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Abstract

In this work, a comparison between 1T-1R RRAM arrays, manufactured either with amorphous or poly-crystalline Metal-Insulator-

Metal cells, is reported in terms of performance, reliability, Set/Reset operations energy requirements, intra-cell and inter-cell

variability during 10k endurance cycles and 100k read disturb cycles. The modeling of the 1T-1R RRAM array cells has been

performed with two different approaches: i) a physical model like the Quantum Point Contact (QPC) model was used to find the

relationship between the reliability properties observed during the endurance and the read disturb tests with the conductive filament

properties; ii) a compact model to be exploited in circuit simulations tools which models the I-V characteristics of each memory

cells technology.
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1. Introduction

Resistive Random Access Memories (RRAM) technology

gathered significant interest for several applications [1, 2, 3].

RRAM behavior is based on the possibility of electrically mod-

ifying the conductance of a Metal-Insulator-Metal (MIM) stack:

the Set operation moves the cell in a low resistive state (LRS),

whereas Reset brings the cell in a high resistive state (HRS)

[4, 5]. To activate such a switching behavior, some technolo-

gies require a preliminary Forming operation [6, 7, 8].

The choice of a proper Metal-Insulator-Metal (MIM) tech-

nology for RRAM cells, exhibiting good uniformity and low

switching voltages, is still a key issue for array structures fabri-

cation and reliable electrical operation [9]. Such a process step

is mandatory to bring this technology to a maturity level. In this

work, a comparison between 1T-1R RRAM 4Kbits arrays man-

ufactured either with amorphous [5] or poly-crystalline [10]

HfO2 is performed. In amorphous HfO2 the conduction mainly

occurs through a conductive filament with a variable concentra-

tion of defects, whereas in poly-crystalline HfO2 the conduction

occurs only through grain boundaries with a very low defect

concentration. The differences in terms of conduction proper-

ties and defect concentrations translate into different switching

properties [9], with several implications on inter-cell variabil-

ity (variations between cells) and intra-cell variability (cycle-

to-cycle variations of any given cell).

∗Corresponding author

Email address: alessandro.grossi@unife.it (Alessandro Grossi)
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In this work, that is an extended yet complete picture of the

results presented in [11], a comparison in terms of performance,

reliability, Set/Reset operations energy requirements, intra-cell

and inter-cell variability during 10k endurance cycles is re-

ported. In addition to the previously presented results, 100k

read disturb cycles were performed to deepen the understanding

of the reliability of each technology. Moreover, to understand

the relationship between the reliability properties observed dur-

ing the endurance and read disturb tests and the conductive fila-

ment properties, Quantum Point Contact (QPC) modeling [12]

was used, since it allows to correctly represent the measured

I-V characteristics independently from the conduction mecha-

nism. Even if the QPC allows to model the conductive fila-

ments properties taking into account the cell-to-cell variability,

it offers a technology description that sometimes is complex to

be implemented in circuit simulation tools. To this extent, an

equivalent circuit model able to offer a simpler description of

the devices was applied and validated on both MIM technolo-

gies. The memory cells used in this work can be modelled using

a diode-resistance equivalent circuit model. The model param-

eters extracted from the fittings of experimental I-V curves can

provide additional information about electrical properties of the

memory cells to be exploited in the design of RRAM arrays.

2. Experimental Setup

The 1T-1R memory cells in the 4kbits arrays are constituted

by a select NMOS transistor manufactured with a 0.25 µm BiC-

MOS technology whose drain is in series to a MIM stack. The

wordline (WL) voltage applied to the gate of the NMOS tran-

sistor allows setting the cell current compliance. The cross-

sectional Scanning Transmission Electron Microscopy (STEM)
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(a) (b)

Figure 1: Cross-sectional STEM image (a) and schematic (b) of the 1T-1R cell

integrated in the arrays.

Table 1: Forming, Set, Reset and Read Voltage Parameters.

Operation VS L [V] VBL [V] VWL [V]

Forming 0 2-3.2 1.5

Set 0 0.2-3.2 1.5

Reset 0.2-3.2 0 2.5 (A)/ 2.8 (P)

Read 0 0.2 1.5

image of the cell and the 1T-1R cell schematic are reported in

Fig. 1. The variable MIM resistor is composed by 150 nm TiN

top and bottom electrode layers deposited by magnetron sput-

tering, a 7 nm Ti layer, and a 8 nm HfO2 layer deposited with

two different Atomic Vapour Deposition (AVD) processes re-

sulting either in amorphous (A) or poly-crystalline (P) HfO2

films, respectively. The resistor area is equal to 0.4 µm2. For

amorphous films it has been integrated also a resistor with larger

area that shows improved reliability and performance (i.e., 1

µm2) [4]. The Forming/Set/Reset operations on the arrays were

performed by using an Incremental Pulse and Verify algorithm.

