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Abstract

Based on the concept of equivalent eigenstrain, a low-order accurate eXtended
Finite Element Method (XFEM) is presented. The aim is the determination of
the stress intensity factors of cracked homogeneous specimens. The proposed
approach differs from the conspicuous amount of existing contributions on this
topic. The findings of the present paper highlight aspects so far neglected in
the literature, such as the mechanical meaning of additional fields and equations
specific to the XFEM approximation of the displacement field. Moreover, based
on the plane strain examples simulated in the present study, the proposed XFEM
is generally computationally more robust and accurate than existing comparable
XFEMs, while keeping a minimal implementation effort.
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1. Introduction1

The present study proposes an eXtended Finite Element Method (XFEM)2

where the crack tips are modeled as Eshelby’s elastic singularities. The target is3

to devise an effective model with minimal computational effort. With respect to4

comparable XFEMs for fracture, the stress-intensity factors are more accurate,5

while the numerical procedure is more robust.6

The XFEM [1, 2, 3, 4] is a generalized Partition of Unity Finite Element7

Method (PUFEM) [5]. The Generalized Finite Element Method (GFEM) [6] is8

another PUFEM, structurally similar to the XFEM. Both GFEM and XFEM9

exploit the knowledge of the expected shape of the stress and the strain fields;10

the displacement field is indeed approximated by enriching the space of the11

standard finite element functions with additional shape functions that preserve,12

almost everywhere, the partition of unity property of the finite element shape13

functions. In the case of a crack, the first term of the crack tip asymptotic field14
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is usually added to the discretization space [3]. However, high-order XFEMs15

have been developed by enriching the finite element approximation of the nodes16

surrounding the crack tip with higher-order terms of the crack-tip asymptotic17

field. For instance, Liu et al. [7] formulated a method with higher-order terms for18

the direct evaluation of the mixed mode stress intensity factors (SIFs) without19

extra post-processing. High-order enrichment functions and direct evaluation20

of Irwin’s integral are key in computing mixed-mode stress intensity factors for21

the XFEM by Lan et al. [8].22

Existing XFEM and GFEM applied to fracture mechanics problems exhibit23

possible loss of accuracy as a consequence of: loss of the partition of unity prop-24

erty in the transition elements, incorrect quadrature, and ill-conditioning [9, 10,25

11, 12, 13, 14, 15, 16]. For Laborde et al.[10], accuracy is restored through the26

implementation of high-order polynomial shape functions combined with addi-27

tional strategies such as the geometrical enrichment of a fixed area containing28

the crack tip. Examples of blending procedures facing the loss of the partition29

of unity property in the transition elements are the corrected XFEM [11], and30

other techniques based on the adoption of ramp-shaped blending functions [12].31

Another method exempt from the necessity of blending finite elements is the32

so-called intrinsic XFEM [17] based on the moving least squares functions anal-33

ogous to those employed in meshless methods. Ill-conditioning can be induced34

both by the fact that the crack line is close to the finite elements edges, and by35

the adoption of geometrical-enrichment strategies [10, 15]. Stabilized PUFEM36

methods aim at overcoming ill-conditioning and drawbacks of the blending fi-37

nite elements by means of suitable assumptions on the space of the enrichments38

functions. For instance, the stable GFEM (SGFEM) for 2-D and 3-D fracture39

mechanics problems by Babuška and Banerjee [13, 15, 16] is based on quasi-40

orthogonality between the standard space of the finite element functions and41

the space of the enrichment functions, and boundedness away from zero of the42

diagonal elements of the stiffness matrix. Alternative efficient stabilization tech-43

niques have also been derived, based either on eigenvalue decomposition of the44

stiffness matrix [18], or on suitable assumptions of the enrichment functions [19].45

It seems that the price to pay to improve accuracy of XFEMs is either46

a conspicuous increase of the number of unknowns, as in the case of high-47

order crack tip and/or enrichment functions, or the introduction of special pre-48

conditioning procedures of the stiffness matrix. Hence, modified or new stiffness49

terms appear, whose mechanical meaning seems obscure.50

So far, the problem of the convergence of the variational problem adopted51

in standard XFEM to the singular, asymptotic, solution of the cracked elastic52

body has been faced from a computational standpoint. On the other hand, the53

necessity of using suitable variable formulations for cracked bodies has emerged54

in the context of free-discontinuity problems formulated in the (special) space of55

bounded variations [20, 21, 22]. In particular, in energy-based formulations for56

fracture mechanics, the elastic energy of the bulk is separated from that spent on57

the cracks surface, and Gamma-convergence to Griffith-type fracture energies58

has been proved [22]. These results obtained for free-discontinuity problems59

suggest that the classic minimization formulation for non-cracked bodies is no60
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longer suited to cracked bodies, and that the singular part of the strain field61

should be treated separately.62

The present paper aims at developing a mechanically consistent XFEM with63

the same set of enrichments functions as the original XFEM [1, 2, 17, 23].Unlike64

the original XFEM, the proposed XFEM is based on the mechanical decoupling65

of the singular and bounded parts of the strain.66

To mechanically decouple the singular part of the strain from the other strain67

terms, the equivalent eigenstrain concept is adopted. In the first decades of the68

twentieth century [24, 25, 26], Volterra [24], Somigliana [25], and Reißner [26]69

investigated the equilibrium in the presence of those eigenstrains deriving from70

the addition or the subtraction of material. The eigenstrain concept was gen-71

eralized by Colonnetti [27] to any incompatible and non-smooth strain that is72

not caused by external loads. However, it was Eshelby [28] who formulated a73

general framework for elastic singularities, stating that inclusions, point and74

line singularities with infinite self-energies can all be regarded as limiting cases75

of Somigliana dislocations of finite self-energy. Later, Mura [29, 30] gener-76

alized the concept of equivalent eigenstrain for elastic inclusions. Recently,77

Schmidt et al. [31] have developed an eigendeformation variational formulation78

that (Gamma-)converges to Griffith’s energy.79

When the enriched strain field contains Dirac’s delta-like terms, previous au-80

thor’s papers [32, 33, 34] have proved that the mechanical decoupling between81

the singular part of the strain and the other strain terms is necessary to avoid82

spurious energy contributions. This is the case of strain localization [33], cohe-83

sive and finite-thickness interface laws [32, 34]. A previous attempt to formulate84

an equivalent eigenstrain XFEM approach has been done for imperfect inter-85

faces [35]. In the present study, the approach is devised for the case of fracture86

for the first time.87

Generalizing Eshelby’s elastic singularities concept [28], the crack is regarded88

as an elastic singularity in Eshelby’s sense by means of the procedures described89

in Sec. 2. In particular, the displacement field is the sum of a standard term90

and a term emanating from the crack. The singular strain term is regarded as91

an eigenstrain, and the associated eigenstress is introduced. Sec. 3 and Sec. 492

illustrate the variational formulation and its discrete version, respectively. It is93

also shown that, for any non-constant enrichment function, the solving equations94

