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The olfactory bulb (OB), the first center processing olfactory information, is characterized
by a vigorous life-long activity-dependent plasticity responsible for a variety of
odor-evoked behavioral responses. It hosts the more numerous group of dopaminergic
(DA) neurones in the central nervous system, cells strategically positioned at the entry
of the bulbar circuitry, directly in contact with the olfactory nerve terminals, which
play a key role in odor processing and in the adaptation of the bulbar network to
external conditions. Here, we focus mainly on the electrophysiological properties of DA
interneurones, reviewing findings concerning their excitability profiles in adulthood and
in different phases of adult neurogenesis. We also discuss dynamic changes of the DA
interneurones related to environmental stimuli and their possible functional implications.

Keywords: dopaminergic neurones, olfactory bulb, electrophysiology, adult neurogenesis, experience-dependent
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INTRODUCTION

Of the 11 distinct dopaminergic (DAergic) cell groups identified in the mammalian central nervous
system (Dahlström and Fuxe, 1964; Felten and Sladek, 1983; Hökfelt et al., 1984; Dubach, 1994),
the olfactory bulb (OB) hosts the most numerous (Guyenet and Crane, 1981; Cave and Baker,
2009) identified as A16 in the standard classification (Björklund and Dunnett, 2007).

Within the OB, DAergic neurones have been reported almost only in the most external
(glomerular) layer (Halász et al., 1981), and it is generally accepted that they co-release dopamine
(DA) and GABA from separate pools of vesicles (Maher and Westbrook, 2008; Borisovska et al.,
2013). The glomerular layer is populated by a variety of cell types, essentially ascribable to three
major classes of interneurones, i.e., periglomerular (PG), short-axon (SA) and external tufted (ET)
cells. Since DA neurones are the only catecholaminergic neurones found in the OB (Kratskin and
Belluzzi, 2003), they are usually recognized by the expression of tyrosine hydroxylase (TH), a
rate-limiting enzyme of catecholaminergic pathway; it is estimated that 10%–16% of the neurones
in the more external (glomerular) layer (GL) of adult animals are DAergic (McLean and Shipley,
1988; Panzanelli et al., 2007), and that they include two types of cells, PG (Kosaka et al., 1985;
Gall et al., 1987) and a subpopulation of ET cells which, at difference from the tufted cells present
in the external plexiform layer (EPL), are not projection neurones (Halász, 1990). Under the
functional point of view, a first demonstration of the involvement of DA neurones in olfaction
is provided by the impairment of olfactory discrimination in mice lacking functional dopamine
receptors or transporters (Wilson and Sullivan, 1995; Tillerson et al., 2006; Taylor et al., 2009),
and by the well-known observation that olfactory impairment is one of the earliest non-motor
traits of Parkinson’s disease (Doty, 2012), preceding the onset of motor symptoms by years.
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Bulbar DA cells are interesting under many aspects, but three
characteristic in particular have attracted significant attention
in the last years: first they are extremely plastic (Baker et al.,
1983; Bastien-Dionne et al., 2010), second their position at the
entry of the bulbar circuitry makes them obvious candidates
for a significant role in the odor processing (Borisovska
et al., 2013) and, third, DA cells are constantly generated
throughout life (Altman, 1969; Betarbet et al., 1996; Baker et al.,
2001; Winner et al., 2002; Mizrahi et al., 2006; Ventura and
Goldman, 2007; Lazarini et al., 2014), an attribute that has
raised further interest for the potentiality offered by neural
stem cells in the germinal area (adult subventricular zone
(SVZ)) as a source of autologous neuron for repopulation
of the damaged areas in Parkinson’s disease (Cave et al.,
2014).

Many excellent studies have covered the different aspects
of DA neurobiology, especially for what concern the complex
interplay of transcription factors, epigenetic control and
role of non-neuronal cells in orchestrating birth, migration,
differentiation and maintenance of these cells in adult
neurogenesis (Saino-Saito et al., 2004; Hack et al., 2005;
Kohwi et al., 2005; Brill et al., 2008; Havrda et al., 2008;
Flames and Hobert, 2009; Cave et al., 2010; Caiazzo et al.,
2011; Banerjee et al., 2013; Marei and Ahmed, 2013; Agoston
et al., 2014; Vergaño-Vera et al., 2015; Bonzano et al., 2016;
Rodríguez-Traver et al., 2016).

Here we rather focused on a somewhat lesser investigated
aspect, the electrophysiological properties of adult born DA
neurones in the different phases of their life, and the possible
implication of their excitability profiles and adult neurogenesis
in odor processing.