The bitline (BL), sourceline (SL) and WL voltages applied dur-

ing Forming, Set, Reset and Read operations are reported in

Tab. 1. Reset operations were performed by applying the high-

est WL voltage available (2.8 V on array A and 2.5 V on ar-

ray P) to maximize the cells switching yield while avoiding

the breakdown of the MIM [13]. Pulses were applied during

Forming by increasing VBL with ∆VBL=0.01V, whereas during

Set and Reset ∆VBL=0.1V and ∆VS L=0.1V have been used,

respectively. Each pulse featured a duration of 10µs, with a

rise/fall time of 1µs to avoid overshoot issues. Set operation was

stopped on a cell when the read-verify current reached 20µA,

whereas Reset was stopped when 10µA was reached. Forming,

Set and Reset BL/SL voltages necessary to reach the requested

read-verify current targets are extracted from the characteriza-

tion data and labelled as VFORM ,VS ET and VRES , respectively.

3. Experimental Results

Arrays using A-HfO2 (A-array) with resistor area of 0.4 µm2,

1 µm2 and P-HfO2 (P-array) resulted in a Forming Yield (cal-

culated as the cell percentage showing a read verify current
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Figure 2: ILRS /IHRS current ratio average values (a) and dispersion coefficients

(b) calculated during cycling.

after forming Iread ≥ 20µA) of 58%, 90% and 95%, respec-

tively. Fig. 2 shows the average current ratios between Low

Resistive State (LRS) and High Resistive State (HRS) read cur-

rents (ILRS /IHRS ), calculated on the entire cells population dur-

ing SET/RESET cycling at Vread = 0.2V on A-array and P-

array, and their relative dispersion coefficient. The minimum

current ratio that allows to correcly discriminate between HRS

and LRS, defined as ILRS /IHRS >2, is indicated for comparison

[5]. The average ratios of A-arrays with resistor area of 0.4 µm2

and 1 µm2 go under the minimum ratio limit after 200 and 1k

cycles, respectively. To evaluate the cell-to-cell variability the

dispersion coefficient of ILRS and IHRS distributions, defined as

(σ2/µ), has been used. P-array showed higher Ratio (≈ 2.8)

even after 10k cycles, but also a higher dispersion coefficient

after Forming (i.e., cycle 1). The grain boundaries conduction

mechanism in the poly-crystalline HfO2 structure could be the

reason of the higher cell-to-cell variability in P-arrays [14]. A-

array with resistor area of 1 µm2 shows a slightly higher average

ratio than A-array with resistor area of 0.4 µm2.

Fig. 3 shows a comparison between ILRS and IHRS cumulative

distributions measured at cycle 1 and after the endurance test:

A-arrays show more compact distributions at cycle 1, however

after the endurance test P-array shows a higher percentage of

correctly switching cells reaching the Set/Reset verify targets.

IHRS cumulative distribution in P-array show a longer tail at cy-

cle 1 compared to A-arrays. After 10k cycles only an increase

of the tail in P-array can be observed whereas on A-arrays a

strong shift of the distributions towards higher currents occurs,

resulting in a higher number of cells not reaching the Reset

threshold. IHRS cumulative distribution in A-array with with

resistor area of 1 µm2 shows lower currents at cycle 1 than A-

arrays with resistor area of 0.4 µm2, however after 10k cycles

IHRS cumulative distributions are very similar. In ILRS cumula-

tive distributions a tail creation of cells not able to reach the set

threshold can be observed on P-arrays after 10k cycles, whereas

on A-arrays a strong shift of the distributions towards lower

currents occurs, resulting in a higher number of cells not reach-

ing the Set threshold especially when cells with resistor area of

0.4 µm2 are considered. A-array with resistor area of 0.4 µm2

shows a high number of cells not reaching the Set threshold

2
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Figure 3: IHRS and ILRS cumulative distributions at cycle 1 (a) and at cycle 10k

(b).
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Figure 4: VS ET and VRES average values (a,b) and dispersion coefficients (c,d)

calculated during cycling.

even at cycle 1.

