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Abstract. We obtain a Struwe type global compactness result for a class of nonlinear nonlocal
problems involving the fractional p−Laplacian operator and nonlinearities at critical growth.
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1. Introduction

1.1. Overview. In the seminal paper [21], M. Struwe obtained a very useful global compactness
result for Palais-Smale sequences of the energy functional

I(u) =
1

2

ˆ
Ω
|∇u|2 dx+

λ

2

ˆ
Ω
|u|2 dx− N − 2

2N

ˆ
Ω
|u|

2N
N−2 dx, u ∈ D1,2

0 (Ω)

where Ω ⊂ RN is a smooth open and bounded set, N ≥ 3, λ ∈ R, and the space D1,2
0 (Ω) is

defined by

D1,2
0 (Ω) =

{
u ∈ L

2N
N−2 (RN ) :

ˆ
RN
|∇u|2 dx < +∞, u = 0 in RN \ Ω

}
.

The functional above is naturally associated with the semi-linear elliptic problem with critical
nonlinearity

(1.1)

{
−∆u+ λu = |u|

4
N−2 u in Ω,

u = 0 on ∂Ω,

in the sense that critical points of I are weak solutions of (1.1). Due to the presence of the term
with critical growth in its definition, the functional I does not satisfy the Palais-Smale condition.
In other words, sequences {un}n∈N ⊂ D1,2

0 (Ω) of “almost” critical points of I with bounded
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energy are not necessarily precompact in D1,2
0 (Ω). Struwe’s result gives a precise description of

what happens when compactness fails at an energy level c. Roughly speaking, in this case there
exists a (possibly trivial) solution v0 to (1.1) and k profiles vk solving the purely critical problem
on the whole space

(1.2) −∆u = |u|
4

N−2u, in RN .

such that the sequence {un}n∈N can be “almost” written as a superposition of v0, . . . , vk. More
precisely, there exist {zin}n∈N ⊂ RN and {λin}n∈N ⊂ R+ converging to 0 as n→∞, with

un ' v0 +
k∑
i=1

(λin)
2−N

2 vi
(
· − zin
λin

)
, in D1,2

0 (RN ),

and

(1.3) c = I(v0) + I∞(v1) + · · ·+ I∞(vk),

where I∞ is the energy functional associated with equation (1.2), i.e.

I∞(u) =
1

2

ˆ
RN
|∇u|2 dx− N − 2

2N

ˆ
RN
|u|

2N
N−2 dx.

This kind of result is very useful to study the existence of ground states for nonlinear Schrödinger
equations, Yamabe-type equations or various classes of minimization problems.

Since then, several extensions of Struwe’s result appeared in the literature for semi-linear
elliptic problems. We refer the reader to [12, Lemma 5] for the case of the bilaplacian operator ∆2

with both Navier or Dirichlet boundary conditions and to [18, Theorem 1.1] for nonlocal problems
involving the fractional Laplacian (−∆)s for s ∈ (0, 1). However, the linearity of the operator
does not seem essential in the derivation of this type of results. In fact in [16, Theorem 1.2] (see
also [1, 25]) a similar result was obtained for signed Palais-Smale sequences of the functional
associated with the problem{

−∆pu+ a |u|p−2 u = µ |u|p∗−2 u in Ω

u = 0 on ∂Ω,

where a ∈ LN/p(Ω), µ > 0, ∆p is the p−Laplacian operator and p∗ = N p/(N − p).
Applications of these results are provided to constrained minimization problems, to Brézis–

Nirenberg type problems (see [16]) and to Bahri–Coron type problems (see [15]), namely the
existence of positive solutions to the purely critical problem

−∆pu = µ |u|p∗−2u, in Ω,

when the domain Ω has a nontrivial topology. For the aforementioned results in the semi-linear
case p = 2, we also refer to the monograph [24].

1.2. Main results. Let 1 < p < ∞ and s ∈ (0, 1). The aim of this paper is to obtain a
global compactness result for Palais-Smale sequences of the C1 nonlocal energy functional
I : Ds,p

0 (Ω)→ R defined by

(1.4) I(u) :=
1

p

ˆ
R2N

|u(x)− u(y)|p

|x− y|N+s p
dx dy +

1

p

ˆ
RN

a |u|p dx− µ

p∗s

ˆ
RN
|u|p∗s dx,

where a ∈ LN/sp(Ω) and µ > 0 (see Section 1.3 below for the relevant definitions). We recall that
{un}n∈N ⊂ Ds,p

0 (Ω) is said to be a Palais-Smale sequence for I at level c if

lim
n→∞

I(un) = c, lim
n→∞

I ′(un) = 0 in D−s,p
′
(Ω),
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where D−s,p
′
(Ω) denotes the topological dual space of Ds,p

0 (Ω). Critical points of (1.4) now solves
(in weak sense)

(1.5)

{
(−∆)sp u+ a |u|p−2u = µ |u|p∗s−2u in Ω,

u = 0 in RN \ Ω,

where (−∆)sp is the fractional p−Laplacian operator, formally defined by

(−∆)sp u(x) := 2 lim
ε↘0

ˆ
RN\Bε(x)

|u(x)− u(y)|p−2 (u(x)− u(y))

|x− y|N+s p
dy, x ∈ RN .

A function u ∈ Ds,p
0 (Ω) is a weak solution of (1.5) ifˆ

R2N

|u(x)− u(y)|p−2 (u(x)− u(y)) (v(x)− v(y))

|x− y|N+s p
dx dy +

ˆ
RN

a |u|p−2 u v dx

= µ

ˆ
RN
|u|p∗s−2 u v dx, ∀v ∈ Ds,p

0 (Ω).

Likewise, if H is the whole RN or is a half-space in RN , the critical points u of the functional
I∞ : Ds,p

0 (H)→ R defined by

(1.6) I∞(u) :=
1

p

ˆ
R2N

|u(x)− u(y)|p

|x− y|N+s p
dx dy − µ

p∗s

ˆ
RN
|u|p∗sdx,

are weak solutions to

(1.7)

{
(−∆)sp u = µ |u|p∗s−2u in H,

u = 0 in RN \ H.

(NA) Nonexistence Assumption. If H is a half-space, then (1.7) has the trivial solution
only.

Our main result is the following

Theorem 1.1. We assume hypothesis (NA). Let 1 < p < ∞ and s ∈ (0, 1) be such that
s p < N . Let Ω ⊂ RN be an open bounded set with smooth boundary. Let {un}n∈N ⊂ Ds,p

0 (Ω) be
a Palais-Smale sequence at level c for the functional I defined in (1.4).

Then there exist:

• a (possibly trivial) solution v0 ∈ Ds,p
0 (Ω) of

(−∆)sp u+ a |u|p−2 u = µ |u|p∗s−2 u, in Ω;

• a number k ∈ N and v1, v2 · · · , vk ∈ Ds,p
0 (RN ) \ {0} solutions of

(−∆)sp u = µ |u|p∗s−2u, in RN ;

• a sequence of positive real numbers {λin}n∈N ⊂ R+ with λin → 0 and a sequence of points
{zin}n∈N ⊂ {x ∈ Ω : dist(x, ∂Ω) ≥ λin}, for i = 1, . . . , k;

such that, up to a subsequence,

(1.8) lim
n→∞

[
un − v0 −

k∑
i=1

(λin)
sp−N
p vi

( · − zin
λin

)]
Ds,p(RN )

= 0,

(1.9) lim
n→∞

[un]p
Ds,p(RN )

=

k∑
i=0

[vi]p
Ds,p(RN )

,
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(1.10) I(v0) +

k∑
i=1

I∞(vi) = c.

By recalling that for every u ∈ D1,p
0 (RN ) we have

lim
s↗1

(1− s)
ˆ
R2N

|u(x)− u(y)|p

|x− y|N+s p
dx dy = C

ˆ
RN
|∇u|p dx,

for a constant C = C(N, p) > 0, original Struwe’s result formally corresponds to p = 2 and s = 1
in Theorem 1.1.

Remark 1.2 (About the Nonexistence Assumption). The nonexistence of solutions to prob-
lem (1.7) for half-spaces is already changelling in the local case, for p 6= 2. Indeed, without sign
hypothesis on the solution, this is still open for the p−Laplacian. The situation is made unclear
due to absence of a suitable Pohožaev type identity for p 6= 2, as well as of a unique continuation
result up to the boundary. On the contrary, if we assume solutions to have constant sign, in
the local case then this has been proved in [16, Theorem 1.1]. For 0 < s < 1 and p = 2, the
non-existence of signed continuous solutions was obtained in [10, Corollary 1.6].

Next we formulate the global compactness result for radially symmetric functions in a ball
B ⊂ RN . Due to the geometric restrictions, the final outcome is more precise and free of
Assumption (NA).

Theorem 1.3 (Radial case). Let N ≥ 2, 1 < p < ∞ and s ∈ (0, 1) be such that s p < N . Let

B ⊂ RN be a ball centered at the origin and assume that a ∈ LN/sprad (B). Let {un}n∈N ⊂ Ds,p
0,rad(B)

be a Palais-Smale sequence for I at level c. Then there exist:

• a (possibly trivial) solution v0 ∈ Ds,p
0,rad(B) of

(−∆)sp u+ a |u|p−2 u = µ |u|p∗s−2 u, in B,

• a number k ∈ N and v1, v2 · · · , vk ∈ Ds,p
0,rad(RN ) \ {0} solutions of

(−∆)sp u = µ |u|p∗s−2 u, in RN ,

• a sequence {λin}n∈N ⊂ R+ with λin → 0, for i = 1, . . . , k;

such that, up to a subsequence, we have

(1.11) lim
n→∞

[
un − v0 −

k∑
i=1

(λin)
s p−N
p vi

(
·
λin

)]
Ds,p(RN )

= 0,

and conclusions (1.9) and (1.10).

Remark 1.4 (Radial case for N = 1). The previous results guarantees that, under the standing
assumptions, a radial Palais-Smale sequence can concentrate only at the origin. This is due to
the fact that functions in Ds,p

0,rad verify some extra compactness properties on annular regions

AR0,R1 = {x : R0 < |x| < R1}, which go up to the exponent p∗s (and even beyond). More
precisely, we have compactness of the embeddings

Ds,p
0,rad(B) ↪→ Lq(AR0,R1), p∗s ≤ q < p#

s ,

where p#
s is the critical Sobolev exponent in dimension N = 1. As for N = 1 we have p∗s = p#

s ,
compactness ceases to be true for s p < N = 1 (see Proposition 4.1 and Remark 4.2). In the
one-dimensional case, in Theorem 1.3 one would need (NA) as above.
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We point out that, contrary to [16, 24], on the weight function a we merely assume it to be in

LN/sp(Ω), avoiding an additional coercivity assumption (see [24, condition (B), p.125]) which
was used in [16,24] to get the boundedness of the Palais-Smale sequence {un}n∈N.

The proof by Struwe in [21] is essentially based upon iterated rescaling arguments, jointly
with an extension procedure to show the non-triviality of the weak limits. The latter seems hard
to adapt to the nonlocal cases, namely when s > 0 is not integer. Thus we prove Theorem 1.1
by basically following the scheme of Clapp’s paper [7]. A delicate point will be proving that
the weak limits appearing in the construction are non-trivial. As a main ingredient, we use a
Caccioppoli inequality for solutions of (−∆)spu = f (see Proposition 2.9 below).

Remark 1.5 (The case p = 2). In the Hilbertian setting, namely for p = 2 and 0 < s < N/2,
Theorem 1.1 has been recently proved in [18] by appealing to the so-called profile decomposition
of Gerard, see [13]. The latter is a general result describing the compactness defects of general

bounded sequences in Ds,2
0 (RN ), which are not necessarily Palais-Smale sequences of some energy

functional. See also [17, Theorem 1.4], where some improved fractional Sobolev embeddings
are obtained. We point out that for p 6= 2 such an approach does not seem feasible. Indeed,
the paper [14] suggests that the decomposition (1.8) should not be expected for a generic
bounded sequence in Ds,p

0 (RN ) (see [14, page 387]). We also observe that some form of the
global compactness result of [18] was also derived in [20] in the study of Coron-type results in
the fractional case.

