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Abstract. We consider the Schrödinger operator −∆ + V for negative potentials V , on open sets
with positive first eigenvalue of the Dirichlet-Laplacian. We show that the spectrum of −∆ + V
is positive, provided that V is greater than a negative multiple of the logarithmic gradient of the
solution to the Lane-Emden equation −∆u = uq−1 (for some 1 ≤ q < 2). In this case, the ground
state energy of −∆ + V is greater than the first eigenvalue of the Dirichlet-Laplacian, up to an
explicit multiplicative factor. This is achieved by means of suitable Hardy-type inequalities, that
we prove in this paper.
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1. Introduction

1.1. Foreword. Let V ∈ L2
loc(RN ) be a real-valued potential such that V ≤ 0 and let us consider

the Schrödinger operator HV := −∆ + V , acting on the domain

D(HV ) := H2(RN ) ∩ {u ∈ L2(RN ) : V u ∈ L2(RN )}.
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Observe that the hypothesis V ∈ L2
loc(RN ) entails the inclusion

C∞0 (RN ) ⊂ D(HV ),

thus D(HV ) is dense in L2(RN ). The operator HV : D(HV ) → L2(RN ) is symmetric and self-
adjoint as well, thanks to the fact that V is real-valued (see [17, Example p. 68]). The spectrum of
HV is the set

σ(HV ) = R \ ρ(HV ),

where ρ(HV ) is the resolvent set of HV , defined as the collection of real numbers λ such that HV −λ
is bijective and its inverse is a bounded linear operator.

A distinguished subset of σ(HV ) is given by the collection of those λ such that the kernel of
HV − λ is nontrivial. In this case, the stationary Schrödinger equation

(1.1) HV u = λu,

admits a nontrivial solution u ∈ D(HV ). Whenever this happens, λ is called an eigenvalue of the
Schrödinger operator. Correspondingly, the solution is said to be an eigenfunction corresponding
to λ.

The operator HV comes with the associated quadratic form

ϕ 7→ QV (ϕ) =

ˆ
RN
|∇ϕ|2 dx+

ˆ
RN

V ϕ2 dx, ϕ ∈ D(HV ).

From classical Spectral Theory, we have (see [17, Theorem 2.20])

(1.2) inf σ(HV ) = inf
ϕ∈D(HV )

{
QV (ϕ) :

ˆ
RN

ϕ2 dx = 1

}
.

We call such a value ground state energy of HV .
This quantity is important in classical Quantum Mechanics, since it is the lowest energy that a

particle in RN interacting with the force field generated by the potential V can attain (and which
will eventually attain by emitting energy). From a mathematical point of view, we observe that the
stationary Schrödinger equation (1.1) is precisely the Euler-Lagrange equation of the minimization
problem appearing in (1.2).

An issue of main interest is providing a lower bound on the ground state energy (and thus on
the spectrum) of HV .

It is well-known that when V ≡ 0, then inf σ(HV ) = 0. On the other hand, if we take V ≤ 0,
the kinetic energy

´
RN |∇ϕ|2 dx and the potential energy

´
RN V ϕ

2 dx are in competition in the
quadratic form QV and one could expect that

inf σ(HV ) < 0.

Actually, this depends on the potential V . For example, by recalling the Hardy inequality on RN
(for N ≥ 3) (

N − 2

2

)2 ˆ
RN

ϕ2

|x|2 dx ≤
ˆ
RN
|∇ϕ|2 dx, ϕ ∈ C∞0 (RN \ {0}),

we get that if the potential V is such that

0 ≥ V ≥ −
(
N − 2

2

)2 1

|x|2 ,

then the spectrum of HV is still non-negative. This is an example of how Hardy-type inequalities
can be exploited in order to identify classes of negative potentials with non-negative spectrum.
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1.2. Aim of the paper. In this paper we deal with a confined version of this problem. More
precisely, we turn our attention to prescribed open sets Ω ⊂ RN . We fix a potential V ∈ L2

loc(Ω)
such that V ≤ 0 and consider the localized Schrödinger operator with homogeneous boundary
conditions HΩ,V = −∆ + V , this time acting on the domain

(1.3) D(HΩ,V ) := H2(Ω) ∩H1
0 (Ω) ∩ {u ∈ L2(Ω) : V u ∈ L2(Ω)}.

Here H1
0 (Ω) is the closure of C∞0 (Ω) in the Sobolev space H1(Ω). This is still a symmetric and

self-adjoint operator HV : D(HΩ,V ) → L2(Ω), with real spectrum σ(HΩ,V ). Observe that the
hypothesis V ∈ L2

loc(Ω) entails as before the inclusion

C∞0 (Ω) ⊂ D(HΩ,V ),

thus the operator is densely defined. We define the associated quadratic form

QΩ,V (ϕ) =

ˆ
Ω
|∇ϕ|2 dx+

ˆ
Ω
V ϕ2 dx, ϕ ∈ D(HΩ,V ).

The stationary equation (1.1) now reads

(1.4)

{
HΩ,V u = λu in Ω,

u = 0, in RN \ Ω.

Equation (1.4) can be formally considered as a peculiar form of (1.1), where the potential V has
the trapping property V = +∞ in RN \Ω. This models the physical situation where the particle is
“trapped” in the confining region Ω.

The issue we tackle is the following

“find explicit pointwise bounds on the potential V
assuring that the ground state energy of HΩ,V stays positive ”

In the vein of the example discussed above using Hardy’s inequality in the entire space, we will
approach this problem by proving localized Hardy-type inequalities with suitable weights. A typical
instance of these inequalities occurs when we limit ourselves to consider functions supported in a
proper open subset Ω ⊂ RN and we use the distance dΩ(x) := dist(x, ∂Ω) as a weight. In other
words, one has

1

C

ˆ
Ω

ϕ2

d2
Ω

dx ≤
ˆ

Ω
|∇ϕ|2 dx, ϕ ∈ C∞0 (Ω).

However, the existence of such a constant C > 0 typically requires some conditions on the geometry
of the set Ω or on the regularity of its boundary, see [15]. In this paper on the contrary, we will
prove alternative Hardy-type inequalities, with weights depending on solutions of peculiar elliptic
partial differential equations.
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Roughly speaking, we will consider the solution wq,Ω to the Lane-Emden equation1 with 1 ≤ q < 2

(1.5)

 −∆u = uq−1 in Ω,
u = 0, in RN \ Ω,
u > 0, in Ω,

prove a Hardy inequality with weight depending on wq,Ω and show that the condition

0 ≥ V & −
∣∣∣∣∇wq,Ωwq,Ω

∣∣∣∣2 , a. e. in Ω,

leads to positivity of the spectrum of the Schrödinger operator HΩ,V .
The function wq,Ω will be called the Lane-Emden q−density of Ω, we refer to Definitions 2.5 and

2.8 below.

1.3. Main results. Let us now try to be more precise about our results. We first need to fix some
definitions. For γ ≥ 1, we denote

(1.6) λ2,γ(Ω) = inf
ϕ∈C∞0 (Ω)

{ˆ
Ω
|∇ϕ|2 dx : ‖ϕ‖Lγ(Ω) = 1

}
.

Henceforth we shall often work with the following class of sets.

Definition 1.1. We say that Ω ⊂ RN is an open set with positive spectrum if it is open and

(1.7) λ1(Ω) := λ2,2(Ω) = inf
ϕ∈C∞0 (Ω)

{ˆ
Ω
|∇ϕ|2 dx : ‖ϕ‖L2(Ω) = 1

}
> 0.

The main result of the paper is the following lower bound on the ground state energy of HΩ,V .
We refer to Theorem 6.2 and Corollary 6.3 for its proof.

Theorem 1.2. Let Ω ⊂ RN be an open set with positive spectrum, and let V ∈ L2
loc(Ω). For an

exponent 1 ≤ q < 2, we assume that

0 ≥ V ≥ −1

4

∣∣∣∣∇wq,Ωwq,Ω

∣∣∣∣2 , a. e. in Ω.

Then the spectrum σ(HΩ,V ) of HΩ,V is positive and we have that

inf σ(HΩ,V ) = inf
ϕ∈C∞0 (Ω)

{
QΩ,V (ϕ) :

ˆ
Ω
ϕ2 dx = 1

}
≥ 1

C
λ1(Ω),

where C = C(N, q) > 0 is an explicit constant.

1The terminology comes from astrophysics, where the Lane-Emden equation is

1

%2

d

d%

(
%2 du

d%

)
+ uγ = 0,

for a radially symmetric function u : R3 → R. The positive number γ is usually called polytropic index. Observe that
for a radial function u defined in R3, this is equivalent to

−∆u = uγ .

Though our paper is not concerned with astrophysics, we found useful to give a name to the equation and its solution.
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We point out that due to the quantitative estimate of the previous result, the condition on V
can be slightly relaxed and still we can have positivity of the spectrum. We refer to Remark 6.4
below for more details on this point.

As stated above, the main tool we use to prove Theorem 1.2 is an Hardy-type inequality, in which
a weight involving the solution wq,Ω of the Lane-Emden equation (1.5) enters. This is the content
of the next result. For questions related to optimal choices of weights in Hardy-type inequalities,
see [10] and the references therein.