TWO MORPHOLOGICALLY DISTINCT DA
NEURONES

The bulbar DA neurones have long been known to be different
in size and morphology, presenting at least two main subtypes in
almost all the species examined, including humans, (Halász et al.,
1981; Davis and Macrides, 1983; Hoogland and Huisman, 1999;
Pignatelli et al., 2005; Kosaka and Kosaka, 2007, 2008; Liberia
et al., 2012). Several reviews address the analysis of the differences
classifying the two DA interneurons subtypes, according to their
morphological attributes and molecular signatures, in large vs.
small (Kosaka and Kosaka, 2011; Imai, 2014; Nagayama et al.,
2014). Kiyokage et al. (2010) propose an alternative classification
in oliglomerular vs. poliglomerular DA neurones, suggesting that
all DA interneurons are SA cells (Kiyokage et al., 2010)—we
direct the reader wishing to learn more on this debate to the
excellent recent review of Kosaka and Kosaka (2016). Given the
demonstration that many DA PG cells exhibit the molecular
markers of the presence of an axonal initial segment (IS),
i.e., of an axon (Chand et al., 2015), we have adopted the
first classification preferring, in this short review, to maintain
the focus onto the less investigated problem of the functional
properties of these cells.

In mice, the two main subtypes of OB DA neurones have
average diameters of 8.76 ± 1.58 and 10.69 ± 2.70 µm (Kosaka

and Kosaka, 2008) and membrane capacities of 5.41 ± 1.5 and
10.63 ± 3.45 pF (Pignatelli et al., 2005). Since the distributions
of dimensions and membrane capacities of the two subtypes
can be best fitted by two largely superposed Gaussian curves
(see Figure 6 of Kosaka and Kosaka, 2007 and Figure 1C of
Pignatelli et al., 2005), in most electrophysiological experiments
it has not been possible to identify beyond any reasonable doubt
the specific subtype of the cell recorded in OB slices. However,
an interesting functional criterion for the discrimination of large
vs. small DA neurones has been adopted by the group of M.S.
Grubb, based on the observation that larger DA cells present
an axon, whereas the smaller one are anaxonic (Chand et al.,
2015; Kosaka and Kosaka, 2016). The action potentials (AP)
originating in the soma and then propagating to the dendrites
(soma-dendritic, SD AP) are slightly different from the AP
originating in the IS and then back-propagating to the soma,
where they are recorded (IS-SD AP); this barely noticeable
difference in current-clamp recorded AP becomes more evident
by representing the AP in a voltage vs. rise time plot (phase
plane plot), where a noticeable bump in correspondence of the
Hodgkin cycle initiation marks the IS-SD nature of the AP
(Figure 2Dii of Chand et al., 2015). This criterion has been
adopted to discriminate axonic-large vs. anaxonic-small DA
cells in in vitro cultured dissociated cell (Chand et al., 2015;
Galliano and Grubb, 2016) with remarkable results. Although
the complement of voltage dependent channels in the two cell
types does not appear to be significantly different (Pignatelli
et al., 2005), the largest cells are more excitable than the smallest
one, a disparity attributable to a series of differences in their
excitability profile. In particular, the largest DA cells, with respect
to the smallest one have lower threshold and rheobase current,
faster rising phase of the AP, higher firing frequency, and other
peculiarities discussed in detail in the recent article of Chand et al.
(2015).

Larger TH+ neurones, initially regarded as ET cells (Halász
et al., 1981; Davis and Macrides, 1983) and later recognized
as GABAergic (Kosaka and Kosaka, 2007; Panzanelli et al.,
2007; Parrish-Aungst et al., 2007), are glomerular interneurones
giving a substantial contribution to interglomerular connections,
establishing long-range intrabulbar coordination systems. A first
intrabulbar association system has been described in which
mirror-symmetric isofunctional odor columns (cross-laminar
ensembles of neurones impinging onto a single glomerulus) are
mutually connected through a reciprocal inhibitory circuit; the
assembly includes distinct population of large TH+ ET cells
making synapses on the granule cells on the opposite edge of the
OB (Schoenfeld et al., 1985; Lodovichi et al., 2003; Kosaka and
Kosaka, 2011). Another long-range intraglomerular association
system sustained by large type DA glomerular neurones would
connect glomeruli ipsilaterally (Kosaka and Kosaka, 2011).
Accordingly, large DA neurones in the glomerular layer have
been shown to express axon initial segment (AIS)markers, absent
in the small DA neurones, both in vivo (Kosaka and Kosaka,
2011) and in vitro (Chand et al., 2015; Galliano and Grubb,
2016).

