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Abstract

In this article we show the existence of a random-field solution to linear
stochastic partial differential equations whose partial differential operator
is hyperbolic and has variable coefficients that may depend on the tem-
poral and spatial argument. The main tools for this, pseudo-differential
and Fourier integral operators, come from microlocal analysis. The equa-
tions that we treat are second-order and higher-order strictly hyperbolic,
and second-order weakly hyperbolic with uniformly bounded coefficients
in space. For the latter one we show that a stronger assumption on the
correlation measure of the random noise might be needed. Moreover, we
show that the well-known case of the stochastic wave equation can be
embedded into the theory presented in this article.
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1 Introduction

In the recent years there has been a huge progress in the solution theory to
stochastic partial differential equations (SPDEs). A linear SPDE is given by
the following equation

Lu(t, x) = γ(t, x) + σ(t, x)Ḟ (t, x), (1.1)
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where L is a partial differential operator, γ, σ : R1+d → R are functions, subject
to certain regularity conditions and F is a random noise term that will be
described in detail in Section 2. Due to the singularity of the random noise,
the sample paths of u are in most situations not in the domain of the operator
L. One way to make sense of this equation in the case of constant coefficients
is the following: we define the solution to (1.1) as a sum of a deterministic
term I0 accounting for the initial conditions, a stochastic and a deterministic
convolution of the terms on the right-hand side with the fundamental solution
Λ to the partial differential equation (briefly, PDE in the following) Lu = 0:

u(t, x) = I0(t, x) +

∫ t

0

∫
Rd

Λ(t− s, x− y)σ(s, y)M(ds, dy)

+

∫ t

0

∫
Rd

Λ(t− s, x− y)γ(s, y)dyds, (1.2)

whereM is the martingale measure derived from the random noise Ḟ , see Section
2. Solutions of this type are called mild solutions and were introduced in [38]
and later generalized in [14, 11]. Note that the solution u is defined as a random
variable for each (t, x) ∈ [0, T ] × Rd, where T > 0 is the time horizon of the
equation. Due to this feature, we call these solutions random-field solutions in
contrast to function-valued solutions, which cannot be evaluated in the spatial
argument, but only as a Hilbert- or Banach-space valued random element in the
temporal argument, see [16] for that theory.

Many interesting properties of random-field solutions for SPDEs have been
studied for the case when the partial differential operator L has constant coef-
ficients, e.g. the regularity of the probability measure induced by the solution
[27, 25, 32], large deviation principles [26, 20], Varadhan estimates [21, 31], sup-
port theorems [22, 17], path properties such as Hölder continuity [30, 13] and
much more. See also the references in these works for a more detailed account.
Due to the restriction on constant coefficients, the set of concrete examples for
random-field solutions to SPDEs is essentially limited to the stochastic heat
equation and the stochastic wave equation (possibly with lower order terms).
Note furthermore, that in [33] the existence of a random-field solution to a class
of parabolic equations with variable coefficients has been established.

With the present article, we aim to study the case of hyperbolic equations
with variable coefficients which has, to our knowledge, not been considered yet,
producing a random-field solution similar to (1.2), and so enlarging the class of
SPDEs which admit a random-field solution.

Let us briefly explain the contents of this article. We consider linear SPDEs
whose partial differential operators have variable coefficients that may depend
on space and time. For these equations we want to derive conditions on the
coefficients such that the notion of random-field solution makes sense. The
equations that we will consider are general second- and higher-order hyperbolic
equations on the whole space Rd. The main result of this paper, Theorem 3.19,
shows that if the coefficients of the partial differential operator

L = ∂2
t −

d∑
j,k=1

aj,k(t, x)∂xj∂xk −
d∑
j=1

bj(t, x)∂xj − c(t, x) (1.3)

are smooth and bounded with bounded derivatives of all orders in x and con-
tinuous in t (the aj,k have to be differentiable in t), and the operator L is of
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strictly hyperbolic type, i.e. it satisfies:

d∑
j,k=1

aj,k(t, x)ξjξk ≥ C|ξ|2, (1.4)

for all t ∈ [0, T ] and all x, ξ ∈ Rd, then the concept of random-field solution for
the SPDE (1.1) makes sense. The main tools for achieving this objective, e.g.
pseudo-differential operators and Fourier integral operators, come from microlo-
cal analysis. To our knowledge, this is the first time that their full potential is
rigorously applied within the theory of random-field solutions to SPDEs. Note
however the case of SPDEs with a pseudo-differential operator in the framework
of function-valued solutions, see [36].

The paper is organized as follows.
In Section 2 we review the notions of stochastic integration with respect to

martingale measures and random-field solutions to SPDEs. Since, in contrast to
the classic references [38, 14], we do not assume the partial differential operator
to have constant coefficients, its fundamental solution is no longer stationary
in time and space, i.e. it cannot be written as Λ(t − s, x − y) as in (1.2), but
rather as Λ(t, s, x, y). This small difference will have some consequences on
the conditions for the existence of random-field solutions to SPDEs with such
partial differential operators. The new existence conditions are summarized in
Theorem 2.6 which is the main result of the Section.

Section 3 is devoted to applying the concepts developed in Section 2 to hy-
perbolic SPDEs. In Section 3.1 we present a quick introduction to microlocal
analysis, where we gather all the tools necessary for constructing the fundamen-
tal solution to an hyperbolic equation. At this point we have to note that the
concept of fundamental solutions to PDEs, which is used in the framework of
random-field solutions to SPDEs (in Section 2), is different from the one that
is used in microlocal analysis (in Section 3.1). The relation between the two
concepts is outlined in Remark 3.17: the fundamental solution in the sense of
Section 2 is the Schwartz kernel of the fundamental solution in the sense of Sec-
tion 3.1. The main result of the section is Proposition 3.11, where we calculate
the Fourier transform with respect to the second variable of the Schwartz kernel
of the fundamental solution.

In the subsequent Section 3.2 we present an overview over the procedure that
we will use in the remaining sections to prove the mild solutions of hyperbolic
SPDEs are well-defined. For the proof, we follow the same ideas as in [2, 3,
4], where fundamental solutions to deterministic hyperbolic PDEs have been
obtained (see also the generalization of the construction of the fundamental
solution given in the very recent paper [5], that will be needed in the forthcoming
paper [7] to extend the results of the present paper to hyperbolic equations with
coefficients admitting a polynomial growth as |x| → ∞).

In Section 3.3 we show our main result that the operator in (1.3) under
condition (1.4) has a fundamental solution that satisfies all the necessary as-
sumptions for the well-definedness of a random-field solution for (1.1). Here
the procedure is the following: we reduce the second-order equation to a first-
order system, for which one can compute the fundamental solution explicitly,
see [19]. From the fundamental solution to the system we compute the funda-
mental solution to the second-order equation, and show that the conditions on
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the fundamental solution for the well-definedness of the stochastic and deter-
ministic convolutions, and therefore on the existence of a random-field solution
to the SPDE, are fulfilled. We conclude Section 3.3 with an example, where we
show how the classic stochastic wave equation fits in the theory here presented.

In the subsequent two sections 3.4 and 3.5 we deal with generalizations of
the second-order hyperbolic equations treated in Section 3.3.

Section 3.4 is devoted to strictly hyperbolic equations of higher order n ∈ N,
n ≥ 2; we show that the coefficients have to satisfy similar conditions as in the
case of second-order strictly hyperbolic equations in order to obtain the well-
definedness of a random-field solution to the SPDE. However, we will show that
the higher the order of the equation, the larger is the class of spectral measures
that we can allow for.

Finally, in Section 3.5 we relax the assumption of the strict hyperbolicity on
the partial differential operator and provide an example of an operator of the
form (1.3) which does not satisfy (1.4). We show that, in this case, random-field
solutions can only be obtained under stronger conditions, needed to deal with
this degeneracy.

Throughout this article, let for all ξ ∈ Rd, |ξ| := (
∑d
j=1 ξ

2
j )1/2 and 〈ξ〉 :=

(1+ |ξ|2)1/2. Let moreover α denote a multiindex with the usual arithmetic ope-
rations. We will denote partial derivatives with ∂. Moreover, we set D = −i∂, i
the imaginary unit, for the sake of Fourier transform. We will denote by Cm(X),
Cmb (X), Cm0 (X), S(X), D(X), Mb(X), S ′(X), S ′r(X) and D′(X) the m-times
continuously differentiable functions, the m-times continuously differentiable
functions with uniformly bounded derivatives of all orders ≤ m, the m-times
continuously differentiable functions with compact support, the Schwartz func-
tions, the test functions, the complex-valued measures with finite total variation,
the tempered distributions, the tempered distributions with rapid decrease and
the distributions on some finite or infinite-dimensional space X, respectively.

A tempered distribution u is in S ′r(Rd) if ∀k ∈ Z 〈·〉ku is a bounded dis-
tribution; the space of bounded distributions D′L∞(Rd) is the dual space of
DL1(Rd) (which is the space of all C∞(Rd) functions f such that ∂αf ∈ L1(Rd),
∀α ∈ Zn+.).

We shall denote by Hr(Rd) the Sobolev space of order r ≥ 0 on L2(Rd). We
will use the notation N0 := N ∪ {0} and Rd∗ := Rd\{0}. Let furthermore C > 0
be a generic constant, whose value can change from line to line without further
notice.
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2 Stochastic integration with respect to martin-
gale measures and spatially non-homogeneous
SPDE

In this section we introduce the framework to treat mild solutions to linear
SPDEs similarly as in (1.2). We explain how stochastic integration with respect
to martingale measures is defined, collect some conditions on the integrands and
provide a theorem for the well-definedness of mild solutions to SPDEs in the
case of variable coefficients. The main novelty of this section compared with
[14, 11] is that we do not make the assumption of spatial homogeneity. The
price we pay is that we cannot treat semilinear SPDEs, see the comment at
the end of this section. So let us consider the following mild formulation of the
SPDE in (1.1)

u(t, x) = I0(t, x) +

∫ t

0

∫
Rd

Λ(t, s, x, y)σ(s, y)M(ds, dy) (2.1)

+

∫ t

0

∫
Rd

Λ(t, s, x, y)γ(s, y)dyds.

This is the way in which we understand the SPDE (1.1), and in the following
we provide conditions to show that each term on the right-hand side of this
equality is meaningful. In fact, we call ”mild random field solution to (1.1)” a
family of random variables u(t, x), (t, x) ∈ [0, T ]× Rd defined by (2.1).

Let in the following {F (φ); φ ∈ C∞0 (R+ × Rd)} be a Gaussian process with
mean zero and covariance functional given by

E[F (φ)F (ψ)] =

∫ ∞
0

∫
Rd

(
φ(t) ? ψ̃(t)

)
(x)Γ(dx)dt, (2.2)

where ψ̃(t, x) := ψ(t,−x), ? is the convolution operator in the x−variable and
Γ is a nonnegative, nonnegative definite, tempered measure on Rd. Then [34,
Chapter VII, Théorème XVIII] implies that there exists a nonnegative tempered
measure µ on Rd such that Fµ = Γ, where F denotes the Fourier transform
given for functions f ∈ L1(Rd) by

(Ff)(ξ) :=

∫
Rd

e−ix·ξf(x)dx, (2.3)

where x · ξ denotes the inner product in Rd. We can then extend the Fourier
transform to tempered distributions T ∈ S ′(Rd) by the relation

〈FT, φ〉 = 〈T,Fφ〉, (2.4)

for all φ ∈ S(Rd).
By Parseval’s identity, the right-hand side of (2.2) is equal to

E[F (φ)F (ψ)] =

∫ ∞
0

∫
Rd
Fφ(t)(ξ)Fψ(t)(ξ)µ(dξ)dt.

As explained in [15], by approximating indicator functions with C∞0 -functions,
the process F can be extended to a worthy martingale measureM = (Mt(A); t ∈
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R+, A ∈ Bb(Rd)) where Bb(Rd) denotes the bounded Borel subsets of Rd. The
natural filtration generated by this martingale measure will be denoted in the
sequel by (Ft)t≥0.

In the following we shall use [38, 14, 11] as reference for an integration
theory with respect to the martingale measure constructed above. Fix T > 0.
For stochastic processes f and g, indexed by (t, x) ∈ [0, T ] × Rd and satisfying
suitable conditions, we define the pre-inner product

〈f, g〉0 = E
[ ∫ T

0

∫
Rd

(
f(s) ? g̃(s)

)
(x)Γ(dx)ds

]
(2.5)

= E
[ ∫ T

0

∫
Rd
Ff(s)(ξ)Fg(s)(ξ)µ(dξ)ds

]
, (2.6)

where the corresponding semi-norm ‖ · ‖0 is defined in the usual way. Moreover,
we define the semi-norm

‖f‖2+ := E
[ ∫ T

0

∫
Rd

(
|f(s)| ? |g̃(s)|

)
(x)Γ(dx)ds

]
.

