
Linear Algebra and its Applications 507 (2016) 474–485
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Spaces of matrices of constant rank and uniform 

vector bundles

Ph. Ellia a,∗, P. Menegatti b

a Dipartimento di Matematica e Informatica, 35 via Machiavelli, 44100 Ferrara, 
Italy
b Laboratoire de Mathématiques et Applications, UMR CNRS 6086, Université 
de Poitiers, Téléport 2, Bd. P et M. Curie, Futuroscope Chasseneuil F-86962, 
France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 August 2015
Accepted 9 June 2016
Available online 11 June 2016
Submitted by R. Brualdi

MSC:
15A30
14J60

Keywords:
Spaces of matrices
Constant rank
Uniform
Vector bundles

We consider the problem of determining l(r, a), the maximal 
dimension of a subspace of a × a matrices of rank r. We 
first review, in the language of vector bundles, the known 
results. Then using known facts on uniform bundles we prove 
some new results and make a conjecture. Finally we determine 
l(r; a) for every r, 1 ≤ r ≤ a, when a ≤ 10, showing that our 
conjecture holds true in this range.
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0. Introduction

Let A, B be k-vector spaces of dimensions a, b (k algebraically closed, of characteristic 
zero). A sub-vector space M ⊂ L(A, B) is said to be of (constant) rank r if every 
f ∈ M, f �= 0, has rank r. The question considered in this paper is to determine
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l(r, a, b) := max {dimM | M ⊂ L(A, B) has rank r}. This problem has been studied 
some time ago by various authors [22,20,4,9] and has been recently reconsidered, espe-
cially in its (skew) symmetric version [17,18,16,5].

It is known, at least since [20], that to give a subspace M of constant rank r, dimension 

n +1, is equivalent to give an exact sequence: 0 → F → a.O(−1) ψ→ b.O → E → 0, on P
n, 

where F, E are vector bundles of ranks (a − r), (b − r). Our starting point is to observe 
that the bundle E := Im(ψ), of rank r, is uniform, of splitting type (−1c, 0r−c), where 
c := c1(E) (Lemma 2). This had been previously observed (but not really exploited) in 
the cases of spaces of symmetric or skew-symmetric maps [17]. This allows us to apply 
the known results (and conjectures) on uniform bundles.

This paper is organized as follows. In the first section we recall some basic facts and 
fix the notations. Then in Section two, we set a = b to fix the ideas and we survey the 
known results (at least those we are aware of), giving a quick, uniform (!) treatment 
in the language of vector bundles. In Section three, using known results on uniform 
bundles, we obtain a new bound on l(r; a) in the range (2a + 2)/3 > r > (a + 2)/2 (as 
well as some other results, see Theorem 18). By the way we don’t expect this bound 
to be sharp. Indeed by “translating” (see Proposition 17) a long standing conjecture on 
uniform bundles (Conjecture 1), we conjecture that l(r; a) = a − r + 1 in this range (see 
Conjecture 2). Finally, with some ad hoc arguments, we show in the last section, that 
our conjecture holds true for a ≤ 10 (actually we determine l(r; a) for every r, 1 ≤ r ≤ a, 
when a ≤ 10).

1. Generalities

Following [20], to give M ⊂ Hom(A, B), a sub-space of constant rank r, with 
dim(M) = n + 1, is equivalent to give on Pn, an exact sequence:

0 FM a.O(−1)
ψM

b.O EM 0

EM

(1)

where EM = Im(ψM ), FM , EM are vector bundles of ranks r, a − r, b − r (in the sequel 
we will drop the index M if no confusion can arise).

Indeed the inclusion i : M ↪→ Hom(A, B) is an element of Hom(M, A∨ ⊗ B) �
M∨ ⊗ A∨ ⊗ B and can be seen as a morphism ψ : A ⊗ O → B ⊗ O(1) on P(M) (here 
P(M) is the projective space of lines of M). At every point of P(M), ψ has rank r, so 
the image, the kernel and the cokernel of ψ are vector bundles.

