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Abstract. In this paper we propose an ε−subgradient method for solving a constrained
minimization problem arising in super-resolution imaging applications. The method, compared
to the state-of-the-art methods for single image super-resolution on some test problems, proves
to be very efficient, both for the reconstruction quality and the computational time.

1. Introduction
Image super-resolution reconstruction is the process of obtaining High Resolution (HR) images
from observed Low Resolution (LR) images. The problem of super-resolution is of great
importance in many applications, such as medicine or object recognition (face, bar codes, ...),
where the electronic imaging devices are equipped with low resolution cameras, while HR images
are finally desired. The super-resolution process can be performed from a single image (SISR)
or from multiple images of the same scene (MISR), such as in the case of videos or medical
imaging devices for example. In this paper, we will consider only the case of SISR.

The SIRS problem is ill-posed, since identical LR images can be generated from different HR
images. Furthermore, in addition to being connected by a down-sampling operator, the HR and
LR images are related by a Point Spread Function (as a simple convolution, for example), that is
an ill-posed operator. The different approaches, present in literature for image super-resolution,
can generally be grouped into four categories: interpolation-based algorithms, example-based
algorithms, sparse-representation-based algorithms and reconstruction-based algorithms (see
[5] and the references therein). The reconstruction-based algorithms are aimed at solving a
minimization problem, where the objective function is the sum of a fidelity term related to the
data noise and a regularization term, representing the prior on the solution and, at the same
time, enabling to face the ill-posedness of the problem. This formulation has the advantage of
simultaneously exploiting the degradation model and the information contained in the prior,
thus reducing noise and artifacts in the HR reconstructed image [5, 12].

We consider a reconstruction-based algorithm to address a minimization problem where the
fidelity term is the `2-norm, the regularization term is the discrete Total Variation (TV) function
and the solution is constrained to be nonnegative. This model has been widely treated for the
deblurring applications and many algorithms have been proposed for its solution, such as, for
example, [11, 13, 14]. The Bregman method proposed in [14] has been later used in [12] for
image super-resolution. In this paper we propose a scaling ε-subgradient method presented in
[2] for deblurring of images corrupted by Poisson noise. The method has a fast computational
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cost, since it doesn’t require any linear system solution. We test the algorithm on two problems
related to synthetic and natural images and compare the results with some state-of-the-art
methods for super-resolution.

The paper is organized as follows. In section 2 we present the mathematical problem formu-
lation; in section 3 we describe the algorithm and finally in section 4 we report the results of
some numerical experiments and the final conclusions.

2. Numerical model and notation
Let G ∈ RM×N be a low resolution observed image and let X ∈ R(s·M)×(s·N) be the high
resolution image to be recovered, with up-sampling factor s > 1. The mathematical model of a
LR image formation can be written as:

g = SHx+ η (1)

where g ∈ Rm and x ∈ Rn are obtained after vector reordering of the matrices G and X
respectively, hence m = M ·N and n = s2 ·M ·N . The matrix H represents the discrete blurring
operator acting on the HR data x and S is the down-sampling operator mapping HR blurred
data into the LR data. The vector η ∈ Rm represents additive data noise.

The numerical model proposed in the reconstruction-based super-resolution algorithms is
given by the following constrained minimization problem:

minx∈Rn‖SHx− g‖22 + βTV (x) s.t. x ≥ 0 (2)

where the nonnegativity constraint on the solution is a physical requirement on the components
of the image to be recovered. Here β > 0 is the regularization parameter and the discrete TV
can be written as

TV (x) =

n∑
i=1

‖Aix‖

where Ai ∈ R2×n is the forward difference approximation of the gradient of x at the pixel i.
Under the usual assumption on the blurring operator, such as

Hi,j ≥ 0 ;

n∑
i=1

Hi,j > 0 , ∀j = 1, ..., n ;

n∑
j=1

Hi,j > 0 , ∀i = 1, ..., n, (3)

the problem (2) is coercive and then a solution exists. Let’s denote 1 as the vector with all
entries equal to 1. Since H1 6= 0 and N (SH) = {x : (Hx)i = 0 for i ∈ I}, where I 6= ∅ is the
set of the non zero columns of S, the intersection of the space of constant images α1 (which is
the null space of TV (x)) with the null space of SH is just the zero vector.
In the following, we denote by A ∈ R2n×n the block matrix (AT1 , A

T
2 , ...A

T
n )T . Furthermore,

given a symmetric positive definite matrix D, PD,C(x) denotes the projection on the closed set
C with respect to the metric induced by D, defined as PD,C(x) = argminz∈C ‖z − x‖2D, where
‖y‖2D = yTDy. For D = I, we have the standard Euclidean projection on the set C. The
standard Euclidean norm is denoted by ‖ · ‖.

