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Abstract. In this paper we study the Cauchy problem for overdetermined systems of linear
partial differential operatorswith constant coefficients in some spaces ofω-ultradifferentiable
functions in the sense of Braun et al. (Results Math 17(3–4):207–237, 1990), for non-
quasianalytic weight functionsω.We show that existence of solutions of the Cauchy problem
is equivalent to the validity of aPhragmén–Lindelöf principle for entire andplurisubharmonic
functions on some irreducible affine algebraic varieties.

1. Introduction

In this paper we consider the Cauchy problem for overdetermined systems of linear
partial differential operators with constant coefficients in some classes E(ω) of ω-
ultradifferentiable functions, for a non-quasianalytic weight.

We consider weight functionsω in the sense of [16], but we relax their condition
log(1+ t) = o(ω(t)), for t →+∞, by a weaker condition in the spirit of [4] (see
condition (γ ) in Definition 2.1), since we work only in the Beurling setting. This
allows to consider the space of C∞ functions as a particular case of the space E(ω)

for ω(t) = log(1+ t) and will be particularly useful in the description of the space
Sω of ω-ultradifferentiable Schwartz functions in the forthcoming paper [6]. For
this reason we collect, in Sect. 2, those results of [16], in the Beurling setting, which
are still valid under the weaker condition (γ ) of Definition 2.1.

Note, on the contrary, that in the Roumieu case the stronger condition log(1+
t) = o(ω(t)) is required (see, for instance, Remark 2.15, or [18] for more details).

In Sect. 3 we investigate the overdetermined Cauchy problem in the frame
of Whitney ω-ultradifferentiable functions, in the spirit of [10,12,26], in order to
bypass the question of formal coherence of the data, which naturally arises in the
overdetermined case.

Indeed, in the classical Cauchy problem for a linear partial differential equation
with initial data on a hypersurface, smooth initial data together with the equation
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allow to compute the Taylor series of a smooth solution at any given point of the
hypersurface.

This leads, in the case of systems of linear partial differential equations, to the
notion of formally non-characteristic hypersurface that was considered in [2,3,26].

In the case of overdetermined systems, the question of the formal coherence of
the data would be particularly intricate, so that the above remarks suggest further
generalizations of the Cauchy problem, where the assumption that the initial data
are given on a formally non-characteristic hypersurface is dropped, and we allow
formal solutions (in the sense of Whitney) of the given system on any closed subset
as initial data.

Using Whitney functions, we can thus consider a more general framework in
which two quite arbitrary sets are involved. We take K1 and K2 closed convex
subsets of R

N with K1 � K2 for j = 1, 2, thinking at K1 as the set where the
initial data are given, and at K2 as the set where we want to find a solution of the
following Cauchy problem: {

A0(D)u = f
u|K1 ≡ ϕ,

(1.1)

where A0(D) is an a1 × a0 matrix of linear partial differential operators with

constant coefficients, ϕ ∈
(
W (ω)

K1

)a0
, f ∈

(
W (ω)

K2

)a1
are the given Cauchy data in

the Whitney classes of ω-ultradifferentiable functions of Beurling type on K1 and
K2 respectively, and u|K1 ≡ ϕ means that they are equal in the Whitney sense, i.e.
with all their derivatives.

It comes out (see Sect. 3) that, in order to find a solution u ∈
(
W (ω)

K2

)a0
of the

Cauchy problem (1.1), the function f must satisfy some integrability conditions.
These may be written as {

A1(D) f = 0
f |K1
≡ 0,

(1.2)

for a matrix A1(D) of linear partial differential operators with constant coefficients
obtained by a Hilbert resolution of M = coker

(
t A0(ζ ) : Pa1 → Pa0

)
, where

P = C[ζ1, . . . , ζN ] (see (3.6)).
The rows of the matrix A1(D) give a system of generators for the module of all

integrability conditions for f that can be expressed in terms of partial differential
operators, and if A1(ζ ) �≡ 0 we say that the Cauchy problem is overdetermined.

We prove in Theorem 3.19 that the Cauchy problem (1.1), for f satisfying
(1.2), admits at least a solution if and only if a Phragmén–Lindelöf principle holds
on the complex characteristic varieties V associated to M. Moreover, splitting
R

N � R
k
t × R

n
x , this could be done also allowing different scales of regularity in

the t-variables and in the x-variables (see Remark 3.25).
Relating the existence of solutions of the Cauchy problem to the validity of

a Phragmén–Lindelöf principle may be very useful. For instance, in the case of
associated characteristic varieties V of dimension 1, it was found in [9] a complete
characterization of algebraic curves that satisfy the Phragmén–Lindelöf principle,
by means of Puiseux series expansions on the branches of V at infinity: it comes
out that the exponents and coefficients of the Puiseux series expansions are strictly
related to the classes of functions where the Cauchy problem admits at least a



The overdetermined Cauchy problem 3

solution. Since Puiseux series expansions can be computed by several computer
programs, such as MAPLE for instance, this characterization may be very useful
(see Example 3.26).

2. Ultradifferentiable functions

In the present section we follow [16] to define and enlighten properties of the space
E(ω) of ω-ultradifferentiable functions of Beurling type for the following class of
weights:

Definition 2.1. Let ω : [0,∞) → [0,∞) be a continuous increasing function. It
will be called a non-quasianalytic weight function ω ∈ W ′ if it has the following
properties:

(α) ∃ K ≥ 1 : ω(2t) ≤ K (1+ ω(t)) ∀t ≥ 0,

(β)

∫ ∞
1

ω(t)

t2
dt <∞,

(γ ) ∃ a ∈ R, b > 0 : ω(t) ≥ a + b log(1+ t), ∀t ≥ 0,
(δ) ϕ : [0,∞)→ [0,∞), ϕ(t) :=ω(et ) is convex.

For z ∈ C
N we write ω(z) for ω(|z|), where |z| =∑N

j=1 |z j |.

Remark 2.2. Condition (β) is the condition of non-quasianalyticity and it will
ensure, in the following, the existence of functions with compact support (cf.
Remark 2.13).

Remark 2.3. In the original paper [16], instead of condition (γ ), the following
stronger condition was considered:

lim
t→∞

log(1+ t)

ω(t)
= 0. (2.1)

In this case we say that ω ∈W .

Then we can define the Young conjugate ϕ∗ of ϕ by

ϕ∗ : [0,∞) −→ R

y �−→ sup
x≥0

(xy − ϕ(x)).

There is no loss of generality to assume that ω vanishes on [0, 1] (cf. also [1]).
Then ϕ∗ has only non-negative values, it is convex and increasing, satisfies ϕ∗(0) =
0 and (ϕ∗)∗ = ϕ (cf. [15,16]).Moreover if limx→∞ x

ϕ(x) = 0 then limy→∞ y
ϕ∗(y) =

0. Note that (2.1) implies limx→∞ x
ϕ(x) = 0.
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Example 2.4. The following functions ω ∈ W ′ are examples of non-quasianalytic
weight functions (eventually after a change in the interval [0, δ] for suitable δ > 0):

ω(t) = tα, 0 < α < 1 (2.2)

ω(t) = (log(1+ t))β, β ≥ 1 (2.3)

ω(t) = t (log(e + t))−β, β > 1.

They are all weight functions also inW , except (2.3) for β = 1.

For the sake of completeness we collect here some results of [16] which are
clearly valid also for ω ∈W ′ (see [17,18] for more details):

Lemma 2.5. Let ω ∈W ′. Then

ω(x + y) ≤ K (1+ ω(x)+ ω(y)), ∀x, y ∈ C
N .

Lemma 2.6. For ω ∈W ′ and ϕ(t) = ω(et ), there exists L > 0 such that

ϕ∗(y)− y ≥ Lϕ∗
( y

L

)
− L , ∀y ≥ 0.

Lemma 2.7. For ω ∈ W ′ and ϕ(t) = ω(et ) we have that
ϕ(x)

x
and

ϕ∗(s)
s

are

increasing.

Lemma 2.8. Let ω ∈W ′. Then there exists a weight function σ ∈W with ω(t) =
o(σ (t)).

Proposition 2.9. Let ω ∈W ′. Then for each N ∈ N there exists δN > 0 such that
for every ε > 0 there exists H ∈ C∞(RN ), H �= 0, with

supp(H) ⊂ [−ε, ε]N∫
RN
|Ĥ(t)|eδNω(t)dt <∞.

Proof. See [16], Corollary 2.5 and Remark after Corollary 2.6. ��
Proposition 2.10. Let ω ∈ W ′. Then for each N ∈ N and ε > 0 there exists
H ∈ C∞(RN ), H �= 0, with

supp(H) ⊂ [−ε, ε]N∫
RN
|Ĥ(t)|emω(t)dt <∞, ∀m > 0.

