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Liposome production by 
microfluidics: potential and  
limiting factors
Dario Carugo1,2, Elisabetta Bottaro3, Joshua Owen1, Eleanor Stride1 & Claudio Nastruzzi3

This paper provides an analysis of microfluidic techniques for the production of nanoscale lipid-based 
vesicular systems. In particular we focus on the key issues associated with the microfluidic production 
of liposomes. These include, but are not limited to, the role of lipid formulation, lipid concentration, 
residual amount of solvent, production method (including microchannel architecture), and drug loading 
in determining liposome characteristics. Furthermore, we propose microfluidic architectures for the 
mass production of liposomes with a view to potential industrial translation of this technology.

The term vesicle is used to denote a supramolecular aggregate composed of amphipathic molecules, commonly 
natural or synthetic phospholipids, formed in an aqueous phase1. “Liposomes” are a particular type of vesicle that 
are widely employed for biomedical and biotechnological purposes2. They are composed of one or more closed 
shells, or lamellae, consisting of a phospholipid bilayer and enclosing a small volume of aqueous liquid. Their 
dimensions can vary from tens of nanometres up to hundreds of micrometres depending on the preparation 
protocol and the final use. Typically, liposomes used in medical applications are unilamellar with an average size 
of ~100 nm.

The organisation of phospholipid molecules in water is mainly driven by the hydrophobic effect which spa-
tially organises the amphiphilic molecules (phospholipids) so as to minimise entropically unfavourable interac-
tions between hydrophobic acyl chains and the surrounding aqueous phase. Liposomes are extensively used in 
the cosmetic and pharmaceutical industries as carriers for both lipophilic and water-soluble actives; hydrophilic 
molecules are entrapped in the interior aqueous compartment, while lipophilic molecules are solubilised into or 
intercalated within the lipid bilayer. Many hundreds of biologically active compounds, including anticancer and 
antimicrobial agents, chelating agents, peptides, hormones, enzymes, proteins, vaccines, and genetic materials, 
have been evaluated for delivery using liposomes2.

The first liposomal pharmaceutical product, Doxil® received approval by the Food and Drug Administration 
(FDA) of the United States of America (USA) in 1995 for the treatment of refractory acquired immune defi-
ciency syndrome (AIDS)-related Kaposi’s sarcoma3. To the best of our knowledge, there are about fifteen 
liposome-based medicines currently approved for clinical usage (see Table S1) and many more are undergo-
ing clinical trials. The administration route of these liposomal drug formulations can be intravenous4, intra-
muscular, epidural5, intratracheal or intrabronchial6. Other delivery routes have also been investigated  
(e.g., oral7, dermal or transdermal8), although they are less frequently employed in association with commercial 
formulations.

When designing new preparation routes it is important to consider the desirable characteristics of liposomes 
for specific applications. These are summarised in Table 1, and include the average content of lipids, liposome 
size, manufacturing method, physical form and excipients, as obtained from the patient information leaflets of 
14 commercial medicines containing liposomes (see Table S1 for more detailed information about these for-
mulations and related patient leaflets). For instance, Doxil® is prepared by a multi-step procedure as follows:  
(a) preparation of multilamellar vesicles (MLVs) by lipid film hydration; (b) formation of large unilamellar vesi-
cles (LUVs) from MLVs by freezing and thawing, followed by liposome extrusion through polycarbonate filters of 
a defined pore size that results in a homogeneous population of single bilayer vesicles of decreased particle size; 
(c) establishment of an ion gradient between the external aqueous phase and the interior aqueous compartment 
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of the liposomal preparation (usually by size-exclusion column chromatography); and (d) encapsulation of dox-
orubicin by active loading3.

Over the past few decades different techniques have been proposed for the preparation of liposomes and lipos-
ome size, dispersity (Đ)9, lamellarity and entrapped liquid volume may all vary depending on the method used.

The majority of the existing methods can be categorised into one of two groups of bulk methods, where the 
term “bulk” is used throughout this manuscript to describe macroscale or batch techniques.

The first group consists of methods based on the swelling of initially dried preorganised lipid films (i.e. rehy-
dration methods), followed by the mechanical manipulation of the dispersed bilayers1. The second group includes 
methods involving the use of: (i) a cosolvent in which the lipids are soluble, (ii) an additional non-bilayer-forming 
“coamphiphile”, or (iii) specific ionic species that influence the supramolecular aggregation of the lipids1.