Small TH+ cells, accounting for about 85% of the bulbar
DA neurones (Pignatelli et al., 2005), appear to extend their
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connection to a single glomerulus, or to few close glomeruli
(Kosaka and Kosaka, 2008, 2011, 2016).

Differences among large- and small-sized TH+ glomerular
cells are also observed in the adult neurogenesis: the investigation
of their birth dates has shown that large DA neurones are born
only pre- and perinatally, never in adulthood, whereas the small
type of DA neurones are generated also in adult periods (Kosaka
et al., 1987; Vergaño-Vera et al., 2006; Bovetti et al., 2009; Kosaka
and Kosaka, 2009; Galliano and Grubb, 2016).

ELECTROPHYSIOLOGY OF MATURE
BULBAR DA NEURONES

DA-PG cells in the OB have been the object of electro-
physiological studies (Pignatelli et al., 2005; Puopolo et al.,
2005), which have provided a comprehensive description of
the complex system of the voltage-dependent conductances
determining their excitability profile, including the pacemaking
machinery.

DA bulbar neurones present two large and five small voltage-
dependent conductances; all of them have been kinetically
characterized, and an Hodgkin-Huxley computational model of
DA PG cells has been elaborated (Pignatelli et al., 2005). The two
conductances having the largest amplitude, responsible for the
generation of the action potential, are a fast transient sodium
current (101 nS) and a delayed rectifier potassium current
(50.1 nS; Pignatelli et al., 2005)—no other K+ currents, as IA,
present in immature DA PG cells (see below) and in othermature
PG cells subtypes (Fogli Iseppe et al., 2016) have been reported.

As most DA neurones, bulbar DA cells have a spontaneous
activity, primarily within the theta frequency range (4–12 Hz);
the pacemaking machinery is composed of a system of two small
inward currents, a persistent sodium current (INa(P); 0.41 nS) and
a T-type Ca2+ current (ICa(T); 0.35 nS; Pignatelli et al., 2012).

In addition to TTX, INa(P) can be selectively blocked by
riluzole (Urbani and Belluzzi, 2000), a drug used in the therapy
of amyotrophic lateral sclerosis, and indeed riluzole (5 µM)
completely suppresses spontaneous firing.

The T-type calcium current is blocked by low concentrations
of nickel (50–100µM; Lee et al., 1999), and bymibefradil (Mishra
and Hermsmeyer, 1994), and both reversibly block spontaneous
activity (Pignatelli et al., 2005).

Based on the kinetic data, a numerical reconstruction of the
bulbar DA neurones according to the Hodgkin-Huxley model
(Hodgkin and Huxley, 1952) has been developed (Pignatelli
et al., 2005), which incorporates all the conductances detected
and assuming the cell as a single electrotonically compact
compartment. The in silico tests made possible by the model
can be very helpful to uncover the essentials of the relative
contribution of the currents sustaining the pacemaking process
and their reciprocal interactions. The main outcomes obtained
from the in silico cell model can be recapitulated as follows:

- the numerical cell model is capable to fire spontaneously at the
same frequency of real neurones.

- the primum movens, the current which first sets in motion
the process causing the progressive depolarization of the cell

during the interspike interval, is the ICa(T), replaced by INa(P)

in the second half of the slow depolarizing phase, until the
threshold for the fast Na-current is reached and the action
potential develops. Both currents are amazingly small in
amplitude (max 4 pA) compared with sodium and delayed
rectifier potassium currents underlying the action potential
(about 1 nA) but, nevertheless, they are sufficient to depolarize
DA PG cells, due to the high input resistance of these cells
(about 700 MΩ).

- in the numerical model—as in real preparations—both INa(P)

and ICa(T) are required to sustain spontaneous activity, as
the selective block of one or both of them abolishes the
spontaneous firing: the in silico cell, as DA neurones, responds
with a single spike to a depolarizing current pulse, but is unable
to fire spontaneously when INa(P) and ICa(T) are zeroed.

- the model indicates that the T-type calcium channels are
decisive in determining the firing frequency as small changes
in ICa(T) conductance (from 0.35 nS to 0.4 nS) suffice to change
the spontaneous firing frequency from 8 Hz to 16 Hz.

- the high voltage-activated calcium channels are not required
for the pacemaking mechanism, and their blockage, both in
living DA neurones and in the model, has no effect on the
spontaneous firing frequency.