Proof. See [16], Corollary 2.6 and the related Remark. ��
Let us now prove the following result in the Beurling case, forω ∈W ′, referring

to [16] for the analogous result in the Roumieu case for ω ∈W .
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Lemma 2.11. Let ω ∈W ′ and f ∈ D(RN ). If there is B > 0 such that
∫
RN
| f̂ (t)|eBω(t)dt := C <∞,

then

sup
α∈NN

0

sup
x∈RN
| f (α)(x)|e−Bϕ∗

( |α|
B

)
≤ C

(2π)N
. (2.4)

If (2.4) holds for f ∈ D(RN ) and B > 0 then there is D > 0, depending only
on ω, N and B, and there is L > 0 depending only on ω and N, such that for
K = supp f and mN (K ) its Lebesgue measure, we have that

| f̂ (z)| ≤ mN (K )
CD

(2π)N
e

(
HK (Im z)+

(
1
b− B

L

)
ω(z)

)
∀z ∈ C

N , (2.5)

where b > 0 is the constant of condition (γ ) in Definition 2.1.

Proof. The proof of (2.4) is the same as for ω ∈ W , so that we refer to [16,
Lemma 3.3] for it. Let us prove (2.5).

By condition (α) there is L > 0 such that

ω(Nr) ≤ Lω(r)+ L ∀r > 0. (2.6)

Let now z ∈ C
N be given, let l be the index with

|zl | = max
1≤ j≤N |z j |

and assume |zl | > 1. Write then

f̂ (z) =
∫
K

f (t)e−i<t,z>dt =
∫
K

(
∂ j

∂t jl
f (t)

)
· 1

(i zl) j
· e−i<t,z>dt

by partial integration, for all j ∈ N0 := N ∪ {0}.
In view of (2.4), this implies that, for all j ∈ N0:

| f̂ (z)| ≤ mN (K )
C

(2π)N
e

(
Bϕ∗

(
j
B

)
− j log |zl |+HK (Im z)

)
. (2.7)

Now, note that for every x > 0 there exists j ∈ N0 such that j ≤ Bx < j + 1,
and hence from (2.6) and (γ )

sup
j∈N0

(
j log |zl | − Bϕ∗

(
j

B

))
= B sup

j∈N0

(
j + 1

B
log |zl | − ϕ∗

(
j

B

))
− log |zl |

≥ B sup
x>0

(
x log |zl | − ϕ∗(x)

)− log |zl |
= Bϕ∗∗ (log |zl |)− log |zl | = Bω(zl)− log |zl |
≥ Bω

( z

N

)
− log |z| ≥ B

L
ω(z)− 1− log |z|
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≥ B

L
ω(z)− 1− ω(z)

b
+ a

b

=
(
B

L
− 1

b

)
ω(z)+

(a
b
− 1

)
. (2.8)

By passing to the infimum over all j ∈ N0 in (2.7) and by using (2.8) we obtain:

| f̂ (z)| ≤ mN (K )
C

(2π)N
e

{(
1
b− B

L

)
ω(z)+(1− a

b )+HK (Im z)
}

= mN (K )
CD

(2π)N
e

{(
1
b− B

L

)
ω(z)+HK (Im z)

}
,

where D = e(1− a
b ). ��

Definition 2.12. Let ω ∈ W ′ and let K ⊂ R
N be a compact set. For λ > 0 we

define the Banach space

Dλ(K )=
{
f ∈ C∞(RN )| supp f ⊂ K and ‖ f ‖λ :=

∫
RN
| f̂ (t)|eλω(t)dt <∞

}
.

(2.9)

We set

D(ω)(K ) = proj lim
λ→∞

Dλ(K )

endowed with the topology of the projective limit.
For an open set � ⊂ R

N we define then

D(ω)(�) = ind lim
K⊂⊂�

D(ω)(K )

where the inductive limit is taken over all compact subsets of�.We endowD(ω)(�)

with the inductive limit topology.
The elements ofD(ω)(�) are called ω-ultradifferentiable functions of Beurling

type with compact support.

For ω ∈ W we also recall from [16] the analogous definition in the Roumieu
case:

D{ω}(K ) = ind lim
λ→0

Dλ(K )

endowed with the topology of the inductive limit, and for an open set � ⊂ R
N ,

D{ω}(�) = ind lim
K⊂⊂�

D{ω}(K ),

where the inductive limit is taken over all compact subsets K of �, endowed with
the inductive limit topology.

The elements ofD{ω}(�) are called ω-ultradifferentiable functions of Roumieu
type with compact support.
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Remark 2.13. As in [16], we have the following:

(1) Let K ⊂ R
N with non-empty interior. If ω ∈ W ′ then D(ω)(K ) �= {0}; if

ω ∈W then D{ω}(K ) �= {0} and moreover D(ω)(K ) ⊂ D{ω}(K ).
(2) For ω, σ ∈W ′ we have that D(ω)(R) ⊂ D(σ )(R) iff σ = O(ω).
(3) We say that two functionsω and σ are equivalent ifω = O(σ ) and σ = O(ω).

Note that if ω ≤ σ ≤ Cω for some C > 0 and if ψ(x) = σ(ex ), then

Cϕ∗
( y

C

)
≤ ψ∗(y) ≤ ϕ∗(y) ∀y > 0.

With this formula, it’s easy to see that definitions and most theorems in the
sequel don’t change if ω is only equivalent to a weight function.

Lemma 2.11 and the classical Paley–Wiener Theorem for D(K ) imply the
followingPaley–Wiener theorem forω- ultradifferentiable functions in theBeurling
setting (we refer to [16] for the Roumieu case):

Theorem 2.14. (Paley–Wiener Theorem for ω-ultradifferentiable functions of
Beurling type) Let ω ∈ W ′, K ⊂ R

N a convex compact set and f ∈ L1(RN ).
The following are equivalent:

(1) f ∈ D(ω)(K ),
(2) f ∈ D(K ) and for all k ∈ N

sup
α∈NN

0

sup
x∈RN
| f (α)(x)|e

(
−kϕ∗( |α|k )

)
<∞,

(3) for all k ∈ N there is Ck > 0 such that

| f̂ (z)| ≤ Cke
(HK (Im z)−kω(z)) ∀z ∈ C

N .

Proof. (1)⇒ (2):
If f ∈ D(ω)(K ) then, by definition, f ∈ D(K ) and for every ε > 0

∫
RN
| f̂ (t)|eεω(t)dt =: Cε <∞.

So, by Lemma 2.11, for all ε > 0

sup
α∈NN

0

sup
x∈RN
| f (α)(x)|e

(
−εϕ∗

( |α|
ε

))
<∞, (2.10)

and hence (2), since
ϕ∗(x)
x

is increasing.

(2)⇒ (3):
If f ∈ D(K ) satisfies (2) then it also satisfies (2.10) for every ε > 0 since

ϕ∗(s)/s is increasing, and hence, by Lemma 2.11, there exists Dε > 0 such that

| f̂ (z)| ≤ Dεe

(
HK (Im z)+

(
1
b− ε

L

)
ω(z)

)
. (2.11)
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Therefore for every ε̃ > 0 we can choose

ε = L

(
ε̃ + 1

b

)
> 0

in (2.10), so that (2.11) becomes

| f̂ (z)| ≤ Dεe
(HK (Im z)−ε̃ω(z)),

and hence (3).
(3)⇒ (1) :
By (3) and (γ ) we have that for all λ > 0, taking k ∈ N with k > λ, there exist

Cλ, C ′λ > 0 such that

∫
RN
| f̂ (t)|eλω(t)dt ≤ Cλ

∫
RN

e(−k+λ)ω(t)dt

≤ Cλ

∫
RN

e(−k+λ)(a+b log(1+t))dt (2.12)

= C ′λ
∫
RN

(1+ t)b(λ−k)dt.

For k >
N + 1

b
+ λ the above integral is finite and hence there exists C ′′λ > 0 such

that
∫
RN
| f̂ (t)|eλω(t)dt ≤ C ′′λ .

To prove that f ∈ D(K ) note that (3) and (γ ) imply that for every k ∈ N there
exists Ck > 0 such that

∣∣∣ f̂ (z)∣∣∣ ≤ Cke
HK (Im z)−kω(z)

≤ Cke
HK (Im z)−k(a+b log(1+|z|))

= Cke
−akeHK (Im z) (1+ |z|)−bk ∀z ∈ C

N .

Therefore for every n ∈ N there exists Cn > 0 such that

∣∣∣ f̂ (z)
∣∣∣ ≤ Cne

HK (Im z) (1+ |z|)−n ∀z ∈ C
N .