More recently, improvements have been made with the development of microfluidic production methods10, 
in which liposome formation occurs within a confined microenvironment. Microfluidic methods have demon-
strated potential for achieving higher control over the physical properties of the end product, particularly in terms 
of liposome size, size distribution and lamellarity. There are however concerns about the viability of this technol-
ogy on an industrial scale. These concerns arise mostly from the lack of experimental evidence demonstrating: (i) 
a systematic superiority compared to macroscale bulk methods, (ii) suitability for producing clinically relevant 
liposome formulations, (iii) efficiency in loading bioactive compounds, and (iv) potential for mass production. In 
this respect, it should be noted that efforts have been made in the industrial environment to develop controlled 
precipitation processes for producing liposomes of clinically relevant standards. In this manuscript, we attempt 
to address these issues by critically analysing state-of-the art microfluidic methods reported in the literature and 
by performing additional experiments.

Analysis of Current Techniques
Liposome preparation: bulk versus microfluidic methods. Microfluidic approaches to liposome pro-
duction include electroformation and hydration11, extrusion12, pulsed jetting13, double emulsion templating14, ice 
droplet hydration15, transient membrane ejection16, droplet emulsion transfer17 and hydrodynamic focusing18. 
Recently, a microfluidic method based on the hydrodynamic pinch-off mechanism has also been proposed for 
producing monodisperse, cell-sized (5–20 μm) unilamellar liposomes with excellent encapsulation efficiency19.

Many of the aforementioned techniques however result in the production of relatively large vesicular systems 
(i.e., Giant or Large Unilamellar Vesicles) or microtubules, limiting their potential for the production of nanoscale 
drug delivery vehicles. Furthermore, being simply a miniaturised version of their analogous bulk counterparts, 
many of the aforementioned methods cannot be regarded as strictly microfluidic. However, among these, the 
microfluidic hydrodynamic focusing (MHF) approach presents the typical physical characteristics of microflu-
idic systems (i.e., including low Reynolds number and diffusion dominated mass transfer) and, to the best of the 
authors’ knowledge, represents the only viable microfluidic method for producing lipid-based nanoscale vesicular 
systems with potential for clinical application.

Only limited attention has been devoted to this technique in previous publications5 however, and a critical 
evaluation of the method has not been carried out.

The MHF method relies on the use of microfluidic devices with a cross flow geometry or, more rarely, with a 
3D annular coaxial geometry20 (see Table 2 for a comparative analysis of the MHF methods)21–30.

Typically, a stream of lipid in alcohol solution is forced to flow in the central (or inner) channel of the device. 
The lipid stream is intersected and sheathed by two lateral (or coaxial) stream(s) of a water phase (typically 
distilled water or aqueous buffers). In this way, the lipid containing stream is hydrodynamically focused into a 
narrow sheet having a rectangular cross-section in the case of microchips with cross flow geometry, or a circular 
cross-section in the case of 3D annular coaxial chips. Notably, the size of the focused stream can be tuned by 
adjusting the volumetric flow rate ratio (FRR) between the lipid and water phase streams, and the total flow rate 
(TFR)21.

The formation of liposomes in MHF chips is governed by the diffusion of different molecular species (mainly 
alcohol and water, but also lipids) at the liquid interface between the solvent (alcohol) and non-solvent (water)22,31 
phases. The alcohol in which the lipids are initially solubilised diffuses into the water (and concomitantly the 
water diffuses into the alcohol) until the alcohol concentration decreases to a critical level, below the solubility 
limit of the lipids. As such, the alcohol diffusion triggers the formation of liposomes by a mechanism described as 
“self assembly”21,22. Specifically, it is believed that the reciprocal diffusion of alcohol and water across the focused 
alcohol/water interface causes the lipid to precipitate, resulting in the formation of intermediate structures, in the 
form of oblate micelles, that subsequently form liposomes22.