A different (but equivalent) description goes as follows: we can define ψ : A ⊗O(−1) →
B ⊗O on P(M), by v ⊗ λf → λf(v).

The vector bundle EM is of a particular type.
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Definition 1. A rank r vector bundle, E, on Pn is uniform if there exists (a1, ..., ar) such 
that EL �

⊕r
i=1 OL(ai), for every line L ⊂ P

n ((a1, ..., ar) is the splitting type of E, it 
is independent of L).

The vector bundle F is homogeneous if g∗(F ) � F , for every automorphism of Pn.

Clearly a homogeneous bundle is uniform (but the converse is not true).
The first remark is:

Lemma 2. With notations as in (1), c1(EM ) ≥ 0 and EM is a uniform bundle of splitting 
type (−1c, 0b), where c = c1(EM ), b = r − c.

Proof. Since E is globally generated, c1(E) ≥ 0 (look at EL). Let EL =
⊕

OL(ai). 
We have ai ≥ −1, because a.OL(−1) � EL. We have ai ≤ 0, because EL ↪→ b.OL. So 
−1 ≤ ai ≤ 0, ∀i. Since c1(E) = −c1(E) the splitting type is as asserted and does not 
depend on the line L. �

The classification of rank r ≤ n + 1 uniform bundles on Pn, n ≥ 2, is known [21,10,
12,1]; if we denote by T, Ω the tangent and cotangent bundle on Pn, then we have:

Theorem 3. A rank r ≤ n +1 uniform vector bundle on Pn, n ≥ 2, is one of the following: ⊕r O(ai), T (a) ⊕ k.O(b), Ω(a) ⊕ k.O(b) (0 ≤ k ≤ 1), S2TP2(a).

We will use the following result (see [15,8]):

Theorem 4 (Evans–Griffith). Let F be a rank r vector bundle on Pn, then F is a direct 
sum of line bundles if and only if Hi

∗(F) = 0, for 1 ≤ i ≤ r − 1.

The first part of the following Proposition is well known, the second maybe less.

Proposition 5. Assume n ≥ 1.
(1) If a ≥ b + n the generic morphism a.OPn → b.OPn(1) is surjective.
(2) If a < b + n no morphism a.OPn → b.OPn(1) can be surjective.

Proof. (1) It is enough to treat the case a = b + n and, by semi-continuity, to produce 
one example of surjective morphism. Consider

Ψ =

⎛
⎜⎜⎜⎜⎝

x0 · · · xn 0 · · · 0
0 x0 · · · xn 0 · · · 0
...

...
0 · · · 0 x0 · · · xn

⎞
⎟⎟⎟⎟⎠

(each row contains b − 1 zeroes). It is clear that this matrix has rank b at any point. For 
a more conceptual (and complicated) proof see [14], Prop. 1.1.
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(2) If n = 1, the statement is clear. Assume n ≥ 2. If ψ is surjective we have 0 →
K → a.O → b.O(1) → 0 and K is a vector bundle of rank r = a − b < n. Clearly we 
have Hi

∗(K∨) = 0 for 1 ≤ i ≤ r − 1 ≤ n − 2. By Evans–Griffith’s theorem, K splits as a 
direct sum of line bundles, hence the exact sequence splits (n ≥ 2) and this is absurd.

This can also be proved by a Chern class computation (see [20]). �
From now on we will assume A = B and write l(r; a) instead of l(r; a, a).

2. Known results

We begin with some general facts:

Lemma 6. Assume the bundle E corresponding to M ⊂ End(A) of constant rank r, 
dim(A) = a, is a direct sum of line bundles. Then dim(M) ≤ a − r + 1.

Proof. Let dim(M) = n + 1 and assume E = k.O(−1) ⊕ (r − k).O. If k = 0, the 
surjection a.O(−1) � E � r.O, shows that a ≥ r + n (see Proposition 5). If k > 0, we 
have 0 → k.O(−1) → (a − r+k).O → E → 0. Dualizing we get: (a − r+k).O � k.O(1), 
hence (always by Proposition 5) a − r + k ≥ k + n. So in any case a − r ≥ n. �
Lemma 7. For every r, 1 ≤ r ≤ a, we have l(r; a) ≥ a − r + 1.

