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CD40-signalling abrogates induction of RORgtþ

Treg cells by intestinal CD103þ DCs and causes
fatal colitis
Christian Barthels1,*, Ana Ogrinc1,*, Verena Steyer1, Stefanie Meier1, Ferdinand Simon1, Maria Wimmer2,

Andreas Blutke3, Tobias Straub4, Ursula Zimber-Strobl5, Esther Lutgens6,7, Peggy Marconi8, Caspar Ohnmacht2,

Debora Garzetti9, Bärbel Stecher9 & Thomas Brocker1

Immune homeostasis in intestinal tissues depends on the generation of regulatory T (Treg)

cells. CD103þ dendritic cells (DCs) acquire microbiota-derived material from the gut lumen

for transport to draining lymph nodes and generation of receptor-related orphan gtþ

(RORgtþ ) Helios� -induced Treg (iTreg) cells. Here we show CD40-signalling as a microbe-

independent signal that can induce migration of CD103þ DCs from the lamina propria (LP)

to the mesenteric lymph nodes. Transgenic mice with constitutive CD11c-specific

CD40-signalling have reduced numbers of CD103þ DCs in LP and a low frequency of

RORgtþHelios� iTreg cells, exacerbated inflammatory Th1/Th17 responses, high titres of

microbiota-specific immunoglobulins, dysbiosis and fatal colitis, but no pathology is detected

in other tissues. Our data demonstrate a CD40-dependent mechanism capable of abrogating

iTreg cell induction by DCs, and suggest that the CD40L/CD40-signalling axis might be

able to intervene in the generation of new iTreg cells in order to counter-regulate immune

suppression to enhance immunity.
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T
he immune system of the gut discriminates between
invading pathogens and colonizing commensal bacteria.
Specialized populations of intestinal cells integrate local

signals to regulate and maintain a mutualistic relationship
with the microbiota1. Failure to integrate this information into
proper regulatory processes can lead to pathologies such as
inflammatory bowel diseases, allergy or metabolic dysregulation.

Foxp3þ regulatory T (Treg) cells are important for such
homeostatic balance by controlling immune responses2.
Treg cells can be generated in the thymus from developing
CD4þ thymocytes (nTregs), as well as by differentiation from
mature peripheral CD4þ T cells to induced Tregs (iTregs),
a process requiring transforming growth factor b (TGF-b)3.
Germ-free mice have reduced Treg cell numbers4, a deficit that
can be rescued by colonization with commensal bacteria5,
suggesting that microbes cause colonic iTreg cell differentiation
or expansion. iTreg and nTreg cells occupy distinct cellular
niches, indicating a non-redundant role for iTreg cells to control
mucosal homeostasis6. A large fraction of colonic Foxp3þ Treg
cells is induced by the microbiota to express retinoic acid
receptor-related orphan gt (RORgt)7,8, and the deletion of
RORgtþ iTreg cells caused increased production of intestinal
IL-17A and interferon-g (IFN-g) in one study8 or elevated
type 2 helper T (Th2)-responses in another study7. Although
both studies demonstrated the importance of RORgtþFoxp3þ

iTregs to suppress T effector cells in the gut, the precise anti-
inflammatory role of RORgtþFoxp3þ iTreg cells is unclear9.

Dendritic cells (DC) present commensal and dietary antigens
to T cells. CD103þ DCs in the lamina propria (LP) of the
intestine take up bacterial antigen efficiently from the gut
lumen10 or from CX3CR1þ macrophages11 to induce the
development of peripheral iTreg cells12,13. CD103þCD11bþ

DCs are a major subpopulation of tolerogenic DCs, which can
also induce Th17 cells14,15 or Th17 and Th1 cells upon activation
with Toll-like receptor (TLR)-ligands16,17. CD103þCD11b�

DCs express high levels of aldehyde dehydrogenase (ALDH),
TGFb, integrin b8 and several other proteins necessary for
induction of iTreg cells and gut homing17. By contrast, most
CD103� DCs in the LP express CD11b, have a phenotype
similar to macrophages, and can prime IL-17-producing and
IFN-g-producing T cells in steady state without further
stimulation17. Studies revealed precise roles of the distinct
DC subsets showing that CD103þCD11b� DCs migrating
from LP to draining LN, but not sessile CD64þ monocyte-
derived cells are essential for the induction of iTreg cells18.

The exact mechanisms controlling the functional switch
between tolerogenic iTreg-inducing versus immunogenic
CD103þ DCs is elusive. Pattern recognition receptors and
inflammatory signals certainly have a function in functional
DC-modulation; however, many microbial products are shared
between commensal and pathogenic microorganisms, making
them ambivalent signals for DC to induce tolerance or immunity.
On the other hand, signals delivered by immune cells could also
suppress iTreg-generation when immune responses are needed.
CD40-signals can stop Treg-suppression of DCs19 and modulate
CD103-expression by DCs20.

To further investigate the role of CD40-signalling, here we
study external CD40-triggers and analyse transgenic mice
expressing latent membrane protein 1 (LMP1)/CD40-molecules,
inducing a constitutive active CD40-signalling in DCs. We show
that CD40-signals cause few phenotypic changes in DCs.
However, CD103þ DCs of the intestinal LP upregulate CCR7,
migrate from the LP to mesenteric lymph nodes (mLNs) and
rapidly die by apoptosis. Continuous CD40-signalling disables
CD103þ DCs to induce RORgtþFoxp3þ iTreg cells and
causes accumulation of IL-17Aþ IFN-gþ Th17/Th1 T cells,

breakdown of tolerance to gut microbiota, dysbiosis and
fatal colitis. Our data describe CD40-triggering as a microbe-
independent signal sufficient to modulate the tolerogenic proper-
ties of LP CD103þ DCs.