Theorem 1.3 (Hardy-Lane-Emden inequality). Let 1 ≤ q < 2 and let Ω ⊂ RN be an open set with
positive spectrum. Then for every ϕ ∈ C∞0 (Ω) and δ > 0 we have that

1

δ

(
1− 1

δ

) ˆ
Ω

∣∣∣∣∇wq,Ωwq,Ω

∣∣∣∣2 ϕ2 dx+
1

δ

ˆ
Ω

ϕ2

w2−q
q,Ω

dx ≤
ˆ

Ω
|∇ϕ|2 dx.

We refer to Remark 3.2 for some comments about the proof of this result.

1.4. Plan of the paper. The paper is organized as follows: in Section 2, we define the Lane-
Emden q−density of a set Ω ⊂ RN , first under the assumption that Ω is bounded and then for a
general open set. Then in Section 3 we prove the Hardy-Lane-Emden inequality of Theorem 1.3
for bounded open sets.

In Section 4 we show how the summability properties of the Lane-Emden densities are equivalent
to the embedding of D1,2

0 (Ω) into suitable Lebesgue spaces. This part generalizes some results
contained in the recent paper [3], by replacing the torsion function with any Lane-Emden q−density.
Though this section may appear unrelated to ground state energy estimates for HΩ,V , some of its
outcomes are used to extend (in Section 5) the Hardy-Lane-Emden inequality to open sets with
positive spectrum.

The proof of Theorem 1.2 is then contained in Section 6, while Section 7 contains some appli-
cations of our main result to some particular geometries (a ball, an infinite slab and a rectilinear
wave-guide with circular cross-section).

We conclude the paper with an Appendix, containing a local L∞ estimate for subsolutions of the
Lane-Emden equation, which is necessary in order to get the explicit lower bound on the ground
state energy of HΩ,V .

Acknowledgments. The first author would like to thank Douglas Lundholm for a discussion on
Hardy inequalities and the so-called Ground State Representation in February 2017, during a visit
to the Department of Mathematics of KTH (Stockholm). He also wishes to thank Erik Lindgren
for the kind invitation. Remark 4.4 comes from an informal discussion with Guido De Philippis in
December 2015, we wish to thank him.

The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le
loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

2. Preliminaries

2.1. Notation. Let Ω ⊂ RN be an open set and define the norm on C∞0 (Ω)

‖ϕ‖D1,2
0 (Ω)

=

(ˆ
Ω
|∇ϕ|2 dx

) 1
2

, ϕ ∈ C∞0 (Ω).

We consider the homogeneous Sobolev space D1,2
0 (Ω), obtained as the completion of C∞0 (Ω) with

respect to the norm ‖ · ‖D1,2
0 (Ω)

. For N ≥ 3 this is always a functional space, thanks to Sobolev
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inequality but in dimension N = 1 or N = 2, this may fail to be even a space of distributions if Ω
is “too big”, see for example [9, Remark 4.1].

Remark 2.1. For an open set with positive spectrum Ω, we have automatically continuity of the
embedding D1,2

0 (Ω) ↪→ L2(Ω). Thus in this case D1,2
0 (Ω) is a functional space. Moreover, we have

that

D1,2
0 (Ω) = H1

0 (Ω),

thanks to the fact that in this case(ˆ
Ω
|∇ϕ|2 dx

) 1
2

and

(ˆ
Ω
|∇ϕ|2 dx

) 1
2

+

(ˆ
Ω
ϕ2 dx

) 1
2

,

are equivalent norms on C∞0 (Ω).

2.2. Lane-Emden densities: bounded sets. We start with the following auxiliary result.

Lemma 2.2. Let Ω ⊂ RN be an open bounded set. For 1 ≤ q < 2, the variational problem

(2.1) min
ϕ∈D1,2

0 (Ω)

{
1

2

ˆ
Ω
|∇ϕ|2 dx− 1

q

ˆ
Ω
ϕq dx : ϕ ≥ 0 a. e. in Ω

}
,

admits a unique solution.

Proof. Since the absolute value of every minimizer of the functional

ϕ 7→ 1

2

ˆ
Ω
|∇ϕ|2 dx− 1

q

ˆ
Ω
|ϕ|q dx,

is also a minimizer of (2.1), problem (2.1) is equivalent to

min
ϕ∈D1,2

0 (Ω)

{
1

2

ˆ
Ω
|∇ϕ|2 dx− 1

q

ˆ
Ω
|ϕ|q dx

}
.

The existence of a solution follows then by the Direct Methods in the Calculus of Variations, since
the embedding D1,2

0 (Ω) ↪→ Lq(Ω) is compact and D1,2
0 (Ω) is weakly closed.

As for uniqueness, we first suppose that Ω is connected. We observe that for q = 1 problem (2.1)
is strictly convex, thus the solution is unique. For 1 < q < 2, we can use a trick by Brezis and
Oswald based on the so-called Picone’s inequality, see [6, Theorem 1]. We reproduce their argument
here for completeness. We first observe that a minimizer is a positive solution of the Lane-Emden
equation

(2.2) −∆u = uq−1, in Ω,

with homogeneous Dirichlet boundary conditions. More precisely, for every ϕ ∈ D1,2
0 (Ω) it holds

(2.3)

ˆ
Ω
〈∇u,∇ϕ〉 dx =

ˆ
Ω
uq−1 ϕdx.

We now suppose that (2.1) admits two minimizers u1, u2 ∈ D1,2
0 (Ω). By the minimum principle

for superharmonic functions, u1 > 0 and u2 > 0 on Ω. Moreover, by standard Elliptic Regularity,
u1, u2 ∈ L∞(Ω). We fix ε > 0, then we test equation (2.3) for u1 with

ϕ =
u2

2

u1 + ε
− u1,
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and equation (2.3) for u2 with

ϕ =
u2

1

u2 + ε
− u2.

Summing up, we get thatˆ
Ω

〈
∇u1,∇

(
u2

2

u1 + ε

)〉
dx−

ˆ
Ω
|∇u1|2 dx+

ˆ
Ω

〈
∇u2,∇

(
u2

1

u2 + ε

)〉
dx−

ˆ
Ω
|∇u2|2 dx

=

ˆ
Ω

uq−1
1

u1 + ε
u2

2 dx−
ˆ

Ω
uq1 dx+

ˆ
Ω

uq−1
2

u2 + ε
u2

1 dx−
ˆ

Ω
uq2 dx.

We now recall that

(2.4)

〈
∇u,∇

(
v2

u

)〉
≤ |∇v|2,

for v and u > 0 differentiable. This is precisely Picone’s inequality, see for example [2]. By observing
that ∇ui = ∇(ui + ε) and using (2.4) in the identity above, we conclude that

ˆ
Ω

uq−1
1

u1 + ε
u2

2 dx−
ˆ

Ω
uq1 dx+

ˆ
Ω

uq−1
2

u2 + ε
u2

1 dx−
ˆ

Ω
uq2 dx ≤ 0.

We now take the limit as ε goes to 0. By Fatou’s Lemma, we obtain thatˆ
Ω
uq−2

1 u2
2 dx−

ˆ
Ω
uq1 dx+

ˆ
Ω
uq−2

2 u2
1 dx−

ˆ
Ω
uq2 dx ≤ 0.

The previous terms can be recast into inequalityˆ
Ω

(u2
2 − u2

1) (uq−2
2 − uq−2

1 ) dx ≥ 0.

By using the fact the function t 7→ tq−2 is monotone decreasing, we get that u1 = u2 as desired.

Finally, if Ω is not connected, it is sufficient to observe that a solution of (2.1) must minimize
the same functional on every connected component, due to the locality of the functional; since the
solution is unique on every connected component, we get the conclusion in this case as well. �

Remark 2.3 (About uniqueness). Uniqueness of the solution to (2.1) can also be inferred directly
at the level of the minimization problem. It is sufficient to observe that the functional to be
minimized is convex along curves of the form

γt =
(

(1− t)ϕq0 + t ϕq1

) 1
q
, t ∈ [0, 1], ϕ0, ϕ1 ∈ D1,2

0 (Ω) positive,

see [2, Proposition 2.6]. Then one can reproduce the uniqueness proof of [1]. For a different proof
of the uniqueness for (2.2), we also refer to [11, Corollary 4.2].

Remark 2.4. It is useful to keep in mind that if u ∈ D1,2
0 (Ω) solves equation

−∆u = t uq−1, in Ω,

for some t > 0, then the new function

vt = t
1
q−2 u,

solves (2.2).
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Definition 2.5. Let Ω ⊂ RN be an open bounded set. For 1 ≤ q < 2, we define the Lane-Emden
q−density of Ω as the unique solution of (2.1). We denote such a solution by wq,Ω. In the case
q = 1, we simply write wΩ and call it torsion function of Ω.

The variational problem defining wq,Ω is related to the optimal Poincaré constant λ2,q(Ω) defined
in (1.6). This is the content of the next result, that we record for completeness. We omit the proof
since it is based on a straightforward scaling argument.

Lemma 2.6. Let 1 ≤ q < 2 and let Ω ⊂ R be an open bounded set. Then we have

(2.5) min
ϕ∈D1,2

0 (Ω)

{
1

2

ˆ
Ω
|∇ϕ|2 dx− 1

q

ˆ
Ω
ϕq dx : ϕ ≥ 0 in Ω

}
=
q − 2

2 q

(
1

λ2,q(Ω)

) q
2−q

and

(2.6)

(ˆ
Ω
|wq,Ω|q dx

) 2−q
q

=
1

λ2,q(Ω)
.