By the classical Paley–Wiener Theorem we finally have that f ∈ D(K ) and hence
the theorem is proved. ��
Remark 2.15. The inequality (2.12) highlights the sufficiency of condition (γ ) on
the weightω: by the arbitrariety of k we can allow a fixed b > 0 tomake the integral
convergent. On the contrary, this is not possible in the Roumieu case, where k is
fixed and hence log(1+ t) = o(ω(t)) is required.
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For a sequence P = (pn)n∈N of continuous functions pn : CN → R, we define

AP(CN ) :=
{
f ∈ O(CN ) | for all n : sup

z∈CN
| f (z)|e−pn(z) <∞

}
,

where O(CN ) is the set of all entire functions on C
N .

Let ω be a weight function and K ⊂ R
N a convex compact set. Define

PK := {pn : z �→ HK (Im z)− nω(z), n ∈ N} .

From the Paley–Wiener Theorem 2.14 we get:

Proposition 2.16. Let ω ∈W ′ and K a compact convex set of R
N . Then, if

D(ω)(K ) ∼= APK (CN ).

The isomorphism is given by the Fourier–Laplace transform.

We can collect here below some more properties on these spaces of ω-
ultradifferentiable functions with compact support, for ω ∈ W ′, similarly as in
[16] for ω ∈W .

Corollary 2.17. Let K ⊂ R
N be compact and � ⊂ R

N be open. Let ω ∈ W ′.
Then D(ω)(K ) is a (FN)-space, i.e. a nuclear Fréchet space.

Lemma 2.18. Let ω ∈W ′, f ∈ D(RN ), g ∈ D(ω)(R
N ). Then we have:

(1) f ∗ g ∈ D(ω)(R
N ),

(2) supp ( f ∗ g) ⊂ supp f + supp g,
(3) f̂ ∗ g(z) = f̂ (z)ĝ(z).

Lemma 2.19. Let K1, K2 ⊂ R
N be compact sets with K1 ⊂ K̊2.

(a) Let ω, σ ∈ W ′ with σ ≤ ω. Then for all f ∈ D(σ )(K1) there is a sequence
{ fn}n∈N in D(ω)(K2) with lim

n→∞ fn = f in D(σ )(K2).

(b) Let ω ∈W ′. Then for all f ∈ D(K1) there is a sequence { fn}n∈N inD(ω)(K2)

with lim
n→∞ fn = f in D(K2).

Proposition 2.20. Let ω, σ ∈W with σ = o(ω). Then the inclusions

D(ω)(�) ↪→ D{ω}(�) ↪→ D(σ )(�) ↪→ D(�)

are continuous and sequentially dense for each open set � ⊂ R
N .

Let us now introduce the algebra of ω-ultradifferentiable functions of Beurling
type with arbitrary support:
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Definition 2.21. For ω ∈W ′ and an open set � ⊂ R
N we define

E(ω)(�) :=
⎧⎨
⎩ f ∈ C∞(�)| for all compact K ⊂ � and all m ∈ N

pK ,m( f ) := sup
α∈NN

0

sup
x∈K
| f (α)(x)|e

(
−mϕ∗

( |α|
m

))
<∞

⎫⎬
⎭ .

The space E(ω)(�) carries the metric locally convex topology given by the
seminorms pK ,m where K is a compact subset of � and m ∈ N.

The elements of E(ω)(�) are called ω-ultradifferentiable functions of Beurling
type.

For the Roumieu case we consider ω ∈W and recall, from [16]:

E{ω}(�) :=
{
f ∈ C∞(�)| for all compact K ⊂ � there is m ∈ N with

sup
α∈NN

0

sup
x∈K
| f (α)(x)|e

(
− 1

m ϕ∗(m|α|)
)

<∞
}
.

The elements of E{ω}(�) are calledω-ultradifferentiable functions of Roumieu type.

Example 2.22. For ω as in (2.2) the space E{ω}(�) is the classical Gevrey class of

order
1

α
. For ω as in (2.3) with β = 1, the space E(ω)(�) is the space E(�) of C∞

functions in �.

Remark 2.23. In general the spaces of ω-ultradifferentiable functions defined as in
Definition 2.21 are different from the Denjoy–Carleman classes of ultradifferen-
tiable functions as defined in [21] (cf. [14]).

Take, for instance, the weight function ω(t) = max{0, (log |t |)s}, for s > 1. It
does not satisfy the condition

2ω(t) ≤ ω(Ht)+ H ∀t ≥ 0

for any H ≥ 1 (cf. [14, Example 20]). Therefore, by [14, Cor. 16], the space
E(ω)(�) cannot be considered as a Denjoy–Carleman class E(Mp)(�) for anyweight
sequence {Mp}p∈N0 and any open subset � of R

N .

As in [16], we have the following properties of the space E(ω)(�), for ω ∈W ′,
referring to [16] for the analogous properties of E{ω}(�), with ω ∈W .

Proposition 2.24. Let ω ∈W ′. The space E(ω)(�) is a locally convex algebra with
continuous multiplication.

Lemma 2.25. Let ω ∈ W ′, � ⊂ R
N be open, K1 ⊂ K̊2 ⊂ K2 ⊂ · · · ⊂ � be an

exhaustion of � by compact sets. Choose χ j ∈ D(ω)(K j ) with 0 ≤ χ j ≤ 1 and
χ |K j−1 ≡ 1. We thus have maps

D(ω)(K j+1)→ D(ω)(K j )

f �→ χ j f
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by which

E(ω)(�) = proj lim
j→∞

D(ω)(K j ).

Lemma 2.26. Let ω ∈W ′ and K a compact subset of an open set � ⊂ R
N . Then

D(ω)(K ) carries the topology which is induced by E(ω)(�).

Proposition 2.27. The following properties hold:

(1) For ω ∈ W ′ the inclusion D(ω)(�) ↪→ E(ω)(�) is continuous and has dense
image.

(2) Let ω, σ ∈ W with σ = o(ω), then the inclusion E{ω}(�) ↪→ E(σ )(�) is
continuous and has dense image.

Proposition 2.28. Let ω ∈W ′, � ⊂ R
N be open and let

{
� j

}
j∈N be an open cov-

ering of �. Then there are f j ∈ D(ω)(� j )with 0 ≤ f j ≤ 1 such that
∑∞

j=1 f j = 1
and

{
supp f j

}
j∈N is locally finite.

Proposition 2.29. Let ω ∈W ′, �1, �2 be given open subsets of R
N , let g : �1→

�2 be real-analytic, and let f ∈ E(ω)(�2). Then f ◦ g ∈ E(ω)(�1). In particular,
E(ω)(�) contains all real-analytic functions on �.

Let us now introduce the ω-ultradistributions of Beurling type with compact
and arbitrary support:

Definition 2.30. Let ω ∈W ′ and � ⊂ R
N an open set.

(1) The elements of D′(ω)(�) are called ω-ultradistributions of Beurling type.
(2) For an ultradistribution T ∈ D′(ω)(�) its support supp T is the set of all points

such that for every neighbourhoodU there isϕ ∈ D(ω)(U )with< T, ϕ >�= 0.

Analogously, we have ω-ultradistributions of Roumieu type D′{ω}(�), for ω ∈
W , as in [16].

Remark 2.31. By Proposition 2.20, the definition of support of an ultradistribution
T doesn’t depend on the choice of the class D(ω)(�), for ω ∈ W ′, as long as it
contains T . In particular, if T is a distribution T ∈ D′(�), then the support defined
above is the usual one.

As in [16, Prop. 5.3], the elements of E ′(ω)(�) can be identifiedwith distributions
in D′(ω)(�) with compact support:

Proposition 2.32. For ω ∈W ′, an ultradistribution T ∈ D′(ω)(�) can be extended
continuously to E(ω)(�) iff supp T is a compact subset of �.

Definition 2.33. Let ω ∈ W ′ and � ⊂ R
N be open. For f ∈ E(ω)(�) and T ∈

D′(ω)(�) we define f T ∈ D′(ω)(�) by

〈 f T, ϕ〉 = 〈T, f ϕ〉 ∀ϕ ∈ D(ω)(�).

This makes D′(ω)(�) an E(ω)(�)−module.
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Definition 2.34. Let ω ∈ W ′. For an ultradistribution μ ∈ E ′(ω)(R
N ), and for

f ∈ E(ω)(R
N ) we define the convolution

Tμ( f ) : = μ ∗ f : RN → C,

by

μ ∗ f (x) = 〈
μy, f (x − y)

〉
.

As in [16, Prop. 6.3]:

Proposition 2.35. For ω ∈W ′ the convolution map

Tμ : E(ω)(R
N )→ E(ω)(R

N )

is continuous.