Fig. 4 shows the average Set and Reset switching voltages

(VS ET , VRES ) and their relative dispersion coefficients: lower

VS ET and VRES are required on P-array which shows no varia-

tions during the endurance test, whereas VS ET , VRES increase

on A-arrays during cycling. VRES on P-array shows the highest

variability. A-arrays show similar behavior of the average VS ET

and VRES (a lower average VS ET is observed on A-array with

larger resistor area only up to 500 cycles), while a higher VS ET

and VRES dispersion can be observed in A-array with smaller

resistor area.

Fig. 5 shows the cumulative distributions of Forming, Set and

Reset switching voltages at cycle 1 and after the endurance test:

Forming,Set and Reset algorithms starting point and last at-

tempt are indicated, corresponding to the first and the last volt-

age pulse available in the incremental pulse and verify proce-

dure. P-array requires lower VS ET and VRES but higher VFORM

if compared to A-array with the same resistor area. A-array

with larger resistor area requires higher VFORM , moreover it can

be observed that ≈ 40% of the devices with smaller resistor area

reached the forming threshold at VFORM=2 V, corresponding to

the first attempt of the Forming Algorithm. Since P-array shows

a more compact distribution on VS ET and a larger VRES than A-

arrays, faster Set operation could be reliably used on P-array,

whereas on Reset an incremental pulse with verify technique

is required to ensure good reliability. A-arrays show large dis-

tributions on both VS ET and VRES , hence the adaptation of in-

cremental pulse with verify techniques is mandatory on such

arrays.

Fig. 6 shows the average energy required to perform Set and

Reset operations on a single cell: P-array shows lower power

consumption with a lower increase during cycling. A-arrays

with different resistor area show similar power consumption

during Reset operation, whereas a lower consumption during

Set is observed on A-array with larger resistor area only up to

500 cycles. The overall energy required to create/disrupt the

conductive filament during Set/Reset operations has been cal-

culated as:

E =

n
∑

i=1

Vpulse,i ∗ Ipulse,i ∗ Tpulse + Vread ∗ Iread,i ∗ Tread (1)

Where n is the number of reset pulses applied during incre-

mental pulse operation, Vpulse,i is the pulse voltage applied at

step i, Ipulse,i is the current flowing through RRAM cell during

pulse i application, Tpulse = 10µs is the pulse length, Vread =0.2

V is the read voltage applied during verify operation, Iread,i is

the current read during read verify step i, and Tread = 10µs is

the verify pulse length.

In the considered RRAM cells the read signals has the same

polarization of the Set operation (both pulses are applied on the

BL), hence the read disturb could only be a problem on cells

in HRS state since a very long sequence of read pulses could

slowly re-create the conductive filament, resulting into an un-

desired switch from HRS to LRS [13]. Read disturb has been

evaluated only on cells in HRS state for each considered tech-

nology: Fig. 7 shows the average HRS read current and its rel-

ative standard deviation measured during 100k read operations.

P-array shows the highest read current variation, confirming

that on such technology due to the high leakage currents it is

easier to create conductive paths.

3



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

V
FORM

[V]

0

10

20

30

40

50

60

70

80

90

100

C
u

m
u

la
ti

v
e 

P
ro

b
a
b

il
it

y
 [

%
]

Forming Algorithm Start

Forming
Algorithm
Last Attempt

A, 1µm
2

A, 0.4µm
2

P, 0.4µm
2

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

V
SET

, V
RES

  [V]

0

10

20

30

40

50

60

70

80

90

100

C
u

m
u

la
ti

v
e 

P
ro

b
a
b

il
it

y
 [

%
]

A, 0.4µm
2

A, 1µm
2

P, 0.4µm
2

SET
RES

Set/Reset
Algorithm Start

Set/Reset
Algorithm
Last Attempt

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

V
SET

, V
RES

  [V]

0

10

20

30

40

50

60

70

80

90

100

C
u

m
u

la
ti

v
e 

P
ro

b
a
b

il
it

y
 [

%
]

A, 0.4µm
2

A, 1µm
2

P, 0.4µm
2

SET
RES

Set/Reset
Algorithm Start

Set/Reset
Algorithm
Last Attempt

(c)

Figure 5: VFORM , VS ET and VRES cumulative distributions at cycle 1 (a) and

at cycle 10k (b).
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Figure 6: Energy required to perform Set (a) and Reset (b) operations as a

function of the Set/Reset cycle number.
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Figure 7: Average read current variation (a) and dispersion coefficient evolution

(b) of HRS calculated during 100k read disturb pulses, with Vpulse = 0.2V.