Proof. Set n = a − r. On Pn we have a surjective morphism a.O(−1) ψ→ r.O (Proposi-
tion 5). Composing with the inclusion r.O ↪→ r.O⊕(a −r).O, we get ψ : a.O(−1) → a.O, 
of constant rank r. �

Finally we get:

Proposition 8. (1) We have l(r; a) ≤ max {r + 1, a − r + 1}.
(2) If a ≥ 2r, then l(r; a) = a − r + 1.

Proof. (1) Assume r + 1 ≥ a − r + 1. If dim(M) = l(r, a) = n + 1 and if r < n, then [12]
E is a direct sum of line bundles and n ≤ a − r. But then r < n ≤ a − r, against our 
assumption. So r + 1 ≥ n + 1 = l(r; a).

Now assume a − r ≥ r. If n > a − r, then n > r and this implies that E is a direct 
sum of line bundles. Hence n ≤ a − r.

(2) We have max {r+ 1, a − r+ 1} = a − r+ 1 if a ≥ 2r. So l(r; a) ≤ a − r+ 1 by (1). 
We conclude with Lemma 7. �
Remark 9. Proposition 8 was first proved (by a different method) by Beasley [4].

Very few indecomposable rank r vector bundles with r < n are known on Pn (n > 4). 
One of these is the bundle of Tango (see [19], p. 84 for details). We will use it to prove:
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Lemma 10. We have l(t + 1; 2t + 1) = t + 2.

Proof. By Proposition 8 we know that l(t + 1; 2t + 1) ≤ t + 2. So it is enough to give 
an example. Set n = t + 1 and assume first n ≥ 3. If T denotes the Tango bundle, 
then we have: 0 → T (−2) → (2n − 1).O → T → 0. Dualizing we get 0 → T ∨(−1) →
(2n − 1).O(−1) → Ω(1) → 0. Combining with the exact sequence: 0 → Ω(1) → (n +
1).O⊕(n −2).O → O(1) ⊕(n −2).O → 0, we get a morphism (2n −1).O(−1) → (2n −1).O, 
of constant rank n.

If n = 2, using the fact that T (−2) � Ω(1), from Euler’s sequence, we get 3.O(−1) →
3.O, whose image is T (−2). �
Remark 11. Lemma 10 was first proved by Beasley [4], by a different method.

Finally on the opposite side, when r is big compared with a, we have:

Proposition 12. (Sylvester [20]) We have:

l(a− 1; a) =
{

2 if a is even
3 if a is odd

The proof is a Chern classes computation. The next case a = r − 2 is more involved 
and there are only partial results:

Proposition 13. (Westwick [24]) We have 3 ≤ l(a − 2; a) ≤ 5. Moreover:

(1) l(a − 2; a) ≤ 4 except if a ≡ 2, 10 (mod 12) where it could be l(a − 2; a) = 5.
(2) If a ≡ 0 (mod 3), then l(a − 2; a) = 3.
(3) If a ≡ 1 (mod 3), we have l(2; 4) = 3 and l(8; 10) = 4 (so a doesn’t determine 

l(a − 2; a)).
(4) If a ≡ 2 (mod 3), then l(a − 2; a) ≥ 4. Moreover if a �≡ 2 (mod 4), then 

l(a − 2; a) = 4.

Proof. We denote by C(G) = 1 +c1h +... +cnh
n the Chern polynomial of G (computations 

are made in Z[h]/(hn+1)). We recall that if G is a vector bundle of rank r, then ci = 0 if 
i > r. We have C(F ) = C(E)(1 −h)a. Let C(F ) = 1 +s1h +s2h

2, C(E) = 1 + t1h + t2h
2. 