Let E denote the set of simple processes g, that is, stochastic processes of
the form

g(t, x;ω) =

m∑
j=1

1(aj ,bj ](t)1Aj (x)Xj(ω),

for some m ∈ N, where 0 ≤ aj < bj ≤ T , Aj ∈ Bb(Rd) and Xj is a bounded
and FAj -measurable random variable for all 1 ≤ j ≤ n. The stochastic integral
of g with respect to the martingale measure M , denoted by g ·M is given by

(g ·M)t :=

m∑
j=1

(
Mt∧bj (Aj)−Mt∧aj (Aj)

)
Xj ,

where x ∧ y := min{x, y}. One can show by appying the definition that

E
[
(g ·M)2

t

]
= ‖g‖20, (2.7)

for all g ∈ E . Following [14], we denote by P0 the completion of E with respect
to 〈·, ·〉0. Then P0 is a Hilbert space consisting of predictable processes which
may contain tempered distributions in the x-argument (whose Fourier transform
are functions, P-almost surely). The norm in this space is given by the ‖ · ‖0-
norm defined above in (2.6) and for sufficiently smooth elements of P0, this
norm can be also written as in (2.5). Note that P0 is not defined as the set of
predictable processes g for which ‖g‖0 < ∞. In fact, it can be shown that the
latter space is not complete. So we have that P0 is the space of all integrable
(with respect to M) processes and the stochastic integrals are defined as an
L2(Ω)-limit of simple processes via the isometry (2.7). In [32, Lemma 2.2],
it was shown that P0 = L2

p([0, T ] × Ω,H), where here L2
p(. . .) stands for the

predictable stochastic processes in L2(. . .) and H is the Hilbert space which
is obtained from completing the Schwartz functions with respect to the inner
product 〈·, ·〉0.

On the other hand, we define P+ to be the set of all predictable processes
for which ‖g‖+ <∞. Then P+ is a Banach space and the simple processes are

6



dense in this space, see [38, Proposition 2.3]. Note that since ‖ · ‖0 ≤ ‖ · ‖+, we
have P+ ⊂ P0, and this inclusion may be strict.

Now we describe how to integrate time- and space-dependent integrands of
a special form Λσ into the SPDE (1.1). Here, Λ is the fundamental solution to
the associated PDE and σ is the coefficient on the right-hand side of the SPDE
depending on the time and space parameter. That means we want to make
sense of the stochastic integral∫ t

0

∫
Rd

Λ(t, s, x, y)σ(s, y)M(ds, dy). (2.8)

Note that in this integral and throughout this article we write Λ(t, s, x, y) al-
though this object will be a distribution in the last argument. This abuse of
notation is for the sake of briefness.

With the help of (2.7) we calculate the second moment of (2.8), from where
we can deduce sufficient conditions for its well-definedness. We will assume in
the following, compare with Assumption 2.1, that the spatial Fourier transform
of the function σ is a complex-valued measure with finite total variation, i.e. for
all s ∈ [0, T ]

|Fσ(·, s)| = |Fσ(·, s)|(Rd) = sup
π

∑
A∈π
|Fσ(·, s)|(A) <∞,

where π is any partition on Rd into measurable sets A, and the supremum
is taken over all such partitions. Let throughout the remainder of the article
νs := Fσ(·, s), and let |νs| denote its total variation.

Now we compute the norm on the right-hand of (2.7). Using (2.7), the
definition of convolution between a distribution νs and a function F(Λ(t, s, x, ·)),
the well-known fact that the Fourier transform of a product is the convolution
of the Fourier transforms, and Minkowski’s integral inequality we obtain

‖Λ(t, ·, x, ∗)σ(·, ∗)‖20

=

∫ t

0

∫
Rd

∫
Rd

Λ(t, s, x, y)Λ(t, s, x, y − z)σ(s, y)σ(s, y − z)dyΓ(dz)ds

=

∫ t

0

∫
Rd

∣∣F(Λ(t, s, x, ·)σ(s, ·))(ξ)
∣∣2µ(dξ)ds

=

∫ t

0

∫
Rd

∣∣∣∣ ∫
Rd
FΛ(t, s, x)(ξ − η)νs(dη)

∣∣∣∣2µ(dξ)ds

≤
∫ t

0

(∫
Rd

(∫
Rd
|FΛ(t, s, x)(ξ − η)|2µ(dξ)

)1/2

|νs(dη)|
)2

ds

≤
∫ t

0

(
sup
η∈Rd

∫
Rd
|FΛ(t, s, x)(ξ + η)|2µ(dξ)

)
|νs|2ds. (2.9)

We see that Fσ(s) has to have finite total variation for almost all s ∈ [0, T ] in
order that the previous term be finite. We will now also assume that σ(s) ∈
Cb(Rd) for every s ∈ [0, T ] in order to simplify an argument later. In fact, this
condition follows directly from the fact that νs has finite total variation for all
s ∈ [0, T ] by considering the inverse Fourier transform (in the distributional
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sense) of νs and reminding that the Fourier transform of a measure with finite
total variation is uniformly continuous, see [8, Chapter 5, §26].

Let in the following ∆T be the simplex given by 0 ≤ t ≤ T and let 0 < s < t.
In order for the well-definedness of the stochastic integral, we need to assume
the following.

Assumption 2.1. For (t, s, x) ∈ ∆T × Rd, let Λ(t, s, x) be a deterministic
function with values in S ′r(Rd) and let σ be a function in L2([0, T ], Cb(Rd))
such that:

(A1) the function (t, s, x, ξ) 7→ FΛ(t, s, x)(ξ) is measurable, the function s 7→
Fσ(s) = νs ∈ L2([0, T ],Mb(Rd)), and moreover∫ T

0

(
sup
η∈Rd

∫
Rd
|FΛ(t, s, x)(ξ + η)|2µ(dξ)

)
|νs|2ds <∞. (2.10)

(A2) Λ and σ are as in (A1) and

lim
h↓0

∫ T

0

(
sup
η∈Rd

∫
Rd

sup
r∈(s,s+h)

|F(Λ(t, s, x)− Λ(t, r, x))(ξ + η)|2µ(dξ)

)
|νs|2ds = 0.

In the case where the coefficient σ does not depend on the spatial argument,
these assumptions take on the following form.

Example 2.2. If σ does not depend on the spatial argument, then

Fσ(s) = (2π)dσ(s)δ0,

where δ0 is the Dirac delta distribution with total variation 1. Doing the same
computations as in (2.9), we arrive at the necessary condition that∫ T

0

σ(s)2

∫
Rd
|FΛ(t, s, x)(ξ)|2µ(dξ)ds <∞,

which is actually weaker than (2.10) in the sense that there is no supremum
over η.

The reason for the assumption that Λ(t) ∈ S ′r(Rd) is that in this case the
Fourier transform in the second spatial argument is a smooth function of slow
growth, and the convolution of a distribution in S ′r(Rd) with any other distribu-
tion in S ′(Rd) is well-defined, see [34, Chapter VII, §5] and [6] for more detalis.
A necessary and sufficient condition for T ∈ S ′r(Rd) is that each regularization
of T with a C∞0 -function is a Schwartz function. This will be true in our case
due to Proposition 3.11 and the fact that the Fourier transform is a bijection
on the Schwartz functions, see Lemma 3.12.

Notice that Assumption 2.1 generalizes to the non spatially homogeneous
case the corresponding conditions (H2) and (3.6) in [11]. In the spatially homo-
geneous case investigated in [14, 11], when Λ is the solution of the heat or the
wave equation, [29, Lemma 6.1] shows that, the corresponding condition (2.10)
is equivalent to ∫

Rd

1

1 + |ξ|2
µ(dξ) <∞. (2.11)

8



So one of our aims in the subsequent sections is to find a similar estimate for
(2.10), which reads

sup
η∈Rd

∫
Rd

1

(1 + |ξ + η|2)κ
µ(dξ) <∞, (2.12)

for some κ ∈ (0, 1]. Note that if the correlation measure Γ is absolutely conti-
nous, then condition (2.12) is equivalent to (2.11), see [28].

In contrast to the methods used in the proof of [29, Lemma 6.1], (2.12) will
follow easily from a quick investigation of the order of the symbol associated to
the fundamental solution using the tools presented in Section 3.1.

We can now prove, similarly to [11, Theorem 3.1] that under the two as-
sumptions above, the stochastic integral is well-defined.

Theorem 2.3. Under Assumption 2.1, we have that Λσ ∈ P0. In particular,
the stochastic integral

∫ t
0

∫
Rd Λ(t, s, x, y)σ(s, y)M(ds, dy) is well-defined and

E
[
((Λ(t, ·, x, ∗)σ(·, ∗)) ·M)2

t

]
≤
∫ t

0

(
sup
η∈Rd

∫
Rd
|FΛ(t, s, x)(ξ + η)|2µ(dξ)

)
|νs|2ds.

Proof. Fix throughout this proof (t, x) ∈ [0, T ]×Rd, and let s ∈ [0, t). Take ψ ∈
C∞0 (Rd) such that suppψ ⊆ Bd(0, 1) (the unit ball in Rd). Then set for all n ∈ N,
ψn(y) := ndψ(ny) and Λn(t, s, x) := Λ(t, s, x)∗ψn. Then we have |Fψn(ξ)| ≤ 1,
|Fψn(ξ)| → 1 pointwise, and |FΛn(t, s, x)(ξ)| = |FΛ(t, s, x)(ξ)||Fψn(ξ)|. If we
have that Λn(t, ·, x, ∗)σ(·, ∗) ∈ P0 for all n ∈ N, then performing the same steps
as in (2.9) yields

‖(Λ(t, ·, x, ∗)− Λn(t, ·, x, ∗))σ(·)‖20

≤
∫ t

0

∫
Rd

(∫
Rd
|F(Λ(t, s, x)− Λn(t, s, x))(ξ + η)||νs(dη)|

)2

µ(dξ)ds

≤
∫ t

0

∫
Rd

(∫
Rd
|FΛ(t, s, x)(ξ + η)| · |1−Fψn(ξ + η)||νs(dη)|

)2

µ(dξ)ds;

the latter term goes to zero as n→∞, since we have |Fψn(ξ)| → 1, thanks to
the bounded convergence theorem: indeed |1 − Fψn(ξ + η)| ≤ 2 so repeating
the same computations as in (2.9) we get∫

Rd

(∫
Rd
|FΛ(t, s, x)(ξ + η)| · |1−Fψn(ξ + η)||νs(dη)|

)2

µ(dξ)

≤
∫
Rd

(∫
Rd

2|FΛ(t, s, x)(ξ + η)||νs(dη)|
)2

µ(dξ)

≤ 4

(∫
Rd

(∫
Rd
|FΛ(t, s, x)(ξ + η)|2µ(dξ)

)1/2

|νs(dη)|
)2

≤ 4

(
sup
θ∈Rd

∫
Rd
|FΛ(t, s, x)(ξ + θ)|2µ(dξ)

)
|νs|2
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which does not depend on n and is in L1[0, T ] by assumption (A1).
In order to show that Λn(t, ·, x, ∗)σ(·, ∗) ∈ P0, we define

Λn,m(t, s, x, y) :=

2m−1∑
j=0

Λn(t, tj+1
m , x, y)1[tjm,t

j+1
m )(s),

for all m ∈ N, where tjm = jT2−m. Then Λn,m(t, s, x, ∗) ∈ S(Rd) and

‖Λn,m(t, ·, x, ∗)σ(·, ∗)‖2+

=

∫ t

0

∫
Rd

∫
Rd
|Λn,m(t, s, x, y)||Λn,m(t, s, x, y − z)||σ(s, y)||σ(s, y − z)|dyΓ(dz)ds

≤
∫ t

0

‖σ(s)‖2L∞(Rd)

(∫
Rd
|Λn,m(t, s, x, y − z)||Λn,m(t, s, x, y)|dyΓ(dz)

)
ds.

This is the (only) place, where we have used that σ(s) ∈ L∞(Rd) for almost
all s ∈ [0, T ]. Now Leibniz’ formula [37, Exercise 26.4] implies that for each
s ∈ [0, t), the term in the parentheses in the last line of the previous inequality is
finite. Moreover, since Λn,m(t, ·, x, ∗) was a step function in s, it is also uniformly
bounded and the fact that σ(s) ∈ Cb(Rd) for every s ∈ [0, T ] together with the
assumption on σ implies the finiteness of this term. Therefore Λn,mσ ∈ P+,
which implies that there exists a sequence of step functions approximating this
object.

The last step in this proof is to show that Λn,m(t, ·, x, ∗)σ(·, ∗) converges to
Λn(t, ·, x, ∗)σ(·, ∗) in P0 for all (t, x) ∈ [0, T ]× Rd. We compute using (2.9)

‖(Λn,m(t, ·, x, ∗)− Λn(t, ·, x, ∗))σ(·, ∗)‖20 ≤

≤
∫ t

0

(
sup
η∈Rd

∫
Rd
|F(Λn(t, s, x)− Λn,m(t, s, x))(ξ + η)|2µ(dξ)

)
|νs|2ds

≤
∫ t

0

(
sup
η∈Rd

∫
Rd

sup
r∈(s,s+T2−m)

|F(Λn(t, s, x)− Λn(t, r, x))(ξ + η)|2µ(dξ)

)
|νs|2ds,

which goes to zero by (A2), which ends the proof.

Now we treat the pathwise integral in (2.1). Similar to the stochastic in-
tegral we first compute an estimate for its second moment from which we can
deduce suitable sufficient conditions for its existence. We assume that the spatial
Fourier transform of the coefficient γ(s) is a measure with finite total variation,
denoted by χs. We obtain the following(∫ t

0

∫
Rd

Λ(t, s, x, y)γ(s, y)dyds

)2

≤ T
∫ t

0

(
F
(
Λ(t, s, x, ∗)γ(s, ∗)

)
(0)
)2
ds

≤ C
∫ t

0

(∫
Rd
FΛ(t, s, x,−η)χs(dη)

)2

ds

≤ C
∫ t

0

(
sup
η∈Rd

|FΛ(t, s, x)(η)|2
)
|χs|2ds.

