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Abstract: This paper presents a novel scheme for the detection and isolation of faults affecting
the sensors measuring the satellite attitude, body angular velocity and flywheel spin rates as
well as defects related to the control torques provided by satellite momentum wheels. Thanks
to the jointly use of the singular perturbations theory and nonlinear geometric approach, a
novel fault detection and isolation system has been developed to accurately detect and isolate
faults occurring on all the considered actuators and sensors. Simulation results are based on a
detailed nonlinear satellite model with embedded disturbance description. The results document
the effectiveness of the proposed fault detection and isolation scheme.
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1. INTRODUCTION

The increasing operational requirements for onboard au-
tonomy in satellite control systems require structural
methods that support the design of complete and reliable
supervisory systems. In this context, Fault Detection and
Isolation (FDI) systems provide fundamental information
about the system health status, to allow subsequent ac-
commodation actions to improve system reliability and
availability, while maintaining desirable performances.
Moreover, there has been a growing demand for methods
guaranteeing fail safe operations with a reduced level of
hardware redundancy. Hardware redundancy can be not
available on small and low cost satellites, while a reduced
level of hardware redundancy is useful also in large satel-
lites and spacecrafts to avoid an increase of the system
complexity, weights and costs.
Significant research in FDI has been done in the last
decades (Isermann (2011); Blanke et al. (2016)). Numer-
ous model-based methods have been proposed for fault
diagnosis in linear and nonlinear systems (Chen-Patton
(1999); Ding (2013); Bokor-Szabó (2009)). In particular,
a solution to the FDI problem for nonlinear systems was
presented in De Persis-Isidori (2001) through the NonLin-
ear Geometric Approach (NLGA). The NLGA has been
exploited by the authors of this paper also for the FDI
in aircraft systems (Castaldi et al. (2010, 2014)), wind
turbine systems (Simani-Castaldi (2014)) and in case of
frequency faults in satellite actuators (Baldi et al. (2014)).
This paper presents a novel fault detection and isolation
scheme to assess the health condition and proper function-
ing of essential sensors and actuators of a satellite Attitude

1 Corresponding author.

Determination and Control Systems (ADCS).
This work is a development of a previous work of the
same authors (Baldi et al. (2016)), which considered the
presence of a redundant attitude sensor to perform the
accurate isolation of all the actuator and sensor faults by
exploiting the NLGA. In contrast, this paper exploits also
the Singular Perturbations (SP) theory to define reduced
order approximated models of the complete satellite model
and allow the complete fault isolation without needing any
hardware sensor redundancy.
The SP theory has been previously applied by some of the
authors for the design of an Active Faut Tolerant Control
(AFTC) system for civil aircrafts (Castaldi et al. (2013)).
The SP theory results to be a very advantageous frame-
work to describe the dynamics of systems characterised
by different time scales (Khalil (2002)). The joint use of
the NLGA and SP theory represents a peculiar aspect of
the proposed approach and allows to take advantage of
the benefits of both of them, thus resulding in a novel and
reliable FDI system.
Each physical sensor fault has been mapped to a set of
(always simultaneous) mathematical additive fault inputs
as described in Mattone-De Luca (2006). This allows the
definition of a nonlinear model affine in all the actuator
and sensor fault inputs, with a structure suitable for the
application of the NLGA (see De Persis-Isidori (2001)) to
obtain the FDI of both actuator and sensor faults.
The FDI residual filters are designed via the NLGA to ob-
tain diagnostic signals that are sensitive to specific subsets
of actuator and sensor faults and decoupled from the re-
maining ones. The fault isolation task is achieved, with the
assumption of single fault occurring at any time, through
a residual cross-check scheme and a proper decision logic.
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(FE), Italy. (e–mail: silvio.simani@unife.it).

Abstract: This paper presents a novel scheme for the detection and isolation of faults affecting
the sensors measuring the satellite attitude, body angular velocity and flywheel spin rates as
well as defects related to the control torques provided by satellite momentum wheels. Thanks
to the jointly use of the singular perturbations theory and nonlinear geometric approach, a
novel fault detection and isolation system has been developed to accurately detect and isolate
faults occurring on all the considered actuators and sensors. Simulation results are based on a
detailed nonlinear satellite model with embedded disturbance description. The results document
the effectiveness of the proposed fault detection and isolation scheme.

Keywords: Fault detection and isolation, singular perturbations, nonlinear geometric approach,
aerospace, actuators and sensors.

1. INTRODUCTION

The increasing operational requirements for onboard au-
tonomy in satellite control systems require structural
methods that support the design of complete and reliable
supervisory systems. In this context, Fault Detection and
Isolation (FDI) systems provide fundamental information
about the system health status, to allow subsequent ac-
commodation actions to improve system reliability and
availability, while maintaining desirable performances.
Moreover, there has been a growing demand for methods
guaranteeing fail safe operations with a reduced level of
hardware redundancy. Hardware redundancy can be not
available on small and low cost satellites, while a reduced
level of hardware redundancy is useful also in large satel-
lites and spacecrafts to avoid an increase of the system
complexity, weights and costs.
Significant research in FDI has been done in the last
decades (Isermann (2011); Blanke et al. (2016)). Numer-
ous model-based methods have been proposed for fault
diagnosis in linear and nonlinear systems (Chen-Patton
(1999); Ding (2013); Bokor-Szabó (2009)). In particular,
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The FDI performances has been evaluated using a de-
tailed nonlinear satellite simulator taking account also
of gyroscopic effects, measurement noise and exogenous
disturbance signals. Simulation results are given in case of
both actuator and sensor faults, validating the ability of
the proposed scheme to deal with faults of different types
and provide an accurate fault detection and isolation.

2. SATELLITE AND ACTUATOR MODELS

The satellite is considered as a rigid body, whose attitude
is represented by using the quaternion notation. The
satellite mathematical model is given by the dynamic and
kinematic equations of (1) and (2) (Wie (2008)):

ω̇ = −I−1
s S(ω)(Isω + hrw) + I−1

s (Msat +Mext) (1)

q̇ =
1

2
Ω(ω)q (2)

with Mext = Mgg +Maero, the skew-symmetric matrices

S(ω) =

[
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]
,Ω(ω) =




0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0


 (3)

and where ω = [ω1, ω2, ω3]
T
is the vector of the roll, pitch

and yaw body rates, q = [q1, q2, q3, q4]
T
is the quaternion

vector and hrw = [hrw1, hrw2, hrw3, hrw4]
T
is the vector of

the flywheel angular momenta. The principal inertia body-
fixed frame is considered, with Ixx, Iyy, and Izz on the
main diagonal of the satellite inertia matrix Is. Moreover,
it is assumed that Ixx > Iyy, Izz and Iyy ≈ Izz.
The considered Attitude Control System (ACS) consists
of a fixed array of three orthogonal momentum wheels
mounted along the satellite body axes. The elements of

the vector Msat = [Msat1 , Msat2 , Msat3 ]
T
are the control

torques provided by the momentum wheels for active 3-
axis attitude control. Equation (1) explicitly includes the
gravitational and aerodynamic disturbance torques Mgg

and Maero about the centre of mass. These disturbances
typically represent the most important external distur-
bance torques affecting Low Earth Orbit (LEO) satellites
(Wie (2008)). The gravity gradient torque Mgg is