of the proposed formulation and that associated with the standard XFEM differ95

at both the continuum and the discrete level. Sec. 5 assesses the convergence of96

the computed stress intensity factors to the reference values for a set of plane97

strain cracked plates. Finally, peculiarities and pros-and-cons of the present98

formulation are discussed in Sec. 6.99

2. Approximation of the crack as an elastic singularity100

Quoting Eshelby [36], the tip of a crack qualifies as a defect, or an imper-101

fection, in its own right. Therefore, the stress induced by an imperfection can102

be regarded as some state of internal stress not produced by surface or body103

forces [37]. The aim of this section is to devise an approximated procedure to104
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compute the disturbance exerted by the crack within the region Ω on an applied105

stress, uniform at large distances. Note that the determination of the analytical106

solution of Eq. (7) for cracks is out of the aims of the present study. Hence, the107

path of reasoning of the subsequent developments will deviate from Eshelby’s108

canonical approach [37].109

First, in Sec. 2.1, the linear elastic continuum problem with and without110

cracks is formulated for the plane strain case. The basic statements of Eshelby’s111

approach to the inclusion problem are given in Sec. 2.2. Sec. 2.3 and Sec. 2.4112

set the two-fields kinematics of the approach.113

2.1. The linear elastic continuum problem114

Index notation is adopted. A quantity with a repeated superscript is summed115

over the values 1, 2, 3. Differentiation with respect to the coordinate xi is116

denoted by a subscript , i. A small displacement regime is assumed.117

The solid V displayed in Fig. 1 is loaded with tractions pi on the region
∂Vp of the surface ∂V . The body is subjected to vanishing displacements ui on
the external surface portion ∂Vd. In the absence of the crack, for an isotropic
material with Young’s modulus E and Poisson coefficient ν, the continuum
problem is formulated as

σij,j = 0 , inV , (1a)

σijnj = pi , on ∂Vp , (1b)

ui = 0 , on ∂Vd , (1c)

σij = λE1δij + 2µ
1

2
(ui,j + uj,i) , (1d)

where δij is the Kronecker delta, E1 is the first strain invariant and λ = νE
(1+ν)(1−2ν)118

and µ = E
2(1+ν) are the Lamé constants.119

When the body is cracked, stress concentrations and inelastic deformations
are expected in the neighborhood of the crack tip. Therefore, the problem of
the cracked body has to be cast in the context of the Linear Elastic Fracture
Mechanics (LEFM) [38], where the concept of stress intensity factor is key [39,
40]. In fact, LEFM computes the asymptotic fields of the stress field in a
neighborhood of the crack tip for vanishing distance r. Restricting attention to
the plane strain crack problem, u1 = u1(x1, x2), u2 = (x1, x2) and u3 vanishes.
In this case, the equilibrium and constitutive equations reduce to

σαβ,α = 0 , (2a)

1

2
(uα,β + uβ,α) =

1 + ν

E
σαβ −

ν

E
δαβT1 , (2b)

with σ33 = νσαα, with α, β = 1, 2, and T1 = σ11 +σ22 +σ33. The computation
of the asymptotic stress and displacement fields is based on the introduction of
the Airy stress function. For instance, in a plane strain plate subjected to mode
I loading along axis x2, the stress field at the crack tip, in a polar system of
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coordinates centered at the crack tip is [41]

σ22 =
KI√
2π r

1

4
(5 cos

θ

2
− cos

5θ

2
) , (3a)

σ11 + σ22 =
KI√
2π r

2 cos
θ

2
, (3b)

σ12 =
KI√
2π r

1

4
(− sin

θ

2
+ sin

5θ

2
) , (3c)

where KI is the mode I stress intensity factor. Stresses (3) are associated with
the following displacements [41]

u1 =
KI√
2π

4(1− ν2)

E

√
r

(
1−

cos2 θ

2
2(1− ν)

)
cos

θ

2
, (4a)

u2 =
KI√
2π

4(1− ν2)

E

√
r

(
1−

cos2 θ

2
2(1− ν)

)
sin

θ

2
. (4b)

For more details on fracture mechanics, reference can be made to Kanninen and120

Popelar’s book [38].121

2.2. Eshelby’s eigenstrain approach122

Let an inclusion Ω of surface ∂Ω in V be considered. Eshelby’s solution of123

the ellipsoidal inhomogeneity [42] is based on the steps hereinafter described.124

I The region Ω is removed. Thus, it undergoes the strain −e∗ij . Let σ∗ij be the125

stress associated with −e∗ij by means of Hooke’s law.126

II The surface tractions σ∗ijnj are applied on ∂Ω to bring Ω back to its primary127

shape. The inclusion is rewelded in the matrix. The tractions σ∗ijnj have128

originated a layer of body forces b∗i = −σ∗ij,j spread over ∂Ω.129

III an opposite tractions field σ∗ijnj is applied at ∂Ω so to recover the initial130

state.131

Following Eshelby’s seminal work [37] and a later, corrected, version [42], both132

based on Love’s classic treatise [43], the displacement at r due to a point-force133

Fi at r′ writes134

Ui = UijFj , (5)135

where136

Uij =
1

4πµ

δij
|r− r′|

− 1

16πµ(1− ν)

∂2

∂xi∂xj
|r− r′| . (6)137

Therefore, the displacement in the inclusion in stage III due to σ∗ijnj is [37]138

ui =

∫
∂V

σ∗jk nk Uij(r− r′) dS , (7)139
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where σ∗ij is the stress associated with e∗ij by means of Hooke’s law140

σ∗ij = Cijhke
∗
hk . (8)141

Remarkably, Eq. (7) suggests that the compatible strain field εij = 1
2 (ui,j +uj,i)142

in the inclusion is, in turn, a function of the eigenstrain e∗ij .143

While the strain in both matrix and inclusion is εij = 1
2 (ui,j + uj,i), the144

stress in the matrix writes as145

σij = Cijhk
1

2
(uh,k + uk,h) . (9)146

The stress in the inclusion is cast as147

σij = Cijhk
1

2
(uh,k + uh,k)− σ∗ij , (10)148

with σ∗ij given by Eq. (8).149

2.3. Definition of a two-field-based kinematics150

The crack tip at which the strain and the stress are singular is regarded as151

a point singularity, and the crack tip is replaced by a region Ω surrounding the152

crack tip as shown in Fig. 2.153

In Ω, the crack is regarded as a disturbance of the strain field. The aim is154

to correctly capture this disturbance. The first key assumption relies on the155

approximation of the displacement field as156

ui = vi + f ai . (11)157

In Eq. (11), vi is the i−th component of the displacement field that would158

be present without the elastic singularity. The term f ai is an additional field159

incorporating the mathematical structure of the expected solution. Function f160

features the expected singularity of the displacement field at the crack tip. It161

is assumed scalar to simplify the subsequent developments. It is also assumed162

bounded, with singular derivative. Symbol ai denotes the i−component of a163

vector modulating the entity of the disturbance in the space. By construction, ai164

vanishes where the effects of the elastic singularity vanish while is different from165