Results
CD40-induced migration of intestinal DCs to mLNs. Various
signals have been identified that enable DCs to develop
tolerogenic iTreg-inducing functions. Besides GM-CSF, RA and
TLR2 signalling, also b-catenin-dependent signals, uptake of
apoptotic DCs and PD-1 ligation may imprint Foxp3þ Treg
induction (reviewed in ref. 21). In contrast, it is much less clear
which signals abrogate Treg induction by DCs, for example
in situations where induction of immunity is warranted. Besides
microbial stimuli also CD40-signals can modulate the function of
CD103þ DCs. For example, injection of anti-CD40 monoclonal
antibodies (mAbs) can reduce the numbers of splenic CD103þ

DC20. Yet, triggering of CD40 is known to induce incomplete
maturation and increased survival of DCs22, which only
become fully matured, when CD40-signalling is combined with
a microbial trigger23,24. To investigate the influence of CD40-
signalling on DCs in vivo, we injected anti-CD40 mAbs into
C57BL/6 mice and analysed DC subsets in the LP and mLNs. All
DC subsets in the LP are strongly reduced at 72 h post treatment,
with a more prominent effect on both CD103þCD11b�

and CD103þCD11bþ DC subsets (Fig. 1a,b). To find out
if the decreased DC numbers in LP would be due to apoptosis,
we analysed DCs for presence of activated caspase 3, a marker
for cell death. Both, CD103þCD11b� and CD103þCD11bþ

DCs in LP show no increased levels of activated caspase
3 (Supplementary Fig. 2). Therefore, most likely cell death is
not the reason for disappearance of CD103þ DCs from LP upon
anti-CD40 stimulation (Supplementary Fig. 2). In parallel, the
frequencies and numbers of CD103þ DC subpopulations
transiently increase in the mLNs with a peak accumulation at
24 h post injection (Fig. 1a,b), suggesting that CD40-ligation
induces migration of DCs from the LP to mLNs. This
interpretation is further strengthened by the finding that
CD11cþMHCIIþ DCs sorted from the LP after anti-CD40
treatment upregulate expression of mRNA for CCR7 (Fig. 1c),
which is a requirement for migration of CD103þDCs from LP to
mLNs25. Also, CCR7-surface levels are upregulated strongly by
CD103þCD11b� and CD103þCD11bþ , but to a much lesser
extent by CD103� DCs (Fig. 1c, centre and right hand panel).
Since the increase of CD103þDCs in mLNs is only transient, we
investigated the fate of these cells and analysed DCs in mLNs for
the presence of activated caspase 3 as a marker for apoptosis
(Fig. 1d). Numbers of activated caspase 3þ CD103þ and
CD103� DCs briefly increase at 16 h post treatment, but are then
comparable to controls, suggesting a transiently increased
number of apoptotic cells (Fig. 1d). Also monocyte-derived
macrophages are involved in immune homeostasis of the
intestine26. We therefore analysed different macrophage
subpopulations P1 – P4 as described previously27 (Suppleme-
ntary Fig. 3a). This analysis showed that anti-CD40 injection also
modifies the composition of macrophages in the intestine. The
proinflammatory Ly6Cþ subpopulations P1 and P2 transiently
increase in population size, while the frequencies of
Ly6C�MHCIIþ subpopulation P3/4 decrease relatively to the
other subpopulations, but remain relatively unaltered in total cell
numbers (Fig. 1e). However, in contrast to DCs, macrophages of
the LP do not migrate to the mLNs, as previously published28.

Injection of anti-CD40 mAb leads to severe liver inflammation
and rapid increase in serum levels of alanine-aminotransferase
(Supplementary Fig. 3b)29. Moreover, strong increase of
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inflammatory cytokines such as MCP1, TNF, IFN-g and IL-6
can be detected in the serum as early as 16 h post injection
(Supplementary Fig. 3c). Therefore, injection of anti-CD40 mAbs
causes secondary effects, which could influence or even be
responsible for triggering CD103þ DCs to migrate to mLNs.

To investigate if the direct signal of CD40-crosslinking on DCs
rather than the concomitant inflammatory signals would induce
CD103þ DCs to migrate to the mLNs, we tested mice that lacked
CD40 specifically on CD11cþ DCs (CD11c-Cre x CD40fl/fl).
Here, CD40mAb-treatment does not induce migration of
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CD103þ DCs from the LP, arguing for the need of CD40-
crosslinking directly on DCs rather than secondary effects for
induction of DC-migration to mLN (Fig. 1f).

These findings suggest that CD40-triggered DCs leave the
LP and migrate to mLNs, where they eventually die by apoptosis.

DCs in DC-LMP1/CD40 mice have continuous CD40-signalling.
Although the above experiments suggest that CD40-signalling
causes DCs to leave the LP, we could not exclude an influence of
inflammatory stimuli, which have been previously reported to
augment effects of CD40-ligation on DCs23,24,30. To analyse the
functional role of CD40-signalling on iTreg-inducing DCs in
absence of other inflammatory signals in vivo, we generated
mice where CD11cþ DCs receive a constitutive, ligand-free
CD40 signal. To this end, we generated DC-LMP1/CD40-mice
by breeding CD11c-Cre mice31 to the previously published
LMP1/CD40flStop mice32, which express a loxP-flanked stop-
codon-protected LMP1/CD40 chimeric protein from the Rosa26
locus. The LMP1/CD40-fusion protein consists of the signalling
domain of CD40 and the transmembrane domain of LMP1.
It has been previously shown that expression of this chimeric
LMP1/CD40 fusion protein in B cells leads to constitutive
signalling via noncanonical NF-kappaB signalling pathway
and the MAPK Erk and Jnk resulting in lymphomagenesis32.
The CD11c-Cre strain has been used to direct Cre-expression
to intestinal DCs in previous studies33. As expression of the
LMP1/CD40 fusion protein in DCs was too low to be detected by
western blot analysis or flow cytometry, we analysed the
expression of Cre in intestinal DCs and macrophages indirectly
with the help of tdRFP reporter mice, which express loxP-flanked
stop codon-protected RFP from the Rosa26 locus34. This analysis
showed that Cre was expressed in CD64�CD11cþMHCIIþ

DCs, but not in the majority of macrophages (Supplementary
Fig. 3d). Here only macrophages of the MHCIIþLy6Clow P3/P4
subtype were partially RFPþ . Therefore, LMP1/CD40-fusion
protein expression was largely restricted to DCs and to
MHCIIþLy6Clow CD11cþ macrophages in the intestine.

Expression of LMP1/CD40 in DCs causes fatal colitis. The
lifespan of DC-LMP1/CD40 mice is drastically shortened to
10–20 weeks (Fig. 2a). Mouse pathology shows marked thicken-
ing of the colon mucosa, extensive LP infiltrates of mixed
inflammatory mononuclear cells (including lymphocytes, plasma
cells, macrophages and neutrophils), loss of crypts, reduction of
goblet cells, as well as focal cryptitis and ulceration (Fig. 2b). In
addition, levels of faecal lipocalin-2, a biomarker for intestinal
inflammation35, increase significantly in DC-LMP1/CD40-mice
(Fig. 2c). In contrast, histopathological examination of spleen

(Supplementary Fig. 4a) and other organs of DC-LMP1/CD40
transgenic mice did not reveal noticeable pathological alterations.