Mgg =
3µ

R3
(v̂nadir × Isv̂nadir) (4)

where µ and R are the gravitational constant and the
orbit radius, respectively, and v̂nadir is the unit vector
towards nadir expressed in body-frame coordinates. The
aerodynamic torque Maero is

Maero =
1

2
ρSpV

2CD(v̂V × rcp) (5)

where ρ is the atmospheric density, V is the relative
velocity of the satellite, Sp is the reference area affected
by the aerodynamic flux, and CD is the drag coefficient.

rcp =
[
rxcp , rycp , rzcp

]T
is the vector joining the centre of

mass and the aerodynamic centre of pressure and v̂V is the
unit velocity vector expressed in body-frame coordinates.
The dynamic equations of the momentum wheels are

ω̇rw = Jrw
−1ḣrw = Jrw

−1(Mrw − b ωrw − c sgn(ωrw))(6)

where Jrw is the flywheel inertia, hrw = Jrwωrw

is the the flywheel angular momenta vector, ωrw =

[ωrw1
, ωrw2

, ωrw3
]
T

is the flywheel spin rates vector and
b, c are the viscous and Coulomb friction coefficients,
respectively (Carrara et al. (2012)). The elements of the

input vectorMrw = [Mrw1
, Mrw2

, Mrw3
]
T
are the torques

provided by the actuator motors to control the flywheel
spin rates. The attitude control torques acting on the
satellite can be defined as

Msat = −Jrwω̇rw = −Mrw + b ωrw + c sgn(ωrw) (7)

The state vector of the overall system model (1), (2), (6)

is x = [ω1, ω2, ω3, q, ωrw1
, ωrw2

, ωrw3
]
T
and all the state

variables are assumed to be measurable. The actual input

vector of the overall system is u = [Mrw1
, Mrw2

, Mrw3
]
T
.

3. FAULT DETECTION AND ISOLATION

3.1 Singular Perturbations Theory Applied to FDI

Here a brief introduction of the SP theory is given. For a
comprehensive description refer to Khalil (2002).
The actual dynamics of a generic system characterised by
two different time scales (i.e. a slow and a fast dynamics)
can be expressed in terms of fast and slow variables:{

ẋ1 = n1(x1,x2, ε) + g1(x1,x2, ε)u
εẋ2 = n2(x1,x2, ε) + g2(x1,x2, ε)u

(8)

where x1 ∈ Rn1 is the vector of slow variables, x2 ∈ Rn2

is the vector of fast ones, u ∈ Rp is the input vector. ε is
the small perturbation parameter satisfying 0 < ε � 1.
Considering also the presence of additive actuator and
sensor faults, the singularly perturbed system can be
written as{

ẋ1 = n1(x1,x2, ε) + g1(x1,x2, ε) [uc + Fu]
εẋ2 = n2(x1,x2, ε) + g2(x1,x2, ε) [uc + Fu]

(9)

The terms Fx1
, Fx2

and Fu represent the additive fault
vectors acting on sensor outputs and actuator inputs:

y1 = x1 + Fx1 y2 = x2 + Fx2 u = uc + Fu (10)

where y1, y2, u, uc represent the slow variable output,
the fast variable output, the actual actuator input and
the commanded actuator input, respectively. Let’s denote
with n the number of physical faults affecting sensors
(n = n1 + n2), while p is the number of actuator faults.
By assuming ε = 0 the state-space dimension reduces from
n1+n2 to n1 because the second relation in (9) degenerates
to an algebraic equation:{

˙̄x1 = n1(x̄1, x̄2, 0) + g1(x̄1, x̄2, 0) [uc + Fu]
0 = n2(x̄1, x̄2, 0) + g2(x̄1, x̄2, 0) [uc + Fu]

(11)

Equations (11) represent the reduced model. If x2M = x̄2 =
h(x̄1,uc + Fu) is an isolate root of 0 = n2(x̄1,x2, 0) +
g2(x̄1,x2, 0) [uc + Fu] satisfing the Tikhonov’s theorem
also in case of faults, then it describes a n1 + p dimension
invariant manifold for the system (11) (Khalil (2002)).
Thanks to a time scale change, made by defining τ =
(t− t0) /ε, apex derivative can be defined as x′ = dx/dτ .
Again, by assuming ε = 0, the dynamic order of the system
is reduced from n1+n2 to n2 and equations (12) represent
the boundary–layer model :{

x′
1 = 0

x′
2 = n2(x1,x2, 0) + g2(x1,x2, 0) [uc + Fu]

(12)
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Finally, if Tikhonov’s theorem is verified, the actual system
dynamics (9) can be approximated by its reduced and
boundary layer models:


˙̄x1 = n1(x̄1,h(x̄1,uc + Fu), 0)+

+g1(x̄1,h(x̄1,uc + Fu), 0) [uc + Fu]
x′
2 = n2(x̄1,x2, 0) + g2(x̄1,x2, 0) [uc + Fu]

(13)

Rewriting the dynamics of (9) in terms of output variables,
it can be seen that the resulting model (14) is not affine
with respect to sensor faults:


ẏ1 = n1(y1 − Fx1
,y2 − Fx2

, ε)+

+g1(y1 − Fx1 ,y2 − Fx2 , ε) [uc + Fu] + Ḟx1

εẏ2 = n2(y1 − Fx1 ,y2 − Fx2 , ε)+

+g2(y1 − Fx1
,y2 − Fx2

, ε) [uc + Fu] + εḞx2

(14)

A different modelling procedure for sensor faults was pro-
posed by Mattone-De Luca (2006) to obtain a dynamic
model suitable for the NLGA with a structure affine in all
the fault inputs. νk ≥ 1 always simultaneous mathematical
fault inputs fxk,i(i = 1, ..., νk) are introduced in place of
the physical fault Fxk

∀k ∈ {1, ..., n}, including also a fault
input associated to the time derivative of the fault. When-
ever a physical sensor fault occurs, i.e. Fxk

�= 0, all asso-
ciated mathematical faults fxk,i(i = 1, ..., νk) will become
generically nonzero, although with different time behaviors
and, in general, without a direct physical interpretation.
Therefore, it will be sufficient to recognise the occurrence
of any (one or more) of the associated mathematical fault
inputs. For a comprehensive description of this modelling
procedure refer to Mattone-De Luca (2006).
Hence, the system dynamics subject to actuator and sensor
faults can be written in terms of output variables as




ẏ1 = n1(y1,y2, ε) + g1(y1,y2, ε)uc+

+

n+p∑
k=1

νk∑
i=1

l1xk,i(y1,y2, ε)fxk,i

εẏ2 = n2(y1,y2, ε) + g2(y1,y2, ε)uc+

+

n+p∑
k=1

νk∑
i=1

l2xk,i
(y1,y2, ε)fxk,i

(15)

where the terms l1xk,i
and l2xk,i

represent the input
distributions of mathematical sensor and actuator faults.
If the following necessary and sufficient conditions are
satisfied for all physical faults, then the FDI problem can
be solved for model (15) (Mattone-De Luca (2006)):

∀k, ∀i �= k, ∃j ∈ {1, ..., νk} : span{lxk,j} � P̄i

OR ∀k, ∀i �= k, ∃h ∈ {1, ..., νi} : span{lxi,h} � P̄k
(16)

with P̄i involutive closure of Pi = span{lxi,1, ..., lxi,νi
}.