zero where the disturbance is active, i.e. ai = 0 in V \ Ω. Approximation (11)166

preludes to the XFEM developed in Sect. 4.167

Therefore, the displacement field depends on two distinct vector fields of168

components vi and ai.169

By compatibility, for infinitesimal displacements and strains, the total strain170

is171

1

2
(ui,j + uj,i) = εij + e∗ij , (12)172

where the strain term173

εij =
1

2

(
vi,j + vj,i + f ai,j + f aj,i

)
(13)174
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is bounded, while the strain term175

e∗ij =
1

2

(
f,i aj + f,j ai

)
(14)176

is singular, because f has singular derivative.177

2.4. Constitutive laws178

The strain field in the whole solid is179

1

2
(ui,j + uj,i) = εij + e∗ij , (15)180

εij and e∗ij being defined by Eqs. (13) and (14), respectively.181

However, the stress in the inclusion turns out being182

σij = Cijhk
1

2
(uh,k + uk,h)− Cijhke∗hk = Cijhkεhk (16)183

in Ω. Furthermore, being ui,and thus εij , function of e∗ij through Eqs. (7) and184

Eq. (8), the stress inside the inclusion is a function of e∗ij in its turn, to be cast185

as186

sij = Sijhke
∗
hk . (17)187

Somehow reminiscent of Eshelby’s tensor [37], the constitutive tensor Sijhk will188

be specified in the forthcoming Sec. 4.2. Thus, in the inclusion,189

σij = sij = Sijhke
∗
hk , in Ω . (18)190

Equality (18) plays a crucial role in the subsequent developments.191

The energy momentum. Eshelby’s force on an elastic singularity inside a closed192

surface Γ is the integral193

Fl =

∫
Γ

Pljnj dS , (19)194

where Plj = Eδlj − σijui,l is Eshelby’s energy momentum [28, 36], and E is the195

strain energy. The classic result [44, 28, 36] that Fl vanishes when taken over196

a closed path Γ within which the material is homogeneous and free of defects197

holds also in the present case. This can be shown by computing198 ∫
Γ

Eδlj njdS =

∫
Ω

E,l dV , (20)199

where200

E,l =
∂E
∂εij

εij,l = σijui,jl − σij e∗ij,l =
∂(σijui,l)

∂xj
, (21)201

because σij,j by equilibrium, and e∗ij vanishes by hypothesis within the consid-202

ered domain. Hence, the energy momentum Fl vanishes, and the exploitation203

of the J-integral [45] is possible.204
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3. The problem equations205

The forthcoming section 3.1 presents the variational formulation of the pro-206

posed approach, while Sec. 3.2 proposes a heuristic approach to the determina-207

tion of the constitutive tensor Sijhk associated with stress sij (17). The classic208

mechanical work used for elastic non-cracked bodies is formulated in Sec. 3.3.209

3.1. Variational formulation of the eigenstrain approach210

The focus of this section is on the problem of the equilibrium of the solid V
of Fig. 1 governed by

σij,j = 0 , in V , (22a)

σijnj = pi , on ∂Vp , (22b)

σij = sij , in Ω , (22c)

subjected to vanishing displacement on ∂Vd, and to the constitutive equa-211

tions (16), (17), (18). A special variational formulation is formulated, whose212

Euler-Lagrange equations lead to Eqs. (22). To this end, the work-functional213

W =

∫
V

σijεij dV +

∫
Ω

sije
∗
ij dV −

∫
∂Vp

pi ui dS (23)214

is introduced, where the external work is carried out by tractions pi on the215

portion ∂Vp of the external boundary ∂Vp. The following problem is formulated.216

Let δui and δai be admissible variations, being sufficiently differentiable, with217

vanishing δui on ∂Vd.218

Problem P. Find the stress σij and sij such that the first variations219

of W220 {
δWv, δWa

}
(24)221

vanish for any virtual admissible variations δui and δai, where the222

compatibility relationships (13) and (14) hold.223

Imposition δW = 0 for any admissible variation of the primal fields implies
the Euler-Lagrange conditions∫

V

σij,j(δvi + fδai) dV = 0 , (25a)∫
Ω

(
σij − sij

)
(f,iδaj + f,jδai) dV = 0 , (25b)∫

∂V

(
σijnj − pi

)
δvi dS = 0 (25c)

for any admissible variations δvi and δai. Because in the present case f,i 6= 0,224

the above stationarity equations (25) imply Eqs. (22).225
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3.2. A heuristic approach to the choice of tensor Sijhk226

From Eqs. (3), it can be drawn that the stress σ22 across the plane of the
crack ahead of the tip and the relative displacement of the crack faces just
behind the tip are

σ22 =
KI√
2π

1√
r
, (26a)

∆u2 =
8(1− ν2)

E

KI√
2π

√
r . (26b)

Fig. 3 reproduces a qualitative picture of the singularity of σ22 at the crack tip.227

To determinate Sijhk (17), a heuristic strategy based on Eqs. (26) is adopted.228

In particular, it is useful for the subsequent developments to compute the vari-229

ation of ∆u2 along x1230

∂∆u2

∂x1
=

4KI(1− ν2)

E
√

2π x1
. (27)231

Attention is restricted to mode I and to the case where function f in the232

approximated displacement (11) boils down to233

f =
√
rg2(θ) , (28)234

where235

g2(θ) =

(
1−

cos2 θ

2
2(1− ν)

)
sin

θ

2
. (29)236

At the crack tip, for θ = π, the x1-displacement component vanishes while the237

y-component of the opening becomes238

u2 = v2 +
√
ra2 . (30)239

At distances x1 sufficiently small from the crack tip,240

u2 →
√
x1a2 . (31)241

The variation of Eq. (31) is242

e∗ =
a2

2
√
x1

. (32)243

For dimensional consistency between Eq. (30) and (4b), KI is assumed to be244

approximated by a2E. Finally, the stress component conjugated with e∗ (27)245

reads246

s = E
∂∆u2

∂x1
=

4KI√
2π x1

(1− ν2) =
4E√
2π x1

(1− ν2)a2 =
8E√
2π

(1− ν2)e∗ , (33)247

where Eq. (32) has been replaced.248

According to Eq. (33), the case of single edge notched specimen investigated249
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Standard XFEM Present XFEM
Displacement ui = vi + f ai ui = vi + f ai
Strain 1

2 (ui,j + uj,i) = εij + e∗ij
1
2 (ui,j + uj,i) = εij + e∗ij

Stress σij = Cijhk(εhk + e∗hk) σij = Cijhkεhk
Internal work

∫
V
σij(εij + e∗ij)dV

∫
V
σijεijdV +

∫
V
sije

∗
ijdV

Table 1: Comparison between the standard formulation and the present formulation

in Sec. 5.2 is solved by assuming the following expression of Sijhk250

Sijhk =
8(1− ν2)√

2π
Cijhk . (34)251

For the case of the central crack studied in Sec. 5.4, Sijhk has been approximated252

as253

Sijhk =
8(1− ν2)√

2π
(cos2(α) + γ sin2(α))Cijhk , (35)254

α being the inclination of the crack with respect to the loading direction.255

In the applications described in Sec. 5, parameter γ is set equal to 0 when256

pure mode I opening is expected, while it is non-vanishing for mixed shearing-257

opening mode.258

3.3. Variational formulation based on the classic definition of the mechanical259

work for elastic bodies260

Following the classic approach adopted for linear elastic bodies, the total261

work writes262

W =

∫
V

σ′ij(εij + e∗ij) dV −
∫
∂Vp

pi ui dS , (36)263

where the stress is σ′ij = Cijhk(εhk + e∗hk). Imposition of the stationarity equa-
tions for any virtual variation δui and δai leads to the system of equations