We get s1 = t1 − a (coefficient of h); s2 = a(a − 1)/2 − at1 + t2 (coefficient of h2). From 
the coefficient of h3 it follows that: t2 = (a − 1)[3t1 − a + 2]/6. The coefficient of h4

yields after some computations: (a + 1)(a − 2 − 2t1) = 0. It follows that t1 = (a− 2)
2

and t2 = (a− 1)(a− 2)
12 if we are on Pn, n ≥ 4. Finally the coefficient of h5 gives 

(a + 1)(a + 2) = 0, showing that l(a − 2; a) ≤ 5.
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If we are on P4, from t1 = (a −2)/2 we see that a is even. From t2 = (a −1)(a −2)/12, 
we get a2 + 2 − 3a ≡ 0 (mod 12). This implies a ≡ 1, 2, 5, 10 (mod 12). Since a is even 
we get a ≡ 2, 10 (mod 12).

If a = 3m and if we are on P3, then 6t2 = (3m − 1)(3t1 − 3m +2) ≡ 0 (mod 6), which 
is never satisfied. So l(a − 2, a) ≤ 3 in this case.

The other statements follow from the construction of suitable examples, see [24]. �
Remark 14. On P4 a rank two vector bundle with c1 = 0 has to verify the Schwarzenberger 
condition c2(c2 + 1) ≡ 0 (mod 12). If l(a − 2; a) = 5 for some a, then a = 12m + 2 or 
a = 12m +10. In the first case the condition yields m ≡ 0, 5, 8, 9 (mod 12), in the second 
case m ≡ 2, 3, 6, 11 (mod 12). So, as already noticed in [24], the lowest possible value 
of a is a = 34. This would give an indecomposable rank two vector bundle with Chern 
classes c1 = 0, c2 = 24. Indeed if we have an exact sequence (1), E and F cannot be 
both a direct sum of line bundles (because, by Theorem 4, E would also be a direct sum 
of line bundles, which is impossible).

Finally we have:

Proposition 15. (Westwick [23]) For every a, r, l(r; a) ≤ 2a − 2r + 1.

As noticed in [17] (Theorem 1.4) this follows directly from a result of Lazarsfeld on 
ample vector bundles. We will come back later on this bound.

3. Further results and a conjecture

There are examples, for every n ≥ 2, of uniform but non-homogeneous vector bundles 
on Pn of rank 2n [6]. However it is a long standing conjecture that every uniform vector 
bundle of rank r < 2n is homogeneous. Homogeneous vector bundles of rank r < 2n
on P

n are classified [2], so the conjecture can be formulated as follows:

Conjecture 1. Every rank r < 2n uniform vector bundle on Pn is a direct sum of bundles 
chosen among: S2TP2(a), ∧2TP4(b), TPn(c), ΩPn(d), OPn(e); where a, b, ..., e are integers.

The conjecture holds true if n ≤ 3 [10,3].
Before to go on we point out an obvious but useful remark.

Remark 16. Clearly an exact sequence (1) exists if and only if the dual sequence twisted 
by O(−1) exists. So we may replace E by E∨(−1). If E has splitting type (−1c, 0b), 
E∨(−1) has splitting type (0c, −1b).

Proposition 17. (1) Take r, n such that n ≤ r < 2n. Assume a − r < n and that every 
rank r uniform bundle on Pn is homogeneous. Then l(r; a) ≤ n, except if r = n, a = 2n −1
in which case l(n; 2n − 1) = n + 1.
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(2) Assume Conjecture 1 is true. Then l(r; a) = a − r + 1 for r < (2a + 2)/3, except 
if r = (a + 1)/2, in which case l(r; a) = a − r + 2.

Proof. (1) In order to prove the statement it is enough to show that there exists no 
subspace M of constant rank r and dimension n + 1 under the assumption a − r < n, 
n ≤ r < 2n (except if r = n, a = 2n −1, in which case l(n; 2n −1) = n +1 by Lemma 10).