The terms lxk,j are the mathematical fault input distri-

butions for the overall system, i.e. lxk,j =
[
lT1xk,j

, lT2xk,j

]T
.

Since the input distributions of (15) are determined by
the physical system model, the FDI problem could have
no solution for the structure of (15) due to the possible
unisolability of some actuator or sensor faults. However,
using this mapping procedure for both actuator and sen-
sor faults, the SP approximated dynamics of the generic
system (13) in terms of output variables can be derived,
where n1 is the dimension of the slow state x1:




ẏ1 = n1(y1,h (y1,uc) , 0)+
+g1(y1,h (y1,uc) , 0)uc+

+

n1+p∑
k=1

νk∑
i=1

l1xk,i(y1)fxk,i

y′
2 = n2(y1,y2, 0) + g2(y1,y2, 0)uc+

+

n+p∑
k=1

νk∑
i=1

l2xk,i(y1,y2)fxk,i

(17)

Thanks to SP model approximations, the FDI problem
can be solved for the structure of system (17), i.e. the
conditions (16) are satisfied, and thus each of the non
simultaneous physical faults can be detected and isolated.

3.2 Actuator and Sensor Fault Modelling

Possible faults affecting the actuated wheel motor torques,
flywheel spin rate, satellite attitude and angular velocity
measurements are considered and it is assumed that at
most one fault affects the system at any time:

FMi = fMi = Mrwi −Mrwc,i (i = 1, ..., 3)
Fωrwj

= ωrwy,j
− ωrwj

(j = 1, ..., 3)

Fωl
= ωy,l − ωl (l = 1, ..., 3)

Fqm = qy,m − qm (m = 1, ..., 4)

(18)

where Mrwc,i
is the commanded control input and the

sensor faults are defined as the differences between the
real values ωrwj

, ωl, qm and measured values ωrwy,j
, ωy,l,

qy,m. Physical attitude sensor faults generally affect all the
quaternion components simultaneously, thus an attitude
sensor fault is thereafter modelled as a single additive fault

vector Fq = [Fq1 , Fq2 , Fq3 , Fq4 ]
T
.

If (1), (2) and (6) are rewritten by considering the sensor
outputs ωrwy,j = ωrwj+Fωrwj

, ωy,l = ωl+Fωl
, qy,m = qm+

Fqm (i.e. y = x + Fx) as new state variables, the general
structure of a nonlinear system for the NLGA, which
is affine in both the actuator and sensor fault inputs is
recovered using the fault mapping procedure proposed by
Mattone-De Luca (2006) and summarised in Section 3.1.

3.3 Nonlinear Geometric Approach

The NLGA was formally developed by De Persis-Isidori
(2001), and it relies on a coordinate change in the state and
output spaces providing an observable subsystem which, if
it exists, is affected by the fault (or faults) to be detected,
but unaffected by any other fault to be decoupled. In the
new (local) coordinates, the system can be decomposed
into three subsystems x̃1, x̃2 and x̃3, where x̃1 is the
measured part of the state affected only by the fault term
f to be detected, whilst x̃2 and x̃3 represent the measured
and not measured part of the state affected by all the
faults and disturbances, respectively. For a comprehensive
description of the NLGA refer to De Persis-Isidori (2001).
Denoting x̃2 with ỹ2 and considering it as an independent
input, the x̃1-subsystem can be defined as follows:{

˙̃x1 = n1(x̃1, ỹ2) + g1(x̃1, ỹ2)uc + �1(x̃1, ỹ2, x̃3) f
ỹ1 = h(x̃1)

(19)

with �1(x̃1, ỹ2, x̃3) �= 0. Starting from (19), a generic
residual generator in filter form is modelled as follows:{

ξ̇ = n1(ỹ1, ỹ2) + g1(ỹ1, ỹ2)uc + L(ỹ1 − ξ)
r = ỹ1 − ξ

(20)
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Finally, if Tikhonov’s theorem is verified, the actual system
dynamics (9) can be approximated by its reduced and
boundary layer models:


˙̄x1 = n1(x̄1,h(x̄1,uc + Fu), 0)+

+g1(x̄1,h(x̄1,uc + Fu), 0) [uc + Fu]
x′
2 = n2(x̄1,x2, 0) + g2(x̄1,x2, 0) [uc + Fu]

(13)

Rewriting the dynamics of (9) in terms of output variables,
it can be seen that the resulting model (14) is not affine
with respect to sensor faults:


ẏ1 = n1(y1 − Fx1
,y2 − Fx2

, ε)+

+g1(y1 − Fx1 ,y2 − Fx2 , ε) [uc + Fu] + Ḟx1

εẏ2 = n2(y1 − Fx1 ,y2 − Fx2 , ε)+

+g2(y1 − Fx1
,y2 − Fx2

, ε) [uc + Fu] + εḞx2

(14)

A different modelling procedure for sensor faults was pro-
posed by Mattone-De Luca (2006) to obtain a dynamic
model suitable for the NLGA with a structure affine in all
the fault inputs. νk ≥ 1 always simultaneous mathematical
fault inputs fxk,i(i = 1, ..., νk) are introduced in place of
the physical fault Fxk

∀k ∈ {1, ..., n}, including also a fault
input associated to the time derivative of the fault. When-
ever a physical sensor fault occurs, i.e. Fxk

�= 0, all asso-
ciated mathematical faults fxk,i(i = 1, ..., νk) will become
generically nonzero, although with different time behaviors
and, in general, without a direct physical interpretation.
Therefore, it will be sufficient to recognise the occurrence
of any (one or more) of the associated mathematical fault
inputs. For a comprehensive description of this modelling
procedure refer to Mattone-De Luca (2006).
Hence, the system dynamics subject to actuator and sensor
faults can be written in terms of output variables as




ẏ1 = n1(y1,y2, ε) + g1(y1,y2, ε)uc+

+

n+p∑
k=1

νk∑
i=1

l1xk,i(y1,y2, ε)fxk,i

εẏ2 = n2(y1,y2, ε) + g2(y1,y2, ε)uc+

+

n+p∑
k=1

νk∑
i=1

l2xk,i
(y1,y2, ε)fxk,i

(15)

where the terms l1xk,i
and l2xk,i

represent the input
distributions of mathematical sensor and actuator faults.
If the following necessary and sufficient conditions are
satisfied for all physical faults, then the FDI problem can
be solved for model (15) (Mattone-De Luca (2006)):

∀k, ∀i �= k, ∃j ∈ {1, ..., νk} : span{lxk,j} � P̄i

OR ∀k, ∀i �= k, ∃h ∈ {1, ..., νi} : span{lxi,h} � P̄k
(16)

with P̄i involutive closure of Pi = span{lxi,1, ..., lxi,νi
}.