To test if the development of colitis was dependent on T and
B cells or commensal bacteria, we bred DC-LMP1/CD40-mice to
T and B cell deficient Rag1� /� mice or treated DC-LMP1/
CD40-mice with a mixture of antibiotics (ABX), respectively.
DC-LMP1/CD40 x Rag1� /� show long-term survival like
non-transgenic control littermates (Fig. 2a) and no thickening
of the mucosa (Supplementary Fig. 4b). The levels of lipocalin-2
as a marker for gut inflammation are similar to those of healthy
Rag1� /� mice (Fig. 2c). Similarly, the reduction of commensal
bacteria by ABX-treatment prevents onset of colitis (Fig. 2a) as
well as lesions of the colon mucosa (Supplementary Fig. 4b).
Overall, this data indicates that CD40-signalling in DCs was
sufficient to induce fatal colitis, which depends on both,
lymphocytes and the presence of high luminal loads of
commensal bacteria.

DC-LMP1/CD40-mice have reduced frequencies of CD103þ DCs.
To compare the effects mediated by the LMP1/CD40-fusion
protein to anti-CD40-injection (Fig. 1), we next analysed the
DC-subsets of the colon (Fig. 3a). In DC-LMP1/CD40 animals
the frequencies and cell numbers of both CD103þCD11b� and
CD103þCD11bþ DC subsets in the LP are strongly reduced
(Fig. 3a). In contrast, CD103�CD11bþ DCs are present in
higher amounts (Fig. 3a). To test if these changes are caused by
the CD40-fusion protein or by secondary inflammatory effects
due to colitis (Fig. 2a,c), we also analysed mice treated with ABX
or on Rag1� /� background (Fig. 3a), which are free of colitis
(Fig. 2 and Supplementary Fig. 4b). Both groups show a similarly
significant reduction of CD103þ DC subsets, while CD103�

CD11bþ DCs are unchanged in numbers (Fig. 3a). This finding
indicates that CD103�CD11bþ DCs seem to be less susceptible
to CD40-signal-induced migration as compared with CD103þ
DCs, either induced by mAb (Fig. 1a,b) or by the
LMP/CD40 transgene (Fig. 3a). Therefore, in contrast to
the increase in CD103� DCs, which is most likely caused by
secondary inflammatory effects, the loss of CD103þ DCs from
LP is intrinsically caused by the LMP1/CD40-transgene.

To find out if the expression of LMP/CD40 transgene would
induce DC-maturation, we analysed surface markers and cytokine
expression. However, we could not detect substantial differential
expression of surface markers such as CD86 (Supplementary
Fig. 5) by DCs from DC-LMP1/CD40 mice as compared with
control DCs. However, all DCs from DC-LMP/CD40 mice
consistently show lower surface expression levels of MHC II and
weak upregulation of CD80 in LP and mLNs (Supplementary
Fig. 5). We next isolated cells to analyse cytokine gene expression.

Figure 1 | Injection of anti-CD40 antibody induces migration of DCs from LP to mLNs. (a) Representative FACS plots of DC subsets as differentiated by

CD103 and CD11b in LP (gated on live CD45þMHCIIþCD11cþCD64� cells, Supplementary Fig. 1a) and mLNs (gated on live MHCIIþCD11cþ cells,

Supplementary Fig. 1b) at different time points after CD40 injection are shown. Numbers in the FACS plot indicate the percentages of cells in the respective

subset. (b) Numbers of cells per DC subset from (a) LP (black) and mLNs (red) are shown. (c, left) CCR7 mRNA expression was analysed in

CD11cþMHCIIþ cells purified from the LP of control mice and 16 h after anti-CD40 injection. (central) CCR7 surface expression of distinct LP DC subsets

was analysed in untreated control mice (Ctr) and mice treated with anti-CD40 mAb (iso, isotype control) 24 h after Ab-injection by flow cytometry.

Numbers in histograms indicate per cent CCR7þ DCs in the respective gate (mean±s.e.m; upper number, Ctr; lower number, anti-CD40 injected). (right)

Shown is the MFI of DCs. Distinct DC-subsets were gated as shown in a. (d) Representative FACS plots of active caspase3 in CD103þ and CD103�

DCs from mLNs (gated on live MHCIIþCD11cþ cells, Supplementary Fig. 1b) 16 h after anti-CD40 mAb injection and untreated controls. Bar graphs show

the number of cells positive for active caspase3 at different time points after anti-CD40 injection (n¼ 3). (e) Distribution of macrophages within the

‘waterfall’ staining (gated as shown in Supplementary Fig. 3a) at different time points after anti-CD40 injection shown as representative FACS plots and

cell numbers. Shown is one representative of two experiments (n¼ 3). (f) Control and DC-CD40� /� animals were injected with an antibody (FGK45) and

DC subsets analysed 3 days post injection. Dot plots and graphs show representatives of two (a–d,f) or three (e) independent experiments. Depicted is

the mean±s.e.m. of (n¼ 3; a,b,d–f) or (n¼4; c) 8–10 wk old female mice of each strain per group. *Po0.05; **Po0.01; ***Po0.001; two-tailed unpaired

t-test. MFI, mean fluorescence intensity.
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CD11cþ cells (DCs and macrophages) purified from inflamed
colon of DC-LMP1/CD40-mice show strongly elevated
expression of genes Il23a (encoding for IL-23p19), Il12a
(encoding IL-12p35) and Il1b (encoding IL-1b) (Fig. 3b, upper
panel). In contrast, CD11cþ cells from DC-LMP1/
CD40xRag1� /� -mice that do not develop colitis (Fig. 2a) do
not express elevated levels of Il23a, Il12a, il1b (Fig. 3b). This
suggests that cytokine induction in CD11cþ cells from
DC-LMP1/CD40-mice is a secondary effect of inflammation,
rather than being induced by transgene expression alone.

We next analysed effects of spontaneous colitis in the
DC-LMP1/CD40-model on monocyte-derived macrophages
of the colon and characterized CD64þ cells of the
LP (Supplementary Fig. 6) as described previously27(Supplemen-
tary Fig. 3a). In inflamed colon of DC-LMP1/CD40-mice the total
cell numbers of all CD64þ macrophage subpopulations as
characterized by differential Ly6C and MHCII expression are
increased (Supplementary Fig. 6), similar to macrophages in the
colon of anti-CD40 mAb-treated animals (Fig. 1). However, in
non-inflamed colon of ABX-treated DC-LMP1/CD40-mice,
numbers and frequencies of macrophages are normal
(Supplementary Fig. 6). This data suggests that changes in
macrophage numbers in the colon of DC-LMP1/CD40-mice are
rather caused by secondary effects of colitis, but are not
intrinsically due to LMP1/CD40-expression in some CD11cþ

macrophages. While LP-derived DCs (CD11cþMHCIIþ

CD64� ) in DC-LMP/CD40-mice could not be analysed
due to low numbers, we sorted CD11cþMHCIIþCD64þ

macrophages and tested for cytokine gene expression (Fig. 3b).
CD11cþMHCIIþCD64þ macrophages from LP of DC-LMP/
CD40-mice show significantly elevated levels of inflammatory
Il23a, Il12a and Il1b (Fig. 3b). This data suggests that

macrophages, which increase massively in T cell dependent
colitis models27, contribute to colitis also in DC-LMP1/CD40-
mice. However, this effect is not transgene intrinsic, but
secondary, as ABX-treatment inhibits MP-accumulation
(Supplementary Fig. 6) and lack of T- and B cells in Rag1� /� -
mice abrogates generation of inflammatory cytokines (Fig. 3b).

