizing review burdens in process of 
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marketing authorizations of the dosage forms, avoiding unnecessary clinical trials and 

expenses (Blume et al. 1996).  

European Medicines Agency guidelines allow application of biowaiver in the case of BCS 

III compounds under very specific conditions of excipient composition of the compared 

materials and where dissolution is very rapid, not less than 85% dissolved in 15 min across 

the physiological pH range. The study carried out by Zhou et al. 2007 applying the 

validated computer simulations from a mechanistically based in silico permeability and 

intenstinal transit time within the framework of compartmental absorption transit model in 

the human subject, demonstrated that predicted nonlinear pharmacokinetics (PK) 

parameters respect to doses (maximum plasma concentration, Cmax and area under the 

curve, AUC), compared with corresponding human pharmacokinetics (PK) data, are not 

significantly affected when 100% of metformin is released within 2h of oral 500mg 

metformin single doses, formulated in immediate and extended release dosage forms, 

respectively. Hence, combining the PK modeling tool with in vitro dissolution, it is 

possible to set a range of release rates that are expected to have no impact of PK, and 

therefore result in bioequivalence. Crison et al. (2012) emphasized that the advantage of 

this biopharmaceutics-based approach for proposing biowaiver is to avoid the need for 

very rapid dissolution times and challenges of current similarity factor assessments for in 

vitro dissolution profiles, which may show nonsimilarity for bioequivalent drug products. 

Bioavailability of the salts in GI tract depends on the properties  of the salts and its 

corresponding base and acid. Salts of the basic drugs in GI tract exist as dissolved in 

gastric fluid, and thus remain in solution or may precipitate out in form of free base when 

once it passaged to intestinal compartment.  Hydrochloride salts exert a common ion effect 

owing to the presence of chloride ions in the stomach. The bioavailability of the sulfate 

salts is more than three times greater than that of the hydrochloride salt. Recent studies 

indicate that fast interfacial counterion exchange and the presence of chloride ions quickly 

inhibit dissolution of free base and other acid salts not limiting to the HCl salts (Marianne 

Ashforl 2013). Another potential disadvantage outlined in literature (Le Heewoon, 2014) 

relates to the general physical properties of hydrochloride salts, such it is volatility of 

formed HCl, is related to its high hygroscopic nature and lower melting points and/ or 

decomposition temperatures comparing to salts formed with other acidic counterions. Both 

cases are threatened for risks of metal contamination of batches and processing equipment.  
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By historical backward perspective Serajuddin (2007) and Paulekuhn et al. (2007) reported 

that beside of all commercially marketed and approved by FDA APIs, in form of salts, 

40%-60% of them exist as hydrochloride salts. The water solubility od metformin in pH 

range of 1.2-6.8 is 300 mg/mL and its dissolution rate is pH independent. The evidence of 

slower dissolution profiles exhibited by immediate-released 850 mg metformin 

hydrochloride tablet formulation at pH 1.2 (0.1 N HCl) and at pH 4.5 (acetate buffer) 

compared to that in pH 6.8 (phosphate buffer), designated as dissolution media in the 

United States Pharmacopeia (USP) for metformin tablets, and majority of metformin fixed-

dose tablet formulation, has been attributed to the additional protonation of the 

monoprotonated metforminium cation at the acidic pH resulting in higher solvation and a 

larger hydrodynamic radii that cause slower diffusion and dissolution. The solubility of the 

released portion of highly dosed sustained-release metformin tablets, in the work of Desai 

et al. (2014),  was facilitated by adding the wetting agent lauryl sulfate to the dissolution 

media with aim of decreasing the diffusion layer on the surface of drug released. The 

results of this study (Dasai et al. 2014), obtained by  diffusion-ordered spectroscopy 

nuclear magnetic resonance technique, indicated that the decreasing release of metformin 

at pH 1.2 and 4.5 was associated with formation of hydrophobic and insoluble salts due to 

interaction of the metforminium cation with the lauryl sulfate anion in 1 : 2 stoichiometry  

in dissolution medium at pH 1.2 and 4.5, while this effect was absent at pH 6.8.  

Metformin formulations (drug delivery systems) 

Since the metformin was introduced as single dose table formulation on the U.S market by 

Bristol Myers Squibb, up-to-date, on the health  care market have been authorized single-

dose formulations (SDFs) for immediate released (IR) and extended released (XR) of the 

drug, as well fixed-doses combinations (FDCs) of metformin and another anti-

hyperglycemic drug.   

Metformin extended release (XR)  versus immediate release (IR) single-dose 

formulation (SDFs) 

The results form clinical trials headed by Fujioka et al. 2003, Schwartz et al. 2006 

indicated that metformin extended released (XR) tablets with dose of 1000 mg  showed to 

have comparable effects to that of immediate-release (IR) tablets loaded with metformin 

500 mg per tablet and ordinated in twice-daily doses. 

In addition, to comparable efficacy, Schwartz et al. 2006, Ali et al. 2012, Chacra  et al. 

2014, based of performed clinical trials, claimed that the metformin XR formulation given 
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once daily was associated with less gastrointestinal (GI) side effects than metformin IR. 

Metformin XR formulations were proposed (Schwartz et al. 2006, Ali et al. 2012, 

Donnelly et al. 2009) as option for therapy to patients who experience an unacceptable 

level of GI side effects with metformin IR.  

However, a retrospective cohort study conducted by Blonde, et al.(2004) investigating 

relative GI tolerability only showed a lower incidence of GI side effects for patients who 

had been switched from metformin IR to patented metformin extended-released (XR) 

formulation, based on GelShield diffusion drug delivery system,  after GI upset, or for 

treatment-naïve patients who had been started on metformin XR. This study did not show 

any difference overall in GI adverse events between groups given IR or XR formulations 

(Blonde, et al. 2004). 

In a population-based study, Donnelly et al. (2009) demonstrated improved adherence in 

patients taking XR compared with IR formulations, but it is unclear from this small 

observational study whether the improvement in adherence was attributable to once-daily 

dosing or to reduced side effects.  

Metformin fixed-doses formulations (FDCs) 
 
Fixed-dose combinations (FDCs) drugs are formulations comprised of two or more drugs 

that are combined in a fixed ratio of doses and available in a single dosage form.  

International and national guidelines for therapy do not recommend FDCs for the treatment 

of diabetes. 

In comparison to India pharmaceutical market review (PharmTrac report) where metformin 

FDCs dominated over metformin single-dose formulations, SDFs, by a ratio of 3:1 

between the years 2007-2012, comprising 56% of oral diabetes drugs sold in volume in 

2012, in E.U. markets, according to the report issued by European Medicines Agency 

(EMA), exist 11 metformin FDCs authorized products. Of these four products are listed in 

the UK’s British National Formulary (March, 2013) and Monthly Index of Medical 

Specialities (MIMS). The EMA publishes an European public assessment reports (EPAR),  

full scientific assessment reports, for every medicine granted a central marketing 

authorisation by the European Commission following an assessment by the EMA's 

Committee for Medicinal Products for Human Use (CHMP).  

In Table 2.1 are presented metformin FDCs formulations authorized in E.U and US 

markets. Table 2.2 includes the chemical formulas of the eleven (11) ant diabetic drugs 

approved in FDCs with metformin.  
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Table 2.1 Metformin FDCs 
 

APIs 
Medicine 

name 
Brand 

Marketing Authorization Holder  Authorized status 

rosiglitazone / 
metformin∙HCl 

Avandamet 
 SmithKline Beecham Plc EMA, October 2003 

Avandamet SmithKline Beecham Plc FDA, October 2002 

pioglitazone / 
metformin∙HCl 

Competact Takeda Pharma A/S EMA, July 2006 

Glubrava Takeda Global Research and 
Development Centre (Europe) Ltd. EMA, December 2007 

Actoplus Met 
XR Takeda FDA approved, August 2005 

sitagliptin / 
metformin∙HCl 

Efficib Merck Sharp & Dohme Ltd. EMA, July /2008 
Janumet Merck Sharp & Dohme Ltd. EMA, July 2008 
Ristfor Merck Sharp & Dohme Ltd. EMA, March 2010 
Velmetia Merck Sharp & Dohme Ltd. EMA, July 2008 
Janumet Merck Sharp & Dohme Ltd. FDA, March 2007 
Janumet XR Merck Sharp & Dohme Ltd. FDA, February 2012 

vildagliptin / 
metformin∙HCl 

Eucreas Novartis Europharm Ltd EMA, November 2007 
Icandra 
(previously 
Vildagliptin / 
metformin∙HC
l Novartis) 

Novartis Europharm Ltd. EMA, December 2008 

Zomarist Novartis Europharm Ltd. EMA, Decembre 2008 

linagliptin / 
metformin 

Jentadueto Boehringer Ingelheim International 
GmbH EMA, December 2012 

Jentadueto Boehringer Ingelheim 
Pharmaceuticals, Inc. FDA, February 2012 

saxagliptin 
hydrochloride/ 
metformin∙HCl  

Komboglyze AstraZeneca AB EMA, November 2011 
Kombiglyze 
XR E.R. Squibb & Sons, L.L.C. FDA, November 2010 

alogliptin 
benzoate / 
metformin∙HCl 

Vipdomet Takeda Pharma A/S EMA, Spetember 2013 

canagliflozin / 
metformin∙HCl Vokanamet Janssen-Cilag International N.V. EMA, April 2014 

metformin∙HCl / 
dapagliflozin 
propanediol 
monohydrate 

Xigduo Bristol-Myers Squibb/AstraZeneca 
EEIG EMA, January 2014 

Glipizide/ 
metformin∙HCl 

Metaglip Bristol-Myers Squibb FDA, October 2002 

Repaglinide / 
metformin∙HCl  

PrandiMet Novo Nordisk June 2008 

Sources: European public assessment reports, http://www.ema.europa.eu/ema/index. FDA-Approved 
Diabetes Medicines, http://www.fda.gov/ForPatients/Illness/Diabetes/ucm408682.htm 
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Table 2.2 Review of antidiabetic drugs in FDCs with metformin 

 
 
Generic 
name 

Chemical name Chemical formula Therapy class 

Rosiglitazone 
(RS)-5-[4-(2-[methyl(pyridin-2-
yl)amino]ethoxy)benzyl]thiazolidin
e-2,4-dione 

 

thiazolidinedione (TZD) 
class of drugs 

PPAR receptors 

(Khandoudi et al.,2002) 

Pioglitazone 
(RS)-5-(4-[2-(5-ethylpyridin-2-
yl)ethoxy]benzyl)thiazolidine-2,4-
dione 

 

TZD class of drugs 

(Bogacka  et al., 2004) 

Sitagliptin 

(R)-4-oxo-4-[3-(trifluoromethyl)-
5,6-dihydro[1,2,4]triazolo[4,3-
a]pyrazin-7(8H)-yl]-1-(2,4,5-
trifluorophenyl)butan-2-amine 

 

dipeptidyl peptidase-4 
(DPP-4) inhibitor  

(Aschner  et al, 2006) 

Vildagliptin 
(S)-1-[N-(3-hydroxy-1-
adamantyl)glycyl]pyrrolidine-2-
carbonitrile  

DPP-4 inhibitor 
 

(Kalra S, 2011) 

Linagliptin 

, 8-[(3R)-3-aminopiperidin-1-yl]-7-
(but-2-yn-1-yl)-3- methyl-1-[(4-
methylquinazolin-2-yl)methyl]-3,7-
dihydro-1H-purine-2,6-dione 

 

DPP-4 inhibitor 
 

(Forst  et al 2010) 

Saxagliptin, 

(1S,3S,5S)-2-[(2S)-2-amino-2-(3-
hydroxy-1-adamantyl) 
acetyl]-2-azabicyclo[3.1.0]hexane-
3-carbonitrile  

DPP-4 inhibitor 
 

 (Tahrani  et al., 2009) 

Alogliptin 

2-({6-[(3R)-3-aminopiperidin-1-yl]-
3-methyl-2,4-dioxo-3,4-
dihydropyrimidin-1(2H)-
yl}methyl)benzonitrile 

 

DPP-4 inhibitor 
 

(Ndefo, et al., 2014) 

Canagliflozin 

(2S,3R,4R,5S,6R)-2-{3-[5-[4-
Fluoro-phenyl)-thiophen-2-
ylmethyl]-4-methyl-phenyl}-6-
hydroxymethyl-tetrahydro-pyran-
3,4,5-triol 

 

Inhibitor of subtype 2 of the 
sodium-glucose transport 
proteins (SGLT2) 

(Nisly et al. ,2013) 

Dapagliflozin 

(2S,3R,4R,5S,6R)-2-[4-chloro-3-(4-
ethoxybenzyl)phenyl]-6-
(hydroxymethyl)tetrahydro-2H-
pyran-3,4,5-triol,  

SGLT2 inhibitor 

(Plosker et al., l 2012) 

Glipizide 

N-(4-[N-
(cyclohexylcarbamoyl)sulfamoyl]p
henethyl)-5-methylpyrazine-2-
carboxamide  

a second generation 
sulfonylurea drugs, 

short-acting drug 

(Lebovitz  et al .,1983) 

Repaglinide 

, (S)-(+)-2-ethoxy-4-[2-(3-methyl-
1-[2-(piperidin-1-
yl)phenyl]butylamino)-2-
oxoethyl]benzoic acid  

Second-generation 
sulfonylureas drug 

(Lebovitz  et al., 1983) 
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Part 3 
 

 EXPERIMENTAL SECTION 

 

Cocrystallization screenings for selected DMs clopidogrel (thienopyridine derivative), 

enediol derivatives (L-ascorbic, D-ascorbic and squaric acids) and metformin (biguanide 

derivative) were carried out with CFs enumerated in tables 3.1; 3.2 and 3.3 respectively 

(supplementary part).    

Cocrystallization of copidogrel. For the purpose of cocrystallization screening  

clopidogrel in neutral form of free base was prepare by treating the commercially available 

form of colopidogrel bisulfate with sodium hydrogen carbonate and using the methylene 

dichloride clopidogrel free base was extracted and isolated in form of oily liquid which 

was assay by UV-Vis spectroscopy and purity of  S –isomer was confirmed by measuring 

thespecific optical rotation. The ORTEP (Burnett et al., 1996)  views of the two 

polymorphic forms of the molecular salts of clopidogrel with picric acid was presented  in 

Figure 3.1. The protocol for cocrystallization of clopidogrel with CFs from group of acidic 

compounds included dissolving the clopidogrel free base with CF in 1:1 molar ration in 

mixture of organic solvents and leaving the solutions for slow rate evaporation in order to 

obtain single crystal growth with quality for structure determination. 

Cocrystallization of zwitterionic molecular crystals. The ORTEP (Burnett et al., 1996)  

diagrams for the resolved structures of  zwiterionic CCs obtained from group of enediole 

derivatives with zwitterionic CFs in preparation protocol presented in table 3.2 are reported 

in figure 3.2. 

Cocrystallization of metformin. MET∙HCl used for cocrystallization screening was 

available from commercial supplier, USV Limited (India), with quality specification 

according to  British Pharmacopoeia. The batch of a MET was prepared according to 

procedure in the patent EP 2432320 A1. MET∙HCl and sodium hydroxide in equal quantity 

of 7 mmol, respectively ware  added to 150 mL 2-propanol. The slurry was agitated on 

magnetic stirrer at 40oC during the 3 hours. The suspension was filtered through Celite® 

under the vacuum. Clear solution of the filtrate was dried under the reduced pressure by 

roto-evaporation method. Residue of the white dried powder in yield of 62% from the 

reaction of the neutralization MET∙HCl was collected and tested on the 13C and 1H NMR 

and FT-IR spectroscopies, both spectra confirming the presence of MET in form of neutral 

free base.  
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The structures of the carbonated forms of MET determined from single crystals grown 

after recrystallization of neutral MET in organic solvents according to preparation 

protocols shown in table 3.5 are presented in figure. 3.4. 

CFs saccharine and acesulfame (listed in tables 3.1; 3.2 and 3.3) in neutral, acidic forms 

were prepared by neutralizing the sodium salt of saccharine and potassium salt of 

acesulfame, respectively  with mineral acid, follow by extraction and slow solvent 

evaporation. All other CFs (tables 3.1; 3.2, and 3. 3) utilized in cocrystallization screening 

were supplied with quality of Sigma Aldrich, without previous purification.  

Method of preparation of the four groups of molecular crystals of MET, classified 

according to nature and functionality of the selected CF, and which structures have been 

determined is showed in the table 3.6.1 (MET PCCs with strong acidic compounds; 

compounds numerated 1-5) , in the table 3.6.2 (MET PCCs with monocarboxylic acids),  in 

the table 3.6.3 (MET PCCs with the dicarboxylic acids) and in the table 3.6.4 (functional 

MET PCCs). 

Crystal Structure Determination. Crystal data of all compounds were collected using a 

Nonius KappaCCD diffractometer with graphite-monochromated Mo-K radiation; data 

sets were integrated with the Denzo-SMN package (Otwinowski , 1997)  and corrected for 

Lorentz and polarization. All structures were solved by direct methods (SIR97) (Altomare  

et al., 1999)  and refined by full-matrix least-squares with anisotropic non-hydrogen and 

isotropic hydrogen atoms. The treatment of the disordered atoms occurring in some of the 

structures will be described in the final publications. All calculations were performed by 

the SHELXL-97 (Sheldrick, 1997), PARST (Nardelli, 1995) and PLATON (Spek , 2005)  

programs implemented in the WINGX system (Farrugia). 

ORTEP (Burnett et al., 1996) views of compounds with the thermal ellipsoids at 30% 

probability are reported in Figures 3.5 - 3.30a,b. Crystal data, selected bond distances and 

angles, and H-bond and contact distances are collected in Tables 3.8.1-3.8.26. The values 

for the torsion angles and the angles between the planes in structure of MET cocrystallized 

with CF in all MET PCCs are presented in Tables 3.91-3.9.4. 
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Preparation by cocrystallization of reproducible batches of MET-Dichloroacetic acid 

1:1 and MET-Dichloroacetic acid 1:2 

The cocrystallization protocols for both MET PCCs, MET-Dichloroacetic acid 1:1 and 

MET-Dichloroacetic acid 1:2 were performed by following and adapting the proposed 

procedure for synthesys of metformin salicylate (Pérez-Fernández, 2013).  

Cocrystallization of MET-Dichloroacetic acid 1:1. A methanol solution (30 mL) of 

MET∙HCl (588.7 mg, 3.55 mmol) and sodium dichloroacetate (536,4 mg, 3.55 mmol) was 

stirred for 12h at room temperature. The solvent was removed under the reduced pressure 

in rotoevaporator,  and 2-propanol (100 mL) was added to the residue solid of the reaction. 

The solid part (sodium chloride) of the slurry was filtered off through Celite® under the 

vacuum, and the clear solution was evaporated under reduced pressure by roto-evaporator. 

The quality of the resulting crystalline white powder was studied by X-ray powder 

diffraction (XRPD), that confirmed the presence of the pure solid phase of molecular 

crystal MET-Dichloroacetic acid 1:1.  

Cocrystallization of MET-Dichloroacetic acid 1:2. To the methanol solution (30 mL) of 

MET∙HCl (562.7 mg, 3.4 mmol) was added equal mole of sodium dichloroacetate (512.8 

mg, 3.4 mmol) and dichloroacetic acid (438,1 mg, 3.4 mmol), respectively.  After 12h 

stirring of solution at room temperature, the solvent was evaporated under reduced 

pressure, and 2-propanol (100 mL) was added to the solid sediment. The slurry was filtered 

removing the solid sodium chloride and the clear solution was evaporated under reduced 

pressure. The quality of the residue of white solid crystalline powder that was tested by X-

ray powder diffraction (XRPD) confirmed the presence of the pure solid phase of 

molecular crystal MET-Dichloroacetic acid 1:2.  

The XRPD patterns of MET-Dichloroacetic acid 1:1 and MET-Dichloroacetic acid 1:2 are 

reported in Figure 3.31. 

X-Ray Powder Diffraction. Crystalline powder samples were analyzed by an X-ray 

powder diffractometer Bruker D8 Advance with graphite-monochromated Cu Kα radiation 

(λ= 1.5406 Å, generator set at 40 kV and 40 mA). Scans were performed from 3° to 40° 

(2θ) at a step size of 0.02° with a measuring time of 2 s per step. 

 X-Ray Powder Pattern Calculation. X-ray powder diffraction patterns were calculated 

by the use of the Mercury CSD 2.3 program (Macrae  et al, 2008) for all the crystalline 

powder samples prepared for biological testing, in order to assess their identity with the 

corresponding structures determined by single-crystal X-ray diffraction.  

The Furrier Transformed Infrared (FT-IR) Spectroscopy. FT-IR spectra were 

generated on the Bruker Vertex 70 FT-IR instrument  in range of 4000−400 cm−1 in 
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mixture of KBr powder. The FT-IR spectra for MET-Dichloroacetic acid 1:1 and MET-

Dichloroacetic acid 1:2 are showed in Figure 3.32. 

Differential Scanning Calorimetry (DSC) measurements were performed with a 

Mettler–Toledo model 820 calibrated with a standard-grade indium sample. A portion of 

the samples, weighting 8–9 mg, was heated in an aluminum pan from −100 to 200oC at a 

heating rate of 20oC/min under continuous  nitrogen  purge. For each sample, the glass 

transition temperature (Tg), melting temperature (Tm), and melting enthalpy (∆H) were 

determined. Tg was taken during the second heating scan as the onset temperature point. 

