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SUMMARY

Energy efficiency is becoming increasingly important for computing systems, in particular for large scale
HPC facilities. In this work we evaluate, from an user perspective, the use of Dynamic Voltage and Frequency
Scaling (DVFS) techniques, assisted by the power and energy monitoring capabilities of modern processors
in order to tune applications for energy efficiency. We run selected kernels and a full HPC application on two
high-end processors widely used in the HPC context, namely an NVIDIA K80 GPU and an Intel Haswell
CPU. We evaluate the available trade-offs between energy-to-solution and time-to-solution, attempting a
function-by-function frequency tuning. We finally estimate the benefits obtainable running the full code
on a HPC multi-GPU node, with respect to default clock frequency governors. We instrument our code to
accurately monitor power consumption and execution time without the need of any additional hardware,
and we enable it to change CPUs and GPUs clock frequencies while running. We analyze our results on
the different architectures using a simple energy-performance model, and derive a number of energy saving
strategies which can be easily adopted on recent high-end HPC systems for generic applications.
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1. INTRODUCTION

The performances of current HPC systems are increasingly bounded by their energy consumption,

and one expects this trend to continue in the foreseeable future. On top of technical issues

related to power supply and thermal dissipation, ownership costs for large computing facilities are

increasingly dominated by the electricity bill. Indeed computing centers are considering the option

to charge not only running time, but also energy dissipation, in order to encourage users to optimize

their applications for energy efficiency.

For HPC users there are different approaches to reduce the energy cost of a given application. One

may adjust available power-related parameters of the systems on which applications run [1, 2], or

one may decide to tune codes in order to improve their energy efficiency [3]. Following the former

approach, recent processors support Dynamic Voltage and Frequency Scaling (DVFS) techniques,

making it possible to tune the processor clock frequency. The software approach, on the other side,

may be a winner in the long run, but it involves large programming efforts and also depends on

reliable and user-friendly tools to monitor the energy costs of each kernel of a possibly large code.
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This papers offers a contribution in the first direction, but also, while not discussing in details

the software approach to energy optimizations, considers several reliable and user-friendly software

tools and performance models which may eventually support the second direction too.

We focus on simple techniques to monitor the energy costs of key functions of large HPC

programs, assessing the energy saving and the corresponding performance cost that one can expect

– for a given application code – by a careful tuning of processor (i.e. CPU and GPU) clocks on

a function-by-function basis. In other words, we explore the energy-optimization space open in a

situation in which – due to code complexity, or for other reasons – one would like to leave the

running code unchanged, or – at most – annotate it.

1.1. Related Works

Processors power accounts for most of the power drained by computing systems [4] and DVFS

techniques were introduced to tailor a processor clock and its supply voltage. This approach has

an immediate impact on the processor drained power, since – to first approximation – the power

dissipation of gates is given by:

Pavg = fCV 2 + Pstatic

where Pavg is the average total power, f the working frequency, C the capacitance of the transistor

gates, V the supply voltage, while Pstatic is the static power, drained also while idle, accounting for

example for leakage currents.

Power reduction does not automatically translate to energy saving, since the average power drain

of the system has to be integrated over the application execution time (or time-to-solution, TS) to

obtain the energy consumed by the application (or energy-to-solution, ES):

Es = Ts × Pavg

so an increase in TS may actually increase ES , in spite of a lower average power drain Pavg . This

is a well known phenomenon motivating the convenience in some cases to run at maximum clock

frequency, no matter the power needed, in order to reach the solution as soon as possible and then

enter a low power idle state: this is the so called “Race-to-idle”.

Nowadays DVFS is routinely used to ensure that processors stay within an allowed power budget,

in order to run applications without over-heating the processor, and allowing short frequency bursts

when possible. The potential of DVFS to reduce energy-to-solution for a complete application

has been questioned with several arguments [5], e.g. since DVFS acts mainly on dynamic power,

the trend of increasing ratio between static vs dynamic power drain reduces its effectiveness in

lowering energy-to-solution. However, DVFS techniques have recently gained fresh attention in

various research works especially in the context of large parallel HPC contexts [6], where saving

even a small fraction of a very large energy budget may have a significant impact.