Remark 1.6. We also consider a version of the above theorem stated for Palais-Smale sequences
with sign, namely Palais-Smale sequences {un}n∈N with the additional property that the negative
parts {(un)−}n∈N converges to zero in Lp

∗
s . This is particularly interesting if c is a minimax type

level (i.e. with mountain pass, saddle point or linking geometry). Indeed, in this case it is often
possible to obtain a Palais-Smale sequence with sign at level c via deformation arguments of
Critical Point Theory, see [24, Theorem 2.8].

1.3. Notations. For 1 < p <∞ we consider the monotone function Jp : RN → RN defined by

Jp(ξ) := |ξ|p−2 ξ, ξ ∈ RN .
We recall that this satisfies

(1.12) |Jp(ξ)− Jp(η)| ≤

 |ξ − η|
p−1, if 1 < p ≤ 2,

Cp (|ξ|+ |η|)p−2 |ξ − η|, if p > 2.

We denote by Br(x0) the N−dimensional open ball of radius r, centered at a point x0 ∈ RN . The
symbol ‖ · ‖Lp(Ω) stands for the standard norm for the Lp(Ω) space. For a measurable function

u : RN → R, we let

[u]Ds,p(RN ) :=

(ˆ
R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)1/p

be its Gagliardo seminorm. For s p < N , we consider the space

Ds,p
0 (RN ) :=

{
u ∈ Lp∗s (RN ) : [u]Ds,p(RN ) <∞

}
, where p∗s =

N p

N − s p
,

endowed with norm [ · ]Ds,p(RN ). If Ω ⊂ RN is an open set, not necessarily bounded, we consider

Ds,p
0 (Ω) :=

{
u ∈ Ds,p

0 (RN ) : u = 0 in RN \ Ω
}
,

If Ω is bounded, then the imbedding Ds,p
0 (Ω) ↪→ Lr(Ω) is continuous for 1 ≤ r ≤ p∗s and compact

for 1 ≤ r < p∗s. The space Ds,p
0 (Ω) can be equivalently defined as the completion of C∞0 (Ω)
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in the norm [ · ]Ds,p(RN ), provided ∂Ω is smooth enough. Finally, we shall denote the localized
Gagliardo seminorm by

[u]Ds,p(Ω) :=

(ˆ
Ω×Ω

|u(x)− u(y)|p

|x− y|N+s p
dx dy

)1/p

.

Acknowledgments. L.B. and M.S. are members of the Gruppo Nazionale per l’Analisi Matemat-
ica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica
(INdAM). Y.Y. was supported by NSFC (No. 11501252, 11571176), Tian Yuan Special Foundation
(No. 11226116), Natural Science Foundation of Jiangsu Province of China for Young Scholars
(No. BK2012109). Part of this manuscript was written during a visit of M.S. at the University of
Ferrara in November 2015 and a subsequent visit of L.B. at the University of Verona in February
2016. The hosting institutions and their facilities are gratefully acknowledged.

2. Preliminary results

2.1. Brézis-Lieb type properties. We first recall the following result (see [6, Theorem 1]
and [16, Lemma 3.2]).

Lemma 2.1. Let 1 < q <∞ and let {fn}n∈N ⊂ Lq(Rk) be a bounded sequence, such that fn → f
almost everywhere. Then

lim
n→∞

(
‖fn‖qLq(Rk)

− ‖fn − f‖qLq(Rk)

)
= ‖f‖q

Lq(Rk)
.

Furthermore,

(2.1) lim
n→∞

ˆ
Rk

∣∣Jq(fn)− Jq(fn − f)− Jq(f)
∣∣q′ dx = 0.

The previous result implies the following splitting properties.

Lemma 2.2. Let {un}n∈N ⊂ Ds,p
0 (RN ) be such that un ⇀ u in Ds,p

0 (RN ) and un → u almost
everywhere, as n→∞. Then:

(i1) [un]p
Ds,p(RN )

− [un − u]p
Ds,p(RN )

= [u]p
Ds,p(RN )

+ on(1);

(i2) Jp∗s (un)− Jp∗s (un − u)→ Jp∗s (u), in L(p∗s)′(RN );

(i3) it holds

Jp(un(x)− un(y))

|x− y|
N+sp
p′

−
Jp
(
(un(x)− u(x))− (un(y)− u(y))

)
|x− y|

N+sp
p′

→ Jp(u(x)− u(y))

|x− y|
N+sp
p′

in Lp
′
(R2N ).

Proof. Statement (i1) follows by Lemma 2.1 by choosing

fn =
un(x)− un(y)

|x− y|
N+s p
p

, f =
u(x)− u(y)

|x− y|
N+s p
p

, q = p, k = 2N.

With the same choices, we can also obtain (i3) from (2.1). Statement (i2) directly follows from
(2.1) with the choices

fn = un, f = u, q = p∗s, k = N,

once we recalled that a weakly convergent sequence in Ds,p
0 (RN ) weakly converges in Lp

∗
s (RN ) as

well, thanks to Sobolev inequality. This concludes the proof. �
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Let I and I∞ be the functionals defined by (1.4) and (1.6). We recall that I ∈ C1(Ds,p
0 (Ω)),

I∞ ∈ C1(Ds,p
0 (H)) and

〈I ′(u), ϕ〉 =

ˆ
R2N

Jp(u(x)− u(y)) (ϕ(x)− ϕ(y))

|x− y|N+s p
dx dy

+

ˆ
Ω
a |u|p−2 uϕdx− µ

ˆ
Ω
|u|p∗s−2 uϕdx, ∀ϕ ∈ Ds,p

0 (Ω),

〈I ′∞(u), ϕ〉 =

ˆ
R2N

Jp(u(x)− u(y)) (ϕ(x)− ϕ(y))

|x− y|N+s p
dx dy

− µ
ˆ
RN
|u|p∗s−2 uϕdx, ∀ϕ ∈ Ds,p

0 (H).

In the following, we repeatedly use the inclusion Ds,p
0 (Ω) ↪→ Ds,p

0 (RN ).

Lemma 2.3. Let a ∈ LN/sp(Ω), assume that {un}n∈N is bounded in Lp
∗
s (Ω) and that un → u

almost everywhere in Ω. Then

lim
n→∞

∥∥∥a (Jp(un)− Jp(u)
)∥∥∥
L(p∗s)′ (Ω)

= 0.

Proof. Let us set

ψ := |a|(p∗s)′ ∈ Lσ(Ω), with σ =
Np−N + s p

s p2
> 1,

and

φn := |Jp(un)− Jp(u)|(p∗s)′ ⊂ L
σ
σ−1 (Ω).

It is not difficult to see that {φn}n∈N is bounded in Lσ/(σ−1)(Ω) and converges to 0 almost
everywhere in Ω, thanks to the assumptions on {un}n∈N. Thus we obtain

lim
n→∞

ˆ
Ω

∣∣a (Jp(un)− Jp(u)
)∣∣(p∗s)′

dx = lim
n→∞

ˆ
Ω
ψ φn dx,

and the last limit is zero. Indeed, by Young inequality and Fatou Lemma for every 0 < τ � 1,

1

σ τσ−1

ˆ
Ω
ψσ dx ≤ lim inf

n→∞

ˆ
Ω

[
1

σ τσ−1
ψσ +

σ − 1

σ
τ φ

σ
σ−1
n − ψ φn

]
dx

≤ 1

σ τσ−1

ˆ
Ω
ψσ dx+

σ − 1

σ
τ

(
sup
n∈N

ˆ
Ω
φ

σ
σ−1
n dx

)
− lim sup

n→∞

ˆ
Ω
ψ φn dx.

This proves

0 ≤ lim sup
n→∞

ˆ
Ω
ψ φn dx ≤

σ − 1

σ
τ

(
sup
n∈N

ˆ
Ω
φ

σ
σ−1
n dx

)
,

and by the arbitrariness of τ > 0, we get the conclusion. �

Next we produce a Palais-Smale sequence for I∞ from a Palais-Smale sequence for I.

Lemma 2.4. Let {un}n∈N ⊂ Ds,p
0 (Ω) be a Palais-Smale sequence for I at the level c. Assume

that

(2.2) un ⇀ u in Ds,p
0 (Ω) and un → u a. e. in Ω.

Then, passing if necessary to a subsequence, {vn}n∈N := {un−u}n∈N ⊂ Ds,p
0 (Ω) is a Palais-Smale

sequence for the functional I∞ at the level c− I(u). Moreover, we have

(2.3) [vn]p
Ds,p(RN )

= [un]p
Ds,p(RN )

− [u]p
Ds,p(RN )

+ on(1).
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Proof. We first observe that (2.2) readily gives that I ′(u) = 0, i.e. u is a critical point of I. By

definition and hypothesis (2.2), we have that {|vn|p}n∈N is bounded in Lp
∗
s/p(Ω) and vn → 0 a.e.

on Ω. Thus it follows that |vn|p converges weakly in Lp
∗
s/p(Ω) to 0. Since a ∈ L(p∗s/p)

′
(Ω), we can

infer

lim
n→∞

ˆ
Ω
a |vn|pdx = 0.

A similar argument, shows thatˆ
Ω
a |un|pdx =

ˆ
Ω
a |u|pdx+ on(1).

By (i1) of Lemma 2.2 we also get

[un]p
Ds,p(RN )

− [vn]p
Ds,p(RN )

= [u]p
Ds,p(RN )

+ on(1),

which is (2.3). By using the three previous displays and Lemma 2.1 for Lp
∗
s (Ω), we have

I∞(vn) = I(vn) + on(1) = I(un)− I(u) + on(1) = c− I(u) + on(1).

Finally, by virtue Lemma 2.3 applied to the sequence un − u, we have

lim
n→∞

∥∥∥a Jp(un − u)
∥∥∥
L(p∗s)′ (Ω)

= 0,

and thus

I ′∞(vn) = I ′(vn) + ôn(1),

where ôn(1) denotes a sequence going to zero in D−s,p
′
(Ω). By using assertions (i2), (i3) and

Lemma 2.3 we further get

I ′∞(vn) = I ′(vn) + ôn(1) = I ′(un)− I ′(u) + ôn(1) = ôn(1),

and ôn(1) still denotes a sequence going to zero in D−s,p
′
(Ω). This concludes the proof. �

2.2. Scaling invariance and related facts. The following result follows from a direct compu-
tation, we leave the verification to the reader.

Lemma 2.5 (Scaling invariance). For z ∈ Ω and λ > 0, we set

Ωz,λ :=
Ω− z
λ

.

Then, the following facts hold:

• if u ∈ Ds,p
0 (Ω) and we set

vz,λ(x) := λ
N−s p
p u(λx+ z) ∈ Ds,p

0 (Ωz,λ),

then [vz,λ]Ds,p(RN ) = [u]Ds,p(RN ) and ‖vz,λ‖Lp∗s (RN ) = ‖u‖Lp∗s (RN );

• if we set

w̃(x) := λ
s p−N
p w

(
x− z
λ

)
, ϕz,λ(x) := λ

N−s p
p ϕ(λx+ z),

for w,ϕ ∈ Ds,p
0 (RN ), then 〈I ′∞(w̃), ϕ〉 = 〈I ′∞(w), ϕz,λ〉 and

sup
ϕ∈Ds,p0 (Ω)

∣∣∣∣∣
〈
I ′∞(w̃),

ϕ

[ϕ]Ds,p(RN )

〉∣∣∣∣∣ = sup
ϕ∈Ds,p0 (Ωz,λ)

∣∣∣∣∣
〈
I ′∞(w),

ϕ

[ϕ]Ds,p(RN )

〉∣∣∣∣∣ .
Next, we transform a Palais-Smale sequence for I∞ into a new one via rescaling and localization.
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Lemma 2.6 (Scalings, case I). Let {zn}n∈N ⊂ Ω and {λn}n∈N ⊂ R+ be such that

lim
n→∞

zn = z0 and lim
n→∞

λn = 0.