4. 1T-1R cells modeling

IV characteristics have been measured after-forming and

modeled with two different approaches: in order to understand

the differences on the conductive filament properties and vari-

ability QPC modeling has been used as in [15], while an equiv-

alent circuit model [16] was used to obtain a description imple-

mentable in circuit simulation tools.

4.1. QPC modeling

Reset I-V characteristics measured after-forming were used

to analyze the conductive filament properties through QPC

model. HRS current is calculated according to the expression:

I =
2e

h
G/G0

(

eV +
1

α
Ln

[

1 + eα(Φ−βeV)

1 + eα[Φ+(1−β)eV]

])

(2)

where Φ is the barrier height (bottom of the first quantized

level), α = tBπ
2h−1
√

2m∗/Φ is a parameter related to the in-

verse of the potential barrier curvature (assuming a parabolic

longitudinal potential), m∗ = 0.44m0 is the effective electron

mass and tB is the barrier thickness at the equilibrium Fermi

energy. β takes into account how the potential drops at the two

ends of the filament: β=1 has been used since the constriction

is highly asymmetric [15]. G/G0 is a conductance parameter

equivalent to the number of filaments at very low voltages: in a

very approximate way, a single highly conductive filament can

be viewed as a parallel combination of elementary nanowires

[17].

I-V Reset operation has different impacts from cell-to-cell,

resulting either into a break or a modulation of the conduc-

tive filament (CF) [8, 15]. In the former case the presence of

a potential barrier is assumed, hence fitting is performed con-

sidering G/G0 = 1 and the average barrier length d and radius

of the constriction r are calculated according to [12]. In the

latter case, assuming the absence of a potential barrier, the nor-

malized conductance of the filament G/G0 is calculated. The

percentage of cells resulting either into a CF break or modula-

tion are reported in Tab. 2: the high leakage current in P-array

makes very difficult to completely interrupt the conductive path

hence the lowest percentage of CF break is obtained, whereas

4



Table 2: Reset condition comparison.

Technology C.F. Break [%] C.F. Modulation [%]

A, 1 µm2 45 55

A, 0.4 µm2 34 66

P 0.4 µm2 20 80
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Figure 8: Cumulative distribution of α and Φ fitting parameters used on CF

break cells.

Table 3: Average value and standard deviation of fitting parameters calculated

on CF break cells.

Technology α[eV]−1 φ[eV]

avg. std. avg. std.

A, 1 µm2 2.67 3.02 1.21 0.58

A, 0.4 µm2 6.83 5.48 0.07 0.06

P, 0.4 µm2 16.08 5.06 0.17 0.25

the highest percentage is obtained on A-array with the larger re-

sistor area. The cumulative distributions of α and Φ fitting pa-

rameters calculated on the CF break cells are reported in Fig. 8.

Average value and standard deviation of the fitting param-

eters are reported in Tab. 3. The cumulative distributions of

calculated barrier length d and radius r of the CF constriction

are reported in Fig. 9, while the average value and standard de-

viations are reported in Tab. 4. A-array with the small resis-

tor area shows the largest radius with the lowest barrier length:

the presence of a very large constriction with a very low bar-

rier explains the issues in controlling the cells’ uniformity dur-

ing Set and Reset operations. A-array with the larger resistor

area shows higher barrier and smaller radius, resulting into a

higher controllability during Set and Reset. Moreover, the high-

est parameters uniformity is observed, which translates into the

highest HRS and LRS currents uniformity. P-array shows the

largest barrier with the highest variability: the highest barrier is

the reason of the higher average ratio between HRS and LRS,

while the high variability generates the high current variability

observed in HRS.

In case of CF modulation fitting has been performed assum-

ing large negative Φ values, α fixed to 1 (even if α and Φ play

no role in such condition) and G/G0 ≥ 1 due to the presence of

the residual filament. Fig. 10 shows the cumulative distribution

of G/G0 conductance values fitting parameters used on hard to
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Figure 9: Cumulative distribution of calculated barrier length d (a) and radius

of the filament constriction r (b) on CF break cells.

Table 4: Average value and standard deviation of barrier length and filament

radius calculated on CF break cells.

Technology d[nm] r[nm]

avg. std. avg. std.

A, 1 µm2 0.37 0.11 0.85 0.62

A, 0.4 µm2 0.25 0.24 4.25 2.25

P, 0.4 µm2 1.29 0.36 1.71 0.65
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Figure 10: Cumulative distribution of G/G0 fitting parameters used on hard to

disrupt cells.

Table 5: G/G0 average value and standard deviation.

Technology G/G0

avg. std.