Research work has focused in particular on communication phases, when processes within large

parallel MPI applications stop their execution, waiting for data exchanges. These phases are indeed

the best candidates to lower the CPU clock with minimal impact on overall performance [7, 8].

However, from the point of view of performances, it is good practice to overlap communication and

computation whenever possible [9]. Consequently, in several applications, in particular lattice based

computations (such as the one we adopt as a benchmark in this paper), communication phases are

often fully overlapped with computation, making this strategy less effective.

Other research works focused on the possibility to reduce the clock frequency in the case of an

imbalance between the computational load of multi-task applications, allowing to reduce the clock

frequency only for idle ranks [10]. But again, for the broad range of massively parallel computations,

one tries to balance the computational load evenly on each of the computing threads or processes,

reducing the impact of this opportunity.

Finally, the widespread adoption of accelerators in HPC systems means that the largest fraction

of the power drained by computing systems is no more ascribable to CPUs. For instance, with

the advent of multi-GPU compute nodes, where up to 8 dual GPU boards are hosted on a single
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computing node, up to ≃ 75% of the power could be drained by GPUs, with CPUs accounting for

only 5− 10% of the total energy budget †. Consequently, as recent GPUs improve their support of

DVFS, in many cases allowing for a fine grained frequency selection [2, 11, 12], various studies

focused on the optimization space made available by tuning GPU clock frequencies.

1.2. Contributions

In a previous work [13] we analyzed the tradeoff between computing performance and energy

efficiency for a typical HPC workload on selected low-power systems. We considered low-power

Systems on a Chip (SoCs) since they are intended for mobile applications, so they provide several

advanced power monitoring and power saving features, but also in view of a prospective usage

as building blocks for future HPC systems [14]. Given the increasing interest in controlling and

reducing energy dissipation, recent high-end processors have started to support advanced power-

saving and power-monitoring technologies, similar to those early adopted in low-power processors

[15, 16].

In this paper we perform a similar analysis on state-of-the-art HPC compute engines (hi-end

processors and accelerators) addressing energy-performance tradeoffs for typical HPC workloads.

For this purpose, we compare different architectures from the energy efficiency point of view,

adopting some workload benchmarks that we had used earlier to compare CPUs and various

accelerators from the sole point of view of performances [17, 18]. We use the same application

benchmark as in [13], a Lattice Boltzmann code, widely used in CFD and optimized for several

architectures [19, 20, 21], this workload is well suited for benchmarking purposes because its two

most critical functions are respectively strongly memory- and compute-bound. Lattice Boltzmann

implementations were recently used in other works, e.g. in [22] presenting a similar analysis for the

Intel Sandy Bridge processor.

At variance with previous works such as [8, 10], we do not attempt to provide an automatic

tuning of processors frequencies nor an automatic tool able to identify where to apply frequency

scaling. As it is the case for various widely known “computational challenges” applications, we

assume the users to already know the code functions where most of the computing time is spent

and moreover to already know which are the compute- or memory-bound parts. This knowledge is

assumed to derive e.g. from a previous performance optimization, which could be complemented

with an additional optimization towards energy efficiency. We aim therefore with this work to

offer an in-depth overview of possible energy optimization steps available on recent common HPC

architectures, exploitable by HPC users that are already familiar with performance optimizations of

their codes.

In this paper we follow an approach close to the one presented in [1] for an Intel CPU, exploring

the optimization space for all possible CPU frequencies, but considering a more recent Intel Haswell

architecture and without utilizing custom power measurement hardware. We also take into account

GPU architectures, as recently done also in [2], but using the more recent K80 architecture and a

larger set of frequencies.

Our hardware testbed is a high-end HPC node of the COKA (COmputing on Kepler Architecture)

Cluster, hosted at the University of Ferrara. Each node in this cluster has 2 × Intel Haswell CPUs and

8 × dual GPU NVIDIA K80 boards. We use two implementations of the same algorithm, previously

optimized respectively for CPUs and GPUs [20, 23], with different configurations and compilation

options.