The terms lxk,j are the mathematical fault input distri-

butions for the overall system, i.e. lxk,j =
[
lT1xk,j

, lT2xk,j

]T
.

Since the input distributions of (15) are determined by
the physical system model, the FDI problem could have
no solution for the structure of (15) due to the possible
unisolability of some actuator or sensor faults. However,
using this mapping procedure for both actuator and sen-
sor faults, the SP approximated dynamics of the generic
system (13) in terms of output variables can be derived,
where n1 is the dimension of the slow state x1:




ẏ1 = n1(y1,h (y1,uc) , 0)+
+g1(y1,h (y1,uc) , 0)uc+

+

n1+p∑
k=1

νk∑
i=1

l1xk,i(y1)fxk,i

y′
2 = n2(y1,y2, 0) + g2(y1,y2, 0)uc+

+

n+p∑
k=1

νk∑
i=1

l2xk,i(y1,y2)fxk,i

(17)

Thanks to SP model approximations, the FDI problem
can be solved for the structure of system (17), i.e. the
conditions (16) are satisfied, and thus each of the non
simultaneous physical faults can be detected and isolated.

3.2 Actuator and Sensor Fault Modelling

Possible faults affecting the actuated wheel motor torques,
flywheel spin rate, satellite attitude and angular velocity
measurements are considered and it is assumed that at
most one fault affects the system at any time:

FMi = fMi = Mrwi −Mrwc,i (i = 1, ..., 3)
Fωrwj

= ωrwy,j
− ωrwj

(j = 1, ..., 3)

Fωl
= ωy,l − ωl (l = 1, ..., 3)

Fqm = qy,m − qm (m = 1, ..., 4)

(18)

where Mrwc,i
is the commanded control input and the

sensor faults are defined as the differences between the
real values ωrwj

, ωl, qm and measured values ωrwy,j
, ωy,l,

qy,m. Physical attitude sensor faults generally affect all the
quaternion components simultaneously, thus an attitude
sensor fault is thereafter modelled as a single additive fault

vector Fq = [Fq1 , Fq2 , Fq3 , Fq4 ]
T
.

If (1), (2) and (6) are rewritten by considering the sensor
outputs ωrwy,j = ωrwj+Fωrwj

, ωy,l = ωl+Fωl
, qy,m = qm+

Fqm (i.e. y = x + Fx) as new state variables, the general
structure of a nonlinear system for the NLGA, which
is affine in both the actuator and sensor fault inputs is
recovered using the fault mapping procedure proposed by
Mattone-De Luca (2006) and summarised in Section 3.1.

3.3 Nonlinear Geometric Approach

The NLGA was formally developed by De Persis-Isidori
(2001), and it relies on a coordinate change in the state and
output spaces providing an observable subsystem which, if
it exists, is affected by the fault (or faults) to be detected,
but unaffected by any other fault to be decoupled. In the
new (local) coordinates, the system can be decomposed
into three subsystems x̃1, x̃2 and x̃3, where x̃1 is the
measured part of the state affected only by the fault term
f to be detected, whilst x̃2 and x̃3 represent the measured
and not measured part of the state affected by all the
faults and disturbances, respectively. For a comprehensive
description of the NLGA refer to De Persis-Isidori (2001).
Denoting x̃2 with ỹ2 and considering it as an independent
input, the x̃1-subsystem can be defined as follows:{

˙̃x1 = n1(x̃1, ỹ2) + g1(x̃1, ỹ2)uc + �1(x̃1, ỹ2, x̃3) f
ỹ1 = h(x̃1)

(19)

with �1(x̃1, ỹ2, x̃3) �= 0. Starting from (19), a generic
residual generator in filter form is modelled as follows:{

ξ̇ = n1(ỹ1, ỹ2) + g1(ỹ1, ỹ2)uc + L(ỹ1 − ξ)
r = ỹ1 − ξ

(20)
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where L > 0 is the gain of the asymptotically stable
residual filter and r is the generated diagnostic signal.

3.4 SP Approximated Satellite and Actuator Dynamics

Considering the equations of the actuator and satellite
dynamics (6) and (2), the vector of the slow variables x1 =
[ω1, ω2, ω3, q1, q2, q3, q4]

T , the vector of the fast variables
x2 = [ωrw1

, ωrw2
, ωrw3

]T and the perturbation parameter
ε1 = Jrw can be defined considering the flywheel dynamics
to be faster than the satellite one. Since Jrw << 1, the
following SP approximated satellite dynamic model can
be defined and exploited for the NLGA application, by
applying the SP theory described in Section 3.1:

ω̇1 = − (Jzz − Jyy)

Jxx
ω2ω3 +

Mggx

Jxx
+

Maerox

Jxx

ω̇2 = − (Jxx − Jzz)

Jyy
ω1ω3 +

Mggy

Jyy
+

Maeroy

Jyy

ω̇3 = − (Jyy − Jxx)

Jzz
ω1ω2 +

Mggz

Jzz
+

Maeroz

Jzz

(21)

with the invariant manifold x2M for the reduced system
defined by

[
ωrw1M

ωrw2M

ωrw3M

]
=




Mrw1 − c sgn(ωrw)

b
Mrw2

− c sgn(ωrw)

b
Mrw3

− c sgn(ωrw)

b




(22)

It is worth noting that the SP approximated dynamic
model of the satellite describes an autonomous system
without manipulable inputs and independent also from the
fast variables.