2.3. Lane-Emden densities: general sets. We now want to define the Lane-Emden densities
for a general open set, where the variational problem

inf
ϕ∈D1,2

0 (Ω)

{
1

2

ˆ
Ω
|∇ϕ|2 dx− 1

q

ˆ
Ω
ϕq dx : ϕ ≥ 0 in Ω

}
,

may fail to admit a solution.

We start with a sort of comparison principle for Lane-Emden densities.

Lemma 2.7. Let 1 ≤ q < 2 and let Ω1 ⊂ Ω2 ⊂ RN be two open bounded sets. Then we have

wq,Ω1 ≤ wq,Ω2 .

Proof. We test the minimality of wq,Ω1 against ϕ = min{wq,Ω1 , wq,Ω2}. After some simple manipu-
lations, this gives

1

2

ˆ
{wq,Ω2

<wq,Ω1
}
|∇wq,Ω2 |2 dx−

1

q

ˆ
{wq,Ω2

<wq,Ω1
}
wqq,Ω2

dx

≥ 1

2

ˆ
{wq,Ω2

<wq,Ω1
}
|∇wq,Ω1 |2 dx−

1

q

ˆ
{wq,Ω2

<wq,Ω1
}
wqq,Ω1

dx.

We now add on both sides the term
1

2

ˆ
{wq,Ω2

>wq,Ω1
}
|∇wq,Ω2 |2 dx−

1

q

ˆ
{wq,Ω2

>wq,Ω1
}
wqq,Ω2

dx,

thus if set U = max{wq,Ω1 , wq,Ω2}, we get that

1

2

ˆ
Ω2

|∇wq,Ω2 |2 dx−
1

q

ˆ
Ω2

wqq,Ω2
dx ≥ 1

2

ˆ
Ω2

|∇U |2 dx− 1

q

ˆ
Ω2

U q dx.

By uniqueness of the minimizer wq,Ω2 , this gives U = wq,Ω2 . By recalling the definition of U , this
in turn yields the desired conclusion. �

Thanks to the previous property, we can define the Lane-Emden density for every open set. In
what follows, we set

ΩR = Ω ∩BR(0), R > 0,

where BR(0) is the N−dimensional open ball, with radius R and centered at the origin.
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Definition 2.8. Let Ω ⊂ RN be an open set. For 1 ≤ q < 2 we define

wq,Ω = lim
R→+∞

wq,ΩR .

We observe that this definition is well-posed, since each wq,ΩR ∈ D1,2
0 (ΩR) exists thanks to the

boundedness of ΩR and the function

R 7→ wq,ΩR(x),

is monotone, thanks to Lemma 2.7.

Remark 2.9 (Consistency). When Ω ⊂ RN is an open bounded set or, more generally, is such

that the embedding D1,2
0 (Ω) ↪→ Lq(Ω) is compact, then the definition of wq,Ω above coincides with

the variational one. For q = 1 this is proved in [3, Lemma 2.4], the other cases can be treated in
exactly the same way. We skip the details.

3. Hardy-Lane-Emden inequalities

The following theorem, which is a generalization of [3, Theorem 4.3], is the main result of the
present section. For simplicity, we state and prove the result just for open bounded sets, but it
is easily seen that the same proof works for every open set Ω ⊂ RN such that the embedding
D1,2

0 (Ω) ↪→ Lq(Ω) is compact.

Theorem 3.1. Let 1 ≤ q < 2 and let Ω ⊂ RN be an open bounded set. Then for every ϕ ∈ C∞0 (Ω)
and δ > 0 we have

(3.1)
1

δ

ˆ
Ω

[(
1− 1

δ

) ∣∣∣∣∇wq,Ωwq,Ω

∣∣∣∣2 +
1

w2−q
q,Ω

]
ϕ2 dx ≤

ˆ
Ω
|∇ϕ|2 dx.

Proof. We recall that

(3.2)

ˆ
Ω
〈∇wq,Ω,∇ψ〉 dx =

ˆ
Ω
wq−1
q,Ω ψ dx,

for any ψ ∈ D1,2
0 (Ω). Let ϕ ∈ C∞0 (Ω) and let ε > 0, by taking in (3.2) the test function

ψ =
ϕ2

wq,Ω + ε
,

we get

(3.3)

ˆ
Ω

[
|∇wq,Ω|2 + wq−1

q,Ω (wq,Ω + ε)

(wq,Ω + ε)2

]
ϕ2 dx = 2

ˆ
Ω
ϕ

〈 ∇wq,Ω
(wq,Ω + ε)

,∇ϕ
〉
dx.

By Young’s inequality, it holds

ϕ

〈 ∇wq,Ω
(wq,Ω + ε)

,∇ϕ
〉
≤ δ

2
|∇ϕ|2 +

1

2 δ

|∇wq,Ω|2
(wq,Ω + ε)2

ϕ2

for δ > 0. Thus we get

ˆ
Ω

[
|∇wq,Ω|2 + wq−1

q,Ω (wq,Ω + ε)

(wq,Ω + ε)2

]
ϕ2 dx ≤ δ

ˆ
Ω
|∇ϕ|2 dx+

1

δ

ˆ
Ω

|∇wq,Ω|2
(wq,Ω + ε)2

ϕ2 dx.
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The previous inequality gives

1

δ

ˆ
Ω

[(
1− 1

δ

) |∇wq,Ω|2
(wq,Ω + ε)2

+
wq−1
q,Ω

(wq,Ω + ε)

]
ϕ2 dx ≤

ˆ
Ω
|∇ϕ|2 dx.

By recalling that ϕ is compactly supported in Ω and observing that2∣∣∣∣∇wq,Ωwq,Ω

∣∣∣∣2 ∈ L1
loc(Ω),

we conclude the proof by taking the limit as ε goes to 0 and appealing to the Monotone Convergence
Theorem. �

Remark 3.2 (A comment on the proof). The idea of the previous proof comes from that of Moser’s
logarithmic estimate for elliptic partial differential equations, see [14, page 586]. In regularity theory,
this is an essential tool in order to establish the validity of Harnack’s inequality for solutions.

An alternative proof is based on Picone’s inequality (2.4). This goes as follows: one observes

that the function W = w
1/δ
q,Ω locally solves

−∆W = −1

δ
w

1
δ
−1

q,Ω ∆wq,Ω −
1

δ

(
1

δ
− 1

)
w

1
δ
−2

q,Ω |∇wq,Ω|2

= W

[
1

δ
wq−2
q,Ω +

1

δ

(
1− 1

δ

) ∣∣∣∣∇wq,Ωwq,Ω

∣∣∣∣2
]
.

Thus we have ˆ
Ω

[
1

δ
wq−2
q,Ω +

1

δ

(
1− 1

δ

) ∣∣∣∣∇wq,Ωwq,Ω

∣∣∣∣2
]
W ψ dx =

ˆ
Ω
〈∇W,∇ψ〉 dx,

for every ψ ∈ C∞0 (Ω). If we now take the test function ψ = ϕ2/W and use inequality (2.4), we get
the desired inequality.

This technique to obtain Hardy-type inequalities is sometimes referred to as Ground State Rep-
resentation, see for example [12, Proposition 1].

As a consequence of the Hardy-Lane-Emden inequality, we record the following integrability
properties of functions in D1,2

0 (Ω).

Corollary 3.3. Let 1 ≤ q < 2 and let Ω ⊂ RN be an open bounded set. Then for every ϕ ∈ D1,2
0 (Ω)

(3.4)

ˆ
Ω

∣∣∣∣∇wq,Ωwq,Ω

∣∣∣∣2 ϕ2 dx < +∞ and

ˆ
Ω

ϕ2

w2−q
q,Ω

dx < +∞.

Moreover, if {ϕn}n∈N ⊂ D1,2
0 (Ω) converges strongly to ϕ ∈ D1,2

0 (Ω), then

lim
n→∞

ˆ
Ω

∣∣∣∣∇wq,Ωwq,Ω

∣∣∣∣2 |ϕn − ϕ|2 dx = 0 and lim
n→∞

ˆ
Ω

|ϕn − ϕ|2
w2−q
q,Ω

dx = 0.

2It is sufficient to remark that ∇wq,Ω ∈ L2(Ω) and that by the strong minimum principle, we have

wq,Ω ≥ cK > 0 for every K b Ω.
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Proof. Let ϕ ∈ D1,2
0 (Ω), then there exists {ϕn}n∈N ⊂ C∞0 (Ω) converging to ϕ in D1,2

0 (Ω). By
choosing δ = 2 in (3.1), we have that

1

4

ˆ
Ω

[∣∣∣∣∇wq,Ωwq,Ω

∣∣∣∣2 +
2

w2−q
q,Ω

]
ϕ2
n dx ≤

ˆ
Ω
|∇ϕn|2 dx.

By using the norm convergence in the right-hand side and Fatou’s Lemma in the left-hand side, we
deduce the validity of (3.4) for ϕ.