Assume that {un}n∈N ⊂ Ds,p
0 (Ω) is a Palais-Smale sequence for I∞ at level c and that the rescaled

sequence

vn(x) := λ
N−s p
p

n un(λn x+ zn) ∈ Ds,p
0 (Ωn), where Ωn :=

Ω− zn
λn

,

is such that

vn ⇀ v in Ds,p
0 (RN ), vn → v a.e. in RN .

If

(2.4) lim
n→∞

%n
λn

= +∞, where %n :=
1

2
dist(zn, ∂Ω),

then v is a critical point of I∞ on Ds,p
0 (RN ), i.e.

〈I ′∞(v), ϕ〉 = 0, for every ϕ ∈ Ds,p
0 (RN ).

Moreover, if ζ ∈ C∞0 (B2(0)) is a standard cut-off such that ζ ≡ 1 on B1(0), the sequence

wn(z) := un(z)− λ
s p−N
p

n v

(
z − zn
λn

)
ζ

(
z − zn
%n

)
∈ Ds,p

0 (Ω),

is a Palais-Smale sequence for I∞ at level c− I∞(v) and such that

(2.5) [un]p
Ds,p(RN )

− [wn]p
Ds,p(RN )

= [v]p
Ds,p(RN )

+ on(1).

Proof. Let us assume (2.4), under this assumption the sets Ωn converges to RN . Thus, for every
ϕ ∈ C∞0 (RN ) with compact support, we can assume that Ωn contain the support of ϕ for n
sufficiently large. From Lemma 2.5 and the hypothesis on {un}n∈N, it readily follows

0 = lim
n→∞

〈
I ′∞(un), λ

s p−N
p

n ϕ

(
· − zn
λn

)〉
= lim

n→∞
〈I ′∞(vn), ϕ〉 = 〈I ′∞(v), ϕ〉.

By arbitrariness of ϕ ∈ C∞0 (RN ), we get the desired conclusion. Before going on, we observe
that since v is a critical point of I∞, from Proposition B.1 we get

(2.6) v ∈ Lq(RN ), for every
p∗s
p′
< q ≤ p∗s.

For the second part of the statement, we first observe that wn ∈ Ds,p
0 (Ω) thanks to Lemma A.1.

Thanks to (2.6) we can apply Lemma A.2: by using this and (i1) of Lemma 2.2, we have

[vn]p
Ds,p(RN )

− [vn − v ζ(λn/%n ·)]pDs,p(RN )

= [vn]p
Ds,p(RN )

− [vn − v]p
Ds,p(RN )

+ on(1) = [v]p
Ds,p(RN )

+ on(1),
(2.7)

thanks to the fact that λn/%n converges to 0, by assumption. From the scaling properties of
Lemma 2.5, this yields

[un]p
Ds,p(RN )

− [wn]p
Ds,p(RN )

= [v]p
Ds,p(RN )

+ on(1), as n→∞,

which proves (2.5). Similarly to (2.7), we also have

(2.8) ‖vn‖p
∗
s

Lp
∗
s (RN )

− ‖vn − v ζ(λn/%n ·)‖p
∗
s

Lp
∗
s (RN )

= ‖v‖p
∗
s

Lp
∗
s (RN )

+ on(1)
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By scaling, (2.7) and (2.8) we get

I∞(wn) =
1

p
[vn − v ζ(λn/%n ·)]pDs,p(RN )

− µ

p∗s

ˆ
RN
|vn − v ζ(λn/%n ·)|p

∗
s dx

=
1

p
[vn]Ds,p(RN ) −

1

p
[v]p

Ds,p(RN )
− µ

p∗s

ˆ
RN
|vn|p

∗
s dx− µ

p∗s

ˆ
RN
|v|p∗s dx+ on(1)

= I∞(vn)− I∞(v) + on(1)

= I∞(un)− I∞(v) + on(1)

= c− I∞(v) + on(1).

It is only left to show that {wn}n∈N is a Palais-Smale sequence. For any ϕ ∈ Ds,p
0 (Ω) with

[ϕ]Ds,p(RN ) = 1, we set

ϕn(x) = λ
N−s p
p

n ϕ(λn x+ zn) ∈ Ds,p
0 (Ωn).

Clearly we still have [ϕn]Ds,p(RN ) = 1. We first observe that

(2.9) 〈I ′∞(vn − v ζ(λn/%n ·)), ϕn〉 = 〈I ′∞(vn − v), ϕn〉+ on(1),

where on(1) is independent of ϕ. Indeed, by using the compact notations

Zn(x, y) =
(
vn(x)− v(x) ζ(λn/%n x)

)
−
(
vn(y)− v(y) ζ(λn/%n y)

)
,

and

Vn(x, y) =
(
vn(x)− v(x)

)
−
(
vn(y)− v(y)

)
,

we have∣∣∣〈I ′∞(vn − v ζ(λn/%n ·))− I ′∞(vn − v), ϕn〉
∣∣∣

≤

∣∣∣∣∣∣
ˆ
R2N

(
Jp(Zn(x, y))− Jp(Vn(x, y))

)(
ϕn(x)− ϕn(y)

)
|x− y|N+s p

dx dy

∣∣∣∣∣∣
+ µ

∣∣∣∣ˆ
RN

(
Jp∗s (vn − v ζ(λn/%n·))− Jp∗s (vn − v)

)
ϕdx

∣∣∣∣ .
We focus on the nonlocal term, the other being easier. By Hölder inequality this is estimated by(ˆ

R2N

|Jp(Zn(x, y))− Jp(Vn(x, y))|p′

|x− y|N+s p
dx dy

) 1
p′

.

Let us suppose for simplicity that1 p > 2. Then we use (1.12) and Hölder inequality with
exponents

p

p′
and

p

p− p′
,

1For 1 < p ≤ 2 the proof is even simpler, it is still sufficient to use (1.12).
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so to get

ˆ
R2N

|Jp(Zn(x, y))− Jp(Vn(x, y))|p′

|x− y|N+s p
dx dy

≤ Cp
ˆ
R2N

(|Zn(x, y)|+ |Vn(x, y)|)p
′ (p−2) |Zn(x, y)− Vn(x, y)|p′

|x− y|N+s p
dx dy

≤ Cp
(ˆ

R2N

(|Zn(x, y)|+ |Vn(x, y)|)p

|x− y|N+s p
dx dy

) p−p′
p
(ˆ

R2N

|Zn(x, y)− Vn(x, y)|p

|x− y|N+s p
dx dy

) p′
p

.

By recalling the definitions of Zn and Vn, we get that the first term is uniformly bounded, while
the second one coincides with

[v ζ(λn/%n·)− v]p
′

Ds,p(RN )
,

which converges to 0 thanks to Lemma A.2. This proves (2.9) and by using it in conjunction
with Lemma 2.2, we get

〈I ′∞(wn), ϕ〉 = 〈I ′∞(vn − v ζ(λn/%n ·)), ϕn〉
= 〈I ′∞(vn − v), ϕn〉+ on(1)

= 〈I ′∞(vn), ϕn〉 − 〈I ′∞(v), ϕn〉+ on(1),

= 〈I ′∞(un), ϕ〉 − 〈I ′∞(v), ϕn〉+ on(1),

where on(1) is independent of ϕ. We now use that {un}n∈N is a Palais-Smale sequence and that
〈I ′∞(v), ϕn〉 = 0 by the first part of the proof. This allows us to conclude. �

Lemma 2.7 (Scalings, case II). Under the assumptions of Lemma 2.6, if

(2.10) lim inf
n→∞

1

λn
dist(zn, ∂Ω) <∞.

then z0 ∈ ∂Ω, v ∈ Ds,p
0 (H) and v is a critical point of I∞ on Ds,p

0 (H), i.e.

〈I ′∞(v), ϕ〉 = 0, for every ϕ ∈ Ds,p
0 (H),

where H is a half-space.

Proof. Under the assumption (2.10), the proof is the same as in the first part of Lemma 2.6, we
only have to observe that in this case the sets Ωn converge to a half-space H. �

Next we prove that nonsingular scalings of weakly vanishing sequences are weakly vanishing.

Lemma 2.8. Assume that un ⇀ 0 in Ds,p
0 (RN ), λn → λ0 > 0, {zn}n∈N ⊂ RN such that zn → z0.

We set

vn(x) := λ
N−sp
p

n un(λnx+ zn).

Then vn ⇀ 0 in Ds,p
0 (RN ).

Proof. Take any continuous functional F ∈ D−s,p
′
(RN ). Then, there exists a function ϕ ∈

Lp
′
(R2N ) with

〈F, u〉 =

ˆ
R2N

ϕ(x, y) (u(x)− u(y))

|x− y|
N+s p
p

dx dy, for all u ∈ Ds,p
0 (RN ).
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We have, by a change of variables,

〈F, vn〉 = λ
N−s p
p

n

ˆ
R2N

ϕ(x, y)(un(λn x+ zn)− un(λn y + zn))

|x− y|
N+s p
p

dx dy

= λ
− 2N
p′

n

ˆ
R2N

ϕ

(
x− zn
λn

,
y − zn
λn

)
(un(x)− un(y))

|x− y|
N+sp
p

dx dy := ωn.

On the other hand, introducing the functions of Ψn,Ψ ∈ Lp
′
(R2N ) by setting

Ψn(x, y) := ϕ

(
x− zn
λn

,
y − zn
λn

)
, Ψ(x, y) := ϕ

(
x− z0

λ0
,
y − z0

λ0

)
,

we have

ωn = λ
− 2N
p′

n

ˆ
R2N

Ψ(x, y)(un(x)− un(y))

|x− y|
N+s p
p

dxdy

+ λ
− 2N
p′

n

ˆ
R2N

(Ψn(x, y)−Ψ(x, y))(un(x)− un(y))

|x− y|
N+s p
p

dxdy

= λ
− 2N
p′

n

ˆ
R2N

(Ψn(x, y)−Ψ(x, y))(un(x)− un(y))

|x− y|
N+s p
p

dxdy + on(1),

in view of un ⇀ 0 in Ds,p
0 (RN ) and Ψ ∈ Lp′(R2N ). Then ωn = on(1) follows by

sup
n∈N

∥∥∥∥∥un(x)− un(y)

|x− y|
N+sp
p

∥∥∥∥∥
Lp(R2N )

<∞,

and Ψn → Ψ strongly in Lp
′
(R2N ) as n→∞, since λn → λ0 > 0 and zn → z0. �

2.3. Estimates for solutions. Next we prove a Caccioppoli inequality, which will turn out to
be the main technical tool in order to handle Step 3 in the proof of Theorem 1.1.

Proposition 2.9 (Caccioppoli inequality). Let F ∈ D−s,p′(Ω) and let u ∈ Ds,p
0 (Ω) withˆ

R2N

Jp(u(x)− u(y)) (ϕ(x)− ϕ(y))

|x− y|N+s p
dx dy = 〈F,ϕ〉, for any ϕ ∈ Ds,p

0 (Ω).

Then for every open set Ω′ such that Ω′ ∩ Ω 6= ∅ and every positive ψ ∈ C∞0 (Ω′) we have
ˆ

Ω′×Ω′

∣∣u(x)ψ(x)− u(y)ψ(y)
∣∣p

|x− y|N+s p
dx dy

≤ C
ˆ

Ω′×Ω′

|ψ(x)− ψ(y)|p

|x− y|N+s p

(
|u(x)|p + |u(y)|p

)
dx dy

+ C

(
sup

y∈spt(ψ)

ˆ
RN\Ω′

|u(x)|p−1

|x− y|N+s p
dx

) ˆ
Ω′
|u|ψp dx+ C

∣∣∣〈F, uψp〉∣∣∣,
for some constant C > 0 depending on p only.