The DSC thermograms for MET-Dichloroacetic acid 1:1 and MET-Dichloroacetic acid 1:2 

are reported in the Figure 3.33.   

Preliminary Tests of the Biological Activity of two PCCs. The two Metformin- 

Dichloroacetic acid (DCA) salts (Metformin-DCA 1:1 and Metformin-DCA 1:2) were 

tested on the B leukemic cell line EHEB, purchased from DSMZ (Deutsche Sammlung von 

Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany). EHEB cells was 

routinely cultured in RPMI-1640 supplemented with 10% FBS, L-glutamine and 

Penicillin/streptomycin. The cells were treated with a range of concentration (from 30 mM 

to 300uM) of the two salts or with a mix of the two compounds used in the same 

stoichiometric ratio. For the in vitro treatments, cells were seeded at a density of 1x106 

cells/mL and cell viability was examined by Trypan blue dye exclusion after 24 and 48 

hours of treatment.  

The results of this first experiment on the EHEB cell line reported in the Table 3.11. 
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Part 4 
 
RESULTS AND DISCUSSION 
 
Cocrystallization screening with DM clopidogrel. Clopidogrel hydrogensulphate, which 

exists in two enantiomeric forms, i.e., R(−) and S(+) enantiomer, is a potent platelet anti-

aggregation drug. The corresponding R-isomer at carbon 8 is less active and less well 

tolerated in pharmaceutical use (Kotar-Jordan et al. 2005). (+)Clopidogrel 

hydrogensulphate salt is known to crystallize in different polymorphic and 

pseudopolymorphic forms among which polymorphic forms 1 and 2 are commercially 

used in solid dosage forms on the market (Koradia et al. 2004). The cocrystallization 

screening for molecular salts of clopidogrel with strong organic acids indicated that it was 

not possible to obtain a crystalline phase with quality of single crystal for absolute 

structure determination were the CF was a drug, a nutraceutical or an excipient. Only 

screening protocol for cocrystallization using picric acid resulted in single crystal growth 

which determined structure indicated the existence of two polymorphic forms of 

clopidogrel picrate in 1:1 molar ratio (ORTEP structures reported in Figure 3.1). The 

undertaken experiments suggest that steric factors in the structure of clopidogrel have 

prevalence over the differences in  pKa values between clopidogrel and acidic CFs 

preventing to the two components to find a favourable packing mode leading to 

cocrystallization.  

 

Cocrystallization screening with enediol derivatives. The approach for exploring the 

cocrystallization of enediole derivatives was based on previously reported structures of  

CCs of the  L-ascorbic acid (vitamin C) with zwitterionic compouns  (nicotinic acid, 

sacrosine and betaine)  (Kavuru et.al. , 2010). In the cocrystallyzation screening 

undertaken in experimental work, D-ascorbic acid (Isoascorbic acid) as enantiomer of L-

ascorbic acid, and squairc acid (SQA) another acid with similar enediol structure were 

included in the protocol, aiming to explore opportunities for cocrystallization of the three 

enedioles with an extended series of zwitterionic CFs (listed in Table 3.2). Moreover the 

SQA is much more acidic than the ascorbic acids according to their pKa values  (reported 

in Table 3.2).   

The results of the cocrystallyzation screening show that single crystals of suitable quality 

for X-ray diffraction structural determination could be obtained only in samples 

cocrystallized with SQA and seven of the 19 zwitterionic CFs reported in Table 3.2 
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(nicotinic acid, 2-aminopyridine-3-carboxylic acid, betaine, creatine monohydrate, 

sarcosine, γ-Aminobutyric acid, and ciprofloxacin). The ORTEP diagrams of all seven (7) 

CCs obtained are presented in Figure 3.2 (with the thermal ellipsoids at 30% probability). 

In the structures of six (6) CCs (i.e., SQA−nicotinic acid 1:1; SQA−2-aminopyridine-3-

carboxylic acid 1:1; SQA−betaine 1:1; SQA−sarcosine 1:1; and SQA−γ-Aminobutyric acid 

1:1) H-bonded  carboxylate-hydroxyl supramolecular heterosynthons are present. In all 

these six CCs of SQA, the carboxylate moieties present in the structures of zwitterionic 

CFs persistently form charge-assisted H-bonds with acidic hydroxyl group of the SQA 

molecule. Only the CC structure of SQA with DM ciprofloxacin, which is a second-

generation quinolone antibiotic, indicates that the interaction of the SQA and ciprofloxacin 

is related to the capacity of SQA to protonate the external N-atom in the piperazine ring of 

ciprofloxacine, that is responsible for its basic properties. This series of 7 CCs 

SQA−zwitterion will not be further discussed in this thesis because, since SQA is neither a 

drug nor an excipient, these CCs are of chemical interest but not of pharmaceutical 

relevance and will be submitted to a chemistry journal.  

Unfortunately, it was not possible obtaining a crystalline solid with crystal quality 

sufficient for structure determination in all samples of zwitterionic compounds 

cocrystallized with L-ascorbic acid and D-ascorbic acid, respectively. Even when crystals 

were formed they were not stable. Their color turned from colorless to yellow or brownish 

and a deliquescent glue was formed. The crystallization procedure was repeated in a 

vacuum and in nitrogen atmosphere without producing suitable crystals. Not obtaining 

solid phases as an outcome of  cocrystallization protocol with zwitterionic compounds, 

suggests that L-ascorbic and D-ascorbic acids have undergone to a possible redox process 

as result of which their structures were decomposed in presence of zwitterionic 

compounds.   

 

Cocrystallization screening with metformin (MET). As a derivative of the biguanide 

compounds, MET contains two guanidine groups of which only one is involved in the 

active hydrogen bonding while the other is substituted by two methyl groups at the N-

position (Figure 3.3). The biguanide structure makes MET to exist as highly resonance-

stabilized system due to the conjugation between the double bonds and loan pairs of the N-

atom that impacts the delocalization of the positive charge. The consequence of the 

conformational flexibility for resonance-stabilization of MET structure is occurrence of 

multiple sites for effective charge-assisted hydrogen bonding (Dumitrescu et al., 2012). 

Survey in the latest version of the CSD revealed that MET exists in form of 
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monoprotonated and diprotonated salts. Additionally, patents review indicated that there 

are no reported structures of the neutral form of MET. The biguanidinium mono-cation 

exists in five structures of MET: two polymorphs of hydrochloride salts (Hariharan , 1989; 

Childs et al. 2004), bromide  (Lu et.al, 2004); nitrate (Zhu et al., 2003) and acetate salts 

(Wei et al, 2014). MET in form of biguanidinium dication has been found in structures of 

six salts; oxalate (Lu et al.., 2004), sulfate (Fridrichova et al., 2012), perchlorate (Guo et al, 

2012), squarate salts (Serb et al., 2011). 

Our attempt to grown, in a vacuum or under the purge of nitrogen, the single crystals of 

neutral MET from the mother liquid after the neutralization and isolation of the MET free 

base failed, resulting in obtaining only crystalline phases whose structure determination 

revealed that MET is transformed in carbonate salts of its monoprotonated cation. This 

preference for formation of carbonate salts is determined by the strong basicity of MET 

confirmed by the value for the first protonation constant (pKa1 above 12, see Table 3.3). 

The ORTEP diagrams of the carbonated forms of MET obtained in recrystallization of the 

freshly prepared free base of MET (protocol details see in Table 3.5) are reported in Figure 

3.4.  

Once the first protonation occurs in MET, the large pKa1 value ensures that the biguanide 

structure of MET remains protonated over a wide pH range. Existence of protonated MET 

favors the interactions with complementary functional groups with well aligned hydrogen 

bond donor and acceptor moieties.  

The cocrystallization protocol (details shown in Tables 3.61-3.6.4) included as DM both 

MET and MET∙HCl in combination with a large number of CFs (for a total of 96 

experiments). In order to obtain PCCs of both monoprotonated and diprotonated MET, all 

cocrystallization experiments were carried out both in the 1:1 and 1:2 DM:CF ratio.  

A total number of 26 PCCs of quality suitable for crystal structure determination  were 

obtained, 20 containing MET in form of monoprotonated and 6 of diprotonated cation.  

The crystallographic data for the unit cell parameters of all the resolved structures for 26 

MET PCC revealed that, apart the MET-Saccharine 1:1 Polymorph I which crystallizes in 

orthrombic space group, all other MET PCCs crystallize either in triclinic or monoclinic 

space groups (details reported in Table 3.7).    

In the six (6) PCCs of diprotonated MET the CF is always a very strong acid 

(dichloroacetic, trichloroacetic, oxalic, picric acid and squaric acid) having pKa values in 

the range -0.5−1.2.  

The molecular crystals of MET (MET PCCs) in which MET was determined to exist as 

diprotonated are: MET-Picric Acid 1:2 (Figure 3.8);  MET-Trichloroacetic acid 1:2 (Figure 
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3.15a); MET-Oxalic acid hydrate 1:1:1 (Figure 3.17a); MET-Oxalic acid hydrate 1:2.5:1 

(Figure 3.18), MET-Squaric acid hydrate 1:1:1 (Figure 3.9a) and MET-Dichloroacetic acid 

1:2 (Figure 3.2.4).   

Strong similarities can be observed in the crystallographic features, intermolecular 

interactions and geometry of packing motifs of the structures obtained in cocrystallization 

of MET  

(i)  with simple monocarboxylic acids: MET-Formic acid 1:1 (Table 3.8.6/ Fig 3.10); 

MET-Acetic acid 1:1 (Table 3.8.7/ Fig.3.11a & 3.11b); MET-Monochloracetic acid 1:1 

(Table 3.8.8/ Fig.3.12a/ 3.12b); MET-Trifluoroacetic acid 1:1 (Table 3.8.9/ Fig.3.131 & 

3.13b); MET-Trichloroacetic acid 1:1 (Table 3.8.10/ Fig.3.14a & 3.14b) and MET-

Trichloroacetic acid 1:2 (Table 3.8.11/ Fig.3.15a & 3.15b),  

(ii) with dicarboxylic acids (malonic and maleic acids) which due to intramolecular H-

bond formation act as monocarboxylic acids: MET-Malonic acid 1:1 (Table 3.8.12/ Fig. 

3.16a & 3.16b) and MET-Maleic acid 1:1 (Table 3.8.15/ Fig. 3.19a & 3.19b), as well as 

(iii) in the structures of the compounds described as functional MET PCC as a result of 

dual pharmacological activity of DM and CF and which are formed with CFs from the 

group of monocarboxylic acids: MET-DCA 1:1 (Table 3.8.19/ Fig.3.23a & 3.23b); MET-

DCA acid 1:2 (Table 3.8.20/ Fig.3.24a & 3.24b), MET-Glycolic acid 1:1 (Table 3.8.21/ 

Fig.3.25a & 3.25b), MET-Diclofenac 1:1 (Table 3.8.22/ Fig.3.26a & 3.26b) and MET-

Salicylic acid 1:1 (Table 3.8.23/ Fig. 3.27a & 3.27b).  

In all the structures of MET PCC obtained with both monocarboxylic and dicarboxylic 

acids is evident the presence of a well-conserved heteromeric dimer composed of a 

guanidinium-carboxylate synthon linked by two parallel charge-assisted H-bonds 

N+─H∙∙∙¯O. This guanidinium-carboxylate synthon formed in interaction of two resonance-

stabilized functional moieties (carboxylate and guanidinium) is favored by two strong 

charge-assisted H-bonds that direct the molecular aggregation in the formation of different 

packing patterns, depending whether or not N─H∙∙∙O dimers are connected in chains 

forming tapes of inversely related heterodimers linked one to another through 

centrosymmetric N─H∙∙∙O tetramers  forming extended zig-zag ribbons. The heteromeric 

N─H∙∙∙O dimer is described as a planar ring motif composed of two proton donors and two 

proton acceptors forming a ring of eight atoms, corresponding to the graph set   
  (8), 

while the graph set for the N─H∙∙∙O tetramer, an eight-member ring with two proton 

acceptors and four proton donors, is   
  (8). The formation of N─H∙∙∙O  tetramers is 

supported by two sets, each of two parallel N─H∙∙∙O H-bonds. 
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The structure of MET, consisting of two fused guanidine moieties, is not planar. The 

conformations of the MET cations in structures of all 26 MET PCCs are related to the 

values for the N5─C2─N1─C1 torsion angle with respect to the values found in two 

polymorphic forms of MET hydrochloride salt. Only the torsion angle measured in MET-

Saccharine 1:1 with value of -71.2o (Table 3.9.4, num. 24) is close to the value of -53.7o 

reported in commercially available polymorph of MET hydrochloride salt  which structure 

was resolved by Hariharan et at., (1989). In all the remaining 25 MET PCCs the values of 

the N5─C2─N1─C1 torsion angle are in the range from 129.1 to -162.7o, which is in 

accordance to the value of 129.1o observed in the second metastable polymorph of MET 

hydrochloride reported by Childs et al. (2004). The differences in torsion angles influence 

by steric effect the conformation placement of the ─C(NH2) group in respect to the 

─N(CH3)2 group in the structure of MET cations. The measured values for the angle 

between the planes P1 and P2 (the average planes of the two guanidine moieties) in 

structure of MET cations in all 25 MET PCCs are around 55o, and 72° in MET-Saccharine 

1:1 (data shown in Tables 3.9.1-3.9.4). The N5─C2─N1─C1 torsion angle and the angle 

between the P1 and P2 planes impact the linearity of H-bonds in charge-assisted 

interactions with the proton acceptor groups. This inclination of the bond-angles in the 

parallel H-bonds formed in heteromeric N─H∙∙∙O dimers impacts the zig-zag packing 

patterns of formation of ribbons. 

Another well conserved packing motif found in almost all MET PCCs is the homomeric 

N─H∙∙∙N dimer described as an eight-membered planar ring formed by two proton donors 

and acceptors (  
  (8)). This dimer corresponds to an  homosynthon generated by two 

parallel N─H∙∙∙N H-bonds between the N3 and N2H positions. Formation of the 

homomeric N─H∙∙∙N dimers influences the lateral connection of the  N─H∙∙∙O  

heterodimers in direction of formation of the zig-zag tapes or planes. The zig-zag planes or 

tapes are linked one to the others in parallel packing formations through perpendicular 

N─H∙∙∙O  H-bonds formed by participation of the protons from the ─N4H2 group, which 

interact with H-bond acceptor atoms of the CFs.  

In the MET PCCs where MET exists as dication (MET-Picric Acid 1:2 (Figure 3.8); MET-

Trichloroacetic acid 1:2 (Figure 3.15a); MET-Oxalic acid hydrate 1:1:1 (Figure 3.17a); 

MET-Oxalic hydrate acid 1:2.5:1 (Figure 3.18), MET-Squaric acid hydrate 1:1:1 (Figure 

3.9a), and MET- MET-DCA 1:2 (Figure 3.24)), another N─H∙∙∙O heterodimer is observed 

formed by interaction between the second carboxylate moiety and the second protonation 

site in N3 position of the MET dication. 
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In the structures of MET PCCs formed with dicarboxylic acids (malonic, maleic, formic 

and succinic acids)  there is evidence of formation of parallelly packed infinite planes of 

molecules. 

Only in the structure of MET-Adipic acid 1:1 is evident a channel type of packing as a 

result of the conformational flexibility of the aliphatic chain in the molecule of adipic acid. 

These channels are not empty but are filled by infinite chains of H-bonded adipic acid 

molecules in extended conformation (Figure 3.22b).  

Besides the well-known fact that MET is the drug of first choice in the oral antidiabetic 

therapy (Rojas & Gomes, 2013), recent studies reported its anticancer activity (Dowling et 

al., 2011). In addition, the anticancer effect of DCA has been reported from the clinical 

trials (Papandreou et al., 2011). Therefore the possible combination of these two drugs 

cocrystalized in  form of molecular crystal that was obtained in the determined structures 

of MET-DCA acid 1:1 and MET-DCA acid 1:2 offered an opportunity for further studing 

this system of “drug-drug”  CCs. For the purpose of preliminary testing the 

physicochemical properties and pharmacological activity of the combination of two drugs, 

MET and DCA cocrystallized in form of molecular crystals, methods for large-scale 

preparation were performed in order to optimize the reproducibility of the batches of MET-

DCA 1:1 and MET-DCA 1:2, respectively.  

The peak position in the experimental XRPD patterns of MET-DCA 1:1 and MET-DCA 

1:2 showed in Fig.3.31 completely correspond with the calculated XRPD patterns obtained 

from single crystal structure determination. The FT-IR spectra of the MET-DCA 1:1 and 

MET-DCA 1:2 presented in Fig. 3.32 are different compared to the spectra of the native 

compounds. DSC thermograms for MET-DCA 1:1 and MET-DCA 1:2 in Figure 3.33 

clearly indicate to the difference in values of the melting points of these two compounds 

recorded in heating cycle. 

Furthermore, both MET-DCA 1:1 and MET-DCA 1:2 represent “drug-drug” molecular 

salts and their potential relevance for therapeutical purposes in treatment of cancer was 

assessed based on in vitro measurement of the vitality of the  B leukemic cell line EHEB 

after treatment with these two molecular crystals. 

The results of this first experiment on the EHEB cell line reported in the Table 3.11 show 

that the two Metformin–DCA salts, and in particular the 1:2, seem to exert a little greater 

cytotoxic activity compared to the treatment with the physical mixture of the two 

compounds used in the same stoichiometric ratio of the salts. 

In addition, from the group of functional MET PCCs, the resolved structures of MET-

Diclofenac 1:1, MET-Glycolic acid 1:1 and MET-Salicylic acid represent other molecular 
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crystals of the ‘drug-drug” type. Moreover, the two polymorphs of the MET-Saccharine 

1:1 and MET-acesulfame are functional molecular crystals composed of the combination 

of a drug with functional excipients from the group of artificial sweeteners.  

The recently outlined effects of the topical treatment of the skin keratosis with diclofenac  

(Nelson, 2011), glycolic acid (Khater et al., 2014) and salicylic acid (Kootiratrakarn T, 

2015)  imply the opportunity to explore the molecular salts of MET in combination with 

each of these drugs widely used in treatment of the skin disorders.  
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Part 5 
 

Conclusion and Further Perspectives 

 

 Cocrystallization of DM Colopidogrel with mono- & di- carboxylic acids failed maybe 

due to conformational flexibility of the thienopyridine ring. 

Cocrystallization with zwitterionic compounds resulted in 7 CCs with SQA based on 

carboxylate… squarate heterosynthon formation (obtained CCs are not of pharmaceutical 

interest). 

Cocrystallization with DM MET led to formation of 26 molecular divided in 4 groups 

(MET-strong acids; MET- monocarboxylic acids, MET- dicarboxylic acids & functional 

MET CC (“drug-drug” type of CCs). 

MET CCs with mono- & di- carboxylic acids are based on guanide∙∙∙carboxylate 

heterosynthons that result in conserved packing motifs recognized in all structures: 

N─H∙∙∙O heterodimers  and N─H∙∙∙N homodimers, as well as N─H∙∙∙O tetramers. 

Complex packing motifs in MET CCs imply the need of systematic study on molecular 

recognition phenomena at the early stage of the drug development process (isolation of 

“lead” compounds and pharmaceutical preformulation screening). 