In mLNs the frequencies and absolute numbers of CD103þ

DCs are similarly reduced, both, under inflammatory conditions
(Fig. 3c, upper panel) as well as in ABX-treated mice, which
do not develop colitis (Fig. 3c, lower panel), suggesting that
CD40-signalling induces robust DC-migration from LP to mLNs,
but constitutive signalling in DC-LMP/CD40-mice would not
lead to transient accumulation of DCs in mLN, as observed in
acute treatment with anti-CD40 mAbs (Fig. 1b).

We next sorted CD103þ and CD103� DCs from the mLNs of
DC-LMP1/CD40-mice with colitis for expression analysis.
Cytokine genes Il6, Il23a and Il1b are expressed similarly in
DCs from transgenic and control mice (Fig. 3d). Although there
is a tendency for Il23a to be upregulated in CD103þ DCs,
this does not reach significance. Also the expression of ALDH
(Aldh1a2) that is important for generation of Treg-inducing
retinoic acid12 is not altered (Fig. 3d). Similarly, integrin
av (Itgav) that forms integrin avb8 together with b8 and
specifically equips CD103þ DCs with TGF-b-activating
capacities for Treg induction36 are not differentially expressed
(Fig. 3d). This data indicates that expression of genes important
for Treg induction are not significantly altered in DCs from
DC-LMP1/CD40-mice.

This data indicates that continuous CD40-signalling does not
alter cytokine expression of CD103þ DCs, which are important
for Treg induction. Taken together, our data from CD40-injection
experiments and DC-LMP1/CD40 mice suggest that CD40-
signals induce CD103þ DCs to migrate to draining mLNs, where
they die by apoptosis (Fig. 1d). As the signal in LMP1/CD40-
transgenic mice is continuous, but not inducible like acute
antibody-injection, we can neither observe transient accumula-
tion nor increased apoptosis of CD103þ DCs in mLNs. As a net
result, constitutive CD40 stimulation leads to sustained shifts
in DC subset composition with strong reduction of CD103þ

DCs and increased numbers of CD103� DCs.

DC-LMP1/CD40-mice lack RORcTþ iTreg cells. In contrast
to the short-term application of a CD40-specific mAb, the
DC-LMP1/CD40 model allowed us to investigate the effect of
long-term reduction of CD103þ DCs. As CD103þ DCs have
been postulated to induce Tregs12,13, we next investigated
Foxp3þ cells in different organs of DC-LMP1/CD40 mice
(Fig. 4). However, we did not find any differences in
the frequency of Foxp3þCD4þ Tregs in tissues and organs of
DC-LMP1/CD40 in comparison with control mice (Fig. 4a, upper
panel). When we further differentiated between nTreg and iTreg
by using the markers HeliosþRORgt�Foxp3þ for thymus-
derived nTregs and Helios�RORgtþFoxp3þ for peripherally
induced iTregs, we found between 50 and 60% of the Tregs in
colonic LP of control animals to be RORgtþFoxp3þ iTregs
(Fig. 4a, lower panel). However, this population is virtually absent
in DC-LMP1/CD40 animals (Fig. 4a, lower panel). Also, iTregs in
other tissues of DC-LMP1/CD40-mice are strongly reduced
(Fig. 4a, lower panel). To test if iTreg-induction is abolished in
DC-LMP1/CD40-mice, we administered chicken ovalbumin
(OVA) in the drinking water and monitored adoptively
transferred naive OVA-specific TCR-transgenic CD4þ OTII
T cells for induction of Foxp3 (Fig. 4b). To avoid secondary
effects due to the inflammatory environment between controls
and DC-LMP1/CD40-mice, these experiments were performed in
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(a) Kaplan–Meier plot showing the survival of control and untreated or
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background (nZ6). (b) DC-LMP1/CD40 mice display severe colitis with

thickening of the colon mucosa, extensive proprial infiltration of mixed

inflammatory mononuclear cells, loss of crypts and reduction of goblet

cells. Paraffin sections, inset to DC-LMP1/CD40: GMA/MMA section,

HE-staining. Scale bars, 100mm. (c) Levels of faecal lipocalin-2 as measured

by ELISA in 8–10-week-old mice (nZ3 per group). Graphs show

representatives of two (a) or three (c) independent experiments. Depicted

is the mean±s.e.m. of (n¼ 8; a) or (n¼ 6; c) individual 8–10–week-old

female animals per group. *Po0.05; two-tailed unpaired t-test.
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colitis-free ABX-treated mice. Oral administration of antigen very
strongly induces tolerance37 and mediates conversion of naive
CD4þ T cells into iTregs7. In contrast to control animals, where
Treg induction can be readily observed, DC-LMP1/CD40 animals
fail to induce peripheral iTregs (Fig. 4b). However, OTII cells also
expanded in DC-LMP1/CD40-mice, as tested by determination of
total numbers of expanded CD4þ OTII cells (Fig. 4b). Taken
together, this data suggests that in DC-LMP1/CD40 mice
antigen-specific CD4 T cell priming does occur in mLNs, but
induction of iTregs is defective.

Next, we wanted to determine if lack of iTreg was dominant or
if it could be rescued by the presence of normal numbers
of CD103þ DCs. To this end we generated bone marrow
(BM) chimeras. When irradiated wt mice received BM from
DC-LMP1/CD40-mice they behaved similar to non-irradiated
DC-LMP1/CD40-mice, since they cannot support development

of iTregs (Fig. 4c). In contrast, mixed chimeras, which were
reconstituted with a 1:1 mixture of BM from wt- and DC-LMP1/
CD40-mice, show normal frequencies of intestinal iTregs similar
to chimeras reconstituted with BM from wt-mice only (Fig. 4c).
Analysis of the DC-subpopulations in the chimeras confirmed the
relatively lower CD103þ DC numbers as compared with
CD103� DCs in BM of DC-LMP1/CD40-origin in comparison
with controls (Supplementary Fig. 7). This data suggests that
replenishment of the CD103þ DC-compartment in LP and
mLNs is sufficient to induce Helios�RORgtþFoxp3þ iTreg and
protect from colitis.