Proof. The proof is the same as that of Caccioppoli inequality [5, Proposition 3.5]. The only
differences are that here F is not necessarily (represented by) a function and that the test
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function ψ can cross the boundary ∂Ω. We insert the test function2 ϕ = ψp u, where ψ ∈ C∞0 (Ω)
is as in the statement. Then we getˆ

R2N

Jp(u(x)− u(y))

|x− y|N+s p
(u(x)ψ(x)p − u(y)ψ(y)p) dx dy = 〈F, uψp〉.(2.11)

We now split the double integral in three parts:

I1 =

ˆ
Ω′×Ω′

Jp(u(x)− u(y))

|x− y|N+s p
(u(x)ψ(x)p − u(y)ψ(y)p) dx dy,

I2 =

ˆ
Ω′×(RN\Ω′)

Jp(u(x)− u(y))

|x− y|N+s p
u(x)ψ(x)p dx dy,

and

I3 = −
ˆ

(RN\Ω′)×Ω′

Jp(u(x)− u(y))

|x− y|N+s p
u(y)ψ(y)p dx dy

The first integral I1 can be estimated exactly as in [5, Proposition 3.5], with the choices

v = u, g(t) = t = G(t),

there. This gives

c

ˆ
Ω′×Ω′

∣∣∣u(x)ψ(x)− u(y)ψ(y)
∣∣∣p

|x− y|N+s p
dx dy

≤ I1 + C

ˆ
Ω′×Ω′

|ψ(x)− ψ(y)|p

|x− y|N+s p

(
|u(x)|p + |u(y)|p

)
dx dy.

(2.12)

For the estimate of I2 we proceed similarly to [5], by observing that the positivity assumption
on u can be dropped. Namely, we simply observe that by monotonicity of τ 7→ Jp(τ), for x ∈ Ω′

we have
Jp(u(x)− u(y)) ≥ Jp(−u(y)), if u(x) ≥ 0

or
Jp(u(x)− u(y)) ≤ Jp(−u(y)), if u(x) < 0.

Thus in both cases we get

Jp(u(x)− u(y))u(x) ≥ Jp(−u(y))u(x).

Then we obtain

I2 ≥ −
ˆ

Ω′×(RN\Ω′)

|u(y)|p−2 u(y)

|x− y|N+s p
u(x)ψ(x)p dx dy

≥ −

(
sup

x∈spt(ψ)

ˆ
RN\Ω′

|u(y)|p−1

|x− y|N+s p
dy

) ˆ
Ω′
|u(x)|ψ(x)p dx.

(2.13)

The third integral can be estimated in a similar fashion. By inserting the above estimates in
(2.11), we get the conclusion. �

Let us set
Sp,s := inf

u∈Ds,p0 (RN )

{
[u]p

Ds,p(RN )
: ‖u‖Lp∗s (RN ) = 1

}
,

which is nothing but the sharp constant in the Sobolev inequality for Ds,p
0 (RN ), namely

(2.14) Sp,s ‖u‖pLp∗s (RN )
≤ [u]p

Ds,p(RN )
, for all u ∈ Ds,p

0 (RN ).

2Observe that this is a legitimate test function, since ψp u ∈ Ds,p
0 (RN ) by Lemma A.1 and ψp u ≡ 0 outside Ω.
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It is useful to remark that if u ∈ Ds,p
0 (E) weakly solves

(2.15)

{
(−∆)sp u = µ |u|p∗s−2u in E

u = 0 in RN \ E,

in some open set E ⊂ RN (E = RN is allowed) and for some µ > 0, then we get

[u]p
Ds,p(RN )

= µ ‖u‖p
∗

Lp
∗
s (E)

.

Combining this with (2.14) yields the following universal lower bounds for the norms of the
nontrivial solutions of problem (2.15), that is

(2.16) ‖u‖p
∗

Lp
∗
s (E)
≥
(
Sp,s
µ

) N
s p

and [u]p
Ds,p(RN )

≥ µ
(
Sp,s
µ

) N
s p

.

This in turn entails the following universal estimate for the energy of solutions

1

p
[u]p

Ds,p(RN )
− µ

p∗s

ˆ
E
|u|p∗s dx ≥ µ s

N

(
Sp,s
µ

) N
s p

.

This lower bound can be improved, if we consider sign-changing solutions. This is the content of
the next useul result.

Lemma 2.10 (Energy doubling). Assume that u ∈ Ds,p
0 (E) is a sign-changing weak solution to

(2.15) where µ > 0 and E is a (possibly unbounded) domain in RN . Then

(2.17) ‖u‖p
∗
s

Lp
∗
s (E)
≥ 2

(
Sp,s
µ

)N
sp

, [u]p
Ds,p(RN )

≥ 2µ

(
Sp,s
µ

)N
sp

, I∞(u) ≥ 2µ
s

N

(
Sp,s
µ

)N
sp

.

Proof. For p = 2, see [20, Lemma 2.5]. In the general case, the heuristic idea is to exploit the
fact that u± := max{±u, 0} ∈ Ds,p

0 (E) \ {0} are both positive subsolutions of (2.15). Thus the
above universal estimates hold for both of them separately. More precisely, it is readily seen that
for a.e. (x, y) ∈ R2N the following inequalities hold

Jp(u(x)− u(y))(u+(x)− u+(y)) ≥ |u+(x)− u+(y)|p,
Jp(u(x)− u(y))(u−(y)− u−(x)) ≥ |u−(x)− u−(y)|p.

Then, testing equation (2.15) by u+ (respectively −u−) yields

[u+]p
Ds,p(RN )

≤
ˆ
R2N

Jp(u(x)− u(y)) (u+(x)− u+(y))

|x− y|N+sp
dxdy = µ

ˆ
E

(u+)p
∗
sdx,

[u−]p
Ds,p(RN )

≤
ˆ
R2N

Jp(u(x)− u(y)) (u−(y)− u−(x))

|x− y|N+sp
dxdy = µ

ˆ
E

(u−)p
∗
sdx.

As before, we can combine these equalities with Sp,s ‖u±‖pLp∗s (E)
≤ [u±]p

Ds,p(RN )
to get

‖u±‖p
∗
s

Lp
∗
s (E)
≥
(
Sp,s
µ

)N/sp
.

By summing up these two inequalities, we get the first estimate in (2.17). The second one is
then obtained by observing that from the equation we have

[u]p
Ds,p(RN )

= µ ‖u‖p
∗
s

Lp
∗
s (E)

.
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Finally, for the third estimate in (2.17) we observe that from the previous identity

I∞(u) =
1

p
[u]p

Ds,p(RN )
− µ

p∗s
‖u‖p

∗
s

Lp
∗
s (E)

= µ

(
1

p
− 1

p∗s

)
‖u‖p

∗
s

Lp
∗
s (E)
≥ 2µ

s

N

(
Sp,s
µ

)N/sp
,

which completes the proof. �

3. Proof of Theorem 1.1

We divide the proof into five steps.

� Step 1. We first observe that the Palais-Smale sequence {un}n∈N is bounded in Ds,p
0 (Ω). In

fact, by hypothesis we have

(3.1) I(un) =
1

p
[un]p

Ds,p(RN )
+

1

p

ˆ
Ω
a |un|pdx−

µ

p∗s

ˆ
Ω
|un|p

∗
s dx = c+ on(1),

and

[un]p
Ds,p(RN )

+

ˆ
Ω
a |un|pdx− µ

ˆ
Ω
|un|p

∗
s dx = 〈I ′(un), un〉 = on(1) [un]Ds,p(RN ),

as n→∞, which yields

(3.2) µ

(
1

p
− 1

p∗s

) ˆ
Ω
|un|p

∗
sdx = I(un)− 1

p
〈I ′(un), un〉 ≤ c+ 1 + on(1) [un]Ds,p(RN ).

In turn, by Hölder inequality and (3.2), with simple manipulations it follows

(3.3)

∣∣∣∣ˆ
Ω
a |un|pdx

∣∣∣∣ ≤ ‖a‖LN/sp(Ω)

(ˆ
Ω
|un|p

∗
sdx

) p
p∗s
≤ C + on(1) [un]Ds,p(RN ),

where C > 0 depends on N, s, p, µ, c and the norm of a, but not on n. Whence, from (3.1), (3.2)
and (3.3), we infer, as n→∞

[un]p
Ds,p(RN )

≤ C + on(1)[un]Ds,p(RN ),

which shows the boundedness in Ds,p
0 (Ω). Hence, passing if necessary to a subsequence, we

have un ⇀ v0 in Ds,p
0 (Ω) and un → v0 almost everywhere in Ω. By Lemma 2.4, it follows that

I ′(v0) = 0 and u1
n := un − v0 ∈ Ds,p

0 (Ω) is a Palais-Smale sequence for I∞ at level c− I(v0), and

[u1
n]p
Ds,p(RN )

= [un]p
Ds,p(RN )

− [v0]p
Ds,p(RN )

+ on(1), as n→∞.

� Step 2. If u1
n → 0 in Lp

∗
s (RN ) up to a subsequence, since I ′∞(u1

n)→ 0 in D−s,p
′
(Ω) we have

[u1
n]p
Ds,p(RN )

− µ
ˆ
RN
|u1
n|p
∗
s dx = 〈I ′∞(u1

n), u1
n〉 = on(1) [u1

n]Ds,p(RN ).

Since this sequence is bounded in Ds,p
0 (Ω), this yields that [u1

n]Ds,p(RN ) → 0 as n goes to ∞, thus

completing the proof. Let us now suppose that {u1
n}n∈N does not converge to 0 in Lp

∗
s (RN ).

Then, up to a subsequence, we have

inf
n∈N

ˆ
RN
|u1
n|p
∗
s dx := δ0 > 0.

We now take 0 < δ < δ0, to be specified later on, and introduce the Levy concentration function

Qn(r) := sup
ξ∈RN

ˆ
Br(ξ)

|u1
n|p
∗
s dx, r ≥ 0, n ∈ N.
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For all n ∈ N, the function r 7→ Qn(r) is continuous on R+ (see Lemma 3.1 below). This and
the fact that Qn(0) = 0 and Qn(∞) > δ imply the existence of {λ1

n}n∈N ⊂ R+ such that

Qn(λ1
n) = sup

ξ∈RN

ˆ
B
λ1
n

(ξ)
|u1
n|p
∗
s dx = δ.

Moreover, since |un|p
∗
s vanishes outside Ω, still by Lemma 3.1 we know that

δ = Qn(λ1
n) =

ˆ
B
λ1
n

(z1
n)
|u1
n|p
∗
s dx, for some z1

n ∈ {x ∈ RN : dist(x,Ω) ≤ λ1
n}.

Before proceeding further, we record the following observation: since if λ1
n ≥ diam(Ω), then

Qn(λ1
n) = sup

ξ∈RN

ˆ
B
λ1
n

(ξ)
|u1
n|p
∗
s dx =

ˆ
Ω
|u1
n|p
∗
s dx > δ = Qn(λ1

n),

we obtain that the sequence {λ1
n}n∈N is bounded. This in turn implies that {z1

n}n∈N is bounded
as well, by construction. We consider now the sequence v1

n : Ωn → R defined by

v1
n(x) := (λ1

n)
N−s p
p u1

n(λ1
n x+ z1

n), Ωn :=
1

λ1
n

(Ω− z1
n)

In light of Lemma 2.5 the sequence {v1
n}n∈N is bounded in Ds,p

0 (RN ) (because so is {u1
n}n∈N)

and thus we can assume that

v1
n ⇀ v1 in Ds,p

0 (RN ), v1
n → v1 in Lσloc(RN ) for every σ ∈ [1, p∗s),

and

v1
n → v1, a.e. on RN ,

up to a subsequence. Observe also that

(3.4) δ =

ˆ
B
λ1
n

(z1
n)
|u1
n|p
∗
s dx =

ˆ
B1(0)

|v1
n|p
∗
s dx = sup

z∈RN

ˆ
B1(z)

|v1
n|p
∗
s dx,

and this in turn implies that

(3.5) |Bλ1
n
(z1
n) ∩ Ω| > 0.