Crystallography, method of first choice for absolute structure determination, is the best  for 

crystallization screening, and thus reveling the intermolecular interactions between API-

API and API-excipients that contribute rational approach in development of 

pharmaceutical formulations based on single API or fixed-dose combinations of two or 

more API in the solid dosage forms.   
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Table 3.1 Corystallization screening  for clopidogrel free base and  
acidic compounds (part 1) 

 

No Coformers (CFs) 
§pKa/pKb 

dissociation 
constant 

Molar 
ratio 

DM:CF 
Solvent(s) Outcome of 

cocrystallization 

1 Saccharine *pKa 1.9 1:1 
 

methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

2 Acesulfame *pKa 2.7 1:1 
 

methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

3 Picric acid pKa  0.35 1:1 
 

methanol/ 
n-pentanol 

50/50 V//V % 

Single crystal growth 

4 Trifluoromethanesulfonic acid pKa -12 1:1 
 

methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

5 Squaric acid pKa1 0.55 
pKa2 3.48 1:1 

 
methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

6 Formic acid pKa 3.74 1:1 
 

methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

7 Acetic Acid pKa 4.75 1:1 
 

methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

8 Trichloroacetic acid pKa  0.5 1:1 
 

methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

9 Trifluoroacetic acid pKa 0.2 1:1 
 

methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

10 Acetylsalicylic acid pKa 3.64 1:1 
 

methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

11 Salicylic acid pKa1 2.95 
pKa2 13.7 1:1 

 
methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

12 DL-Alpha lipoic acid pKa 4.82 1:1 
 

methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

13 Benzoic acid pKa  4.20 1:1 
 

methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

15 

Oxalic acid x 2H2O 

(Ethanedioic acid) 
pKa1 1.25 
pKa2 4.88 1:1 

 
methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 
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Table 3.1 Corystallization screening  for clopidogrel free base and  
acidic compounds (part 2) 

 

No Coformers (CFs) 
§pKa/pKb 

dissociation 
constant 

Molar 
ratio 

DM:CF 
Solvent(s) Outcome of 

cocrystallization 

16 Fumaric acid pKa1 3.02 
pKa2  4.48 1:1 

 
methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

17 Maleic acid pKa1 1.93 
pKa2 6.28 1:1 

 
methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

18 Malonic acid pKa1 2.85 
pKa2 5.69 1:1 

 
methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

19 Succinic acid pKa1 4.20 
pKa2 5.65 1:1 

 
methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

20 DL-Malic acid pKa1 3.45 
pKa2 5.11 1:1 

 
methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

21 D-Malic acid pKa1 3.45 
pKa2 5.11 1:1 

 
methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

22 DL-Tartaric acid pKa1 3.17 
pKa2 4.91 1:1 

 
methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

23 L-Tartaric acid *pKa1 3.16 
*pKa2 4.02 1:1 

 
methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

24 Adipic acid pKa1 4.42 
pKa2 5.42 1:1 

 
methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

25 Suberic acid pKa1 4.52 
pKa2 5.41 1:1 

 
methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

26 Citric acid 
pKa1 3.12 
pKa2 4.79 
pKa3 6.39 

1:1 
 

methanol/ 
n-pentanol 

50/50 V//V % 

No single crystal growth 

§ NIST database 
*  Reaxys, version 1.7.8; Elsevier; 2012; RRN 969209 (accessed Aug 13, 2012). 
Clopidogrel free base: pKa 5.3 (est) (tertiary amine)  
(Ref. SPARC; pKa/property server. Ver 3. Jan, 2006. Available from, as of Apr 20, 2006: 
http://ibmlc2.chem.uga.edu/sparc/ 
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Polymorph I   Clopidogrel Picrate  (1:1)                                                   Polymorph II  Clopidogrel Picrate (2:2) 

                                                 Figure 3.1. Clopidogrel – Picric acid 1:1 cocrystals (polymorphs I and II) 
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Table 3.2 Corystallization screening  for enedioles derivatives (part 1) 

   No 

 L (+) Ascorbic Acid 
(LAA) 
Mw176.12: 
pKa1; 4.17p 
Ka2; 11.57 

D-Isoascorbic acid 
(DAA) 
Mw  176.12: 
pKa1; 4.17 
Ka2; 11.57 

Squaric acid (SQA) 
Mw 114.06: 
pKa1; 1.5 
pKa2; 3.5 

1 

Nicotinic Acid (NIC) 
Mw 123.1 
pKa1: 4.82 
pKa2: 2.03 

No crystalline solid/ 
Amorphous black flasks 
Methanol 

No crystalline solid/ 
Amorphous black 
flasks 
Methanol 
 

Single crystal grown/ 
White spherical crystals 

Resolved Structure 
Methanol/ Water 

60/40 V/V 

2 

Isonicotinic Acid (INIC) 
Mw 123.1 
pKa1: 4.88 
pKa2: 1.72 

No crystals/ yellow-
black glassy, 
amorphous solid 
Slow rate solvent 
evaporation 

No crystals/ yellow-
black glassy, 
amorphous solid 
Slow rate solvent 
evaporation 

Solid/ Crystalline powder 
mixed in amorphous 
mass 
Small size crystals 
Methanol/ Water  60/40 
V/V 

3 

3,5-Pyridinedicarboxylic acid 
(3,5PDCA) 
Mw167.1 
pKa1: 4.03 
pKa2: 2.1 
pKa3: 1.1 

Solid/ / yellow-brown 
crystalline powder 
Small size crystals 
Methanol/ Acetonitrile 
60/40 V/V 

Solid/ yellow-brown 
crystalline powder 
Small size crystals 
Two type of crystal 
Methanol/ Acetonitrile 
60/40 V/V 

Single crystal growth 
White crystals 
Not determined new 
structure 
Methanol/ Acetonitrile 
60/40 V/V 

4 

2,4-Dihydroxypyrimidine-5-
carboxylic Acid 
Isoorotic acid, Uracil-5-carboxylic 
acid 
Mw156.1 
156,10 
pKa1: 4.05 
pKa2: 8.7 

Solid/ Crystalline 
powder 
Small size crystals 
Methanol/ Acetonitrile 
60/40 V/V 

Solid/ Crystalline 
powder 
Methanol/ Acetonitrile 
60/40 V/V 

Solid/ white crystalline 
powder 
Small size crystals 
Acetonitrile 

5 

2,5 – Pyridinedicarboxylic Acid 
Mw 167.12 
pKa1: 5.02 
pKa2: 2.38 

No crystals/ amorphous 
solid 
 
Dissolved in 
Carbon tetrachloride 

Solid/ crystalline 
powder 
 
Dissolved in 
Carbon tetrachloride 

Single crystal growth 
Solid/ bad diffraction 
Not determined new 
structure 
Dissolved in 
Carbon tetrachloride 

6 

2,6 dihydroxypyridine 4-carboxylate, 
Citrazinic Acid 
Mw155.11 
155.11 g/ 
pKa1: 10.88 
pKa2: 3.11 
pKa3: 1.4 

Solid/ Crystalline 
powder 
Small size crystals 
Methanol/ Acetonitrile 
60/40 V/V 

No crystals/ amorphous 
solid 
Methanol/ Acetonitrile 
60/40 V/V 

Single crystal growth 
Solid 
Not determined new 
structure 
Methanol/ Acetonitrile 
60/40 V/V 

7 

2-Aminopyridine-3-carboxylic acid 
Mw 138.12 
pKa2:2.2 
pKa1: 6.5 (est.) 

Solid/ Crystalline 
powder 
Small size crystals 
Methanol/ Water  60/40 
V/V 

Solid/ Crystalline 
powder 
Small size crystals 
Methanol/ Water  60/40 
V/V 

Single crystal growth 
Resolved Structure 
Methanol/ Water 

60/40 V/V 

8 
Betaine monohydrate (x 1H2O) 
Mw 135.16 
pKa1: 1.82 

Solid/ no crystalline 
Methanol/ Acetonitrile 
60/40 V/V 

No crystals/ amorphous 
solid 
Methanol/ Acetonitrile 
60/40 V/V 

Single crystal growth 
Resolved Structure 
Methanol/ Water 

60/40 V/V 
 

 
9 

L Aspartic acid 
Mw133.11 
pKa1: 10.88 
pKa2: 3.9 
pKa3: 1.99 

Solid/ Crystalline 
powder 
Small size crystals 
Methanol/ Water  60/40 
V/V 

Solid/ Crystalline 
powder 
Small size crystals 
Methanol/ Water  60/40 
V/V 

Solid/ powder 
Methanol/ Water  60/40 
V/V 
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Table 3.2 Corystallization screening  for enedioles derivatives (part 2) 

  L (+) Ascorbic Acid 
(LAA) 
Mw176.12: 
pKa1; 4.17p 
Ka2; 11.57 

D-Isoascorbic acid 
(DAA) 
Mw  176.12: 
pKa1; 4.17 
Ka2; 11.57 

Squaric acid (SQA) 
Mw 114.06: 
pKa1; 1.5 
pKa2; 3.5 

10 

Aspartame 
N-(L-α-Aspartyl)-L-phenylalanine 
methyl ester, Asp-Phe methyl ester, 
Asp-Phe-OMe 
Mw 294.30 
pKa2; 3.19  
pKa1; 7.87 

No crystals/ amorphous 
solid 
Ethanol/water/ 
Tetrahydrofuran 
30/30/30 V/V/V %  
Amorphous solid 

No crystals/ 
amorphous solid 
Ethanol/water/ 
Tetrahydrofuran 
30/30/30 V/V/V %  
Amorphous solid 

No crystals/ amorphous 
solid 
30/30/30 V/V/V %  
Amorphous solid 

11 

Creatine monohydrate 
Mw  149.15:  
pKa2;: 2.63  
pKa1: 14.3 

Single crystal growth 
Determined Creatine 
crystals 
Water/ Ethanol 
50/50 V/V % 

Single crystal growth 
Determined Creatine 
crystals 
Water/ Ethanol 
50/50 V/V % 

Single crystal grown 
Resolved Structure 

Water/ Ethanol 
50/50 V/V % 

12 

L-Carnitine inner salt 
Mw  161.20:  
pKa1;: 4.83  
pKa2  9.2 

No crystals/ amorphous 
solid 
Water/ ethanol 
50/50 V/V % 

No crystals/ 
amorphous solid 
Water/ ethanol 
50/50 V/V % 

No crystals/ amorphous 
solid 
 
Water/ ethanol 
50/50 V/V % 

13 

L-Theanine  
Nγ-Ethyl-L-glutamine, L-Glutamic 
acid γ-(ethylamide)  
Mw  160.19:  
pKa2; 2.35  
pKa1;9.31 

Glassy solid 
Water/ Methanol 
50/50 V/V % 

Single crystal grown 
Small sized crystals 
Water/ Methanol 
50/50 V/V % 

No crystals/ amorphous 
solid 
Water/ Methanol 
50/50 V/V % 

14 

Sarcosine 
N-methylglycine 
Mw  89.09:  
pKa1; 2.23   
pKa2; 10.01 

Single crystal growth 
Determined Sarcosine 
crystals 
Water/ Methanol 
50/50 V/V % 

No crystals/ 
amorphous solid 
Water/ Methanol 
50/50 V/V % 

Single crystal grown 
Resolved Structure 
Methanol/ Water 

50/50 V/V 

15 

Taurine 
Mw  125.15:  
pKa1: 1.5 
pKa2: 9.06 

Single crystal growth 
Determined Taurien 
crystals 
Water/ Methanol 
50/50 V/V % 

Single crystal growth 
Determined Taurien 
crystals 
Water/ Methanol 
50/50 V/V % 

Single crystal growth 
Determined Taurien 
crystals 
Kneaded with methanol 
Dissolved in methanol 

16 

γ-Aminobutyric acid  
Mw  103.12:  
pKa2; 4.23, 
pKa1.10.43 

Crystalline solid 
Water/ Tetrahydrofurane 
50/50 V/V % 

No crystals/ 
amorphous solid 

Single crystal grown 
Resolved Structure 
Methanol/ Water 

50/50 V/V 

17 

Gabapentin 
Mw  103.12:  
pKa1; 3.68 
pKa2.; 10.70 

No crystals/ amorphous 
solid 

No crystals/ 
amorphous solid 

Single crystal grown 
Squaric Acid determined 
crystals 
Ethanol/Water 
80/20 V/V %  

18 
Ofloxacin 
Mw 361.37 
pKa2: 6.22 
pKa1: 7.81 

No crystals / 
Solid white powder 

No crystals / Solid 
white powder 

No crystals/ 
amorphous solid 
powder 

19 

Ciprofloxacin  
Mw 385.8 
pKa2: 6.42 
pKa1: 8.79 

No crystals / Solid white 
powder 
 
Methanol 
 

No crystals / Solid 
white powder 
 
Methanol 
 

Single crystal grown 
Resolved structure 
Methanol/ Water 

80/20 V/V % 

pKa values (Sources: NIST database and *  Reaxys, version 1.7.8; Elsevier; 2012; RRN 969209 
(accessed Aug 13, 2012). 
 
Samples of crystallization of multicomponent crystals 
 (Studied models - Conformer 1: 1 molar ratio)  
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Fig. 3.2. Cocrystalof Squaric acid (SQA) with zwitterionic compounds

 

Squaric Acid  - Sarcosine 1:1 Squaric Acid  - Creatine  1: 1  

Squaric Acid -  2-Aminopyridine-3-carboxylic acid 1:1  

Squaric Acid - γ- Aminobutyric acid 1: 1  

Squaric Acid –Nicotinic hemihydrate  Acid 1 : 1 :1 

Squaric Acid- Betaine 1 : 1 

Squaric Acid  - Ciprofloxacin 1:1 
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Table 3.3. Cocrystallization screening carried out with neutral MET (part 1) 
 

No Coformers (CFs) 
§pKa/pKb 

dissociation 
constant 

Molar 
ratio 

DM:CF 
Solvent(s) Outcome of 

cocrystallization 

1 Saccharine *pKa 1.9 1:1 n-pentanol crystalline solid; 
single crystals grown  

2 Acesulfame *pKa 2.7 1:1 n-pentanol Crystalline solid,  
single crystal grown 

3 Picric acid pKa  0.35 
1:1 n-pentanol crystalline solid; 

single crystals grown  

1:2 n-pentanol crystalline solid; 
single crystals grown  

4 Trifluoromethanesulfonic acid *pKa -12 1:1 
 

methanol/ n-pentanol 
50/50 V//V % 

no crystalline solid phase 

5 Aniline-2-sulfonic acid *pKa1 2.41 1:1 
 

methanol/ acetonitrile 
40/60 V//V % 

no crystalline solid phase 

6 Phosphoric acid  
85 wt% in water 

pKa1 0.0 
pKa1 2.148 
pKa2 7.198 
pKa3 12.37 

1:1 methanol no crystalline solid phase 

1:2 methanol no crystalline solid phase 

2:1 methanol crystalline solid; 
single crystals grown 

7 Nitric acid 90% pKa1 -1.3 

1:1 methanol crystalline solid; 
single crystals grown  

1:2 methanol no crystalline solid phase 

2:1 methanol no crystalline solid phase 

8 Sulfuric acid pKa1  -3 
pKa2 1.99 

1:1 methanol no crystalline solid phase 

1:2 methanol no crystalline solid phase 

2:1 methanol no crystalline solid phase 

9 L (+) Ascorbic acid pKa1 4.17 
pKa2 11.72 

1:1 methanol no crystalline solid phase 

1:1 ethanol no crystalline solid phase 

1:2 methanol no crystalline solid phase 

1:2 ethanol no crystalline solid phase 
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Table 3.3. Cocrystallization screening carried out with neutral MET (part 2) 
 

No Coformers (CFs) 
§pKa/pKb 

dissociation 
constant 

Molar 
ratio 

DM:CF 
Solvent(s) Outcome of 

cocrystallization 

10 D-Isoascorbic acid pKa1 4.26 
pKa2 11.64 

1:1 methanol no crystalline solid phase 

1:1 ethanol no crystalline solid phase 

1:2 methanol no crystalline solid phase 

1:2 ethanol no crystalline solid phase 

11 Squaric acid pKa1 0.55 
pKa2 3.48 

1:1 ethanol crystalline solid; 
single crystals grown  

2:1 ethanol no crystalline solid phase 

12 Formic acid pKa 3.74 1:1 methanol/ n-pentanol 
50/50 V/V % 

crystalline solid; 
single crystals grown 

13 Acetic Acid pKa 4.75 
1:1 methanol crystalline solid; 

single crystals grown 

1:2 methanol crystalline solid; 
single crystals grown 

14 Dehydroacetic acid *pKa 6 1:1 methanol no crystalline solid phase 

15 Monochloroacetic acid pKa 2.82 
1:1 methanol/ n-pentanol 

50/50 V/V % 
crystalline solid; 
single crystals grown 

1:2 methanol/ n-pentanol 
50/50 V/V % 

crystalline solid; 
single crystals grown 

16 Dichloroacetic acid pKa 1.1 
1:1 methanol/ n-pentanol 

50/50 V/V % 
crystalline solid; 
single crystals grown 

1:2 methanol/ n-pentanol 
50/50 V/V % 

crystalline solid; 
single crystals grown 

17 Trichloroacetic acid pKa  0.5 
1:1 methanol/ water 

20/80 V/V % 
crystalline solid; 
single crystals grown 

1:2 methanol/ water 
20/80 V/V % 

crystalline solid; 
single crystals grown 

18 Trifluoroacetic acid pKa 0.2 
1:1 methanol/ n-pentanol 

50/50 V/V % 
crystalline solid; 
single crystals grown 

1:2 methanol/ n-pentanol 
50/50 V/V % 

crystalline solid; 
low quality of single 
crystals 
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Table 3.3. Cocrystallization screening carried out with neutral MET (part 3) 
 

No Coformers (CFs) 
§pKa/pKb 

dissociation 
constant 

Molar 
ratio 

DM:CC 
Solvent(s) Outcome of 

cocrystallization 

19 Glycolic Acid pKa 3.83 
1:1 methanol/n-pentanol 

50/50 V/V % 
crystalline solid; 
single crystals grown 

1:2 methanol/ n-pentanol 
50/50 V/V % no crystalline solid phase 

20 Acetylsalicylic acid pKa 3.64 
1:1 n-pentanol crystalline solid; 

single crystals grown 

1:2 n-pentanol no crystalline solid phase 

21 Salicylic acid pKa1 2.95 
pKa2 13.7 

1:1 ethanol/ n-pentanol 
20/80 V/V % no crystalline solid phase 

1:2 ethanol/ n-pentanol 
20/80 V/V % no crystalline solid phase 

2:1 ethanol/ n-pentanol 
20/80 V/V % no crystalline solid phase 

22 DL-Alpha lipoic acid *pKa  4.82 

1:1 ethanol/ n-pentanol 
20/80 V/V % no crystalline solid phase 

 ethanol no crystalline solid phase 

1:2 ethanol/ n-pentanol 
20/80 V/V % no crystalline solid phase 

 ethanol no crystalline solid phase 

2:1 ethanol/ n-pentanol 
20/80 V/V % no crystalline solid phase 

 ethanol no crystalline solid phase 

23 Benzoic acid pKa  4.20 1:1 n-pentanol no crystalline solid phase 

24 4-Methylbenzoic acid 
(p-Toluic acid) pKa  4.37 1:1 methanol/ n-pentanol 

50/50 V/V % no crystalline solid phase 

25 2,4-Dimethylbenzoic acid pKa  4.20 1:1 n-pentanol no crystalline solid phase 

26 2,4-Dimethoxybenzoic acid pKa 3.50 1:1 n-pentanol 
crystalline solid; 
no single crystals grown 
of MET PCC 

27 2,4-Dihydroxybenzoic acid pKa1 3.32 
pKa2 8.64 1:1 n-pentanol no crystalline solid phase 

28 trans-4-Hydroxycinnamic acid 
(p-Coumaric acid) 

*pKa  4.08 1:1 n-pentanol no crystalline solid phase 
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Table 3.3. Cocrystallization screening carried out with neutral MET (part 4) 

 

No Coformers (CFs) 
§pKa/pKb 

dissociation 
constant 

Molar 
ratio 

DM:CC 
Solvent(s) Outcome of 

cocrystallization 

29 3,4,5-Trihydroxybenzoic acid  
(Gallic acid) 

pKa1 4.44 
pKa2 9.11 
pKa3 11.38 

1:1 dimethyl sulfoxide 
(DMSO) no crystalline solid phase 

30 2-Hydroxy-2-phenylacetic acid 
(DL-Mandelic Acid) pKa 3.40 1:1 n-pentanol no crystalline solid phase 

31 Pyridine-3-carboxylic acid pKa1 2.03 
pKa2 4.82 1:1 n-pentanol no crystalline solid phase 

32 Pyridine-4-carboxylic acid 
(Isonicotinic acid) 

pKa1 2.72 
pKa2 4.88 1:1 dimethyl sulfoxide 

(DMSO) no crystalline solid phase 

33 
2-Aminopyridine-3-carboxylic 
acid 
(2-Aminonicotinic acid) 

*pKa 9.1 1:1 n-pentanol no crystalline solid phase 

34 
2,6-Dihydroxypyridine-4-
carboxylic acid 
 (Citrazinic acid) 

*pKa1 2.78 
 

1:1 dimethyl sulfoxide 
(DMSO) no crystalline solid phase 

35 
2,4-Dihydroxypyrimidine-5-
carboxylic acid 
 (Uracil-5-carboxylic acid) 

pKa1 4.05 
pKa2 8.79 
(-N1-H) 

 
1:1 n-pentanol no crystalline solid phase 

36 Furan-3-carboxylic acid 
(3-Furoic acid) 

*pKa1 3.82 1:1 dimethyl sulfoxide 
(DMSO) no crystalline solid phase 

37 

Diclofenac  
(free acid form) 
2-[(2,6-Dichlorophenyl) 
amino]benzeneacetic acid 

*pKa 3.99 1:1 methanol /n-pentanol 
50/50 V/V % 

crystalline solid; 
single crystals grown 

38 
Indomethacin 
1-(4-Chlorobenzoyl)-5-methoxy-2-
methyl-3-indoleacetic acid 

*pKa 4.5 
1:1 methanol no crystalline solid phase 

1:1 methanol /n-pentanol 
10/90 V/V % no crystalline solid phase 

39 
Ibuprofen 
 (±)-2-(4-Isobutylphenyl ) 
propanoic acid 

*pKa 4.31 
1:1 methanol no crystalline solid phase 

 
1:1 

methanol/ acetonitrile 
50/50 V/V % no crystalline solid phase 

40 
Clofibric acid 
2-(p-Chlorophenoxy)-2-
methylpropionic acid 

*pKa 4.62 
1:1 methanol 

crystalline solid; 
low quality of single 
crystals grown 

1:1 methanol/ acetonitrile 
50/50 V/V % no crystalline solid phase 

41 

Bezafibrate 
2-[4-[2-(4-Chlorobenzamido) 
ethyl]phenoxy]-2-methylpropanoic 
acid 

*pKa 5.09 
1:1 methanol no crystalline solid phase 

1:1 methanol/ acetonitrile 
50/50 V/V % no crystalline solid phase 
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Table 3.3. Cocrystallization screening carried out with neutral MET (part 5) 
 