MHF microfluidic techniques have been shown to produce uniformly dispersed liposomes and allow for 
direct control of liposome size via fine adjustments to either FRR or TFR. Jahn et al. postulated that: “decreasing 
the sample stream width to micrometre length scales allows for controlled and reproducible mechanical and 

Composition Concentrationa (mM) Sizeb (nm) Manufacturing method Physical form Other excipients

Phospholipids (mainly 
PC) and cholesterol

8 (mean) 2–17 (range) 
0.1–0.2 (for vaccines) 80–100 Extrusion followed by 

active loading
Liquid suspension or 
lyophilized powder

pH adjusting agents 
Antioxidants Osmotic agents

Table 1.  Key features of liposomes present in commercial medicines. aTotal concentration of lipids in the 
liposomal formulation ready to be administered. bGenerally not indicated in the prescribing information leaflets 
or in the summary of product characteristics.
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Microchip 
material

Microchip geometrya and 
dimensions (angle/depth/width/
length) (°/μ m)

Lipids concentration 
(mM)

Lipid 
solvent

Water 
phase TFR (μ l/min) FRR

Investigated 
experimental 
parameters

Procedure for 
liposome analysis 
(Z average) ref.

Silicon wafer MHF
n.i./100/42 or 64/n.i.

DMPC 2.5
Ch 2.0
DHP 0.5

IPA PBS

Experiment #1
TFR 31–186
FRR 30
Experiment #2
TFR 22–122
FRR10, 15, 20, 30, 40, 60

TFR
FRR

AF4, MALLS, 
QELS 7

Silicon wafer

MHF
chip#1
45°/120/42 or 65/10000
chip#2
90°/36/10/10000

DMPC 2.5
Ch 2.0
DHP 0.5

IPA PBS

Experiment#1 (chip#1)
TFR 117
FRR 12, 17, 24, 36, 48
Experiment #2 (chip#2)
TFR 5.4
FRR 6,9,12,24,36
Experiment #3 (chip#1)
TFR 25, 50, 100
FRR 14, 19, 29, 49

TFR FRR AF4, MALLS, 
QELS 8

Silicon wafer MHF
90°/39 ±  1/21 ±  1/n.i.

DPPC 4.1
Ch 1.19
DCP 0.69

IPA
PBS
NIPA
MBA
DEAP

TFR 9.6
FRR 10, 15, 20, 25 FRR AF4, MALLS, 90 

Plus/BI-MAS 9

PDMS MHF
90°/50/200/5000

Lipid phase #1
DMPE 2.5
Ch 2.0
DHP 0.5
Lipid phase #2
E. Coli PE 5.0

IPA PBS TFR 50–133
FRR 2, 3, 4, 5, 6, 7 FRR Ccomp

Nano ZS90, angle 
90° 10

Glass wafer MHF
90°/50/220/n.i.

Lipid phase #1
POPC 2.0 –20.0
Lipid phase #2
DMPC 2.0–20.0

IPA PBS

Experiment#1
TFR 30–246
FRR 4, 10, 20, 30, 40
Experiment#2
TFR66
FRR10

FRR Clip Ccomp
Nano ZS, angle 
173° 11

PDMS

Chip #1
n.i./100/140/n.i.
single hydrodynamic focusing (SHF)
Chip #2
n.i./100/140/n.i.
double hydrodynamic focusing 
(DHF)

EPC 12.5 – 37.5
DOPE 6.25 – 18.75
DOTAP 6.25 – 18.75

EA water TFR 80–160 mm/s
FRR 8, 10, 13, 16, 18 FRR TFR Clip

Nano ZS, angle 
173° 12

COC MHF
n.i./270/190/n.i.

Lipid phase #1
DMPC
Ch
DCP
PEG5000-PE
(Clip 20.0)
Lipid phase #2
DMPC
Ch
DCP
PEG2000-PE
(Clip 20.0)

EA BS TFR 384
FRR 40, 70, 100 FRR Clip

AF4, MALLS, 
QELS 13

PDMS-
glass

MHF
n.i./150/15/n.i.

DPPC 7.5
Ch 6.0
PEG2000-PE 1.5

EA PBS TFR 0.20 m/s (27)
FRR 5, 7, 9, 10, 12 FRR AF4, MALLS, 

QELS 14

PDMS
“Y” shape mixer with “herringbone“ 
elements
n.i./78/200/n.i.