� Step 3. The argument that we exploit in this step is substantially different from the argument
originally devised by Struwe in [21], requiring a delicate extension procedure on the sequence of
approximate solutions. We rather follow a related argument contained in [7].

We claim that the limit v1 found at the previous Step 2 is v1 6= 0. Suppose by contradiction
that v1 = 0 almost everywhere. Then, we would have that v1

n → 0 in Lσloc(RN ), for every

σ ∈ [1, p∗s). Let h ∈ C∞0 (RN ) be positive and such that

(3.6) supp(h) ⊂ B1(z) ⊂ B3/2(0), for an arbitrary z ∈ B1/2(0).

We now recall that for functions in Ds,p
0 (B3/2(0)) the following Sobolev inequality holds (see [5,

Proposition 2.3] with the choices r = 3/2 and R = 2 there)

(3.7)

(ˆ
B3/2(0)

|u|p∗s dx

) p
p∗s

≤ T [u]pDs,p(B2(0)),
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for a constant T = T (N, s, p) > 0. By the Hölder inequality and (3.7), since h v1
n ∈ D

s,p
0 (B3/2(0)),

it follows that

ˆ
RN

hp |v1
n|p
∗
s dx ≤

(ˆ
B1(z)

|v1
n|p
∗
s dx

) s p
N
(ˆ

B3/2(0)

(
h |v1

n|
)p∗s dx) p

p∗s

≤ T

(ˆ
B1(z)

|v1
n|p
∗
s dx

) s p
N [

h v1
n

]p
Ds,p(B2(0))

,

(3.8)

for some positive constant T depending only on N, s, p. We now observe that by the very
definition of I ′∞ˆ

R2N

Jp(v
1
n(x)− v1

n(y))(ϕ(x)− ϕ(y))

|x− y|N+s p
dx dy

= µ

ˆ
RN
|v1
n|p
∗
s−2v1

n ϕdx+ 〈I ′∞(v1
n), ϕ〉, for any ϕ ∈ Ds,p

0 (Ωn).

Then, by applying Proposition 2.9 for every n ∈ N with the choices

Ω := Ωn, Ω′ := B2(0), u := v1
n, ψ := h, F := µ |v1

n|p
∗
s−2 v1

n + I ′∞(v1
n),

we get

ˆ
B2(0)×B2(0)

∣∣v1
n(x)h(x)− v1

n(y)h(y)
∣∣p

|x− y|N+s p
dx dy

≤ C
ˆ
B2(0)×B2(0)

|h(x)− h(y)|p

|x− y|N+s p

(
|v1
n(x)|p + |v1

n(y)|p
)
dx dy

+ C

(
sup

y∈B3/2(0)

ˆ
RN\B2(0)

|v1
n(x)|p−1

|x− y|N+s p
dx

) ˆ
B3/2(0)

|v1
n|hp dx

+ C
ˆ
B3/2(0)

hp |v1
n|p
∗
s dx+ C

∣∣∣〈I ′∞(v1
n), v1

n h
p〉
∣∣∣.

(3.9)

Observe that thanks to (3.4), we know that B2(0) ∩ Ωn in a non-empty open set. We proceed to
estimate the terms on the right-hand side of (3.9). For the first term on the right-hand side, we
have ˆ

B2(0)×B2(0)

|h(x)− h(y)|p

|x− y|N+s p

(
|v1
n(x)|p + |v1

n(y)|p
)
dx dy

≤ ‖∇h‖pL∞
ˆ
B2(0)

(ˆ
B2(0)

dy

|x− y|N+s p−p

)
|v1
n(x)|p dx

+ ‖∇h‖pL∞
ˆ
B2(0)

(ˆ
B2(0)

dx

|x− y|N+s p−p

)
|v1
n(y)|p dy = on(1),

thanks to the local strong Lp convergence to 0 of {v1
n}n∈N. For the second term on the right-hand

side of (3.9), we observe that for the same reason we haveˆ
B3/2(0)

|v1
n|hp dx = on(1),
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while by Hölder inequality, for every y ∈ B3/2(0) we get

ˆ
RN\B2(0)

|v1
n(x)|p−1

|x− y|N+s p
dx ≤

(ˆ
RN
|v1
n|p
∗
s dx

) p−1
p∗s

×

(ˆ
RN\B2(0)

|x− y|−(N+s p)
p∗s

p∗s−p+1 dx

) p∗s−p+1

p∗s

,

which is uniformly bounded. For the third term, by using inequality (3.8), and recalling (3.4)
and (3.6), we have

ˆ
B3/2(0)

hp |v1
n|p
∗
s dx ≤ T

(ˆ
B1(z)

|v1
n|p
∗
s dx

) s p
N [

h v1
n

]p
Ds,p(B2(0))

≤ T δ
s p
N
[
h v1

n

]p
Ds,p(B2(0))

For the last term, since I ′∞(u1
n)→ 0, we learn from (a2) of Lemma 2.5 that

sup
ϕ∈Ds,p0 (Ωn)

∣∣∣〈I ′∞(v1
n),

ϕ

[ϕ]Ds,p(RN )

〉∣∣∣ = on(1),

thus in particular |〈I ′∞(v1
n), hp v1

n〉| = on(1), since the sequence {hp v1
n}n∈N is bounded in Ds,p

0 (Ωn)
in view of Lemma A.1 (recall that {v1

n}n∈N is bounded in Ds,p
0 (Ωn)). By introducing the previous

estimates in (3.9), we thus get[
h v1

n

]p
Ds,p(B2(0))

≤ C T δ
s p
N
[
h v1

n

]p
Ds,p(B2(0))

+ on(1),

where we recall that C is the constant appearing in the Caccioppoli inequality of Proposition 2.9
and this depends on p only. By choosing3

δ = min

{
1

2 C T
,
δ0

2

} N
s p

,

from the previous inequalities we obtain

[h v1
n]Ds,p(B(0,2)) = on(1), as n→∞.

By using again the Sobolev inequality (3.7), this in turn impliesˆ
B3/2(0)

(
h |v1

n|
)p∗s dx = on(1).

By arbitrariness of h ∈ C∞0 (B1(z)), we obtain that {v1
n}n∈N converges to zero in L

p∗s
loc(B1(z)).

Finally, taking into account the condition (3.6) and the arbitrariness of z ∈ B1/2(0), we obtain

that {v1
n}n∈N converges to zero in Lp

∗
s (B1(0)), which contradicts (3.4). Hence, v1 6= 0.

� Step 4. We have already seen in Step 2 that the sequences {z1
n}n∈N and {λ1

n}n∈N are
bounded, thus we may assume that z1

n → z1
0 ∈ RN and λ1

n → λ1
0 ≥ 0. If λ1

0 > 0 then as a
consequence of the fact that u1

n ⇀ 0 in Ds,p
0 (Ω), we have v1

n ⇀ 0 in Ds,p
0 (RN ) by Lemma 2.8 and

this is impossible by the previous Step 3. Thus λ1
n → 0 and by construction this implies

lim
n→∞

dist(z1
n, ∂Ω) = 0 and z1

0 ∈ Ω.

We now distinguish two cases:

either lim
n→∞

1

λ1
n

dist(z1
n, ∂Ω) =∞ or lim inf

n→∞

1

λ1
n

dist(z1
n, ∂Ω) <∞.

3Observe in particular that δ depends on N, s, p, µ and δ0 only. Also observe that we can always suppose δ0 < 1.
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In the first case, by Lemma 2.6 we have I ′∞(v1) = 0 so that

(−∆)sp v
1 = µ |v1|p∗s−2 v1, in RN .

Moreover, by recalling (3.5), we obtain that

z1
n ∈ {x ∈ Ω : dist(x, ∂Ω) ≥ λ1

n},

for n sufficiently large. In the second case, by Lemma 2.7 we would have v1 ∈ Ds,p
0 (H) for a

suitable half-space H and {
(−∆)sp v

1 = µ |v1|p∗s−2 v1, in H,
v1 = 0, in RN \ H.

On account of Assumption (NA), this case is ruled out.
We set %1

n = dist(z1
n, ∂Ω)/2 and take ζ ∈ C∞0 (B2(0)) a standard cut-off function, such that

ζ ≡ 1 on B1(0). We consider the sequence

u2
n(z) := u1

n(z)− (λ1
n)

s p−N
p v1

(
z − z1

n

λ1
n

)
ζ

(
z − z1

n

%1
n

)
∈ Ds,p

0 (Ω),

by construction we have that λ1
n/%

1
n converges to 0, as n goes to ∞. Thus Lemma 2.6 assures

that {u2
n}n∈N is a Palais-Smale sequence for I∞ at the energy level c− I(v0)− I∞(v1) such that

[u2
n]p
Ds,p(RN )

= [un]p
Ds,p(RN )

− [v0]p
Ds,p(RN )

− [v1]p
Ds,p(RN )

+ on(1).

� Step 5. We can iterate the previous construction to cook-up a sequence {vk}k∈N of critical
points of I∞ and, for every k ∈ N, sequences {zkn}n∈N, {λkn}n∈N, {%kn}n∈N and {ukn}n∈N ⊂ D

s,p
0 (Ω)

with

ukn(z) := u1
n(z)−

k−1∑
i=1

(λin)
s p−N
p vi

(z − zin
λin

)
ζ

(
z − zin
%in

)
,

where ζ is the same cut-off function as above. By construction, we have that {ukn}n∈N is a
Palais-Smale sequence for I∞ at the energy level

c− I(v0)−
k−1∑
i=1

I∞(vi),

and, furthermore,

[ukn]p
Ds,p(RN )

= [un]p
Ds,p(RN )

−
k−1∑
i=0

[vi]p
Ds,p(RN )

+ on(1).

Observe that each v1, . . . , vk−1 is a critical point of I∞, thus from (2.16) we get

[ukn]p
Ds,p(RN )

≤ [un]p
Ds,p(RN )

− [v0]p
Ds,p(RN )

− (k − 1)µ

(
Sp,s
µ

) N
s p

+ on(1),

which implies that this iterative construction must stop at some k0 ∈ N. As at the beginning of
Step 2, this means that [uk0

n ]Ds,p(RN ) → 0 as n goes to ∞. This in turn yields (1.8), (1.9) and

(1.10), as desired. �

In Step 2 above we used the following result, which is well-known. We record its proof for the
sake of completeness.
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Lemma 3.1. Let f ∈ L1(RN ), then its Levy concentration function

Qf (r) := sup
ξ∈RN

ˆ
Br(ξ)

|f | dx, r ≥ 0,

is a continuous function. If f ≡ 0 outside a bounded set K with smooth boundary, then for every
r ≥ 0 the supremum in the definition of Qf (r) is actually a maximum. More precisely, we have

Qf (r) := max
ξ∈Kr

ˆ
Br(ξ)

|f | dx, with Kr = {x ∈ RN : dist(x,K) ≤ r}.

Proof. The function Qf is monotone non decreasing. Observe that for every ξ ∈ RN , the function

r 7→
ˆ
Br(ξ)

|f | dx

is continuous, then Qf is lower semicontinuous as a supremum of continuous functions. Let us
suppose that there exists r0 > 0 such that

`+ := lim
r→r+

0

Qf (r) 6= lim
r→r−0

Qf (r) =: `−.