Notation. For z ∈ C
N we set

fz(x) = e−i〈x,z〉, x ∈ R
N .

For each λ > 0 we have

sup
α∈NN

0

sup
x∈RN

| f (α)
z (x)|e−λϕ∗

( |α|
λ

)

= sup
α∈NN

0

sup
x∈RN

|zα||e−i〈x,z〉|e−λϕ∗
( |α|

λ

)

≤ sup
x∈RN

e〈x,Im z〉 · exp
⎧⎨
⎩ sup

α∈NN
0

(
|α| log |z| − λϕ∗

( |α|
λ

))⎫⎬
⎭

= eHK (Im z) exp

⎧⎨
⎩ sup

α∈NN
0

λ

( |α|
λ

log |z| − ϕ∗
( |α|

λ

))⎫⎬
⎭

= eHK (Im z) exp
{
λϕ∗∗(log |z|)}

= eHK (Im z)+λω(z). (2.13)

Thus fz ∈ E(ω)(�) for all ω and �.

Definition 2.36. Let ω ∈ W ′. The Fourier–Laplace transform μ̂ of μ ∈ E ′(ω)(�)

is defined by

μ̂ : z �→ 〈μ, fz〉 .
Note that for ϕ ∈ D(ω)(�) :

μ̂ ∗ ϕ(z) =
∫
RN

μ ∗ ϕ(t) fz(t)dt =
∫
RN

〈
μy, fz(t)ϕ(t − y)

〉
dt

=
∫
RN

〈
μy, fz(s + y)ϕ(s)

〉
ds =

∫
RN
〈μ, fz〉ϕ(s) fz(s)ds

= 〈μ, fz〉
∫
RN

ϕ(s) fz(s)ds = μ̂(z)ϕ̂(z).
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Theorem 2.37. (Paley–Wiener theorem for ω-ultradistributions of Beurling type)
Let ω ∈W ′ and K ⊂ R

N compact and convex. If μ ∈ E ′(ω)(R
N ) with suppμ ⊂ K

then μ̂ is entire and there exist C, λ > 0 such that∣∣μ̂(z)
∣∣ ≤ CeHK (Im z)+λω(z) ∀z ∈ C

N . (2.14)

This holds, in particular, for K equal to the convex hull of suppμ. Moreover,

〈μ, ϕ〉 = 1

(2π)N

∫
RN

μ̂(−t)ϕ̂(t)dt ∀ϕ ∈ D(ω)(R
N ). (2.15)

Conversely, if g is an entire function on C
N that satisfies (2.14), i.e.

|g(z)| ≤ CeHK (Im z)+λω(z) ∀z ∈ C
N ,

for some C, λ > 0, then there exists μ ∈ E ′(ω)(R
N ) such that μ̂ = g and suppμ ⊂

K.

Proof. Let us first prove that if f ∈ E(ω)(R
N ) with f |K ≡ 0 then 〈μ, f 〉 = 0.

To this aim we assume, without loss of generality, that 0 ∈ K̊ and define

ft (x) := f (t x), 0 < t < 1.

Then 〈μ, ft 〉 = 0. Let us to prove that

lim
t→1−

〈μ, ft 〉 = 〈μ, f 〉 . (2.16)

We have that μ ∈ E ′(ω)(R
N ), so μ is a linear and continuous function on

E(ω)(R
N ) and to prove (2.16) it’s sufficient to prove that ft → f in E(ω)(R

N ).
Therefore, fix K̃ ⊂ R

N compact, m ∈ N and prove that

sup
α∈NN

0

sup
x∈K̃
|Dα ft (x)− Dα f (x)|e−mϕ∗

( |α|
m

)
→ 0. (2.17)

Indeed,

|Dα ft (x)− Dα f (x)| = |Dα f (t x)− Dα f (x)| = ∣∣tα(Dα f )(t x)− Dα f (x)
∣∣

≤ ∣∣tα(Dα f )(t x)− tαDα f (x)
∣∣+ ∣∣tαDα f (x)− Dα f (x)

∣∣
= tα

∣∣(Dα f )(t x)− Dα f (x)
∣∣+ (1− tα)

∣∣Dα f (x)
∣∣ ,

so, for 0 < t < 1, we have that

sup
α∈NN

0

sup
x∈K̃
|Dα ft (x)− Dα f (x)|e−mϕ∗

( |α|
m

)

≤ sup
α∈NN

0

sup
x∈K̃
|(Dα f )(t x)− Dα f (x)|e−mϕ∗

( |α|
m

)
(2.18)

+ (1− tα) sup
α∈NN

0

sup
x∈K̃
|Dα f (x)|e−mϕ∗

( |α|
m

)
.
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We observe that (1 − tα) → 0 for t → 1− and supα∈NN
0
supx∈K̃ |Dα f (x)|

e
−mϕ∗

( |α|
m

)
= CK̃ <∞ because f ∈ E(ω)(R

N ).
To estimate also the first addend of (2.18) let us remark that it’s not restrictive to

assume 0 ∈ K̃ , since we can enlarge K̃ . Therefore, denoting by ch(K̃ ) the convex
hull of K̃ , by the Lagrange Theorem we have that there exists ξ ∈ ch(K̃ ) on the
segment of extremes x and t x , such that

sup
α∈NN

0

sup
x∈K̃
|(Dα f )(t x)− Dα f (x)|e−mϕ∗

( |α|
m

)

= sup
α∈NN

0

sup
x∈K̃
| 〈∇(Dα f )(ξ), t x − x

〉 |e−mϕ∗
( |α|

m

)

≤ sup
α∈NN

0

{
sup

ξ∈ch(K̃ )

‖∇Dα f (ξ)‖ · (1− t) · sup
x∈K̃
‖x‖ · e−mϕ∗

( |α|
m

)}

≤ C(1− t) sup
α∈NN

0

sup
ξ∈ch(K̃ )

‖∇Dα f (ξ)‖e−mϕ∗
( |α|

m

)
,

for some C > 0.
However,

‖∇Dα f (ξ)‖≤
N∑
j=1

∣∣Dj D
α f (ξ)

∣∣≤
N∑
j=1

sup
|β|=1

∣∣DβDα f (ξ)
∣∣=N sup

|β|=1
∣∣Dα+β f (ξ)

∣∣ ,
so

sup
α∈NN

0

sup
x∈K̃
|(Dα f )(t x)− Dα f (x)|e−mϕ∗

( |α|
m

)

≤ CN (1− t) sup
α̃∈NN

sup
ξ∈ch(K̃ )

∣∣∣Dα̃ f (ξ)

∣∣∣ e−mϕ∗
( |α|

m

)
,

where supα̃∈NN sup
ξ∈ch(K̃ )

∣∣Dα̃ f (ξ)
∣∣ e−mϕ∗

( |α|
m

)
< ∞ by definition of f ∈

E(ω)(R
N ). Then, from (2.18), we have obtained (2.17), i.e.

ft → f in E(ω)(R
N ).

Therefore (2.16) holds true.
Since 〈μ, ft 〉 = 0 for all t ∈ (0, 1), then 〈μ, f 〉 = 0. This can be done for all

f ∈ E(ω)(R
N ) with f |K = 0, and hence there exists C, λ > 0 such that

|〈μ, f 〉| ≤ CpK ,λ( f ) ∀ f ∈ E(ω)(R
N ). (2.19)

For fz(x) = e−i<x,z>, we observe that

pK ,λ( fz) = sup
α∈NN

0

sup
x∈RN

| f (α)
z (x)|e−λϕ∗

( |α|
λ

)
≤ eHK (Im z)+λω(z)
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by (2.13).
Substituting in (2.19) with f = fz and remembering that μ̂(z) = 〈μ, fz〉, we

obtain (2.14); moreover μ̂ is entire because fz is entire (cf. also [16, Prop. 7.2]).
To prove (2.15) we observe that if ϕ ∈ D(ω)(R

N ), then

〈μ, ϕ〉 = μ ∗ ϕ̌(0) = F−1
(
μ̂ ∗ ϕ̌

)
(0)

= F−1
(
μ̂ · ˆ̌ϕ

)
(0)

= 1

(2π)N

∫
RN

μ̂(t)ϕ̂(−t)dt

= 1

(2π)N

∫
RN

μ̂(−t)ϕ̂(t)dt.

Conversely, let g be entire on C
N statisfying (2.14) and define μ by

〈μ, f 〉 = 1

(2π)N

∫
RN

g(−t) f̂ (t)dt, f ∈ D(ω)(R
N ).