σ′ij,j = 0 in V , (37a)

f σ′ij,j = 0 in V , (37b)

σ′ijnj = pi on ∂Vp . (37c)

It can be observed that the mechanical meaning of Eq. (37b) is not evident.264

Obviously, Eqs. (37a)-(37b) become linearly dependent if f is a constant, not a265

piecewise constant, function. However, in this case, the classic Finite Element266

method should be used, and the adoption of the special kinematics (11) is not267

justified.268

Tab.1 contains a prospective view of the main equations of the proposed269

approach versus the standard one.270
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4. Approximation of the problem271

The present section contains the basic relationships useful to transform in272

their discrete counterpart stresses and strains (Sec. (4.1)), and the variational273

formulation (Sec. 4.2). The standard XFEM discrete variational formulation274

is obtained in Sec. 4.3. Sec. 4.4 puts into evidence the effects of the assumed275

variational formulation on accuracy and blending.276

A bold notation denotes vectors and matrices.277

4.1. Discrete strain and stress fields278

The first term of the displacement (11) is approximated by interpolating the279

nodal vector vi of the generic i−th node, with i = 1, . . . , N , through N bilinear280

finite element shape functions Ni281

v ≈
N∑
i=1

Ni(x)vi . (38)282

The vector field fa is approximated by means of283

fa ≈
N∑
i=1

Nk∑
k=1

Ni(x)fk
(
r(x), θ

)
aik , (39)284

where N is the number of the finite element nodes, and Nk is the number of en-285

richment functions. Among the possible choices for the crack tip functions [16],286

in the present paper, the first-order crack tip functions [1]287

(f1 , f2, f3, f4) = (
√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
cos θ) (40)288

are assumed. The approximating space contains also discontinuous functions,289

such as the Heaviside functionH, reflecting the displacement discontinuity along290

the crack line. Finally, the displacement field is approximated by means of the291

following expression [23]292

u(x) =

N∑
i=1

Ni(x)vi +

N∑
I=1

Ni(x)H(x)ji +

N∑
i=1

Nk∑
k=1

Ni(x)fk
(
r(x), θ

)
aik , (41)293

Typically, the approximated domain is split into three sets, namely the set of the294

finite elements whose nodes are not enriched, the set of the partially enriched295

elements, called transition elements, and the set of the elements whose nodes296

are totally enriched. Consequently, the line across which the displacement is297

discontinuous is replaced by a finite element layer, that, in Fig. 4, is delimited298

by the circled nodes that are enriched with the Heaviside function. The presence299

of the crack tip is instead taken into account through a crack-tip-enriched finite300

element, whose nodes are marked with a square in Fig. 4.301

11



The discrete form of the displacement field (41) is rewritten as302

u = Nv +HNj + FMa , (42)303

where vector j contains the nodal displacement jumps, matrix N collects the304

standard finite elements shape functions, and, finally, matrices M and F gather305

the contributions from the crack enrichment tip functions, as detailed in the306

appendix for brevity.307

From here on, attention is restricted to the finite element enriched with the308

crack tip functions. In this finite element, the displacement is approximated309

through310

u = Nv + FMa . (43)311

The compatible strain field is312

∇u = ε + e∗ , (44)313

with

ε = Bv + F̃BMa , (45a)

e∗ = BFa . (45b)

Matrices BM and BF are associated with the gradient of M and with the
tensor product ∇F ⊗ Na, respectively. Moreover, F̃ contains the crack tip
enrichment functions but does not coincide with F for dimensional consistency
reasons. More details on the structure of the aforementioned matrices are in
the appendix. Finally, the discrete form of the stresses is

σ = CBv + CF̃BMa , (46a)

s = SBFa (46b)

are introduced, where S is given by Eq. (35).314

4.2. The discrete variational formulation of the eigenstrain approach315

After replacement of Eqs. (45), the discrete form of the proposed total virtual316

work reads317

W =

∫
V

σ · (Bδv + F̃BMδa) dV +

∫
V

s ·BFδa dV −
∫
∂Vp

p ·Nδv dV (47)318

for any virtual δv and δa that vanish at the boundaries, being σ and s given by
Eqs. (46). The solving equations are obtained by computing the discrete form
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of the Euler-Lagrange conditions for W∫
V

BTσ dV =

∫
V

NTp dS , (48a)∫
V

(F̃BM )Tσ dV +

∫
V

BT
Fs dV = 0 . (48b)

Therefore, the stiffness matrix is319

K =

 ∫
V
BTCB dV

∫
V
BTCF̃BM dV∫

V
(F̃BM )TCB dV

∫
V

(F̃BM )TCF̃BM dV+∫
V
BF

TSBF dV

 (49)320

where S follows from Eq. (34).321

4.3. The standard discrete formulation of XFEM322

Let the approximating space be the same as that introduced in the previous
section. For the standard XFEM approach, the discrete form of the virtual work
function is

W ′ =

∫
V

σ′ · (Bδv + F̃BMδa + BFδa) dV −
∫
∂Vp

p ·Nδv dV (50)

for any virtual δv and δa, where σ′ = C(Bδv + F̃BMδa + BFδa).323

The stationarity equations of W ′ (50) are∫
V

BTσ′ dV =

∫
∂Vp

NTp , (51a)∫
V

(F̃BM )Tσ′ dV +

∫
V

BT
Fσ
′ dV = 0 . (51b)

The associated stiffness matrix is324

K′ =

 ∫
V
BTCBdV

∫
V

(
BTCF̃BM + BTCBF

)
dV∫

V

(
(F̃BM )TCBdV + BT

FCB
)
dV

∫
V

(
(F̃BM )TCF̃BM + BF

TCBF

)
dV+∫

V

(
BT

FCF̃BM + (F̃BM )TCBF

)
dV

 .