In order to prove the second part of the statement, we observe that the first part of the proof
also implies the validity of inequality (3.1) in D1,2

0 (Ω), for δ = 2. Plugging in ϕn − ϕ gives that

lim sup
n→∞

1

4

ˆ
Ω

[∣∣∣∣∇wq,Ωwq,Ω

∣∣∣∣2 +
2

w2−q
q,Ω

]
|ϕn − ϕ|2 dx ≤ lim

n→∞

ˆ
Ω
|∇ϕn −∇ϕ|2 dx = 0,

as desired. �

As a consequence of Corollary 3.3 and thanks to the definition of D1,2
0 (Ω), we get the following

Corollary 3.4. The Hardy-Lane-Emden inequality (3.1) is valid for every δ > 0 and u ∈ D1,2
0 (Ω).

4. Sobolev embeddings and densities

In this section, we consider general open sets and study the connections between the integrability
of wq,Ω and the embeddings of D1,2

0 (Ω) into Lebesgue spaces. For the case of the torsion function,
i.e. when q = 1, related studies can be found in [3, 5, 7] and [8].

We start with a simple consequence of Theorem 3.1. This is valid for a general open set.

Lemma 4.1. Let Ω ⊂ RN be an open set and 1 ≤ q < 2. Then for any ϕ ∈ C∞0 (Ω) it holds thatˆ
{x∈Ω :wq,Ω(x)<+∞}

ϕ2

w2−q
q,Ω

dx ≤
ˆ

Ω
|∇ϕ|2 dx.

Proof. Let BR(0) be the ball of radius R centered in 0, we set ΩR = Ω ∩ BR(0) and wR = wq,ΩR .
Let ϕ ∈ C∞0 (Ω), then for every R large enough the support of ϕ is contained in ΩR. By using (3.1)
on ΩR with δ = 1, we get ˆ

Ω

ϕ2

w2−q
R

dx ≤
ˆ

Ω
|∇ϕ|2 dx.

We conclude by letting R→ +∞ and by Fatou’s Lemma. �

The following result is a generalization of [3, Theorem 1.2]. We point out that the equivalence
between 1. and 2. below is a known fact in Sobolev spaces theory, see [13, Theorems 15.6.2].

Theorem 4.2. Let 1 ≤ q < 2 and let Ω ⊂ RN be an open set. Then for every q ≤ γ < 2 the
following three facts are equivalent

1. the embedding D1,2
0 (Ω) ↪→ Lγ(Ω) is continuous;

2. the embedding D1,2
0 (Ω) ↪→ Lγ(Ω) is compact;

3. wq,Ω ∈ L
2−q
2−γ γ(Ω).
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Moreover, we have the double-sided estimates

(4.1) 1 ≤ λ2,γ(Ω)

(ˆ
Ω
w

2−q
2−γ γ

q,Ω dx

) 2−γ
γ

≤ 2− γ
γ − 2 (q − 1)

(
2− q
2− γ

)2

,

where λ2,γ(Ω) is the optimal Poincaré constant defined in (1.6).

Proof. As announced above, the equivalence 1.⇐⇒ 2. is already known, see also [3, Theorem 1.2]
for a different proof. It is sufficient to prove the equivalence 1.⇐⇒ 3.

Let us suppose that the embedding D1,2
0 (Ω) ↪→ Lγ(Ω) is continuous. As always, we set ΩR =

Ω ∩BR(0) and wR = wq,ΩR . Then by testing (2.3) with wβR for some β ≥ 1, we get

ˆ
ΩR

wβ+q−1
R dx = β

(
2

β + 1

)2 ˆ
ΩR

∣∣∣∣∇w β+1
2

R

∣∣∣∣2 dx
≥ β

(
2

β + 1

)2

λ2,γ(ΩR)

(ˆ
ΩR

w
β+1

2
γ

R dx

) 2
γ

≥ β
(

2

β + 1

)2

λ2,γ(Ω)

(ˆ
ΩR

w
β+1

2
γ

R dx

) 2
γ

.

By choosing3

β =
γ − 2 (q − 1)

2− γ ,

from the previous estimate we get(ˆ
ΩR

w
2−q
2−γ γ

R dx

) 2−γ
γ

≤ 2− γ
γ − 2 (q − 1)

(
2− q
2− γ

)2 1

λ2,γ(Ω)

By Fatou’s Lemma, we can take the limit as R goes to +∞ and get the desired integrability of
wq,Ω, together with the upper estimate in (4.1).

Suppose now that wq,Ω ∈ L
2−q
2−γ γ(Ω), this implies that wq,Ω < +∞ almost everywhere in Ω. We

take u ∈ C∞0 (Ω), then by Hölder’s inequality and Lemma 4.1 we have

ˆ
Ω
|ϕ|γ dx =

ˆ
Ω

|ϕ|γ

w
(2−q) γ

2
q,Ω

w
(2−q) γ

2
q,Ω dx ≤

(ˆ
Ω

ϕ2

w2−q
q,Ω

dx

) γ
2 (ˆ

Ω
w

2−q
2−γ γ

q,Ω dx

) 2−γ
2

≤
(ˆ

Ω
|∇ϕ|2 dx

) γ
2
(ˆ

Ω
w

2−q
2−γ γ

q,Ω dx

) 2−γ
2

.

We conclude by density of C∞0 (Ω) in D1,2
0 (Ω) that the embedding D1,2

0 (Ω) ↪→ Lγ(Ω) is continuous.
Moreover, we also obtain the lower bound in (4.1). �

The following result generalizes [3, Theorem 1.3] and [4, Theorem 9], by allowing any Lane-
Emden densities in place of the torsion function.

3Observe that β ≥ 1 thanks to the fact that q ≤ γ < 2.
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Proposition 4.3. Let 1 ≤ q < 2 and let Ω ⊂ RN be an open set. Then we have that

λ1(Ω) > 0 ⇐⇒ wq,Ω ∈ L∞(Ω).

Moreover, we have that

(4.2) λ1(Ω)
1
q−2 ≤ ‖wq,Ω‖L∞(Ω) ≤

(
2N C2

((
2 C
)2−q

+ 4

)) 1
2−q

λ1(Ω)
1
q−2 ,

where C is the same constant appearing in (A.1).

Proof. We suppose that wq,Ω ∈ L∞(Ω). This in particular implies that wq,Ω < +∞ almost every-
where in Ω. Then for any ϕ ∈ C∞0 (Ω) we have that

ˆ
Ω
ϕ2 dx =

ˆ
Ω

ϕ2

w2−q
q,Ω

w2−q
q,Ω dx

≤
(ˆ

Ω

ϕ2

w2−q
q,Ω

dx

)
‖wq,Ω‖2−qL∞(Ω) ≤ ‖wq,Ω‖

2−q
L∞(Ω)

ˆ
Ω
|∇ϕ|2 dx,

the last inequality being due to Lemma 4.1. This shows that

wq,Ω ∈ L∞(Ω) for 1 ≤ q < 2 =⇒ λ1(Ω) > 0,

together with the lower bound in (4.2).

The converse implication is more involved and we adapt the proof of [4, Theorem 9], which deals
with the case q = 1. Without loss of generality we can suppose Ω to be bounded and smooth;
indeed, the general case can be then covered by considering a family of smooth bounded sets
approaching Ω from inside.

For ease of notation we set w := wq,Ω and we suppose that w(0) = ‖w‖L∞(Ω). This can be done
up to translating Ω. Moreover we can extend w to 0 outside Ω. Since ∂Ω is regular, we get by
means of Hopf’s Lemma that the extended function, which we still denote by w, satisfies

(4.3) −∆w ≤ wq−1,

in the weak sense. Let R > 0 to be fixed, and let ζ be a cut-off Lipschitz function such that

0 ≤ ζ ≤ 1, ζ = 1 in BR(0), ζ = 0 in RN \B2R(0), |∇ζ| ≤ 1

R
.

From the variational characterization of λ1(Ω), we have

(4.4) λ1(Ω) ≤

ˆ
Ω
|∇(w ζ)|2 dx
ˆ

Ω
(w ζ)2 dx

=

ˆ
Ω

(
|∇w|2 ζ2 + 2w ζ 〈∇w,∇ζ〉+ |∇ζ|2w2

)
dx

ˆ
Ω
w2 ζ2 dx

.

By using the positive test function w ζ2 into the weak formulation of (4.3), we get that
ˆ

Ω
|∇w|2 ζ2 dx+ 2

ˆ
Ω
w ζ 〈∇w,∇ζ〉 dx =

ˆ
Ω
〈∇w,∇(w ζ2)〉 dx ≤

ˆ
Ω
wq ζ2 dx.
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Thus, by recalling that w attains its maximum in 0 and using the properties of ζ, from (4.4) we
obtain that

(4.5) λ1(Ω) ≤

ˆ
Ω

(
|∇ζ|2w2 + wq ζ2

)
dx

ˆ
Ω
w2 ζ2 dx

≤ 2N ωN
w(0)2RN−2 + w(0)q RNˆ

BR(0)
w2 dx

.

We use now the local L∞ − L2 estimate of Lemma A.1 to handle the denominator. Indeed, by
(A.1) with α = 2 we have that

ˆ
BR(0)

w2 dx ≥ ωN RN
(

1

C w(0)−
(
R

2

) 2
2−q
)2

.