(2.13)

In order to give a rigorous meaning to the pathwise integral, we assume the
following.
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Assumption 2.4. For (t, s, x) ∈ ∆T × Rd, let Λ(t, s, x) be a deterministic
function with values in S ′r(Rd) and let γ ∈ L2([0, T ], Cb(Rd)) such that

(A3) the function (t, s, x, ξ) 7→ FΛ(t, s, x)(ξ) is measurable, the function s 7→
Fγ(s) = χs ∈ L2([0, T ],Mb(Rd)), and moreover∫ T

0

(
sup
η∈Rd

|FΛ(t, s, x)(η)|2
)
|χs|2ds <∞. (2.14)

(A4) Let Λ and γ be as in (A3)

lim
h↓0

∫ T

0

(
sup
η∈Rd

sup
r∈(s,s+h)

|F(Λ(t, s, x)− Λ(t, r, x))(η)|2
)
|χs|2ds = 0.

Similar to Example 2.2, we can weaken the assumptions (A3) and (A4)
when the coefficient γ does not depend on the spatial argument.

Note that the two conditions (A3) and (A4) coincide with (A1) and (A2)
respectively if µ = δ0.

Under Assumption 2.4, the pathwise integral is well-defined and (2.13) holds;
to show this, it is sufficient to repeat the very same arguments as in the proof
of Theorem 2.3, replacing µ by δ0.

We now make a last assumption on the first term I0 in (2.1), that accounts
for the inital conditions.

Assumption 2.5.(A5) For every (t, x) ∈ [0, T ]× Rd, I0(t, x) is finite.

With all these preparations we can now state the existence theorem for
stochastic partial differential equations which are nonhomogeneous in space.

Theorem 2.6. Under Assumptions 2.1, 2.4 and 2.5, the random-field solution
of the SPDE (1.1), which is given in (2.1), makes sense.

Proof. We calculate the second moment of u(t, x) in (2.1) for any fixed (t, x) ∈
[0, T ]× Rd and obtain

E
[
u(t, x)2

]
≤ C

(
I0(t, x)2 + E

[(∫ t

0

∫
Rd

Λ(t, s, x, y)σ(s, y)M(ds, dy)

)2]
+

(∫ t

0

∫
Rd

Λ(t, s, x, y)γ(s, y)dyds

)2)
≤ C

(
I0(t, x)2 +

∫ t

0

sup
η∈Rd

∫
Rd
|FΛ(t, s, x)(ξ + η)|2µ(dξ)|νs|2ds

+

∫ t

0

sup
η∈Rd

|FΛ(t, s, x)(η)|2|χs|2ds
)
,

which is finite by assumption, so that u(t, x) is well-defined as a random variable
in L2(Ω) for every (t, x) ∈ [0, T ]× Rd.
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Note that if in the previous inequality all the terms on the right-hand side
can be uniformly bounded in t and x, then we have for the solution that

sup
(t,x)∈[0,T ]×Rd

E
[
u(t, x)2

]
<∞.

This condition is essential in order to treat semilinear SPDEs. In fact, in this
situation one can reproduce the results from [25] that if the fundamental solution
is a function or a nonnegative distribution, one can incorporate coefficients σ and
γ which depend on the solution u. However, if the fundamental solution is only
a general distribution as in [11], one also needs a stationarity condition which
is not satisfied in the case when the partial differential operator has variable
coefficients. Therefore we keep our attention to the linear case, because we
cannot tell from the methods presented in Section 3.1 whether the fundamental
solution is a function, a nonnegative distribution or a distribution.

3 Application to linear hyperbolic SPDEs

Here we present an application of the integration theory presented in the pre-
vious section. We treat a variety of linear hyperbolic SPDEs.

3.1 Microlocal Analysis

In this section we collect some results which will be useful to us when we con-
struct the fundamental solution to hyperbolic equations in the sections below.
Our main tool will be the Fourier transform F , which was defined in (2.3) for
all functions f ∈ L1(Rd) and extended to Schwartz distributions in (2.4). The
inverse of the Fourier transform can be given by

(F−1f)(x) := (2π)−d
∫
Rd

eix·ξf(ξ)dξ = (2π)−d(Ff)(−x),

for all f ∈ L1(Rd), and extended to Schwartz distributions, so that for all
T ∈ S ′(Rd) we have F−1FT = T .

Using the Fourier transform we can now define Fourier integral operators,
that is the operators we will need in order to construct the fundamental solu-
tion. For their definition we need the following ingredients: symbols and phase
functions.

Definition 3.1 (Symbols). Let m ∈ R. A C∞(Rd × Rd∗)-function p is called
a symbol of class Sm if for every R > 0 and for all α, β ∈ Nd0 there exists a
constant CR,α,β > 0 such that

|∂αξ ∂βxp(x, ξ)| ≤ CR,α,β〈ξ〉m−|α|,

for all x, ξ ∈ Rd with |ξ| ≥ R. We say that p is a symbol of order m.

We can then define S−∞ := ∩m∈RSm and S+∞ := ∪m∈RSm; we trivially
have that for every m1 ≤ m2 it holds S−∞ ⊂ Sm1 ⊂ Sm2 ⊂ S+∞. The space

Sm endowed with the family of seminorms (| · |(m)
l,R ; l ∈ N0, R > 0) defined by

|p|(m)
l,R := max

|α+β|≤l
sup

x∈Rd, |ξ|≥R
|∂αξ ∂βxp(x, ξ)|〈ξ〉−m+|α|

12



becomes a Fréchet space and for any p ∈ Sm, we have by definition

|∂αξ ∂βxp(x, ξ)| ≤ |p|
(m)
|α+β|,R〈ξ〉

m−|α|, ∀x ∈ Rd, |ξ| ≥ R (3.1)

where |p|(m)
|α+β|,R is the smallest constant assuring (3.1). In this paper we denote

the special case |p|(m)
l,1 by |p|(m)

l .

Definition 3.2 (Asymptotic expansion). Let (pj)j∈N be a sequence of symbols
pj ∈ Smj , where (mj)j∈N is a nonincreasing sequence with mj → −∞ as j →∞.
Then we say that a symbol p ∈ Sm has the asymptotic expansion p ∼

∑∞
j=1 pj ,

if for any integer n ∈ N

p−
n−1∑
j=1

pj ∈ Smn . (3.2)

Note that this concept does not imply the convergence of the formal series∑∞
j=1 pj in any sense, although the order of the difference in (3.2) goes to −∞.
It is possible to show, see [9, Theorem 4.2 page 152], that every symbol

p ∈ Sm is uniquely determined (modulo an element of S−∞) by its formal
series.

Remark 3.3. An equivalent (modulo S−∞(Rd ×Rd∗)) definition of the class of
symbols is the following: a C∞(R2d)-function p belongs to Sm(R2d), m ∈ R, if
for all α, β ∈ Nd0 there exists Cα,β > 0 such that

|∂αξ ∂βxp(x, ξ)| ≤ Cα,β〈ξ〉m−|α|,∀x, ξ ∈ Rd.

Indeed, clearly Sm(R2d) ⊂ Sm(Rd × Rd∗); conversely if p ∈ Sm(Rd × Rd∗) we
can take a cut-off function χ ∈ C∞(Rd) such that χ(ξ) = 0 for |ξ| ≤ 1/2
and χ(ξ) = 1 for |ξ| ≥ 1, and write it as p = χp + (1 − χ)p = q + r, where
q = χp ∈ Sm(R2d) and r = (1− χ)p ∈ S−∞(Rd × Rd∗).
Sm(R2d) is a Fréchet space with seminorms

|p|(m)
l := max

|α+β|≤l
sup
x,ξ∈Rd

|∂αξ ∂βxp(x, ξ)|〈ξ〉−m+|α|

and for any p ∈ Sm(R2d) we have

|∂αξ ∂βxp(x, ξ)| ≤ |p|
(m)
|α+β|〈ξ〉

m−|α|, ∀x, ξ ∈ Rd. (3.3)

Definition 3.4 (Phase functions). A phase function is a C∞-function ϕ :
Rd1 × Rd2 → R that is homogeneous of degree one in the second argument,
i.e. ϕ(x, tξ) = tϕ(x, ξ) for all t > 0, and ∇x,ξϕ(x, ξ) 6= 0 in Rd1 × Rd2

∗ .

Definition 3.5 (Oscillatory integral distribution). Let ϕ be a phase function
and p ∈ Sm. Then the oscillatory integral distribution of eiϕ(x,·)p(x, ·) is the
distribution defined for all test functions v ∈ D(Rd1) by〈

OS −
∫
Rd2

eiϕ(·,ξ)p(·, ξ)dξ, v
〉

=

∫
Rd2×Rd1

eiϕ(x,ξ)p(x, ξ)v(x)dxdξ, (3.4)

where dξ := (2π)−d2dξ and the integral on the right hand side is convergent at
least in the sense of oscillatory integrals, see [18].
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With all this we can now define the so-called Fourier integral operators and
the subclass of pseudo-differential operators.

Definition 3.6 (Fourier integral operators). Let φ be a C∞-function on Rd×Rd,
homogeneous of degree one with respect to ξ and p ∈ Sm. A Fourier integral
operator Pφ : S(Rd)→ S(Rd) with phase function φ and symbol p is defined by

(Pφv)(x) =

∫
Rd

eiφ(x,ξ)p(x, ξ)Fv(ξ)dξ =

∫
Rd

∫
Rd

eiφ(x,ξ)−iy·ξp(x, ξ)v(y)dydξ,

(3.5)

for all v ∈ S(Rd). We will write Pφ = Pφ(x,Dx) = pφ(x,Dx) to denote a Fourier
integral operator with phase function φ and symbol p.

Note that strictly speaking, φ in the above definition is not a phase function
in the sense of Definition 3.4, but the function ϕ(x, y, ξ) := φ(x, ξ) − y · ξ is
indeed a phase function both with respect to the three arguments (x, y, ξ) and
with respect to the two arguments (y, ξ). Therefore the oscillatory integral
converges and we will refer in the following to φ as a “phase function“.

Now we provide a few examples for Fourier integral operators, which will be
used throughout this article.

Example 3.7. With the basic choice of φ(x, ξ) = x · ξ as phase function, we
have

(Pφu)(x) =

∫
Rd

eix·ξp(x, ξ)Fu(ξ)dξ =

∫
Rd

∫
Rd

ei(x−y)·ξp(x, ξ)u(y)dydξ. (3.6)

Operators of the form (3.6) are called pseudo-differential operators; given a
symbol p ∈ Sm we denote by P (x,Dx) = p(x,Dx) a pseudo-differential operator
with symbol p, omitting in the notation the dependence on the phase x · ξ.

Example 3.8. The operators 〈Dx〉 and |Dx| which are defined for all f ∈
S(Rd) by 〈Dx〉2f := 1 +

∑d
j=1 ∂

2
xjf and |Dx|2f :=

∑d
j=1 ∂

2
xjf are the pseudo-

differential operators with the symbols p(x, ξ) = 〈ξ〉 and p(x, ξ) = |ξ| respec-
tively. Both are of order 1.

Throughout all the article we are going to write, for the sake of brevity, FIO
instead of Fourier integral operator, and PDO instead of pseudo-differential
operator.

Definition 3.9. Given a FIO Pφ = pφ(x,Dx), we can define the adjoint P ∗φ
of P by 〈Pφu, v〉 := 〈u, P ∗φv〉 for all u, v ∈ S(Rd), and one can show that the
adjoint P ∗φ has phase function −φ and symbol with the following asymptotic
expansion:

p∗(x, ξ) =
∑
α∈Nd0

(−1)|α|

α!
∂αξ ∂

α
x p(x, ξ). (3.7)

This allows us to generalize FIOs to a larger domain.

Definition 3.10. Let Pφ = pφ(x,Dx) be a FIO on S(Rd). We can extend Pφ
to the tempered distributions T ∈ S ′(Rd) by defining for all v ∈ S(Rd)

〈PφT, v〉 := 〈T, P ∗φv〉.
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Recall that the Schwartz kernel of a linear operator A : D(Rd)→ D′(Rd) is
the distribution KA ∈ D′(Rd × Rd) given for all u, v ∈ D(Rd) by

〈KA, u⊗ v〉 = 〈Av, u〉.

We see directly from the definition of FIO and Fubini’s theorem w.r.t. dx
and dydξ above that for all u, v ∈ S(Rd)

〈Pφv, u〉 =

∫
Rd

(Pφv)(x)u(x)dx

=

∫
Rd

(∫
Rd×Rd

eiφ(x,ξ)−iy·ξp(x, ξ)v(y)dydξ

)
u(x)dx

=

∫
Rd×Rd

∫
Rd

eiφ(x,ξ)−iy·ξp(x, ξ)u(x)v(y)dxdydξ

=

〈
OS −

∫
Rd

eiφ(x,ξ)−iy·ξp(x, ξ)dξ, u⊗ v
〉
.

This implies that the Schwartz kernel of a FIO Pφ is given by

KPφ(x, y) = OS −
∫
Rd

eiφ(x,ξ)−iy·ξp(x, ξ)dξ.

Furthermore we see that for every x ∈ Rd, KPφ(x, ·) ∈ S ′(Rd). This observa-
tion allows us to compute the Fourier transform in the second argument of the
Schwartz kernel of a FIO for every x ∈ Rd fixed.

Proposition 3.11. Let Pφ be a FIO with symbol p and let KPφ = (KPφ(x, ·);x ∈
Rd) denote its Schwartz kernel. Then the Fourier transform in the second ar-
gument of its Schwartz kernel, Fy 7→ηKPφ(x, ·), is given by

(Fy 7→ηKPφ(x, ·))(η) = eiφ(x,−η)p(x,−η). (3.8)

Proof. Let u, v ∈ S(Rd). First we note that due to (2.4), the Fourier transform
of KPφ(x, ·) is defined for all fixed x ∈ Rd by(

Fy 7→ηKPφ(x, ·)
)
v = KPφ(x, ·)

(
Fη 7→yv

)
.