(52)325

The terms of the stiffness matrix (52) containing the singular part of the strain326

are coupled with those containing the bounded part of the strain irrespectively327

of the mechanical meaning associated with each of these strain contributions.328

A comparison between Eq. (48b) and Eq. (51b) suggests that the present for-329

mulation coincides with the standard XFEM for any vanishing BF .330

Let Eq. (51b) be rewritten as331 ∫
V

(
(F̃BM )T + BT

F)σ′ dV = 0 . (53)332
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Type f BM BF

Discontinuity H H[− 1
h ,

1
h ] -

Regularized discontinuity Hρ Hρ[− 1
h ,

1
h ] δρ[− 1

h ,
1
h ]

weak discontinuity sign(x) sign(x)[−1/h 1/h] ±1[1− x̄
h ,

x̄
h ]

crack tip
√
x

√
x[− 1

h ,
1
h ] 1

2
√
x

[1− x̄
h ,

x̄
h ]

Table 2: Representative one-dimensional cases of enrichments for P1 finite element approxi-
mation functions

The latter equation is quite restrictive to be satisfied as it has to be satisfied not333

only within the enriched finite element at the crack tip but also in the adjacent334

finite elements, the so called transition elements, where the partition of unity335

property is lost. From a general standpoint, the structure of Eq. (53) holds not336

only for the crack tip enrichment but also for any set of enrichment functions.337

4.4. Remarks on the effects of the assumed variational formulation on accuracy338

and blending339

We resume the path of reasoning started in references [9, 10, 12, 46] regarding340

the loss of accuracy, and related possible remedies, associated with transition341

elements. A generic one-dimensional transition finite element of length h is con-342

sidered in a uniform mesh, being x is the distance from the assumed singularity343

f , such as a discontinuity of displacements, a material change, or a crack tip.344

For a linear, P1, finite element approximation, the local shape functions are345

N1 = 1− x̄/h and N2 = x̄/h, where x̄ is the local abscissa from node 1 with x1346

to node 2 with x2. In the considered transition element, the lack of partition of347

unity has consequences not only on the approximation of the displacement field348

but also on the approximation of the strain field. The reason is that the strain349

ε11 writes350

εxx =
1

h
(v2 − v1)− a1

h
f(x) + a1

(
1− x̄

h

)
f ′(x) . (54)351

The “intruder” in Eq (54) is the term a1
h f(x). It is an unwanted term, because352

it represents a strain component that does not match with the searched strain353

field, whose profile should rather be ruled by the term with f ′(x). It seems,354

therefore, reasonable that the practice of computing the quadratic form of the355

strain energy will introduce a series of terms where the unwanted term is coupled356

with the others, with a consequent possible loss of accuracy. This fact can be357

read in two distinct ways: as a numerical evidence to be faced by means of358

high order enrichment of shape functions [9, 10, 46, 12, 47], and as a lack of359

mechanical consistency [32, 48, 33, 34, 35]. To this author’s knowledge, the360

present study is the first to adopt the latter standpoint in fracture mechanics.361

The main numerical consequence of the adopted approach is the elimination362

of the coupling of the term with f ′ with the term with f and the standard363

displacement term, in the one-dimensional case, namely between matrix BF364

and matrices B and F̃BM in the general case where F is a vector of enrichment365

functions. However, let us keep the one-dimensional format to simplify the366
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reasoning. One of the crucial relationships of the present XFEM is Eq.(22c),367

whose discrete one-dimensional expression reduces to368

E
v2 − v1

h
− Ea1

h
f(x) = Ēa1

(
1− x̄

h

)
f ′(x) , (55)369

where E is the Young’s modulus and Ē is a function of E depending on the370

type of problem to be studied. In fact, the present XFEM does not impose371

Eq. (22c) in a strong form but in the weak form of Eq. (48b). However, the372

strong form (55) suggests some remarks.373

In particular, Eq. (55) specializes as follows374

• for the displacement discontinuity Heaviside enrichment H,375

v2 − v1

h
− a1

h
H(x) = 0 ; (56)376

• for the regularized displacement discontinuity enrichment Hρ [32],377

v2 − v1

h
− a1

h
Hρ(x) =

1

t
a1

(
1− x̄

h

)
, (57)378

where t is a unit length to be introduced for dimensional consistency;379

• for the material discontinuity enrichment sign(x),380

v2 − v1

h
− a1

h
sign(x) = ±a1

(
1− x̄

h

)
; (58)381

• for the crack tip enrichment
√
x382

v2 − v1

h
− a1

h

√
x = a1

8√
2π

(1− x̄

h
)

1

2
√
x
. (59)383

Eq. (59) contains the mesh size of the uniform mesh. Under the assumption that384

x1 = h, and that the transition element is placed immediately at the right of385

the reproducing finite element enriched with the crack tip enrichment functions,386

the trends of the term
√
x, that is independent of the discretization, and the387

term (1 − x̄
h ) 1

2
√
x

, that depends on h, are compared in Fig. 5. The bigger the388

mesh size the better the strong form (59) is satisfied in the transition element,389

because, there, the terms have comparable trends. For small mesh sizes, the390

differences between the profiles in the transition element are enhanced. Hence,391

a fast convergence for coarse meshes is expected.392

Furthermore, it can be observed in Tab. 2 that coupling BF with BM leads393

to terms containing x̄/h, that do not vanish for decreasing h. On the other394

hand, coupling BF with B leads to terms of the same order as BF . As shown395

in Fig. (5), the terms of BF evaluated in the first element close to the crack396

tip decrease for decreasing mesh size. Hence, the contribution to the global397

stiffness matrix deriving from coupling BF and B is expected to decrease for398

15



decreasing h. This implies that the discrepancy between the solution obtained399

by means of the proposed XFEM and that obtained by means of the standard400

XFEM should decrease for increasing mesh size. Nevertheless, the two solutions401

will be different, because matrix S of the eigenstrain approach appears only in402

the proposed XFEM.403

The case of the material discontinuity. As a collateral remark, one can observe404

that, for the present 1D element placed at the right of the singularity distant405

x1 from node 1, Eq. (58) writes406

v2 − v1

h
− a1 x

h
− a1

1

h
+
a1x

h
− a1x1

h
=
v2 − v1

h
− a1

1

h
− a1x1

h
. (60)407

Unlike in standard XFEM, in the present case, the vanishing of the linear term408

makes convergence to a homogeneous strain possible. The implementation of409

this case of material discontinuity is left for a forthcoming application.410

5. Applications411

After Sec.5.1 introducing the main general features of the adopted imple-412

mentation strategy, Sec. 5.2, 5.3, and 5.4 show the results obtained in the sim-413

ulation of a single edge notched test and a tensile specimen with an inclined414

central crack.415

5.1. Premises416

As previously mentioned, this study intentionally pursues the simplest possi-417

ble procedures of implementation. Thus, bilinear shape functions N have been418

used, and Gauss integration at the crack tip element has been kept. However, it419

is known [10, 11, 49] that the adoption of polar quadrature rules can overcome420

the lack of accuracy in the integration of the stiffness contributions of the crack421

tip enriched finite element.422

The stress intensity factors have been obtained from the computation of the423

J-integral using domain forms of the interaction integrals [1]. The J-integral424

domain radius associated with an enriched element of area A is 3
√
A. Other425

techniques are described in Sukumar’s et al. review [49]. For example, Song et426

al. [50] based the determination of the stress intensity factors on the computation427

of Irwin’s integral [40].428

In the next developments, the so-called topological instead of the so-called429

geometrical enrichment [10, 16] is adopted. It has been ascertained [10, 16]430

that topological enrichment decreases accuracy while keeping the stiffness ma-431