By spending this information in (4.5), we end up with

λ1(Ω) ≤ 2N
R−2w(0)2 + w(0)q(
1

C w(0)−
(
R

2

) 2
2−q
)2 .

By choosing

R = 2

(
w(0)

2 C

)(2−q)/2
,

we obtain the inequality

λ1(Ω) ≤ 2N
4 C2

w(0)2−q

(
1

4

(
2 C
)2−q

+ 1

)
,

and thus

w(0) ≤
(

2N C2

((
2 C
)2−q

+ 4

)) 1
2−q

λ1(Ω)
1
q−2 .

This concludes the proof. �

Remark 4.4 (Super-homogeneous embeddings). A closer inspection of the proof reveals that with
exactly the same argument we can prove the following stronger statement: for every 1 ≤ q < 2 and
2 ≤ γ < 2∗, we have that

(4.6) λ2,γ(Ω) > 0 ⇐⇒ wq,Ω ∈ L∞(Ω),

where

2∗ =
2N

N − 2
, for N ≥ 3 and 2∗ = +∞, for N ∈ {1, 2}.

Observe that (4.6) implies in particular that

(4.7) D1,2
0 (Ω) ↪→ L2(Ω) ⇐⇒ D1,2

0 (Ω) ↪→ Lγ(Ω), for 2 < γ < 2∗.

For the implication =⇒, it is sufficient to reproduce the proof above, using the variational charac-
terization of λ2,γ(Ω) and the L∞ estimate (A.1), this time with α = γ.

For the converse implication, it is sufficient to use the Gagliardo-Nirenberg interpolation inequality
(see for example [3, Proposition 2.6])(ˆ

RN
|u|γ dx

) 1
γ

≤ C
(ˆ

RN
|u|2 dx

) 1−ϑ
2
(ˆ

RN
|∇u|2 dx

)ϑ
2

,
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where C = C(N, γ) > 0 and

ϑ =

(
1− 2

γ

)
N

2
, 2 < γ < 2∗.

This shows that if D1,2
0 (Ω) ↪→ L2(Ω) is continuous, then D1,2

0 (Ω) ↪→ Lγ(Ω) is continuous as well.
We leave the details to the interested reader.

We point out that the equivalence (4.7) can also be found in [13, Theorem 15.4.1]. The proof
there is different.

We conclude this section with the following simple result which we record for completeness.

Proposition 4.5. Let 1 ≤ q < 2 and let Ω ⊂ RN be an open set such that the embedding D1,2
0 (Ω) ↪→

Lq(Ω) is continuous. Then the embedding D1,2
0 (Ω) ↪→ L2(Ω) is compact.

Proof. We already know by Theorem 4.2 that the continuity of the embedding D1,2
0 (Ω) ↪→ Lq(Ω)

is equivalent to its compactness. Then it is sufficient to use the Gagliardo-Nirenberg inequality(ˆ
RN
|u|2 dx

) 1
2

≤ C
(ˆ

RN
|u|q dx

) 1−ϑ
q
(ˆ

RN
|∇u|2 dx

)ϑ
2

,

where C = C(N, q) > 0 and

ϑ =
(

1− q

2

) 2N

(2− q)N + 2 q
.

This guarantess that every bounded sequence {un}n∈N ⊂ D1,2
0 (Ω) strongly converging in Lq(Ω),

strongly converges in L2(Ω) as well. This gives the desired conclusion. �

Remark 4.6. The converse implication of the previous proposition does not hold. Indeed, let
{ri}i∈N ⊂ R be a sequence of strictly positive numbers, such that

lim
i→∞

ri = 0 and
∞∑
i=0

r
2

2−γ+N

i = +∞, for every 1 ≤ γ < 2.

For example, one could take ri = 1/ log(2+ i). We then define the sequence of points {xi}i∈N ⊂ RN
by {

x0 = (0, . . . , 0),
xi+1 = (ri + ri+1, 0, . . . , 0) + xi,

and the disjoint union of balls

Ω =
∞⋃
i=0

Bri(xi).

Thanks to the choice of the radii ri we have

wΩ ∈ L∞(Ω) and
for every ε > 0, there exists R > 0

such that ‖wΩ‖L∞(Ω\BR) < ε,

thus the embedding D1,2
0 (Ω) ↪→ L2(Ω) is compact, see [3, Theorem 1.3].

On the other hand, wΩ 6∈ Lγ(Ω) for every γ ∈ [1,+∞) (see [3, Example 5.2]). Thus, by

Theorem 4.2, D1,2
0 (Ω) is not continuously embedded in any Lγ(Ω), with 1 ≤ γ < 2.
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5. Hardy-Lane-Emden inequalities for sets with positive spectrum

We want to generalize Theorem 3.1 and prove that the Hardy-Lane-Emden inequality (3.1) holds
true on any open set Ω ⊂ RN with positive spectrum, i.e. such that the constant λ1(Ω) defined in
(1.7) is positive.

We need an expedient result which has some interest by itself.

Proposition 5.1. Let 1 ≤ q < 2 and let Ω ⊂ RN be an open set with positive spectrum. Then
∇wq,Ω ∈ L2

loc(Ω) and wq,Ω is a local weak solution of the Lane-Emden equation

(5.1) −∆wq,Ω = wq−1
q,Ω ,

i.e. we haveˆ
Ω
〈∇wq,Ω,∇ϕ〉 dx =

ˆ
Ω
wq−1
q,Ω ϕdx, for every ϕ ∈ D1,2

0 (Ω′) and Ω′ b Ω.

Proof. Let wR be the Lane-Emden function of Ω ∩ BR(0) and let Ω′ b Ω. We aim to show that
there exists a constant C > 0 such that

(5.2)

ˆ
Ω′
|∇wR|2 dx ≤ C, for every R > 0.

Indeed, this entails that ∇wR weakly converge (up to extracting a sequence) in L2(Ω′) to a vector
field Z ∈ L2(Ω′). The assumption λ1(Ω) > 0 implies that wq,Ω ∈ L∞(Ω), by Proposition 4.3.
Then by recalling that 0 ≤ wR ≤ wq,Ω, it is not difficuly to see that Z must coincide with the
distributional gradient ∇wq,Ω (see for example [3, Proposition 3.6]).

In particular, for every ϕ ∈ C∞0 (Ω′) the identityˆ
Ω
〈∇wR,∇ϕ〉 dx =

ˆ
Ω
wq−1
R ϕdx

passes to the limit and we are done. The fact that we can allow test functions ϕ ∈ D1,2
0 (Ω′) follows

by density.
Thus we are left to show that (5.2) holds true. Let Ω′ b Ω′′ b Ω and take η ∈ C∞0 (Ω′′) a standard

cut-off function, with η = 1 on Ω′ and |∇η| ≤ C/dist(Ω′,Ω′′). Then, for R > 0 large enough, we
test the Lane-Emden equation satisfied by wR with ϕ = wR η

2 . This yieldsˆ
Ω
|∇wR|2 η2 dx =

ˆ
Ω
η2wqR dx− 2

ˆ
Ω
wR η 〈∇wR,∇η〉 dx

≤
ˆ

Ω
η2wqR dx+

1

2

ˆ
Ω
|∇wR|2 η2 dx+ 2

ˆ
Ω
|∇η|2w2

R dx.

Since by construction we have wR ≤ wq,Ω, we deduce that
ˆ

Ω′
|∇wR|2 dx ≤ 2

ˆ
Ω′′
wqq,Ω dx+

4C

dist(∂Ω′, ∂Ω′′)

ˆ
Ω′′
w2
q,Ω dx.

By recalling that wq,Ω ∈ L∞(Ω), we get (5.2) from the previous estimate. �

Theorem 5.2. Let 1 ≤ q < 2 and let Ω ⊂ RN be an open set with positive spectrum. Then for
every u ∈ C∞0 (Ω) and δ > 0 we still have (3.1).
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Proof. Let Ω′ b Ω and ϕ ∈ C∞0 (Ω′). Since wq,Ω ∈ H1(Ω′) by the previous result, we can use
ϕ2/(wq,Ω + ε) as a test function in (5.1). Then we can repeat word by word the proof of Theorem
3.1 to show that (3.1) holds for any ϕ ∈ C∞0 (Ω′). The conclusion then follows by arbitrariness of
Ω′ b Ω. �

6. Lower bounds for the ground state energy

For a negative potential V ∈ L2
loc(Ω), we go back to our initial task and consider the operator

HΩ,V = −∆ + V . We already observed that HΩ,V is symmetric and self-adjoint, with domain
D(HΩ,V ) defined in (1.3). We recall the notation from the Introduction

QΩ,V (ϕ) =

ˆ
Ω
|∇ϕ|2 dx+

ˆ
Ω
V ϕ2 dx, ϕ ∈ D(HΩ,V ),

and we set

λ1(Ω;V ) = inf
u∈C∞0 (Ω)

{
QΩ,V (ϕ) :

ˆ
Ω
ϕ2 dx = 1

}
.

We need the following expedient result which asserts that under suitable assumptions on the po-
tential V , the infimum in the definition of λ1(Ω;V ) can be equivalently taken upon D1,2

0 (Ω).