LMP1/CD40-mice have dysregulated intestinal tolerance. Since
absence of colitis in DC-LMP1/CD40xRag� /� mice (Fig. 2 and
Supplementary Fig. 4b) suggested an involvement of B and/or
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Figure 3 | CD103þ DCs are strongly reduced in the LP and mLNs of DC-LMP1/CD40 animals. DC subsets in the LP (a,b) or mLNs (c,d) were analysed

as shown in Supplementary Fig. 1a,b with gates on live, CD45þCD11cþMHCIIþ (CD64� ) cells from control, ABX-treated or Rag1� /� mice.

Representative FACS-plots are shown, numbers indicate frequency of DC subsets and bar graphs show absolute numbers per colon. (b) RNA from

MACS- or FACS-purified (upper and lower panel, respectively) CD11cþ cells was analysed by qPCR (DC-LMP1/CD40 mice, controls) or the nanostring

platform (DC-LMP1/CD40xRag1� /� mice, Rag1� /� controls). (c) Representative FACS plots (left) and statistics (right) of DC subsets in the mesenteric

lymph node of untreated DC-LMP1/CD40 (top) and ABX-treated DC-LMP1/CD40 animals in comparison with controls. Cells are gated on live

CD11cþMHCIIþ . (d) CD103þ and CD103� DCs were sorted from mLNs (live CD11cþMHCIIþCD64� ) of control and DC-LMP1/CD40 animals and

qPCRs for indicated genes were performed using mRNA isolated from these cells. Data are normalized to Ubiquitin expression (n¼ 3–5). Dot plots and

graphs show representatives of two (b,d) or three (a,c) independent experiments. Depicted is the mean±s.e.m. of (a, n¼6; b, n¼ 6; c ‘untreated’ n¼ 10;

c ‘ABX treated’ n¼ 5; and d, n¼ 5) individual 8–10-week-old female animals per group. *Po0.05; **Po0.01; ***Po0.001; n.d., not detectable; two-tailed

unpaired t-test.
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T cells in colitis development in DC-LMP1/CD40-mice, we next
characterized T and B cells further. DC-LMP1/CD40-mice
show significantly increased frequencies of IL-17Aþ Th17 cells,
IL-17Aþ IFN-gþ Th17/Th1 cells and IFN-gþ Th1 in mLNs and
higher levels of Th17/Th1 and Th1 cells in LP as compared with
control mice (Fig. 5a). To test B cell responses, we analysed titres

of serum antibodies specific for commensal antigens and found
increased levels of commensal-specific IgA in DC-LMP1/CD40
animals (Fig. 5b). The specific IgA-levels in serum increase with
the age of the mice (Fig. 5c), but are absent in ABX-treated
mice (Fig. 5c). In contrast to co-housed control mice, a higher
percentage of intestinal microbiota of DC-LMP1/CD40 mice is
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IgA-coated (Fig. 5d upper and lower left panel) and bound more
IgA per microbe (Fig. 5d, lower right panel). Amplicon sequen-
cing of the 16S rRNA gene regions V3-V4 revealed a strong and
statistically significant decrease in the number of observed
operational taxonomic units (OTUs) in DC-LMP1/CD40-mice
as compared with co-housed control littermates (Fig. 5e),
indicating a severe decrease in microbiota a-diversity, a general
sign of dysbiosis. Therefore, LMP1/CD40-induced migration and
reduction of CD103þ DCs led to loss of Helios�RORgtþ

Foxp3þ iTreg, breakdown of intestinal tolerance with higher
numbers of pathogenic IL-17Aþ IFN-gþ Th17/Th1 and IFN-gþ

Th1 CD4 T cells and commensal-specific antibodies.

Discussion
Here, we report that acute and constitutive CD40-triggering
of intestinal DCs induces their robust migration from LP to
the mLNs leading to strong reduction of CD103þCD11b� and
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CD103þCD11bþ DCs. Such changes in DC-homeostasis
were accompanied by strongly reduced frequencies of Helios�

RORgTþ iTreg and increased LP IFN-gþ Th1 and IL-17Aþ

IFN-gþ Th17/Th1 cells. The latter can be found in the inflamed
intestine of both humans and mice38,39 and are required for the
pathogenesis of colitis40. However, ‘classical’ Th17 cells, which
have protective roles in tissues and contribute to barrier
integrity41, were not altered in the LP.

A likely explanation for the increase in Th17/Th1- and
Th1-cells and intestinal pathology is the very strong decrease of
Helios�RORgTþ iTreg-frequencies, suggesting a defective
ability of colonic Tregs to regulate inflammation. It has been
previously reported that the gradual numerical decrease of
Foxp3þ Tregs by injection of titrated amounts of diphteria
toxin into Foxp3DTR-mice did augment Th1 and Th17 cells42 and
that regulation of Treg numbers is MHCIIþ DC-dependent43. As
CD103þ DCs have the unique capacity to induce iTreg cells from
naive CD4 T cells12,13,18, their strongly reduced frequencies in
DC-LMP1/CD40-mice result in less efficient iTreg induction.
This reduction is a recessive effect, as the presence of wt CD103þ

DCs in mixed chimeras could reconstitute iTregs and protect
from colitis. Similar to mice where Helios�RORgTþ iTreg were
depleted genetically7,8, inflammatory T-cell responses were
increased in the intestine, although overall frequencies of
Foxp3þ Treg cells were not altered, suggesting a compensation
by increased frequencies of HeliosþRORgT� nTreg cells. In line
with our results, RORgTþ iTreg cells have been recently shown
to more efficiently suppress colitis than their RORgT� nTreg
counterparts in a transfer colitis model44. It has been shown that
nTreg would fail to fill the niche of iTreg6 because of their largely
non-overlapping TCR repertoires45. In fact, despite the relative
increase of nTreg, they could not functionally ‘replace’ iTregs to
regulate T-cell-mediated inflammation and colitis in DC-LMP1/
CD40-mice.