trix well-conditioned. Alternatively, a certain number of finite elements within432

a fixed area in front of the crack tip is enriched. This is called geometrical en-433

richment. Besides increasing the accuracy, geometrical enrichment increases the434

conditioning number of the stiffness matrix. Hence the necessity of stabilization435

of the formulation follows, such as those described in [13, 15].436
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The conditioning number of the stiffness matrix obtained with the present437

formulation is the same as that obtained in first-order standard XFEM with438

topological enrichment. The condition number have not been reported as they439

appear not a major issue in topological enrichments, contrarily to geometrical440

enrichment.441

Uniform meshes made of four-nodes elements have been adopted. Meshes442

have not been refined around the crack.443

The forthcoming sections contain a critical comparison among the results444

obtained by means of the proposed formulation, those obtained by employing445

the standard XFEM approach, and the reference results. Accuracy is assessed446

for variable crack length and inclination angles.447

5.2. Single edge notched specimen448

The first example is the Single Edge Notched (SEN) plate in plane strain449

state subjected to a uniform tensile stress p=1 MPa illustrated in Fig. 6. The450

plate has width W = 3 cm and height H = 6 cm. A variable crack length a has451

been considered. The stress intensity factor of the single-edge notched specimen452

has been computed and compared with Tada’s formula [51]453

Kref
I = p

√
π a

√
2W

πa
tan

πa

2W

0.752 + 2.02
a

W
+ 0.37(1− sin

πa

2W
)

cos πa
2W

. (61)454

Among all, Tada’s formula is the most accurate, with an accuracy better than455

5× 10−3 for any a/W . The matrix of the cartesian components of tensor Sijhk456

has been assumed according to Eq. (34).457

First, the case in which the crack tip falls at the center of the finite element458

is studied. In Figs. 7a, 8a, and 9a, the relative error in normalized discrete459

L2(V ) norm of KI is shown. Figs. 7b, 8b, and 9b display the values of the ratio460

KI/K
ref
I for variable mesh size, showing that convergence is from below. The461

crack lengths are a = 2W/3, a = W/2, and a = W/6, respectively. Red squares462

and green circles denote the results obtained by means of the standard XFEM,463

and those obtained by means of the present XFEM, respectively. The present464

XFEM is one order of magnitude more accurate than the standard XFEM. The465

slopes of the L2(V )-error profiles have been pointed out in the logarithmic scale.466

The relative error of the case where the crack is aligned along the element467

edges at distance H/2 from the bottom is shown in Fig. 10 for a = 0.5W (a)468

and a = 0.6W . In this special case, two transition elements are semi-enriched at469

the crack tip. This seems to have the same effect on accuracy as that produced470

by a geometrical enrichment. Here, the gain in accuracy of the present XFEM471

is evident for decreasing mesh size.472

Then, the case where the crack tip position is randomly placed within the473

finite element is addressed. Fig. 11 illustrates the case of a = 0.8W . Smaller474

crack lengths such as a = 0.45W , and a = 0.175W displayed in Figs. 12 are475

associated with errors with an oscillatory trend due to the fact that, when the476

crack tip approaches the element edges, accuracy deteriorates. Nevertheless, the477

17



errors of the proposed XFEM are generally smaller than that of the standard478

XFEM. In particular, the sensitivity of the proposed method to the crack tip479

position is illustrated in Fig. 13 considering a = 0.45W and three meshes with480

h = 1/9, 1/19, 1/29 cm. The crack tip positions change depending on the mesh481

size as shown in Figs. 13a-c. In these figures, the J-integral-domain is shown in482

red. Figs. 13d-f, and 13g-h refer to the proposed XFEM and to the standard483

XFEM, respectively.484

To investigate the local behavior of the computed stress profiles, the stress485

components have been compared with that obtained by means of the standard486

XFEM. Figs. 14 display the σ22, σ11, and σ12 components, where the y-axis is487

parallel to the loading direction and the x axis is orthogonal. A mesh of 57x114488

finite elements has been used. The contour plots are similar, but the present489

XFEM typically reproduces the eigenstrain shape within the finite element at490

the crack tip.491

5.3. Tensile plate with central horizontal crack492

A CCT test of a plate in plane strain state subjected to a tensile loading of493

p = 1 MPa with a central horizontal crack is considered. The plate is a square of494

edge length W = 10 cm. The geometry can be inferred from Fig. 15 for α = 0o.495

The plate is loaded by a tensile distributed load of p = 1 MPa, and is made of496

isotropic material with Young modulus E = 100 MPa and Poisson coefficient497

ν = 0.3. Based on geometry and loading condition, the stress intensity factor498

of reference is [51]499

Kref
I = p

√
π a

(
1− 0.025

( a
W

)2
+ 0.06

( a
W

)4)√
sec

πa

2W
. (62)500

Matrix S is given by Eq. (34).501

Fig. 16 displays the L2(V ) norm of the error on the computation of the502

relative error in normalized discrete L2(V ) norm of KI (a) and ratio KI/K
ref
I503

(b) for variable mesh size and 2a = 8W/100. Green squares and red circles504

denote the proposed XFEM and the standard XFEM, respectively.505

5.4. Slanted central crack506

The third example is the square plate of Sec. 5.3 and displayed in Fig. 15 but507

with the central crack of length 2a inclined of α. For an infinite plate subjected508

to a plane strain state, the analytical solution predicts, for an infinite plate, the509

following values of the stress intensity factors510

Kref
I = p

√
π a cos2 α , Kref

II = p
√
π a sinα cosα . (63)511

In the present CCT test, the matrix of the cartesian components of tensor512

Sijhk (35) has been assumed according to Eq. (35) with parameter γ set equal513

to 100. This γ value leads to the best approximation of both KI and KII . In514

fact, greater values do not improve significantly the approximation of KII , while515
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deteriorate the accuracy of the approximation of KI ; smaller values increase the516

accuracy of KI while lead to unsatisfying values of KII .517

Figs. 17 and 18 show the values of KI and KII computed for variable in-518

clination α and crack lengths 2a = W/10 and 2a = W/25 by means of the519

proposed XFEM (green circles and triangles), and through the standard XFEM520

(red squares and diamonds). The continuous black lines denote the reference521

values (63), where for α = 0 the reference formula (62) has been exploited, being522

more accurate than Eq. (63). In particular, circles and squares denote KI -values523

computed with the present XFEM and the standard XFEM, respectively, while524

triangles and diamonds indicate KII - values evaluated through the present and525

the standard XFEM, respectively.526

Fig. 19 illustrates the relative error in normalized discrete L2(V ) norm of527

KI (a), KII (c), KI/K
ref
I (b), and KII/K

ref
II (d) for variable mesh size with528

fixed crack length 2a = 3W/100 and inclination α = π/4. Green squares and529

red circles denote the proposed XFEM and the standard XFEM, respectively.530

Note that convergence is from above. Figs. 20 and 21 display the contour plots531