Lemma 6.1. Let Ω ⊂ RN be an open set with positive spectrum, and let V ∈ L2
loc(Ω) be a negative

potential. We further suppose that there exists a constant C > 0 such that

(6.1)

ˆ
Ω
|V |ϕ2 dx ≤ C

ˆ
Ω
|∇ϕ|2 dx, for every ϕ ∈ C∞0 (Ω).

Then

λ1(Ω;V ) = inf
ϕ∈D1,2

0 (Ω)

{
QΩ,V (ϕ) :

ˆ
Ω
ϕ2 dx = 1

}
.

Proof. Since C∞0 (Ω) ⊂ D1,2
0 (Ω), it is straightforward to see that

λ1(Ω;V ) ≥ inf
ϕ∈D1,2

0 (Ω)

{
QΩ,V (ϕ) :

ˆ
Ω
ϕ2 dx = 1

}
.

In order to prove the reverse inequality, we take ϕ ∈ D1,2
0 (Ω) with unit L2 norm and a sequence

{ϕn}n∈N ⊂ C∞0 (Ω) converging to ϕ in D1,2
0 (Ω). Observe that since λ1(Ω) > 0, this in particular im-

plies that {ϕn}n∈N converges strongly in L2(Ω) as well, by Poincaré inequality. From the definition
of λ1(Ω;V ), we obtain that

λ1(Ω;V ) ≤

ˆ
Ω
|∇ϕn|2 dx+

ˆ
Ω
V ϕ2

n dxˆ
Ω
ϕ2
n dx

, for every n ∈ N.

We observe that

lim
n→∞

ˆ
Ω
|∇ϕn|2 dx =

ˆ
Ω
|∇ϕ|2 dx and lim

n→∞

ˆ
Ω
ϕ2
n dx = 1.
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In order to handle the term containing V , we first observe that by Fatou’s Lemma and density of
C∞0 (Ω) in D1,2

0 (Ω), inequality (6.1) extends to the whole D1,2
0 (Ω). Then we use that∣∣∣∣ˆ

Ω
V ϕ2

n dx−
ˆ

Ω
V ϕ2 dx

∣∣∣∣ ≤ (ˆ
Ω
|V | (ϕn − ϕ)2 dx

) 1
2
(ˆ

Ω
|V | (ϕn + ϕ)2 dx

) 1
2

≤ C
(ˆ

Ω
|∇ϕn −∇ϕ|2 dx

) 1
2

×
[(ˆ

Ω
|∇ϕn|2 dx

) 1
2

+

(ˆ
Ω
|∇ϕ|2 dx

) 1
2

]
,

thanks to Hölder and Minkowski inequalities, together with the hypothesis on V . If we use the
convergence in D1,2

0 (Ω), we obtain that

lim
n→∞

ˆ
Ω
V ϕ2

n dx =

ˆ
Ω
V ϕ2 dx,

which gives the desired conclusion. �

The following is the main result of the paper.

Theorem 6.2. Let Ω ⊂ RN be an open set with positive spectrum and let V ∈ L2
loc(Ω). For an

exponent 1 ≤ q < 2, we suppose that

(6.2) 0 ≥ V ≥ −1

4

∣∣∣∣∇wq,Ωwq,Ω

∣∣∣∣2 , a. e. in Ω.

Then the spectrum σ(HΩ,V ) of HΩ,V is positive and we have

inf σ(HΩ,V ) = λ1(Ω;V ) ≥ 1

2
‖wq,Ω‖q−2

L∞(Ω).

Proof. We prove separately that

λ1(Ω;V ) ≥ 1

2
‖wq,Ω‖q−2

L∞(Ω) and inf σ(HΩ,V ) = λ1(Ω;V ).

We first observe that assuming λ1(Ω) > 0, implies the validity of the Hardy-Lane-Emden inequality

(6.3)
1

4

ˆ
Ω

∣∣∣∣∇wq,Ωwq,Ω

∣∣∣∣2 ϕ2 dx+
1

2

ˆ
Ω

ϕ2

w2−q
q,Ω

dx ≤
ˆ

Ω
|∇ϕ|2 dx, for ϕ ∈ C∞0 (Ω).

Indeed, this follows from Theorem 5.2 with δ = 2. Thanks to hypothesis (6.2), we thus obtain

1

2

ˆ
Ω

ϕ2

w2−q
q,Ω

dx ≤
ˆ

Ω
|∇ϕ|2 dx+

ˆ
Ω
V ϕ2 dx, for ϕ ∈ C∞0 (Ω).

Also observe that wq,Ω ∈ L∞(Ω), thanks to Proposition 4.3. In particular, we get the following
lower bound for the quadratic form

QΩ,V (ϕ) ≥ 1

2 ‖wq,Ω‖2−qL∞(Ω)

, for every ϕ ∈ C∞0 (Ω) with

ˆ
Ω
ϕ2 dx = 1.

By arbitrariness of ϕ, this gives the lower bound on λ1(Ω;V ).
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We now prove that

inf σ(HΩ,V ) = λ1(Ω;V ).

To see this, we first observe that by self-adjointness (see [17, Theorem 2.20]) we have that

inf σ(HΩ,V ) = inf
ϕ∈D(HΩ,V )

{
QΩ,V (ϕ) :

ˆ
Ω
ϕ2 dx = 1

}
.

By recalling that C∞0 (Ω) ⊂ D(HΩ,V ), this immediately gives

inf σ(HΩ,V ) ≤ inf
ϕ∈C∞0 (Ω)

{
QΩ,V (ϕ) :

ˆ
Ω
ϕ2 dx = 1

}
= λ1(Ω;V ).

In order to prove the reverse inequality, we make use of Lemma 6.1. For this, we need to prove
that our potentials V satisfy (6.1). But this easily follows from (6.3) and (6.2), which gives that

(6.4)

ˆ
Ω
|V |ϕ2 dx ≤

ˆ
Ω
|∇ϕ|2 dx, for every ϕ ∈ C∞0 (Ω).

We can thus apply Lemma 6.1 and obtain that

λ1(Ω;V ) = inf
ϕ∈D1,2

0 (Ω)

{
QΩ,V (ϕ) :

ˆ
Ω
ϕ2 dx = 1

}
≤ inf

ϕ∈D(HΩ,V )

{
QΩ,V (ϕ) :

ˆ
Ω
ϕ2 dx = 1

}
= inf σ(HΩ,V ),

where we also used that D(HΩ,V ) ⊂ H1
0 (Ω) = D1,2

0 (Ω), see Remark 2.1. This concludes the
proof. �

By using the L∞ estimate of Proposition 4.3, we also get the following explicit lower bound on
λ1(Ω;V ), in terms of a dimensional constant and λ1(Ω).

Corollary 6.3. Under the assumptions of Theorem 6.2, we also have

(6.5) inf σ(HΩ,V ) = λ1(Ω;V ) ≥ 1

2

1

2NC2

((
2 C
)2−q

+ 4

) λ1(Ω),

where C > 0 is the same constant appearing in (A.1).

Remark 6.4 (On the sharpness of the bound). Let Ω ⊂ RN be open with positive spectrum and
let h ∈ L∞(Ω) be a nonnegative function. It is easy to see that if V is as in Theorem 6.2, then the
perturbed potential V −h still verifies hypothesis (6.1) of Lemma 6.1. Indeed, for every ϕ ∈ C∞0 (Ω)
we haveˆ

Ω
|V − h|ϕ2 dx =

ˆ
Ω

(−V )ϕ2 dx+

ˆ
Ω
hϕ2 dx

≤
ˆ

Ω
|∇ϕ|2 dx+ ‖h‖L∞(Ω)

ˆ
Ω
ϕ2 dx ≤

(
1 +
‖h‖L∞(Ω)

λ1(Ω)

) ˆ
Ω
|∇ϕ|2 dx,
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where we used (6.4) and the fact that Ω has positive spectrum. Thus we get

λ1(Ω;V − h) = inf
ϕ∈D1,2

0 (Ω)

{
QΩ,V−h(ϕ) :

ˆ
Ω
ϕ2 dx = 1

}
≥ inf

ϕ∈D1,2
0 (Ω)

{
QΩ,V (ϕ) :

ˆ
Ω
ϕ2 dx = 1

}
− ‖h‖L∞(Ω)

≥ λ1(Ω;V )− ‖h‖L∞(Ω).

In view of the quantitative bound (6.5), the spectrum σ(HΩ,V−h) remains positive for example if
the bounded perturbation −h is such that

‖h‖L∞(Ω) <
1

2

1

2NC2

((
2 C
)2−q

+ 4

) λ1(Ω).

In other words, we have room to translate downward the potential V and still guarantee that the
spectrum stays positive.

Remark 6.5 (The choice of δ). The result of Theorem 6.2 follows by chosing δ = 2 in (3.1). One
may wonder why we limited ourselves to this choice only. In order to clarify this point, we start by
rewriting (3.1) as

1

δ

ˆ
Ω

|u|2
w2−q
q,Ω

dx ≤
ˆ

Ω
|∇u|2 dx+

1

δ

(
1

δ
− 1

) ˆ
Ω

∣∣∣∣∇wq,Ωwq,Ω

∣∣∣∣2 |u|2 dx.
This implies that for every potential V such that

(6.6) V ≥ 1

δ

(
1

δ
− 1

) ∣∣∣∣∇wq,Ωwq,Ω

∣∣∣∣2 , a. e. in Ω,

we have that

1

δ

ˆ
Ω

|u|2
w2−q
q,Ω

dx ≤
ˆ

Ω
|∇u|2 dx+

ˆ
Ω
V |u|2 dx.