3.5 NLGA Filters for Actuator and Flywheel Sensor FDI

The NLGA FDI system is designed on the basis of the
input affine nonlinear model structure (15) as described
in (De Persis-Isidori (2001); Baldi et al. (2016)). Since
the flywheel spin rate measurements are assumed to be
available, it is straightforward to design three simple scalar
NLGA residual filters independent of the satellite attitude
and angular velocity, and exploiting information provided
only by the momentum wheel sensors, directly on the
basis of (6). Each of these NLGA residual filters results
to be sensitive only to the couple of faults fMi , fωrwj,1

=

Fωrwj
(i = j), i.e. the actuator and flywheel spin rate

sensor faults related to the same i-th momentum wheel,
respectively, and the fault input fωrwj,5

= Ḟωrwj
, i.e. the

time derivative of the physical sensor fault. The scalar
state variables ξ of these three NLGA residual filters are

ξ1 = Jrwωrw1/b ξ2 = Jrwωrw2/b ξ3 = Jrwωrw3/b (23)

where hj = Jrwωrwj
(j = 1, ..., 4) are the measured

angular momenta of the three flywheels, Jrw is the flywheel
inertia and b is the viscous friction coefficient. These
three filters allow the isolation of the momentum wheel
subsystem affected by a possible actuator or flywheel spin
rate sensor fault, but not the complete fault isolation.
Additional NLGA residual filters can be designed to allow
the complete isolation of a detected fault. On the basis

of the SP approximated model of the satellite dynamics
(21), other three simple NLGA scalar residual filters can
be designed and their scalar state variables ξ are

ξ4 = Jxxω1 ξ5 = Jyyω2 ξ6 = Jzzω3 (24)

It is worth noting that, since the SP reduced dynamic
model (21) represents an autonomous system without
manipulable inputs, the three obtained residuals result to
be sensitive to any actuator fault when the actual satellite
angular velocities change due to an actuator fault.

3.6 SP Approximated Satellite Dynamics and Kinematics

Considering the equations of the satellite dynamics and
kinematics (1) and (2), the vector of the slow variables can
be defined as x1 = [ω1, q1, q2, q3, q4, hrw1

, hrw2
, hrw3

]T

with hrw = Jrwωrw, and the vector of the fast variables
as x2 = [ω2, ω3]

T by defining a second perturbation
parameter ε2 = Jzz/Jxx ≈ Jyy/Jxx < 1 since it has been
assumed that Ixx > Iyy, Izz and Iyy ≈ Izz. Thanks to this
assumption, the dynamics of ω2, ω3 are considered to be
faster than the one of ω1. The following SP approximated
satellite kinematic model can be defined, by applying the
SP theory described in Section 3.1:

q̇1 =
1

2
(ω1q4 − ω2M q3 + ω3M q2)

q̇2 =
1

2
(ω1q3 + ω2M q4 − ω3M q1)

q̇3 =
1

2
(−ω1q2 + ω2M q1 + ω3M q4)

q̇4 =
1

2
(−ω1q1 − ω2M q2 − ω3M q3)

(25)

with the invariant manifold x2M for the reduced system
defined by

[
ω2M
ω3M

]
=




Mrw3 − bωrw3 − csign(ωrw3 ) − Mextz + ω1hrw2

Jxxω1 + hrw1
−Mrw2 + bωrw2 + csign(ωrw2 ) + Mexty + ω1hrw3

Jxxω1 + hrw1


(26)

where Mext = Mgg + Maero. It is worth noting that an
isolated solution for the manifold can be guaranteed for a
3-axis stabilised satellite with a null or very low angular
velocity thanks to the use of momentum wheels spinning
at a sufficiently high nominal spin rate.

3.7 NLGA Filters for Attitude and Angular Velocity
Sensor FDI

Starting from the exact kinematic model (2) of the satel-
lite, a set of nine scalar NLGA residual filters organised
as a generalised scheme is designed to detect and isolate
the occurrence of possible faults Fq and Fωl

(l = 1, ..., 3).
Thanks to the NLGA, each of these residual filters results
to be sensitive only to a couple of physical angular velocity
sensor faults Fωl

(l = 1, ..., 3) and to the physical attitude
sensor fault Fq through the associated mathematical fault
inputs. The scalar state variables ξ of the nine designed
NLGA residual filters are
ξ7 = 1− 2q22 − 2q23 ξ10 = 1− 2q21 − 2q23 ξ13 = 1− 2q21 − 2q22
ξ8 = 2(q1q2 + q3q4) ξ11 = 2(q1q3 + q2q4) ξ14 = 2(q1q2 − q3q4)
ξ9 = 2(q1q4 + q2q3) ξ12 = 2(q1q3 − q2q4) ξ15 = 2(q2q3 − q1q4)

(27)

Moreover, an additional set of nine scalar NLGA resid-
ual filters organised as a generalised scheme is designed
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where L > 0 is the gain of the asymptotically stable
residual filter and r is the generated diagnostic signal.

3.4 SP Approximated Satellite and Actuator Dynamics

Considering the equations of the actuator and satellite
dynamics (6) and (2), the vector of the slow variables x1 =
[ω1, ω2, ω3, q1, q2, q3, q4]

T , the vector of the fast variables
x2 = [ωrw1

, ωrw2
, ωrw3

]T and the perturbation parameter
ε1 = Jrw can be defined considering the flywheel dynamics
to be faster than the satellite one. Since Jrw << 1, the
following SP approximated satellite dynamic model can
be defined and exploited for the NLGA application, by
applying the SP theory described in Section 3.1:

ω̇1 = − (Jzz − Jyy)

Jxx
ω2ω3 +

Mggx

Jxx
+

Maerox

Jxx

ω̇2 = − (Jxx − Jzz)

Jyy
ω1ω3 +

Mggy

Jyy
+

Maeroy

Jyy

ω̇3 = − (Jyy − Jxx)

Jzz
ω1ω2 +

Mggz

Jzz
+

Maeroz

Jzz

(21)

with the invariant manifold x2M for the reduced system
defined by

[
ωrw1M

ωrw2M

ωrw3M

]
=




Mrw1 − c sgn(ωrw)

b
Mrw2

− c sgn(ωrw)

b
Mrw3

− c sgn(ωrw)

b




(22)

It is worth noting that the SP approximated dynamic
model of the satellite describes an autonomous system
without manipulable inputs and independent also from the
fast variables.

3.5 NLGA Filters for Actuator and Flywheel Sensor FDI

The NLGA FDI system is designed on the basis of the
input affine nonlinear model structure (15) as described
in (De Persis-Isidori (2001); Baldi et al. (2016)). Since
the flywheel spin rate measurements are assumed to be
available, it is straightforward to design three simple scalar
NLGA residual filters independent of the satellite attitude
and angular velocity, and exploiting information provided
only by the momentum wheel sensors, directly on the
basis of (6). Each of these NLGA residual filters results
to be sensitive only to the couple of faults fMi , fωrwj,1

=

Fωrwj
(i = j), i.e. the actuator and flywheel spin rate

sensor faults related to the same i-th momentum wheel,
respectively, and the fault input fωrwj,5

= Ḟωrwj
, i.e. the

time derivative of the physical sensor fault. The scalar
state variables ξ of these three NLGA residual filters are

ξ1 = Jrwωrw1/b ξ2 = Jrwωrw2/b ξ3 = Jrwωrw3/b (23)

where hj = Jrwωrwj
(j = 1, ..., 4) are the measured

angular momenta of the three flywheels, Jrw is the flywheel
inertia and b is the viscous friction coefficient. These
three filters allow the isolation of the momentum wheel
subsystem affected by a possible actuator or flywheel spin
rate sensor fault, but not the complete fault isolation.
Additional NLGA residual filters can be designed to allow
the complete isolation of a detected fault. On the basis

of the SP approximated model of the satellite dynamics
(21), other three simple NLGA scalar residual filters can
be designed and their scalar state variables ξ are

ξ4 = Jxxω1 ξ5 = Jyyω2 ξ6 = Jzzω3 (24)

It is worth noting that, since the SP reduced dynamic
model (21) represents an autonomous system without
manipulable inputs, the three obtained residuals result to
be sensitive to any actuator fault when the actual satellite
angular velocities change due to an actuator fault.