3. The scaled subgradient algorithm
The considered application is a special case of the problem

min
x∈Rn

f0(x) + f1(Ax) + Φ(x), (4)
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where f0(x) = 1
2‖SHx − g‖2 is the discrepancy function, f1(Ax) = βTV (x) is the discrete

Total Variation and Φ(x) is the indicator function ιX(x) of the non-negative orthant X. Using
the Fenchel transform of f1(Ax), which is the indicator function iY (y) of the bounded and
convex set Y = {(yT1 , ...yTn )T |yi ∈ R2, ‖yi‖ ≤ 1}, from the equality f1(Ax) = βmaxy∈Y (Ax)T y,
we obtain the equivalent primal–dual formulation of the problem (2) and we can address the
numerical solution by the class of Primal–Dual Hybrid Gradient (PDHG) methods (see [17, 4]
and references therein). Recently in [2] a variable metric has been introduced in a PDHG
method and, by interpreting this scheme as an ε-subgradient iteration, a dynamic computation
for the primal stepsize has been proposed. For the problem (2), the basic iteration of the Scaled
Primal–Dual Hybrid Gradient (SPDHG) method requires only matrix–vector operations and
simple projections:

y(k+1) = PI,Y (y(k) + τkβAx
(k)) (5)

u(k) = d(k) + βAT y(k+1) (6)

x(k+1) = PD−1
k ,X

(
x(k) − αk

min(1, ‖u(k)‖Dk
)
Dku

(k)

)
(7)

where d(k) = HTST (SHx(k)−g), {Dk} is a sequence of symmetric positive definite matrices with
bounded eigenvalues and {τk}, {αk} are the dual and primal steplength sequences respectively.
Method (5)–(7) is a special case of a scaled forward-backward ε-subgradient method, where the
forward step (5)–(6) provides an ε-subgradient of f0 + f1 ◦ A and the backward or proximal
step (7) of iX(x) is the projection on the non-negative orthant with respect to the variable
metric induced by D−1k . The key point of the interpretation of the forward step is based on

the additivity of the ε-subgradient and on the fact that the vector y(k+1) defined in (5) belongs
to the domain of the Fenchel transform of f1. Consequently, βAT y(k+1) is an εk-subgradient of

f1 ◦ A at x(k) with εk = f1(Ax
(k)) + ιY (y(k+1)) − βy(k+1)TAx(k). Furthermore, εk ≤ diam(Y )2

2τk
(see [3, Lemma 1]) and, for an a-priori selected divergent sequence {τk}, εk → 0, as k →∞.
In the backward step we use an adaptive stepsize selection strategy for the sequence {αk},
inspired by the idea of level algorithm of [9]. The resulting algorithm, detailed in Algorithm 1,
is the version of SSL algorithm described in [2] for the problem (2). In particular, in the scheme
we have f reck = mini=0,...,k(f0(x