We make an extensive set of power and performance measurements of the critical kernels of the

code, varying clock parameters for the hardware systems that we test. Using this information we

assess the available optimization space in terms of energy and performance, and the best trade-off

points between these conflicting requirements. We do so for individual critical routines, as we try to

†Percentages referred to a computing node of the COKA Cluster (http://www.fe.infn.it/coka/) installed at
the University of Ferrara and obtained from the declared maximum possible power drain of the system and of the installed
processors and accelerators.
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understand the observed behavior using some simple but useful combined models of performance,

power and energy.

We then investigate the possibility of tuning the clock frequency on a function by function basis,

while running a full simulation, in order to run each function as energy-efficiently as possible. We

discuss our findings with respect to a simple energy-performance model. Finally, we demonstrate the

actual energy saving potential, measuring the different energy consumptions of a whole computing

node, while performing a full simulation at different GPU clock frequencies.

2. THE APPLICATION BENCHMARK

Lattice Boltzmann methods (LB) are widely used in computational fluid dynamics, to describe

flows in two and three dimensions. LB methods – discrete in position and momentum spaces – are

based on the synthetic dynamics of populations sitting at the sites of a discrete lattice. At each time

step, populations hop from lattice-site to lattice-site and then incoming populations collide among

one another, that is, they mix and their values change accordingly. LB models in n dimensions

with p populations are labeled as DnQp; we consider a D2Q37 model describing the thermo-

hydrodynamical evolution of a fluid in two dimensions, and enforcing the equation of state of a

perfect gas (p = ρT ) [24, 25]; this model has been used for large scale simulations of convective

turbulence (see e.g., [26, 27]). A set of populations (fl(x, t) l = 1 · · · 37), defined at the points of

a discrete and regular lattice and each having a given lattice velocity cl, evolve in (discrete) time

according to the following equation:

fl(x, t+∆t) = fl(x− cl∆t, t)−
∆t

τ

(

fl(x− cl∆t, t)− f
(eq)
l

)

(1)

The macroscopic variables, density ρ, velocity u and temperature T are defined in terms of the

fl(x, t) and of the cls; the equilibrium distributions (f
(eq)
l ) are themselves a function of these

macroscopic quantities [28]. In words, populations drift from different lattice sites (propagation),

according to the value of their velocities and, on arrival at pointx, they change their values according

to Eq. 1 (collision). One can show that, in suitable limiting cases, the evolution of the macroscopic

variables obeys the thermo-hydrodynamical equations of motion of the fluid. Inspection of Eq. 1

shows that the algorithm offers a huge degree of easily identifiable parallelism; this makes LB

algorithms popular HPC massively-parallel applications.

An LB simulation starts with an initial assignment of the populations, in accordance with a given

initial condition at t = 0 on some spatial domain, and iterates Eq. 1 for each point in the domain

and for as many time-steps as needed. At each iteration two critical kernel functions are executed:

i) propagate moves populations across lattice sites collecting at each site all populations that will

interact at the next phase (collide). Consequently, propagate moves blocks of memory locations

allocated at sparse addresses, corresponding to populations of neighbor cells; ii) collide performs

all mathematical steps associated to Eq. 1 in order to compute the population values at each lattice

site at the next time step. Input data for collide are the populations just gathered by propagate.

collide is the floating point intensive step of the code.

It is very helpful for our purposes that propagate, involving a large number of sparse memory

accesses, is strongly memory-bound; collide, on the other hand, is strongly compute-bound, and the

performance of the floating-point unit of the processor is here the ultimate bottleneck.

3. EXPERIMENTAL SETUP

All our tests were run on a single node of the COKA Cluster at the University of Ferrara. Each node

has 2 × Intel Haswell E5-2630v3 CPUs and 8 × dual GPU NVIDIA K80 Boards.

We use processor-specific implementations of the LB algorithm of Sec. 2, exploiting a large

fraction of the available parallelism of the targeted architectures. On the GPU we run an optimized

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
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CUDA code, developed for large scale CFD simulations [17, 18], while on the CPU we run an

optimized C version [29, 30] using AVX2 intrinsics exploiting the vector units of the processor and

OpenMP for multi-threading within the cores.