No Coformers (CFs) 
§pKa/pKb 

dissociation 
constant 

Molar 
ratio 

DM:CF 
Solvent(s) Outcome of 

cocrystallization 

42 
Gemfibrozil 
Dimethylphenoxy)-2,2-
dimethylpentanoic acid 

*pKa 4.7 
1:1 methanol no crystalline solid phase 

1:1 methanol/ acetonitrile 
50/50 V/V % no crystalline solid phase 

43 
Salsalate 
(Salicylsalicylic acid) 

**pKa1 3.5 
**pKa2 9.8 1:1 ethanol no crystalline solid phase 

44 Oxalic acid x 2H2O 
(Ethanedioic acid) 

pKa1 1.25 
pKa2 4.88 

1:1 methanol/ n-pentanol 
50/50 V/V % 

crystalline solid; 
single crystals grown 

1:2 methanol/ n-pentanol 
50/50 V/V % 

crystalline solid; 
single crystals grown 

45 Fumaric acid 
pKa1 3.02 
pKa2  4.48 

1:1 methanol/ n-pentanol 
50/50 V/V % 

crystalline solid; 
single crystals grown 

46 Maleic acid 
pKa1 1.93 
pKa2 6.28 

1:1 n-pentanol crystalline solid; 
single crystals grown 

47 Malonic acid 
pKa1 2.85 
pKa2 5.69 

1:1 methanol/ n-pentanol 
50/50 V/V % 

crystalline solid; 
single crystals grown 

48 Succinic acid 
pKa1 4.20 
pKa2 5.65 

1:1 methanol/ n-pentanol 
50/50 V/V % 

crystalline solid; 
single crystals grown 

49 DL-Malic acid 
pKa1 3.45 
pKa2 5.11 

1:1 methanol/ n-pentanol 
50/50 V/V % 

crystalline solid; 
no single crystals grown 
of MET PCC 

50 D-Malic acid 
pKa1 3.45 
pKa2 5.11 

1:1 methanol/ n-pentanol 
50/50 V/V % 

crystalline solid; 
no single crystals grown 
of MET PCC 

51 DL-Tartaric acid 
pKa1 3.17 
pKa2 4.91 

1:1 methanol/ n-pentanol 
50/50 V/V % 

crystalline solid; 
no single crystals grown 
of MET PCC 

52 L-Tartaric acid 
*pKa1 3.16 
*pKa2 4.02 

1:1 methanol/ n-pentanol 
50/50 V/V % 

crystalline solid; 
no single crystals grown 
of MET PCC 

53 Adipic acid 
pKa1 4.42 
pKa2 5.42 

1:1 methanol/ n-pentanol 
30/70 V/V % 

crystalline solid; 
single crystals grown 

2:1 methanol/ n-pentanol 
30/70 V/V % 

crystalline solid; 
single crystals grown 

54 Suberic acid 
pKa1 4.52 
pKa2 5.41 

1:1 methanol/ n-pentanol 
50/50 V/V % 

no crystalline solid phase 

2:1 methanol/ n-pentanol 
50/50 V/V % no crystalline solid phase 

55 Itaconic acid 
pKa1 3.85 
pKa2 5.57 

1:1 methanol/ n-pentanol 
50/50 V/V % 

no crystalline solid phase 
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Table 3.3. Cocrystallization screening carried out with neutral MET (part 6) 

 

No Coformers (CFs) 
§pKa/pKb 

dissociation 
constant 

Molar 
ratio 

DM:CF 
Solvent(s) Outcome of 

cocrystallization 

56 3,5-Pyridinedicarboxylic acid 
pKa1 2.10 
pKa2  4.30 

1:1 methanol no crystalline solid phase 

57 2,5-Pyridinedicarboxylic acid 
pKa1 2,25 
pKa2  5.02 

1:1 methanol no crystalline solid phase 

58 2,6 dimethyl-3,5-
pyridinedicarboxylic acid n.a 1:1 methanol no crystalline solid phase 

59 Phthalic acid 
(1,2-Benzenedicarboxylic acid) 

pKa1 2,95 
pKa2  5.41 

1:1 methanol 
crystalline solid; 
no single crystals grown 
of MET PCC 

60 
Isocitric acid lactone 
(DL-2-Oxotetrahydrofuran-4,5- 
dicarboxylic acid) 

pKa1 3.06 
pKa2  4.29 
pKa3 5.05 

1:1 methanol/ n-pentanol 
50/50 V/V% no crystalline solid phase 

61 Folic acid 
(Pteroyl-L-glutamic acid)  

*pKa1 4.92 
*pKa2  8.04 

1:1 DMSO/ water 
50/50 V/V% no crystalline solid phase 

1:1 ethanol/ water 
20/80 V/V% no crystalline solid phase 

2:1 ethanol / water 
20/80 V/V% no crystalline solid phase 

62 Trimesic acid 
(Benzene-1,3,5-tricarboxylic acid) 

pKa1 3.12 
pKa2 4.10 
pKa3 5.18 

1:1 ethanol no crystalline solid phase 

63 Citric acid 
pKa1 3.12 
pKa2 4.79 
pKa3 6.39 

1:1 ethanol 
crystalline solid; 
no single crystals grown 
of MET PCC 

64 Phloroglucinol 
pKa1 8.42 
pKa2 8.79 

1:1 n-pentanol 
crystalline solid; 
no single crystals grown 
of MET PCC 

65 
Quercetin 
(2-(3,4-dihydroxyphenyl)-3,5,7-
trihydroxy-4H-chromen-4-one) 

*pKa1 5.70 
*pKa2 7.0 
*pKa3 9.6 
*pKa4 11.8 

1:1 methanol/ n-pentanol 
10/90 V/V% no crystalline solid phase 

66 Curcumine  
*pKa1 8.1 
*pKa2 10.45 1:1 ethanol no crystalline solid phase 

67 Pyridixine pKa1 4.09 
pKa2 8.9 1:1 n-pentanol 

crystalline solid; 
no single crystals grown 
of MET PCC 

68 Nicotinamide pKa1 3.35 1:1 n-pentanol no crystalline solid phase 

69 Pyridine N-oxide *pKb1 0.79 1:1 methanol 
crystalline solid; 
no single crystals grown 
of MET PCC 

70 4-Nitropyridine N-oxide *pKb1 -1.7 1:1 methanol/ acetonitrile 
50/50 V/V% 

crystalline solid; 
no single crystals grown 
of MET PCC 
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Table 3.3. Cocrystallization screening carried out with neutral MET (part 7) 
 

No Coformers (CFs) 
§pKa/pKb 

dissociation 
constant 

Molar 
ratio 

DM:CF 
Solvent(s) Outcome of 

cocrystallization 

71 Caffeine 
(1,3,7-Trimethylxanthine) 

*pKb1 0.61 1:1 ethanol/ n-pentanol 
50/50 V/V% no crystalline solid phase 

72 Theophylline 
(1,3-Dimethylxanthine) 

*pKa1 8.55 1:1 ethanol/ n-pentanol 
50/50 V/V% no crystalline solid phase 

73 Theobromine 
(3,7-Dimethylxanthine) 

*pKa1 0.3 
*pKa2 11 

1:1 methanol/water 
20/80 V/V% no crystalline solid phase 

74 
Pentoxifylline 
(3,7-Dimethyl-1-(5-
oxohexyl)xanthine) 

**pKa1 0.28 1:1 n-pentanol no crystalline solid phase 

75 Pyrazine ***pKa1 0.97 1:1 methanol/ n-pentanol 
10/90 V/V% no crystalline solid phase 

76 2,3,5,6-Tetramethylpyrazine 
*pKa1 3.7 
*pKa2 11 

1:1 methanol/ n-pentanol 
50/50 V/V% no crystalline solid phase 

77 Aminopyrazine 
 (Pyrazinamine) pKa1 11.2 1:1 methanol/ n-pentanol 

10/90 V/V% 

crystalline solid; 
no single crystals grown 
of MET PCC 

78 Aspartame 
pKa1 2.98   
pKa2 7.87 

1:1 ethanol/ water 
90/10 V/V% 

Solid powder/ no crystal 
grown 

79 Creatine monohydrate 
*pKa1 2.63 
*pKa2 11.0 

1:1 ethanol no crystalline solid phase 

80 L-Carnitine inner salt 
*pKa1 4.83 
*pKa2 9.2 

1:1 ethanol no crystalline solid phase 

81 L-Theanine 
L-Glutamic acid γ-ethylamide 

*pKa1 2.35 
*pKa2 9.31 

1:1 ethanol no crystalline solid phase 

82 Sarcosine 
(N-methylglycine) 

pKa1 2.11  
pKa2 10.2 

1:1 ethanol no crystalline solid phase 

83 Taurine 
pKa1 -0.33 
pKa2 9.06 

1:1 ethanol no crystalline solid phase 

84 γ-Aminobutyric acid 
*pKa1 4.07 
*pKa2 10.37 

1:1 ethanol no crystalline solid phase 

85 Gabapentin 
*pKa1 3.712 
*pKa2 9.37 

1:1 ethanol no crystalline solid phase 

86 
2,4-Diamino-6-phenyl-1,3,5-
triazine 
(Benzoguanamine) 

*pKa1 10.14 1:1 methanol/ n-pentanol 
10/90 V/V% no crystalline solid phase 

87 7,7,8,8-Tetracyanoquinodimethane 
(TCNQ) 

*pKa1 7.10 
*pKa2 10.30 

1:1 methanol no crystalline solid phase 

 

§ NIST database 
*  Reaxys, version 1.7.8; Elsevier; 2012; RRN 969209 (accessed Aug 13, 2012). 
**  In “Analytical Profiles of Drug Substances and Excipients”, Volume 25, Harry G. Brittain 
*** Journal of Heterocyclic Chemistry, 1985,  vol.22, p.1143–1144 
Drug Model (DM): neutral metformin (MET):  pKa1 12.40; pKa2 2.96 (NIST database) 
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Table 3.4. Cocrystallization screening carried out with the 
monoprotonated salt MET·HCl 

 

No Coformers (CFs) 
§pKa/pKb 

dissociation 
constant 

Molar 
ratio 

DM:CF 
Solvent(s) Outcome of 

cocrystallization 

1 Saccharinate sodium  *pKa 1.9 1/1 n-pentanol crystalline solid; 
single crystals grown 

2 Acesulfame potassium *pKa 2.7 1/1 n-pentanol crystalline solid; 
single crystals grown 

3 Diclofenacs sodium *pKa 3.99 1/1 n-pentanol crystalline solid; 
single crystals grown 

4 Calcium pantothenate 
pKa1 4.41 
pKa2 9.698 1/1 n-pentanol no crystalline solid 

phase 

5 Sodium ascorbate pKa1 4.17 
pKa2 11.72 1/1 n-pentanol no crystalline solid 

phase 

6 
L-Ascorbic acid 2-phosphate 
trisodium salt 

pKa1 4.17 
pKa2 11.72 3/1 n-pentanol no crystalline solid 

phase 

7 Sodium chloroacetate pKa 2.82 1/1 n-pentanol crystalline solid; 
single crystals grown 

8 Sodium dichloroacetate pKa 1.1 1/1 n-pentanol crystalline solid; 
single crystals grown 

9 
Pyruvic acid sodium salt, (α-
Ketopropionic acid sodium 
salt) 

pKa1 2.48 1/1 
isopropanol 

 

crystalline solid; 
no single crystals 

grown of MET PCC 
 
 
§ NIST database 
*  Reaxys, version 1.7.8; Elsevier; 2012; RRN 969209 (accessed Aug 13, 2012). 
**  In “Analytical Profiles of Drug Substances and Excipients”, Volume 25, Harry G. Brittain 
*** Journal of Heterocyclic Chemistry, 1985,  vol.22, p.1143–1144 
Drug Model (DM): neutral metformin (MET):  pKa1 12.40; pKa2 2.96 (NIST database) 
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Ref: Alizadeh,  et. Al, 2012; Clement &  Girreser, 1999; Nanubolu et. Al, 2013; Trouillas 
et.al., 2013; Bharatam et al. 2005 

 
Fig. 3.3 Resonance stabilized monoprotonated, deprotonated and 

neutral form of MET 
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Table 3.5. Experimental screening for single crystal growth of neutral metformin (MET) 
 

Lab code Metformin carbonated  
molecular salts Method of preparation 

METF2 
 

METF
+
 + HCO3 ¯ 

 

Metformin free base recrystallized 
in benzene. 
Complete dissolved in benzene, 
slightly heated. 
Clear solution left for slow solvent 
evaporation 

METF3 METF+ + GUA+ + CO3 ¯ ¯ 
 

Metformin free base dissolved in 
ethanol, heated up to boiling. 
Complete dissolved. Clear solution 
left for slow solvent evaporation 

METF7 2METF+ + CO3
¯ + i-Pr-OH + 3H2O 

Metformin free base dissolved in 
toluene, slightly heated. Complete 
dissolved. Clear hot solution left for 
slow solvent evaporation 

METF 

 
4METF+  +  2.CO3

¯ +  6H2O 

Part of Metformin mother liquid: 
Filtered solution of neutralized 
metformin HCl with NaOH in 
isopropyl alcohol). Filtered 
isopropyl alcohol solution of 
neutralized metformin HCl left for 
slow solvent evaporation on 
ambient temperature and pressure. 
Bulk isopropyl solution of 
neutralized metformin HCl was 
transformed in free metformin base 
by roto-evaporation. 
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Fig. 3.4. Structures determined of carbonated form of single crystals of MET 
 grown from mother liquid solutions of neutral MET 

 

 

METF
+
  +  HCO3 ¯ METF

+
  +  GUA

+
  +  CO3 ¯ ¯  

4METF
+
  +  2.CO3

¯
 +  6H2O 2METF

+
  +  CO3

¯
  +  i-Pr-OH  +  3H2O 
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Table 3.6.1 Method of preparation of MET PCCs with strong acidic compounds (compounds no. 1-5) 

No MET PCCs  
(structure determined)  Drug Model Coformer 

Preparation of the solution used  
for  single crystal growth by  

slow solvent evaporation method 

1 

MET7b:   
MET-Nitric acid 1:1 

(C4H12N5)+•(NO3)¯ 

MET 

N NH NH2CH3

CH3

NH NH  
 

Nitric acid 
 
 
 

25.27 mg (0.2 mmol) MET and    19 mg   
(0.2 mmol) nitric acid ≥65% dissolved in methanol. 
Clear solution. 

2 

MET3b:  
MET-Phosphoric acid trihydrate 

2:1:3 

2(C4H12N5)+ •(HPO4)=•3(H2O) 

MET 

N NH NH2CH3

CH3

NH NH  
 

Phosphoric acid 
 33.6 mg (0.26 mmol) MET and 12.8 mg  

(0.13 mmol) conc. phosphoric acid dissolved in 
methanol. Clear solution  

3 

MET39: 
MET-Picric acid 1:1 

(C4H12N5)+ •(C6H2N3O7)¯ 

MET 

N NH NH2CH3

CH3

NH NH  

Picric acid 
 
 
 
 

2.1 mg (0.02 mmol) MET and 3.8 mg (0.04 mmol) 
picric acid dissolved in  n-pentanol.  
Clear solution.  

4 

MET41:  
MET-Picric acid 1:2 

(C4H13N5)++ •2(C6H2N3O7)¯ 

MET 

N NH NH2CH3

CH3

NH NH  

Picric acid 
 
 
 
 

2.1 mg (0.02 mmol) MET and 6.6 mg (0.04 mmol) 
picric acid dissolved  in n-pentanol.  
Clear solution.  

5 

METFSQ:  
 MET-Squaric acid-hydrate 1:1:1 

(C4H13N5)++ •(C4O4)= •(H2O) 

MET 

N NH NH2CH3

CH3

NH NH  

Squaric acid 
 
 
 

 

10.6 mg (0.06 mmol) and  9.3 mg  squaric acid 
dihydrate (0.06 mmol) kneaded with a few drops conc. 
ethanol. Solid dissolved in hot ethanol. Clear solution.      

N
+

O

O
-

O

H

OH

OH

OH

O

P

OH

O2
-
N NO2

-

NO2
-

OH

O2
-
N NO2

-

NO2
-

OH

OHO

O
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Table 3.6.2 Method of preparation of MET PCCs with monocarboxylic acids (compounds no. 6-11), part 1 

No MET PCCs  
(structure determined)  Drug Model Coformer 

Preparation of the solution used  
for  single crystal growth by  

slow solvent evaporation method 

6 

METFORMA:   

MET-Formic acid 1:1 

(C4H12N5)+•(CHO2)¯ 

MET 

N NH NH2CH3

CH3

NH NH  
 

Formic acid 
 
 
 

17.5 mg (0.13 mmol) MET and 6.27 mg (0.13 mmol) 
formic acid dissolved in mixture of methanol and n-
pentanol        50/50 V/V %. Clear solution. 

7 

MET10b:  

MET-Acetic acid 1:1 

(C4H12N5)+ •(CH3O2)¯ 

MET 
 

N NH NH2CH3

CH3

NH NH  
 

Acetic acid 
 
 
 

Sample 1:  
17.31 mg (0.13 mmol) MET and 16.8 mg  
(0.27 mmol) conc. acetic acid dissolved in methanol. Clear 
solution. 
Sample 2: 
99.8 mg (0.78 mmol) MET and 46.39 mg (0.78 mmol) 
conc. acetic acid dissolved in methanol. Clear solution. 

8 

METClA6:  

MET-Monochloracetic acid 1:1 

(C5H12N5)+ • (C2H2ClO2)¯ 
 

 
 
 
 
 

 
MET 

 

N NH NH2CH3

CH3

NH NH  
 
 

MET•HCl 
 

N N NH2CH3

CH3

NH NH2

. ClH

 

 
Chloroacetic acid 

 
 
 
 

 
 
 
Na•Chloroacetate 

 
 
 
 
 

Sample 1:  
6.5 mg (0.05 mmol) MET and 4.75 mg  
(0.05 mmol) chloroacetic acid dissolved in mixture of 
methanol and n-pentanol  
50/50 V/V %. Clear solution. 
Sample 2:  
5 mg (0.039 mmol) MET and 7.3 mg (0.078 mmol) 
chloroacetic acid dissolved in mixture of methanol and n-
pentanol 50/50 V/V %. Clear solution. 
Sample 3:  
68.8 mg (0.4 mmol) MET•HCl and 47.9 mg (0.4 mmol) 
sodium chloroacetic acid  dissolved in n-pentanol, filtered 
sediment of NaCl, clear solution of the filtrate left for slow 
rate solvent evaporation.  

Table 3.6.2 Method of preparation of MET PCCs with monocarboxylic acids (compounds no. 6-11), part 2 

O

OH

Cl

O

O-

Cl

H Na+

O

OH

H

O

OH

CH3
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No MET PCCs  
(structure determined)  Drug Model Coformer 

Preparation of the solution used  
for  single crystal growth by  

slow solvent evaporation method 

9 

METTRIFA: 

MET-Trifluoroacetic acid 1:1 

(C4H12N5)+ •(C2F3O2)¯ 

MET 

N NH NH2CH3

CH3

NH NH  

Trifluoroacetic 
acid 

 
 
 

 

85.3 mg (0.7 mmol) MET and 75.3 mg (0.7 mmol) 
trifluoroacetic acid dissolved in mixture of methanol and n-
pentanol 50/50 V/V %. Clear solution.  

10 

METTRIClA24 

MET-Trichloroacetic acid 1:1 

(C4H12N5)+ •(C2Cl3O2)¯ 

MET 

N NH NH2CH3

CH3

NH NH  

Trichloroacetic 
acid 

 
 

5.3 mg (0.04 mmol) MET and 6.5 mg (0.04 mmol) 
trichloroacetic acid dissolved in mixture of methanol and n-
pentanol 20/80 V/V %. Clear solution.   

11 

METTRIClA2 

MET-Trichloroacetic acid 1 :2 

(C4H13N5)++ •2(C2Cl3O2)¯ 

MET 

N NH NH2CH3

CH3

NH NH  

Trichloroacetic 
acid 

 
 
 

8.22 mg (0.06 mmol) MET and 20.8 mg (0.12 mmol) 
trichloroacetic acid dissolved in mixture of methanol and n-
pentanol 20/80 V/V %. Clear solution.    
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Table 3.6.3 Method of preparation of MET PCCs with dicarboxylic acids (compounds no. 12-18), part 1 

No MET PCCs  
(structure determined)  Drug Model Coformer 

Preparation of the solution used  
for  single crystal growth by  

slow solvent evaporation method 

12 

MET34: 

MET-Malonic acid 1:1 

(C4H12N5)+ •(C3H3O4)¯ 

MET 

N NH NH2CH3

CH3

NH NH  

Malonic acid 
 
 
 

5.4 mg (0.03 mmol) MET and 5.8 mg malonic acid 
dihydrate (0.04 mmol malonic acid) dissolved in 
mixture of methanol and n-pentanol  
50/50 V/V %. Clear solution.      

13 

MET33: 

MET-Oxalic acid-hydrate 1:1:1 

(C4H13N5)++ •(C2O4)= •(H2O) 

MET 

N NH NH2CH3

CH3

NH NH  

Oxalic acid 
dihydrate 

 

3.7 mg (0.03 mmol) MET and 3.6  mg oxalic acid 
dihydrate (0.03 mmol oxalic acid) dissolved in mixture 
of methanol and n-pentanol 50/50 V/V %. Clear 
solution. 

14 

MET68: 

MET-Oxalic acid-hydrate 1:2.5:1 

(C4H13N5)++ • 2(C2HO4)¯ • 
1/2(C2H2O4) •(H2O) 

MET 

N NH NH2CH3

CH3

NH NH  

Oxalic acid 
dihydrate 

 

4.2 mg (0.033 mmol) MET and 8.4  mg oxalic acid 
dihydrate (0.066 mmol oxalic acid) dissolved in 
mixture of methanol and n-pentanol  
50/50 V/V %. Clear solution. 