Such a space would give an exact sequence (1) with E uniform of rank r < 2n on Pn. If 
E is a direct sum of line bundles, by Lemma 6 we get dim(M) = n +1 ≤ a −r+1 < n +1. 
Hence E is not a direct sum of line bundles. Since the splitting type of E is (−1c, 0r−c)
(Lemma 2), we see that: E � Ω(1) ⊕ k.O ⊕ (r − k − n).O(−1), E � T (−2) ⊕ t.O ⊕ (r −
t − n).O(−1), or, if n = 4, E � (∧2Ω)(2).

Let’s first get rid of this last case. The assumption a − r < n implies a ≤ 9. It is 
enough to show that there is no exact sequence (1) on P4, with E = (∧2Ω)(2) and a = 9. 
From 0 → E → 9.O → E → 0, we get C(E) = C(E)−1. From the Koszul complex we 
have 0 → E → ∧2V ⊗O → Ω(2) → 0. It follows that C(E) = C(Ω(2)). Since rk(E) = 3
and c4(ΩP4(2)) = 1, we get a contradiction.

So we may assume E � Ω(1) ⊕ k.O⊕ (r− k−n).O(−1) or E � T (−2) ⊕ t.O⊕ (r− t −
n).O(−1). By dualizing the exact sequence (1), we may assume E � Ω(1) ⊕ k.O ⊕ (r −
k − n).O(−1). The exact sequence (1) yields:

0 → Ω(1) ⊕ (r − n− k).O(−1) → (a− k).O → E → 0 (2)

Since Hi
∗(Ω) = 0 for 2 ≤ i ≤ n −1, from the exact sequence (2) we get Hi

∗(E) = 0, for 
1 ≤ i ≤ n − 2. Since rk(E) = a − r < n, it follows from Evans–Griffith’s theorem that 
E �

⊕
O(ai). We have ai ≥ 0, ∀i, because E is globally generated. Moreover one ai at 

least must be equal to 1 (otherwise h1(E∨ ⊗E) = 0 and the sequence (2) splits, which is 
impossible). So a1 = 1, ai ≥ 0, i > 1. It follows that h0(E) ≥ (n +1) +(a −r−1) = n +a −r. 
On the other hand h0(E) = a − k from (2).

If k < r − n, we see that one of the ai’s, i > 1, must be > 0. This implies h0(E) ≥
2(n + 1) + (a − r − 2) = 2n + a − r. So a − k = h0(E) ≥ 2n + a − r. Since a ≥ a − k, it 
follows that a ≥ 2n + a − r and so r ≥ 2n, against our assumption.

We conclude that k = r − n and E = O(1) ⊕ (a − r − 1).O. In particular E =
Ω(1) ⊕ (r − n).O ((2) is Euler’s sequence plus some isomorphisms). We turn now to the 
other exact sequence:

0 → F → a.O(−1) → Ω(1) ⊕ (r − n).O → 0 (3)

We have C(F ) = (1 − h)a.C(Ω(1))−1. From the Euler sequence C(Ω(1))−1 = 1 + h. It 
follows that:

C(F ) = (1 + h).
(

a∑(
a

i

)
(−1)ihi

)

i=0
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Since rk(F ) = a − r < n, cn(F ) = 0. Since a ≥ r ≥ n, it follows that 
(
a

n

)
=

(
a

n− 1

)
. 

This implies a = 2n − 1.
Observe that r ≥ n (because k = r − n ≥ 0). If r ≥ n + 1, then rk(F ) ≤ n − 2, hence 

cn−1(F ) = 0. This implies: 
(

2n− 1
n− 1

)
=

(
2n− 1
n− 2

)
, which is impossible.

We conclude that r = n and a = 2n −1, so we are looking at l(n; 2n −1). By Lemma 10
we know that l(n; 2n − 1) = n + 1.

This proves (1).
(2) Now we apply (1) by setting n := a − r + 1. Clearly n > a − r. The condition 

n ≤ r < 2n translates in: (a + 1)/2 ≤ r < (2a + 2)/3. So, under these assumptions, we 
get l(r; a) ≤ n = a − r + 1, except if r = n, a = 2n − 1. In this latter case we know that 
l(n; 2n − 1) = n + 1 (Lemma 10). We conclude with Lemma 7. �

Since Conjecture 1 is true for r ≤ n + 1 and n = 3, r = 5 [3], we may summarize our 
results as follows:

Theorem 18.
(1) If r ≤ a/2, then l(r, a) = a − r + 1.
(2) If a is odd, l(a+1

2 ; a) = a+1
2 + 1 (= a − r + 2).