DC-LMP1/CD40-mice develop colitis without further experi-
mentally induced challenges or acute infections. In several other
homeostatic models, where CD103þCD11bþ DCs were either
genetically removed either alone or were depleted together
with CD103þCD11b� DCs14,15,46,47 homeostatic generation of
IL-17Aþ Th17 cells was reduced and mice did not develop colitis
spontaneously. In contrast Th17 cells were not altered in LP of
DC-LMP/CD40 mice, while Th17/Th1 and Th1 cells were
strongly increased in the model of the present study. A major
difference between DC-LMP/CD40 mice and the DC-ablation
models published previously, is the deletion of CD103þ DCs,
which are especially equipped to gather microbial and
non-microbial products in the LP from the intestinal lumen10,48

or from CX3CR1þ macrophages11. Lack of CD103þ DCs might
abolish antigen-acquisition and -transport as well as priming of
antigen-specific CD4 T cells in the draining mLNs. In contrast to
Th17 cells, the generation of intestinal iTregs from naive T cells
depends on TCR-recognition of antigen/MHCII-complexes, as
mice expressing a single TCR, but no cognate antigen49, or mice
with MHCII-deficient APC50,51 cannot induce intestinal iTregs,
but accumulate nTregs. Therefore, in contrast to other models,
CD40-triggering does not deplete CD103þ DCs, but rather
enforces their migration from the LP to the mLNs and antigen-
transport is not abolished. This view is supported by the fact that
OTII cells proliferated in OVA-fed DC-LMP1/CD40 mice in an
antigen-specific fashion but failed to generate normal levels of
iTregs. Other studies identified CD103�CD11bþ DCs as
producers of IL-12p40 in the steady state52, enabling them to
induce Th17 and Th1 cells even in absence of additional
stimulation17. Therefore, migratory CD103þ DC might bring
gut luminal antigens to the mLNs for presentation to CD4 T cells,
either directly or upon transfer to other DCs. Such presentation

might result in generation of Th17 cells, but only inefficient iTreg
induction, a dysbalance that may lead to inflammatory colitis in
DC-LMP1/CD40 mice. Alternatively, luminal antigens may reach
the mLN by cell-independent pathways as described previously
for OVA53 and then the composition of the DC-subsets able
to differentially present antigen might determine the degree
naive antigen-specific CD4 T cells differentiate into iTreg of
CD4 effector cells.

IL-23 promotes inflammatory bowel disease54,55. However,
neither CD103þ nor CD103� DCs produced significantly
elevated IL-23 levels in DC-LMP1/CD40-mice. The source of
IL-23 apparently varies depending on the homeostatic or
inflammatory models studied. For example, during acute
intestinal inflammation CD103þCD11bþ DCs were the
non-redundant source of IL-23 necessary for anti-Citrobacter
rodentium responses56 and produced IL-23 upon TLR
5 stimulation with flagellin52. However, CD103þCD11bþ DCs
have also been reported to be dispensable for C. rodentium
protection47 and CX3CR1þ mononuclear phagocytes were the
more critical IL-23-source57. Also during acute infection and
IL10R blockade CD103þCD11b� DCs were dispensable for
IL-23 driven inflammatory pathology, while MHCIIþ monocytes
were the highest IL-23-producers58. As numbers of CD64þ

monocytes increased during the onset of colitis in DC-LMP1/
CD40-mice and CD64þCD11cþMHCIIþ monocytes/
macrophages, but not CD64�CD11cþMHCIIþCD103þ

DCs were strong producers of IL-12 and IL-23, it is likely that
macrophages or blood-recruited monocytes sustain the
inflammatory response also in DC-LMP1/CD40-mice, similar to
other models of colitis58.

Due to the fact that our model is constitutive, but not
inducible, it is difficult to precisely determine what actually
initiates the inflammatory response, and which factors and cell
types do rather sustain it, once it is established. Treatment with
ABX could completely neutralize intestinal pathology, with
normal frequencies of IL-17A- and IFN-g-producing T cells
and normal levels of commensal-specific antibodies. The fact that
CD103þ DCs were diminished also in ABX-treated mice argues
for an intrinsic, microbiota- and inflammation-independent effect
of CD40-signalling in this DC-subset, which is in marked contrast
to CD64þ macrophages and CD103� DCs, that were present
at normal levels. The increase of these populations in untreated
DC-LMP1/CD40-mice can therefore be considered as a second-
ary CD40-independent effect. However, the reasons for the
relative inert behaviour of CD103� DCs to anti-CD40 mAb
treatment or LMP1/CD40-signalling are currently not clear. The
fact CD103� DCs do express and can upregulate endogenous
CD40 and do express the LMP1/CD40-transgene suggest that
CD40-signalling might be wired differently in CD103� DCs as
compared with CD103þ DCs.

Taken together, we present a novel intrinsic model of colitis,
where the migration of CD103þ DCs is induced, causing their
numerical reduction by apoptosis in the draining mLNs. This
leads to abnormally low frequencies of iTregs, breakdown of
intestinal tolerance manifested by high frequencies of inflamma-
tory IL-17A- and IFN-g-producing T cells and high titres of
commensal-specific IgA accompanied by commensal dysbiosis as
results of severe colitis. These results show the importance of
homeostatic distribution of intestinal DC-subpopulations for the
maintenance of intestinal tolerance.

Our data fit with an intriguing model where CD40L-CD40
interaction between activated CD4þ T cells and DCs is
important to counteract the generation of iTreg or their
suppressive activity in order to boost immune responses.
This mechanism has previously been shown to inhibit Treg
activity, which caused premature contraction of influenza-specific
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CD8þ T cells in the late phase of response to infection59.
Accordingly, CD40L-expressing activated T cells, NK cells as well
as several other cell types60 would be able to temporarily shut
down the tolerogenic properties of intestinal steady-state
homeostasis by manipulating/removing iTreg-inducing
intestinal CD103þ DCs. On the other hand, this mechanism
might also sustain chronic type autoimmune diseases by
continuous obstruction of Treg induction. Further work will
be necessary to unravel if such a mechanism can contribute to
rapid amplification of intestinal immune responses.

Methods
Mouse strains. DC-LMP1/CD40 mice were generated by crossing CD11cCre
mice31 with LMP1/CD40flstop mice32. LMP1/CD40 mice have been backcrossed
onto the C57BL/6 background for at least 10 generations. To analyse transgene
expression/Cre activity we crossed Gt(ROSA)26Sortm1Hjf (ref. 34) to CD11cCre
animals. The resulting strain is called CD11cCrexRFPflStop. DC-CD40-ko mice
were generated by crossing CD11cCre mice31 with CD40fl -mice, which carry
loxP-sites before CD40 exon2 and after CD40 exon3. Cre-mediated recombination
by CD11c-Cre mice removes the ‘loxed’exons 2 and 3 of CD40, rendering
a non-functional CD40 peptide (Lutgens et al., personal communication). Mice
were analysed in sex and age-matched groups of 8–10 weeks of age. Littermate
animals were used as control in a non-randomized, non-blinded fashion. The
SPF-status of the facility was tested according to the Federation for Laboratory
Animal Science Associations (FELASA) recommendations. Animal experiment
permissions were granted by animal ethics committees Regierung von Oberbayern,
Munich, Germany and Organismo preposto al benessere animale di Universita di
Ferrara, Italy. All mice were bred and maintained at the animal facility of the
Institute for Immunology, Ludwig-Maximillians-Universität München and the
Department of Life Sciences and Biotechnology, University of Ferrara.