15 

MET17: 

MET-Maleic acid 1:1 

(C4H12N5)+ •(C4H3O4)¯ 

MET 

N NH NH2CH3

CH3

NH NH  

Maleic acid 
 4.6 mg (0.035 mmol) MET and 4 mg (0.035 mmol) 

maleic acid dissolved in  n-pentanol. Clear solution. 

O

OHO

OH
OH22

O

OHO

OH

OH22

O

OHO

OH

OH22

H

HOOC COOH

H
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Table 3.6.3 Method of preparation of MET PCCs with dicarboxylic acids (compounds no. 12-18), part 2 

No MET PCCs  
(structure determined)  Drug Model Coformer 

Preparation of the solution used  
for  single crystal growth by  

slow solvent evaporation method 

16 

MET18: 

MET-Fumaric acid 1:0.5 

(C4H12N5)+ •1/2(C4H2O4)= 

MET 

N NH NH2CH3

CH3

NH NH  

Fumaric acid 
 
 
 

4 mg (0.031 mmol) MET and 3.6  mg (0.031) fumaric 
acid dissolved in mixture of methanol and n-pentanol 
50/50 V/V %. Clear solution. 

17 

MET15: 

MET-Succinic acid 1:0.5 

(C4H12N5)+ •1/2(C4H4O4)= 

MET 

N NH NH2CH3

CH3

NH NH  

Succinic acid 
 
 

4 mg (0.03 mmol) MET and 3.65 mg (0.03 mmol) 
succinic acid dissolved in mixture of methanol and n-
pentanol 50/50 V/V %. Clear solution. 

18 

METADA22: 

MET-Adipic acid 1:1 

(C4H12N5)+ •1/2(C6H8O4)= • 

1/2(C6H10O4) 

MET 

N NH NH2CH3

CH3

NH NH  

Adipic acid 
 
 
 
 
 

17.3 mg (0.12 mmol) MET and 19.6 mg (0.13 mmol) 
adipic acid dissolved in mixture of methanol and n-
pentanol 30/70 V/V %. Clear solution. 
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Table 3.6.4 Method of preparation of functional MET PCCs (compounds no. 19-26), part 1 

No MET PCCs  
(structure determined)  Drug Model Coformer 

Preparation of the solution used  
for  single crystal growth by  

slow solvent evaporation method 

19 

METDIClA1: 

MET-Dichloroacetic acid 1:1 
 

(C5H12N5)+ • (C2HCl2O2)¯ 

 
MET 

N NH NH2CH3

CH3

NH NH  
MET•HCl 

N N NH2CH3

CH3

NH NH2

. ClH

 
 

 
Dichloroacetic acid 

 
 
 

 
Na•dichloroacetate 

 

Sample 1:  
8.5 mg (0.07 mmol) MET and 8.5 mg (0.07 mmol) 
dichloroacetic acid dissolved in mixture of methanol and 
n-pentanol 50/50 V/V %. Clear solution. 
Sample 2:  
68.8 mg (0.4 mmol) MET•HCl and 47.9 mg (0.4 mmol) 
sodium chloroacetic acid dissolved in n-pentanol, filtered 
sediment of NaCl, clear solution of the filtrate left for 
slow rate solvent evaporation.  

20 

METDIClA3: 

MET-Dichloroacetic acid 1:2 
 

(C4H13N5)++ •2(C2HCl2O2)¯ 

MET 

N NH NH2CH3

CH3

NH NH  

Dichloroacetic acid 
 
 
 
 

8.8 mg (0.07 mmol) MET and 17.5 mg (0.14 mmol) 
dichloroacetic acid dissolved in mixture of methanol and 
n-pentanol 50/50 V/V %. Clear solution. 

21 

METGLY23: 

MET-Glycolic Acid 1:1 
 

(C4H12N5)+ •(C2H3O3)¯ 

MET 

N NH NH2CH3

CH3

NH NH  

Glycolic acid 
 
 
 
 

49.9 mg (0.39 mmol) MET and 42.8 mg (0.56 mmol) 70% 
liquid glycolic acid dissolved in mixture of methanol and 
n-pentanol 50/50 V/V %. Clear solution.     
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Table 3.6.4 Method of preparation of functional MET PCCs (1-26), part 2 

No MET PCCs  
(structure determined)  Drug Model Coformer 

Preparation of the solution used  
for  single crystal growth by  

slow solvent evaporation method 

22 

METDCF9: 
 

MET-Diclofenac 1:1 

(C4H12N5)+ •(C14H10NCl2O2)¯ 
 

MET•HCl 

N N NH2CH3

CH3

NH NH2

. ClH

 

MET 

N NH NH2CH3

CH3

NH NH  

Diclofenac•Na 
 
 
 
 
 
 

Diclofenac neutral 

NH

Cl

Cl

O

OH

 

Sample 1:  
2.2 mg (0.013 mmol) MET•HCl and  4.3 mg (0.013 
mmol) diclofenac•Na kneaded with a few drops conc. 
ethanol. Solid dissolved in mixture of methanol and n-
pentanol 50/50 V/V %. Clear solution.     
Sample 2:  
22.37 mg (0.17 mmol) MET and 51.3 mg (0.17 mmol) 
diclofenac (acidic form) dissolved in mixture of 
methanol and n-pentanol 50/50 V/V %. Clear solution.    

23 

MET30: 

MET-Salicylic acid 1:1 

(C4H12N5)+ •(C7H5O3)¯ 

MET 

N NH NH2CH3

CH3

NH NH  

Acetylsalicylic acid 
 

 
 

4 mg (0.03 mmol) MET and 5.57 mg (0.03 mmol) 
acetylsalicylic acid dissolved in n-pentanol. Clear 
solution.    

24 

MET43: 

MET-Saccharine 1:1 Polymorph I 

(C4H12N5)+ •(C7H4NO3S)¯ 

MET 

N NH NH2CH3

CH3

NH NH  

Saccharine  
 
 
 
 
 

6 mg (0.05 mmol) MET and 8.5 mg (0.05 mmol) 
saccharine neutral form  dissolved in n-pentanol. Clear 
solution. 

 

NH
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Table 3.6.4 Method of preparation of functional MET PCCs (1-26), part 3 

 

No MET PCCs  
(structure determined)  Drug Model Coformer 

Preparation of the solution used  
for  single crystal growth by  

slow solvent evaporation method 

25 
METHCl6: 

MET-Saccharine 1:1 Polymorph II 

(C4H12N5)+ •(C7H4NO3S)¯ 

MET•HCl 

N N NH2CH3

CH3

NH NH2

. ClH

 

Saccharine•Na 
 
 
 
 

24.5 mg (0.15 mmol) MET•HCl and 24.5 mg (0.15 
mmol) saccharine •Na kneaded with a few drops conc. 
ethanol. Solid dissolved in hot           n-pentanol, 
removed sediment of NaCl. Clear solution of filtrate.     

26 

METACSU7: 

MET-Acesulfame 1:1 

(C4H12N5)+ •(C4H4NO4S)¯ 

MET•HCl 

N N NH2CH3

CH3

NH NH2

. ClH

 

Acesulfame•K 
 
 
 
 
 

26.4 mg (0.16 mmol) MET•HCl and 32.07 mg (0.16 
mmol) acesulfame •K kneaded with a few drops conc. 
ethanol. Solid dissolved in hot  
n-pentanol, removed sediment of NaCl. Clear solution 
of filtrate.      

 

Neutral metformin (MET): Mw (129.16 g∙mol-1)  

Metformin hydrochloride salt (MET•HCl): Mw (165.62 g∙mol-1) 

 

 

 

 

 

N-

S

O

O O
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Table 3.7 Crystallographic data MET PCCs (1-26); part 1 

Crystallographic data 
MET-Nitric acid 1:1  

 
MET7b 

MET-Phosphoric acid 
trihydrate 2:1:3 

MET3b 

MET-Picric acid 1:1 
MET39 

MET-Picric acid 1:2 
MET41 

Formula  (C4H12N5)+•(NO3)- 2(C4H12N5)+ 
•(HPO4)= •3(H2O) (C4H12N5)+•(C6H2N3O7)- (C4H13N5)++•2(C6H2N3O7)- 

Molecular mass (Mr)  192.20 410.40 358.29 587.41 
Crystal system  Triclinic Triclinic Monoclinic Triclinic 
Space group  P-1  P-1  P21/c P-1 
a, Å 7.3002(2)                            9.4750(2)  11.4876(3) 10.5937(3) 
b, Å 7.5460(3)                                    9.6849(2)    5.6401(1) 11.2322(3) 
c, Å 8.9078(3)  10.8896(3)  24.2262(8) 12.2961(5) 
α, deg 78.138(2) 77.8210(8)  90 102.623(1) 
β, deg 74.496(2) 84.7487(9) 94.370(1) 105.189(1) 
γ, deg 84.991(2) 88.7943(9) 90 115.272(2) 
V, Å3 462.48(3) 972.69(4) 1565.08(7) 1181.83(7) 
Z 2 2 4 2 
Dc, Mg m−3 1.380 1.401 1.521 1.651 
μ, mm−1 0.116 0.194 0.130 0.146 
F(000) 204 440 744 604 
θmin–θmax, deg 2.42-29.97 3.46-30.06 3.99-25.99 3.52-24.99 
Index ranges min./max. h,k,l -10,10;-10,9;-11,12 -13,12;-10,13;-14,15 -14,14;-6,5;-29,29 -12,12;-12,13;-14,14 
Measured Reflections  3964 8258 5096 6904 
Unique Reflections 2645 5622 3036 4145 
Rint 0.0295 0.0189 0.0260 0.0275 
Obs. Reflections[I > 2σ(I)] 2044 4391 2182 2774 
No. Variables/Restraints 166/0 359/0 282/0 439/0 
R(F2) [I > 2σ(I)] 0.0569 0.0403 0.0502 0.0552 
wR (F2) (all data) 0.1741 0.1149 0.1427 0.1591 
Goodness of fit, S 1.075 1.028 1.041 1.018 
∆ρ (max., min.) e Å−3 0.540,-0.384 0.309,-0.449 0.444,-0.483 0.438,-0.300 
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Table 3.7 Crystallographic data MET PCCs (1-26) ; part 2 

Crystallographic data 
MET-Squaric acid-
hydrate 1:1:1 
METSQ 

MET-Formic acid 1:1  
 

METFORMA 

MET-Acetic acid 1:1 
 

MET10b 

MET-Monochloracetic 
acid 1:1   

 METClA6 

Formula  (C4H13N5)++ • (C4O4)= 
•(H2O) (C4H12N5)+•(CHO2)- (C4H12N5)+ •(CH3O2)- (C5H12N5) + • 

(C2H2ClO2)- 
Molecular mass (Mr)  261.25 175.20   189.23 223.67 
Crystal system  Monoclinic Monoclinic Monoclinic Monoclinic 
Space group  P21/c P21/n P21/n P21/n 
a, Å   7.1369(2)   9.6766(3) 10.0007(5) 10.0229(3)  
b, Å 10.8618(3)   8.9183(2)   8.8974(5)   8.7967(2)  
c, Å 15.9179(4) 10.4766(4)     10.7080(5) 11.6851(4) 
α, deg 90 90 90 90 
β, deg 92.876(2) 90.787(1) 91.241(3) 96.823(1) 
γ, deg 90.00 90 90 90 
V, Å3 1232.40(6) 904.03(5)  925.58(8) 1022.96(5) 
Z 4 4 4 4 
Dc, Mg m−3 1.408 1.287 1.319 1.452 
μ, mm−1 0.117 0.101 0.101 0.359 
F(000) 552 376 408 472 
θmin–θmax, deg 3.60-30.02 3.65-28.00 4.68-30.06 3.43-30.06 
Index ranges min./max. h,k,l -10,10;-12,15;-22,22 -12,12;-9,11;-13,13 -14,14;-12,11;-15,15 -14,14;-10,12;-16,16 
Measured Reflections 6022 4021 4433 5094 
Unique Reflections 3566 2175 2752 2962 
Rint 0.0278 0.0241 0.0254 0.0181 
Obs. Reflections [I > 2σ(I)] 2339 1598 2109 2411 
No. Variables/Restraints 224/0 161/0 178/0 183/0 
R(F2) [I > 2σ(I)] 0.0452 0.0421 0.0474 0.0406 
wR (F2) (all data) 0.1155 0.1212 0.1415 0.1139 
Goodness of fit, S 1.027 1.023 1.052 1.043 
∆ρ (max., min.) e Å−3 0.298,-0.180 0.183,-0.175 0.274,-0.257 0.518,-0.564 

Table 3.7 Crystallographic data MET PCCs (1-26) ; part 3 
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Crystallographic data 
MET-Trifluoroacetic  

acid 1:1  
METTRIFA 

MET-Trichloroacetic 
acid 1:1  

METTRIClA24 

MET-Trichloroacetic 
acid 1 :2 

METTRICla2 

MET-Malonic acid 1:1 
  

MET34 

Formula  (C4H12N5) +•(C2F3O2)- (C4H12N5) +• (C2Cl3O2)- (C4H13N5) ++• 
2(C2Cl3O2)- (C4H12N5)+•(C3H3O4)- 

Molecular mass (Mr)  243.21 292.56          455.93          233.24 
Crystal system  Monoclinic Monoclinic Monoclinic Monoclinic 
Space group  P21/n P21/n P21/a P21/c 
a, Å 10.8169(3)  10.6569(2)                          10.3129(1)  12.5523(3)  
b, Å   8.9417(3)   8.8735(2)                          22.4379(3)   5.0134(1) 
c, Å 11.1235(3) 13.7575(3)                          16.7563(3) 17.6365(5) 
α, deg 90 90 90 90 
β, deg 92.106(2) 105.600(1) 100.8384(7) 91.955(1)   
γ, deg 90 90 90 90 
V, Å3 1075.15(6) 1253.04( 0.05)   3808.24(9) 1109.21(5) 
Z 4 4 8 4 
Dc, Mg m−3 1.502 1.551         1.590         1.397 
μ, mm−1 0.147 0.726          0.923 0.115 
F(000)  504 600 1840 496 
θmin–θmax, deg 3.44-27.00 3.92-30.03 2.71-25.00 4.05-30.02 
Index ranges min./max. h,k,l -13,13;-11,10;-14,14 -14,15;-11,12;-19,18 -12,12;-26,26;-19,19 -17,17;-7,6;-24,24 
Measured Reflections 4279 6632 12817 4989 
Unique Reflections 2331 3637 6699 3192 
Rint 0.0208 0.0180 0.0224 0.0169 
Obs. Reflections [I > 2σ(I)] 1744 2843 4866 2470 
No. Variables/Restraints 193/0 193/0 496/66 205/0 
R(F2) [I > 2σ(I)] 0.0614 0.0452 0.0877 0.0425 
wR (F2) (all data) 0.1842 0.1227 0.2521 0.1255 
Goodness of fit, S 1.062 1.052 1.167 1.021 
∆ρ (max., min.) e Å−3 0.646,-0.451 0.852,-0.627 1.126,-0.957 0.201;-0.209 
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Table 3.7 Crystallographic data MET PCCs (1-26) ; part 4 

Crystallographic data 
MET-Oxalic acid-

hydrate 1:1:1 
MET33 

MET-Oxalic acid-
hydrate 1:2.5:1 

MET68 

MET-Maleic acid 1:1  
 

MET17 

MET-Fumaric acid 1:0.5 
 

  MET18 

Formula  (C4H13N5)++ •(C2O4)= 
•(H2O) 

(C4H13N5)++ • 
2(C2HO4)- • 
1/2(C2H2O4) •(H2O) 

(C4H12N5)+•(C4H3O4)- (C4H12N5)+•1/2(C4H2O4)= 

Molecular mass (Mr)  237.23 372.28 245.25 187.21 
Crystal system  Monoclinic Triclinic Monoclinic Monoclinic 
Space group  P21/c P -1 P21/n P21/n 
a, Å   6.7793(2)    5.7106(4)  10.6035(2)    9.6757(3)  
b, Å 10.7696(3)   9.9488(8)   8.9059(2)   8.7927(2) 
c, Å 14.7388(4) 14.8902(13) 13.6459(4) 10.8808(4) 
α, deg 90 87.761(3)  90 90  
β, deg 92.554(1)   80.392(3) 107.772(1) 90.824(1) 
γ, deg 90 76.244(4) 90 90 
V, Å3 1075.02(5) 810.2(1) 1227.13(5) 925.59(5) 
Z 4 2 4 4 
Dc, Mg m−3 1.466 1.526 1.327 1.343 
μ, mm−1 0.126 0.141 0.107 0.104 
F(000) 504 390 520 400 
θmin–θmax, deg 3.76-30.05 2.52-24.99 3.91-30.01 2.98-27.78 
Index ranges min./max. h,k,l -9,9;-15,13;-20,20 -6,6;-11,11;-17,17 -14,14;-12,12;-19,19 -12,12;-11,9;-14,14 
Measured Reflections 5470 5010 6599 3977 
Unique Reflections 3135 2801 3563 2178 
Rint 0.0222 0.0500 0.0207 0.0183 
Obs. Reflections [I > 2σ(I)] 2330 2211 2424 1736 
No. Variables/Restraints 205/0 267/3 214/0 171/1 
R(F2) [I > 2σ(I)] 0.0417 0.0870 0.0491 0.0593 
wR (F2) (all data) 0.1126 0.2581 0.1428 0.1487 
Goodness of fit, S 1.020 1.154 1.040 1.044 
∆ρ (max., min.) e Å−3 0.299,-0.244 0.407,-0.310 0.212,-0.199 0.815,-0.631 
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Table 3.7 Crystallographic data MET PCCs (1-26) ; part 5 

Crystallographic data MET-Succinic acid 1:0.5 
 MET15 

MET-Adipic acid 1:1  
MET-ADA22 

MET-Dichloroacetic acid 1:1  
METDIClA1 

Formula  (C4H12N5)+•1/2(C4H4O4)= (C4H12N5)+• 
1/2(C6H8O4)= • 1/2(C6H10O4) 

(C5H12N5) + • (C2HCl2O2)- 

Molecular mass (Mr)  188.22 275.32 258.11 
Crystal system  Monoclinic Triclinic Monoclinic 
Space group  P21/n P-1 P21/n 
a, Å   9.5569(3)   7.5497(2) 10.6346(2)  
b, Å   8.8294(2)   9.1036(2)   9.0263(2)  
c, Å 10.8542(3) 10.2423(3) 12.6154(4) 
α, deg 90 89.914(1) 90 
β, deg 92.484(1) 82.124(1) 105.5040(9) 
γ, deg 90 79.296(1) 90 
V, Å3 915.04(4) 684.97(3) 1166.90(5) 
Z 4 2 4 
Dc, Mg m−3 1.366 1.335 1.469 
μ, mm−1 0.105 0.104 0.547 
F(000) 404 296 536 
θmin–θmax, deg 3.76-30.00 3.99-29.97 4.52-28.00 
Index ranges min./max. h,k,l -13,13;-12,10;-15,15 -8,10;-12,11;-13,14 -13,14;-11,11;-16,16 
Measured Reflections 4398 5305 5032 
Unique Reflections 2654 3914 2766 
Rint 0.0245 0.0227 0.0141 
Obs. Reflections [I > 2σ(I)] 1889 3056 2401 
No. Variables/Restraints 174/0 256/0 188/1 
R(F2) [I > 2σ(I)] 0.0433 0.0463 0.0662 
wR (F2) (all data) 0.1209 0.1290 0.1785 
Goodness of fit, S 1.022 1.045 1.044 
∆ρ (max., min.) e Å−3 0.235,-0.221 0.308,-0.220 0.647,-0.748 
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Table 3.7 Crystallographic data MET PCCs (1-26) ; part 6 

Crystallographic data 
MET-Dichloroacetic 

acid 1:2  
METDIClA3 

MET-Glycolic Acid 
1:1 

 
 METGLY23 

MET-Diclofenac 1:1 
 

METDCF9 

MET-Salicylic acid 1:1  
MET30 

Formula  (C4H13N5)++ • 
2(C2HCl2O2)- (C4H12N5)+•(C2H3O3)- (C4H12N5)+• 

(C14H10NCl2O2)- (C4H12N5)+•(C7H5O3)- 

Molecular mass (Mr)  387.05 205.23          425.32 267.30 
Crystal system  Triclinic Triclinic Monoclinic Monoclinic 
Space group  P-1 P-1 P21/c P21/n 
a, Å   8.8368(2)    5.8145(2)    8.8865(4)  15.3440(6)  
b, Å   9.6189(2)    8.6576(3) 10.1845(5)   6.0542(3) 
c, Å 10.3659(3) 10.3719(3) 22.4124(12) 15.8769(10) 
α, deg 83.7093(8) 93.199(2)  90  90  
β, deg 72.7342(9) 91.403(2) 94.260(2) 116.658(2) 
γ, deg 84.4839(10) 106.448(1) 90 90 
V, Å3 834.45(4) 499.53(3) 2022.8(2) 1318.1(1) 
Z 2 2 4 4 
Dc, Mg m−3 1.540 1.364 1.397 1.347 
μ, mm−1 0.729 0.110 0.348 0.101 
F(000) 396 220 888 568 
θmin–θmax, deg 4.19-28.00 3.94-29.93 3.04-26.50 4.43-24.99 
Index ranges min./max. h,k,l -10,11;-12,12;-12,13 -5,8;-12,9;-12,14 -11,11;-12,11;-28,28 -18,18;-7,7;-18,18 
Measured Reflections 6096 3833 6784 4264 
Unique Reflections 3997 2849 4028 2311 
Rint 0.0240 0.0244 0.0440 0.0321 
Obs. Reflections [I > 2σ(I)] 3288 2353 2969 1586 
No. Variables/Restraints 256/6 187/0 341/0 241/0 
R(F2) [I > 2σ(I)] 0.0713 0.0440 0.0484 0.0480 
wR (F2) (all data) 0.1992 0.1295 0.1397 0.1318 
Goodness of fit, S 1.031 1.049 1.041 1.050 
∆ρ (max., min.) e Å−3 1.130, -0.955 0.286,-0.205 0.247,-0.353 0.185,-0.172 
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Table 3.7 Crystallographic data MET PCCs (1-26) ; part 7 