(3) If (2a+2)
3 > r ≥ a

2 + 1, then l(r; a) ≤ r − 1.
(4) If a is even: l(a2 + 1; a) = a

2 (= a − r + 1).
(5) If r ≥ (2a + 2)/3, then l(r, a) ≤ 2(a − r) + 1.
(6) We have l(5; 7) = 3 (= a − r + 1).

Proof. (1) This is Proposition 8.
(2) This is Lemma 10.
(3) Set n = r − 1. Uniform vector bundles of rank r = n + 1 on Pn are homogeneous. 

We have n ≤ r < 2n if r ≥ 3 and a − r < n if r ≥ (a/2) + 1. If r ≤ 2 and r ≥ (a/2) + 1, 
then a ≤ 2. Hence r = a = 2 and l(2; 2) = 1. So the assumptions of Proposition 17, (1) 
are fulfilled. We conclude that l(r, a) ≤ r − 1.

(4) Follows from (3) and Lemma 7.
(5) This is Proposition 15.
(6) Since uniform vector bundles of rank 5 on P3 are homogeneous, this follows from 

Proposition 17 (1) and Lemma 7. �
Remark 19. Point 3 of the theorem improves the previous bound of Beasley but we don’t 
expect this bound to be sharp (see Conjecture 2). Points 4 and 6 also are new. The 
bound of (5) is so far the best known bound in this range. It is reached for some values 
of a in the case r = a − 1 (Proposition 12), but already in the case r = a − 2 we don’t 
know if it is sharp.

It is natural at this point to make the following:
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Conjecture 2. Let a, r be integers such that (2a + 2)/3 > r > (a/2) + 1, then l(r; a) =
a − r + 1.

Remark 20. This conjecture should be easier to prove than Conjecture 1, indeed in terms 
of vector bundles it translates as follows: every rank r < 2n uniform vector bundle, E , 
fitting in an exact sequence (1) on Pn is homogeneous.

By the way the condition r < 2n seems necessary. If n = 2 this can be seen as follows. 
Consider the following matrix (taken from [20]):

Ψ =

⎛
⎜⎜⎜⎜⎜⎝

0 −x2 0 −x0 0
x2 0 0 −x1 −x0
0 0 0 −x2 −x1
x0 x1 x2 0 0
0 x0 x1 0 0

⎞
⎟⎟⎟⎟⎟⎠

It is easy to see that Ψ has rank four at any point of P2, hence we get:

0 → O(b) → 5.O(−1) Ψ→ 5.O → O(c) → 0

with E = Im(Ψ) a rank four uniform bundle. On the line L of equation x2 = 0, Ψ = (f, g), 

where f : 3.OL(−1) → 2.OL is given by 

(
x0 x1 0
0 x0 x1

)
and where g : 2.OL(−1) → 3.OL

is given by 

⎛
⎜⎝−x0 0

−x1 −x0
0 −x1

⎞
⎟⎠. Clearly f is surjective and by computing the Chern classes 

the kernel is OL(−3). Also g is injective of constant rank two, hence the cokernel is 
OL(2).

It follows that b = −3, c = 2 and the splitting type of E is (−12, 02). Now rank 
four homogeneous bundles on P2 are classified (Prop. 3, p. 18 of [7]) and are direct 
sum of bundles chosen among O(a), T (b), S2T (c), S3T (d). If E is homogeneous the only 
possibility is E(1) � T (−1) ⊕O(1) ⊕O, but in this case the exact sequence 0 → O(−2) →
5.O → E(1) → 0, would split, which is absurd. We conclude that E is not homogeneous. 
In fact E is one of the bundles found by Elencwajg [11].