We compute using the second representation of the Schwartz kernel in (3.5)

〈Fy 7→ηKPφv, u〉 =

∫
Rd

((
Fy 7→ηKPφ(x, ·)

)
v
)
u(x)dx

=

∫
Rd

(
KPφ(x, ·)

(
Fη 7→yv

))
u(x)dx

=

∫
Rd

∫
Rd

∫
Rd

eiφ(x,ξ)−iξ·yp(x, ξ)
(
Fη 7→yv

)
(y)dydξu(x)dx

=

∫
Rd

∫
Rd

eiφ(x,ξ)p(x, ξ)

∫
Rd

eiy·(−ξ)(Fη 7→yv)(y)dydξu(x)dx

=

∫
Rd

∫
Rd

eiφ(x,ξ)p(x, ξ)v(−ξ)dξu(x)dx

=

∫
Rd

∫
Rd

eiφ(x,−η)p(x,−η)u(x)v(η)dηdx,
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where we have used throughout the calculation that v and its Fourier transform
are Schwartz functions, KPφ has a pointwise interpretation in x, and in the last
line we have used the change of variable ξ 7→ −η.

Applying this proposition, we can show the following:

Lemma 3.12. Let Pφ be a FIO with symbol p, and let KPφ denote its Schwartz

kernel. Then, for every x ∈ Rd, KPφ(x, ·) ∈ S ′r(Rd).

Proof. Fix x ∈ Rd and ψ ∈ D(Rd). We know by [34, p. 244/245] that the regu-
larization of KP with a C∞0 -function KPφ(x, ·) ? ψ is an infinitely differentiable
function of slow growth. We show now that KPφ(x, ·) ? ψ is even a Schwartz
function; this implies the assertion, again by [34, p. 244/245]. For this we take
the Fourier transform of KPφ(x, ·) ? ψ (in the sense of distributions) and using
[19, Theorem 1.5.3(2)] and Proposition 3.11, we conclude that

Fy 7→η(KPφ(x, ·) ? ψ)(η) = Fy 7→ηKPφ(x, η)Fψ(η) = eiφ(x,−η)p(x,−η)Fψ(η).

The function of the right-hand side of the previous equality is obviously in
C∞(Rd) with respect to η. The fact that φ is of order 1 in η, p is of finite order in
η and Fψ is a Schwartz function imply that the function η 7→ Fy 7→η(T (x)?ψ)(η)
is a Schwartz function, and hence its inverse Fourier transform too. This finishes
the proof.

For the construction of the fundamental solution, we need to know how to
multiply PDOs with FIOs.

Proposition 3.13 ([19], Theorems 10.2.1 and 10.2.2). Let Pφ be a FIO with
symbol p ∈ Sm1 and let Q be a PDO with symbol q ∈ Sm2 . Then PφQ and
QPφ are FIOs with phase function φ and symbols r1 and r2 (of order m1 +m2)
respectively, where r1 and r2 have asymptotic expansions

r1(x, ξ) ∼
∑
α∈Nd0

1

α!
∂αξ

(
p(x, ξ)Dα

x q(∇̃ξφ(x; ξ, ξ′), ξ′)
) ∣∣∣∣

ξ′=ξ

and

r2(x, ξ) ∼
∑
α∈Nd0

1

α!
Dα
x′

(
∂αξ′p(x, ∇̃xφ(x, x′; ξ))q(x′, ξ)

) ∣∣∣∣
x′=x

,

where

∇̃xφ(x, x′; ξ) =

∫ 1

0

∇xφ(x′ + θ(x− x′), ξ)dθ,

∇̃ξφ(x; ξ′, ξ) =

∫ 1

0

∇ξφ(x, ξ + θ(ξ′ − ξ))dθ,

respectively denote the gradient’s mean value in the convex hull of x, x′ and ξ, ξ′.

The asymptotic expansions of the symbols to the second order are given by

r1(x, ξ) =p(x, ξ)q(∇ξφ(x, ξ), ξ) +

d∑
j=1

∂ξjp(x, ξ)Dxjq(∇ξφ(x, ξ), ξ)
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+
i

2
p(x, ξ)

d∑
j,k=1

DxjDxkq(∇ξφ(x, ξ), ξ)
∂2φ

∂ξj∂ξk
(x, ξ) + r∗1(x, ξ),

and

r2(x, ξ) =p(x,∇xφ(x, ξ))q(x, ξ) +

d∑
j=1

∂ξjp(x,∇xφ(x, ξ))Dxjq(x, ξ)

− i

2

( d∑
j,k=1

∂ξj∂ξkp(x,∇xφ(x, ξ))
∂2φ

∂xj∂xk
(x, ξ)

)
q(x, ξ) + r∗2(x, ξ),

where r∗1 , r
∗
2 ∈ Sm1+m2−2.

The following corollary immediately follows from Proposition 3.13.

Corollary 3.14. Let P and Q be PDOs with symbols p(x, ξ) ∈ Sm1 and
q(x, ξ) ∈ Sm2 . Then PQ is a PDO with symbol r(x, ξ) ∈ Sm1+m2 having the
asymptotic expansion

r(x, ξ) ∼
∑
α∈Nd0

1

α!
∂αξ p(x, ξ)D

α
x q(x, ξ).

A consequence of Corollary 3.14 is that the commutator [P,Q] := PQ−QP
of two PDOs P,Q with symbols p ∈ Sm1 and q ∈ Sm2 respectively is of order
m1 +m2−1, since the leading term of the asymptotic expansion of the symbols
of both products PQ and QP is p(x, ξ)q(x, ξ).

The following Proposition states the boundedness of FIOs acting on Sobolev
spaces.

Proposition 3.15 ([19], Theorem 10.2.3). Let Pφ = pφ(x,Dx) and r ∈ R.
The operator Pφ defines a continuous map Hr+m −→ Hr, and there exists a
constant C = Cr,m > 0 and an integer ` ≥ 0 such that for every u ∈ Hr+m

‖Pφu‖r ≤ C|p|(m)
` ‖u‖r+m.

Finally, we give a proposition concerning the composition of n FIOs, which
is a simplified version of Theorem 10.6.8 in [19], referring to [19] for the details.

Proposition 3.16. For 1 ≤ j ≤ n, let Pj,φj be FIOs with phase functions φj
and symbols pj ∈ Smj . There exist a symbol p of order m = m1 + . . .+mn and
a phase function φ such that (P1,φ1 · · ·Pn,φn)(x,Dx) = pφ(x,Dx), and moreover
for every integer ` ≥ 0 there exists a constant C` > 0 and an integer `′ ≥ 0 such
that

|p|(m)
` ≤ Cn−1

`

n∏
j=1

|pj |
(mj)
`′ . (3.9)

The phase function of the composition P1,φ1 · · ·Pn,φn can be explicitly com-
puted, see Section 4.5 in [19], especially formulas (5.4) and (5.5). In the state-
ment of Proposition 3.16 we focus only on formula (3.9) which is crucial in the
construction of the fundamental solution, without being precise about the phase
function φ, which will not be used in our computations.

We conclude this section with a remark that comments on the two concepts
of fundamental solutions to PDEs that we deal with in this article.
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Remark 3.17. In this paper we are going to construct the fundamental solution
to an initial value problem (in the sense of [19, Section 10.7]) of the form{

L(t, x,Dx)U(t, x) = G(t, x), (t, x) ∈ [0, T ]× Rd
U(0, x) = U0(x),

(3.10)

where L = ∂t − iD(t, x,Dx) + R(t, x,Dx) is a square matrix of PDOs with
symbols of first order, D is the diagonal principal part and R is some PDO
of order less than 1, that satisfies some conditions. That is, we are going to
construct a family of FIOs E(t, s), indexed by two time parameters (t, s) ∈ ∆T̄

(see the lines above Assumption 2.1 for the definition), where 0 < T̄ ≤ T is the
(modified) time horizon of the PDE, such that{

LE(t, s) = 0, (t, s) ∈ ∆T̄

E(s, s) = id s ∈ [0, T ].

Then, we can compute the solution of Problem (3.10) using Duhamel’s formula

U(t, x) = (E(t, 0)U0)(x) +

∫ t

0

(E(t, s)G(s))(x)ds. (3.11)

This equality rewritten, using the the definition of Schwartz kernels, with Λ
denoting the Schwartz kernel of E, is given by

U(t, x) = 〈Λ(t, 0, x, ·), U0〉+

∫ t

0

〈Λ(t, s, x, ·), G(s, ·)〉ds,

or, using the abuse of notation from Section 2

U(t, x) =

∫
Rd

Λ(t, 0, x, y)U0(y)dy +

∫ t

0

∫
Rd

Λ(t, s, x, y)G(s, y)dyds.

In the case of constant coefficients, we get

U(t, x) =

∫
Rd

Λ(t, x− y)U0(y)dy +

∫ t

0

∫
Rd

Λ(t− s, x− y)G(s, y)dyds,

and Λ can be shown to be the solution to the abstract Cauchy problem{
LΛ(t, x) = δ0,0, (t, x) ∈ [0, T ]× Rd,
Λ(0, x) = 0, x ∈ Rd,

where δ0,0 is the space-time Dirac distribution in (0, 0). This concept of fun-
damental solution, which is fairly common in PDE theory, is the one that we
refered to in the Introduction and in Section 2.

From now on we will refer to both concepts as fundamental solution when
there is no risk of confusion. We will however make the distinction when apply-
ing Proposition 3.11.
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3.2 Solution theory for strictly hyperbolic PDE with vari-
able coefficients

In this section we present in detail how to arrive at the representation for the
solution to an hyperbolic PDE with time and space depending coefficients. More
specifically, we focus on the Cauchy problem{

P (t, x,Dt, Dx)u(t, x) = f(t, x), (t, x) ∈ (0, T ]× Rd,
Dj
tu(0, x) = uj(x), 0 ≤ j ≤ n− 1, x ∈ Rd,

(3.12)

where P is the partial differential operator given for n ∈ N, n ≥ 2, by

P (t, x,Dt, Dx) = Dn
t +

n−1∑
j=0

∑
|α|≤n−j

aα,j(t, x)Dα
xD

j
t , (3.13)

and for the right-hand side we choose an arbitrary f ∈ C([0, T ], Hr(Rd)), r ∈ R.
We assume that P is strictly hyperbolic, that is the symbol of the principal part,
given by

pn(t, x, τ, ξ) = τn +

n−1∑
j=0

∑
|α|=n−j

aα,j(t, x)ξατ j ,

factorizes w.r.t. τ as

pn(t, x, τ, ξ) =

n∏
j=1

(τ + λj(t, x, ξ)), (3.14)

where the n characteristic roots −λj of pn are such that λj(t, x, ξ) ∈ R for all
1 ≤ j ≤ n, and

|λj(t, x, ξ)− λk(t, x, ξ)| ≥ c|ξ|, (3.15)

for some c > 0 and for all j 6= k.
Note that in the case of second order equations, the principal symbol becomes
(omitting the dependence on (t, x) of the coefficients)

τ2 +
∑
|α|=2

aα,0ξ
α +

∑
|α|=1

aα,1ξ
ατ := τ2 −

∑
1≤j,k≤d

aj,kξjξk −
∑

1≤j≤d

ajξjτ,

and we can explicitly compute the roots −λj ; the strict hyperbolicity condition
can be expressed in this case explicitly on the coefficients as d∑

j=1

ajξj

2

+ 4

d∑
j,k=1

aj,kξjξk ≥ C|ξ|2, (3.16)

since (3.16) is enough to ensure the roots to be real and distinct for ξ 6= 0. And
if P is given by (1.3), i.e. aα,1(t, x) ≡ 0 for all |α| = 1, then condition (3.16) is
exactly (1.4). In the general case, one cannot compute λj explicitly because of
the lack of a general resolution formula for higher order polynomial equations.

In this section we want to construct a representation of the solution of (3.12)
by producing its fundamental solution. The construction presented here follows
the procedure in [2, 3, 4] and [19, Section 10.7] and goes in three steps: first
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we reduce the higher-order hyperbolic equation to a first-order system, then
we compute the fundamental solution to the resulting first-order system and
finally, we obtain a representation formula for the fundamental solution to the
higher-order equation.

First step: Reduction to a first-order system. Before starting with the construc-
tion, we need to point out that the factorization (3.14) of the principal symbol of
P can be brought to the level of operators producing the following factorization
for the principal part of the operator P :

P (t, x,Dt, Dx) =

n∏
j=1

(Dt + λj(t, x,Dx)) +

n−1∑
j=0

Sj(t, x,Dx)Dj
t , (3.17)

where Sj are PDOs with symbols Sj(t, x, ξ) ∈ C([0, T ];Sn−j−1). This is only
a computation, which makes use of Corollary 3.14 and works thanks to (3.14);
for a detailed proof of (3.17) we refer to [1, Proposition 3.2, p = 1, n = 0].