of σ22, σ11, σ12 using the standard XFEM (a) and the present XFEM (b). In532

particular, in Fig. 20, 2a = W/10, α = 40o and a mesh of 49 × 49 elements533

have been adopted, while Fig. 21 has been obtained for 2a = W/50, α = 80o,534

and a mesh of 199× 199 elements. It can be noted that the disturbance of the535

stress field around the crack is more localized in the present XFEM than in the536

standard one.537

6. Discussion538

After a critical discussion of the peculiarities of proposed XFEM with respect539

to the standard XFEM in Sec. 6.1, Secs.6.2 and 6.3 highlight the main pros and540

cons of the proposed approach, based on the results of Sec. 5.541

6.1. Differences with respect to the standard XFEM542

The present and the standard XFEMs are based on different solving equa-543

tions at both the continuum and the discrete level. In particular, in Eq. (49), the544

asymptotic enrichment functions are not coupled with the other terms. More-545

over, the term of the asymptotic enrichment function in Eq. (49) contains the546

constitutive matrix S, while in the homologous term of Eq. (52) the elastic547

constitutive matrix E appears.548

In particular, the stiffness matrix of the present method can indeed be ob-549

tained from the standard one after replacement of the constitutive tensor S550

where required and removal of certain coupling stiffness terms, as evident from551

a comparison between Eq. (49) and Eq. (52).552

However, when the derivative of the enrichment function f vanishes, such as553

in the case of the Heaviside function, the two stiffness matrices coincide, though,554

in this case, the equivalent eigenstrain approach ceases to be meaningful.555

Therefore, the proposed and the standard eXtended Finite Element methods556

share the same approximating space, and differ in the variational approach and557
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the solving equations. Only for a piecewise constant function f , the proposed558

formulation reduces to the standard XFEM. Nevertheless, for decreasing mesh559

size, some terms of the stiffness matrix of the standard XFEM tend to decrease,560

and the difference between the stiffness matrices diminishes for decreasing mesh561

size.562

6.2. Advantages563

For the SEN test of Sec. 5.2, the stress intensity factors computed through564

the present XFEM are one order of magnitude more accurate than those ob-565

tained with first-order non-stabilized XFEM of the mainstream school [1]. The566

gain in accuracy is evident especially when the mesh is coarse, while it attenu-567

ates for decreasing mesh size. In particular, crack tips falling within the finite568

element lead to the highest accuracy.569

In the CCT test of Secs. 5.3 and 5.4, the main result is the robustness of the570

present XFEM for variable crack position and length. Figs. 17-19 show that the571

accuracy of the proposed approach in evaluating KII is higher than that of the572

standard XFEM when short crack lengths are considered. As for the accuracy573

of evaluation of KI , the present approach is more robust when meshes are coarse574

and the crack lengths are short compared to the plate edge. Figs. 17 and 18575

show that there are indeed positions of the crack with respect to the plate for576

which the standard XFEM diverges, while the present XFEM still converges to577

satisfying values. A further advantage is the fact that the additional solving578

equation associated with the enrichment field has a clear mechanical meaning.579

It is known from previous studies that convergence can be improved by580

adopting high-order polynomial shape functions and low-order crack tip func-581

tions [52, 10, 46] or high-order crack tip enrichment functions [8]. For the slanted582

crack case, the proposed low-order XFEM exhibits results analogous to that ob-583

tained by Lan et al. [8] by means of crack tip functions of the second order. For584

the single edge crack case, the effect on the accuracy of the present low-order585

XFEM is analogous to that obtained by XFEMs with high-order polynomial586

shape functions [10, 46, 47], however, without increasing the condition number587

of the solving system.588

6.3. Limitations589

Being simplified, the proposed implementation strategy has certain limita-590

tions. Based on the fact that the standard Heaviside function is used, the591

proposed procedure is affected by the same sensitivity to the position of the dis-592

continuity line as non-stabilized XFEM. When the crack tip is randomly placed593

with respect to the finite element, convergence of the stress intensity factors594

is oscillatory, though the proposed XFEM remains more accurate. Laborde et595

al. [10] detected similar oscillations in their high-order geometrically enriched596

XFEM, and explained them as oscillations around the exact values. The reg-597

ularized Heaviside function together with the equivalent eigenstrain procedure598

described in [35] can be used instead of the standard Heaviside to get well-599

conditioned matrices when the crack line is close to the edges of the element.600
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It is indeed remarkable that the regularized XFEM developed in [35] does not601

need a special treatment of blending elements. Moreover, the choice of the ten-602

sor Sijhk has been done on a heuristic basis. Although the present results show603

that such a simplified choice leads to quite effective results, it can be argued604

that a more rigorous derivation could further improve the accuracy. Finally,605

high order enrichments and geometrical crack-tip enrichment [10, 47, 15] have606

not been used. Obviously, the implementation of enhanced procedures, such as607

stabilization or geometrical enrichment, is possible also in the present XFEM.608

As for the convergence rate, the present formulation, unfortunately, does not609

always increase the slope of the KI and KII error profiles significantly. It should610

be however kept in mind that the reference values are not exact values, with an611

approximation of the 5%. The analytical boundary conditions [10] could rather612

be used.613

7. Conclusions614

The present study proposes a novel XFEM for the determination of stress615

intensity factors with a minimal effort of implementation. The XFEM has616

been considered not only in relation with a functional space but also with a617

variational principle, where the singular part of the strain is regarded as an618

equivalent eigenstrain. For any non-constant enrichment function, the solving619

equations of the proposed formulation and that associated with the standard620

XFEM differ at both the continuum and the discrete level. For the simulated621

plane strain examples, the present results show that stress intensity factors are622

almost one order of magnitude more accurate than those obtainable through623

first-order non-stabilized XFEM with topological enrichment. Furthermore, the624

present XFEM exhibits excellent robustness for variable crack geometry. The625

gain in accuracy and robustness is more evident for coarse meshes. Based on626

this study, the proposed XFEM is competitive with enhanced XFEMs, while627

keeping a minimal computational burden.628
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Appendix A.632

In the two-dimensional case, vector a is633

aT = [ax11, a
y
11, a

x
12, a

y
12, . . . , a

x
1Nk

, ay1Nk
, . . . , axN1, a

y
N1, a

x
N2, a

y
N2, . . . , a

x
NNk

, ayNNk
]

(A.1)634

where axij and ayij are the components along x and y of vector aij associated635

with node i and enrichment function fj . Matrix F is the 2× (2N Nk) matrix636

F =
( 1 2 . . . Nk

F1 F2 . . . FNk

)
, (A.2)637
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being638

Fj =

( 1 2 3 4 . . . 2N − 1 2N

fj 0 fj 0 . . . fj 0
0 fj 0 fj . . . 0 fj

)
(A.3)639

for j = 1, . . . , N . Hence, matrix F is a 2 × (N Nk) matrix. Matrix M is a640

(2NkN)× (2NkN) diagonal matrix641

M =


1 2 . . . Nk

1 MM 0 . . . 0
2 0 MM . . . 0
. . . . . . . . . . . . 0
Nk 0 0 . . . MM

 , (A.4)642

with MM the (2N)× (2N) matrix643

MM =



1 2 3 4 . . . 2N − 1 2N

1 N1 0 0 0 . . . 0 0
2 0 N1 0 0 . . . 0 0
3 0 0 N2 0 . . . 0 0
4 0 0 0 N2 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
2N − 1 0 0 0 . . . 0 Nj 0
2N 0 0 0 . . . 0 0 Nj