Two other small conductances, activated by hyper-
polarization, are present in bulbar DA cells, not directly
involved in the pacemaking machinery but playing an important
role in its modulation: an h-current (Fried et al., 2010; Pignatelli
et al., 2013) and a potassium inward rectifier (KIR) current
(Borin et al., 2014). Both currents are active at rest, and exert
opposite effects on the resting membrane potential, depolarizing
the h-current and hyperpolarizing the KIR, governing the resting
membrane potential and consequently exerting an important
role in controlling the excitability of these cells.

Both hyperpolarization-activated currents are effectively
modulated by second messenger mechanisms, and DA neurones
in the OB receive numerous afferents releasing a multiplicity
of neurotransmitters, in many cases capable of affecting the
cAMP pathway, and therefore potentially capable of modulating
both h- and KIR currents. To name only a few, the OB
receives serotoninergic afferents from the ventral and dorsal
raphe nuclei (Araneda et al., 1980), noradrenergic input from
the locus coeruleus (McLean et al., 1989), cholinergic inputs
from the nucleus of the horizontal limb of the diagonal
band (Zaborszky et al., 1986), and histaminergic inputs from
hypothalamus (Panula et al., 1989). Accordingly, the KIR
current is under the influence of a multiplicity of molecular
pathways, which can either enhance the current, as it happens
with D2, muscarinic, and GABAA receptor agonists, or have
the contrary effect, as it is observed with α1, 5-HT and
histamine receptor agonists (Borin et al., 2014). Contrary to
the KIR, the h-current seems to be modulated only by a
single neurotransmitter, noradrenaline, which has a profound
inhibitory influence on the current (Pignatelli et al., 2013).
Taken together, these characteristics of the two currents activated
by hyperpolarization provide the basis for a multiplicity of
modulatory mechanisms converging onto DA-PG cells, making
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them fully qualified to reconfigure the bulbar network for better
flexibility.

ADULT NEUROGENESIS

OB interneuron progenitors in mice generate from neural stem
cells in the SVZ of the lateral ventricle (for recent reviews
see Cave and Baker, 2015; Lledo and Valley, 2016; Malvaut
and Saghatelyan, 2016). The adult SVZ can be subdivided
into several domains identified by the expression of diverse
transcription factors, highly conserved (Fujiwara and Cave,
2016). These domains produce neuroblasts committed to
differentiate into distinct subsets of OB interneurones—DA
progenitors are generated from the dorsolateral region (for
a review see Fiorelli et al., 2015), characterized by the
expression of the transcription factor Pax6 (Merkle et al.,
2007; Young et al., 2007; Brill et al., 2008; Fernández et al.,
2011). Pax6 is required for the development of the DAergic
phenotype (Dellovade et al., 1998; Kohwi et al., 2005; Brill
et al., 2008; Haba et al., 2009), and operates in association
with the Dlx2 and Meis2 transcription factors (Brill et al.,
2008; de Chevigny et al., 2012; Agoston et al., 2014). For
its distinctive expression in terminally differentiated DAergic
neurones and its requirement for their survival (Ninkovic et al.,
2010), Pax6 can be considered almost a hallmark of bulbar DA
neurones.

The rate of production of bulbar DA neurones is generally
reported to increase in the postnatal/adult OB (Kosaka et al.,
1987; McLean and Shipley, 1988; Winner et al., 2002; De
Marchis et al., 2007, but see also Batista-Brito et al., 2008).
Using in vivo imaging and genetic fate-mapping techniques,
the fate of adult-born neurones has been traced over up to
9 months (Ninkovic et al., 2007; Adam and Mizrahi, 2011).
The situation appear to be different in granule and glomerular
layer: whereas in the granule cell layer after the second month
the whole population of granules remain numerically stable,
indicating that substantially there is only a turnover of this
type of cells, in the glomerular layer the addition of new
neurons to the adult bulbar network outnumbers by about
30% the cell loss in the glomerular layer (Ninkovic et al.,
2007). Interestingly, this net addition does not concern all the
adult-born cell of the GL, but only two subtypes, calretinin
and DA interneurones (Ninkovic et al., 2007; Adam and
Mizrahi, 2011), suggesting that the adult neurogenesis in the
OB is subtype-specific, and regulated differently in granule and
glomerular layer.