Let us now define the vector V := (v1, . . . , vn) as follows:{
v1 := 〈Dx〉n−1u,

vj := 〈Dx〉n−j(Dt + λj−1) . . . (Dt + λ1)u, j = 2, . . . , n.
(3.18)

With these definitions we compute, at operator’s level, for all j = 1, . . . , n− 1

(Dt + λj)vj = 〈Dx〉n−j(Dt + λj)(Dt + λj−1) . . . (Dt + λ1)u

+ [λj , 〈Dx〉n−j ](Dt + λj−1) . . . (Dt + λ1)u

= 〈Dx〉vj+1 + [λj , 〈Dx〉n−j ]〈Dx〉−(n−j)vj ,

and for j = n, by (3.17) we get

(Dt + λn)vn =

n∏
j=1

(Dt + λj(t, x,Dx))u = f −
n−1∑
j=0

Sj(t, x,Dx)Dj
tu.

By the reduction (3.18), working by induction (for a proof, see [1, formula (4.8),
p = 1]), we get

Dj
tu = 〈Dx〉−(n−j−1)

j+1∑
`=1

S
(0)
` (t, x,Dx)v`,

where S
(0)
` are PDOs of order zero, 1 ≤ ` ≤ j + 1, and so

(Dt + λn)vn = f −
n∑
j=1

Rj(t, x,Dx)vj ,

for some PDOs Rj of order zero.
Summing up, the Cauchy problem (3.12) is equivalent to the first-order

system {
P(t, x,Dt, Dx)V (t, x) = G(t, x) (t, x) ∈ (0, T ]× Rd,
V (0, x) = V0(x), x ∈ Rd,

(3.19)
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where V = (v1, . . . , vn)T , P = Dt +K +R, with

K(t, x,Dx) =


λ1 −〈Dx〉 0 0 · · · 0 0
0 λ2 −〈Dx〉 0 · · · 0 0
...

...
. . .

. . . · · ·
...

...
0 · · · λn−1 −〈Dx〉
0 · · · 0 λn

 , (3.20)

R is a matrix of PDOs of order zero, G = (0, . . . , f)T and

V0 = (v0,j)
T
1≤j≤n :=

(
j−1∑
`=0

S
(n−`−1)
` u`

)T
1≤j≤n

, (3.21)

with S
(n−`−1)
` PDOs with symbols S

(n−`−1)
` (x, ξ) ∈ Sn−`−1, 0 ≤ ` ≤ n− 1, and

uj the Cauchy data of the original equation (3.12).
Now we want to diagonalize the principal part of the operator matrix in

(3.20). To this end, we start working at the level of symbols and look for
a diagonalizer of the bidiagonal matrix K(t, x, ξ); it is easy to check that
M(t, x, ξ) = (mij(t, x, ξ))i,j=1,...,n, with mi,i = 1, mi,j = 0 for i > j and

mi,j(t, x, ξ) =
(−1)j−1〈ξ〉j−i∏j−1

k=1(λj(t, x, ξ)− λk(t, x, ξ))
(3.22)

for i < j is a diagonalizer of K(t, x, ξ). Note that the symbols mi,j are in
C([0, T ], S0), and that the matrix M is invertible thanks to its special structure
and to condition (3.15), and the inverse M−1 is a matrix of symbols of order
zero.

Coming now to the level of operators, we define the operator matrixM(t, x,Dx)
with symbol M(t, x, ξ); then we set

W := M−1V, P̃ := M−1PM,

W0 := M−1V0, G̃ := M−1G so that we obtain the system of first-order equations{
P̃W = G̃ on (0, T ]× Rd,
W (0) = W0 on Rd,

(3.23)

where
P̃ = Dt +K1 + R̃, (3.24)

K1 is a diagonal operator matrix with λ1, . . . , λn as entries, and R̃ is an n× n-
operator matrix with elements in C([0, T ], S0).

Second step: Computing the (fundamental) solution to system (3.23). The sys-
tem in (3.23) is in the form of [19, Section 10.7], thus by [19, Theorem 10.7.2]
it admits a unique solution, that we construct here below.

To this end, let φj = φj(t, s, x, ξ), 1 ≤ j ≤ n, be the solutions to the so-called
eikonal equations given by{

∂tφj(t, s, x, ξ) + λj(t, x,∇xφj(t, s, x, ξ)) = 0, (t, s, x, ξ) ∈ ∆T̄ × Rd × Rd,
φj(s, s, x, ξ) = x · ξ, s ∈ [0, T̄ ].

(3.25)
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where x, ξ ∈ Rd and (t, s) ∈ ∆T̄ , where 0 < T̄ ≤ T is sufficiently small. Indeed,
[19, Theorem 10.4.1] states that for a sufficiently small 0 < T̄ ≤ T there exists
a unique solution to the eikonal equations (3.25), 1 ≤ j ≤ n. We define the
operator matrix

Iφ(t, s) =

Iφ1
(t, s) 0

. . .

0 Iφn(t, s)

 ,

where Iφj are the FIOs with phase function φj and symbol 1. From this defini-
tion together with Proposition 3.13 we see that

DtIφj + λj(t, x,Dx)Iφj

=

∫
Rd

eiφj(t,s,x,ξ)
∂φj
∂t

(t, s, x, ξ)dξ +

∫
Rd

eiφj(t,s,x,ξ)λj(t, x,∇xφj(t, s, x, ξ))dξ

+

∫
Rd

eiφj(t,s,x,ξ)b0,j(t, s, x, ξ)dξ, (3.26)

where b0,j(t, s) ∈ S0. The first two integral terms on the right-hand side of
(3.26) cancel by the definition of φj .

Denoting by B0,j(t, s, x,Dx) the PDOs with symbols b0,j(t, s, x, ξ) in (3.26),
we define the family (W1(t, s); (t, s) ∈ ∆T̄ ) of FIOs by

W1(t, s, x,Dx) (3.27)

:= −i


B0,1(t, s) 0

. . .

0 B0,n(t, s)

+ R̃(t, x,Dx)

 Iφ(t, s, x,Dx).

From (3.24), (3.26), (3.25) and (3.27) we obtain that

P̃(t, x,Dx)Iφ(t, s, x,Dx) = iW1(t, s, x,Dx), (3.28)

that is iW1 is the residual of system (3.23) for Iφ. We define then by induction
the sequence of n × n-matrices of FIOs, denoted by (Wκ(t, s); (t, s) ∈ ∆T̄ )κ∈N,
by

Wκ+1(t, s, x,Dx) =

∫ t

s

W1(t, θ, x,Dx)Wκ(θ, s, x,Dx)dθ. (3.29)

We now claim that the operator norms of Wκ, seen as operators from the
Sobolev space Hr for any fixed r into itself, can be estimated from above by

‖Wκ(t, s)‖ ≤ Cκ−1
r |t− s|κ−1

(κ− 1)!
≤ Cκ−1

r T̄κ−1

(κ− 1)!
, (3.30)

for all (t, s) ∈ ∆T̄ and κ ∈ N, where Cr is a constant which only depends on the
index of the Sobolev space, thanks to Propositions 3.15 and 3.16. Indeed, to
deal with the operator norms in (3.30), we need to explicitly write the matrices
Wκ; an induction in (3.29) easily shows that

Wκ(t, s) =

∫ t

s

∫ θ1

s

. . .

∫ θκ−2

s

W1(t, θ1) . . .W1(θκ−2, θκ−1)dθκ−1 . . . dθ1. (3.31)
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The integrand is a product of κ − 1 n × n-matrices of FIOs, therefore it is an
operator matrix whose entries consist of nκ−2 summands of products of κ − 1
FIOs. Denoting by Q1 . . . Qκ−1 one of these products, where each of the Qj is
one of the n2 entries of the n×n-matrix of FIOs W1, we have from Proposition
3.16 that Q1 . . . Qκ−1 is again a FIO with symbol σκ−1 of order zero, and for
all ` ∈ N there exists C` > 0 and `′ ∈ N0 such that

|σκ−1(t, θ1, . . . , θκ−1)|(0)
` ≤ C

κ−2
` |q1(t, θ1)|(0)

`′ . . . |qκ−1(θκ−2, θκ−1)|(0)
`′ ,

where for j = 1, . . . , κ − 1, qj(t, s) denotes the symbol of the FIO Qj(t, s),
(t, s) ∈ ∆T̄ . Now we set

σ̄ := sup
j=1,...,κ−1

sup
(t,s)∈∆T̄

|qj(t, s)|(0)
`′ <∞,

so that
|σκ−1(t, θ1, . . . , θκ−1)|(0)

` ≤ C
κ−2
` σ̄κ−1.

By Proposition 3.15 applied to products of the type Q1 . . . Qκ−1 and from the
previous inequality, for every r ≥ 0 there exist constants Cr > 0 (depending
only on the index of the Sobolev space) and `r ∈ N0 such that for all u ∈ Hr

‖Q1(t, θ1) . . . Qκ−1(θκ−2θκ−1)u‖r ≤ Cr|σκ−1(t, θ1, . . . , θκ−1)|(0)
`r
‖u‖r

≤ CrCκ−2
`r

σ̄κ−1‖u‖r. (3.32)

Therefore, in the operator matrix W1(t, θ1) . . .W1(θκ−2, θκ−1), the operator
norm of each entry can be bounded from above by nκ−2CrC

κ−2
`r

σ̄κ−1, since

there are nκ−2 products of κ − 1 FIOs. Now by (3.31) and (3.32) we deduce
that

‖Wκ(t, s)‖ ≤
∫ t

s

∫ θ1

s

. . .

∫ θκ−2

s

‖W1(t, θ1) . . .W1(θκ−2, θκ−1)‖dθκ−1 . . . dθ1

≤ nκ−2CrC
κ−2
`r

σ̄κ−1

∫ t

s

∫ θ1

s

. . .

∫ θκ−2

s

dθκ−1 . . . dθ1

≤
nκ−2CrC

κ−2
`r

σ̄κ−1|t− s|κ−1

(κ− 1)!
=
C̃κ−1
r |t− s|κ−1

(κ− 1)!
(3.33)

for a new constant C̃r depending only on r, which yields the claim (3.30).
Now, using the estimate (3.30) one can show that the sequence of FIOs

defined for all (t, s) ∈ ∆T̄ and all N ∈ N by

EN (t, s) = Iφ(t, s) +

∫ t

s

Iφ(t, θ)

N∑
κ=1

Wκ(θ, s)dθ (3.34)

is a well-defined FIO onHr for every r and converges to the well-defined operator

E(t, s) = Iφ(t, s) +

∫ t

s

Iφ(t, θ)

∞∑
κ=1

Wκ(θ, s)dθ, (3.35)

which is the fundamental solution to the system (3.23) in the sense that it
satisfies {

P̃E(t, s) = 0 (t, s) ∈ ∆T̄ ,

E(s, s) = id s ∈ [0, T̄ ].
(3.36)
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Moreover, strictly hyperbolic equations are a subclass of the class of hyperbolic
equations with involutive roots (see [24],[35]), a class of equations such that the
sum in (3.35) turns out to be a finite; thus, we can assert that E(t, s) is a FIO,
too. Notice that (t, s) 7→ E(t, s) ∈ C(∆T̄ ), with values in the space of the FIOs
with some phase function φ and a symbol of order 0. This can be seen from
(3.35), because E is obtained by continuous operations of operators which are
continuous in t, s. By Duhamel’s formula, the unique solution to system (3.23)
is given by

W (t) =E(t, 0)W0 + i

∫ t

0

E(t, θ)G̃(θ)dθ

= E(t, 0)M−1(0, x,Dx)V0 + i

∫ t

0

E(t, θ)M−1(θ, x,Dx)G(θ)dθ.

The entries of the vector W (t) are given for 1 ≤ h ≤ n by

wk(t) =

n∑
h=1

n∑
j=1

[
ek,h(t, 0)m−1

h,j(0)v0,j + i

∫ t

0

ek,h(t, θ)m−1
h,j(θ)gj(θ)dθ

]
, (3.37)

where mi,k(t, x,Dx) stands for a PDO with symbol mi,k(t, x, ξ) as in (3.22), and
ek,h(t, s), 1 ≤ k, h ≤ n, are the entries in the operator matrix E(t, s).

Third step: Computing the fundamental solution to the equation (3.12).
From the solution to the first-order system we can then go back to the solution
to the original equation (3.12). For this we reverse all the transformations from
u to V , then from V to W and get

u(t) = 〈Dx〉−(n−1)v1(t) = 〈Dx〉−(n−1)
n∑
k=1

mi,k(t, x,Dx)wk(t). (3.38)

Combining this with (3.37) and looking at (3.21) together with the definition of
G, we obtain the following representation for the solution u of (3.12):

u(t) =

n∑
k=1

n∑
h=1

n∑
j=1

j−1∑
`=0

〈Dx〉−(n−1)mi,k(t)ek,h(t, 0)m−1
h,j(0)S

(n−`−1)
` u`

+ i

n∑
k=1

n∑
h=1

∫ t

0

〈Dx〉−(n−1)mi,k(t)ek,h(t, θ)m−1
hn(θ)f(θ)dθ

=

n−1∑
`=0

T`(t)u` +

∫ t

0

Tn(t, θ)f(θ)dθ (3.39)

where T`(t) = T`(t, x,Dx) are FIOs with symbols of order −` for all 0 ≤ ` ≤
n − 1, Tn(t, s) = Tn(t, s, x,Dx) a FIO with symbol of order −(n − 1), and
f ∈ C([0, T ], Hr(Rd)), r arbitrary. Formula (3.39) yields the representation
that we will use for instance in (3.44).

Remark 3.18. To let the construction of this section work we do not need to ask
the coefficients of (3.13) to be of class C∞b with respect to the spatial argument,
but only to assume that they are C`b-functions in the spatial argument for a
sufficiently large ` ∈ N. Such an ` has to be large enough such that for every
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t ∈ [0, T ] Proposition 3.15 can be applied to the entries of Wκ. This ` cannot
be computed explicitly in the general case, but for a (simple enough) example
it is possible to provide its precise value. This is what we are going to do in the
final Section 3.5.