Remark 21. The results of this section and the previous one determine l(r; a) for a ≤ 8, 
1 ≤ r ≤ a. To get a complete list for a ≤ 10, we have to show, according to Conjecture 2, 
that l(6; 9) = l(7; 10) = 4. This will be done in the next section.

4. Some partial results

In the following lemma we relax the assumption r < 2n in Proposition 17 when 
c1(E(1)) = 1.
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Lemma 22. Assume we have an exact sequence (1) on Pn, with rk(F ) = a − r < n and 
c1(E(1)) = 1. Then a = 2n − 1 and r = n.

Proof. If c1(E(1)) = 1, E(1) has splitting type (1, 0r−1). It follows from [13], Prop. IV, 2.2, 
that E(1) = O(1) ⊕ (r−1).O or E(1) = T (−1) ⊕ (r−n).O. From the exact sequence 0 →
F (1) → a.O → E(1) → 0, we get c1(F (1)) = −1. Since F (1) ↪→ a.O, it follows that F (1)
is uniform of splitting type (−1, 0a−r−1). Since rk(F ) < n, F (1) = O(−1) ⊕(a −r−1).O. 
This shows that necessarily E(1) = T (−1) ⊕ (r − n).O. Now from the exact sequence: 
0 → T (−1) ⊕ (r − n).O → a.O(1) → E(1) → 0, we get C(E(1)) = (C(t(−1))−1(1 + h)a, 
i.e. C(E(1)) = (1 − h)(1 + h)a. Since rk(E) < n, we have cn(E(1)) = 0 and arguing as 
in the proof of Proposition 17, we get a = 2n − 1, r = n. �
Remark 23. Since we know that l(n; 2n − 1) = n + 1 (Lemma 10), we may, from now on, 
assume c1(E(1)) ≥ 2.

Since E(1) is globally generated, taking r − 1 general sections we get:

0 → (r − 1).O → E(1) → IX(b) → 0 (4)

Here X is a pure codimension two subscheme, which is smooth if n ≤ 5 and which is 
irreducible, reduced, with singular locus of codimension ≥ 6, if n ≥ 6.

Lemma 24. Assume n ≥ 3 and rk(F ) < n. If X is arithmetically Cohen–Macaulay 
(aCM), i.e. if Hi

∗(IX) = 0 for 1 ≤ i ≤ n − 2, then F is a direct sum of line bundles.

Proof. From (4) we get Hi
∗(E) = 0 for 1 ≤ i ≤ n − 2. By Serre duality Hi

∗(E∨) = 0, 
for 2 ≤ i ≤ n − 1. From the exact sequence 0 → E∨ → a.O(1) → F∨ → 0, we get 
Hi

∗(F∨) = 0, for 1 ≤ i ≤ n − 2. Since F∨ has rank < n, by Evans–Griffith theorem we 
conclude that F∨ (hence also F ) is a direct sum of line bundles. �
Proposition 25. Assume that we have an exact sequence (1) on P4 with rk(F ) < 4. Let 
(−1c, 0r−c) be the splitting type of E. If r > 4 and if F is not a direct sum of line bundles, 
then c, r − c ≥ 4; in particular rk(E) ≥ 8.

Proof. Assume c or b := r − c < 4. By dualizing the exact sequence (1) if necessary, we 
may assume b < 4. We have an exact sequence (4):

0 → (r − 1).O → E(1) → IX(b) → 0

where X ⊂ P
4 is a smooth surface of degree d = c2(E(1)). If b < 3, X is either a complete 

intersection (1, d) or lies on a hyper-quadric. In any case X is a.C.M. By Lemma 24, F
is a direct sum of line bundles.

Assume b = 3. From the classification of smooth surfaces in P4 we know that if d ≤ 3, 
then X is a.C.M. Now X is either a complete intersection (3, 3), hence a.C.M. or linked 
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to a smooth surface, S, of degree 9 − d by such a complete intersection. If S is a.C.M. 
the same holds for X. From the classification of smooth surfaces of low degree in P4, if 
X is not a.C.M. we have two possibilities:
(i) X is a Veronese surface and S is an elliptic quintic scroll,
(ii) X is an elliptic quintic scroll and S is a Veronese surface.