By monotonicity and lower semicontinuity of Qf , this means that `+ > `− = Qf (r0). Let us set
ε = `+ −Qf (r0), then for every r > r0 we have

Qf (r)−Qf (r0) ≥ ε.

By definition of Qf , we can then choose ξ0 = ξ0(ε, r) ∈ RN such that

ε

2
≤
ˆ
Br(ξ0)

|f | dx−
ˆ
Br0 (ξ0)

|f | dx =

ˆ
Br(ξ0)\Br0 (ξ0)

|f | dx.

Since the measure of the annulus Br(ξ0) \Br0(ξ0) converges to 0 as r ↘ r0, this gives the desired
contradiction. Let us now assume that f = 0 almost everywhere in RN \K. For every r > 0 the
function

ξ 7→
ˆ
Br(ξ)

|f | dx,

is continuous and it vanishes if Br(ξ) ⊂ RN \K. This happens if dist(ξ,K) > r and we conclude
the proof. �

Remark 3.2. We observe that if the level c satisfies

(3.10) c < 2
s

N
µ

(
Sp,s
µ

)N/sp
.

then k in Theorem 1.1 is either 0 (compactness holds) or k = 1 (compactness fails). In the second
case, the unique function v1 must have constant sign and be different from 0 almost everywhere.
Indeed, let us assume (3.10) and observe that I(v0) ≥ 0, since v0 is a critical point of I. If we
suppose that v1 is sign-changing, from Lemma 2.10 and the decomposition (1.10) we would get

c = I(v0) + I∞(v1) ≥ 2µ
s

N

(
Sp,s
µ

)N/sp
,

thus contradicting (3.10). This implies that v1 has constant sign and we can conclude that v1 6= 0
almost everywhere, thanks to Proposition B.3.
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We say that {un}n∈N ⊂ Ds,p
0 (Ω) is a Palais-Smale sequence with sign for I at level c if it is a

Palais-Smale sequence and

lim
n→∞

‖(un)−‖Lp∗s (Ω) = 0.

With minor modifications in the proof of Theorem 1.1, we can get the following variant for
Palais-Smale sequences with sign. We leave the details to the reader.

Theorem 3.3. We assume hypothesis (NA). Let 1 < p < ∞ and s ∈ (0, 1) be such that
N > sp. Let Ω ⊂ RN be an open bounded set with smooth boundary. Let {un}n∈N ⊂ Ds,p

0 (Ω) be
a Palais-Smale sequence with sign for the functional I defined in (1.4) at level c.

Then there exist:

• a (possibly trivial) non-negative solution v0 ∈ Ds,p
0 (Ω) of

(−∆)sp u+ a |u|p−2 u = µup
∗
s−1, in Ω,

• a number k ∈ N and v1, v2 · · · , vk ∈ Ds,p(RN ) \ {0} positive solutions of

(−∆)sp u = µup
∗
s−1, in RN .

• a sequence of positive real numbers {λin}n∈N ⊂ R+ with λin → 0 and a sequence of points
{zin}n∈N ⊂ {x ∈ Ω : dist(x, ∂Ω) ≥ λin}, for i = 1, . . . , k;

such that, up to a subsequence, conclusions (1.8), (1.9) and (1.10) follow.

The positivity of the limiting profiles v1, . . . , vk in the result above can be obtained by appealing
again to the minimum principle of Proposition B.3.

4. Radial case

4.1. Improved embeddings for radial functions. In the proof of Theorem 1.3, we need the
following embedding result for the space Ds,p

0,rad(B). In what follows, by K b E we mean that K

is an open bounded set with compact closure contained in E.

Proposition 4.1 (Compact embeddings). Let 1 < p <∞ and s ∈ (0, 1), we set

p#
s =

{ p

1− s p
, if s p < 1,

+∞, if s p ≥ 1.

Then we have the compact embedding

Ds,p
0,rad(BR) ↪→ Lq(K),

for every 1 ≤ q < p#
s and every K b RN \ {0}.

Proof. Let us start with the case s p > 1. We remark that we already know that the embedding
Ds,p

0 (BR) ↪→ Lploc(R
N ) is compact (for example, see [3, Theorem 2.7]). A simple interpolation

argument permits to infer the desired conclusion. Indeed, let us take q > p, a set K b RN \ {0},
for every u ∈ Ds,p

0,rad(BR) by using Lemma 4.3 and (4.1) we obtainˆ
K
|u|q dx =

ˆ
K

(
|x|

N−s p
p |u|

)q−p
|u|p |x|−

N−s p
p

(q−p)
dx

≤ CK [u]q−pDs,p(BR)

ˆ
K
|u|p dx.

Thanks to this we can get the desired conclusion.
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As far as the case sp ≤ 1 is concerned, we still use that Ds,p
0 (BR) compactly embeds into

Lp(BR) and then the assertion follows by Lemma 4.3 jointly with a standard interpolation
argument in Lebesgue spaces. �

Remark 4.2 (The exponent p#
s ). We observe that p#

s coincides with the one-dimensional Sobolev
exponent. In the case s p < 1 it is not possible to go beyond this exponent in Proposition 4.1.
Indeed, for s p < 1 it is not difficult to construct a bounded sequence {un}n∈N ⊂ Ds,p

0,rad(B1(0))

such that for a suitable compact set K ⊂ RN \ {0} we have

lim
n→∞

‖un‖Lq(K) =∞, for p#
s < q ≤ ∞.

Let us consider the spherical shells

An = {x ∈ RN : 1− rn < |x| < 1}, with rn = n
− p

1−s p .

If we denote by 1E the characteristic function of a set E, we observe that the functions un = n 1An
belong to Ds,p

0,rad(B1(0)). Indeed, if P (E) denotes the perimeter of a smooth set E ⊂ RN , we

have
[un]p

Ds,p(RN )
= np [1An ]Ds p,1(RN ) ≤ C np |An|1−s p P (An)s p,

where the last inequality is [3, Corollary 4.4]. It is not difficult to see that

|An|1−s p P (An)s p ' r(1−s p)
n = n−p,

which implies that
[un]pDs,p(B1(0)) ≤ [un]p

Ds,p(RN )
≤ C.

On the other hand, for q > p/(1− s p) we have

‖un‖qLq(RN )
= nq |An| ' nq rn = n

q− p
1−s p ,

which diverges.

We also point out that the very same example shows that in the limit case q = p#
s the

embedding is continuous, but not compact.

The previous result was based on the following Radial Lemma for fractional Sobolev spaces.
We give the proof for the reader’s convenience. For more general results valid in Besov and
Triebel spaces, we refer the reader to [19] and [22, Chapter 6].

Lemma 4.3 (A nonlocal Radial Lemma). Let 1 < p < ∞ and s ∈ (0, 1). Let BR be the ball
centered at the origin with radius R > 0. Then we have the continuous embeddings:

• if s p > 1

Ds,p
0,rad(BR) ↪→ L∞loc

(
RN \ {0}; |x|

N−s p
p

)
;

• if s p < 1

Ds,p
0,rad(BR) ↪→ L

p
1−s p
loc (RN \ {0});

• if s p = 1

Ds,p
0,rad(BR) ↪→ Ltloc(RN \ {0}), for every 1 ≤ t <∞.

Proof. We divide the proof in three cases.

Case s p > 1. Let 0 < % < R, since u is a radial function we getˆ
∂B%

|u|p dHN−1 = N ωN %
N−1 |u(x)|p, for |x| = %.
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We observe that the integral is well-defined, since u has a trace in Lp(∂B%) thanks to the
hypothesis s p > 1. We can now use the trace inequality for Ds,p(B%) (see [23, Section 3.3.3]), so
to obtain

|u(x)|p =
%1−N

N ωN

ˆ
∂B%

|u|p dHN−1

≤ C %1−N

N ωN
%s p−1

{
[u]pDs,p(B%) +

1

%s p
‖u‖pLp(B%)

}
,

for some C = C(N, p, s) > 0. In order to get the desired estimate, it is now sufficient to use
Poincaré inequality (which again needs s p > 1)

1

%s p
‖u‖pLp(B%) ≤

1

%s p
‖u‖pLp(BR) ≤ C

(
R

%

)s p
[u]pDs,p(BR), 0 < % < R.

This gives

(4.1) |u(x)| ≤ C |x|−
N−s p
p

(
R

|x|

)s
[u]Ds,p(BR), 0 < |x| < 0,

for some C = C(N, s, p) > 0. Observe that inequality (4.1) holds for |x| ≥ R as well, since u ≡ 0
on RN \BR.

We now take K b RN \ {0}. Then, there exists 0 < R0 < R1 such that

K ⊂ BR1(0) \BR0(0).

From (4.1) we directly get∥∥∥|x|N−s pp u
∥∥∥
L∞(K)

≤ C
(
R1

R0

)s
[u]Ds,p(RN ),

which proves the desired embedding.

Case s p < 1. Let u ∈ Ds,p
0,rad(RN ). We first show that for every 0 < R0 < R1 we have (with a

slight abuse of notation)

(4.2) [u]p
Ds,p(RN )

≥ C
ˆ R1

R0

ˆ R1

R0

|u(r)− u(%)|p

|%− r|1+s p
d% dr,

for some C = C(N, s, p,R0, R1) > 0. Indeed, by arguing as in [2, Lemma B.2], we have

[u]p
Ds,p(RN )

= C

ˆ ∞
0

ˆ ∞
0
|u(r)− u(%)|p %N−1 rN−1 Φ(%, r) d% dr,

where

Φ(%, r) :=

ˆ 1

−1

(1− t2)
N−3

2

(%2 − 2 t % r + r2)
N+s p

2

dt

≥
ˆ 1

1/2

(1− t2)
N−3

2(
(%− r)2 + 2 % r (1− t)

)N+s p
2

dt

=
1

|%− r|N+s p

ˆ 1

1/2

(1− t2)
N−3

2(
1 + 2

% r

(%− r)2
(1− t)

)N+s p
2

dt.
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For % 6= r, we make the change of variables

2
% r

(%− r)2
(1− t) = τ.

Then, the previous expression becomes

1

|%− r|1+s p

1

(2 % r)
N−1

2

ˆ % r

(%−r)2

0

(
2− (%− r)2

2 % r
τ

)N−3
2

τ
N−3

2

(1 + τ)
N+s p

2

dτ.

For every 0 < R0 < R1 we thus obtain

[u]p
Ds,p(RN )

≥ C
ˆ R1

R0

ˆ R1

R0

|u(r)− u(%)|p %N−1 rN−1 Φ(%, r) d% dr

≥ C
ˆ R1

R0

ˆ R1

R0

|u(r)− u(%)|p

|%− r|1+s p

(% r)
N−1

2

ˆ % r

(%−r)2

0

(
2− (%− r)2

2 % r
τ
)N−3

2
τ
N−3

2

(1 + τ)
N+s p

2

dτ

 d% dr.
(4.3)

In order to estimate the last integral, we observe that for R0 ≤ % ≤ R1 and R0 ≤ r ≤ R1 we have

(4.4) |%− r| ≤ R1 −R0 and
% r

(%− r)2
≥ % r

(R1 −R0)2
≥
(

R0

R1 −R0

)2

=: α.

Thus, we proceed as follows (we assume for simplicity N ≥ 3)

(% r)
N−1

2

ˆ % r

(%−r)2

0

(
2− (%− r)2

2 % r
τ

)N−3
2

τ
N−3

2

(1 + τ)
N+s p

2

dτ

≥ RN−1
0

ˆ α

α
2

τ
N−3

2

(1 + τ)
N+s p

2

dτ

≥ RN−1
0

(α
2

)N−3
2

ˆ α

α
2

dτ

(1 + τ)
N+s p

2

= CR0,R1 .