3.3 Stochastic second-order hyperbolic equations - the case
of strict hyperbolicity

In this section we consider the case where the partial differential operator L in
(1.1) is given by (1.3). More specifically, this section is devoted to the proof of
the following theorem.

Theorem 3.19. Let us consider an SPDE (1.1) where the partial differential
operator L is given by

L = ∂2
t −

d∑
j,k=1

aj,k(t, x)∂xj∂xk −
d∑
j=1

bj(t, x)∂xj − c(t, x), (3.40)

where for the coefficients we assume aj,k ∈ C1([0, T ]; C∞b (Rd)) for 1 ≤ j, k ≤ d,
bj ∈ C([0, T ]; C∞b (Rd)) for 1 ≤ j ≤ d and c ∈ C([0, T ]; C∞b (Rd)). Suppose that L
is a strictly hyperbolic operator, i.e. there exists a constant C > 0 such that

d∑
j,k=1

aj,k(t, x)ξjξk ≥ C|ξ|2, (3.41)

for all (x, ξ) ∈ Rd×Rd. Assume for the initial conditions that u0 ∈ Hr(Rd) and
u1 ∈ Hr−1(Rd), where 2r > d. Furthermore, assume for the spectral measure
that (2.12) with κ = 1 holds, and that σ and γ are such that γ, σ ∈ L2([0, T ];Cb),
s 7→ Fσ(s) = νs ∈ L2([0, T ],Mb(Rd)), s 7→ Fγ(s) = χs ∈ L2([0, T ],Mb(Rd)).
Then, for some time horizon 0 < T̄ ≤ T , the Schwartz kernel of the FIO T2

in (3.44) here below satisfies Assumptions 2.1, 2.4 and 2.5, and therefore there
exists a random-field solution to the SPDE (1.1) with partial differential operator
given by (1.3).

We will start from the representation formula for the solution that we have
obtained in Section 3.2, and we will use it to show the conditions (A1)-(A5).

Proof of Theorem 3.19. Let us consider the Cauchy problem
L(t, x, ∂t,∇x)u(t, x) = f(t, x), (t, x) ∈ (0, T ]× Rd,
u(0, x) = u0(x), x ∈ Rd,
∂tu(0, x) = u1(x), x ∈ Rd.

(3.42)

Using the relation D = −i∂ we restate (3.42) as
P (t, x,Dt, Dx)u(t, x) = −f(t, x), (t, x) ∈ (0, T ]× Rd,
u(0, x) = u0(x), x ∈ Rd,
Dtu(0, x) = −iu1(x), x ∈ Rd,

(3.43)
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with

P = D2
t −

d∑
j,k=1

aj,k(t, x)DxjDxk + i

d∑
j=1

bj(t, x)Dxj + c(t, x).

System (3.43) is a particular case of (3.12), with n = 2, aα,1 ≡ 0 for |α| =
1, −f instead of f , −iu1 instead of u1, so the hyperbolicity condition (3.41)
corresponds exactly to (3.16). Thus, following Section 3.2 we can construct by
(3.39) the following representation of the solution of (3.43) (and of (3.42)):

u(t) = T0(t)u0 + T1(t)u1 +

∫ t

0

T2(t, s)f(s)ds, (3.44)

where T0(t) = T0(t, x,Dx) is a FIO with symbol of order zero, T1(t) = T1(t, x,Dx)
is a FIO with symbol of order −1, T2(t, s) = T2(t, s, x,Dx) is a FIO with symbol
of order −1, u0 is the initial value, u1 is the initial velocity, f is the right-hand
side. We formally choose as the right-hand side f(t, x) := γ(t, x)+σ(t, x)Ḟ (t, x).
Let Λ(t, ·, x, ∗) denote the Schwartz kernel of the Fourier integral operator
T2(t, s). So, according to (2.1), the random-field solution to the SPDE with
partial differential operator as in (3.40) is given by

u(t, x) =
(
T0(t)u0 + T1(t)u1

)
(x) +

∫ t

0

∫
Rd

Λ(t, s, x, y)γ(s, y)dyds

+

∫ t

0

∫
Rd

Λ(t, s, x, y)σ(s, y)M(ds, dy). (3.45)

Now, since T0, T1 are FIOs with symbol of order 0, −1 respectively, if u0 ∈ Hr

and u1 ∈ Hr−1, then g(t) := T0(t)u0 + T1(t)u1 ∈ Hr. Due to the assumption
that 2r > d, we conclude by Sobolev’s Embedding Theorem that g(t) ∈ C(Rd)
and therefore, the pointwise evaluatation in (3.45) makes sense. Moreover, since
t 7→ g(t) is continuous, we have that at every point (t, x) ∈ [0, T̄ ] × Rd, g(t, x)
is well-defined, which implies (A5).

Now we deal with the third term in (3.44). We see that T2 (or its Schwartz
kernel Λ) is the fundamental solution to the second-order SPDE with null ini-
tial conditions. By its definition in (3.44), T2(t, s) has a symbol in C(∆T̄ , S

−1)
since it depends continuously on E (in (3.35)) with symbol in C(∆T̄ , S

0) and
M(t, x,Dx) with symbol M(t, x, ξ) ∈ C([0, T ], S0) (M is continuous in time be-
cause it depends continuously on the characteristic roots, and the characteristic
roots of a PDE inherit the regularity with respect to time of the coefficients of
the PDE). In fact, T2(t, s) is uniformly continuous with respect to t and s on
∆T̄ .

With this we can finally show the conditions (A1)-(A4). In order to show
(A1) and (A3) with Λ(t, s) being the Schwartz kernel of T2(t, s), for each
(t, s) ∈ ∆T̄ we invoke Proposition 3.11 together with (3.3) to see that

|Fy 7→ηΛ(t, s, x, ·)(ξ)|2 = |T2(t, s)(x,−ξ)|2 ≤ Ct,s〈ξ〉−2, (3.46)

where T2(t, s)(x,−ξ) denotes the symbol of the FIO T2(t, s) evaluated in (x,−ξ).
Therefore the conditions (A1) and (A3) become∫ t

0

sup
ζ∈Rd

∫
Rd
|Fy 7→ηΛ(t, s, x, ·)(η + ζ)|2µ(dη)|νs|2ds

26



≤
∫ t

0

Ct,s|νs|2ds sup
ζ∈Rd

∫
Rd

1

1 + |η + ζ|2
µ(dη),∫ t

0

sup
ζ∈Rd

|Fy 7→ηΛ(t, s, x, ·)(ζ)|2|χs|2ds ≤
∫ t

0

Ct,s|χs|2ds sup
ζ∈Rd

1

1 + |ζ|2
.

The constants Ct,s can be chosen in such a way that they are continuous
in s and t, because of (3.46) and since T2(t, s) has a symbol in C(∆T̄ , S

−1).
Therefore we have that (A1) holds as long as (2.12) holds and (A3) is always
satisfied.

To check the two continuity conditions (A2) and (A4), it will suffice to
show that

sup
r∈(s,s+h)

|F(Λ(t, s, x)− Λ(t, r, x))(ξ + η)|2 ≤
C2
t,s,h

〈ξ + η〉2
, (3.47)

with Ct,s,h → 0 as h → 0 and Ct,s,h ≤ CT̄ for every h ∈ [0, t − s], (t, s) ∈ ∆T̄ .
Indeed, if (3.47) holds, then:

lim
h→0

∫ t

0

(
sup
η∈Rd

∫
Rd

sup
r∈(s,s+h)

|F(Λ(t, s, x)− Λ(t, r, x))(ξ + η)|2µ(dξ)

)
|νs|2ds

≤ lim
h→0

∫ t

0

C2
t,s,h

(
sup
η∈Rd

∫
Rd
〈ξ + η〉−2µ(dξ)

)
|νs|2ds

=

(
sup
η∈Rd

∫
Rd
〈ξ + η〉−2µ(dξ)

)
lim
h→0

∫ t

0

C2
t,s,h|νs|2ds

= 0

via the Dominated Convergence Theorem, thanks to assumption (2.12), the fact
that |νs|2 ∈ L1[0, T ] and Ct,s,h ≤ CT̄ . Therefore (A2) holds, and also (A4)
corresponding to the particular case µ = δ0 in (A2) .
So, it only remains to check that (3.47) holds. But this follows from the uniform
continuity of s 7→ FΛ(t, s, ·)(∗), formula (3.46) and (3.3). Indeed, the function
s 7→ 〈∗〉FΛ(t, s, ·)(∗) is, by (3.46), uniformly continuous on [0, t] with values in
the Fréchet space S0(R2d) endowed with the norm

||a− b|| =
∞∑
`=0

1

2`
|a− b|(0)

`

1 + |a− b|(0)
`

.

So its modulus of continuity

ωt,s(h) = sup
r∈(s,s+h)

||〈∗〉FΛ(t, s, ·)(∗)− 〈∗〉FΛ(t, r, ·)(∗)|| → 0

as h→ 0. By (3.3) with m = ` = 0 we get

sup
r∈(s,s+h)

|〈ξ + η〉FΛ(t, s, x)(ξ + η)− 〈ξ + η〉FΛ(t, r, x)(ξ + η)|

≤ sup
r∈(s,s+h)

|〈∗〉FΛ(t, s, ·)(∗)− 〈∗〉FΛ(t, r, ·)(∗)|(0)
0 〈ξ + η〉0

= sup
r∈(s,s+h)

(
|〈∗〉FΛ(t, s, ·)(∗)− 〈∗〉FΛ(t, r, ·)(∗)|(0)

0

1 + |〈∗〉FΛ(t, s, ·)(∗)− 〈∗〉FΛ(t, r, ·)(∗)|(0)
0

×
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× (1 + |〈∗〉FΛ(t, s, ·)(∗)− 〈∗〉FΛ(t, r, ·)(∗)|(0)
0 )

)
≤ ωt,s(h)(1 + sup

r∈(s,s+h)

|〈∗〉FΛ(t, s, ·)(∗)− 〈∗〉FΛ(t, r, ·)(∗)|(0)
0 )

≤ ωt,s(h)(1 + 2CT̄ ), (3.48)

where
CT̄ := max

0≤s≤t≤T̄
Ct,s <∞,

by (3.46) and the fact that (t, s) 7→ Ct,s is continuous on ∆T̄ . Therefore, the
term in the last line of (3.48) goes to zero as h → 0. Choosing the constant
Ct,s,h = ωt,s(h)(1 + 2CT̄ ) we get (3.47).

The proof is complete.

Remark 3.20. Theorem 3.19 holds also if we substitute the assumptions on
γ with the (presumably) more general assumption γ ∈ C([0, T ], Hr−1). In the

latter case, the term
∫ t

0
T2(t, s)γ(s)ds in (3.44) can be put into the deterministic

function g(t) ∈ Hr, and it is pointwise well defined. In the statement of Theorem
3.19 we choose to ask γ as in (A3), that is to consider it in a similar fashion
as the stochastic integral term. The reason for this is that if the problem of
nonstationary nonlinear SPDEs (where σ and γ may depend on the solution u)
with a general distribution as fundamental solution is solved, then the extension
of the results in Theorem 3.19 to the nonlinear case is possible.

Example 3.21 (The stochastic wave equation). Consider the stochastic wave
equation in the whole space Rd for any spatial dimension d ∈ N given by

∂2
t −

d∑
j=1

∂2
xj

u(t, x) = γ(t, x) + σ(t, x)Ḟ (t, x), in (0, T ]× Rd,

u(0, x) = u0, on Rd,
∂tu(0, x) = u1, on Rd.

(3.49)

The symbol of the wave operator is −τ2 + |ξ|2, so the characteristic roots are
given by τ = ±|ξ|. Note that they do not depend on t and x, so the corre-
sponding PDOs ±|Dx| commute with Dt, Dx and functions of these operators.
Setting as in Section 3.3 {

v1 = 〈Dx〉Λ
v2 = (Dt + |Dx|)Λ,

the equivalent first-order system (3.19) becomes((
Dt 0
0 Dt

)
+

(
|Dx| −〈Dx〉

0 −|Dx|

))(
v1

v2

)
=

(
0
−f

)
,

with initial conditions v1(0) = 〈Dx〉u0 and v2(0) = −iu1 + |Dx|u0. Note that
the residual term R in (3.19) is not present. Now we diagonalize this system
using the matrix in (3.22), which has the form(

1 m(ξ)
0 1

)
, m(ξ) = 〈ξ〉/(2|ξ|).
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So the diagonalized system becomes with the notation W = M−1V((
Dt 0
0 Dt

)
+

(
|Dx| 0

0 −|Dx|

))(
w1

w2

)
=

(
mf
−f

)
, (3.50)

with initial conditions w1(0) = 〈Dx〉u0 + imu1 −m|Dx|u0 and w2(0) = −iu1 +
|Dx|u0.