Crystallographic data 
MET-Saccharine 1:1 

Polimorph I 
MET43 

MET-Saccharine 1:1 
Polymorph II 

METHCl6 

MET-Acesulfame 1:1 
METACSU7 

Formula  (C4H12N5)+• 
(C7H4NO3S)- 

(C4H12N5)+• 
(C7H4NO3S)- 

(C4H12N5)+•(C4H4NO4S)- 

Molecular mass (Mr)  312.36 312.36 292.33 
Crystal system  orthorhombic monoclinic Monoclinic 
Space group  P212121 C2/c P21/n 
a, Å   7.1858(1) 29.9130(6)   8.4931(2) 
b, Å   9.9319(2) 12.6385(2) 13.6704(3) 
c, Å 20.2161(4) 15.6051(4) 12.2991(2) 
α, deg 90 90 90 
β, deg 90 103.6450(8) 99.935(1) 
γ, deg 90 90 90 
V, Å3 1442.80(5) 5733.1(2) 1406.56(5) 
Z 4 16 4 
Dc, Mg m−3 1.438 1.448 1.380 
μ, cm−1 0.245 0.247 0.251 
F(000) 656 2624 616 
θmin–θmax, deg 3.65-30.03 3.80-28.00 27.1-28.00 
Index ranges min./max. h,k,l -10,10;-13,13;-28,28 -39,39;-16,14;-20,20 -11,11;-18,16;-16,16 
Measured Reflections 4193 12121 5908 
Unique Reflections 2409 6868 3372 
Rint 0.0233 0.0238 0.0151 
Obs. Reflections [I > 2σ(I)] 1957 5036 2784 
No. Variables/Restraints 254/0 507/0 245/0 
R(F2) [I > 2σ(I)] 0.0353 0.0410 0.0554 
wR (F2) (all data) 0.0880 0.1131 0.1605 
Goodness of fit, S 1.029 1.025 1.060 
∆ρ (max., min.) e Å−3 0.194,-0.327 0.250,-0.359 0.673,-0.544 
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Table 3.8.1 Intremolecular contacts and Packing motifs of the MET-Nitric acid 1:1 

1 MET-Nitric acid 1:1 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
MET7b 

N−H∙∙∙O dimer -    
          

N1−H12∙∙∙O2 0.89(2)      2.06(2)            2.934(3)            167(2)  x, y, z 
N2−H21∙∙∙O1 0.90(2)      2.08(2)            2.983(2)            176(2)  x, y, z 
N−H∙∙∙N dimer -   

          
N2−H22∙∙∙N3 0.85(2)      2.164(2)   3.017(2)                     177(2) -x,-y+1,-z 
N−H∙∙∙O tetramer -   

          
N4−H41∙∙∙O1 (nitrate) 0.83(3)      2.21(3)            3.028(2)            168(2) -x,-y,-z 
N4−H42∙∙∙O1 (nitrate) 0.85(2)      2.20(2)            3.023(2)            163(2) x,+y,+z+1 
N1−H11∙∙∙O2   

     0.56(3)      2.16(3)            2.952(3)            154(2) -x+1,-y,-z 
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Fig. 3.5 Packing motifs of the MET-Nitric acid 1:1 

Table 3.8.2  Intremolecular contacts and Packing motifs of the MET-Phosphoric acid trihydrate 2:1:3 

2 MET-Phosphoric acid trihydrate 2:1:3 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
MET3b 

N−H∙∙∙O dimer -    
          

N1A−H11A∙∙∙O4 (phosphate) 0.86(2) 1.97(2) 2.821(2) 172(2) x, y, z 
N2A−H22A−O3 (phosphate) 0.86(2) 2.01(2) 2.870(2) 174(2) x, y, z 

N−H∙∙∙N dimer -   
          

N2B−H21B∙∙∙N3B 0.90(2) 2.15(2) 3.041(2) 173(2) -x+2,-y+2,-z+2 
Bifurcated N−H∙∙∙O H-bonds      

N1B−H12B∙∙∙O3 0.86(2) 2.20(2) 2.977(2) 149(2) x, y, z 
N2B−H22B∙∙∙O3 0.77(2) 2.34(2) 3.063(2) 157(2) x, y, z 
N1A−H11A∙∙∙O3 0.86(2) 2.20(2) 2.977(2) 149(2) x, y, z 
N2A−H22A∙∙∙O3 0.77(2) 2.34(2) 3.063(2) 157(2) x, y, z 

Tetramer      
N1A−H11A∙∙∙O4 (phosphate) 0.86(2) 1.97(2) 2.821(2) 172(2) x, y, z 

N4A−H42A∙∙∙O4 0.90(2) 2.10(2) 2.912(2) 151.(2) -x+1,-y+1,-z+1 
Tetramer   (O−H∙∙∙O)      
O2W−H22W∙∙∙O3W 0.79(3) 2.42(4) 2.798(3) 111(3) -x+1,-y+1,-z+1 
O3W−H32W∙∙∙O2W 0.86(4) 2.06(4) 2.897(2) 166(3) x+1,+y,+z 
O1W−H12W∙∙∙O2 0.93(3) 1.84(3) 2.768(1) 175(2) x, y ,z 
O1W−H11W∙∙∙O2 0.84(2) 1.96(2) 2.796(2) 173(2) -x+2,-y+1,-z+2 

Other H-bonds      
N4B−H42B∙∙∙O1 0.84(2) 2.21(2) 2.984(2) 153(2) x+1,+y,+z 
N4B−H41B∙∙∙O2 0.87(2) 1.95(2) 2.797(1) 163(2) -x+2,-y+1,-z+2 

N1B−H12B∙∙∙O1W 0.86(2) 2.90(2) 3.263(2) 108(2) x, y, z 
N1B−H11B∙∙∙O2W 0.82(2) 2.94(2) 3.396(2) 117(2) x+1,+y,+z 
N2B−H22B∙∙∙O1 0.78(2) 2.83(2) 3.489(2) 146(2) x, y, z 

N1A−H12A∙∙∙O2W 0.81(2) 2.08(2) 2.881(2) 172(2) x, y, z 
O2W−H22W∙∙∙N1A 0.789(3) 2.87(4) 2.881(2) 83(2) x, y, z 

O1−H1∙∙∙N4B 0.87(2) 2.98(2) 2.984(2) 82.17(1) x-1,+y,+z 
O2W−H21W∙∙∙O1W 0.88(3) 1.82(3) 2.680(2) 167(3) x-1,+y,+z 
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Fig.3.6  Packing motifs of the MET-Phosphoric acid trihydrate 2:1:3 
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Table 3.8.3  Intremolecular contacts and Packing motifs of the MET-Picric acid 1:1 

3 MET-Picric acid 1:1 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
MET39 

Bifurcated H-bonds      
N1−H1∙∙∙O1 0.86(3)      2.12(3)      2.897(3)      153(2)  x, y, z 
N2−H1∙∙∙O1 0.83(3)      2.18(3)      2.906(3)      146(2)  x, y, z 
N−H∙∙∙N dimer -   

          
N2−H2∙∙∙N3 0.85(3)      2.17(3)      3.025(3)      176(2) -x,-y+2,-z+1 
Other H-bonds      
N2−H1∙∙∙O2 0.83(2)      2.39(3)            3.095(4)            143(2) x, y, z 
N1−H2∙∙∙O7 0.80(3)      2.32(3)            3.104(3)            165(2) -x+1,-y+1,-z+1 
N4−H1∙∙∙O6     0.86(3)      2.28(3)            3.088(3)            157(3) -x+1,-y+2,-z+1 
N4−H2∙∙∙O1     0.95(3)      2.16(3)            3.089(3)            165(3) x,+y+1,+z 
N4−H2∙∙∙O6     0.95(3)      2.72(3)            3.279(3)            118(2) x,+y+1,+z 
N1−H1∙∙∙O6     0.86(3)      2.81(3)            3.466(3)            135(2) x, y, z 
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                                                                                              Fig. 3.7 Packing motifs of the MET-Picric acid 1:1  

Table no. 3.8.4  Intremolecular contacts and Packing motifs of the MET-Picric acid 1:2 

4 MET-Picric acid 1:2 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
MET41 

Bifurcated H bonds      
N1−H1∙∙∙O1 0.87(4)      2.01(5)            2.791(5)            149(4)  x, y, z 
N2−H1∙∙∙O1 0.89(4)      1.93(3)            2.731(3)            149(4)  x, y, z 
N2−H2∙∙∙O8 0.79(3)      2.19(3)            2.871(3)            144(4)  x, y, z 
N3−H3∙∙∙O8 0.84(3)      1.90(4) 2.694(3)                158(4)  x, y, z 
Other H-bonds      
N2−H1∙∙∙O2 0.89(4)      2.44(5)            3.156(5)            138(4)  x, y, z 
N1−H1∙∙∙O6 0.87(4)      2.43(3)            3.141(3)            140(4)  x, y, z 
N1−H2∙∙∙O7 0.86(5)      3.14(5)            2.322(5)            158(4) -x,-y,-z+1 
N3−H3∙∙∙O9 0.84(3)      2.51(3)            3.074(3)            126(3) x, y, z 
N4−H1∙∙∙O7 0.85(5)      2.78(3)             2.893(4)            89(3) -x,-y,-z+1 
N1−H2N1∙∙∙O11    0.86(5)      2.92(4)            3.468(5)            123(3) x-1,+y-1,+z 
N4−H1N4∙∙∙O14    0.85(5)      2.08(5)            2.894(5)            160(4) x,+y-1,+z 
N4−H2N4∙∙∙O13    0.87(5)      2.17(4)            3.016(4)            165(4) -x+1,-y+1,-z+1 
N4−H2N4∙∙∙O2     0.87(4)      2.65(4)            3.040(5)            109(3) -x+1,-y+1,-z+1 
N2−H2∙∙∙O13 0.79(3)      2.33(4)            2.999(4)            143(4) x, y, z 

                                                                                                                                                                                               

 

 

 

                                                                                                                                        

 

 

Fig. 3.8  Packing motifs of the MET-Picric acid 1:2
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Table 3.8.5  Intremolecular contacts and Packing motifs of the MET-Squaric acid-hydrate 1:1:1 

5 MET-Squaric acid-hydrate 1:1:1 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
METFSQ 

N1−H1∙∙∙O1 0.83(2) 2.36(2) 2.988(2) 134(2) x, y, z 
N1−H1∙∙∙O2 0.83(2) 2.522) 3.1992) 140(2) x, y, z 
N2−H1∙∙∙O2 0.89(2) 1.97(2) 2.822(2) 163(2) x, y, z 
N2−H2∙∙O3 0.91(2) 1.92(2) 2.807(2) 164(2) x, y, z 
N3−H3∙∙O4 0.92(2) 1.73(2) 2.625(2) 165(2) x, y, z 
N4−H1∙∙∙O1 0.92(2) 1.88(2) 2.792(2) 169(2) -x+1,+y-1/2,-z+1/2 
N4−H2∙∙∙O3 0.90(2) 2.06(2) 2.923(2) 159(2) -x,-y,-z 

N1−H2∙∙∙O5W 0.92(2) 1.85(2) 2.760(2) 167(2) x, y, z 
O5W−H52W∙∙∙O2 0.82(3) 1.92(3) 2.731(2) 171(3) x,-y+1/2,+z+1/2 
O5W−H51W∙∙∙O4 0.86(3) 2.02(3) 2.865(2) 165(3) -x,+y+1/2,-z+1/2 

                                                                                                                                                                                      

                                                                                     

 

 

 

 

                                                                                                                                                                                

 

 

 

Fig. 3.9a  Packing motifs of the MET-Squaric acid-hydrate 1:1:1 
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Fig.3.9.b Packing motifs of the of the MET-Squaric acid-hydrate 1:1:1 
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Table 3.8.6  Intremolecular contacts and Packing motifs of the MET-Formic acid 1:1 

6 MET-Formic acid 1:1 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
METFORMA 

N−H∙∙∙O dimer -    
          

N1−H1∙∙∙O1 0.87(2)      2.04(2)      2.911(2)      173(2)       x, y, z 
N2−H1−O2 0.86(2)      2.09(2)      2.946(2)      178(2)       x, y, z 
N−H∙∙∙O tetramer -   

          
N1−H2∙∙∙O1 0.90(2)      2.04(2)      2.861(2)      152(2)      -x+1,-y+1,-z+1 
N1−H1∙∙∙O1 0.87(2)      2.04(2)      2.911(2)      173(2)       x, y, z 
N−H∙∙∙N dimer -   

          
N2−H2∙∙∙N3 0.85(2)      3.03(2)      2.180(2)      174(2)      -x+1,-y+1,-z+2 
Connected ribbons      
N4−H1∙∙∙O2 0.85(2)      2.08(2)      2.922(2)      174(2)      x,+y-1,+z 
Connected planes      
C4−H42∙∙∙O1 0.93(3) 2.65(3) 3.565(3) 167(2) x-1/2,-y+1/2,+z+1/2 

            

 

 

 

 

 

 

                                                                                                                                                                          

 

 

Fig.3.10 Packing motifs of the MET-Formic acid 1:1 
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Table 3.8.7  Intremolecular contacts and Packing motifs of the MET-Acetic acid 1:1 

7 MET-Acetic acid 1:1 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
MET10b 

N−H∙∙∙O dimer -    
          

N1−H1∙∙∙O1 0.84(2)      1.97(2)      2.808(2)      174(2)       x, y, z 
N2−H2∙∙∙O2 0.93(2)      2.02(2)      2.950(1)            177(2)       x, y, z 
N−H∙∙∙O tetramer -   

          
N1−H2∙∙∙O1 0.90(2)      2.04(2)      2.861(2)      152(2)      -x+1,-y+1,-z+1 
N−H∙∙∙N dimer -   

          
N2−H2∙∙∙N3 0.85(2)      2.18(2)      3.030(2)      174(2)      -x+1,-y+1,-z+2 
Connected heteromeric dimer      
N4−H1∙∙∙O2 0.85(2)      2.08(2)                2.922(2)      174(2)      x,+y-1,+z 
Connected planes      
N4−H2∙∙∙O2 0.89(2)      2.20(2)      3.04(2)      163(2)      -x+1/2+1,+y-1/2,-z+1/2 

                                                                                                                             

 

 

 

 

 

 

 

 

 

Fig.3.11a  Packing motifs of the MET-Acetic acid 1:1 
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Fig.3.11b  Packing motifs of the MET-Acetic acid 1:1 
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Table 3.8.8  Intremolecular contacts and Packing motifs of the MET-Monochloracetic acid 1:1    

8 MET-Monochloracetic acid 1:1    D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
METClA6 

N−H∙∙∙O dimer -    
          

N1−H1∙∙∙O1 0.86(2) 2.02(2) 2.875(2) 175(2)  x, y, z 
N2−H1∙∙∙O2 0.90(2) 2.00(2) 2.864(2) 171(2)  x, y, z 
N−H∙∙∙N dimer -   

          
N2−H2∙∙∙N3 0.87(2) 2.31(2) 3.175(2) 172(2) -x,-y,-z+1 
N−H∙∙∙O dimer -   

          
N4−H2∙∙∙O2 0.81(2) 2.17(2) 2.982(2) 173(2) - x,+y+1,+z 
Other H-bonds      
N1−H2∙∙∙Cl 1 0.83(2)      2.894(2)            3.68(1)            157(2) -x,-y,-z+2 
N1−H1∙∙∙O1 0.86(2) 2.02(2) 2.875(2) 175(2)  x, y, z 
Connecting  haring-bone tapes      
N4−H2∙∙∙O2 0.87(2)      2.20(2)            3.033(2)            163(2) -x+1/2,+y+1/2,-z+1/2+1 

                                                                                                                   

 

 

 

 

 

 

 

Fig.3.12a  Packing motifs of the MET-Monochloracetic acid 1:1    
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                 Fig.3.12b  Packing motifs of the MET-Monochloracetic acid 1:1    
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Table 3.8.9  Intremolecular contacts and Packing motifs of the MET-Trifluoroacetic acid 1:1 

9 MET-Trifluoroacetic acid 1:1  D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
METTRFA 

N−H∙∙∙O dimer -    
          

N1−H1∙∙∙O1 0.88(3) 1.98(3) 2.862(3) 178(3)  x, y, z 
N2−H1∙∙∙O2 0.90(3) 2.11(3) 3.002(3) 175(3)  x, y, z 
N−H∙∙∙N dimer -   

          
N2−H2∙∙∙N3 0.81(3) 2.43(3) 3.230(3) 170(3) -x+1,-y+1,-z+1 
N−H∙∙∙O tetramer -   

          
N1−H1∙∙∙O1 0.88(3) 1.98(3) 2.862(3) 178(3)  x, y, z 
N1−H2∙∙∙O1  0.85(3)      2.33(3)            2.994(3)            135(3) -x+1,-y+1,-z 
Other H-bonds      
N2−H1∙∙∙O1 0.90(3)      2.90(3)            3.593(3)            135(2) x, y, z 
N2−H2∙∙∙O1 0.85(3) 2.33(3) 2.994(3) 135(3)  x, y, z 
N4−H2∙∙∙O2 0.88(3)      2.36(3)            3.194(3)            161(3) -x+1/2,+y+1/2,-z+1/2 
N4−H1∙∙∙O2 0.86(4) 2.23(4) 3.078(3) 172(3) x,+y+1,+z 

 

                                               

 

 

 

 

 

 

 

Fig.3.13a  Packing motifs of the MET-Trifluoroacetic acid 1:1 
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Fig.3.13b  Packing motifs of the Packing motifs of the MET-Trifluoroacetic acid 1:1 
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Table 3.8.10  Intremolecular contacts and Packing motifs of the MET-Trichloroacetic acid 1:1 

10 MET-Trichloroacetic acid 1:1 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
METTRIClA24 

N−H∙∙∙O dimer -    
          

N1−H1∙∙∙O1 0.81(3) 2.14 (3) 2.927(2) 165.49(2)  x, y, z 
N2−H1∙∙∙O2 0.86(3) 2.03(3) 2.888(2) 174(3)  x, y, z 
N−H∙∙∙O tetramer -   

          
N1−H1∙∙∙O1 0.83(3) 2.10(3) 2.819(2) 145(3) -x+1,-y+2,-z+1 
N1−H2∙∙∙O1 0.83(3) 2.10(3) 2.819(2) 145(3) -x+1,-y+2,-z+1 
N−H∙∙∙N dimer -   

          
N2−H2∙∙∙N3 0.88(3) 2.17(3) 3.041(2) 173.56(3) -x,-y+2,-z+1 

 

                                                                                                            

 

 

 

 

 

 

 

 

Fig.3.14a  Packing motifs of the MET-Trichloroacetic acid 1:1 
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Fig.3.14b  Packing motifs of the MET-Trichloroacetic acid 1:1 
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Table 3.8.11  Intremolecular contacts and Packing motifs of the MET- Trichloroacetic acid 1 : 2 

11 MET-Trichloroacetic acid 1 :2 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
METTRIClA2 

N−H∙∙∙O dimer -    
          

N1A−H11A∙∙∙O1  0.80(6) 1.98(7)      2.780(7)      177(7)       x, y, z 
N2A−H21A∙∙∙O2 0.67(6) 2.22(6) 2.903(8)      177(7)       x, y, z 
N2B−H22B∙∙∙O7 0.84(9)      1.99(8)      2.795(7)      161 (9)  x, y, z 
N3B−H3B∙∙∙O8 0.83(8)      1.84(8)      2.652(7)      166(8)       x, y, z 
N2A−H22A∙∙∙O4 0.92(7)      3.05(7)      2.161(7)      165(7)       x, y, z 
N3A−H3A∙∙∙O3 0.79(7)      1.93(7)      2.717(7)      174(7)       x, y, z 
Other H-bond contacts      
N2B−H21B∙∙∙O4 0.81(9) 2.28(8)      3.013(8)      150(8)       x, y, z 
N1B−H11B∙∙∙O4 0.81(7)      2.10(8)      2.874(9) 162(7)       x, y, z 
N1B−H12B∙∙∙O5 0.76(7)      2.19(6)            2.832(7)      142(6)  x, y, z 
N4A−H42A∙∙∙O5 0.84(7)      2.03(7)      2.864(7)      173(7)       x, y, z 

 

 

 

 

 

 

 

 

 

Fig.3.15a  Packing motifs of the MET-Trichloroacetic acid 1:2 
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Fig.3.15b  Packing motifs of the MET-Trichloroacetic acid 1:2 
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Table 3.8.12  Intremolecular contacts and Packing motifs of the MET- Malonic acid 1:1 

