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A. Calabri*

ON THE REPRESENTATION OF ENRIQUES SURFACES AS
DOUBLE PLANES

Abstract. In this paper we give a short proof of the well-known représtion of Enriques
surfaces as double planes, by using the properties of tiénatipear system to the branch
curve.

Enriques surfaces play a fundamental role in the classiicaf complex algebraic
surfaces: historically they have been the first examplesafional surfaces with ge-
ometric genugpg = 0 and irregularityg = 0. Indeed, in 1894, Enriques suggested
in a letter to Castelnuovo that these properties were #dfily (the normalization of)

a sextic surface if?3(C) having the six edges of a tetrahedron as double lines. Soon
later, in 1896, Castelnuovo proved his celebrated ratitynaiterion, which states that
an algebraic surface is rational if and only if it is reguladdas bi-genu®; = 0.

In 1906, Enriques proved in [10] that every surface with= 1 andP3; =q =0
is isomorphic to his original example and he gave a rathempdetm treatment of these
surfaces, which have justly been named after him. In pdatidnriques showed that
they can be representeddsuble planes.e. as double covers &, branched along a
reduced curve of degree 8 as in the statement of Theorem W.belo

A modern approach to Enriques surfaces has been carriedyovdrbukh in
[2, 15] and by Artin in [1]. The former one, in particular, sted again how to repre-
sent them as double planes. Equivalently, Enriques siefeere be realized as double
coverings of a quadric surface ¥, and these models have turned out to be very use-
ful to study them, e.g. they allowed Horikawa to determine pleriods of Enriques
surfaces, see [14].

Nowadays, one usually says thais an Enriques surfacedf(Y) = 0 andKy is a
non-trivial element of 2-torsion in P{E). In particularY is supposed to be minimal.
It is very well-known that Enriques surfaces form an irrédlecfamily of dimension
10 and they are a distinguished class among surfaces withikodimension zero,
which include also abelian, hyperelliptic and K3 surfades. a detailed account of the
properties of Enriques surfaces, we refer the readers tedheinteresting book [9]
by Cossec and Dolgachev, where they considered Enriguiassatin any characteris-
tic; in particular see Chapter 1V therein for a comprehems@port on their projective
models (cf. also pp. 270-288in [3]).

In this paper we present a short proof of the well-known repngation of Enriques
surfaces as double planes. Namely we will prove the follgwin
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THEOREM 1. A smooth model of a double plane: X — P2 is a surface of Ko-
daira dimension zero with e pg = 0if and only if there is a Cremona transformation
y : P2 ——5 P2 such that the induced normal double plane, birationallyieglent to
7 : X — P2, is branched along a reduced curve of degree 8 which has tves ILy,
L as irreducible components and the residual sextic has th@ximg singularities:

1. adouble pointat p= L1 N Ly;
2. atacnode at a pointjpe Li, i =1, 2, where L is the tacnodal tangent.

Either pp or p2 may possibly be infinitely near of the first order tg. p

Letw : X — P2 be a double plane and lgt: Y — Sbe its canonical resolution,
branched over the smooth curize One sees that, ¥ has Kodaira dimensios-oo,
then|B + mKs| = ¢, for everym > 2, and in [5] we saw how to use these conditions
in order to classify rational and ruled double planes.

If Y has Kodaira dimension zero apg(Y) = q(Y) = 0, i.e.Y is birationally
equivalent to an Enriques surface, one sees théB/2) = 0, |B/2 + Kg| = ¢,
B+ mKs| =@ form > 2 and|B + 2Kg| = {D}, whereD is a curve which does not
move (see Lemma 1 below). We will show that these conditivesaough to find a
Cremona transformatiop : P2 --» P2 as in the statement of Theorem 1.

In other words, our proof is based only on the properties afdfocovers and on
the numerical characters (plurigenera and irregularifyimriques surfaces, with no
need to use the geometry of curves on them.

In Section 1, we will fix notation and recall some well-knovatts about double
coverings. Then, in Section 2, we will prove Theorem 1.

Let us finally remark that a representation of Enriques sedadourfold covers
of P2 has been described by Verra in [16] and by Casnati and Ekéufsjl

1. Notation and preliminaries.

We consider algebraic varieties defined over the field of derpumber<C. Let« (X)
denote the Kodaira dimension of an algebraic var¥tyA double planer : X — P?
is a double covering of the projective plaf& i.e.x is a finite flat morphism of degree
2. Two double planes andp : Z — P? are said to béirationally equivalenif there
exists two birational mapg : P? --» P2 andg : Z --» X suchthatr o ¢ = y o p.

In particular, if X is normal, a Cremona transformatign: P2 --» P2 uniquely
determines the birational map: Z --» X, whereZ is normal, and we will say that
p : Z — P?is the double plane induced hyandy .