By spending this information into (4.3), we obtain (4.2). Observe that on the right-hand side of
(4.2) we have the one-dimensional Gagliardo seminorm of the function u on the interval [R0, R1].
By using Sobolev embedding in dimension 1, we know that

(4.5)

ˆ R1

R0

ˆ R1

R0

|u(r)− u(%)|p

|%− r|1+s p
d% dr +

ˆ R1

R0

|u|p d% ≥ 1

S

(ˆ R1

R0

|u|
p

1−s p d%

)1−s p

,

for some S = S(s, p,R0, R1) > 0.
We now prove the claimed embedding. As above we take K b RN \ {0}. Then, there exists

0 < R0 < R1 such that

K ⊂ BR1(0) \BR0(0).

For u ∈ Ds,p
0,rad(RN ) we have

[u]p
Ds,p(RN )

≥ Sp,s
(ˆ

RN
|u|p∗s dx

) p
p∗s
≥ Sp,s |BR1(0)|−s p

ˆ
BR1

(0)\BR0
(0)
|u|p dx,
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thus we get

[u]p
Ds,p(RN )

≥ C [u]p
Ds,p(RN )

+ C

ˆ
BR1

(0)\BR0
(0)
|u|p dx,

for some C = C(N, s, p,R1) > 0. We now use polar coordinates, take advantage of the fact that
R0 > 0 and use formula (4.2). Therefore, we have (the constant C may vary from line to line)

[u]p
Ds,p(RN )

≥ C [u]p
Ds,p(RN )

+ C

ˆ
BR1

(0)\BR0
(0)
|u|p dx

≥ C
ˆ R1

R0

ˆ R1

R0

|u(r)− u(%)|p

|%− r|1+s p
d% dr + C

ˆ R1

R0

|u|p %N−1 d%

≥ C
ˆ R1

R0

ˆ R1

R0

|u(r)− u(%)|p

|%− r|1+s p
d% dr + C R0

N−1

ˆ R1

R0

|u|p d%

≥ C
(ˆ R1

R0

|u|
p

1−s p d%

)1−s p

.

In the last line we used (4.5). Finally, by using that R1 < +∞, we get

[u]p
Ds,p(RN )

≥ C
(ˆ R1

R0

|u|
p

1−s p d%

)1−s p

≥ C

R
(N−1)(1−s p)
1

(ˆ R1

R0

|u|
p

1−s p %N−1 d%

)1−s p

≥ C
(ˆ

K
|u|

p
1−s p dx

)1−s p
,

for some C = C(N, s, p,R0, R1) > 0. This concludes the proof in the case s p < 1.

Case s p = 1. This is the same proof as before, we only need to observe that in this case, in place
of (4.5), we have for every 1 ≤ t <∞

(4.6)

ˆ R1

R0

ˆ R1

R0

|u(r)− u(%)|p

|%− r|1+s p
d% dr +

ˆ R1

R0

|u|p d% ≥ 1

T

(ˆ R1

R0

|u|t d%
) p
t

,

for some T = T (s, t, p, R0, R1) > 0. Then we can proceed as above, we leave the details to the
reader. �

4.2. Proof of Theorem 1.3. The proof is the same as that of Theorem 1.1, we only need to
modify Step 4 and Step 5 as follows. With the previous notations, as in the proof of Theorem
1.1 we already know that λ1

n → 0 as n goes to ∞. We now show that this implies that

(4.7) z1
0 = lim

n→∞
z1
n = 0.

Indeed, if this was not the case, up to a subsequence, one would have |z1
n| ≥ τ0 eventually for some

τ0 > 0. Taking into account Proposition 4.1, observing that p∗s < p#
s for N ≥ 2 and recalling

that u1
n converges to 0 almost everywhere, we have u1

n → 0 in Lp
∗
s (K) for every K b RN \ {0}.

Then, for 0 < τ < τ0, we conclude

δ =

ˆ
B
λ1
n

(z1
n)
|u1
n|p
∗
s dx =

ˆ
B
λ1
n

(z1
n)∩Bτ (0)

|u1
n|p
∗
s dx+ on(1) = on(1),

since, eventually Bλ1
n
(z1
n) ∩Bτ (0) = ∅, thanks to the convergence of λ1

n to 0.
The property (4.7) in turn implies that in Step 4 we are in the case covered by Lemma 2.6,

i.e.

lim
n→∞

1

λ1
n

dist(z1
n, ∂B) =∞,
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thus we do not need Assumption (NA) this time.
Then, in order to prove (1.11), we need to remove the translations by zin from (1.8). This is

done by appealing to (4.7) and continuity of Lp norms with respect to translations. Indeed, by
triangle inequality we have[
un − v0 −

k∑
i=1

(λin)
sp−N
p vi

(
·
λin

)]
Ds,p(RN )

≤

[
un − v0 −

k∑
i=1

(λin)
sp−N
p vi

(
· − zin
λin

)]
Ds,p(RN )

+

k∑
i=1

(λin)
sp−N
p

[
vi
(
· − zin
λin

)
− vi

(
·
λin

)]
Ds,p(RN )

.

By observing that the both norms converge to 0, we get the conclusion. �

Appendix A. A truncation Lemma

The following result is proved in [9, Lemma 5.3] under the stronger assumption u ∈ Ds,p(RN )∩
Lp(RN ). We need to remove the last integrability assumption.

Lemma A.1. Let ψ be a Lipschitz function with compact support and u ∈ Ds,p
0 (RN ). Then

ψ u ∈ Ds,p
0 (RN ) and we have the estimate

[ψ u]p
Ds,p(RN )

≤ C1 ‖ψ‖pL∞(RN )
[u]p

Ds,p(RN )
+ C2 ‖∇ψ‖pL∞(RN )

‖u‖p
Lp
∗
s (RN )

,

for some C1 = C1(N, s, p) > 0 and C2 = C2(N, s, p,K) > 0, where K := supp(ψ).

Proof. We notice that

[ψ u]p
Ds,p(RN )

≤ 2p−1 ‖ψ‖p
L∞(RN )

[u]p
Ds,p(RN )

+ 2p−1

ˆ
R2N

|u(x)|p |ψ(x)− ψ(y)|p

|x− y|N+s p
dx dy.

With a simple change of variables, the last integral can be written asˆ
RN
|u(x)|p

(ˆ
RN

|ψ(x)− ψ(x+ h)|p

|h|N+s p
dh

)
dx.

By using Hölder inequality with exponents p∗s/p and N/sp, Fubini Theorem and triangle inequality,
the previous integral can be estimated byˆ

R2N

|u(x)|p |ψ(x)− ψ(x+ h)|p

|h|N+s p
dx dh =

ˆ
RN

ˆ
{|h|≤1}

|u(x)|p |ψ(x)− ψ(x+ h)|p

|h|N+s p
dx dh

+

ˆ
RN

ˆ
{|h|>1}

|u(x)|p |ψ(x)− ψ(x+ h)|p

|h|N+s p
dx dh

≤
(ˆ

RN
|u|p∗s ds

) p
p∗s

×

ˆ
RN

(ˆ
{|h|≤1}

|ψ(x)− ψ(x+ h)|p

|h|N+s p
dh

) N
s p

dx


s p
N

+ 2p−1

ˆ
RN

ˆ
{|h|>1}

|u(x)|p |ψ(x)|p

|h|N+s p
dh dx

+ 2p−1

ˆ
RN

ˆ
{|h|>1}

|u(x)|p |ψ(x+ h)|p

|h|N+s p
dx dh.
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For the first integral containing ψ, we observe that the function

x 7→
ˆ
{|h|≤1}

|ψ(x)− ψ(x+ h)|p

|h|N+s p
dh,

is compactly supportedand bounded, indeed
ˆ
{|h|≤1}

|ψ(x)− ψ(x+ h)|p

|h|N+s p
dh ≤ ‖∇ψ‖L∞

ˆ
{|h|≤1}

|h|p (1−s)−N dh = C ‖∇ψ‖L∞ .

For the second integral containing ψ, by using that h 7→ |h|N+s p is integrable at infinity, we
simply have

ˆ
RN

ˆ
{|h|>1}

|u(x)|p |ψ(x)|p

|h|N+s p
dh dx ≤ C ‖ψ‖L∞

ˆ
K
|u|p dx ≤ C |K|

s p
N ‖u‖p

Lp
∗
s (RN )

.

For the last integral, we just observe that for every |h| > 1, the function ψ(·+ h) is compactly
supported. We thus have

ˆ
RN

ˆ
{|h|>1}

|u(x)|p |ψ(x+ h)|p

|h|N+s p
dx dh =

ˆ
{|h|>1}

ˆ
K−h
|u(x)|p |ψ(x+ h)|p

|h|N+s p
dx dh

≤ ‖ψ‖pL∞
ˆ
{|h|>1}

(ˆ
K−h
|u|p dx

)
dh

|h|N+s p

≤ C ‖ψ‖pL∞ |K|
s p
N ‖u‖p

Lp
∗
s (RN )

.

By collecting all the estimates, we conclude the proof. �

The following result has been curcially exploited in the proof of Theorem 1.1, in order to
localize the rescaled sequences.

Lemma A.2 (Truncation Lemma). Let ζ ∈ C∞0 (B2(0)) be a positive function such that ζ ≡ 1
on B1(0). Then

(A.1) lim
n→∞

[v ζ(µn ·)− v]Ds,p(RN ) = 0,

for any v ∈ Ds,p
0 (RN ) ∩ Lq(RN ) with q < p∗s and {µn}n∈N ⊂ R+ such that µn → 0.

Proof. We rewrite the term in (A.1) as [v ψn]Ds,p(RN ), where ψn(x) := ζ(µn x) − 1. We have

v ψn ∈ Ds,p
0 (RN ) thanks to Lemma A.1 and

|v(x)ψn(x)− v(y)ψn(y)|p

|x− y|N+s p
≤ 2p−1 |ψn(x)|p |v(x)− v(y)|p

|x− y|N+s p
+ 2p−1 |ψn(x)− ψn(y)|p |v(y)|p

|x− y|N+s p
.

Then, since ‖ψn‖L∞ ≤ 1 and v ∈ Ds,p
0 (RN ), the Dominated Convergence Theorem yields

lim
n→∞

ˆ
R2N

|ψn(x)|p |v(x)− v(y)|p

|x− y|N+s p
dx dy = 0.

For the second term, we observe that ψn(x)− ψn(y) = ζ(µn x)− ζ(µn y), introduce

IRN (y) =

ˆ
RN

|ζ(µn x)− ζ(µn y)|p

|x− y|N+s p
dx,
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and decompose
ˆ
RN
|v|p IRN dy =

ˆ
B1/µn

|v|p IRN dy +

ˆ
B2/µn\B1/µn

|v|p IRN dy +

ˆ
RN\B2/µn

|v|p IRN dy

=

ˆ
B1/µn

ˆ
RN\B1/µn

|v(y)|p |ζ(µn x)− 1|p

|x− y|N+s p
dy dx

+

ˆ
B2/µn\B1/µn

|v(y)|p IRN (y) dy

+

ˆ
RN\B2/µn

ˆ
B2/µn

|v(y)|p |ζ(µn x)|p

|x− y|N+s p
dy dx = I1 + I2 + I3.

First integral. This is the most delicate one, here the assumption v ∈ Lq(RN ) with q < p∗s will
play a major rôle. We have

I1 =

ˆ
B1/µn

ˆ
B2/µn\B1/µn

|v(y)|p |ζ(µn x)− 1|p

|x− y|N+s p
dy dx+

ˆ
B1/µn

ˆ
RN\B2/µn

|v(y)|p 1

|x− y|N+s p
dy dx.

We observe that for y ∈ B1/µn

ˆ
B2/µn\B1/µn

|ζ(µn x)− 1|p

|x− y|N+s p
dx ≤ µpn ‖∇ζ‖

p
L∞

ˆ
B2/µn\B1/µn

1

|x− y|N+s p−p dx

≤ µpn ‖∇ζ‖
p
L∞

ˆ
B3/µn (y)

1

|x− y|N+s p−p dx

= C µs pn ‖∇ζ‖
p
L∞ .