12 MET-Malonic acid 1:1 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
MET34 

N−H∙∙∙O dimer -   
          

N2−H1∙∙∙O2 0.89(1)      1.98(1)            2.862(1)            168(1)  x, y, z 
N1−H1∙∙∙O1     0.85(2)      2.29(2)          3.132(1) 168(2) x, y, z 
N−H∙∙∙N dimer -   

          
N2−H2∙∙∙N3 0.88(2)      2.18(2)            3.053(1)            170(2) -x+1,-y+1,-z+2 
Other  H-bonds      
N1−H2∙∙∙O1     0.912)      2.74(2)             3.026(1)            100(2) x, y, z 
N1−H1∙∙∙O1 0.85(2)      2.29(2)          3.132(1) 168(2) x, y, z 
N4−H2∙∙∙O1     0.90(2)      2.12(2)            3.008(2)            168(2) -x+1,+y+1/2,-z+1/2+1 
N4−H1∙∙∙O4     0.88(2)      2.09(2)        2.951(1)            169(2) x+1,+y,+z 
Intramolecular H-bond      
O3−H30∙∙∙O2 0.98(3)      1.55(3)            2.484(1)            156(2) x, y, z 

 

 

                                                                                                                              

 

 

 

 

 

 

Fig.3.16a  Packing motifs of the MET- Malonic acid 1:1 
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Fig.3.16b  Packing motifs of the MET- Malonic acid 1:1 
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Table 3.8.13  Intremolecular contacts and Packing motifs of the MET-Oxalic acid-hydrate 1:1:1 

13 MET-Oxalic acid-hydrate 1:1:1 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
MET33 

N−H∙∙∙O dimer -   
          

N2−H2∙∙∙O3 0.89(2)      1.95(2)            2.830(2)            173(2)  x, y, z 
N3−H3N∙∙∙O4    ( 0) 0.89(2)      1.78(2)           2.654(1)            169( 2) x, y, z 
Other H-bonds      
N1−H1∙∙∙O1 0.84(2)      2.32(2)            2.908(2)            128(2)  x, y, z 
N1−H2∙∙∙O1  0.84(2)      2902)           2.908(2)            81(1) x, y, z 
N4−H1∙∙∙O1 0.93(2)      1.84(2)            2.773(1)            176(2) -x+1,+y+1/2,-z+1/2 
N2−H1∙∙∙O2     0.84(2)      2.27(2)            2.987(2)            142 (2) -x+1,-y,-z 
N1−H1∙∙∙O2     0.842)      2.102)           2.875(2)            154(2) -x+1,-y,-z 
N4−H2∙∙∙O3 0.88(.2)      2.07(2)            2.881(1)            153(2) -x,-y+1,-z 
O5−H52W∙∙∙O4 0.81(2)      2.13(2)            2.933(2)            167(2) -x,+y-1/2,-z+1/2 
O5−H51W∙∙∙O2 0.89(2)      1.91(2)            2.787(2)            172(2) -x+1,+y+1/2,-z+1/2 
N1−H2∙∙∙O5 0.84(2)      2.11(2)            2.927(2)            165(2)  x, y, z 

 

 

 

 

 

 

 

 

Fig.3.17a  Packing motifs of the MET-Oxalic acid-hydrate 1:1:1 
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Fig.3.17b  Packing motifs of the MET-Oxalic acid-hydrate 1:1:1 
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Table 3.8.14  Intremolecular contacts and Packing motifs of the MET-Oxalic acid-hydrate 1:2.5:1 

14 MET-Oxalic acid-hydrate 1:2.5:1 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
MET68 

Dimer carboxylate      
O9−H90∙∙∙O2     0.89(5)      1.65(5)           2.526(5)            167(6) -x+1,-y+1,-z 
Other H-bonds      
N1−H1∙∙∙O2     0.86(5)      2.95(5)             3.190(7)            98(3)  -x+1,-y+1,-z 
N1−H2∙∙∙O2     0.86(5)      2.95(5)           3.190(7)            98(3)  -x+1,-y+1,-z 
N1−H1∙∙∙O9    0.86(5)      2.35(3)           3.060(6)            141(3) -x+1,-y,-z 
N1−H1O∙∙∙10    0.86(5)      2.33(4)         3.104(7)            150(3) x-1,+y,+z 
N1−H2∙∙∙O4     0.86(5)      2.18(4)         3.001(6)            159(3) x-1,+y,+z 
N2−H2∙∙∙O7     0.86(7)      2.53(7)     3.140(7)            129(6) -x+1,-y,-z+1 
N2−H2∙∙∙O6     0.86(7)      2.07(7)       2.881(7)            157(6) -x+1,-y,-z+1 
N2−H1O∙∙∙11W   0.81(7)      2.07(7)            2.867(9)            168(6) x, y, z 
N2−H2∙∙∙O5     0.86(7)      2.96(7)          3.399(7)            114(5) x, y ,z 
N3−H3∙∙∙O5     0.74(4)      2.01(7)          2.731(7)            167(8) x, y ,z 
N3−H3∙∙∙O8    0.74(7)      2.64(7)          3.101(8)            122(6) x, y ,z 
N4−H1∙∙∙O1     0.98(1)      2.00(9)           2.859(6)            145(8) x, y ,z 
N4−H1∙∙∙O4     0.98(1)      2.51(1)         3.336(7)            141(7) x, y ,z 
N4−H2O∙∙∙10    0.98(7)      1.97(6)        2.919(6)            164(6) x, y ,z 
O11W−H11W∙∙∙N2     0.89(7)      2.86(9)          2.867(9)            81(5) x, y ,z 
O11−WH12W∙∙∙O9     0.90(7)      2.83(8)      3.154(6)            103(4) -x+1,-y,-z 
O11W−H12W∙∙∙O10    0.90(7)      2.67(8)       3.222(6)            121(5) x-1,+y,+z 
O11W−H11W∙∙∙O6     0.89(7)      2.05(7)         2.811(6)            143(6) -x,-y,-z+1 
O11−WH12W∙∙∙O2     0.90(7)      2.88(8)      3.758(8)            167(5) x-1,+y-1,+z 
O11−WH12W∙∙∙O3     0.90(7)      2.85(7)          3.414(7)            123(4) x-1,+y-1,+z 
O3−H30∙∙∙O1     1.00(6)      1.56(5)          2.560(5)            175(5) x+1,+y,+z 
O3−H30∙∙∙O2     1.00(6)      2.80(6)      3.550(6)            132(4) x+1,+y,+z 
O3−H30∙∙∙O1    1.00(6)      2.98(5)          3.180(5)            92(3) -x+2,-y+1,-z 
O3−H30∙∙∙O9     1.00(6)      2.90(5) 2.928(6)                   82(3) -x+2,-y+1,-z 
O7−H70∙∙∙O5     0.87(9)      1.79(8)     2.604(6)            153(8) x+1,+y,+z 
O7−H70∙∙∙O6     0.87(9)      2.64(9)    3.421(6)            150(7) x+1,+y,+z 
O7−H70∙∙∙O7     0.87(9)      2.99(7)       3.143(5)            92(5) -x+2,-y,-z+1 
O9−H90∙∙∙O3     0.89(5)      2.80(7)     2.928(6)            89(5) -x+2,-y+1,-z 
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Fig.3.18  Packing motifs of the MET-Oxalic acid-hydrate 1:2.5:1 
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Table 3.8.15  Intremolecular contacts and Packing motifs of the MET-Maleic acid 1:1 

15 MET-maleic acid 1:1 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
MET17 

N−H∙∙∙O dimer -   
          

N1−H1∙∙∙O1 0.85(2)      2.90(2)            2.044(2)            177(2)  x, y, z 
N2−H1∙∙∙O2 0.88(2)      2.19(2)            3.053(2)            169(2)  x, y, z 
N−H∙∙∙N dimer -   

          
N2−H2∙∙∙N3 0.87(2)      2.19(2)            3.057(2)            173(2) -x+1,-y+1,-z+2 
Other H-bonds      
N4−H1∙∙∙O2 0.88(2)      2.12(2)            2.998(2)            175(2) x,+y-1,+z 
N4−H2∙∙∙O2 0.90(2)      2.17(2)            3.019(2)            159(2) -x+1/2,+y-1/2,-z+1/2+1 
N1−H2∙∙∙O3 0.88(2)      2.43(2)            3.063(2)            129(2) -x+1,-y+1,-z+1 
N1−H2∙∙∙O4     0.88(2)      2.21(2)           3.075(2)            168(2) -x+1,-y+1,-z+1 
Intramolecular H-bond in maleic acid      
03−H1∙∙∙O1 0.98(3)      1.46(2)            2.427(2)            173(3)  x, y, z 

 

 

 

 

 

 

 

 

 

Fig.3.19a  Packing motifs of the MET-Maleic acid 1:1 
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Fig.3.19b  Packing motifs of the MET-Maleic acid 1:1 
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Table 3.8.16  Intremolecular contacts and Packing motifs of the MET-Fumaric acid 1 : 0.5   

16 MET-Fumaric acid 1 : 0.5   D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
MET18 

N−H∙∙∙O dimer -   
          

N1−H1∙∙∙O1 0.89(3)      2.94(3)            2.061(3)            169(3)  x, y, z 
N2−H1∙∙∙O2 0.89(3)      2.04(3)            2.927(2)            176(3)  x, y, z 
N−H∙∙∙O tetramer -   

          
N1−H2∙∙∙O1 0.90(3)      2.12(3)            2.902(2)            145(3) -x,-y+1,-z 
N1−H1∙∙∙O1 0.89(3)      2.94(3)            2.061(3)            169(3)  x, y, z 
Homomer N−H∙∙∙N dimer -   

          
N2−H2∙∙∙N3 0.83(3)      2.23(3)            3.060(3)            176(3) -x,-y+1,-z+1 
Other H-bonds (connecting of the planes)      
N4−H2∙∙∙O2 0.91(3)      2.97(3)            3.576(3)            126(2) -x+1/2,+y+1/2,-z+1/2 
N4−H1∙∙∙O2 0.91(3)      2.07(3)            2.977(2)            174(3) -x+1/2,+y+1/2,-z+1/2 

 

 

 

 

 

 

 

 

 

Fig.3.20a  Packing motifs of the MET-Fumaric acid 1 : 0.5   
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Fig.3.20b  Packing motifs of the MET-Fumaric acid 1 : 0.5   
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Table 3.8.17  Intremolecular contacts and Packing motifs of the MET-Succinic acid 1 : 0.5 

17 MET-Succinic acid 1:0.5  D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
MET15 

N−H∙∙∙O dimer -   
          

N1−H1∙∙∙O1 0.91(2)      2.01(2)            2.908(1)            169(2)  x, y, z 
N2−H1∙∙∙O2 0.93(2)      2.02(2)            2.944(1)            178(2)  x, y, z 
N1−H2∙∙∙O1 0.86(2)      2.07(2)            2.841(1)            148(2) -x+1,-y+2,-z+1 
Homomer N−H∙∙∙N dimer -   

          
N2−H2∙∙∙N3 0.85(2)      2.24(2)            3.089(2)            177(2) -x+1,-y+2,-z 
N−H∙∙∙O tetramer -   

          
N1−H2∙∙∙O1     0.86(2)      2.07(2)          2.841(1)            148(1) -x+1,-y+2,-z+1 
N1−H1∙∙∙O1 0.91(2)      2.01(2)            2.908(1)            169(2)  x, y, z 
Other H-bonds (connecting of the planes)      
N4−H2∙∙∙O2 0.88(2)      2.17(2)            3.040(1)            171(2) -x+1/2,+y-1/2,-z+1/2 
N4−H1∙∙∙O2 0.88(2)      2.02(2)            2.898(1)            171(2) x,+y-1,+z 

 

 

 

 

 

 

 

 

Fig.3.21a  Packing motifs of the MET-Succinic acid 1 : 0.5 
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Fig.3.21b  Packing motifs of the MET-Succinic acid 1 : 0.5 
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Table 3.8.18  Intremolecular contacts and Packing motifs of the MET-Adipic acid 1:1 

18 MET-Adipic acid 1:1 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
METADA22 

N−H∙∙∙O dimer -   
          

N1−H2∙∙∙O1 0.91(2)      1.95(2)      2.852(1)            178.62(2)       x, y, z 
N2−H1∙∙∙O2 0.86 (2)      2.07(2)      2.932(1)            174.64(2)       x, y, z 
Homomer N−H∙∙∙N dimer -   

          
N2−H2∙∙N3 0.87(2)      2.16(2)      3.020(2)      177.45(2)      -x,-y+1,-z+2 
N−H∙∙∙O tetramer -   

          
N1−H2∙∙∙O1 0.91(2)      1.95(2)      2.852(1)            178.62(2)       x, y, z 
N1−H1O1     0.87(2)      2.04(2)           2.870(1)            160(2) -x,-y+1,-z+1 
Chains of homomeric  O−H∙∙∙O 
carboxyle dimer   

          

      
Other H-bonds      
C3−H31∙∙∙O3     0.94(3)      2.53(3)       3.367(2)                 148(2) x+1,+y,+z 
C4−H43∙∙∙O4     0.96(3)      2.57(2)          3.100(2)              115(2) x+1,+y-1,+z 
N4−H1∙∙O3 0.86(2)      2.24(2)      3.035(1)            154.29(2)       x, y, z 
N4−H2∙∙O2 0.90(2)      2.02(2)      2.906(2)      170.97(2)      x,+y-1,+z 

                   

 

 

 

            

 

 

Fig.3.22a  Packing motifs of the MET-Adipic acid 1:1 
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Fig.3.22b  Packing motifs of the MET-Adipic acid 1:1 
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Table 3.8.19  Intremolecular contacts and Packing motifs of the MET-Dichloroacetic acid 1:1 

19 MET-Dichloroacetic acid 1:1 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
METDICLA1 

N−H∙∙∙O dimer -    
          

N1−H1∙∙∙O1 0.89(3) 2.03(3) 2.909(4) 174(3)  x, y, z 
N2−H1∙∙∙O2 0.81(3) 2.91(3) 3.547(4) 172(3)  x, y, z 
N−H∙∙∙O tetramer -   

          
N1−H2∙∙∙O1 0.87(3)      2.04(4)            2.780(3)            142(3) -x+1,-y+1,-z+1 
N−H∙∙∙N dimer -   

          
N2−H2∙∙∙N3 0.81(3)      2.24(3)            3.034(3)            169(4) -x+2,-y+1,-z+1 
Connecting of ribbons in the zigzag planes      
N4−H1∙∙∙O2 0.79(4)      2.10(4)            2.861(3)            164(4) x,+y-1,+z 

 

 

 

 

 

 

 

 

 

 

Fig.3.23a  Packing motifs of the MET-Dichloroacetic acid 1:1 
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Fig.3.23b  Packing motifs of the MET-Dichloroacetic acid 1:1 
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Table 3.8.20  Intremolecular contacts and Packing motifs of the MET-Dichloroacetic acid 1 : 2 

20 MET-Dichloroacetic acid 1:2 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
METDIClA3 

N−H∙∙∙O dimer -    
          

N1−H1∙∙∙O1 0.75(3)      2.09(4)            2.836(4)            176(4)  x, y, z 
N2−H1∙∙∙O2 0.85(4)      2.06(4)            2.912(3)            179(4)  x, y, z 
N2−H2∙∙∙O3 0.97(5)      1.82(5)            2.786(4)            175(4) x, y, z 
N3−H1∙∙∙O4 0.84(4)      1.86(4)            2.692(4)            177(4) x, y, z 
N−H∙∙∙O tetramer -   

          
N1−H1∙∙∙O1 0.75(3)      2.09(4)            2.836(4)            176(4)  x, y, z 
N1−H2∙∙∙O1 0.80(5)      2.63(4)            2.964(4)            132(4) x, y ,z 
N−H∙∙∙O tetramer -   

           
N4−H1∙∙∙O2 0.82(4)      2.06(4)            2.878(4)            173(4) x+1,+y,+z 
N1−H2∙∙∙O1 0.80(5)      2.06(5)            2.811(4)            156(4) -x-1,-y+1,-z+2 
Connecting of the dimers in chain      
N4−H1∙∙∙O2 0.82(4)      2.06(4)            2.878(4)            173(4) x+1,+y,+z 
N4−H3∙∙∙O3 0.81(4)      2.06(4)            2.848(3)            163(4) -x-1,-y,-z+2 
Other H-bonds       
N4−H2N4∙∙∙O3     0.81(4)      2.06(4)            2.85(3)            163(4) -x-1,-y,-z+2 
N3−H1N3∙∙∙O3     0.84(4)      2.95(4)            3.569(4)            132(3) x, y, z 
N2−H2N2∙∙∙O4     0.97(5)      2.71(4)            3.421(4)            131(4) x, y, z 
N2−H1N2∙∙∙O1     0.85(4)      2.90(4)            3.53(4)            132(4) x, y, z 
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Fig.3.24  Packing motifs of the MET-Dichloroacetic acid 1 : 2 
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Table 3.8.21  Intremolecular contacts and Packing motifs of the MET-Glycolic Acid 1:1 

21 MET-Glycolic Acid 1:1 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
METGLY23 

N−H∙∙∙O dimer -   
          

N1−H1∙∙∙O1  0.90(2)      1.99(2) 2.844(1)            159(2)  x, y, z 
N2−H1∙∙∙O2 0.93(2) 2.03(2) 2.959(1)            174(2)  x, y, z 
N−H∙∙∙N dimer -   

          
N2−H2∙∙∙N3 0.88(2) 2.19(2) 3.066(1)            173(2) -x+1,-y,-z+1 
O−H∙∙∙O dimer -   

           
O3−H3∙∙∙O1     0.90(3)      2.23(3)            3.069(2)            155(2) -x,-y,-z 
Tetramer   

          
N1−H2∙∙∙O1     0.85(2)      2.07(2)            2.826(1)            148(2) -x+1,-y,-z 
N1−H1∙∙∙O1  0.90(2)      1.99(2) 2.844(1)            159(2)  x, y, z 
Tetramer   

           
N4−H2∙∙∙O3 0.89(2) 2.19(2) 3.064(2) 166(2) -x,-y,-z 
N4−H1∙∙∙O2  0.93(2) 2.03(2) 2.959(1)            174(2) x+1,+y+1,+z 

 

 

 

 

 

 

 

 

 

Fig.3.25a  Packing motifs of the MET-Glycolic Acid 1:1 
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Fig.3.25b  Packing motifs of the MET-Glycolic Acid 1:1 
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Table 3.8.22  Intremolecular contacts and Packing motifs of the MET-Diclofenac 1:1 

22 MET-Diclofenac 1:1 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
METDCF9 

N−H∙∙∙O dimer -   
          

N1−H1∙∙∙O1  0.84(3)     2.11(3)          2.931(3)           167(3)  x, y, z 
N2−H1∙∙∙O2 0.89(2)    2.01(2)        2.900(3)           175(2)  x, y, z 
N−H∙∙∙N dimer -   

          
N2−H2−∙∙∙N3 0.83(3)    2.25(3)         3.081(3)           174(3) -x+1,-y+1,-z 
N−H∙∙∙O tetramer -   

          
N1−H1∙∙∙O1  0.84(3)     2.11(3)          2.931(3)           167(3)  x, y, z 
N1−H2∙∙∙O1     0.84(3)      2.03(3)           2.83(3)            158(3) -x+1,-y,-z 

Other H-bonds      
N4−H1∙∙∙O2 0.74(3)     2.21(3)         2.938(2)           169(3) x+1,+y,+z 
N6−H1∙∙∙O2 0.79(3)     2.39(2)         2.985(3)           133(2)  x, y, z 

 

 

 

 

 

 

 

 

 

Fig.3.26a  Packing motifs of the MET-Diclofenac 1:1 
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Fig.3.26b  Packing motifs of the MET-Diclofenac 1:1 
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Table 3.8.23  Intremolecular contacts and Packing motifs of the MET-Salicylic acid 1:1 

23 MET-Salicylic acid 1:1  D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
MET30 

N−H∙∙∙O tetramer -   
           

N4−H1∙∙∙O2     0.87(3)      2.25(3)            3.103(3)            1665(3) -x,-y,-z+1 
N1−H2∙∙∙O2     0.84(3)      2.55(4)            3.23(3)            140(3) -x,-y+1,-z+1 
N4−H2∙∙∙O1 0.95(4)      2.08(4)            3.005(4)            164(3) x,+y-1,+z 
N1−H1∙∙∙O1  0.89(4)      2.24(3)            3.030(3)            150(3)  x, y, z 
Other H-bonds      
N4−H2∙∙∙O1 0.95(4)      2.08(4)            3.005(4)            164(3) x,+y-1,+z 
N2−H2∙∙∙O1 0.93(3)      2.10(3)            3.011(3)            169(3) -x+1/2,+y-1/2,-z+1/2+1 
N1−H2∙∙∙O1     0.84(3)      2.49(3)            3.221(2)            147(3) -x,-y+1,-z+1 
N1−H1∙∙∙O2     0.88(4)      2.64(4)            3.46(4)            157(3) x, y, z 
N2−H1∙∙∙N3     0.87(3)      2.80(3)            3.35(3)            123(2) -x+1/2,+y+1/2,-z+1/2+1 
Intramolecular H-bond in Salicylic acid      
O3−H30∙∙∙O2  0.94(4)      1.72(5)            2.561(4)            145(4)  x, y, z 

 

 

 

 

 

 

 

 

Fig.3.27a  Packing motifs of the MET-Salicylic acid 1:1 
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Fig.3.27b  Packing motifs of the MET-Salicylic acid 1:1 
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Table 3.8.24  Intremolecular contacts and Packing motifs of the MET-Saccharine 1:1 polymorph I 