For all codes and for each critical kernel we perform runs at varying values of the clock

frequencies, and log power measurements on a fine-grained time scale. For both of our target

processors we read specific hardware registers/counters able to provide energy or power readings.

This simple approach has been validated with hardware power meters by third parties studies for

recent NVIDIA GPUs and Intel CPUs [15], showing that it produces accurate results [16, 31]. In

this approach we cannot monitor the power drain of the motherboard and other ancillary hardware;

recent studies have shown however that the power drain of those components is approximately

constant in time and weakly correlated with code execution [15, 32]. In-band measurements

may also introduce overheads, which in turn may affect our results. In this regard, we checked

that performance degradation due to power measurements is negligible and measured the power

dissipation of the sole measurement code, verifying that it is less than +5% of the baseline power

dissipation.

We developed a custom library to manage power/energy data acquisition from hardware registers;

it allows benchmarking codes to directly start and stop measurements, using architecture specific

interfaces, such as the Running Average Power Limit (RAPL) for the Intel CPU and the NVIDIA

Management Library (NVML) for the NVIDIA GPU. Our library also lets benchmarking codes to

place markers in the data stream in order to have an accurate time correlation between the running

kernels and the acquired power/energy values. For added portability of the instrumentation code,

we exploited the PAPI Library [31] as a common API for energy/power readings for the different

processors, partially hiding architectural details. The wrapper code, exploiting the PAPI library, is

available for download as Free Software [33].

Our benchmark codes are also able to change the processor clock frequencies from within the

application. The code version for Intel CPUs uses the acpi cpufreq driver of the Linux kernel ‡,

able to set a specific frequency on each CPU core by calling the cpufreq set frequency() function.

The Userspace cpufreq governor has to be loaded in advance, in order to disable dynamic frequency

scaling and to be able to manually select a fixed CPU frequency. As shown later, we also tested other

clock governors in our benchmarks, such as the Performance, Powersave and Ondemand ones. The

NVIDIA GPUs code changes the GPU processor and memory frequency, using the NVML library

and in particular the nvmlDeviceSetApplicationsClocks() function.

The computationally critical section of a production run of our code performs subsequent

iterations of: the propagate function, the application of boundary conditions and then the collide
function as described in Sec. 2. Boundary conditions depending on the details of the specific

simulation, have a marginal computational cost in typical simulations (of the order of 1− 2%),

so we neglect this computational phase in our detailed analysis (but the corresponding routines are

included in the full code).

We have instrumented the two critical functions and performed several test runs, monitoring the

power/energy consumption. All tests adopt double precision for floating point data, the same lattice

size (1024× 8192) and the same number of iterations (1000).

Fig. 1 shows a sample of our typical raw data; Fig. 1a shows the measured power drain on one

of the 2 GPUs of an NVIDIA K80 board at a fixed GPU frequency of 875MHz; additionally, GPU

temperature during the run is obtainable (and plotted in the figure). Fig. 1b shows the same data

for one Intel CPU at a fixed CPU frequency of 2.4GHz. On the Haswell CPU we have two energy

readings [16]: the Package Energy (that we divide by the elapsed time to convert to power and plot

in red) and the DRAM Energy (again converted to power and plotted in blue). The sum of the two

readings – the total power drained during the run – is plotted in magenta.

The patterns shown in Fig. 1 are qualitatively easy to understand: we see a power surge during

the execution of propagate and a further large power figure during the execution of collide; Fig. 1a

‡As of Linux Kernel 3.9 the default driver for Intel Sandy Bridge and newer CPUs is intel pstate, we disabled it in order
to be able to use the acpi cpufreq driver instead.
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(b) Power drain on one of the two CPUs at a fixed CPU clock frequency of 2.4GHz for the same
tests as in the previous panel; in this case we show separately the power drained by the processor

and by the memory system and their sum.