Let us recall some well-known facts about double coverirsge(e.g., [3]). A
double covering : Y — Sof any smooth rational surfacgis uniquely determined
by its branch curv€ in S. MoreoverC is smooth if and only ifY is smooth, andC is
reduced if and only ify is normal. IfC is not reduced, sag = ) ; m;C;, where the
Ci’s are the irreducible components@fandm; > 1, then the normalizatiowf” of Y
is a double covering of branched ove} ; € Ci, wheres; = m; mod 2¢ {0, 1}.
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Let 7 : X — P2 be a normal double plane, branched along a reduced €irve
If C is not smooth, there exists a birational morphism S — P2 such that the
normalizationY of X xpz Sis smooth. The induced double covering Y — Sis
usually calledhe canonical resolutionf = (see [3, p. 87] or [6]).

Let B be the branch curve of andC be the strict transform it of C. Then
B=C+ > i e Ei, wheregj € {0, 1} and theE;’s are the irreducible exceptional
curves inS. Let us say thak; is branchedif ¢ = 1, andunbranchedotherwise.
Recall thatB is anevendivisor in S, i.e. B/2 is well-defined in the Picard group P%®)
of S, andp,(Oy) = Os ® Os(—B/2), thus theplurigeneraof Y are

Pm(Y) = h%(S, mB/2 + mKg) + h%(S, (m — 1)B/2 + mKs),

for all m > 1, whereas itgregularity is q(Y) = pg(Y) — pa(B/2).

In order to describe the singularities ©f it is convenient to recall and to use the
classical notions of infinitely near points (cf. [13, p. 39§12, v. 2, pp. 336—386],
[7], or [5] in this setting). Let us write the birational mdrismo : S — P? as
o = opo---o0010o0p, Wheresi : § — S_1 is the blow-up at a point; € §_1 and
P2 = S 1, S= S. One says that is infinitely nearto Xj, and we writexx > X;j, if
Xk € (Ok—10---00j )*1(xj). By xk >° Xj we mean thax is infinitely nearof order s
to xj. We say thaky is properif it is not infinitely near tox;, for any j # k. In other
words, a proper point really belongsits.

Let us denote b¥; (E, resp.) the strict (total, resp.) transform$rof the excep-
tional curveai‘l(xi) C § of gi. Recall thatgj = E* — Zj o] ET in Pic(S), where
agij € {0, 1}. One says that; is proximateto x; if and only if qjj = 1.

In Pic(S), write C = 2dL — Y i GE’, wherelL is a total transform of a line,
2d = C- L = degC) andg; = C - E is usually called thenultiplicity of C at ;.
ThenB =C+Y; & Ei =2dL—Y"; biE, whereby = B-E = ¢ —&i +Y_; 4 £ ji-
Let us say thab; is thevirtual multiplicity of the branch curve of atx;.

Notice that ifxx > Xj, thenck < cj, becaus€ - Ej > 0. But the same is not
true for theb;’s: it may happen thaky >1 Xj andby > bj. This occurs if and only
if bk = bj +2,ck = cj andej = 1. In that case, let us say that (xk, resp.) is a
defectivg(excessiveresp.) point. One can check thatis defective if and only ifE;
is a branched anEi2 = —2, or, equivalently, if and only ib~1(E;j) is a(—1)-curve in
Y (see, e.g., [6] for more details).

For example, itC has a triple poink; P2 with a triple pointx infinitely near to
it, i.e. in our notatiorkx >! xj andck = ¢j = 3, thenbj = 2, ¢ = 1 andby = 4, thus
Xj is defective andy is excessive.

Regarding Cremona transformatiops: P? --» P2, recall that Noether-Castel-
nuovo Theorem states thatis the composition of finitely manguadraticCremona
transformations, i.e. such that the pull-back of the neinefd is a net of conics passing
through three simple points, which can be proper or infipitetar. In particular, if
these three points arg, X1, X2, with virtual multiplicity bo, b1, bz, one checks that the
branch curve of the induced normal double plane has degteelsh — b; — by and
virtual multiplicities 2 —b; —bp, 2d —bg— by, 2d —bp—b; at the points corresponding
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to Xo, X1, X2, respectively (cf., e.g., Lemma 5.1 in [5]).

2. Proof of Theorem 1.

First we determine some properties of the branch curve,taratijoint linear systems,
of a double plane whose canonical resolution is a suffacEKodaira dimension zero
with pg = q = 0. This clearly force$;, = 1 andPsn41 = 0, for everyn > 1, and
the minimal modeW of Y is such thaK&v =0 (see, e.g., Lemma VIIl.1 in [4]).