(i) If X = V is a Veronese surface then we have an exact sequence:

0 → 3.O → Ω(2) → IV (3) → 0

It follows that C(E(1)) = C(Ω(2)) = 1 +3h +4h2 +2h3 +h4. So C(F (1)) = (C(E(1))−1 =
1 −3h +5h2 −5h3. It follows that F (and hence E also) has rank three. From C(E(1)) =
(1 + h)a.C(F (1)) and c4(E(1)) = 0, we get 0 = a(a − 5)(a − 6)(a − 7). So a ≤ 7. Since 
a = rk(E) + r, we get a contradiction.

(ii) If X = E is an elliptic quintic scroll, then we have:

0 → T (−2) → 5.O → IE(3) → 0

It follows that C(E(1)) = C(T (−2))−1 and C(F (1)) = C(T (−2)) = 1 −3h +4h2−2h3+h4, 
in contradiction with rk(F ) < 4. �
Lemma 26. Assume we have an exact sequence (1) on P4 with a − r < 4. If r > 4 and if 
F is a direct sum of line bundles, then rk(E) ≥ 8.

Proof. If r = 5 we conclude with Theorem 18, (3), (6). If r = 6, then a ≤ 9 and it is 
enough to show that l(6; 9) ≤ 4 i.e. that there is no exact sequence (1) on P4. In the 
same way, if r = 7 it is enough to show that l(7; 10) ≤ 4.

If r = 6, we may assume that the splitting type of E is (−11, 05), (−12, 04), (−13, 03). 
By dualizing and by Lemma 22 we may disregard the first case. It follows that c1(F ) = −7
or −6. If r = 7, in a similar way, we may assume that the splitting type of E is (−12, 05)
or (−13, 04). So c1(F ) = −7 or −8.

Let C(F (1)) = (1 −f1h)(1 −f2h)(1 −f3h). We have C(E(1)) = (1 +h)aC(F (1)). From 
c4(E(1)) = 0 we get:

ψ(a) := a3 − a2(4s + 6) + a(12d + 12s + 11) − 12d− 8s− 24t− 6 = 0

where s = −c1(F (1)) =
∑

fi, d = c2(F (1)) =
∑

i<j fifj , t = −c3(F (1)) =
∏

fi. We 
have fi ≥ 0, ∀i and 3 ≤ s ≤ 5.

We have to check that this equality can’t be satisfied for a = 9, 10. We have ψ(9) =
8(42 − 28s +12d − 37). If ψ(9) = 0 we get 3 | s. It follows that s = 3. So the condition is: 
4d − t = 14. If one of the fi’s is zero, then t = 0 and we get a contradiction. So fi > 0, ∀i
and the only possibility is (fi) = (1, 1, 1), but then 4d − t = 11 �= 14.
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For a = 10, we get ψ(10) = 504 −288s +108d −24t. If f1 = f2 = 0, then d = t = 0 and 
we get s = 504/288 which is not an integer. If f1 = 0, then t = 0, d = f2f3, s = f2 + f3. 
If s ≥ 4, 504 + 108d = 288s ≥ 1152. It follows that d ≥ 6. If d = 6 we have necessarily 
s = 5 and ψ(10) �= 0. So s = 3 and d = 2, but also in this case ψ(10) �= 0. We conclude 
that fi > 0, ∀i. So we are left with (fi) = (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 2). In any of 
these cases one easily checks that ψ(10) �= 0. �
Corollary 27. We have l(6; 9) = l(7; 10) = 4. In particular l(r, a) is known for a ≤ 10
and 1 ≤ r ≤ a and Conjecture 2 holds true for a ≤ 10.

Proof. We have seen that l(6; 9), l(7; 10) ≤ 4, by Lemma 7 we have equality. Then all 
the other values of l(r; a) are given by Theorem 18, Proposition 12 and Proposition 13, 
if a ≤ 10. �
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