Define now φ± to be the solutions to the eikonal equations which have the
form

∂tφ±(t, s, x, ξ) = ∓|∇xφ±(t, s, x, ξ)|,

with the initial condition φ±(s, s, x, ξ) = x · ξ. One can solve these PDEs
explicitly to obtain the solutions φ±(t, s, x, ξ) = x · ξ ∓ (t− s)|ξ| for all 0 ≤ s ≤
t ≤ T and all x, ξ ∈ Rd. Moreover, T̄ = T . Now we set

Iφ :=

(
Iφ+

0
0 Iφ−

)
,

where Iφ± is the FIO having phase function φ± and symbol 1. One can compute
for all 0 ≤ s ≤ t ≤ T that((

Dt 0
0 Dt

)
+

(
|Dx| 0

0 −|Dx|

))
Iφ(t, s) = 0,

Iφ(s, s) = id,

so that W1 in (3.27) is identical to zero, which means that in (3.28) there is no
residual R and Iφ is the fundamental solution to this first-order system. Now
Duhamel’s formula implies that the solution to the system (3.50) is(

w1(t)
w2(t)

)
=

(
Iφ+(t, 0)

(
〈Dx〉u0 + imu1 −m|Dx|u0

)
Iφ−(t, 0)

(
− iu1 + |Dx|u0

) )
+ i

∫ t

0

(
Iφ+

(t, θ)(mf)(θ)
−Iφ−(t, θ)(f)(θ)

)
dθ.

The solution u to the wave equation (3.49) with initial conditions u0 and u1 and
a right-hand side f can so be represented by using (3.44) in the following way

u(t) = T1(t)u0 + T2(t)u1 +

∫ t

0

T3(t, s)f(s)ds,

where

T1(t) = 〈Dx〉−1
[
Iφ+(t, 0)(〈Dx〉 −mλ) +mIφ−(t, 0)λ

]
,

T2(t) = i〈Dx〉−1
[
Iφ+

(t, 0)m−mIφ−(t, 0)
]
,

T3(t, s) = i〈Dx〉−1
[
Iφ+(t, s)m−mIφ−(t, s)

]
.

Due to the multiplication formulas in Proposition 3.13 we can compute

T3(t, s) = i

∫
Rd

eix·ξ−i(t−s)|ξ| 1

2|ξ|
dξ − i

∫
Rd

eix·ξ+i(t−s)|ξ| 1

2|ξ|
dξ

=

∫
Rd

eix·ξ 1

|ξ|
ei(t−s)ξ − e−i(t−s)ξ

2i
dξ
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=

∫
Rd

eix·ξ sin((t− s)|ξ|)
|ξ|

dξ,

and T2(t) = T3(t, 0). We can see that this is a PDO with symbol sin(t|ξ|)/|ξ|.
On the other hand, T1(t) becomes

T1(t) =

∫
Rd

eix·ξ−it|ξ| 1

〈ξ〉

(
〈ξ〉 − 1

2

〈ξ〉
|ξ|
|ξ|
)

dξ +

∫
Rd

eix·ξ+it|ξ| 1

〈ξ〉
1

2

〈ξ〉
|ξ|
|ξ|dξ

=
1

2

∫
Rd

eix·ξ−it|ξ|dξ +
1

2

∫
Rd

eix·ξ+it|ξ|dξ

=

∫
Rd

eix·ξ eit|ξ| + e−it|ξ|

2
dξ

=

∫
Rd

eix·ξ cos(t|ξ|)dξ

= ∂t

∫
Rd

eix·ξ sin(t|ξ|)
|ξ|

dξ.

We can see that in this case all the three operators involve the inverse Fourier
transform of sin(t|ξ|)/|ξ| or its derivative. Now letting u0 = u1 = 0 and the right
hand side of (3.49) equal to δ0,0 we get u(t) = T3(t, 0)δ0 and for all v ∈ S(Rd)
we have

〈u(t), v〉 = 〈
∫
Rd

eix·ξ sin(t|ξ|)
|ξ|

dξ, v〉,

recovering the fact that the fundamental solution is the inverse Fourier transform
of sin(t|ξ|)/|ξ|.

3.4 Stochastic higher-order hyperbolic equations

In this section we give a generalization of the solution theory presented in Section
3.3. We treat higher order equations of the form

P (t, x,Dt, Dx)u(t, x) = γ(t, x) + σ(t, x)Ḟ (t, x), (3.51)

where for n ∈ N, n ≥ 2, P is defined in (3.13), with some suitable coefficients
aα,j , see Theorem 3.22 below. As in Section 3.3, we assume P to be strictly hy-
perbolic asking (3.14) and(3.15) to be satisfied. Note that this section provides
a generalization of Section 3.3 also in the case n = 2, since here we allow for
terms of type aα,1(t, x)Dα

xDt with |α| = 1.
The result of this section is the following.

Theorem 3.22. Let us consider an SPDE (3.51) where the partial differential
operator P is of the form (3.13) with coefficients aα,j ∈ Cn−1([0, T ]; C∞b (Rd))
for |α| = n− j, aα,j ∈ C([0, T ]; C∞b (Rd)) for |α| < n− j, 0 ≤ j ≤ n−1. Suppose
that P is a strictly hyperbolic operator, i.e. (3.14) and (3.15) hold. Assume
for the initial conditions that Dj

tu(0) =: uj ∈ Hr−j(Rd) 0 ≤ j ≤ n − 1, where
2r > d. Furthermore, assume that γ and σ are as in Theorem 3.19 and that

sup
η∈Rd

∫
Rd

1

(1 + |ξ + η|2)n−1
µ(dξ) <∞. (3.52)

Then, for some time horizon 0 < T̄ ≤ T , the random-field solution of the
SPDE (3.51) with partial differential operator (3.13) is well-defined.
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Proof. Let us start with the representation of the solution u(t, x) of (3.12) ob-
tained in (3.39):

u(t) =

n−1∑
`=0

T`(t)u` +

∫ t

0

Tn(t, θ)f(θ)dθ.

with T`(t) = T`(t, x,Dx) FIOs of order −` for all 0 ≤ ` ≤ n− 1, and Tn(t, s) =
Tn(t, s, x,Dx) FIO of order −(n− 1).

The term g(t) =
∑n−1
`=0 T`(t)u` ∈ Hr since u` ∈ Hr−`, so this term can be

treated as the corresponding one in the proof of Theorem 3.19. As for the term
Tn(t, s), it can be handled exectly as T2(t, s) of Theorem 3.19, with the only
difference that Tn(t, s) has order −(n−1); letting Λ(t, s) be the Schwartz kernel
of Tn(t, s), we come to

|Fy 7→ηΛ(t, s, x, ·)(ξ)|2 = |σ(Tn(t, s))(x,−ξ)|2 ≤ Ct,s〈ξ〉−2(n−1), (3.53)

and then the well-definedness of a random field solution follow as in the proof
of Theorem 3.19.

The condition (3.52) has already been seen in [12] when dealing with higher-
order beam equations.

3.5 Stochastic second-order hyperbolic equations - the case
of weak hyperbolicity

In this section we show that the assumption of strict hyperbolicity (3.41) on
equation (3.40) is an important one. In fact, if this assumption does not hold,
the associated PDE might not be well posed, neither in C∞ (or in usual Sobolev
spaces), see [10], nor in weighted Sobolev spaces, see [23]. However, results of
”well-posedness with loss of derivatives” in Sobolev spaces can be obtained under
suitable assumptions in the case of weakly hyperbolic equations, i.e. equations
having real characteristic roots which are not necessarily distinct and separate
at every time, see for example [2] and the references therein. Here well-posedness
with loss of derivatives means that in this case the fundamental solution E(t, s)
results to be a Fourier integral operator of order δ > 0, and so by Duhamel’s
formula (3.11) one obtains a solution U which is less regular then the data, i.e.
if the right-hand side G and the initial data are in Hr for some r ≥ 0, then the
solution U is in Hr−δ, as proved for instance in [3, 4].

This leads to the conclusion that without the assumption in (3.41) the
Fourier transform of the fundamental solution might not behave as 〈ξ〉−1 as
shown in the previous section, but only as 〈ξ〉−κ with κ ∈ (0, 1).

In this section we give an example of a weakly hyperbolic equation with
fundamental solution that satisfies (2.12) with some κ ∈ [0, 1). In this section
we follow the ideas from [3], but we have to keep a much tighter control over
the constants, since their size is crucial at the end.

Let us so consider the following SPDE in spatial dimension d = 1:
(
∂2
t − tk∂2

x + ctkρ∂x
)
u(t, x) = Ḟ (t, x),

u(0, x) = 0,

∂tu(0, x) = 0,

(3.54)
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where (t, x) ∈ [0, 1]× R, k ∈ N with k ≥ 2, ρ = 1
2 −

1
k and c > 0 is a constant,

sufficiently small, that we will set later. Then we know by [3, Theorem 1.1] that
the associated PDE to problem (3.54) is well-posed in Sobolev spaces with loss
of derivatives, and the fundamental solution Λ exists. Therefore, the solution
to problem (3.54) is defined by

u(t, x) =

∫ t

0

∫
R

Λ(t, s, x− y)M(ds, dy),

since the coefficients and the right-hand side of the PDE corresponding to (3.54)
do not depend on the spatial argument. In this section we will construct the
fundamental solution Λ and derive an upper estimate as in (2.12).

Equation (3.54) can be reformulated using D = −i∂:
(
D2
t − tkD2

x − citkρDx

)
u(t, x) = −f(t, x),

u(0, x) = 0,

Dtu(0, x) = 0,

where the right-hand side is formally given by f = Ḟ .
We follow the ideas of Section 3.2; since we deal with a second order equation,

we explicitly compute the characteristic roots of the partial differential operator
in (3.54). Its principal symbol is given by τ2 − tkξ2, so the characteristic roots
are λ(t, ξ) = ±tk/2|ξ| for all (t, x) ∈ [0, 1] × R. Since these roots coincide
(and vanish) at t = 0 for every fixed ξ 6= 0 (i.e. equation (3.54) is not strictly
hyperbolic), to let the ideas of Section 3.2 work we separate the roots by defining
the following ”approximated characteristic roots”:

λ̃(t, ξ) := ±
√
tk + 〈ξ〉−2 · |ξ| = ±

√
1 + tk〈ξ〉2 · 〈ξ〉−1|ξ|.

Moreover, we set

ζ(t, ξ) :=
√

1 + tk〈ξ〉2,

and easily see that ζ ∈ C([0, 1], S1).
Now we define, using the approximated characteristic roots instead of the

characteristic roots (compare with (3.18) in the case of strict hyperbolicity){
v1(t, x) := ζ(t,Dx)u(t, x)

v2(t, x) := (Dt + λ̃(t,Dx))u(t, x),

and by performing similar calculations as in Section 3.2, we obtain(
Dt + λ̃(t,Dx)

)
v1 = ζ(t,Dx)

(
Dt + λ̃(t,Dx)

)
u− i

∂ζ

∂t
(t,Dx)u

= ζ(t,Dx)v2 −R0v1,

where R0 = R0(t,Dx) is the PDO with symbol

r0(t, ξ) =
iktk−1〈ξ〉2

2(1 + tk〈ξ〉2)
=

iktk−1

2(tk + 〈ξ〉−2)
, (3.55)

and (
Dt − λ̃(t,Dx)

)
v2 = −f(t, x)−N0(t,Dx)v1,
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where N0(t,Dx) is a PDO with symbol

n0(t, ξ) = − citkρξ

〈ξ〉
√
tk + 〈ξ〉−2

+
iktk−1|ξ|

2(tk + 〈ξ〉−2)〈ξ〉
+

ξ2

〈ξ〉2ζ(t, ξ)
. (3.56)

So we obtain the equivalent first-order system{
PV (t) = G, in [0, 1],

V (0) = 0,
(3.57)

where V = (v1, v2), G = (0,−f), and

P = Dt +

(
λ̃(t,Dx) −ζ(t,Dx)

0 −λ̃(t,Dx)

)
+

(
R0(t,Dx) 0
N0(t,Dx) 0

)
.

Now, before diagonalizing the system, we investigate the order of the two
symbols in (3.55) and (3.56). For this we need three lemmas, the first one being
an important integral inequality.

Lemma 3.23. For all α, β, δ > 0 we have

∫ 1

0

tα

(tδ + 〈ξ〉−2)β
dt ≤


Cα,β,δ for α− βδ > −1,

1
α+1 + log

(
〈ξ〉2β/(α+1)

)
for α− βδ = −1,

Cα,β,δ〈ξ〉2(βδ−α−1)/δ for α− βδ < −1.

Proof. By separating the domain of integration into [0, h] and [h, 1], where h :=
〈ξ〉−2β/(α+1) we obtain∫ t

0

tα

(tδ + 〈ξ〉−2)β
dt ≤ 〈ξ〉2β

∫ h

0

tαdt+

∫ 1

h

tα−βδdt ≤ 1

α+ 1
+

1

α− βδ + 1
,

if α− βδ > −1; if α− βδ = −1, then∫ t

0

tα

(tδ + 〈ξ〉−2)β
dt ≤ 1

α+ 1
+ log

(
h−1

)
.

In the case when α−βδ < −1, we obtain by the change of variable tδ+〈ξ〉−2 7→ s∫ 1

0

tα

(tδ + 〈ξ〉−2)β
dt =

1

δ

∫ 1+〈ξ〉−2

〈ξ〉−2

(s− 〈ξ〉−2)α/δ+1/δ−1

sβ
ds

≤ 1

δ

∫ 1+〈ξ〉−2

〈ξ〉−2

s(α+1−δ−βδ)/δds

=
1

α+ 1− βδ

(
(1 + 〈ξ〉−2)(α+1−βδ)/δ − 〈ξ〉−2(α+1−βδ)/δ

)
≤ 1

βδ − α− 1
〈ξ〉2(βδ−α−1)/δ.

The other two lemma give bounds on the derivatives of some of the terms
in the symbols of R0 and N0.
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Lemma 3.24. For all l ∈ N0, and j ∈ {0, 1}∫ 1

0

∣∣∣∣∂lξ tk−j

tk + 〈ξ〉−2

∣∣∣∣dt ≤ Cl〈ξ〉−l,
where Cl ≤ l · 2l+2.