LEMMA 1. Letw : X — P2 be a normal double plane and : Y — S its
canonical resolution, branched over the smooth curve Bérsthooth rational surface
S. If Y is such that (Y) = pg(Y) = q(Y) = 0, then

(i) IB/24+ Ks|=0;

(i) pa(B/2) =0;
(i) hO(S, B+ 2Ks) =1,i.e.|B + 2Kg| = {D};
(iv) |IB+ mKs| =@ form > 2.

Proof. The double cover formulas faug(Y) andq(Y) recalled in §1 imply trivially
(i) and (ii). If m > 3 is odd, sayn = 2n + 1 with n > 0, thenPy(Y) = 0 forces
InB + mKg| = ¢, thereforg B + mKs| = @, because is effective.

Since P2(Y) = 1, one has eitheB + 2Kg| = @ or |B/2 + 2Kg| = @, where
the former (the latter, resp.) linear system correspondsednvariant (anti-invariant,
resp.) part of2Ky|. Note that the Riemann-Roch Theorem a{@, = 0 imply that
hO(—2Kw) > 0, hencedw (2Kw) = Ow. This means that the invariant part|@Ky |
is not empty, i.e|B+2Kgs| = {D} is a curve which does not move. Sineg,(Y) = 1,
n > 1, it follows that|B + 2nKs| c [nB 4+ 2nKs| = {nD}, and the inclusion is strict
becauseB is effective andB cannot be part oD. Therefore|B + 2nKs| = ¢, for
n > 1, which concludes the proof. O

Now we want to show how to use the above properties (i)-(iriger to find a
Cremona transformatiop : P2 --» P2 as in the statement of Theorem 1. This can
be easily shown by applying the techniques we used to cjasdibnal double planes.
Indeed, the key results in [5] are Propositions 9.4 and @vhi;h can be stated together
as follows:

PROPOSITIONI. Let7 : X — P2 be a normal double plane, branched along
a reduced curve C of degre, and letp : Y — S be its canonical resolution,
branched along the smooth curve B (cf. notatio@i). Suppose that4iB/2) > —1.
If |IB+mKsg| = ¢ for every m> mg, where ny is a fixed integer with m< 2d/3, then
there exists a Cremona transformatiBA --» P2 such that the induced double plane
is branched along a curve of degréd’ with a point x of maximal virtual multiplicity
> 2(d" — mp). [l
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The main idea of the proof of the previous proposition is ttet conditions
IB 4+ mKs| = @, m > mg, imply that the branch curve has singularities of “large”
multiplicity at some points. This should imply that one cgply a quadratic Cre-
mona transformation, centered at these points, which middeebranch curve some-
what “simpler”, and then go on inductively. Proposition ®4[5] shows that the
following configuration of the singular points, . .., X, of the branch curve is such
that one does not easily see which quadratic Cremona tranafion “simplifies” the
branch curve:

(x) thereis a poinkg with bg > 2(d —mg) and each point; such thab; > d—bgp/2,
say fori =1, ..., h, is excessive, say; >1 Xn,i, withb; = 2+ d — bp/2 and
such that there is a link; passing through, Xi, Xn+ -

In this case, moreovek,; is an irreducible component of the branch curve.
Proposition 9.12 in [5] shows that, fa(B/2) > —1, then configuratior) may
occur only ifh = 3 andbp = by, in which case one can apply two quadratic transfor-
mations centered &4, . . ., Xe and again one can “simplify” the branch curve.

In our situation Proposition 1 clearly implies the followin

COROLLARY 1. Letw : X — P2 be a normal double plane, branched along a
reduced curve C of degre& > 10, and letp : Y — S be its canonical resolution.
If Y is birationally equivalent to an Enriques surface, thiere exists a Cremona
transformations : P? --» P2 such that the induced double plane is branched along a
curve of degre@d’ with a point % of maximal virtual multiplicity § = 2d" — 4.

Proof. By Lemma 1, we can apply Proposition 1 withy = 3. This implies the
assertion wittby > 2d’ — 4. On the other hand, by > 2d" — 2, thenk (Y) = —oo (cf.,
e.g., Lemma 8.6 in [5]) and we get a contradiction. O

Now we are ready to conclude the proof of Theorem 1.

Letw : X — P2 be a normal double plane, branched along a reduced €infe
degree @, with usual notation introduced in 81.

If 2d < 4, thenY has Kodaira dimensionco.

Suppose that@ = 6. If the maximal virtual multiplicity isbg > 4, then again
k(Y) = —oo. Otherwisepy < 2 andpg(Y) = h%(S, B/2 + Ks) = h%(S, O(9)) = 1.