Single-cell preparations. Single-cell suspensions of splenocytes and lymph nodes
were prepared by meshing organs through a 100 mM cell strainer. Where necessary,
red blood cells were lysed using ACK buffer for 5 min at room temperature.
Number of living cells was determined using CASY Counter (OMNI Life Science).
To analyse cells from the LP, colon was taken from a mouse, faecal content
removed, the colon opened longitudinally and cut into ca. 5 mm big pieces. The
pieces were then incubated with Hank’s balanced salt solution (HBSS)-EDTA for
10 min on a shaker at 37 �C, the supernatant containing epithelial cells was dis-
carded and gut parts were washed twice with ice cold PBS. Afterwards the colon
was digested once for 30 min and then twice for 20 min with a mixture of Col-
lagenase IV (157 Wuensch units per ml, Worthington), DNAse I (0.2 mg ml� 1

dissolved in PBS) and Liberase (0.65 Wuensch units per ml, both Roche, dissolved
in Hank’s Balanced Salt Solution with fetal calf serum (FCS)), the supernatant was
collected after each digestion and the cells were washed once with PBS. Cells from
all three digestions were combined and immune cells enriched using gradient
centrifugation. For this cells were resuspended in 40% Percoll and this solution was
overlayed onto a 80% Percoll solution. Centrifugation was carried out for 20 min at
1,800 r.p.m. and 4 �C without break. Cells at the interphase were collected, washed
once and used for further analysis.

Generation of bone marrow chimeras. To generate BM chimera recipient
mice were irradiated with two split doses of 550 rad using a Cesium source
(Gammacell 40, AECl, Mississauga, Canada). Irradiated animals were reconstituted
with 5� 106 BM cells, 1:1 mixed from Ly5.1þ and Ly5.2þ BM. To prevent
infection, animals received 1.2 g l� 1 neomycin in water ad libitum for 4 weeks.
Animals were analysed 8–10 weeks after reconstitution.

Flow cytometry analysis. Where possible, 2� 106 cells were used for every
staining with titred antibodies in PBS containing 2% FCS and 0.01% NaN3

(fluorescence-activated cell sorting (FACS) buffer) for 20 min at 4 �C in the dark.
Cells were washed once and used for direct acquisition on BD FACSCanto or fixed
using 2% paraformaldehyde in FACS buffer and measured the next day. Dead cells
were always excluded using Aqua LIVE/DEAD Fixable Aqua DeadCell Stain Kit
(Invitrogen, TermoFischer, Cat: L34957) or Zombie Aqua Fixable Viability
Kit (BioLegend, Cat: 423102). For intracellular stainings cell were fixed and
permeabilized after they have been stained for all extracellular markers. For
the staining of FoxP3 cells were washed once and then resuspended in
200ml 1� Fixation/Permeabilization solution (eBioscience, Cat: 00-5523-00) for at
least 30 min at 4 �C in the dark. Cells were spun down, the supernatant removed
and the cells washed twice with 1� permeabilization buffer (eBioscience, Cat:
00-5523-00). Cells were then stained with intracellular antibodies in 50 ml
permeabilization buffer for 30 min at 4 �C in the dark. Afterwards cells were
washed once and acquired by FACS. For intracellular cytokine stainings cells
were fixed and permeabilized using BD Cytofix/Cytoperm (Fixation and Permea-
bilization Solution, BD Biosciences, Cat: 51-2090KZ) and BD Perm/Wash

(Buffer, BD Biosciences, Cat: 51-2091KZ) according to manufacturers’ instructions.
Acquisition was either performed using a FACSCalibur or FACSCanto II. Cell
sorting was performed at FACSAria (all BD). The following antibodies were used:
33D1 (33D1; FITC; dil. 1:400), CD3 (145-2C11; PE-Cy7, dil. 1:400), CD11b
(M1/70; APC-eFluor780, dil. 1:400), CD11c (N418; PE-Cy7, dil. 1:600; APC,
dil. 1:100), CD25 (PC61.5; PerCP-Cy5.5, dil. 1:400), CD70 (FR70; Biotin,
dil. 1:400), CD80 (16-10A1; PE, dil. 1:400), CD205 (205yekta; APC, dil. 1:500),
Esam (1G8; PE, dil. 1:100), F4/80 (BM8; PE-Cy7, dil. 1:400), FoxP3 (FJK-16s;
eFlour660, dil. 1:50), Helios (22F6; FITC, dil. 1:400), MHCII (M5/114.15.2; FITC,
dil. 1:800, PerCP-Cy5.5, dil. 1:800), RORgt (AFKJS-9; PE, dil. 1:400), IFN-g
(XMG1.2; FITC, dil. 1:500; APC, dil. 1:400), IL-17-A (TC11-18H10.1; PE,
dil. 1:200) and Ly6C (AL-21; FITC, dil. 1:400) (eBioscience); CD86 (GL-1; PE,
dil. 1:1,000), CD103 (M290; BV421, dil. 1:150; PE, dil. 1:150) (BD Pharmingen);
CD4 (GK1.5; APC-Cy7, dil 1:800), CD8a (MCD0826; PE, dil. 1:400;
APC-eFlour780, dil. 1:300; BV421, dil. 1:800) (Invitrogen); CD45 (30.F11;
APC-eFlour780, dil. 1:200), CD45.1 (A20; PE, dil. 1:400), CD64 (X54-517.1; APC,
dil. 1:200), CD90.1 (OX-7; FITC, 1:400)(BioLegend); cleaved Caspase 3 (D3E9;
unlabelled, dil. 1:200) (Cell Signaling, Cat: 51-2091KE); goat anti-Rabbit
(PE, dil. 1:100) (Life technologies). Data analysis was performed using FlowJo
version 8 and 9 (TreeStar, Ashland, OR, USA). Analysis was performed using
FlowJo (Treestar).

Depletion of commensal bacteria. To deplete as many commensal bacteria as
possible, animals were provided with a mixture of ampicilin sodium salt (1 g l� 1),
vancomycin hydrochloride (500 mg l� 1), neomycin sulfate (1 g l� 1) and metro-
nidazole (1 g l� 1) in the drinking water for at least 3 weeks61.