Several studies have shown that survival and integration of
adult-born neurones in the OB critically depend on the fullness
of the olfactory input, both processes being strongly enhanced by
odor enrichment (Rochefort et al., 2002; Yamaguchi and Mori,
2005; Bonzano et al., 2014)—see also below. DA PG cells are
the only bulbar interneurones receiving direct input from the
olfactory nerve (Kosaka and Kosaka, 2007), and therefore it is
not surprising that they are particularly sensitive to the level
of olfactory input, which controls dynamically the turnover in
a spatial and neuronal subtype-specific manner (Sawada et al.,
2011).

As indicated above, in this context we will limit the discussion
on the electrophysiological aspects of this process.

ELECTROPHYSIOLOGY OF DA
NEURONES DURING ADULT
NEUROGENESIS

Although mature DA neurones within the OB are expressed
almost exclusively in the more external (glomerular) layer
(Halász et al., 1981), spare neurones expressing the eGFP under
the TH promoter have been observed also in the EPL, a
neuropil-rich area positioned between the mitral and glomerular
layers, and in a narrow region encompassing mitral and internal
plexiform (M/IP) layers; these are cells in which the transcription
of the TH gene occurs in the absence of significant translational
activity (Baker et al., 2001; Jeong et al., 2003).

The presence of TH transcription in cells lying in a region
devoid of DA neurones has been proposed to be ascribable to
adult neurogenesis: the cells expressing TH but not DA could
be newly generated neurones committed to a DA phenotype,
just arrived in the M/IP following the rostral migratory stream
(Saino-Saito et al., 2004), which could represent different
stages of maturation of DA neurones. Since immature DA
neurones have distinct physiological signatures, this hypothesis
has been tested with targeted electrophysiological recordings
at different levels within the OB (Pignatelli et al., 2009)
using TH-GFP transgenic mice (Sawamoto et al., 2001); in
immature DA neurones, the transcription of the TH gene is
not immediately followed by translation (Baker et al., 2001),
but in these neurones the eGFP gene, located under the same
promoter, undergoes a certain degree of translation, small, but
sufficient to allow these cells to become noticeably—although
dimly—fluorescent.

TH-GFP neurones in the external plexiform and
mitral/internal plexiform layers show very different excitability
profiles. The TH-GFP cells of the EPL present the same set
of voltage-dependent currents as for mature DA neurones of
the glomerular layer, including fast transient and persistent
Na-currents, T-type and L-type Ca-currents, and delayed
rectifier potassium; accordingly, their behavior, irrespective of
their position in the layer, is virtually identical to that of mature
DA neurones in the glomerular layer, showing a spontaneous
firing almost indistinguishable from that of the mature DA
neurones of the GL (Pignatelli et al., 2009).

The mechanisms governing autorhythmicity of TH-GFP cells
in external plexiform and glomerular layers are essentially the
same: as for mature DA neurones, TH-GFP neurones in the
EPL display a persistent Na-current (INaP) and a T-type calcium
current, and the pharmacological block of any of them also
reversibly blocks the spontaneous activity (Pignatelli et al., 2012).

The appearance of the T-type calcium channel during
maturation of TH-GFP cells has been studied by analyzing the
expression of the calcium channel gene CAV3.2 in different
groups of cells separated with fluorescent activated cell sorting
(FACS) according to the intensity of their fluorescence (a value
indicative of the maturation of the cell); the gene CAV3.2 has
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been selected for the sensitivity of the calcium channel encoded
by this gene to low nickel (Lee et al., 1999). The results indicate
a strong correlation (fivefold increase) between cell maturation
and CAV3.2 mRNA levels, suggesting that the transcription of
the gene coding for this channels is strongly associated with
the process of maturation of DA neurones (Pignatelli et al.,
2009).

Further information has been obtained from the analysis of
[Cl−]i in developing DA cells. Although it is the main inhibitory
neurotransmitter in the mature brain, in the earlier phases of
development GABA is excitatory, depolarizing the neurones by
promoting an outflow of Cl− ions, as result of the unusual
balance between the cation-chloride importer NKCC1 and the
extruder KCC2; in newly generated cells this is dominated by
the importer, leading to accumulation of Cl− inside the cell
and to Nernstian equilibrium potential for Cl− ions positive
with respect to the resting membrane potential (Ben-Ari et al.,
2007). The analysis of [Cl−]i in TH-GFP cells shows that
this progressively decreases moving from M/IP to GL layers,
and this observation is paralleled by an increase of the ratio
extruder vs. accumulator in the same axis (Pignatelli et al.,
2009).