Proof. An induction shows that the partial derivatives can be bounded form
above by

∂lξ
tk−j

tk + 〈ξ〉−2
≤ C̃l

l∑
m=1

〈ξ〉−l−2m tk−j

(tk + 〈ξ〉−2)m+1
,

where C̃l ≤ 2l+2. Then integrating this over [0, 1] and using Lemma 3.23 with
α = k − j, β = m+ 1 and δ = k, we get∫ 1

0

∣∣∣∣∂lξ 1

tk + 〈ξ〉−2

∣∣∣∣dt ≤ C̃l l∑
m=1

〈ξ〉−l−2m

∫ 1

0

tk−j

(tk + 〈ξ〉−2)m+1
dt

≤ C̃l〈ξ〉−l+2 j−1
k

l∑
m=1

1

mk + j − 1

≤ l · C̃l〈ξ〉−l.

This lemma implies that r0 in (3.55) is of order zero. Moreover, we imme-
diately see that the third term on the right-hand side of (3.56) is of order −1
since ζ is of order 1. The second symbol is of order zero, being the product of
the two symbols of order zero ktk−1/(tk + 〈ξ〉−2) and |ξ|/〈ξ〉.

The following lemma is needed to investigate the first term on the right-hand
side of (3.56).

Lemma 3.25. For all l ∈ N0,∫ 1

0

∣∣∣∣∂lξ tkρξ√
1 + tk〈ξ〉2

∣∣∣∣dt ≤ C ′l〈ξ〉−l log(1 + 〈ξ〉), (3.58)

for some constant C ′l < 2l · l! · (2l − 1)!!.

Proof. First we see what happens at the level of l = 0. Then the integrand in
(3.58) can be written as

tkρξ

〈ξ〉
√
tk + 〈ξ〉−2

=
ξ

〈ξ〉

(
tk

tk + 〈ξ〉−2

)ρ
1

(tk + 〈ξ〉−2)1/k
, (3.59)

where, with the help of Lemma 3.24, the first two terms can be seen to be
symbols of order zero. The third term is a symbol in S2/k ⊆ S1, and using
Lemma 3.23 with α = 0, β = k−1 and δ = k, we get∫ 1

0

1

(tk + 〈ξ〉−2)1/k
dt ≤ 1 + log(〈ξ〉2/k)

≤ 1 + log〈ξ〉. (3.60)
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The next step is to investigate the derivatives of the term in (3.59). We define

θ(t, ξ) :=
tkρ√

1 + tk〈ξ〉2
=

tkρ

〈ξ〉
√
〈ξ〉−2 + tk

=

(
tk

〈ξ〉−2 + tk

)ρ
1

(〈ξ〉−2 + tk)1/k

1

〈ξ〉
,

and for all l ∈ N0

Θl(t, ξ) := (−1)l(2l − 1)!!
tk(ρ+l)

(1 + tk〈ξ〉2)(2l+1)/2

= (−1)l(2l − 1)!!
tk(ρ+l)

〈ξ〉2l+1(〈ξ〉−2 + tk)(2l+1)/2

= (−1)l(2l − 1)!!

(
tk

〈ξ〉−2 + tk

)ρ+l
1

(〈ξ〉−2 + tk)1/k

1

〈ξ〉2l+1
,

where n!! denotes the odd factorial of an odd number, i.e. n!! = n(n−2) . . . 3 ·1,
and (−1)!! := 1. We have that Θ0(t, ξ) = θ(t, ξ) and

∂ξΘl(t, ξ) = Θl+1(t, ξ)〈ξ〉∂ξ〈ξ〉 = Θl+1(t, ξ)ξ.

Set furthermore

Θ̃l(t, ξ) := (−1)l(2l − 1)!!

(
tk

〈ξ〉−2 + tk

)ρ+l
1

(〈ξ〉−2 + tk)1/k
, (3.61)

so
Θ̃l(t, ξ) = Θl(t, ξ)〈ξ〉2l+1.

Note that the term in the brackets in (3.61) is bounded by 1.
In the sequel, we will deal with symbols of the form pa1,a2

(ξ) := ξa1〈ξ〉a2 ∈
Sa1+a2 , where a1,−a2 ∈ N0. Note that the symbols Θ̃l(t, ξ) and pa1,a2

are
bounded by (2l−1)!! and 1 respectively. With this preparation, we can evaluate
the derivatives of the function on the left-hand side of (3.59), which is equal to
θ(t, ξ)ξ. Its derivatives are given by the following formula. Set l∗ := l/2 + 1 if l
is even and l∗ := (l + 1)/2 + 1 if l is odd, i.e. l∗ = dl/2 + 1e. Then

∂lξ
(
θ(t, ξ)ξ

)
=

l∑
j=l−l∗+1

Cl,jΘ̃l(t, ξ)p2j−(l−1),2j+1(t, ξ),

where Cl,j ∈ N0 are constants which can be recursively computed. We have for

instance Cl,l = 1, Cl,l−1 =
∑l
j=1 j, and all Cl,j ≤ 2l!. Therefore, using (3.60)

we have that its derivatives satisfy the following integral inequality∫ 1

0

∣∣∂lξ(θ(t, ξ)ξ)∣∣dt ≤ 2l · l! · (2l − 1)!! · 〈ξ〉−l
∫ 1

0

1

(tk + 〈ξ〉)1/k
dt

≤ 2l · l! · (2l − 1)!! · 〈ξ〉−l(1 + log〈ξ〉)
≤ C ′l〈ξ〉−l log(1 + 〈ξ〉), (3.62)

where C ′l := 2l · l! · (2l − 1)!!.
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This lemma implies that the first term on the right-hand side of (3.56) is of
order 2/k and satisfies the integral inequality (3.58).

The next step is to diagonalize the system (3.57) using the matrix in (3.22),
which in this case has the form(

1 m(t, ξ)
0 1

)
with

m(t, ξ) :=
ζ(t, ξ)

2λ̃(t, ξ)
=

√
1 + tk〈ξ〉2

2
√
〈ξ〉−2 + tk|ξ|

=
〈ξ〉
2|ξ|

.

Then, with the change of variable W := M−1V the system becomes{
P̃W (t, x) = G̃(t, x), (t, x) ∈ (0, 1]× R,
W (0, x) = 0, x ∈ R,

(3.63)

with G̃ = (mf,−f)T and

P̃(t, x,Dx) =

(
Dt 0
0 Dt

)
+

(
λ̃(t, x,Dx) 0

0 −λ̃(t, x,Dx)

)
+ R̃(t, x,Dx),

with

R̃ =

(
R0 −mN0 R0m−mN0m

N0 N0m

)
. (3.64)

Note that here R̃ is a matrix of PDOs of order 2/k, not of order zero as in the
strictly hyperbolic case, see (3.24).

It is important to remark here that in Section 3.2 we constructed the FIO
W1 in (3.27) with the same order as R̃ and the behavior of W1 was used to
obtain the well-definedness of the symbol of EN in (3.34) and its order. More

precisely, it was crucial to have a uniform in time estimate of
∫ t
s
W1(t, θ)dθ.

Here we want to follow the same ideas, so now we derive an integral estimate
for the symbols of the four operators in the matrix (3.64). It can be easily
checked that the symbols of the operators mN0, N0m and mN0m satisfy the
same integral estimate as in (3.62) with the same constants C ′l , which was
derived in Lemma 3.25. For the latter estimate we consider, as in Definition
3.1, the symbol only for ξ outside the ball with radius R > 1. The symbols of
the other two operators R0 and R0m satisfy the same integral inequality as in
Lemma 3.24, with the constant Cl · k. The symbols of the four PDOs in R̃,
denoted by r̃i,j for i, j ∈ {1, 2}, satisfy therefore∫ 1

0

|∂lξ r̃i,j(t, ξ)|dt ≤
(
cC ′l log(1 + 〈ξ〉) + Cl · k

)
〈ξ〉−l

≤ C ′k,l
(
1 + c log(1 + 〈ξ〉)〈ξ〉−l,

where C ′k,l ≤ C ′l + Cl · k. Then for ξ outside a sufficiently large ball, whose
radius may depend on c, c log(1 + 〈ξ〉) dominates the constant 1.

Now, to construct the fundamental solution E to the system (3.63) we have
to substitute the approximate characteristic roots by the true ones, rewriting
the operator P̃ in the form

P̃(t, x,Dx) =

(
Dt 0
0 Dt

)
+

(
λ(t,Dx) 0

0 −λ(t,Dx)

)
+ ˜̃R(t, x,Dx),
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with
˜̃R = R̃+ (λ̃− λ)

(
1 0
0 −1

)
.

We notice that

(λ̃− λ)(t, ξ) =
(√

tk + 〈ξ〉−2 − tk/2
)
|ξ| = 〈ξ〉−2|ξ|√

tk + 〈ξ〉−2 + tk/2

is a symbol of order zero, and by Lemma 3.23 with α = 0, β = 1/2, δ = k we
have (since k > 2)∫ 1

0

|(λ̃− λ)(t, ξ)|dt ≤ 2

k − 2
〈ξ〉1−(2k)−1

〈ξ〉−2|ξ| ≤ 2

k − 2
;

similarly, we can compute∫ 1

0

∣∣∣∣∂lξ(λ̃(t, ξ)− λ(t, ξ)
)∣∣∣∣dt ≤ 2

k − 2
Cl〈ξ〉−l,

with Cl computed in Lemma 3.24. This means that ˜̃R is again a matrix of
PDOs of order 2/k and the symbols of its entries satisfy∫ 1

0

|∂lξ ˜̃ri,j(t, ξ)|dt ≤
(

2cC ′k,l log(1 + 〈ξ〉) + Cl
2

k − 2

)
〈ξ〉−l

≤ cCk,l log(1 + 〈ξ〉)〈ξ〉−l, (3.65)

with Ck,l ≤ 2C ′k,l + 2Cl/(k − 2).
We define now Iφ, φ±,W1,Wn, EN , E as in Section 3.2, with the difference

that here we have ˜̃R satisfying (3.65) (instead of R̃ of order zero as in (3.27)).
We have by Proposition 3.15 that for every given r > 0 there exist a constant

C̃r > 0 and an integer l0 ∈ N0 sufficiently large such that when setting

δ0 := sup
l≤l0

Ck,l = Ck,l0 ≤ 2l0 · l0! · (2l0 − 1)!!,

we get for every ` ≤ `0
|∂`ξσ(EN (t, s))(x, ξ)|

≤
N∑
n=1

∫ t

s

∫ θ

s

∫ θ1

s

. . .

∫ θn−2

s

∣∣∂`ξσ(W1(t, θ1) . . .W1(θn−2, θn−1)
)
(x, ξ)

∣∣dθn−1 . . . dθ1dθ

≤ 〈ξ〉−`(2C`r )−1
N∑
n=1

(
2C`rcC̃rδ0(1 + log〈ξ〉)

)n−1

(n− 1)!
≤ C`r,r〈ξ〉

δ−`, (3.66)

where
δ := 2C`rcC̃rδ0,

with a new constant C`r,r > 0. Thus the operator E, defined as in (3.35) as the
limit of EN as N →∞, is continuous from Hs+δ to Hs for every s ∈ R, i.e. it
is an operator of order δ > 0. It’s now easy to check that E is the fundamental
solution to the system {

P̃E(t, s) = 0 (t, s) ∈ 4T̄
E(s, s) = id s ∈ [0, T̄ ]
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for some T̄ < 1. For more precise computations (in a general setting) we refer
to [3, Theorem 3.1] or [4, Theorem 3.1].

If we set 0 < c < (2C`r C̃rδ0)−1, then 0 < δ < 1. We compute the order of
the fundamental solution to (3.54) reversing all the transformations from u to
w, i.e.

u(t) = ζ(t,Dx)−1
(
w1(t) +mw2(t)

)
.

So, by substituting the above expressions for w into this equation we obtain
that the fundamental solution to (3.54) is given by

T2(t, s) := iζ(t)−1
(
e1,1(t, s)m− e1,2(t, s) +me2,1(t, s)m−me2,2(t, s)

)
,

where ei,j are the entries of E. Since ζ is an operator of order 1 and m is an
operator of order 0, we have that the fundamental solution T3(t, s) is an operator
of order δ − 1 ∈ (−1, 0). Therefore, a sufficient condition for the assumption
(A1) on the spectral measure for the well-definedness of a random-field solution
is

sup
η∈R

∫
Rd

1

(1 + |ξ + η|2)1−δ µ(dξ) <∞.

The other conditions for the existence can be shown with similar arguments as
the ones in the proof of Theorem 3.19. We have so proved the following:

Theorem 3.26. Let us consider the SPDE (3.54) If the spectral measure satis-
fies (2.12) for some κ < 1, then for some time horizon 0 < T̄ ≤ T the Schwartz
kernel of the FIO T2 satisfies Assumptions 2.1 and 2.4, and therefore a random-
field solution to the SPDE (3.54) is well-defined.
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[26] V. Ortiz-López and M. Sanz-Solé. A Laplace Principle for a Stochastic
Wave Equation in spatial Dimension three. In D. Crisan, editor, Stochastic
Analysis 2010. Springer, 2010.

[27] E. Pardoux and T. Zhang. Absolute continuity of the law of the solution
of a parabolic spde. Journal of Functional Analysis, 112: 447–458, 1993.

[28] S. Peszat. The Cauchy problem for a nonlinear stochastic wave equation
in any dimension. Journal of Evolution Equations, 2(3): 383–394, 2002.
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