In particular, we get the following lower bound

QΩ,V (ϕ) ≥ 1

δ ‖wq,Ω‖2−qL∞(Ω)

, for every ϕ ∈ C∞0 (Ω) with

ˆ
Ω
ϕ2 dx = 1.

Observe that the right-hand side in (6.6) is pointwise minimal when δ = 2. This explains our
choice.

7. Applications

In this section, we compute the limit potential appearing in (6.6) in some particular cases and
give the relevant lower bound on the ground state energy λ1(Ω;V ). In the following examples we
take q = 1, i.e. we use the torsion function.
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V (x) = − |x|2
(1− |x|2)2

+

Figure 1. The limit potential in a ball of radius 1.

7.1. N−dimensional ball. Let us take Ω = B1(0) ⊂ RN , then

wΩ(x) =
1− |x|2

2N
, x ∈ B1(0),

and thus

−1

4

∣∣∣∣∇wΩ

wΩ

∣∣∣∣2 = − |x|2
(1− |x|2)2

.

Thus for every V ∈ L2
loc(Ω) such that

0 ≥ V ≥ − |x|2
(1− |x|2)2

,

from Theorem 6.2 we get

λ1(Ω;V ) ≥ 1

2 ‖wΩ‖L∞(Ω)
= N.

7.2. An infinite slab. We now consider the set Ω = (−1, 1) × RN−1. We first need to compute
its torsion function. This is the content of the next

Lemma 7.1. Let Ω = (−1, 1)× RN−1 ⊂ RN . Then its torsion function is given by

wΩ(x1, x
′) =

1− x2
1

2
, (x1, x

′) ∈ (−1, 1)× RN−1.

Proof. We set

QR = (−1, 1)× (−R,R)N−1,

then we notice that
wΩ = lim

R→+∞
wQR .

That is, we can approximate Ω by the sets QR and not only by Ω ∩ BR(0), in order to construct
wΩ. This follows since

wΩ = lim
R→+∞

wΩ∩BR(0) = lim
R→+∞

wΩ∩B√NR(0),
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and the fact that by the comparison principle

wΩ∩BR(0) ≤ wQR ≤ wΩ∩B√NR(0),

for R� 1. Let

w(x, x′) =
1− x2

1

2
, (x1, x

′) ∈ (−1, 1)× RN−1,

and notice that w is a classical solution in Ω of −∆w = 1, vanishing on ∂Ω.
Observe that w ≥ wQR for any R > 0, thanks to the comparison principle. Thus

w ≥ wΩ = lim
R→+∞

wQR .

To get the reverse inequality, we observe that, again by the comparison principle, wQR ≥ wER .
Here ER is the ellipsoid inscribed in QR, given by

ER =

{
(x1, x

′) ∈ RN : x2
1 +
|x′|2
R2

= 1

}
,

and it is immediate to check that

wER =
R2

R2 + (N − 1)

1− x2
1 −
|x′|2
R2

2
.

This gives

wΩ ≥ lim
R→+∞

wER = w,

and thus the desired conclusion. �

Let us take Ω = (−1, 1)× RN−1, then

1

4

∣∣∣∣∇wΩ

wΩ

∣∣∣∣2 =
x2

1

(1− x2
1)2

.

Thus for every potential V ∈ L2
loc(Ω) such that

0 ≥ V (x1, x
′) ≥ − x2

1

(1− x2
1)2

,

still by Theorem 6.2 we get

λ1(Ω;V ) ≥ 1

2 ‖wΩ‖L∞(Ω)
= 1.

7.3. A rectilinear wave-guide. Finally, we want to consider a set of the form Ω = ω×R, where
ω ⊂ RN−1 is an open bounded set with Lipschitz boundary. Again, we first identify its torsion
function.

Lemma 7.2. Let Ω = ω × R ⊂ RN . Then its torsion function is given by

(7.1) wΩ(x′, xN ) = wω(x′), (x′, xN ) ∈ ω × R

where wω stands for the torsion function of the set ω in RN−1.
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Figure 2. Approximating an infinite slab.

Proof. We divide the proof in four steps.

Step 1. In this step, we prove that for every ` > 0

wΩ(x′, xN + `) = wΩ(x′, xN ), (x′, xN ) ∈ ω × R,

i.e. the torsion function does not depend on the xN variable.
To see this, let us suppose for simplicity that ω ⊂ (−R0, R0)N−1, and take R ≥ R0. We set

QR = Ω ∩ (−R,R)N and wR = wQR . Then

(7.2) wΩ(x′, xN + `) = lim
R→+∞

wR(x′, xN + `).

We now observe that if we further set QR,` = Ω∩
(
(−R,R)N−1× (−R− `, R− `)

)
and wR,` = wQR,`

then by construction we have that

(7.3) wR,`(x
′, xN ) = wR(x′, xN + `).

On the other hand, for every R ≥ max{`, R0} we have that QR−` ⊂ QR,` ⊂ Q2R. Thus by the
comparison principle

(7.4) lim
R→+∞

wR,`(x
′, xN ) = wΩ(x′, xN ).

Eventually, (7.2), (7.3) and (7.4) imply the claim.

Step 2. Here we prove that

wΩ ∈ H1(ω × (−R0, R0)), for every R0 > 0,

which enforces the general result of Proposition 5.1.
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We set as before QR = Ω∩(−R,R)N and call wR = wQR . We fix R0 > 0 and consider R > R0+1.
We then take a one-dimensional cut-off function η supported on [−R0 − 1, R0 + 1] such that

0 ≤ η ≤ 1, η = 1 on [−R0, R0], η′ ≤ 1.

In the equation verified by wR, we insert the test function

ϕ(x′, xN ) = wR(x′, xN ) η2(xN ).

After some standard manipulations, we get

ˆ
ω×(−R0−1,R0+1)

|∇wR|2 η2 dx ≤ C
ˆ
ω×(−R0−1,R0+1)

wR η
2 dx

+ C

ˆ
ω×(−R0−1,R0+1)

w2
R |η′|2 dx.

By recalling that 0 ≤ wR ≤ wΩ and that4 wΩ ∈ L∞(Ω), from the previous argument we get

ˆ
ω×(−R0,R0)

|∇wR|2 dx ≤ C |ω|R0 ‖wΩ‖L∞(Ω)

(
‖wΩ‖L∞(Ω) + 1

)
,

for every R� 1. This gives a uniform H1 estimate on ω× (−R0, R0) that we can take to the limit
and obtain the desired Sobolev regularity of wΩ.

ω

ω × (−R,R)

2R

Figure 3. A rectilinear wave-guide.

4The set Ω is bounded in every direction orthogonal to the xN axis, thus it is classical to see that λ1(Ω) > 0.
Then wΩ ∈ L∞(Ω) by Proposition 4.3.
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Step 3. We now prove that for every R0 > 0, the torsion function wΩ solves the mixed boundary
value problem

(7.5)

 −∆u = 1, in ω × (−R0, R0),
u = 0, on ∂ω × (−R0, R0),

uxN = 0, on ω × {−R0, R0}.
We first observe that wΩ is a solution of the equation in ω × (−R0, R0). Indeed, it is sufficient to
pass to the limit in the equation satisfied by wR and use the uniform H1 estimate above.

As for the boundary conditions, we observe that the Neumann one follows since wΩ does not
depend on the xN variable, by Step 1. The compactness of the trace operator

H1(ω × (−R0, R0)) ↪→ L2(∂(ω × (−R0, R0)),

and the uniform H1 estimate of Step 2 for wR imply the Dirichlet condition on the lateral boundary.

Step 4. In order to conclude, it is sufficient to observe that by Step 3 wΩ and wω both solve (7.5).
Since the solution to the latter is unique, this gives the desired conclusion (7.1). �

When the cross-section ω ⊂ RN−1 of the wave-guide has a particular geometry, we can explicitely
compute wΩ and thus the limit potential (6.2). For example, in the case that the cross-section is a
(N − 1)−dimensional ball, i.e. when

Ω = {x′ ∈ RN−1 : |x′| < 1} × R,

then by Lemma 7.2 we have that

wΩ(x′, xN ) =
1− |x′|2
2 (N − 1)

, |x′| < 1,

and thus ∣∣∣∣∇wΩ

wΩ

∣∣∣∣2 = − |x′|2
(1− |x′|2)2

.

As before, we get that for every V ∈ L2
loc(Ω) such that

0 ≥ V (x′, xN ) ≥ − |x′|2
(1− |x′|2)2

,

it holds that

λ1(Ω;V ) ≥ 1

2 ‖wΩ‖L∞(Ω)
= N − 1.