The last observation concerning the maturation of DA
neurones resulting from adult neurogenesis is about the
establishment of synaptic connections with the existing network.
Two well-established properties of mature DA neurones in
the GL is that the large majority (about 80%) of the afferent
synapses are asymmetrical from olfactory nerve fibers (Toida
et al., 2000) and that the full expression of the DAergic phenotype
necessitates a well-structured input from olfactory receptor cells
(Brunjes et al., 1985; Stone et al., 1991; Wilson and Wood, 1992;
Baker et al., 1993; Cho et al., 1996).

The majority (75%) of the TH-GFP cells in the EPL respond
to ON stimulation with monosynaptic EPSP which can be
reversibly suppressed by kynurenate (Pignatelli et al., 2009).
On the contrary, the TH-GFP cells in the M/IP layer do not
respond synaptically to the ON stimulation but are depolarized
in response to focal application of glutamate, showing that they
already have functional glutamate receptors (Pignatelli et al.,
2009).

In this hypothesis, the faintly fluorescent cells observed in
the mitral and internal plexiform layers could represent elements
having arrested their migration process at this level, conceivably
waiting for some consensus clue to come from the glomerular
region allowing them to attain their final destination moving
across the EPL while finalizing their differentiation towards the
DAergic phenotype.

In a recent article, using a long-term in vivo single-cell
tracking based on a newly developed optical cell positioning
system, a series of remarkable new observations have been
reported concerning the movements of neuroblasts once arrived
in the OB (Liang et al., 2016). Of particular interest in this
context, is the observation that some of the neuroblasts bound
to the GL, ‘‘stopped for very long periods (from 12 h to
a few days) before resuming the movement’’ (Liang et al.,
2016), then crossed rapidly the EPL and once reached the
GL switched to lateral movement, eventually integrating few

glomeruli away from their entry point in the GL, and it is
tempting to envisage that the cells showing this behavior could
be DA neurones.

EXPERIENCE-DEPENDENT PLASTICITY IN
ADULT NEUROGENESIS

A hallmark of bulbar DA neurones is their strong plasticity in
response to sensory stimuli at multiple levels.

A first level of odor-driven plasticity observed in DA cells
consists in their modulation by the olfactory input: sensory
activity is fundamental for the development and maintenance of
DA, but not of GABAergic, calretinin, or calbindin phenotypes,
suggesting that DA neurones have a distinct reliance on
odor-induced activity, marking a significant difference with
respect to the other PG cells. DA neurone density is strongly and
reversibly down-regulated in animals odor deprived following
either chemical or surgical deafferentation of the OB (Nadi
et al., 1981; Kawano and Margolis, 1982; Baker et al., 1983),
or naris occlusion (Baker et al., 1983; Brunjes et al., 1985), an
effect which applies to both pre-existing and adult-generated
neurones (Bovetti et al., 2009; Bastien-Dionne et al., 2010). A
drastic reduction of DA neurones ensues rapidly (4 days) the
loss of sensory input (Baker et al., 1983), then proceeds more
gradually, reaching a maximal 40% loss after 4 weeks (Sawada
et al., 2011); although this phenomenon has long been known, the
underlying molecular mechanisms are only beginning to emerge,
and include transcriptional and epigenetic regulators (Banerjee
et al., 2013; Bovetti et al., 2013) and microglia (Grier et al.,
2016).

A second level of sensory-dependent plasticity of bulbar
DA neurones involves environmental modulation of adult
neurogenesis. In mice, an odor-enriched milieu has been
shown to affect both adult neurogenesis and learning,
an effect which is specific because it does not influence
hippocampal neurogenesis (Rochefort et al., 2002), and it
has been shown that this effect selectively affects the DA
neurones, due to increased neurogenesis, whereas similar
changes in calretinin or calbindin neurones were not
observed (Bonzano et al., 2014), but see also (Kato et al.,
2012). Odour enrichment or deprivation also increases or
decreases, respectively, the survival of adult-born glomerular
neurones, including DA cells (Bovetti et al., 2009), and odor
deprivation upregulates the critical transcription factor Pax6 is
in mice bulbar TH-positive cells (Bastien-Dionne et al.,
2010).

A further level of sensory-dependent plasticity involves an
activity-dependent upregulation of synaptogenesis of adult-born
PG cells, also at the level of dendritic spines, and particularly
prominent during their initial phases of development (Kelsch
et al., 2009; Livneh et al., 2009); interestingly, plastic patterns
of synaptic connectivity associated with learning has also been
observed in adult-born granule cells (Breton-Provencher et al.,
2016; Huang et al., 2016).