Then μ ∈ D′(ω)(R
N ) with suppμ ⊂ K , hence μ ∈ E ′(ω)(R

N ) by Proposition 2.32,
and μ̂ = g by (2.15) (see also [16, Prop. 7.3]). ��
Proposition 2.38. Let � ⊂ R

N be open and ω ∈W . For every μ ∈ D′{ω}(�) there
is a weight function σ ∈ W with σ = o(ω) such that μ ∈ D′(σ )(�) ⊂ D′{ω}(�).
The analogous statement holds for E ′{ω}(�).

Proof. See [16], Proposition 7.6. ��
Let us close this section with the following result on tensor product spaces in

the Beurling setting, which is the analogous to [16, Thm. 8.1], for ω ∈W ′:
Theorem 2.39. Let ω ∈ W ′. Let K j ⊂ R

N j be compact and � j ⊆ R
N j be open,

for j = 1, 2. Then we have the following isomorphisms:

D(ω)(K1)⊗̂D(ω)(K2) � D(ω)(K1 × K2)

E(ω)(�1)⊗̂E(ω)(�2) � E(ω)(�1 ×�2).

3. The Cauchy problem for overdetermined systems

In this section we consider the Cauchy problem for overdetermined systems of
linear partial differential operators with constant coefficients in the class of ω-
ultradifferentiable functions of Beurling type defined in the previous section.

To bypass the question of formal coherence of the initial data, that could be
especially intricate in the overdetermined case (cf. [2,3,26]), we consider initial
data in the Whitney sense, in the spirit of [10,12,26].

Let F be a locally closed subsets of R
N , so that there exists an open subset �

of R
N with F ⊂ � and F̄ ∩� = F .
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For ω ∈ W ′ we denote by I(ω)(F,�) the subspace of functions in E(ω)(�)

which vanish of infinite order on F :

I(ω)(F,�) =
{
f ∈ E(ω)(�) : Dα f ≡ 0 on F, ∀α ∈ N

N
0

}
.

Definition 3.1. Let ω ∈ W ′. We define the space W (ω)
F of Whitney ω-

ultradifferentiable functions on F by the exact sequence

0 −→ I(ω)(F,�) −→ E(ω)(�) −→ W (ω)
F −→ 0; (3.1)

i.e.

W (ω)
F � E(ω)(�)

/I(ω)(F,�).

We endow W (ω)
F with the quotient topology.

Denoting by P = C[ζ1, . . . , ζN ] the ring of complex polynomials in N inde-
terminates, we consider W (ω)

F as a unitary left and right P−module by the action

of p(ζ ) on u ∈ W (ω)
F described by

p(ζ )u = up(ζ ) = p(D)u, (3.2)

by the formal substitution ζ j ↔ Dj = 1
i ∂ j .

Since I(ω)(F,�) is a closed ideal and a differential P-submodule of E(ω)(�),

the space W (ω)
F is Fréchet–Schwartz, a Fréchet algebra and a differential P-

submodule. These topological and algebraic structures are independent from the
choice of the open neighbourhood � of F with F̄ ∩� = F (cf. also [12] and [13]).

Let us denote by Aff(F) the affine span of F ⊂ R
N and let IntAff(F) be the

interior of F as a subspace of Aff(F).

Lemma 3.2. Let ω ∈W ′ and F a closed convex subset of R
N . Then the family of

seminorms

pK ,λ( f ) = sup
α∈NN

0

sup
x∈K
|Dα f (x)|e−λϕ∗

( |α|
λ

)

for λ > 0 and K ⊂⊂ F, defines the topology of W (ω)
F .

Proof. Since F is closed and convex, then IntAff(F) = F and F satisfiesWhitney’s
property (P): for all K ⊂⊂ F there existsCK > 0 such that every pair x, y of points
of K can be joined by a rectifiable curve in F of length not exceeding CK |x − y|.

The thesis then follows from [13]. ��
As a consequence, we have the following:

Lemma 3.3. Let ω ∈W ′ and F a convex and closed subset of R
N . Then

(
W (ω)

F

)′ � E ′(ω)(F).
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Proof. The thesis can be proved by dualizing the exact sequence (3.1), as in [25]
(cf. also [22]), or it can be deduced from [23, Prop. 3.6] and the Paley–Wiener
Theorem 2.37 (cf. also [12]). ��

Let us now consider a pair K1, K2 of closed convex subsets of R
N with K1 �

K2.
Given an a1 × a0 matrix A0(ζ ) with polynomial entries, by (3.2) we consider

the corresponding operator A0(D). We want to solve, in the Whitney’s sense, the
Cauchy problem {

A0(D)u = f
u|K1 ≡ 0,

(3.3)

where u|K1 ≡ 0 means that u vanishes with all its derivatives on K1.
Let us remark that if t Q(ζ ) : Pa1 → P is such that

t A0(ζ )t Q(ζ ) ≡ 0, (3.4)

then, in order to solve the Cauchy problem (3.3), f must satisfy the integrability
condition

Q(D) f = 0, (3.5)

because of Q(D) f = Q(D)A0(D)u = 0.
SinceP is a Noetherian ring, the collection of all vectors t Q(ζ ) satisfying (3.4)

form a finitely generated P−module. So we can insert the map t A0(ζ ) : Pa1 →
Pa0 into a Hilbert resolution:

0 −→ Pad
t Ad−1(ζ )−−−−−→ Pad−1 −→ · · · −→

Pa2
t A1(ζ )−−−→ Pa1

t A0(ζ )−−−→ Pa0 −→M −→ 0, (3.6)

where M = coker t A0(ζ ) = Pa0
/
t A0(ζ )Pa1 and the matrix t A1(ζ ) is obtained

from a basis of the integrability conditions (3.4). The sequence is exact, i.e.
Im t A j = Ker t A j+1.

Therefore a necessary condition to solve (3.3), is that f satisfies the following
integrability condition:

A1(D) f = 0. (3.7)

Moreover, every necessary condition for the solvability of (3.3), which can be
expressed in terms of linear partial differential equations, is a consequence of (3.7)
(cf. [26]).

Definition 3.4. If A1(ζ ) �≡ 0 then the Cauchy problem (3.3) is called overdeter-
mined and, to solve it, the condition (3.7) has to be satisfied.

Let us remark that if u solves (3.3), then also f must vanish with all its deriva-

tives on K1, so that we look for solutions u ∈
(
W (ω)

K2

)a0
of (3.3) when f satisfies

⎧⎪⎨
⎪⎩

f ∈
(
W (ω)

K2

)a1
A1(D) f = 0
f |K1
≡ 0.

(3.8)
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Remark 3.5. By Whitney’s extension theorem it’s not restrictive to consider zero
Cauchy data (see [5,13,22,23]).

Let us denote by I(ω)(K1,K2) the space of Whitney ω-ultradifferentiable fuc-
tions on K2 which vanish of infinite order on K1 :

I(ω)(K1,K2) =
{
f ∈ W (ω)

K2
: Dα f |K1

≡ 0 ∀α ∈ N
N
0

}
.

The Cauchy problem (3.3)–(3.8) is then equivalent to:
{
given f ∈ (I(ω)(K1, K2)

)a1 such that A1(D) f = 0
find u ∈ (I(ω)(K1, K2)

)a0 such that A0(D)u = f.
(3.9)

Remark 3.6. By the isomorphisms

Ext0P
(
M, I(ω)(K1, K2)

)
� Ker A0(D) = {u ∈ I(ω)(K1, K2)

a0 : A0(D)u = 0}

Ext1P
(
M, I(ω)(K1, K2)

)
� Ker A1(D)

Im A0(D)
,

we have:

(1) uniqueness of solutions of the Cauchy problem (3.9) is equivalent to the con-
dition

Ext0P (M, I(ω)(K1, K2)) = 0;
(2) existence of solutions of (3.9), is equivalent to the condition

Ext1P (M, I(ω)(K1, K2)) = 0;
(3) existence and uniqueness of a solution of (3.9), is equivalent to the condition

Ext0P (M, I(ω)(K1, K2)) = Ext1P (M, I(ω)(K1, K2)) = 0.

Remark 3.7. The above Remark 3.6 highlights the algebraic invariance of the prob-
lem: uniqueness and/or existence of solutions of the Cauchy problem (3.9) depend
only on the moduleM and not on it’s presentation by a particular matrix t A0(D).

Note also that we have the short exact sequence

0 −→ I(ω)(K1, K2) −→ W (ω)
K2
−→ W (ω)

K1
−→ 0,

that implies the long exact sequence

0 −→ Ext0P
(
M,I(ω)(K1, K2)

)
−→ Ext0P

(
M,W (ω)

K2

)
−→ Ext0P

(
M,W (ω)

K1

)
−→

−→ Ext1P
(
M,I(ω)(K1, K2)

)
−→ Ext1P

(
M,W (ω)

K2

)
−→ Ext1P

(
M,W (ω)

K1

)
−→

−→ Ext2P
(
M,I(ω)(K1, K2)

)
−→ · · · . (3.10)
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As in [25] (cf. also [5]) we have that W (ω)
Ki

are injective P−modules, i.e.