Figure 1. Plot of the power drain during the run of the two critical kernels (propagate and collide) of our
benchmark code; GPU data at top, CPU data at bottom.

tells us that on GPUs collide is more power intensive than propagate while Fig. 1b informs us

that in the latter routine the power drain of the memory system is comparatively larger, as expected

in a memory-bound section of the code. As code execution ends, power drain quickly plummets.

An interesting feature in Fig. 1a is the short power spike as collide starts executing: in this case

power briefly exceeds the TDP for this processor (150W) and a self-preservation mechanism reduces

frequency to bring power down to acceptable levels; this mechanism will have an impact on our

analysis, as discussed later.

CPU data has larger fluctuations than GPU data, since samples for the former are collected at

100Hz, while for the latter we have averages of longer time series, collected at 10Hz, since for higher

sample frequency, the NVML component of the PAPI library starts to return repeated samples.

However, in both cases, time accuracy is enough to capture all interesting details.

We recorded data for all values of the clock frequency of the processor at a fixed memory

frequency of 2133 MHz (CPU) and 2505 MHz (GPU): indeed – at variance with low-power
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processors [13] – the systems that we test run at a fixed frequency of the memory interface. This

data is the starting point for the analysis shown in the following §.

4. PERFORMANCE AND ENERGY MODELS

In this section, we consider figures-of-merit useful to assess the energy cost of a computation and

to develop some models that will guide us in the analysis of our experimental data.

We consider the time-to-solution (TS) and energy-to-solution (ES , in Joule, defined as the average

power Pavg multiplied by TS) metrics and their correlations as relevant and interesting parameters

when looking for tradeoffs between conflicting energy and performance targets. Other quantities

– e.g. the energy-delay product (EDP) – have been proposed in the literature, in an attempt to

define a single figure-of-merit; however we think that correlations between several parameters better

highlight the underlying mechanisms; other authors share this attitude (see for instance [22]).

We adopt a simple model that links ES and TS, combining the Roofline Model [34], with a

simple power model for a generic processor. The Roofline Model identifies in any processor based

on the Von Neumann architecture two different subsystems, working together to perform a given

computation: a compute subsystem with a given computational performance C in operations-per-

second or FLOPS/s (if the workload is mostly floating-point) and a memory subsystem, providing a

bandwidthB in words- or bytes-per-seconds, between processor and memory. The ratio Mb = C/B,

specific of each hardware architecture, is the machine-balance [35]. Looking now at a generic

target application, the Roofline Model considers that every computational task performs a certain

number of operations O, operating on D data items to be fetched/written from/onto memory. For

any software function, the corresponding ratio I = O/D is the arithmetic intensity, computational

intensity or operational intensity [34].

The Roofline Model derives performance estimations combining arithmetic intensity and

machine-balance. Using a notation slightly different from the one of the original paper [34], one

obtains that to first approximation – e.g., neglecting scheduling details –

TS ≈ max[Tc, Tm] = max[
O

C
,
D

B
] =

O

C
max[1,

DC

OB
] =

O

C
max[1,

Mb

I
]. (2)

Eq. 2 tells us that TS is a decreasing functions of C, as naively expected, but only as long as

Mb/I ≤ 1; if this condition is not fulfilled, TS stays constant (and we say that the task is memory-

bound). To very good approximation, C is proportional to the processor frequency f , so, varying f
also modulates Mb and one derives that

TS(f) ∝
1

f
max[1, αf ] (3)

with an appropriate constant α.

To relate power dissipation P and f we assume a simple linear behavior, ignoring more complex

effects such as the leakage current increase with temperature and the voltage change often associated

with frequency scaling:

P (f) ≈ m f + Ps (4)

where Ps accounts for leakage currents and for the static power drained by parts of the system not

used in the specific task.

Combining Eq. 3 and Eq. 4, we have:

ES = P (f)× TS(f) ∝ (m+
Ps

f
) max[1, α f ] (5)

§The NVIDIA K80 memory clock frequency can also be set to 324 MHz, but such a low frequency is designed to be
useful only to reduce power drain when the processor idles.
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Figure 2. Sketchy behavior of ES and TS as predicted by Eqs. 5 and 3. All quantities in arbitrary units; the
frequency value at which I = Mb is normalized to 1.