(i))+f1(Ax
(i))), while l is the number of times that the value f lev

has been updated and k(l) is the iteration where the l-th updating occurred. Finally, σk is the
cumulative path length between two successive updates of f lev. Steps 2-5 aim to provide in f levk
an estimate of the optimal function value at the iterate k, which is used as target level for the
successive iterates until the objective function value is sufficiently close to it or the iterates move
through a long path without approaching it. In the first case, i.e. when the inequality at Step
3 is satisfied, f levk is reduced at Step 5 by subtracting the positive quantity δl to the best value
obtained so far, f rec. In the other case, when the inequality at Step 4 is satisfied, the estimated
difference from the optimal value δl is reduced and, as a consequence of Step 5, the target level
f levk is increased. Assuming to choose an a-priori dual stepsize τk such that limk→∞ τk = ∞
and a sequence of positive definite scaling matrices {Dk} converging to the identity matrix as
k → ∞, the convergence of the SPDHG method with adaptive updating rule for αk is assured
by Corollary 5.2 in [2]. For completeness, we report the convergence proposition for the problem
(2).
Proposition. Let {x(k)} be the sequence generated by Algorithm 1, where u(k) in (7) is given by
(6) with d(k) = HTST (SHx(k) − g). Assume that that there exists ρ > 0 such that ‖d(k)‖ ≤ ρ
for all k. Define Lk = max(‖Dk‖, ‖D−1k ‖) and assume that limk→∞ τk =∞, Lk ≤

√
1 + γk, γk =

O
(

1
kq

)
with q > 1. Then we have lim infk→∞ f0(x

(k)) + f1(Ax
(k)) = minx∈X(f0(x) + f1(Ax)).
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Proof. Since d(k) = ∇f0(x(k)), by Lemma 1 in [3] we have u(k) ∈ ∂εk(f0 + f1 ◦A)(x(k)), where

εk = f1(Ax
(k)) + ιY (y(k+1)) − βy(k+1)TAx(k), with εk ≤ diam(Y )2

2τk
. Since limk→∞ τk = ∞, we

have limk→∞ εk = 0. Choosing a sequence of null subgradients at x(k) for iX , by Theorem 4.1
in [2], we obtain the result.

Algorithm 1 Scaled Primal–Dual Hybrid Gradient (SPDHG) method for problem (2)

Choose B > 0, ν1, ν2 ∈ (0, 1), f rec−1 =∞; k = 0, l = 0, k(l) = 0, δ0 > 0; choose x(0) ∈ X.

For k = 0, 1, 2, ...

Step 0. Computation of ε-subgradient u(k) of f0(x
(k)) + f1(Ax

(k)) with (5)-(6)
Step 1. Computation of f0(x

(k)) + f1(Ax
(k))

Step 2. If f0(x
(k)) + f1(Ax

(k)) < f reck−1, then f reck = f0(x
(k)) + f1(Ax

(k)) else f reck = f reck−1.

Step 3. If f0(x
(k)) + f1(Ax

(k)) < f reck(l)− ν1δl, then k(l+ 1) = k, σk = 0, δl+1 = δl, l = l+ 1

and go to Step 5.
Step 4. If σk > B, then k(l + 1) = k, σk = 0, δl+1 = ν2δl, l = l + 1.
Step 5. Set f levk = f reck(l) − δl.
Step 6. Update the stepsize and compute the new iterate

αk =
f0(x

(k)) + f1(Ax
(k))− f levk

max(1, ‖u(k)‖Dk
)

,

x(k+1) = PD−1
k ,X

(
x(k) − αkDk

u(k)

max(1, ‖u(k)‖Dk
)

)
, (8)

Step 7. σk+1 = σk + αk and go to Step 1.

End

In order to fully define the SPDHG method, we focus on the strategy to compute a
suitable scaling matrix Dk, adapting to our case the split gradient strategy proposed in [1]
for nonnegatively constrained differentiable problems, which demonstrated to be very effective
in several applications (see [16, 6] and references therein). The key point of this approach consists
in finding a subgradient decomposition of the form u(k) = V (x(k)) − U(x(k)) with V (x(k)) > 0
and U(x(k)) ≥ 0 for all k and then defining Dk in (7) as a diagonal scaling matrix whose

entries are the projection of x
(k)
i /Vi(x

(k)) onto the set [1/
√

1 + γk,
√

1 + γk]. Thus, we have

to find a decomposition of the vector u(k) = ∇f0(x(k)) + βAT y(k+1) as the difference of two
nonnegative terms and we put V (x(k)) = HTSTSHx(k) + VR(x(k)). Indeed, for the first term
of u(k), we observe that HTSTSHx ≥ 0 for all x ≥ 0, while the nonnegative term VR(x) of the
decomposition of the vector βAT y(k+1) can be obtained by a non expensive recurrence formula
detailed in [2].