Ext jP (M,W (ω)
Ki

) = 0 for i = 1, 2 and for all j ≥ 1.
Therefore, the complex (3.10) reduces to:

0 −→ Ext0P
(
M, I(ω)(K1, K2)

)
−→ Ext0P

(
M,W (ω)

K2

)
−→

Ext0P
(
M,W (ω)

K1

)
−→ Ext1P

(
M, I(ω)(K1, K2)

)
−→ 0.

In particular

Ext jP (M, I(ω)(K1, K2)) = 0 ∀ j > 1. (3.11)

Remark 3.8. FromRemark 3.6 and the above considerations, it follows that unique-
ness and/or existence of solutions of the Cauchy problem (3.9) is related to injec-
tivity and/or surjectivity of the homomorphism

Ext0P
(
M,W (ω)

K2

)
−→ Ext0P

(
M,W (ω)

K1

)
. (3.12)

The injectivity of (3.12) is equivalent to the fact that the dual homomorphism

Ext0P
(
M,W (ω)

K1

)′ −→ Ext0P
(
M,W (ω)

K2

)′
(3.13)

has a dense image.
Moreover, surjectivity is equivalent to have a dense and closed image. But (3.12)

has a closed image if and only if (3.13) has a closed image (cf. [19], Ch. IV, § 2,
n. 4, Thm. 3), so that the surjectivity of (3.12) is equivalent to the fact that the dual
homorphism (3.13) is injective and has a closed image.

By Remarks 3.6 and 3.8, and [26, Prop. 1.1–1.2], we have that:

Proposition 3.9. Let ω ∈W ′ and K1, K2 closed convex subsets of R
N with K1 �

K2, for j = 1, 2. Let M be a unitary P−module of finite type and denote by
Ass(M) the set of all prime ideals associated to M.

Then the following statements are equivalent:

(1) The Cauchy problem (3.9) admits at most one solution;
(2) Ext0P (M, I(ω)(K1, K2)) = 0;
(3) Ext0P (P/

℘, I(ω)(K1, K2)) = 0 for all ℘ ∈ Ass(M);
(4) The homomorphisms

Ext0P
(
P/

℘,W (ω)
K2

)
→ Ext0P

(
P/

℘,W (ω)
K1

)

are injective for all ℘ ∈ Ass(M);
(5) The homomorphisms

Ext0P
(
P/

℘,W (ω)
K1

)′ → Ext0P
(
P/

℘,W (ω)
K2

)′

have a dense image for all ℘ ∈ Ass(M).
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Proposition 3.10. Let ω ∈W ′,M a unitary P−module of finite type and K1, K2
closed convex subsets of R

N with K1 � K2, for j = 1, 2. Then the following
statements are equivalent:

(1) The Cauchy problem (3.9) admits at least a solution;
(2) Ext1P (M, I(ω)(K1, K2)) = 0;
(3) Ext1P (P/

℘, I(ω)(K1, K2)) = 0 for all ℘ ∈ Ass(M);
(4) The homomorphisms

Ext0P
(
P/

℘,W (ω)
K2

)
→ Ext0P

(
P/

℘,W (ω)
K1

)
(3.14)

are surjective for all ℘ ∈ Ass(M);
(5) The homomorphisms

Ext0P
(
P/

℘,W (ω)
K1

)′ → Ext0P
(
P/

℘,W (ω)
K2

)′
(3.15)

are injective and have a closed image, for all ℘ ∈ Ass(M).

Proposition 3.11. Let ω ∈W ′,M a unitary P−module of finite type and K1, K2
closed convex subsets of R

N with K1 � K2, for j = 1, 2. Then the following
statements are equivalent:

(1) The Cauchy problem (3.9) admists one and only one solution;
(2) Ext0P (M, I(ω)(K1, K2)) = Ext1P (M, I(ω)(K1, K2)) = 0;
(3) Ext0P (P/

℘, I(ω)(K1, K2)) = Ext1P (P/
℘, I(ω)(K1, K2)) = 0 for all ℘ ∈

Ass(M);
(4) The homomorphisms

Ext0P
(
P/

℘,W (ω)
K2

)
→ Ext0P

(
P/

℘,W (ω)
K1

)

are isomorphisms for all ℘ ∈ Ass(M);
(5) The homomorphisms

Ext0P
(
P/

℘,W (ω)
K1

)′ → Ext0P
(
P/

℘,W (ω)
K2

)′

are isomorphisms for all ℘ ∈ Ass(M).

The overdetermined Cauchy problem (3.9) is thus reduced to the study of the
dual homomorphism

Ext0P
(
P/

℘,W (ω)
K1

)′ → Ext0P
(
P/

℘,W (ω)
K2

)′
, ℘ ∈ Ass(M).

Let us start with some preliminary results. We first need the following:

Definition 3.12. For a prime ideal ℘ of P we define the complex characteristic
variety of P/℘ by:

V = V (℘) := {ζ ∈ C
N : p(−ζ ) = 0 ∀p ∈ ℘}. (3.16)

This is an affine algebraic variety.
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Lemma 3.13. Let ω ∈W ′,℘ a prime ideal ofP and K ⊂ R
N a convex and closed

subset of R
N . Then we have the following isomorphism:

Ext0P
(
P/

℘,W (ω)
K

)′ � E ′(ω)(K )
/
℘(D)⊗ E ′(ω)(K ) (3.17)

with

℘(D)⊗ E ′(ω)(K ) :=
{

r∑
h=1

ph(D)Th : Th ∈ E ′(ω)(K )

}
,

where p1(ζ ), . . . , pr (ζ ) are generators of ℘.

Proof. For any closed subspace F of a Fréchet space E , the dual F ′ of F is iso-
morphic (cf. [24, Prop. 6.14]) to:

F ′ � E ′
/
F0,

where F0 is the annihilator of F , defined by

F0 := {
T ∈ E ′ : T ( f ) = 0, ∀ f ∈ F

}
.

Then, since Ext0P
(
P/

℘,W (ω)
K

)
is a closed subspace of the Fréchet space W (ω)

K ,

we have

Ext0P
(
P/

℘,W (ω)
K

)′ � (
W (ω)

K

)′ /(
Ext0P

(
P/

℘,W (ω)
K

))0
,

and, by Lemma 3.3,

Ext0P
(
P/

℘,W (ω)
K

)′ � E ′(ω)(K )
/(

Ext0P
(
P/

℘,W (ω)
K

))0
, (3.18)

with
(
Ext0P

(
P/

℘,W (ω)
K

))0={
T ∈ E ′(ω)(K ) : T (u)=0, ∀u ∈ Ext0P

(
P/

℘,W (ω)
K

)}
.

Let us now remark that the affine algebraic variety V (℘) associated to ℘, as
defined in (3.16), can be written as:

V = V (℘) = {ζ ∈ C
N : ph(−ζ ) = 0, ∀h = 1, . . . , r}.

Then

ph(Dx )e
−i<x,ζ> = ph(−ζ )e−i<x,ζ> = 0 ∀ζ ∈ V (℘).

But

Ext0P
(
P/

℘,W (ω)
K

)
= Ker A0(D)

=
{
u ∈ W (ω)

K : ph(D)u = 0 ∀h = 1, . . . , r
}

,
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so that
e−i<·,ζ> ∈ Ext0P

(
P/

℘,W (ω)
K

)
⇔ ζ ∈ V (℘). (3.19)

Therefore theFourier–Laplace transform T̂ (ζ )of an elementT ∈
(
Ext0P

(
P/

℘,

W (ω)
K

))0
is an entire function which satisfies:

T̂ (ζ ) =
〈
T, e−i<·,ζ>

〉
= 0 ∀ζ ∈ V (℘).

By the Nullstellensatz (see [27]), there exist entire functions F1(ζ ), . . . , Fr (ζ )

such that

T̂ (ζ ) =
r∑

h=1
ph(−ζ )Fh(ζ ) ∀ζ ∈ C

N .