This equation shows that, as we increase f , TS and ES both decrease provided thatαf ≤ 1; however,

as soon as αf > 1, increasing f becomes useless, as ES starts to increase again while TS remains

constant.

This behavior, sketchly shown in Fig. 2, tells us that the matching of Mb and I , that in the Roofline

Model is relevant for performance, is an equally critical parameter for energy efficiency, as noticed

also in [36] and in [37]: indeed, Mb/I ≈ 1 gives the best performance and at the same time the

lowest energy dissipation.

Seen from a different perspective we have a duality between complementary approaches: software

optimizations for a specific architecture change I to adapt to a given Mb while, changing clock

frequencies we try to match Mb to a given I .

5. DATA ANALYSIS

We plot our results for ES vs. TS in Figs. 3 and 4, showing experimental values for the propagate
and collide kernels, for both processors and for all available clock frequencies.

At the qualitative level, the results of Figs. 3 and 4 have a slightly diverging behavior across the

two architectures; GPU data show a correlated decrease of ES and TS till, at some ES , the trend

reverses, with ES sharply rising again.

CPU data for propagate on the other hand shows that TS is almost constant (TS changes by

≈ 4%, while the clock frequency changes by a factor 2), while ES increases by ≃ 10% as TS

decreases. On the same processor, collide shows a gentle correlated decrease of ES and TS for all

frequencies that we are able to control. The best TS values shown in the plot are obtained using

default cpufreq governors: Performance, Ondemand and Conservative. These default governors

allows the processor to use so-called Turbo Boost frequencies, enabling the processor to run above

its nominal operating frequency, but this happens at a significant energy cost.

We now compare our data with the model of the previous section, starting from an analysis of

GPU data. A qualitative comparison of data with the model suggests that both routines become

memory-bound at some value of the clock frequency; we check this assumption in Fig. 5 where we

show (in arbitrarily rescaled units) the product (f TS) as a function of f for both kernels: as long

as TS scales as 1/f , (f TS) has to take a constant value. We see that for collide this is true up to

f < 800 MHz while for propagate the change happens already at f ≃ 650 MHz. Our model would

then imply that at those frequencies the two functions become respectively memory-bound.

This analysis justifies the very good agreement of propagate with our model:ES and TS decrease

as we increase frequency and then (in our case at f ≥ 650 MHz) increasing frequency further does

not improve TS but increases ES . The same behavior is qualitatively similar for collide but not

exactly as predicted. To further clarify the situation, we plot in Fig. 6 the power drained by the

processor as a function of f . For propagate, we observe a linear behavior over the whole frequency

range:

P (W ) = 42.94 + 0.096 f. (6)
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Figure 3. ES vs TS for the propagate and collide functions, measured on the GPU; labels are the
corresponding clock frequencies f in MHz.

For collide, the linear behavior is valid only for frequencies f < 650 Mhz. In this range a fit

analogous to the previous one yields

P (W ) = 42.50 + 0.109 f. (7)

As the clock frequency increases beyond≃ 650MHz, power drain for the collide kernel grows much

faster (we model the behavior in this range on purely phenomenological grounds as an additional

contribution P (f)(W ) = 0.005 e0.0099f ); finally, the points on the plot at f ≃ 800 MHz and beyond

do not describe correctly the actual situation, as the clock governor takes over frequency control,

trying to keep the processor within the allowed power budget; as a consequence the actual operating

clock frequency is most probably not the one requested by our code. This suggests that collide data

points in Fig. 5 beyond 800 MHz do not reflect a memory-bound regime.

Summing up, we conclude that our model describes accurately the behavior of the propagate
kernel while for collide we cannot be conclusive, as we enter a power regime at which we are unable

to control the clock frequency before we enter the memory-bound regime. This is related to the fact

that collide has a particularly high operational intensity: I ≈ 13.3, while the two architectures have

a theoretical maximum (i.e. computed taking into account maximum Turbo/Auto -boost frequencies)

Mb of 5.61 for the CPU and 8.08 for the GPU.
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Figure 4. ES vs TS for the propagate and collide functions, measured on the CPU; labels are the
corresponding clock frequencies f in GHz.