3.6 SP Approximated Satellite Dynamics and Kinematics

Considering the equations of the satellite dynamics and
kinematics (1) and (2), the vector of the slow variables can
be defined as x1 = [ω1, q1, q2, q3, q4, hrw1

, hrw2
, hrw3

]T

with hrw = Jrwωrw, and the vector of the fast variables
as x2 = [ω2, ω3]

T by defining a second perturbation
parameter ε2 = Jzz/Jxx ≈ Jyy/Jxx < 1 since it has been
assumed that Ixx > Iyy, Izz and Iyy ≈ Izz. Thanks to this
assumption, the dynamics of ω2, ω3 are considered to be
faster than the one of ω1. The following SP approximated
satellite kinematic model can be defined, by applying the
SP theory described in Section 3.1:

q̇1 =
1

2
(ω1q4 − ω2M q3 + ω3M q2)

q̇2 =
1

2
(ω1q3 + ω2M q4 − ω3M q1)

q̇3 =
1

2
(−ω1q2 + ω2M q1 + ω3M q4)

q̇4 =
1

2
(−ω1q1 − ω2M q2 − ω3M q3)

(25)

with the invariant manifold x2M for the reduced system
defined by

[
ω2M
ω3M

]
=




Mrw3 − bωrw3 − csign(ωrw3 ) − Mextz + ω1hrw2

Jxxω1 + hrw1
−Mrw2 + bωrw2 + csign(ωrw2 ) + Mexty + ω1hrw3

Jxxω1 + hrw1


(26)

where Mext = Mgg + Maero. It is worth noting that an
isolated solution for the manifold can be guaranteed for a
3-axis stabilised satellite with a null or very low angular
velocity thanks to the use of momentum wheels spinning
at a sufficiently high nominal spin rate.

3.7 NLGA Filters for Attitude and Angular Velocity
Sensor FDI

Starting from the exact kinematic model (2) of the satel-
lite, a set of nine scalar NLGA residual filters organised
as a generalised scheme is designed to detect and isolate
the occurrence of possible faults Fq and Fωl

(l = 1, ..., 3).
Thanks to the NLGA, each of these residual filters results
to be sensitive only to a couple of physical angular velocity
sensor faults Fωl

(l = 1, ..., 3) and to the physical attitude
sensor fault Fq through the associated mathematical fault
inputs. The scalar state variables ξ of the nine designed
NLGA residual filters are
ξ7 = 1− 2q22 − 2q23 ξ10 = 1− 2q21 − 2q23 ξ13 = 1− 2q21 − 2q22
ξ8 = 2(q1q2 + q3q4) ξ11 = 2(q1q3 + q2q4) ξ14 = 2(q1q2 − q3q4)
ξ9 = 2(q1q4 + q2q3) ξ12 = 2(q1q3 − q2q4) ξ15 = 2(q2q3 − q1q4)

(27)

Moreover, an additional set of nine scalar NLGA resid-
ual filters organised as a generalised scheme is designed
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starting from the SP approximated model (25) of the
satellite kinematics derived in Section 3.6. The scalar state
variables ξ of these nine additional NLGA residual filters
are the same of (27). However, since the equations of the
SP approximated kinematic model results to be functions
only of the assumed slow variables q and ω1 (in addition
to the slow variables hrw and inputs Mrw2

, Mrw3
entering

through the expressions of the manifold variables), each
of these nine residual filters results to be sensitive to the
physical angular velocity sensor fault Fω1

and only to the
physical attitude sensor fault Fq (in addition to the faults
affecting hrw, Mrw2

, Mrw3
) through the associated math-

ematical fault inputs. Therefore, since the two designed
sets are both sensitive to possible faults Fq on the attitude
sensor and Fω1 on the first satellite angular velocity sensor,
whilst only the first set is sensitive to possible faults
Fω2 , Fω3 on the other two angular velocity sensors, it is
possible to achieve an accurate isolation of attitude and
angular velocity faults through a proper decision logic and
a crosscheck of the residuals of these two sets.

3.8 Residual Cross-check Scheme for FDI

Assuming a single fault at any time, possible faults affect-
ing the actuated torques or the flywheel spin rate mea-
surements can be detected and isolated by cross-checking
the six residuals r1, ..., r6 of the NLGA filters based on the
variables (23) and (24) described in Section 3.5:

(1) Firstly, the three residuals r1, ..., r3 derived from the
exact actuator dynamic model (6), which are sensitive
only to actuator and sensor faults affecting a specific
momentum wheel, are analyzed. Thus, the faulty
actuator subsystem can be detected and isolated.

(2) Then, the three residuals r4, ..., r6 derived from the
SP approximated satellite dynamic model (21), which
are sensitive only to actuator faults and insensitive
to flywheel spin rate sensor faults, are checked to
precisely recognise the occurred fault type.

On the other hand, possible faults affecting the satellite
angular velocity or attitude measurements can be detected
and isolated by cross-checking the two sets of nine residuals
r7,n, ..., r15,n, (n = 1, 2) of the NLGA filters based on the
variables (27) described in Section 3.7 and derived from the
exact satellite kinematic model (2) and SP approximated
kinematic model (25), respectively, as follows:

(1) Firstly, the corresponding residuals of the two sets are
compared. Since each set exploits the measurements
of the same attitude sensor and different angular
velocity sensors, the two sets show the same residual
behaviours only in case of attitude sensor faults
and different residual behaviours in case of angular
velocity sensor faults. In particular, each residual
r7,2, ..., r15,2 (based on the SP approximated model,
n = 2) is sensitive to the couple of physical faults Fq,
Fω1 . On the other hand, each residual r7,1, ..., r15,1
(based on the exact model, n = 1) is sensitive to the
physical fault Fq and a different couple of physical
faults Fωl

(l = 1, ..., 3), i.e. to only one of the couples
{Fω1 , Fω2}, {Fω1 , Fω3}, {Fω2 , Fω3}.

(2) A faulty attitude sensor is isolated by checking if both
sets have the same behaviour. Otherwise, a faulty
angular velocity sensor is isolated by checking the

residuals of the first set sensitive to each possible
angular velocity sensor fault and by finding the three
residuals sensitive only to the couple of not occurred
sensor faults and not exceeding their thresholds.