Transcriptional analysis. Total RNA from sorted cells was isolated using
TRIZOL and cDNA was generated using QuantiTect Reverse Transcription Kit
(QIAGEN, Cat No: 205311). TaqMan PCR was performed using the Universal
Probe Library Set mouse (Roche) according to manufacturer’s instructions. Gene
expression was normalized to Ubiquitin c expression. The following Primers
were used: Ubiquitin c forward 50-GACCAGCAGAGGCTGATCTT-30 , reverse
50- CCTCTGAGGCGAAGGACTAA-30 , probe # 11; IL-6 forward 50-GAAGG
GCACTGCAGGATAGA-30 , reverse 50-TCCCCAGAGTGTGGCAGT-30 ,
probe # 12, IL-23p19 forward 50-ATAGCCCCATGGAGCAACTT-30 , reverse
50- GCTGCCACTGCTGACTAGAA-30, probe # 25; Aldh2a forward 50-CATG
GTATCCTCCGCAATG-30 , reverse 50-GCGCATTTAAGGCATTGTAAC-30 ,
probe # 33; Itgav forward 50-GGTGTGGATCGAGCTTCTT-30, reserve
50-CAAGGCCAGCATTTACAGTG-30 , probe # 21. Relative expression was
calculated using the DDCt method. For nanostring analysis CD11cþ cells were
FACS sorted. Cells were washed once and then resuspended in buffer RLT
(Quiagen) to disrupt the cells and unfold all proteins. This was immediately
snap-frozen and then kept at � 80 �C. The gene expression was analysed using the
mouse immunology kit-24rxn GXA-MIM1-24 for the nanostring platform
(NanoString Technologies, Seattle, WA, USA). Samples were processed according
to manufacturer’s protocol.

CD40 injection. To evaluate the influence of a CD40 signal on DCs animals were
injected with 200 mg of anti-CD40 mAb clone FJK45 intraperitoneally and animals
were sacrificed by cervical dislocation at the indicated time points.

ELISA for lipocalin. Faecal samples were reconstituted in PBS containing
0.1% Tween 20 (100 mg ml� 1) and vortexed for 20 min for homogenisation.
Upon centrifugation for 10 min at 12,000 r.p.m. supernatants were analysed for
lipocalin-2 content using Quantikine ELISA kit for mouse Lipocalin-2/NGAL
(R&D Systems, Cat: MLCN20).

ELISA for commensal-specific antibodies. The cecum of C57BL/6 mice was
removed, opened longitudinally, transferred into a 2 ml Eppendorf cup, containing
1.5 ml PBS and cecal content was expelled by vigorously vortexing. Remaining cecal
tissue was removed and PBS and cecal content was transferred into tubes with
Lysing Matrix E (MP Biomedicals, Cat: 116914050) and then homogenized using
the FastPrep-24 Instrument (MP Biomedicals, Cat: 116004500) for 45 s at
maximum speed. Samples were spun down and supernatant was collected, filtered
and spun again at maximum speed. The protein concentration was determined and
the cecal bacterial lysate was stored at � 20 �C until used. Cecal bacterial lysate was
diluted in carbonate buffer to a final concentration of 50 ng ml� 1 and 100ml of
this was coated per well over night at 4 �C. Wells were washed five times with
PBS 0.05% (v/v) Tween20. Afterwards unspecific binding was blocked using 200 ml
PBS with 0.5% (v/v) MMP for 2 h at room temperature and wells were then again
washed five times with PBS 0.05% (v/v) Tween20. Serum of mice was diluted either
1:300 or 1:600 and 100 ml of this was added to a well, incubated for two hours at
room temperature and washed again for five times with PBS 0.05% (v/v) Tween20.
For detection of isotype specific antibodies coupled to horseradish peroxidase
were used at a dilution of 1:4,000 in blocking buffer for 2 h at room temperature.
After another round of washing the ELISA was developed using 100 ml of 3,30,5,50-
tetramethylbenzidin solution. The reaction was stopped by adding 50 ml 2N H2SO4.
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Optical density was measured at a wavelength of 450 nm with 630 nm as
a reference wavelength.

Faecal IgA flow cytometry. Faecal pellets from 8- to 15-week-old mice were
homogenized by bead beating (FastPrep-24 Instrument, MP Biomedicals,
Cat: 116004500) and stained with PE Anti-Mouse IgA (1.3 mg ml� 1 eBioscience,
clone mA-6E1).

Histopathology. Histopathological examination was performed on tissue samples
of sex-matched, age-matched mice. Tissue samples were fixed in 4% neutral
buffered formaldehyde solution at room-temperature for B24 h and embedded
in paraffin or in glycolmethacrylate and methylmethacrylate (GMA/MMA).
Sections of 1.5 mm (GMA/MMA), respectively of 3.0 mm (paraffin) thickness,
were stained with haematoxylin and eosin (HE), and with Giemsa. All sections
were evaluated in a blinded fashion.

16S rRNA amplicon sequencing and taxonomic profiling. Analysis of the
intestinal microbiota of mouse faecal samples was based on the recently developed
dual-index strategy for sequencing on the MiSeq Illumina platform62. Briefly,
genomic DNA was extracted from stool samples using a phenol-chloroform
extraction technique with mechanical disruption63. Inserts were PCR-amplified
in duplicate using multiplexed 8 forward � 12 reverse primers targeting the
V3-V4 variable regions of the 16S rRNA gene64 and purified using the Agencourt
AMPure XP PCR Purification system (Beckman Coulter, Krefeld, Germany,
Cat: A63880). Purified amplicons were combined in equimolar amounts in one
pool, and sent to Eurofins Genomics (Ebersberg, Germany) for library quality
control and sequencing on the Illumina MiSeq v.3 as 300-bp paired-end runs.
Sequencing output was pre-processed to retain only high-quality reads, which were
then analysed with QIIME v 1.8 (ref. 65). Open-reference OTU clustering and
taxonomy assignment of sequences were done with UCLUST66 against the
Silva database Release 111 (ref. 67) at the 97% similarity level. Alpha diversity
was calculated on rarefied OTU tables using the observed OTUs metric.
16S rRNA amplicon sequencing data have been deposited in the NCBI Sequence
Read Archive under Accession Number SRX1799186.

Statistics. For absolute cell numbers the percentage of living cells of a certain
subset was multiplied by the number of living cells as determined by CASY
Counter. If not mentioned otherwise, significance was determined using the
Student’s t-test and defined as follows: *Po0.05, **Po0.01 and ***Po0.001.
Bar graphs show mean±s.e.m. for the group sizes as indicated in the figure
legends.

Data availability. Sequence data that support the findings of this study have been
deposited in NCBI Sequence Read Archive with the primary accession code
SRX1799186. The other data that support the findings of this study are available
from the corresponding author upon request.
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