4. Numerical experiments
In this section we report some preliminary results obtained by SPDHG method applied to the
problem of image super-resolution. Our aim is to evaluate its best performance in terms of
reconstruction accuracy and efficiency and compare our results with those obtained by a few
representative state-of-the-art algorithms for image super-resolution. To this purpose we select
four representative SISR approaches such as Bi-cubic Interpolation, TIP-ASDS-IR [7], ELAD-
TIP14 [15], NCSR [8] and perform the image reconstructions under the same testing conditions
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used for SPDHG method. The source codes of TIP-ASDS-IR, ELAD-TIP14 and NCSR methods
were downloaded from their relative homepages while the Bi-cubic Interpolation method is
realized by means of the Matlab function imresize().
We focus here on two test images relative to synthetic and natural images respectively. The Low
Resolution (LR) test images are obtained by High Resolution (HR) images (256 × 256 pixels),
normalized in the range [0,1],(see figure 1 (a)) . The HR images are blurred by a 7× 7 Gaussian
kernel with standard deviation 1.6 and then down-sampled by a scaling factor equal to 3 both
in the horizontal and vertical directions. All the numerical computations are performed using
MATLAB R2016b on an Intel i7-3770 CPU with 16 GB RAM.
The reconstruction accuracy is measured using the Peak Signal to Noise Ratio parameter (PSNR
(dB)) which is reported in table 1 together with the execution times.

We first present the results related to noiseless LR images. The Bi-cubic method is very
fast but always obtains worse quality results, therefore it is reported only to appreciate the
improvement obtained by the other more complex methods. We observe that, in the case of
synthetic images, SPDHG method reaches the best results both in accuracy and execution times
(first row of table 1). In the case of natural images (second row of table 1), SPDHG has better
quality and execution times compared to TIP-ASDS-IR and ELAD-TIP14 while it has lower
PSNR than NCSR. However NCSR results to be the most expensive from the computational
point of view. The reconstructed HR images are shown in figure 1.We do not show the images
for TIP-ASDS-IR since the PSNR are very close to ELAD-TIP14 while the computation times
are larger.

We consider now the case of noisy data, obtained by adding Gaussian white noise with
variance σ = 0.005. We report in table 2 the results obtained with ELAD-TIP14, NCSR
and SPDHG, that gave the best results on noiseless data. Figure 2 shows a detail of each
reconstructed image. We highlight that the proposed SPDHG method gets the best PSNR
values in the shortest time.

We can conclude that SPDHG is a very promising method for fast and accurate super-
resolution reconstructions. It allows us to obtain PSNR values better or comparable to those
obtained by the best state-of-the-art methods and requires always the lowest computational
times.

Image Bicubic TIP-ASDS-IR ELAD-TIP14 NCSR SPDHG

Synthetic 25.90 30.27 (108.20) 30.48 (8.67) 31.15 (154.29) 31.8 (3.01)
Satellite 23.02 25.50 (114.96) 25.42 (8.59) 26.03 (164.80) 25.7 (8.18)

Table 1: PSNR and execution times (in seconds) for each method: best results in bold.

Image ELAD-TIP14 NCSR SPDHG

Synthetic 30.00 (8.9) 29.26 (140) 31.4 (1.8)
Satellite 25.28 (8.54) 25.60 (149 ) 25.61 (4.72)

Table 2: PSNR and execution times (in seconds) for the best methods on noisy data (σ = 5·10−3):
best results in bold.

Acknowledgments
This work has been partially supported by the Italian Institute GNCS - INdAM.



6

1234567890

7th International Conference on New Computational Methods for Inverse Problems IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 904 (2017) 012009  doi :10.1088/1742-6596/904/1/012009

Figure 1: Original and reconstructed HR Images

(a) Exact (b) Bicubic (c) ELAD-TIP14 (d) NCSR (e) SPDHG

(a) Exact (b) Bicubic (c) ELAD-TIP14 (d) NCSR (e) SPDHG

Figure 2: Reconstructed HR image details: noisy case.

(a) ELAD-TIP14 (b) NCSR (c) SPDHG

(a) ELAD-TIP14 (b) NCSR (c) SPDHG
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