Applying the same line of reasoning to our CPU data, our initial prediction is that propagate is

memory-bound on the whole allowed frequency range (since TS is approximately constant) while

collide is not, in the frequency range that we control (since we see a constant correlated decrease

of ES and TS). We check that this is true in Fig. 7, showing again the behavior of (f TS) as a

function of f : we see that this quantity is linearly increasing for propagate and approximately

constant for collide. Note that the best option to obtain the highest performance for collide is to let

the clock governor free to select the operating frequency; this presumably allow the system to enter

Turbo Boost mode, when the power budget permits it, increasing f up to 3.2 GHz ¶. This comes

with some associated ES costs. However, the same strategy for propagate has no advantage in

performance while it still has some moderate ES cost. Finally we see that, for both routines, asking

the clock governor to apply the powersave strategy, enabling the namesake governor, has an adverse

effect on both TS and ES .

¶To manually set Turbo Boost frequencies is not permitted, so we could not perform in dept studies in this regime.
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Figure 6. Power measurements on a GPU, running the propagate and collide kernels. the straight lines are
the corresponding linear fits (Eqs. 6 and 7), while the curve is a fit of the non-linear power drain for collide

at f ≥ 650 MHz (see text for details).

6. RESULTS AND DISCUSSION

Our results allow to draw some preliminary conclusions on possible hardware approaches to energy

optimization; from Figs. 3 and 4 one can identify the performance-vs-energy tradeoff made possible

by varying the processor frequencies. The first two lines of Table I recap this information, listing the

best energy saving made possible by these techniques for the two analyzed functions, alongside with

the corresponding performance drop that one has to discount. Gains are not large but not negligible

either; a simple lesson is that fair energy savings are possible by tuning the processor clock to lower

values in all cases in which the code is memory-bound. Many HPC codes today are memory-bound,

thus this simple recipe could be usable in a wide range of applications.

An aside result is a direct comparison between the two architectures: for example taking into

account the best ES values, the CPU is ≈ 4.5 times more energy demanding despite being ≈ 6.5
times slower than the GPU to compute the collide function. This obviously refers only to this code,

which is well suited for parallelization on GPU cores.
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6.1. Function by function tuning

We now consider a further optimization step: one may try to select for each routine the optimal

processor frequency, changing it on-the-fly before entering each kernel; this approach may fail if

tuning the clock introduces significant additional delays and/or energy costs. Results are shown in

Fig. 8, plotting our measured values of ES vs TS for the same combination of the two routines

that would apply in a production run, as the processor clocks are set to all possible values before

entering each routine; for CPUs this approach is indeed viable, as the overhead associated to on-

the-fly clock adjustments is negligible. This is consistent with our independent measurement of the

time cost of each clock change (≈ 10µs) in agreement with similar measurements on Intel Xeon

architectures [38]. An interesting feature of the plot is that data points organize in vertical clusters,

corresponding to sub-optimal clock frequencies for propagate and clearly showing the adverse

effects of a poor frequency match.

For GPUs we see immediately that this technique is not applicable with the available clock

adjustment routines, as the time cost of each clock change (≈ 10ms) is not negligible w.r.t. the

average iteration time. We can anyway select a single clock frequency which is optimal (according

to the desired metric) for the whole code.

Table I summarizes costs and benefits comparing our best results (in terms of ES minimization)

with the corresponding figures related to the default clock governors of the two processors; we

see that limited but non-negligible improvements are possible for ES with a fair drop of the code

performance.

GPU CPU

Routine ES saving TS cost ES saving TS cost

propagate 18% 0 9% 3%
collide 6% 10% 4% 4%

Full code 11% 10% 7% 8%

Table I. Approximate ES gains made possible by clock tuning and corresponding TS costs.
Percentages referred to ES optimal frequencies.
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is reported if the same clock was used for both the functions.