Finally, due to the presence of measurement noise, residual
thresholds have to be properly selected to achieve the best
false alarm rate and missed fault rate performances.

4. SIMULATION RESULTS

The satellite body is modelled as a rectangular paral-
lelepiped with dimensions 0.8 x 2.5 x 3m, aerodynamic
torque displacement vector rcp = [0.10, 0.15, −0.25]m,
drag coefficient CD = 2.2, inertia values Ixx = 330 kg ·
m2, Iyy = 150 kg · m2, Izz = 140 kg · m2. A flywheel
moment of inertia Jrw = 0.05 kg · m2 and initial nominal
flywheel spin rate values ω0 = [3000, 3000, 3000]T rpm for
the three momentum wheels are assumed. The viscous and
Coulomb friction parameters are b = 5.16 · 10−6 N · m · s
and c = 0.8795 · 10−3 N ·m, respectively. A circular orbit
at an altitude of 350 km, with a null inclination and a
low Earth equatorial orbit radius R = 6728.140 km, an
atmosphere density ρ = ρmean = 9.158 · 10−12 kg/m3,
an orbital velocity V = 8187.63m/s, and the Earth’s
gravitational constant µ = 39.86004418·1013 m3/ s2 is con-
sidered. Sensor noises are modelled by Gaussian processes
with zero mean and standard deviations equal to 3 arcsec,
3 arcsec/s and 1 rpm for the attitude expressed in Euler
angles, satellite angular velocity and flywheel spin rates,
respectively. A simulation time of 60 s with a sampling
time of 0.1 s is considered.
Assuming a single fault at any time, four additive fault
scenarios commencing at tfault = 10 s are considered:

(1) Actuator fault: FM2
= −aM ωrw2

with aM passing
from zero at t = 10 s to 0.0001Nms at t = 12 s;

(2) Flywheel sensor fault: Fωrw2
= −aωrw

ωrw2
+ bωrw

with aωrw = 0.05, bωrw = 0.3141 rad/s = 60 rpm;
(3) Angular velocity sensor fault: Fω3 = −aω ω3+bω with

aω = 0.05, bω = −6.9808 · 10−5 rad/s;
(4) Attitude sensor fault: Fq additive on the quaternion

measurement, corresponding to a constant bias of
−180 arcsec on the yaw angle measurements.

In case of the actuator fault FM2
, Fig. 1 (a) shows the

three diagnostic signals r1, ..., r3 provided by the NLGA
residual filters based on the exact actuator model (6)
and on the variables ξ1, ..., ξ3 (23) described in Section
3.5. These residual signals are exploited together with the
three diagnostic signals r4, ..., r6 shown in Fig. 1 (b), which
are provided by the NLGA residual filters based on the
SP approximated model of the satellite dynamics (21)
and on the variables ξ4, ..., ξ6 (24) described in Section
3.5, to detect and isolate the occurrence of actuator or
flywheel spin rate sensor faults. The selected thresholds
are depicted for each residual by means of red lines.
As described in Sections 3.5 and 3.8, each of the three
residuals r1, ..., r3 is sensitive only to actuator and sensor
faults possibly occurring on a specific momentum wheel
subsystem, thus it is possible to detect and isolate the
faulty subsystem just by means of these residuals. After
the isolation of the faulty momentum wheel subsystem, a
check on the three residuals r4, ..., r6 allows to precisely
isolate also the type of the occurred fault since these
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Fig. 1. Actuator fault: (a) three residuals based on the
exact actuator model; (b) three residuals based on
the SP approximated satellite dynamic model.

residuals are generally sensitive to any actuator faults and
insensitive to any flywheel spin rate sensor faults.
It is worth noting that, in case of actuator fault, all the
residuals r4, ..., r6 exceed their thresholds since the SP
approximated dynamic model is an autonomous system
without manipulable inputs, and it presents a significant
error in the approximation of the actual satellite dynamics
once the actual satellite equilibrium condition is lost due
to the actuator fault occurrence.
In particular, the residual r2 is sensitive to the couple of
faults FM2 , Fωrw2

, whilst the diagnostic signals r4, ..., r6
are sensitive only to the actuator fault FM2 and not to
the sensor fault Fωrw2

. In case of the actuator fault both
r2 and r4, ..., r6 exceed the selected thresholds. Hence, the
occurred actuator fault FM2 can be correctly isolated.
On the contrary, in case of the flywheel spin rate sensor
fault Fωrw2

, Fig. 2 (a) shows that the residual r2 is sensitive
to the occurred fault as in the previous case, but now
the diagnostic signals r4, ..., r6 in Fig. 2 (b) do not exceed
the selected thresholds after the sensor fault occurrence.
Hence, the occurred flywheel sensor fault can be correctly
isolated thanks to the different behaviour of the residuals.
Faults affecting the satellite angular velocity and attitude
sensors can be detected and isolated by exploiting the
two sets of nine diagnostic signals r7,n, ..., r15,n, (n = 1, 2)
provided by the NLGA residual filters based on the same
set of nine variables ξ7, ..., ξ15 (24) described in Section 3.7.
The first set (n = 1) of residual filters has been designed
using the exact kinematic model (2) of the satellite,
whereas the second set (n = 2) has been designed using
the SP approximated kinematic model (25). Fig. 3 shows
the residuals of the first (n = 1) and second (n = 2) set in
case of the attitude sensor fault Fq. As it can be seen, both
sets are characterised by the same behaviours. Hence, an
occurred attitude sensor fault can be easily detected and
isolated as described in Section 3.8.
On the contrary, in case of the angular velocity sensor
fault Fω3 , the residuals of the two sets are characterised
by different behaviours as shown in Fig. 4. In fact, since
ω2, ω3 have been assumed as fast variables of the satellite
dynamics, in the SP approximated model of the attitude

Fig. 2. Flywheel sensor fault: (a) three residuals based on
the exact actuator model; (b) three residuals based
on the SP approximated satellite dynamic model.

kinematics these variables have been replaced with the
obtained algebric solution of the manifold ω2M , ω3M ,
which does not depend on the actual value of the measured
variables ω2, ω3. Therefore, the residuals of the second
set (n = 2) designed by exploiting the SP approximated
model (25) are not sensitive to faults Fω2 , Fω3 on the
corresponding sensors, as shown in Fig. 4 (n = 2) where no
residuals exceed their thresholds, while all of them are now
sensitive to the fault Fω1 . On the contrary, the residuals of
the first set (n = 1), which have been designed by means
of the exact kinematic model (2), remain globally sensitive
to all the angular velocity sensor faults, and in particular
each of them to a specific couple of faults.
The occurrence of an angular velocity sensor fault can be
recognized by cross-checking the corresponding residuals
of the two sets as described in Section 3.8. If a different
behaviour for any couple of corresponding residuals ri,n
(∀i = 7, ..., 15 and n = 1, 2) is detected, it can be assumed
that one of the sensor faults to which the two residuals
are not both sensitive has occurred. For example, the
residual r7,1 is generally sensitive to the couple of faults
Fω2