Appendix A. A local L∞ estimate for Lane-Emden densities

We recall that the volume of the unit ball in RN is given by

ωN =
πN/2

Γ(N/2 + 1)
,

where Γ is the usual Gamma function. For N ≥ 3, we denote by

TN = sup
u∈C∞0 (RN )

{(ˆ
RN
|u|2∗ dx

) 2
2∗

: ‖∇u‖L2(RN ) = 1

}
.
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the optimal constant in the Sobolev inequality for D1,2
0 (RN ), i.e. the lowest number C > 0 such

that (ˆ
RN
|u|2∗ dx

) 2
2∗

≤ C
ˆ
RN
|∇u|2 dx,

holds for any u ∈ C∞0 (RN ). We recall that this is given by (see [16])

TN = πN (N − 2)

(
Γ(N/2)

Γ(N)

) 2
N

.

In Section 4, we needed a local L∞ estimate for weak subsolutions of the Lane-Emden equation.
The proof is standard routine in Elliptic Regularity Theory, our main concern is in the explicit
expression of the constant C appearing in the estimate. For this reason, we provide a detailed
proof.

Lemma A.1. Let λ > 0 and 1 ≤ q < 2. Let u ∈ H1
loc(Ω)∩L∞loc(Ω) be a positive function such that

ˆ
〈∇u,∇ϕ〉 dx ≤ λ

ˆ
uq−1 ϕdx,

for every positive ϕ ∈ H1
0 (B) and every ball B b Ω. Then for every ball BR0 b Ω and every α ≥ 2

we have

(A.1) ‖u‖L∞(BR0/2
) ≤ C

( 
BR0

uα dx

) 1
α

+

(
λ

4

) 1
2−q

R
2

2−q
0

 ,
where the constant C > 0 is given by

C =



√
ωN

(
4N

N − 2

)N (N−2)
8 (

640TN

)N
4
, for N ≥ 3,

√
π (2 γ)

γ

(γ−2)2

(
640

λ2,γ(B1)

) γ
2 (γ−2)

, for N = 2,

8
√

5, for N = 1.

Here γ is any number larger that 2 and λ2,γ(B1) is the Sobolev-Poincaré constant defined in (1.6).

Proof. We divide the proof in three cases, depending on the dimension N .

Case N ≥ 3. We take R0/2 ≤ r < R ≤ R0 and a pair of concentric balls Br ⊂ BR b Ω. We use
as a test function

ϕ = η2 (u+ δ)β,

where δ > 0, β ≥ 1 and η is a standard cut-off function, supported on BR and constantly 1 on Br,
such that

|∇η| ≤ 1

R− r .
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With standard manipulations, we obtain that

ˆ ∣∣∣∇(u+ δ)
β+1

2

∣∣∣2 η2 dx ≤
(
β + 1

β

)2 ˆ
|∇η|2 (u+ δ)β+1 dx

+ λ
2

β

(
β + 1

2

)2 ˆ
η2 (u+ δ)β+q−1 dx.

We now observe that

(u+ δ)β+q−1 ≤ (u+ δ)β+1 δq−2 and

(
β + 1

β

)2

≤ 4

β

(
β + 1

2

)2

,

thus we get thatˆ ∣∣∣∇(u+ δ)
β+1

2

∣∣∣2 η2 dx ≤ 4β

[
1

(R− r)2
+ λ δq−2

] ˆ
BR

(u+ δ)β+1 dx.

We add on both sides the term ˆ
|∇η|2 (u+ δ)β+1 dx,

and we obtain thatˆ ∣∣∣∇((u+ δ)
β+1

2 η
)∣∣∣2 dx ≤ 10β

[
1

(R− r)2
+ λ δq−2

] ˆ
BR

(u+ δ)β+1 dx.

We then use Sobolev inequality on the left-hand side, so to obtain

(A.2)

(ˆ
Br

(
(u+ δ)

β+1
2

)2∗

dx

) 2
2∗

≤ 10TN β

[
1

(R− r)2
+ λ δq−2

] ˆ
BR

(u+ δ)β+1 dx.

We now introduce the sequence of diverging exponents

ϑi =
βi + 1

2
=

(
2∗

2

)i
, i ∈ N,

and the sequence of shrinking radii

Ri = r0 +
R0 − r0

2i
, i ∈ N.

From (A.2), we get the iterative scheme(ˆ
BRi+1

(u+ δ)2ϑi+1 dx

) 1
2ϑi+1

≤
(

80TN

[
4i

(R0 − r0)2
+ λ δq−2

]) 1
2ϑi

(ϑi)
1

2ϑi

×
(ˆ

BRi

(u+ δ)2ϑi dx

) 1
2ϑi

.

Before launching the Moser’s iteration, it is time to declare our choice of δ > 0: we take it to be

(A.3) δ = (λ (R0 − r0)2)
1

2−q .
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Thus we get that (ˆ
BRi+1

(u+ δ)2ϑi+1 dx

) 1
2ϑi+1

≤
(

160TN
(R0 − r0)2

) 1
2ϑi

(4i ϑi)
1

2ϑi

×
(ˆ

BRi

(u+ δ)2ϑi dx

) 1
2ϑi

.

We start from i = 0 and iterate infinitely many times. We end up with the estimate

‖u+ δ‖L∞(Br0 ) ≤ CN

(
160TN

)N
4

(R0 − r0)
N
2

(ˆ
BR0

(u+ δ)2 dx

) 1
2

,

with

CN =

(
4N

N − 2

)N (N−2)
8

.

In particular, by taking r0 = R0/2, we obtain with simple manipulations that

‖u‖L∞(BR0/2
) ≤
√
ωN CN

(
640TN

)N
4

( 
BR0

u2 dx

) 1
2

+ δ

 .
We now recall the definition (A.3) of δ, thus the previous estimate rewrites as

‖u‖L∞(BR0/2
) ≤
√
ωN CN

(
640TN

)N
4

×

( 
BR0

u2 dx

) 1
2

+

(
λ

(
R0

2

)2
) 1

2−q
 .

By Jensen’s inequality, we can eventually replace the L2 norm on the right-hand side by any Lα

norm with α ≥ 2.

Case N = 2. The proof runs as before, the only difference is that we now use Sobolev-Poincaré
inequality for the embedding D1,2

0 (BR) ↪→ Lγ(BR), in place of Sobolev inequality. Here γ is any
exponent larger than 2. Thus, in place of (A.2) we now get(ˆ

Br

(
(u+ δ)

β+1
2

)γ
dx

) 2
γ

≤ 10β

λ2,γ(BR)

[
1

(R− r)2
+ λ δq−2

] ˆ
BR

(u+ δ)β+1 dx.

We used the notation

λ2,γ(BR) = min
u∈D1,2

0 (BR)

{ˆ
BR

|∇ϕ|2 dx : ‖ϕ‖Lγ(BR) = 1

}
.

Accordingly, we modify the definition of the exponents ϑi as follows

ϑi =
βi + 1

2
=
(γ

2

)i
, i ∈ N,

then we still take the sequence of shrinking radii

Ri = r0 +
R0 − r0

2i
, i ∈ N.
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We get the iterative scheme(ˆ
BRi+1

(u+ δ)2ϑi+1 dx

) 1
2ϑi+1

≤
(

80

λ2,γ(BR0)

[
4i

(R0 − r0)2
+ λ δq−2

]) 1
2ϑi

(ϑi)
1

2ϑi

×
(ˆ

BRi

(u+ δ)2ϑi dx

) 1
2ϑi

,

where we also used that

λ2,γ(BRi) ≥ λ2,γ(BR0), for every i ∈ N.

We still take δ as in (A.3). After infinitely many iterations, we now get

‖u+ δ‖L∞(Br0 ) ≤ Cγ

(
160λ2,γ(BR0)−1

) γ
2 (γ−2)

(R0 − r0)
γ
γ−2

(ˆ
BR0

(u+ δ)2 dx

) 1
2

,

with

Cγ = (2 γ)
γ

(γ−2)2 .

Finally, we observe that by scaling (recall that we are in dimension N = 2)

λ2,γ(BR0) = R
− 4
γ

0 λ2,γ(B1),

thus by taking r0 = R0/2 we obtain

‖u‖L∞(BR0/2
) ≤
√
π Cγ

(
640λ2,γ(B1)−1

) γ
2 (γ−2)

( 
BR0

(u+ δ)2 dx

) 1
2

.

By recalling the definition of δ, we get the conclusion.

Case N = 1. This is the simplest case. We take the test function

ϕ = η2 (u+ δ),

where η is a standard cut-off function as above, associated with a pair of concentric intervals of
width 2 r0 < 2R0. For simplicity, we suppose them to be centered at the origin. By proceeding as
before with β = 1, we arrive atˆ R0

−R0

∣∣∣∣((u+ δ) η
)′∣∣∣∣2 dx ≤ 10

[
1

(R0 − r0)2
+ λ δq−2

] ˆ R0

−R0

(u+ δ)2 dx.

We observe that by Sobolev embedding in dimension 1 we have thatˆ R0

−R0

∣∣((u+ δ) η)′
∣∣2 dx ≥ 1

2R0
‖(u+ δ) η‖2L∞(−R0,R0)

≥ 1

2R0
‖u‖2L∞(−r0,r0).

We still make the choice (A.3) for δ, then we get that

‖u‖L∞(−r0,r0) ≤
4
√

5 R0

R0 − r0

( R0

−R0

(u+ δ)2 dx

) 1
2

.
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By using Minkowski inequality and recalling the definition of δ, we conclude by taking r0 = R0/2.
�
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