This forces & > 8. Suppose that®2= 8. Again, if the maximal virtual multi-
plicity is by > 6, thenk(Y) = —oo. Leth be the number of points; with virtual
multiplicity bj = 4. Lemma 1, (ii), says that & pa(B/2) = 3 — h, therefore
h = 3. After re-ordering the indexes, we may assume fjaix1, xo are the points
with bg = by = by = 4.

Suppose that all of them are excessive, say! xi 3, with bj,3 =2,i =0, 1, 2.
Then we may assume thag € P2 and eitherxs € P2 or x4 >1 xg. In both cases
the quadratic Cremona transformation centerexhaks, X4 induces a normal double
plane branched along a curve of degree 8 with a point, casrepg toxs, which is
not excessive and of virtual multiplicity 4.
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So we may assume thag € P2. Note that, if we could find two points; and
Xj with bj = 4 andb;j > 2 such that there exists a quadratic Cremona transformation
centered ako, X, Xj, then the induced normal double plane would be branchedgalon
a curve of degree 6, which contradicts our assumptions, according to theipusv
discussion.

This implies that bothxs, X, must be excessive, say > x3 andx, >1 x4, and
moreover that there are two lindg, L, passing throughxo, x3, X1 andxg, X4, X2,
respectively. Note that this is configuratiod) vith mp = h = 2 and that

IB+2Ks| = Es+ Es+ 2L —2E5 — E] —--- — Ej| = {Ea+ E4+ L1+ Lo},

which agrees with Lemma 1, (iii), where, abusing a little ofation, we denote bi;
also the strict transform i of the lineL;, i = 1, 2. Note also that; is clearly also
an irreducible component of the branch cuf¥gbecause it meeS at xo, X;, Xj+2,
whereC has multiplicityco = 4, ¢; = 3, ¢i12 = 3, respectively. Settingo = xp and
pi = Xj4+2,1 = 1, 2, this proves Theorem 1, in cased 2 8.

In order to conclude the proof of Theorem 1, it suffices to sktoat, if 2d > 10,
then there exists a Cremona transformasior? --» P2 such that the induced normal
double plane has degree2d.

By Corollary 1, we know thalbg = 2d — 4. Note that either
() xo € P2, thuscy > bg = 2d — 4; or

(i) there is no proper point of virtual multiplicity@— 4 andxg is excessive, with
xo >1 xi € P2, for somei, thusco = ¢; = 2d — 5.

Consider first the latter case. Theth 2 10, otherwise the lin&Xg would be a double
component of the branch cur@ contradicting the assumption thais reduced. Thus
bp = 6,bj =4 andcy = ¢; = 5. By Lemma 1, (i), we have that

hence there is a poingj with b; = 4 such that either the quadratic Cremona trans-
formations centered ako, xi, Xj is well-defined, orx; > x«, with by > 2, and the
guadratic Cremona transformatiéhcentered ako, x;, Xk is well-defined. In both
two situations, the branch curve of the induced normal deptane has degree 10,
which concludes the proof in case (ii).

Consider finally case (i). If there is a poixtwith b; > 6, then apply a quadratic
transformation centered ap, x; and a general point in the plane, thus the branch
curve of the induced normal double plane has degr@el — 2 and the proof is done.
So we may assume that, apsgt all otherx;’s haveb; < 4. By Lemma 1, (ii), we have
that 0= pa(B/2) = (d — 1)(d — 2)/2 — h, whereh is the number of pointg;, say
X1, ..., Xn, With bj = 4.

We claim that there are two poirts andxj, with bj = 4 andb; > 2, such that the
quadratic Cremona transformation centeregpaix;, X; is well-defined, therefore the
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branch curve of the induced normal double plane will haveeleg 2d — 2 and the
proof of Theorem 1 will be concluded.

Indeed, either all the points,, ..., X, are excessive, or there is a poiat with
bi = 4, and such that eithes € P2 or x; > xo. If all the x;'s are excessive, then
xi >1 Xj i with bj ) = 2, and moreover there is one of them, saysuch that either
Xjk) € PZ Or Xj (k) >l X0-

Note thatx, ..., X, cannot be all proximate t®&g, becauseC has multiplicity
2d —4,ord — 5, atxg, withd > 4, andh = (d — 1)(d — 2)/2. Thus we cannot
find a quadratic transformation as above only if the pokatare as in configuration
(%), with mg = 2. In that case, letj,i = 1, ..., h, be the strict transform i of the
line passing througho, Xn+i, Xi. For everyi = 1,..., h, the curveL; should be a
component oB and also of B + 2K g|, which is

h 2h
IB+2Ks|= ) Ean+|2d-6)(L—E)—) Ef|
i=h+1 i=1

and we get a contradiction with Lemma 1, (iii), which says S, B + 2Ks) = 1,
because we should hatie= (d — 1)(d — 2)/2 such lines. O
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