, Fω3
and in Fig. 4 it exceeds its threshold in case of

the occurrence of Fω3
. On the other hand, the residual

r7,2 based on the SP approximated model is sensitive
only to the sensor fault Fω1

and it does not exceed its
threshold in case of the occurrence of Fω3

. Hence, it can
be stated that a fault Fω2

or Fω3
has occurred. Then,

in order to accurately isolate the specific faulty sensor,
the cross-check of the signals of the first set (n = 1) can
be performed on the basis of the decision logic described
in Section 3.8. In fact, each NLGA residual filter of this
set, which is based on the exact kinematic model of the
satellite, results to be sensitive only to a specific couple
of angular velocity sensor faults. In this case, the last
three residuals r13,1, r14,1, r15,1 of this set are decoupled
from possible faults Fω3 of the third angular velocity
sensor and do not exceed their thresholds, in contrast
with the other six residuals r7,1, r8,1, r9,1, r10,1, r11,1, r12,1,
which are generally sensitive to the mathematical fault
inputs associated to the occurred fault.
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Fig. 1. Actuator fault: (a) three residuals based on the
exact actuator model; (b) three residuals based on
the SP approximated satellite dynamic model.

residuals are generally sensitive to any actuator faults and
insensitive to any flywheel spin rate sensor faults.
It is worth noting that, in case of actuator fault, all the
residuals r4, ..., r6 exceed their thresholds since the SP
approximated dynamic model is an autonomous system
without manipulable inputs, and it presents a significant
error in the approximation of the actual satellite dynamics
once the actual satellite equilibrium condition is lost due
to the actuator fault occurrence.
In particular, the residual r2 is sensitive to the couple of
faults FM2 , Fωrw2

, whilst the diagnostic signals r4, ..., r6
are sensitive only to the actuator fault FM2 and not to
the sensor fault Fωrw2

. In case of the actuator fault both
r2 and r4, ..., r6 exceed the selected thresholds. Hence, the
occurred actuator fault FM2 can be correctly isolated.
On the contrary, in case of the flywheel spin rate sensor
fault Fωrw2

, Fig. 2 (a) shows that the residual r2 is sensitive
to the occurred fault as in the previous case, but now
the diagnostic signals r4, ..., r6 in Fig. 2 (b) do not exceed
the selected thresholds after the sensor fault occurrence.
Hence, the occurred flywheel sensor fault can be correctly
isolated thanks to the different behaviour of the residuals.
Faults affecting the satellite angular velocity and attitude
sensors can be detected and isolated by exploiting the
two sets of nine diagnostic signals r7,n, ..., r15,n, (n = 1, 2)
provided by the NLGA residual filters based on the same
set of nine variables ξ7, ..., ξ15 (24) described in Section 3.7.
The first set (n = 1) of residual filters has been designed
using the exact kinematic model (2) of the satellite,
whereas the second set (n = 2) has been designed using
the SP approximated kinematic model (25). Fig. 3 shows
the residuals of the first (n = 1) and second (n = 2) set in
case of the attitude sensor fault Fq. As it can be seen, both
sets are characterised by the same behaviours. Hence, an
occurred attitude sensor fault can be easily detected and
isolated as described in Section 3.8.
On the contrary, in case of the angular velocity sensor
fault Fω3 , the residuals of the two sets are characterised
by different behaviours as shown in Fig. 4. In fact, since
ω2, ω3 have been assumed as fast variables of the satellite
dynamics, in the SP approximated model of the attitude

Fig. 2. Flywheel sensor fault: (a) three residuals based on
the exact actuator model; (b) three residuals based
on the SP approximated satellite dynamic model.

kinematics these variables have been replaced with the
obtained algebric solution of the manifold ω2M , ω3M ,
which does not depend on the actual value of the measured
variables ω2, ω3. Therefore, the residuals of the second
set (n = 2) designed by exploiting the SP approximated
model (25) are not sensitive to faults Fω2 , Fω3 on the
corresponding sensors, as shown in Fig. 4 (n = 2) where no
residuals exceed their thresholds, while all of them are now
sensitive to the fault Fω1 . On the contrary, the residuals of
the first set (n = 1), which have been designed by means
of the exact kinematic model (2), remain globally sensitive
to all the angular velocity sensor faults, and in particular
each of them to a specific couple of faults.
The occurrence of an angular velocity sensor fault can be
recognized by cross-checking the corresponding residuals
of the two sets as described in Section 3.8. If a different
behaviour for any couple of corresponding residuals ri,n
(∀i = 7, ..., 15 and n = 1, 2) is detected, it can be assumed
that one of the sensor faults to which the two residuals
are not both sensitive has occurred. For example, the
residual r7,1 is generally sensitive to the couple of faults
Fω2

, Fω3
and in Fig. 4 it exceeds its threshold in case of

the occurrence of Fω3
. On the other hand, the residual

r7,2 based on the SP approximated model is sensitive
only to the sensor fault Fω1

and it does not exceed its
threshold in case of the occurrence of Fω3

. Hence, it can
be stated that a fault Fω2

or Fω3
has occurred. Then,

in order to accurately isolate the specific faulty sensor,
the cross-check of the signals of the first set (n = 1) can
be performed on the basis of the decision logic described
in Section 3.8. In fact, each NLGA residual filter of this
set, which is based on the exact kinematic model of the
satellite, results to be sensitive only to a specific couple
of angular velocity sensor faults. In this case, the last
three residuals r13,1, r14,1, r15,1 of this set are decoupled
from possible faults Fω3 of the third angular velocity
sensor and do not exceed their thresholds, in contrast
with the other six residuals r7,1, r8,1, r9,1, r10,1, r11,1, r12,1,
which are generally sensitive to the mathematical fault
inputs associated to the occurred fault.
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Fig. 3. Attitude sensor fault: sets of nine residuals based
on the exact (n = 1) and SP approximated (n = 2)
satellite kinematic model, respectively.

Fig. 4. Angular velocity sensor fault: sets of nine residuals
based on the exact (n = 1) and SP approximated
(n = 2) satellite kinematic model, respectively.

5. CONCLUSION

This paper presented a novel scheme for detection and
isolation of actuator and sensor faults that affect the
attitude determination and control system of a low Earth
orbit satellite. The singular perturbation theory has been
exploited to approximate the dynamics of the satellite
characterised by different time scales. Thanks to jointly
use of singular perturbations theory and nonlinear geo-
metric approach, the developed system allows the accu-
rate detection and isolation of faults occurring on all the
actuators and sensors without requiring any additional
hardware redundancy. Simulation results documented the
effectiveness of the proposed scheme to achieve precise
fault detection and isolation. Further developments will
concern the implementation of the proposed scheme in
fault diagnosis and fault-tolerant control systems.
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