A, 1 µm2 1.61 0.26

A, 0.4 µm2 1.56 0.53

P, 0.4 µm2 1.67 0.42

disrupt cells: it can be observed that A-array with the larger re-

sistor area shows the lowest variability, which is the reason of

the lowest HRS current variability observed during Reset with

the Incremental Pulse and Verify algorithm. Average value and

standard deviation of the fitting parameter G/G0 are reported in

Tab. 5.
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Figure 11: Equivalent model for the 1T-1R device based on a Diode-Resistor

circuit. Resistance value (R), saturation current (Is) and ideality factor (n) of

the diode are the parameters used to fit the conduction of the 1T-1R devices at

both resistive states, LRS and HRS, and for both types of samples, amorphous

and poly-crystalline.

4.2. Equivalent circuit modeling

Electrical models are a power tool to analyze memory de-

vices and circuits based on Resistive Switching (RS) devices

allowing evaluating characteristics like power consumption or

performance in large RS devices arrays [16, 18]. To model the

experimental I-V curves during both RS states (i.e., LRS and

HRS) we use a Diode-Resistor based circuit Fig. 11 where the

resistance value (R), the diode saturation current (Is) and diode

ideality factor (n) are the parameters of the model [16]. VAPP

represents VBL or VS L, which are the applied voltages to pro-

duce the Set and Reset processes respectively.

To fit the all the experimental curves an automatized process

has been developed to extract the model parameters values for

each curve. Fig. 12 shows some examples of experimental LRS

curves (blue circles) before the reset process and the simulated

curves using the circuit model of Fig. 11 with suitable parame-

ters (red lines). As can be observed, the model fits perfectly

with the experimental results for both amorphous and poly-

crystalline samples. For each kind of samples, the analyzed

voltage range was limited by the reset voltage that is lower for

the poly-crystalline sample. Larger current levels are obtained

for the poly-crystalline sample.

The same automatic process was also used to fit HRS curves

for both samples types. Fig. 13 shows experimental HRS curves

(blue circles) before the set process and the corresponding sim-

ulated curves (red lines). Poly-crystalline samples show larger

current levels than the amorphous ones which are very noisy at

low voltages (< 1 V). This noisy current observed in the amor-

phous samples, must be neglected to avoid errors during the

fitting process. For this reason, current values for VBL below 1

V are not considered to force a better fitting for voltages larger

than 1 V, where the I-V curve is not affected by the noise. This

high noise level in the current at low voltages could be caused

by the nature of the memory cell and the array structure where

the drive transistor effect on the electrical characteristics of the

memory must be analyzed in detail.

Figure 12: Experimental LRS I-V curves (blue circles) and the simulated curves

(red lines) obtained using the Diode-Resistor model. With a suitable parame-

ter set, the model reproduces properly the experimental curves for both poly-

crystalline and amorphous samples.

Figure 13: Experimental HRS I-V curves (blue circles) and simulated HRS

curves (red lines) using the Diode-Resistor model for both amorphous and

poly-crystalline samples. Noisy currents at low voltages cannot be fitted by

the model, especially for the amorphous samples where current values for VBL

below 1 V are not considered.

5. Conclusions

1T-1R RRAM arrays manufactured with P-HfO2 shows sev-

eral advantages compared to A-HfO2 even considering their im-

proved process: higher current Ratio, lower switching voltages,

lower power consumption, minor endurance degradation and

higher overall yield. Moreover, P-array show very low VS ET

variability, hence faster Set operation could be reliably per-

formed. P-array disadvantages are represented by the larger

HRS distribution after Forming, the higher Reset voltage dis-

persion, the lower read disturb immunity and the higher VFORM

if compared to A-array with the same resistor area, however

it must be pointed out that such operation is performed only

once. The grain boundaries conduction mechanism in the poly-

crystalline HfO2 structure could be the reason of the higher cell-

to-cell variability observed in P-arrays. QPC modeling allowed

showing that the higher uniformity observed on A-array with

the large resistor area can be ascribed to a lower conductive fila-

ment shape variability in terms of radius of the constriction and
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barrier height, whereas the P-array shows the highest variabil-

ity in terms of conductive filament shape: the reason could be

ascribed again to the different conduction mechanism and the

higher leakage currents observed on such technology. A diode-

resistor equivalent circuit model correctly fits the experimental

RS I-V characteristics of poly-crystalline and amorphous sam-

ples for both LRS and HRS. However, noisy current levels at

low voltages, especially for amorphous samples, could lead to

a non-well fitted curve. Thus, it is needed to remove them for a

suitable current fitting at larger voltages.
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