. (A.5)644

Matrix F̃ is the 3× (3NkN) matrix645

F̃ =
( 1 2 3 . . . N

F̃1 F̃2 F̃3 . . . F̃Nk

)
, (A.6)646

with647

F̃j =


1 2 3 4 5 6 . . . 3Nk

f1 0 0 f2 0 0 . . . fNk
0 0

0 f1 0 0 f2 0 . . . 0 fNk
0

0 0 f1 0 0 f2 . . . 0 0 fNk

 , (A.7)648

for j = 1, . . . , N . Matrix BM is a (3NkN)× (2N Nk) that reads649

BM =


1 2 . . . N

1 BM1 0 0 0
2 0 BM2 0 0
. . . . . . . . . . . . . . .
N 0 0 0 BMN

 , (A.8)650
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where BMj is the compatibility matrix651

BMj =


1 2 3 . . . Nk

1 Bj 0 0 . . . 0
2 0 Bj 0 . . . 0
. . . . . . . . . . . . . . . . . .
Nk 0 0 0 . . . Bj

 (A.9)652

and653

Bj =

Nj,x 0
0 Nj,y

Nj,y Nj,x

 (A.10)654

for j = 1, . . . , N .655
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Figure 1: Body with a crack
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Figure 2: Region Ω of the elastic singularity
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Figure 3: Mode I opening and stress singularity at the crack tip

Figure 4: Discretization of the domain according to the enriched formulation
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Figure 5: Comparison between the
√
x-term (red dotted line) and function (1 − x̄

h
) 1

2
√
x

for

variable mesh size h

Figure 6: Single Edge Notched test (SEN)
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Figure 7: SEN: relative error in normalized discrete L2 norm of KI (a) and ratio KI/K
ref
I

(b) for variable mesh size with a = 2W/3. The red squares denote the results obtained by
means of the standard XFEM, while the green circles denote those obtained by means of the
present XFEM.
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Figure 8: SEN: relative error in normalized discrete L2 norm of KI (a) and ratio KI/K
ref
I

(b) for variable mesh size with a = W/2. The red squares denote the results obtained by
means of the standard XFEM, while the green circles denote those obtained by means of the
present XFEM
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Figure 9: SEN: relative error in normalized discrete L2 norm of KI (a) and ratio KI/K
ref
I (b)

for variable mesh size with a = W/6; red squares and green circles denote the results obtained
by means of the standard XFEM and the present XFEM, respectively
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Figure 10: SEN with crack aligned along the element edges: relative error in normalized
discrete L2 norm of KI for variable mesh size with a = 0.5W (a) and a = 0.6W ; green circles
and red squares denote the present formulation and the standard XFEM, respectively
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Figure 11: SEN with random crack tip position with respect to the finite element: relative

error in normalized discrete L2 norm of KI and ratio KI/K
ref
I (b) for variable mesh size with

a = 0.8W ; green circles and red squares denote the present formulation and the standard
XFEM, respectively
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Figure 12: SEN with random crack tip position with respect to the finite element: relative

error in normalized discrete L2 norm of KI (a) and ratio KI/K
ref
I (b) for variable mesh size

with a = 0.45W (a) and a = 0.175W (b); green circles and red squares denote the present
formulation and the standard XFEM, respectively
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(a) h=1/9mm (b) h=1/19mm (c) h=1/29mm

(d) present XFEM,
h=1/9 mm, KI = 5.01

(e) present XFEM,
h=1/19 mm,
KI = 4.98

(f) present XFEM,
h=1/29 mm,
KI = 5.00

(g) standard XFEM,
h=1/9 mm, KI = 4.91

(h) standard XFEM,
h=1/19 mm, KI =
4.95

(i) standard XFEM,
h=1/29 mm,
KI = 4.97

Figure 13: SEN with random crack tip position with respect to the finite element: comparison

between σ22 plotted for variable mesh size h; the reference value is Kref
I = 4.99 with a 0.5%

of precision [51]
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(a) σ22, Standard XFEM (b) σ22, Present XFEM

(c) σ11, Standard XFEM (d) σ11, Present XFEM

(e) σ12, Standard XFEM (f) σ12, Present XFEM

Figure 14: SEN: Comparison between the contour plots of σ12 [MPa] obtained for a = 0.5W
and 57x114 elements.
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α

Figure 15: CCT: Central inclined crack in a square plate of edge length 10 mm with crack
length 2a.
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Figure 16: CCT with horizontal crack: relative error in normalized discrete L2 norm of KI

(a) and ratio KI/Kex (b) for variable mesh size and 2a = 8W/100; green squares and red
circles denote the proposed XFEM and the standard XFEM, respectively

36



K
I
,K

I
I

α
(a)

K
I
,K

I
I

α
(b)

K
I
,K

I
I

α
(c)

Figure 17: CCT: KI and KII obtained with meshes of 49x49 (a), 99x99 (b), and 199 x 199 (c)
finite elements for variable inclination α (rad) and crack length 2a = W/10; green circles and
triangles denote the proposed XFEM, red squares and diamonds denote the standard XFEM
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Figure 18: CCT: KI and KII obtained with 99x99 (a) and 199 x 199 (b) finite elements for
variable inclination α (rad) and crack length 2a = W/25; green circles and triangles denote
the proposed XFEM, red squares and diamonds denote the standard XFEM
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Figure 19: CCT: relative error in normalized discrete L2 norm of KI (a), KII (c) and ratio

KI/K
ref
I (b) and KII/KII,ex (d) for variable mesh size with fixed crack length 2a = 3W/100

and α = π/4; green squares and red circles denote the proposed XFEM and the standard
XFEM, respectively.
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(a) σ22 in MPa, Standard
XFEM

(b) σ22 in MPa, Present
XFEM

(c) σ11 in MPa, Standard
XFEM

(d) σ11 in MPa, Present
XFEM

(e) σ12 in MPa, Standard
XFEM

(f) σ12 in MPa, Present XFEM

Figure 20: CCT: contour plots of σ22, σ11, and σ12 for α = 40o, 2a = W/10, and 49x49 finite
elements.
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(a) σ22 in MPa, Standard
XFEM

(b) σ22 in MPa, Present
XFEM

(c) σ11 in MPa, Standard
XFEM

(d) σ11 in MPa, Present
XFEM

(e) σ12 in MPa, Standard
XFEM

(f) σ12 in MPa, Present XFEM

Figure 21: CCT: contour plots of σ22, σ11, and σ12 for α = 80o, 2a = W/50, and 199x199
finite elements.
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