24 MET-Saccharine 1:1 polymorph I D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
MET43 

Trifurcated H-bond      
N1−H1∙∙∙O1 0.75(3)      2.26(3)      2.985(3)      164(3)       x, y, z 
N2−H2∙∙∙O1 0.99(3)      1.96(3)      2.940(3)      175(3)      x-1/2,-y+1/2,-z 
N2−H1∙∙∙O1 0.79(3)      2.47(3)            3.174(3)            149(3) x, y, z 
Other H-bonds      x+1/2,-y+1/2,-z 
N2−H1∙∙∙N3 0.79(3)      2.79(3)            3.286(3)            123(2) x+1/2,-y+1/2,-z 
N4−H2∙∙O1 0.84(3)      2.98(3)      2.148(3)      167(3)      x-1,+y,+z 
N4−H1∙∙∙O2 0.88(2)      2.12(2)      2.959(3)      162(2)      -x+1,+y-1/2,-z+1/2 

 

 

 

 

 

 

 

 

 

 

Fig.3.28a  Packing motifs of the MET-Saccharine 1:1 polymorph I 
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Fig.3.28b  Packing motifs of the MET-Saccharine 1:1 polymorph I 

 

 

 

d 

c 

137



 

77 
 

Table 3.8.25  Intremolecular contacts and Packing motifs of the MET-Saccharine 1:1 Polymorph II 

25 MET-Saccharine 1:1 Polymorph II D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
METHCl6 

Bifurcated H-bond      
N1A−H11A∙∙∙O1A 0.82(3)      2.27(3)            3.023(2)            153(2)  x, y, z 
N2A−H21A∙∙∙O1A 0.84(2)      2.23(2)            2.988(2)            151(2)  x, y, z 
Dimer heteromeric      
N1B−H11B∙∙∙O1B    0.84(3)      2.00(3)           2.836(2)            171(2) x, y, z 
N2B−H21B∙∙∙N6B    0.85(3)      2.27(3)            3.114(2)            176(2) x, y, z 
N−H∙∙∙N dimer -   

          
N2B−H22B∙∙∙N3A 0.91(2)      2.24(2)            3.118(2)            163(2)  x, y, z 
N2A−H22A∙∙∙N3B 0.91(3)      2.37(3)            3.265(2)            171(3)  x, y, z 
Other H-bonds      
N2A−H21A∙∙∙O1A 0.84(2)      2.23(2)            2.988(2)            151(2)  x, y, z 
N4B−H41B∙∙∙O3A 0.88(2)      2.22(2)            3.047(2)            157(2) -x+1/2+1,-y+1/2+2,-z+1 
N4A−H41A∙∙∙O3B 0.86(2)      2.18(2)            3.010(2)            162(2) -x+1,-y+1,-z+1 
N4A−H42B∙∙∙O2A 0.82(3)      2.46(2)            3.197(3)            150(2) -x+1/2+1,-y+1/2+1,-z+1 
N1B−H11B ∙∙∙N6B    0.84(3)      2.99(2)           3.666(2)            139(21) x, y, z 
N1B−H12B ∙∙∙O1B    0.84(3)      2.28(2)            2.935(2)            136(2) -x+1,+y,-z+1/2 

 

 

 

 

 

 

 

Fig.3.29a  Packing motifs of the MET-Saccharine 1:1 Polymorph II 
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Fig.3.29b  Packing motifs of the MET-Saccharine 1:1 Polymorph II 
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Table 3.1.26  Intremolecular contacts and Packing motifs of the MET-Acesulfame 1:1 

26 MET-Acesulfame 1:1 D−H/Å H∙∙∙A/Å D∙∙∙A/Å <D−H ∙∙∙A/ º Symmetry code 

Lab code 
METACSU7 

N−H∙∙∙N dimer -   
          

N2−H2∙∙∙N3     0.89(3)      2.24(3)            3.117(3)            171(3) -x,-y+1,-z 
C−H∙∙∙O dimer       
C6−H6∙∙∙O2     0.86(4)      2.71(3)            3.315(4)            129(3) -x+1,-y+1,-z+1 
Bifurcated H-bonds      
N4−H1∙∙∙O1     0.85(3)      2.07(3)            2.88(3)            158(3) x-1,+y,+z 
N2−H1∙∙∙O1 0.85(3)      1.99(3)      2.836(3)      172(3)       x, y, z 
Tetramer N−H∙∙∙O; N−H∙∙∙N      
N1−H2∙∙∙O2 0.80(3)      2.25(3)      3.040(4)            171(3)      -x,-y+1,-z+1 
N1−H1∙∙∙N6     0.82(3)      2.26(3)            3.072(3)            170(3) x, y, z 
Other H-bonds      
N4−H2∙∙∙O3     0.800(3)      2.15(3)            2.891(3)            155(3) x-1/2,-y+1/2+1,+z-1/2 
N4−H2∙∙∙O3 0.80(3)      2.15(3)      2.891(3)      155(3)      x-1/2,-y+1/2+1,+z-1/2 
N1−H1∙∙∙O1     0.82(3)      2.83(3)            3.481(3)            138( 2) x, y, z 
C4−H42∙∙∙O4' 0.89(4)      2.50(3)            3.24(6)            141(3) -x,-y+1,-z+1 

 

 

 

 

 

 

 

 

Fig.3.30a  Packing motifs of the MET-Acesulfame 1:1 
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Fig.3.30b  Packing motifs of the MET-Acesulfame 1:1 
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Table 3.9.1 Bond distances & conformation, MET PCC with strong acidic compounds 

Nom 1 2 3 4 5 

Lab code MET7b MET3b MET39 MET41 METFSQ 
         PCC   

Data    
for geometry      

MET-Nitric acid 
1:1 

MET-Phosphoric 
acid trihydrate 

2:1:3 

MET-Picric acid 
1:1 

MET-Picric acid 
1:2 

MET-Squaric acid-
hydrate 1:1:1 

d1 
C1 ─ N1 1.333(2) 

1.332(2)* 
 

1.333(2)** 
1.334(3) 1.317(3) 1.315(2) 

d2 
C1 ─ N2 1.330(2) 

1.324(2)* 
 

1.328(2)** 
1.318(3) 1.303(5) 1.315(2) 

d3 
C1 ─ N3 1.334(2) 

1.345(2)* 
 

1.328(2)** 
1.336(2) 1.368(4) 1.363(2) 

d4 
C2 ─ N3 1.345(2) 

1.341(2)* 
 

1.343(2)** 
1.340(3) 1.374(5) 1.388(2) 

d5 
C2 ─ N4 1.331(2) 

1.342(2)* 
 

1.329(2)** 
1.335(2) 1.306(4) 1.311(2) 

d6 
C2 ─ N5 1.333(2) 

1.331(2)* 
 

1.339(2)** 
1.330(2) 1.310(4) 1.320(2) 

d7 
N5 ─ C3 1.459(2) 

1.456(3)* 
 

1.456(2)** 
1.455(3) 1.464(6) 1.462(2) 

d8 
N5 ─ C4 1.454(3) 

1.454(2)* 
 

1.463(2)** 
1.454(4) 1.465(8) 1.462(2) 

N1 ∙ ∙ ∙ N4 2.932(2) 
2.921(2)* 

 
2.984(2)** 

2.929(3) 2.968(5) 2.950(2) 

Torsion 
C1N3C2N5 

+146.4(1) 
+156.3(1)* 

 
+146.5(1)** 

142.6(2) 129.1(3) 142.8(1) 

P1^P2 52.42 
54.24 

 
40.49 

51.79 51.58 54.39 

S.G. P-1 P-1 P21/c P-1 P21/c 

* - A molecule of MET; ** - B molecule of MET 
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Table 3.9.2  Bond distances & Conformation, MET PCC with monocarboxylic acids 

Nom 6 7 8 9 10 11 

Lab code METFORMA MET10b METClA6 METTRIFA METTRIClA24 METTRIClA2 

         PCC 
data 

geometry 

MET-Formic 
acid1:1 

MET-Acetic 
acid 1:1 

MET-
Chloracetic 

acid  1:1 

MET-
Trifluoroacetic 

acid 1:1 

MET-
Trichloroacetic 

acid 1:1 

MET-
Trichloroacetic 

acid 1 :2 

d1 
C1─-N1 1.328(2) 1.334(1) 1.339(2) 1.336(3) 1.327(2) 

1.299(7)* 
 

1.310(8)** 

d2 
C1 ─ N2 1.329(2) 1.336(1) 1.336(2) 1.330(3) 1.327(2) 

1.316(9)* 
 

1.308(9)** 

d3 
C1 ─ N3 1.338(2) 1.338(1) 1.335(2) 1.334(3) 1.339(2) 

1.368(7)* 
 

1.369(8)** 

d4 
C2 ─ N3 1.347(2) 1.350(1) 1.352(2) 1.342(3) 1.337(2) 

1.383(8)* 
 

1.373(9)** 

d5 
C2 ─ N4 1.328(2) 1.334(2) 1.337(2) 1.333(3) 1.335(3) 

1.306(8)* 
 

1.307(9)** 

d6 
C2 ─ N5 1.335(2) 1.339(1) 1.331(2) 1.333(3) 1.338(3) 

1.316 (7)* 
 

1.322(8)** 

d7 
N5 ─ C3 1.451(2) 1.456(2) 1.456(2) 1.450(5) 1.456(4) 

1.464(11)* 
 

1.470(10)** 

d8 
N5 ─ C4 1.458(2) 1.453(2) 1.459(2) 1.457(3) 1.455(3) 

1.455(10)* 
 

1.472(12)** 

N1∙ ∙ ∙ N4 2.953(2) 2.981(2) 3.031(2) 3.000(3) 2.979(2) 
2.987(7)* 

 
2.961 (10)** 

Torsion 
C1N3C2N5 

−146.1(1) 143.0(1) −137.1(1) −142.0(2) 155.3(2) 
+135.1(6)* 

 
−148.0(6)** 

P1^P2 51.83 54.25 59.01 57.24 50.02 
60.82 

 
49.98 

S.G. P21/n P21/n P21/n P21/n P21/n P21/a 

 

* - A molecule of MET; ** - B molecule of MET 
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Table  3.9.3    Bond distances & conformation, MET PCC with dicarboxylic acids 

Nom 12 13 14 15 16 17 18 
Lab code MET34 MET33 MET68 MET17 MET18 MET15 METADA22 

                  PCC    
 data  for  
geometry 

MET-Malonic 
acid 1:1 

MET-Oxalic 
acid-hydrate 

1:1:1 

MET-Oxalic 
acid-hydrate 

1:2.5:1 

MET-Maleic 
acid 1:1 

MET-Fumaric 
acid 1:0.5 

MET-Succinic 
acid 1:0.5 

MET-Adipic 
acid 1:1 

d1C1 ─-N1 1.333(2) 1.311(2) 1.289(7) 1.332(2) 1.336(3) 1.334(2) 1.327(2) 

d2 C1 ─ N2 1.328(2) 1.320(2) 1.317(7) 1.340(2) 1.334(3) 1.333(2) 1.328(2) 

d3 C1 ─ N3 1.338(2) 1.362(2) 1.365(8) 1.329(2) 1.333(2) 1.341(2) 1.343(2) 

d4 C2 ─ N3 1.339(1) 1.381(1) 1.375(7) 1.359(2) 1.346(2) 1.348(2) 1.342(1) 

d5 C2 ─ N4 1.334(2) 1.313(2) 1.305(6) 1.332(2) 1.331(3) 1.330(2) 1.332(2) 

d6 C2 ─ N5 1.338(2) 1.323(2) 1.328(7) 1.325(2) 1.336(3) 1.338(2) 1.341(2) 

d7 N5 ─ C3 1.451(2) 1.465(2) 1.462(8) 1.453(2) 1.454(3) 1.452(2) 1.446(2) 

d8 N5 ─ C4 1.454(2) 1.460(20 1.451(10) 1.458(2) 1.455(3) 1.454(2) 1.456(2) 

N1∙ ∙ ∙N4 3.026(1) 2.970(2) 3.011(8) 2.989(2) 3.031(2) 2.989(2) 2.992(2) 

Torsion 
C1N3C2N5 

−149.8(1) −143.6(1) +140.9(5) +136.1(1) +141.7(2) −144.3(1) +152.4(1) 

P1^P2 57.37 52.42 57.66 59.45 57.86 53.97 53.20 

S.G. P21/c P21/c P -1 P21/n P21/n P21/n P-1 

* - A molecule of MET; ** - B molecule of MET 
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Table 3.9.4 Bond distances & conformation, functional MET PCC 

Nom 19 20 21 22 23 24 25 26 
Lab code METDIClA1 METDIClA3 METGLY23 METDCF9 MET30 MET43 METHCl6 METACSU7 

 
                     PCC     
Geometry      

MET-
Dichloroacetic 

acid 1:1 

MET-
Dichloroacetic 

acid 1:2 

MET- 
Glycolic Acid 
1:1  

MET-
Diclofenac  1:1 

MET- 
Salicylic acid 1:1 

MET-
Saccharine 1:1, 

polymorph I 

MET-
Saccharine 1:1 
Polymorph II 

MET-
Acesulfame 1:1 

d1C1 ─- N1 1.312(3) 1.305(4) 1.328(1) 1.323(3) 1.335(3) 1.348(3) 1.330(2)* 
1.334(2)** 1.338(3) 

d2 C1 ─ N2 1.330(3) 1.311(4) 1.335(1) 1.334(3) 1.335(3) 1.339(3) 1.334(3)* 
1.324(3)** 1.326(3) 

d3 C1 ─ N3 1.336(3) 1.367(3) 1.340(1) 1.345(3) 1.314(3) 1.307(3) 1.325(2)* 
1.344(2)** 1.336(3) 

d4 C2 ─ N3 1.339(3) 1.380(4) 1.346(1) 1.350(2) 1.348(3) 1.369(2) 1.345(2)* 
1.344(2)** 1.351(3) 

d5 C2 ─ N4 1.335(4) 1.312(4) 1.342(2) 1.323(3) 1.332(3) 1.321(3) 1.339(2)* 
1.347(20** 1.327(3) 

d6 C2 ─ N5 1.335(3) 1.316(3) 1.339(1) 1.340(3) 1.323(4) 1.317(3) 1.325(3)* 
1.333(2)** 1.331(3) 

d7 N5 ─ C3 1.461(5) 1.465(5) 1.453(2) 1.451(3) 1.458(4) 1.466(3) 1.458(3)* 
1.453(3)** 1.444(4) 

d8 N5 ─ C4 1.453(3) 1.462(4) 1.449(1) 1.459(3) 1.460(4) 1.466(3) 1.453(3)* 
1.454(3)** 1.457(3) 

N1 ∙ ∙ ∙ N4 2.963(3) 2.964(4) 2.979(1) 2.941(3) 3.058(3) 3.630(3) 3.000(2)* 
2.821(2)** 2.937(3) 

Torsion 
C1N3C2N5 

153.2(2) −142.9(3) -151.8(1) +148.2(2) −136.1(2) −71.2(3) +146.3(2)* 
−162.7(1)** −143.0(2) 

P1^P2 46.00 51.53 52.65 50.88 56.94 72.03 54.05 
38.50 55.09 

S.G. P21/n P-1 P-1 P21/c P21/n P212121 C2/c P21/n 

* - A molecule of MET; ** - B molecule of MET 

145



 

85 
 

Table no3.9.4 Bond distances & conformation, functional MET PCC 

Nom 19 20 21 22 23 24 25 26 
Lab code METDIClA1 METDIClA3 METGLY23 METDCF9 MET30 MET43 METHCl6 METACSU7 

 
                     PCC     
Geometry      

MET-
Dichloroacetic 

acid 1:1 

MET-
Dichloroacetic 

acid 1:2 

MET- 
Glycolic Acid 
1:1  

MET-
Diclofenac  1:1 

MET- 
Salicylic acid 1:1 

MET-
Saccharine 1:1, 

polymorph I 

MET-
Saccharine 1:1 
Polymorph II 

MET-
Acesulfame 1:1 

d1C1 ─- N1 1.312(3) 1.305(4) 1.328(1) 1.323(3) 1.335(3) 1.348(3) 1.330(2)* 
1.334(2)** 1.338(3) 

d2 C1 ─ N2 1.330(3) 1.311(4) 1.335(1) 1.334(3) 1.335(3) 1.339(3) 1.334(3)* 
1.324(3)** 1.326(3) 

d3 C1 ─ N3 1.336(3) 1.367(3) 1.340(1) 1.345(3) 1.314(3) 1.307(3) 1.325(2)* 
1.344(2)** 1.336(3) 

d4 C2 ─ N3 1.339(3) 1.380(4) 1.346(1) 1.350(2) 1.348(3) 1.369(2) 1.345(2)* 
1.344(2)** 1.351(3) 

d5 C2 ─ N4 1.335(4) 1.312(4) 1.342(2) 1.323(3) 1.332(3) 1.321(3) 1.339(2)* 
1.347(20** 1.327(3) 

d6 C2 ─ N5 1.335(3) 1.316(3) 1.339(1) 1.340(3) 1.323(4) 1.317(3) 1.325(3)* 
1.333(2)** 1.331(3) 

d7 N5 ─ C3 1.461(5) 1.465(5) 1.453(2) 1.451(3) 1.458(4) 1.466(3) 1.458(3)* 
1.453(3)** 1.444(4) 

d8 N5 ─ C4 1.453(3) 1.462(4) 1.449(1) 1.459(3) 1.460(4) 1.466(3) 1.453(3)* 
1.454(3)** 1.457(3) 

N1 ∙ ∙ ∙ N4 2.963(3) 2.964(4) 2.979(1) 2.941(3) 3.058(3) 3.630(3) 3.000(2)* 
2.821(2)** 2.937(3) 

Torsion 
C1N3C2N5 

153.2(2) −142.9(3) -151.8(1) +148.2(2) −136.1(2) −71.2(3) +146.3(2)* 
−162.7(1)** −143.0(2) 

P1^P2 46.00 51.53 52.65 50.88 56.94 72.03 54.05 
38.50 55.09 

S.G. P21/n P-1 P-1 P21/c P21/n P212121 C2/c P21/n 

* - A molecule of MET; ** - B molecule of MET 
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Fig.e.3.31. XRPD patterns of MET-DCA acid 1:1 (a) and  
MET-DCA acid 1:2 (b) 

Operations: Import
File: Metformin Dichloroacetic acid, 1 1 molar ratio, sample 2.raw - Type: 2Th/Th locked - Step: 0.020 ° - Step time: 2. s - Anode: Cu - WL1: 1.5406 - Company:  Uni Ferrara
Operations: Import
File: Metformin Dichloroacetic acid, 1 1 molar ratio, calculated.raw - Type: 2Th/Th locked - Step: 0.020 ° - Step time: 0.1 s - WL1: 1.5406 - Company: Exported by CCDC-toolkit
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Operations: Import
File: Metformin Dichloroacetic acid, 1 2 molar ratio sample.raw - Type: 2Th/Th locked - Step: 0.020 ° - Step time: 2. s - Anode: Cu - WL1: 1.5406 - Company:  Uni Ferrara
Operations: Import
File: Metformin Dichloroacetic acid, 1 2 molar ratio, calculated.raw - Type: 2Th/Th locked - Step: 0.020 ° - Step time: 0.1 s - WL1: 1.5406 - Company: Exported by CCDC-toolkit
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Fig..32. FT-IR Spectra: a - MET-DCA acid 1:1 PCC b MET-DCA acid 1:2 PCC 

 

 

a 

MET DCA 1:1, lot I 

MET DCA 1:1, lot II 

DCA ·Na 

Metformin ·HCl 

MET-DCA   1:2 

DCA ·Na 

Metformin ·HCl
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Fif. 3.33 DSC Thermograms: a - MET-DCA acid 1:1  b- MET-DCA acid 1:2

 

 

a 

b 
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Table 3.11 In vitro cytotoxicity activity of Metformin-DCA 1:1 and 
Metformin-DCA 1:2 measurements on EHEB cell line 

 

Esp. 30-3-15 EHEB 
EHEB 

Vitality 

Treatments 24h 48h 
UNT  100 100 
Metformin 15000uM 81 52 
Metformin 1500uM 88 78 
Metformin 150uM 95 86 
DCA 15000uM 53 54 
DCA 1500uM 86 89 
DCA 150uM 100 97 
Met-DCA 1:1 30000uM sale 31 5 
Met-DCA 1:1 3000uM sale 69 51 
Met-DCA 1:1 300uM sale 82 80 
Met 15000uM + DCA 15000uM mix 40 16 
Met 1500uM + DCA 1500uM mix 83 59 
Met 150uM + DCA 150uM mix 94 87 
UNT  100 100 
Metformin 10000uM 97 58 
Metformin 1000uM 99 86 
Metformin 100uM 100 91 
DCA 20000uM 51 41 
DCA 2000uM 77 87 
DCA 200uM 94 91 
Met-DCA 1:2 30000uM sale 18 4 
Met-DCA 1:2 3000uM sale 61 43 
Met-DCA 1:2 300uM sale 67 76 
Met 10000uM + DCA 20000uM mix 30 15 
Met 1000uM + DCA 2000uM mix 72 66 
Met 100uM + DCA 200uM mix 74 91 

 

(Private communication – Prof. Paola Secchiero and Dr. Elisabetta Melloni  
Dip. Morfologia, Chirurgia e Medicina Sperimentale, Università di Ferrara) 
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