6.2. Full code on multi-GPUs

The adopted application, given its higher performance on these systems, is commonly run on GPU

based HPC clusters. Therefore it may be interesting to measure how much the proposed energy-

optimizations could impact on the energy consumption of a whole GPU-based compute node while

running a real simulation.

With this aim, we run the original full code without any instrumentation on the 16 GPUs hosted

on a single node of the COKA Cluster while measuring its power consumption during the simulation

execution. The simulation was run on a 16384× 8192 lattice for 10, 000 iterations.

Power measurements, in this case, were performed using the IPMI protocol, in order to acquire

data directly from the sensors embedded in the power supplies of the Supermicro SYS-4028GR-

TR system. The full node maximum declared power consumption is 3.2kW. It hosts 8 NVIDIA

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



14

K80 board accounting for a maximum of 300W each and thus 2.4kW in total, giving a 75% of the

maximum power drained possibly only by GPUs.

Given that we demonstrated that clock tuning on a function-by-function basis is not convenient

for GPUs at this stage, we run the full simulation at different fixed GPU clock frequencies, including

one run with the default frequency governor with Autoboost enabled.

Power readings for the full node are reported in Fig. 9a, while the corresponding ES for the

application run are reported in Fig. 9b.
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(a) Full node power drain, setting all the GPUs at the same clock frequency, for different clock
frequencies. Power drain measured by the power supplies through IPMI.
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Figure 9. Running 10k iterations of a complete Lattice Boltzmann simulation over a 16384 × 8192 lattice,
on a single cluster node, using 16 GPUs, for different GPU frequencies.

As can be seen from Fig. 9b at a specific frequency (i.e. 732MHz) ≈ 7% of the total consumed

energy of the computing node can be saved, with respect to the default behavior, without impacting

performances.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



15

7. CONCLUSIONS

In this paper we have analyzed the potential for energy optimization of an accurate selection of the

processor clock, tuning machine balance of the processor to operational intensity of the application.

We applied this method to a typical HPC workload on state-of-the-art architectures, discussing the

corresponding possible performance costs.

Our approach yields sizeable energy savings for typical HPC workloads with a simple and fast

tuning effort; the associated performance costs are easily manageable. The main advantage of this

approach is that it can be applied to any production program with a limited amount of easily-applied

measurements, not involving additional hardware, or expensive program adjustments.

Some further remarks are in order:

• It is relatively easy to instrument application codes to have accurate energy measurements of

key application kernels, using hardware counters and minimally disrupting the behavior and

performance of the original code.

• Simple theoretical models – while admittedly unable to capture all details of the ES and

TS behavior – still provide a level of understanding that is sufficient to guide optimization

strategies.

• An important result is that the best practice for both performance and energy efficiency is to

look at the I and Mb parameters: if I 6 Mb, reducing Mb (e.g. lowering the clock frequency)

will reduce ES with a negligible impact on performance; in other words, for compute-bound

codes the best strategy is to run the code at the highest sustained processor frequency while,

for memory-bound code, decreasing the clock frequency usually reduces ES with essentially

no impact on performance. Since many real-life HPC codes today are memory-bound, this

practice could be useful for many applications.

• Default frequency governors usually yield the best performances, but do not minimize energy

costs; on the other hand, using the lowest frequencies (such as prescribed by the powersave

cpufreq governor), is in general a bad choice, from the point of view of both ES and TS .

• “on-the-fly” clock adjustment is a viable strategy on recent Xeon processors, while on

NVIDIA GPUs the overheads of the clock management libraries makes this strategy hardly

useful.

• Highest frequencies, in particular the ones enabled by Auto/Turbo -boost mechanisms, let

power drain increase superlinearly with respect to f causing a systematic divergence from our

predictions. This may be due to higher current values within the processor at higher operating

temperatures, making modeling and predictions less solid, but also puts a question mark on

operating HPC machines at high temperatures in an attempt to reduce cooling costs.

We plan additional experiments in this direction for multi-node implementations in order to

estimate the energy-saving potentials at the cluster level, taking into account also communications

costs. We also plan to develop more detailed power-performance-energy model able to predict more

precisely the behavior of these variables on modern architectures.
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