The other term is simpler, indeed by observing that |x − y| ≥ |x|/2 for y ∈ B1/µn and x ∈
RN \B2/µn , we have

ˆ
RN\B2/µn

1

|x− y|N+s p
dx ≤ C

ˆ
RN\B2/µn

1

|x|N+s p
dx = C µs pn .

Thus we can infer

I1 ≤ C µs pn
ˆ
B1/µn

|v|p dy ≤ C µ
s p−N+N

q
p

n

(ˆ
B1/µn

|v|q
) p

q

,

which converges to 0, since

s p−N +
N

q
p > 0 ⇐⇒ q < p∗s.

Second integral. This is equivalent to

I2 =

ˆ
B2/µn\B1/µn

ˆ
B2/µn

|v(y)|p |ζ(µn x)− ζ(µn y)|p

|x− y|N+s p
dy dx

+

ˆ
B2/µn\B1/µn

ˆ
RN\B2/µn

|v(y)|p |ζ(µn y)|p

|x− y|N+s p
dy dx = I2,1 + I2,2.
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For the first term, we observe that for y ∈ B2/µn \B1/µn

ˆ
B2/µn

|ζ(µn x)− ζ(µn y)|p

|x− y|N+s p
dx ≤ µpn‖∇ζ‖

p
L∞

ˆ
B2/µn

1

|x− y|N+s p−p dx

≤ µpn ‖∇ζ‖
p
L∞

ˆ
B4/µn (y)

1

|x− y|N+s p−p dx

≤ C µs pn ‖∇ζ‖L∞ .

For the other term, we observe that for y ∈ B2/µn \B1/µn

ˆ
RN\B2/µn

|ζ(µn y)|p

|x− y|N+s p
dx ≤ µpn ‖∇ζ‖

p
L∞

ˆ
B4/µn\B2/µn

1

|x− y|N+s p−p dx

+ C ‖ζ‖pL∞
ˆ ∞

4/µn

%N−1

(%− |y|)N+s p
d%

≤ C µs pn ‖∇ζ‖
p
L∞ + C ‖ζ‖pL∞

ˆ ∞
4/µn

%N−1

(%− 2/µn)N+s p
d%

≤ C µs pn
(
‖∇ζ‖pL∞ + ‖ζ‖pL∞

)
.

In conclusion, we obtain

I2 ≤ C µs pn
ˆ
B2/µn\B1/µn

|v|p dy ≤ C µs pn µ−s pn

(ˆ
B2/µn\B1/µn

|v|p∗s dy

) p
p∗s

,

and the latter converges to 0, since v ∈ Lp∗s (RN ).

Third integral. We proceed similarly as before for the integral in x, we have for every |y| ≥ 4/µn
ˆ
B2/µn

|ζ(µn x)|p

|x− y|N+s p
dx ≤ C µ−Nn ‖ζ‖pL∞ |y|

−N−s p ≤ C ‖ζ‖pL∞ |y|
−s p,

while for 2/µn ≤ |y| ≤ 4/µn we can use the Lipschitz character of ζ and get

ˆ
B2/µn

|ζ(µn x)|p

|x− y|N+s p
dx ≤ µpn ‖∇ζ‖

p
L∞

ˆ
B2/µn

1

|x− y|N+s p−p dx

≤ µpn ‖∇ζ‖
p
L∞

ˆ
B6/µn (y)

1

|x− y|N+s p−p dx

≤ C µs pn ‖∇ζ‖
p
L∞ .

In conclusion we get

I3 ≤ C µs pn ‖∇ζ‖
p
L∞

ˆ
B4/µn\B2/µn

|v|p dy + C ‖ζ‖pL∞
ˆ
RN\B4/µn

|v|p

|y|s p
dy.

The first term tends to 0 as before. The second one vanishes since |v|p |y|−s p is integrable, thanks
to Hardy inequality for Ds,p(RN ) (see [11, Theorem 1.1]). �
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Appendix B. Some regularity estimates

We collect in this Appendix some basic regularity results for nonlocal equations needed in the
paper.

Proposition B.1. Let 1 < p <∞ and s ∈ (0, 1) be such that s p < N . Let E ⊂ RN be an open
set with |E| = +∞ and let V ∈ Ds,p

0 (E) be a weak solution of

(B.1)

{
(−∆)sp V = µ |V |p∗s−2 V, in E,

V = 0 in RN \ E.

Then we have

(B.2) V ∈ Lq(RN ), for every
p∗s
p′
< q ≤ p∗s.

Proof. We first observe that |V | ∈ Ds,p
0 (E) is a positive subsolution of (B.1), in the sense that

(B.3)

ˆ
R2N

(
Jp(|V (x)| − |V (y)|)

)
(ϕ(x)− ϕ(y))

|x− y|N+s p
dx dy ≤ µ

ˆ
RN
|V |p∗s−1 ϕdx,

for every ϕ ∈ Ds,p
0 (E) positive.4 We can now closely follow the proof of [4, Proposition 3.5] for

|V |. For 0 < α < 1 and ε > 0, we introduce the Lipschitz increasing function

ψε(t) =

ˆ t

0

[
(ε+ τ)

α−1
p +

α− 1

p
τ (ε+ τ)

α−1−p
p

]p
d τ, t ≥ 0.

We observe that

(B.4) 0 ≤ ψε(t) ≤
ˆ t

0
(ε+ t)α−1 dτ =

1

α
[(ε+ t)α − εα] ≤ tα

α
,

where in the second inequality we used that 0 < α < 1. We insert in (B.3) the test function
ϕ = ψε(|V |) ∈ Ds,p

0 (E). This givesˆ
R2N

Jp(|V (x)| − |V (y)|)
(
ψε(|V (x)|)− ψε(|V (y)|

)
|x− y|N+s p

dx dy ≤ µ
ˆ
RN
|V |p∗s−1 ψε(|V |) dx.

Then one needs to introduce

Ψε(t) :=

ˆ t

0
ψ′ε(τ)

1
p dτ = t (ε+ t)

α−1
p ,

and pick a level K0 > 0, whose precise choice will be made in a while. Observe that thanks to
Chebyshev inequality, the set {|V | > K0} has finite measure, thus for 0 < α < 1 we haveˆ

{|V |>K0}
|V |p∗s+α−1 dx < +∞.

By using (B.4) and proceeding exactly as in [4], we get

Sp,s
(ˆ

RN
Ψε(|V |)p

∗
s dx

) p
p∗s
≤ µ

α

ˆ
{|V |>K0}

|V |p∗s+α−1 dx

+
µ

α

(ˆ
{|V |≤K0}

|V |p∗s dx

) p∗s−p
p∗s

(ˆ
RN

Ψε(|V |)p
∗
s dx

) p
p∗s
,

4This can be easily seen as in [5].
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The level K0 = K0(α, V ) > 0 is now chosen so that

(ˆ
{|V |≤K0}

|V |p∗s dx

) p∗s−p
p∗s

≤ α

2µ
Sp,s,

which yields (ˆ
RN

(
|V | (|V |+ ε)

α−1
p

)p∗s
dx

) p
p∗s
≤ 2µ

αSp,s

ˆ
{|V |>K0}

|V |p∗s+α−1 dx,

for every 0 < α < 1. By taking the limit as ε goes to 0, we get the desired integrability (B.2). �

Next we state a variant of an estimate proved by Di Castro, Kuusi and Palatucci in [8].

Lemma B.2 (Logarithmic estimate). Let 1 < p <∞ and s ∈ (0, 1) be such that s p < N . Let

Ω ⊂ RN be an open bounded set, a ∈ LN/sp(Ω) and let u ∈ Ds,p
0 (Ω) \ {0} be such that{

(−∆)sp u+ a up−1 ≥ µ |u|q−2 u, in Ω,

u = 0, in RN \ Ω,

for some µ ∈ R and p ≤ q ≤ p∗s. That is, for every ϕ ∈ Ds,p
0 (Ω) with ϕ ≥ 0, we have

ˆ
R2N

Jp(u(x)− u(y)) (ϕ(x)− ϕ(y))

|x− y|N+s p
dx dy +

ˆ
Ω
a up−1ϕdx ≥ µ

ˆ
Ω
|u|q−2 uϕdx.

Let us suppose that u ≥ 0 in B2 r(x0) b Ω. Then for every 0 < δ < 1 there holds

ˆ
Br(x0)×Br(x0)

∣∣∣∣log

(
δ + u(x)

δ + u(y)

)∣∣∣∣p 1

|x− y|N+s p
dx dy

≤ C rN−s p
{
δ1−p rs p

ˆ
RN\B2 r(x0)

u−(y)p−1

|y − x0|N+sp
dy

+‖a+‖LN/sp(B 3
2 r

(x0)) + max{−µ, 0} rN
(

1− q
p∗s

)
‖u‖q−p

Lp
∗
s (B 3

2 r
(x0))

+ 1

}
,

(B.5)

where u− = max{−u, 0} and C = C(N, p, s) > 0 is a constant.

Proof. The proof is exactly the same of that of the Logarithmic Lemma for supersolutions in the
case a ≡ 0, see [8, Lemma 1.3]. We take a test function φ ∈ C∞0 (B3/2 r(x0)) such that

0 ≤ φ ≤ 1, φ ≡ 1 on Br(x0), |∇φ| ≤ C

r
.

Then we insert the test function ϕ = φp (δ + u)1−p in the equation. By using that

ˆ
Ω
a up−1 φp

(δ + u)p−1
dx ≤

ˆ
B 3

2 r
(x0)

a+ dx ≤ C rN−s p
ˆ

B 3
2 r

(x0)
(a+)

N
s p dx


s p
N

,
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and5

ˆ
Ω
uq−1 φp

(δ + u)p−1
dx ≤

ˆ
B 3

2 r
(x0)

uq−p φp dx ≤ C rN−s p rN
(

1− q
p∗s

) ˆ
B 3

2 r
(x0)

up
∗
s dx


q−p
p∗s

,

and proceeding exactly as in the proof of [8, Lemma 1.3] to estimate the nonlocal term, we end
up with inequality (B.5). �

Proposition B.3 (Minimum principle). Let 1 < p < ∞ and s ∈ (0, 1) be such that s p < N .

Let Ω ⊂ RN be an open bounded connected set, a ∈ LN/sp(Ω) and let u ∈ Ds,p
0 (Ω) \ {0} be a non

negative function such that{
(−∆)sp u+ a up−1 ≥ µuq−1, in Ω,

u = 0, in RN \ Ω,

for some µ ∈ R and p ≤ q ≤ p∗s. Then we have u > 0 almost everywhere in Ω.

Proof. The proof is the same of that for the case a+ ≡ 0 and µ ≥ 0, which is contained
in [2, Theorem A.1]. It is sufficient to replace the logarithmic estimate there with the one of
Lemma B.2 and use that u ∈ Lp∗s (Ω). We leave the details to the reader. �

References

[1] C. O. Alves, Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian,
Nonlinear Anal., 51 (2002), 1187–1206. 2

[2] L. Brasco, G. Franzina, Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math.
J., 37 (2014), 769–799. 23, 32

[3] L. Brasco, E. Lindgren, E. Parini, The fractional Cheeger problem, Interfaces Free Bound. 16 (2014), 419–458.
21, 22

[4] L. Brasco, S. Mosconi, M. Squassina, Optimal decay of extremals for the fractional Sobolev inequality, Calc.
Var. Partial Differential Equations, 55 (2016), 55:23. 30

[5] L. Brasco, E. Parini, The second eigenvalue of the fractional p-Laplacian, Adv. Calc. Var., 9 (2016), 323–355.
12, 13, 16, 30
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