By the Paley–Wiener Theorem 2.37, the Fourier–Laplace transform of a distri-
bution T ∈ E ′(ω)(K ) is characterized by an estimate of the form

∣∣∣T̂ (ζ )

∣∣∣ ≤ CeHσT (Im ζ )+αω(ζ ), (3.20)

for some C > 0, α ∈ N, where σT ⊂ K is the convex hull of supp T .
If K is not compact, we choose Kα ⊂ K̊α+1 compact and such that K = ∪

α
Kα ,

while if K is compact, we choose Kα = K for all α.
Since σT ⊂ Kα for some α, then (3.20) implies that there exist C > 0, α ∈ N

such that ∣∣∣T̂ (ζ )

∣∣∣ ≤ CeHKα (Im ζ )+αω(ζ ). (3.21)

Define

ψα(ζ ) := HKα (Im ζ )+ αω(ζ );
sinceω is plurisubharmonic by condition (δ) ofDefinition 2.1 (cf. [20, Thm. 1.6.7]),
then ψα(ζ ) is plurisubharmonic in C

N .
Moreover we have that for every k0 > 0 there exists k1 > 0 such that

|ψα(Im z + Im ζ )− ψα(Im ζ )| ≤ k1 for |z| ≤ k0. (3.22)

Indeed,

|ψα(z+ζ )−ψα(ζ )| = ∣∣HKα (Im z+Im ζ )+αω(z+ζ )− HKα (Im ζ )− αω(ζ )
∣∣

≤ ∣∣HKα (Im z + Im ζ )− HKα (Im ζ )
∣∣+ α |ω(z + ζ )− ω(ζ )| .

Now observe that

HKα (Im z + Im ζ )− HKα (Im ζ )

≤ HKα (Im z)+ HKα (Im ζ )− HKα (Im ζ ) ≤ c |z| ≤ k0,
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for some c > 0 and

HKα (Im ζ )−HKα (Im z+Im ζ ) ≤HKα (Im ζ )−〈x, Im z〉−〈x, Im ζ 〉 ∀x ∈ Kα.

(3.23)

Moreover, by definition of supremum, for all ε > 0 there exists x̄ ∈ Kα such
that

〈x̄, Im ζ 〉 > HKα (Im ζ )− ε.

So, choosing such x̄ in (3.23) we have

HKα (Im ζ )− HKα (Im z + Im ζ ) ≤ ε + c′, if |z| ≤ k0,

for some c′ > 0, hence there exists k1 > 0 such that∣∣HKα (Im z + Im ζ )− HKα (Im ζ )
∣∣ ≤ k1, |z| ≤ k0.

Furthermore, by Lemma 2.5 we have that

ω(z + ζ ) ≤ C(1+ ω(z)+ ω(ζ )),

for some C > 0 and hence for every k0 > 0 there exists k′1 > 0 such that

|ω(z + ζ )− ω(ζ )| ≤ k′1, |z| ≤ k0.

Therefore (3.22) is proved.
We can therefore apply the Ehrenpreis Fundamental Theorem (see [20, Thm.

7.7.13], and [5,18] for more details) and obtain that we can choose the entire
functions Fh satisfying

|Fh(ζ )| ≤ C ′eHKα (Im ζ )+αω(ζ )+m′ log(1+|ζ |),

for some C ′ > 0, m′ ∈ N.
By condition (γ )

m′ log(1+ |ζ |) ≤ m′

b
ω(ζ )− m′a

b
,

so there exist C ′′, C ′′′ > 0 and α′ ∈ N such that

|Fh(ζ )| ≤ C ′′eHKα (Im ζ )+α′ω(ζ ) ≤ C ′′′eHK
α′′ (Im ζ )+α′′ω(ζ )

with α′′ = max{α, α′}.
Hence, by the Paley–Wiener Theorem 2.37:

Fh = T̂h

for some Th ∈ E ′(ω)(K ).

We have thus proved that if T ∈
(
Ext0P

(
P/

℘,W (ω)
K

))0
, then

T̂ (ζ ) =
r∑

h=1
ph(−ζ )T̂h(ζ ) =

r∑
h=1

̂ph(D)Th(ζ ), with Th ∈ E ′(ω)(K ).
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This result implies that

T ∈ ℘(D)⊗ E ′(ω)(K ),

and so, by (3.18),
(
Ext0P

(
P/

℘,W (ω)
K

))′ � E ′(ω)(K )
/
℘(D)⊗ E ′(ω)(K ).

��
Let us define Oψα (CN ) as the space of holomorphic functions u on C

N which
satisfy for some C > 0 and for all ζ ∈ C

N :
|u(ζ )| ≤ Ceψα(ζ ) = CeHKα (Im ζ )+αω(ζ ). (3.24)

We can then consider the inductive limit

Oψ(CN ) := ind lim
α→∞ Oψα (CN ).

From the Paley–Wiener Theorem 2.37, by Fourier–Laplace transform we have
the following isomorphism:

E ′(ω)(K ) � Oψ(CN ).

Therefore, from Lemma 3.13:

Ext0P
(
P/

℘,W (ω)
K

)′ � Oψ(CN )
/
℘(D)⊗Oψ(CN ). (3.25)

Let V be a reduced affine algebraic variety. Denote by Oψα (V ) the space of
holomorphic functions on V (i.e. complex valued continuous functions on V which
are restrictions of entire functions onC

N ) that satisfy (3.24) for some α ∈ N,C > 0
and for all ζ ∈ V . Consider then the inductive limit

Oψ(V ) = ind lim
α→∞ Oψα (V ).

We have the following:

Proposition 3.14. Let ω ∈ W ′, ℘ a prime ideal of P with associated algebraic
variety V = V (℘), and K a closed convex subset of R

N . Then we have a natural
isomorphism:

Ext0P
(
P/

℘,W (ω)
K

)′ � Oψ(V ).

Proof. By (3.25) we have to prove the following isomorphism:

Oψ(CN )
/
℘(D)⊗Oψ(CN ) � Oψ(V ).

First of all we prove that the homomorphism

Oψ(CN )
/
℘(D)⊗Oψ(CN )→ Oψ(V ) (3.26)
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is injective: if f ∈ Oψ(CN ) is zero on V , then by the Nullstellensatz there exist
entire functions fh on C

N such that

f (ζ ) =
r∑

h=1
ph(−ζ ) fh(ζ ) ∀ζ ∈ C

N .

Since f satisfies (3.24) by assumption, from the Ehrenpreis Fundamental Theo-
rem [20, Thm. 7.7.13] (see also [5,18] formore details), we can choose fh satisfying
(3.24) too, hence fh ∈ Oψ(CN ) and this implies that f ∈ ℘ ⊗ Oψ(CN ). So we
have obtained that f is the zero element of Oψ(CN )

/
℘(D)⊗Oψ(CN ), proving

the injectivity of the homomorphism (3.26).
On the other hand, the homomorphism (3.26) is surjective: if f ∈ Oψ(V ), then

f ∈ O(CN ) and satisfies (3.24) for some α ∈ N, C > 0 and for all ζ ∈ V . By the
Ehrenpreis Fundamental Theorem [20, Thm. 7.7.13], there exist g ∈ O(CN ), with
f = g on V , and two constants C ′ > 0 and n ∈ N such that

sup
CN
|g|e−ψα−n log(1+|ζ |) ≤ C ′sup

V
| f |e−ψα .

Since the right-hand side is finite because f satisfies (3.24) on V , we have that

|g(ζ )| ≤ C ′′eψα(ζ )+n log(1+|ζ |) ≤ C ′′′eψα′ (ζ ) ∀ζ ∈ C
N

for some C ′′, C ′′′ > 0 and α′ ∈ N. So g ∈ Oψ(CN ). ��
Proposition 3.14will be crucial in the study of the homomorphism (3.15) related

to the study of existence and/or uniqueness of solutions of theCauchy problem (3.9).
To this aim we take K1 and K2 closed and convex sets, with K1 � K2.
Then we define, for j = 1, 2:

ψ j
α(ζ ) := H

K j
α
(Im ζ )+ αω(ζ )

for K j
α compact convex set with K j

α ⊂ K̊ j
α+1 and ∪α K

j
α = K j , for each j = 1, 2.

We consider the inductive limits

Oψ j (C
N ) := ind lim

α→+∞ O
ψ

j
α
(CN ), j = 1, 2. (3.27)

From the above considerations we have the following:

Remark 3.15. The study of the homomorphism (3.15) is reduced to the study of the
homomorphism

Oψ1(V )→ Oψ2(V ). (3.28)

By Proposition 3.10 the existence of solutions of the Cauchy problem (3.9) is
equivalent to the surjectivity of the homomorphism (3.14). But (3.14) has always
a dense image, by the following:
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Lemma 3.16. Let ω ∈ W ′, ℘ a prime ideal and K1, K2 closed convex subsets of
R

N with K1 � K2, for j = 1, 2. Then the homomorphism

Ext0P
(
P/

℘,W (ω)
K2

)
→ Ext0P

(
P/

℘,W (ω)
K1

)
(3.29)

has always a dense image.