In this context, an interesting problem concerns the timing
of DA neurogenesis and the functional inclusion of newborn
neurones in the bulbar network. There is a general consensus
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on the principle that adult neurogenesis adds an essential degree
of freedom to odor processing by adapting the OB circuitry
to new olfactory signals or situations, but how could this be
possible if it takes not less than 2 weeks to produce new neurones
which are completely functionally integrated (Ortega-Perez et al.,
2007)? In other words, how can the addition of new elements
to the neuronal network be the response to an unexperienced
functional context if the rewiring will only be realized well after
the triggering stimulus is over? A similar objection was originally
raised for neurogenesis in hippocampus (Kempermann, 2002).

The seminal observations on the phenotypic differentiation
of DA progenitor cells in the OB put forward by the Harriett
Baker group (Baker et al., 2001), suggest a different way to look at
the problem: new cells are incessantly produced, complete their
tangential migration to the OB, and begin their differentiation
process toward their final phenotype. They halt their radial
migration halfway in the mitral cell layer, where they suspend
their maturation process in a pre-terminal state, waiting for
a consensus signal, which will allow them to perfect their
differentiation towards the final phenotype and to take their place
within the bulbar circuitry. What this consensus signal might
be is not known, but the data from our group outlined above
suggest that it follows the formation of a synaptic contact with the
olfactory nerve. What we propose is that at any given moment
there are new cells in the mitral cell layer committed to a DA
phenotype but not fully mature sending their projection into
the glomerular layer and trying to establish synaptic contacts.
Failing to do so, the newly generated cell undergo apoptosis
and die, what is actually known to be the fate of the majority
of newborn cells reaching the OB (Biebl et al., 2000; Winner
et al., 2002). If, on the contrary, an operative synaptic contact can
be set up, possibly with a spine relocation process of the kind
described in adult-born granule cells (Breton-Provencher et al.,
2016), then the progenitor neurone completes its differentiation
process migrating to its ultimate destination. Such a process
might explain how the OB circuitry could rapidly adjust to
better tackle new stimuli from the outside world, optimizing its
wiring for a more effective signal processing. With a mechanism
of this kind, the delay between a new sensory experience
and the circuit modifications for optimal signal processing
would be extremely small, as rewiring would only require the
refinement and a short-range repositioning of plastic elements
already present in situ, not a de novo production in a remote
site.

ROLE OF DA NEURONES IN THE
OLFACTORY BULB

At cellular level, the data of the literature about the role
of DA neurones in the bulbar circuits are of uncertain
interpretation. To limit the discussion to what has received
ample experimental support, a role of DA in the OB is the
inhibition of glutamate release in olfactory sensory fibers, via
activation of D2 presynaptic receptors (Wachowiak and Cohen,
1999; Berkowicz and Trombley, 2000), activating an intracellular
pathway suppressing of calcium influx through N-type calcium
channels (Wachowiak et al., 2005). The autorhythmicity of PG

DA neurones results in a tonic release of neurotransmitter in
the synaptic cleft between DAergic cells from ON terminals,
as shown by a ∼30% increase in levels of intracellular Ca2+

following the blockage of D2 receptors (Wachowiak and Cohen,
1999). DA can be eliminated from the synaptic cleft following
a reuptake by the DA transporter (DAT) or by the breakdown
enzyme catechol-O-methyl-transferase (COMT). A recent study
of Cockerham et al. (2016) has examined the mechanisms of
DA clearance in the synaptic space, showing that, contrary to
what happens in the striatum, where the reuptake is mainly
driven by the first, the predominant mechanism for DA
clearance in the OB is the COMT breakdown. The authors
suggest that the combined provisions of activity-dependent
DA levels and activity independent COMT breakdown can
extend the dynamic range of olfactory afferents in specific
glomerular circuits (Cockerham et al., 2016) and/or could create
adaptive odorant-specific filters for sensory inputs (McGann,
2013).

Larger DA neurones (a.k.a. SA cells), making interglomerular
connections, establish synaptic contacts with ET cells, which in
turn make direct excitatory synapses onto projection neurones
(M/T cells). Using an optogenetic approach, the synapse between
SA and ET cells has been characterized, showing that it elicits a
biphasic response in ET cells with an initial GABAA receptor-
mediated monosynaptic inhibition, followed by D1 receptor-
mediated excitation (Liu et al., 2013). The integration of the
two responses is made by the h-current: an initial GABAA
receptor-mediated a hyperpolarization, activating an h-current,
is immediately followed by the action of the co-released DA,
which potentiates the Ih, with a consequent depolarizing rebound
of the membrane potential (Liu et al., 2013). The net result of
the biphasic response observed in ET cells is that it could act
as a gate in the transmission of sensory signals to projecting
neurones (Banerjee et al., 2015), influencing the processing of
sensory input with a mechanism that could be further tuned by
the regulation of GABA vs. DA action by COMT (Cockerham
et al., 2016).