Proof. By Lemma 3.13

Ext0P
(
P/

℘,W (ω)
K1

)′ � E ′(ω)(K1)
/
℘(D)⊗ E ′(ω)(K1).

Let T ∈ Ext0P
(
P/

℘,W (ω)
K1

)′
which vanish on

Ext0P
(
P/

℘,W (ω)
K2

)
=

{
u ∈ W (ω)

K2
: ph(D)u = 0 ∀h = 1, 2, . . . , r

}
,

where p1(ζ ), . . . , pr (ζ ) are generators of ℘. We must prove that T ≡ 0.
By (3.19) we have that

T̂ (ζ ) = T (e−i〈·,ζ 〉) = 0 ∀ζ ∈ V (℘),

moreover by theNullstellensatz (cf. [27]) and theEhrenpreis Fundamental Theorem
(cf. [20]),

T =
r∑

h=1
ph(D)Th

for some Th ∈ E ′(ω)(K1), i.e. T ∈ ℘(D) ⊗ E ′(ω)(K1). This shows that T

is identically zero as an element of the space E ′(ω)(K1)
/
℘(D) ⊗ E ′(ω)(K1) �

Ext0P
(
P/

℘,W (ω)
K1

)′
, and hence the homomorphism (3.29) has a dense image.

��
Remark 3.17. By Proposition 3.10 and Lemma 3.16, the Cauchy problem (3.9)
admits at least a solution if and only if the homomorphism (3.14) has a closed
image, i.e. if and only if the dual homomorphism (3.15) has a closed image, by [19,
Ch. IV, § 2, n. 4, Thm. 3] (see also Remark 3.8).

By Proposition 3.14 we thus have that the Cauchy problem (3.9) admits at least
a solution if and only if the homomorphism (3.28) has a closed image.

By Theorem 5.1 of [12] this condition is equivalent to the validity of the fol-
lowing Phragmén–Lindelöf principle:

Theorem 3.18. (Phragmén–Lindelöf principle for holomorphic functions) Let V
be a reduced affine algebraic variety and Oψ1(V ) and Oψ2(V ) be defined as in
(3.27). Then the following are equivalent:

(i) Oψ1(V ) ↪→ Oψ2(V ) has closed image;
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(ii) ∀α ∈ N, ∃β ∈ N such that

Oψ1(V ) ∩Oψ2
α
(V ) ⊂ Oψ1

β
(V );

(iii) the following Phragmén–Lindelöf principle holds:

(PL)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∀α ∈ N, ∃β ∈ N, C > 0 such that
if f ∈ O(V ) satisfies for some costants α f ∈ N, c f > 0{
| f (ζ )| ≤ eψ2

α(ζ ) ∀ζ ∈ V

| f (ζ )| ≤ c f e
ψ1

α f
(ζ ) ∀ζ ∈ V

then it also satisfies:

| f (ζ )| ≤ Ceψ1
β (ζ ) ∀ζ ∈ V .

Summarizing, by Remark 3.17 and Theorem 3.18, we have the following:

Theorem 3.19. (Phragmén–Lindelöf principle for the existence of solutions) Let
ω ∈ W ′. The Cauchy problem (3.9) admits at least a solution if and only if the
following Phragmén–Lindelöf principle holds for all℘ ∈ Ass(M) and V = V (℘):

(PL)′

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀α ∈ N, ∃β ∈ N, C > 0 such that
if f ∈ O(V ) satisfies for some costants α f ∈ N, c f > 0⎧⎪⎨
⎪⎩
| f (ζ )| ≤ exp

{
HK 2

α
(Im ζ )+ αω(ζ )

}
∀ζ ∈ V

| f (ζ )| ≤ c f exp

{
HK 1

α f
(Im ζ )+ α f ω(ζ )

}
∀ζ ∈ V

then it also satisfies:

| f (ζ )| ≤ C exp
{
HK 1

β
(Im ζ )+ βω(ζ )

}
∀ζ ∈ V .

Let us now recall the definition of plurisubharmonic functions on an affine
algebraic variety V ⊂ C

N :
Definition 3.20. A function u : V → [−∞,+∞) is called plurisubharmonic on
V if it is locally bounded from above, plurisubharmonic in the usual sense on Vreg,
the set of all regular points of V , and satisfies

u(ζ ) = lim sup
z∈Vreg
z→ζ

u(z)

at the singular points of V .
By psh(V ) we denote the set of all functions that are plurisubharmonic on V .

By Theorem 1.2 of [11], Theorem 3.19 is equivalent to the following:

Theorem 3.21. (Phragmén–Lindelöf principle for plurisubharmonic functions)
Let ω ∈W ′. The Cauchy problem (3.9) admits at least a solution if and only if the
followingPhragmén–Lindelöf principle holds for all℘ ∈ Ass(M)and V = V (℘) :
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(PL)ω

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∀α ∈ N, ∃β ∈ N, C > 0 such that
if u ∈ psh(V ) satisfies for some costants αu ∈ N, cu > 0{
u(ζ ) ≤ HK 2

α
(Im ζ )+ αω(ζ ) ∀ζ ∈ V

u(ζ ) ≤ HK 1
αu

(Im ζ )+ αuω(ζ )+ cu ∀ζ ∈ V

then it also satisfies:
u(ζ ) ≤ HK 1

β
(Im ζ )+ βω(ζ )+ C ∀ζ ∈ V .

Also the problem of existence of a unique solution of the Cauchy problem (3.9)
can be easily treated by the study of the dual homomorphism (3.15). In particular,
by Propositions 3.11 and 3.14, we have:

Theorem 3.22. Let ω ∈ W ′. The Cauchy problem (3.9) admits one and only one
solution if and only if, for all ℘ ∈ Ass(M) and V = V (℘), the homomorphism

Oψ1(V ) ↪→ Oψ2(V )

is an isomorphism.

By Theorem 5.2 of [12] we can finally state the following:

Theorem 3.23. Let ω ∈ W ′. The Cauchy problem (3.9) admits one and only one
solution if and only if, for all ℘ ∈ Ass(M) and V = V (℘), one of the following
equivalent conditions holds:

(i) Oψ1(V ) ↪→ Oψ2(V ) is an isomorphism;
(ii) ∀α ∈ N, ∃β ∈ N such that

Oψ2
α
(V ) ⊂ Oψ1

β
(V );

(iii) ∀α ∈ N, ∃β ∈ N, C > 0 such that

sup
ζ∈V

∣∣∣∣ f (ζ )e
−H

K1
β
(Im ζ )−βω(ζ )

∣∣∣∣ ≤ C sup
ζ∈V

∣∣∣ f (ζ )e
−H

K2
α
(Im ζ )−αω(ζ )

∣∣∣
for all f ∈ O(V ).

Remark 3.24. Clearly condition (i) (resp. (ii), (iii)) of Theorem 3.23 implies con-
dition (i) (resp. (ii), (iii)) of Theorem 3.18.

Remark 3.25. If we split R
N � R

k
t × R

n
x , by Theorem 2.39 we could also allow

different scales of regularity in the t-variables and in the x-variables, as in [12] or
[9].

We can allow, for instance, weight functions of the form

ω(τ, ζ ) = σα1(|τ |)+ σα2(|ζ |), for (τ, ζ ) ∈ C
k × C

n, (3.30)

for 0 ≤ α1, α2 < 1, where each σα : [0,+∞)→ [0,+∞) is defined by

σα(t) :=
{
tα if 0 < α < 1
log(1+ t) if α = 0.

This is a weight function under our condition (γ ), weaker than the corresponding
one log(1+ t) = o(ω(t)) of [16].
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Example 3.26. Let us consider the operator

P(Dt , Dx ) :=
[
(2Dx − Dt )

3 − Dt − Dx

] [
(D3

x − Dt )
2 + D5

x

]
(Dx − D4

t )+ 1

and the associated algebraic variety

V =
{
(τ, ζ ) ∈ C

2 : P(−τ,−ζ ) = 0
}

.

Since this is an algebraic curve, one can use for instance MAPLE to compute
the Puiseux series expansions on its branches at infinity (cf. [7, Example 5.1]) and
prove, by [9, Thm. 5.16], that V satisfies the Phragmén–Lindelöf principle (PL)ω,
for ω as in (3.30), if and only if

max{α1, α2} ≥ 1

3
, α2 ≥ 1

4
and max{3α1, α2} ≥ 1

2
.

This means that there is a very specific region of the plane R
2
(α1,α2)

that exactly
determines inwhich classes of (small)Gevrey functions (orC∞ functions ifα j = 0)
the associated Cauchy problem admits at least a solution and in which classes it
does not.

We refer to [7,8] and [9] for more examples in this direction.
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