At a functional level, the contribution of mature and/or
newborn DA neurones in odor processing remains substantially
elusive, although a certain number of considerations can be
made, derived from direct experimental investigation or by
analogy with other DA systems.

To begin with, it is not clear the contribution of DA
neurones in odor detection, as mice knockout for D2 receptors
have an almost normal capability to detect or discriminate
odors; however, their ability to elaborate a correct response
to unpredicted odor-driven contingencies or situations is
significantly impaired (Kruzich and Grandy, 2004). In behavioral
terms, this could be described a severe impairment in reversal
learning, ameasure of cognitive flexibility (Izquierdo et al., 2016),
and therefore a kind of processing which is likely to take place in
circuits higher than the OB.

More focused on the role of DA cells in bulbar circuitry is
a recent study, confirming an earlier observation (Davila et al.,
2003), which demonstrates that DA cells, via ET cells—to which
they are coupled with chemical and electrical synapses—inhibit
mitral and tufted cells, thereby controlling the gain and
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decreasing the correlation of odor images in projection neurones
(Banerjee et al., 2015).

In accordance with the key function attributable to DA cells
for their strategic position at the entry of the bulbar circuitry,
several studies have suggested a major role of the DA system in
specific aspects of odor processing and of odor-driven behaviors,
to cite only a couple odor discrimination and reproduction.

As already outlined above, the DAergic system is involved in
odor discrimination rather than in odor detection (Kruzich and
Grandy, 2004). Increasing of DA levels by injecting the dopamine
precursor L-DOPA in rats improves olfactory discrimination
capabilities in forced choice odor discrimination task (Pavlis
et al., 2006), and mice lacking the DAT show discrimination
deficits (Tillerson et al., 2006). The mechanism is mediated
by modulation of D2 receptors and affects discrimination
capabilities by altering the perceived odor intensity (Doty and
Risser, 1989; Wei et al., 2006).

Reproduction sees an important participation of the DAergic
system in different moments, from mating to offspring
recognition. Aftermating odor perception is associated with a
surge of TH expression in PGCs and DA transmission in the
OB (Serguera et al., 2008). This rise in DA release translates
into inhibition of ON terminals and downturn of sensory
input and excitation of the OB projection neurones, eventually
blocking social olfactory cues detrimental to pregnancy (Serguera
et al., 2008). DA levels increase significantly in the OB
during parturition and suckling (Kendrick et al., 1988), deeply
influencing the maternal behavior (Keverne et al., 1993).

CONCLUDING REMARKS

Although bulbar DA cells have been the object of many studies
covering their histological and electrophysiological profiles, it is
amazing that the functional role of what is the largest population
of DAergic neurones in the brain remains in the shadow under
many aspects, and this is particularly true for adult-born DA

cells. Understanding how DA neurones contribute to signal
processing in the bulbar network requires a finer knowledge
of their connections, not as much under the anatomical aspect
as under the dynamic aspect, and of their ‘‘molecular’’ (Bhalla,
2014) computational capabilities. New technical approaches
are progressively revealing new levels of complexity in the
computational capabilities of these cells, and in the variety of the
roles they can play, and we can expect interesting developments
in the incoming years.

Adult neurogenesis of DA neurones also in humans (Inta
et al., 2015), demonstrating the capacity of the mature CNS
to regenerate cells whose loss is responsible for devastating
neurodegenerative diseases, has turned on hopes that
understanding the mechanisms governing adult neurogenesis
could promote new strategies for cell replacement therapies,
either by implementing the endogenous neurogenic potential or
by transplants of highly neurogenic stem cell supplies. To date,
despite the considerable amount of information accumulated
on adult neurogenesis in the course of the last 20 years, no
significant translational improvements have been achieved
for most neurological diseases, including those more directly
linked to a damage of the DA system, and the translational
gap remains wide open (Cattaneo and Bonfanti, 2014), but a
reasonable possibility that filling this gap is not just a hope do
exist; the years to come might substantiate this expectation, and
the DAergic neurones of the OB might be a main character in
the play.
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