Lipid phase #1
DOPE
DOTAP
(8:8 μ mol)
Lipid phase #2
PC
Ch
(16:4 molar ratio PC/Ch)

EA BS

Experiment #1
TFR 500 – 2000
FRR 1, 3, 5
Experiment #2
TFR 2000
FRR 1, 3, 5
Experiment #3  
TFR2000–6000 FRR3

TFR
FRR

Nano ZS, 
angle 173°

15
16

Table 2.  Microfluidic procedures for the preparation of liposomes. aGeometry: angle =  intersection  
angle between the central and side channels; depth =  the average depth of the microfluidic channels; 
width =  the average width of the microfluidic channels; length =  the length of the main channel. 
Abbreviation: n.i. =  not indicated; DMPC =  1,2-dimyristoyl-sn-glycerol-3-phosphatidylcholine;  
Ch =  Cholesterol; DHP =  dihexadecyl phosphate; IPA =  isopropyl alcohol; PBS =  phosphate buffered saline;  
TFR =  total flow rate; FRR =  flow rate ratio; AF4 =  asymmetric flow field-flow fractionation; MALLS =  multiangle  
laser light scattering; QELS =  quasi-elastic light scattering; DPPC =  1,2-dipalmitoyl-sn-glycero3-phosphatidylcholine;  
NIPA =  N-isopropylacrylamide¸MIPA =  N,N 0 –methylenebis (acrylamide); DEAP =  2,2-diethoxyacetophenone;  
PDMS =  polydimethylsiloxane; DMPE =  1,2-dimyristoyl-sn-glycerol-3-phosphatidylethanolamine; E. Coli  
PE =  Escherichia coli phosphatidylethanolamine (containing phosphatidylethanolamine as major constituent  
and phosphatidyl glycerol, phosphatidic acid and cardiolipin); Ccomp =  total lipid concentration; POPC =  1-palmitoyl-
2-oleyl-sn-glycerol-3-phosphatidylcholine; Clip =  total lipid concentration; EPC =  egg phosphatidylcholine; 
DOPE =  1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; DOTAP =  1,2-dioleoyl-3-trimethylammonium-
propane; EA =  ethyl alcohol; COC =  cyclic olefin copolymer; DCP =  dihexadecyl phosphate; PEG5000 =  PE 
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chemical conditions across the stream width, especially compared to more traditional bulk-phase preparation 
techniques (i.e., test tubes and beakers)”21. In discussing bulk-phase production methods the authors referred 
to a number of procedures which could not be clearly identified21. In addition, van Swaay and DeMello further 
reinforced this concept in a recent, comprehensive review article by stating that “the microfluidic flow-focusing 
method of vesicle production has no analogous protocol on the macroscale” (i.e. bulk method)10.

It is often accepted that bulk methods are associated with heterogeneous and poorly-controlled chemical and 
mechanical conditions during lipid vesicle formation, resulting in non-uniform vesicles in terms of both lamellar-
ity and size. For these reasons, additional post processing steps are often required for obtaining homogeneous ves-
icle suspensions. These processes include: (a) vesicle extrusion through the pores of polycarbonate membranes, 
(b) treatment with ultrasound, or (c) repetitive freezing and thawing1. In contrast, being characterised by laminar 
flow conditions and diffusive mass transfer, MHF has the ability-at least in theory-to produce liposomes with 
excellent control over size and lamellarity. Furthermore, microfluidic technology offers additional advantages 
over bulk methods, including the possibility of in situ monitoring of the liposome formation process, continuous 
production and scaling up by microreactor parallelisation31.

Effect of microfluidic parameters on liposome characteristics. A number of investigations of the 
effect of microfluidic parameters on liposome characteristics have been carried out in recent years7–16 and the 
main findings can be summarised as follows: (a) the mean diameter of the liposomes produced is directly related 
to lipid concentration25–27 and inversely related to FRR21,22, (b) the TFR appears, in contrast, to have only a small 
effect on liposome size21,22. However, limited comparative data are available on the effect of microdevice geometry 
(i.e. different channel patterns) on liposome characteristics. For instance, Jahn et al. used two similar microfluidic 
devices to study the combined effect of device geometry and hydrodynamic flow focusing regimes on lipos-
omes. They used MHF chips differing in the width of the mixing channel (10 μ m and 65 μ m, respectively), and 
concluded that similar liposome size distributions were obtained under different hydrodynamic flow focusing 
conditions; for instance, at high FRR =  24 and 36, the liposomes produced by the two MHF devices were quite 
similar: 31 vs 38 nm and 27 vs 32 nm in diameter for the 10 and 65 μ m devices, respectively22. Hood and DeVoe 
investigated the effect of channel aspect ratio (i.e., height:width ranging from 0.5:1 to 100:1) in traditional flow 
focusing geometries, and concluded that high aspect ratio devices resulted in more uniform liposomes and higher 
production rates32.

Alternative microfluidic architectures have been recently proposed by the Perries’s group, which consisted of 
Y-shaped mixers incorporating staggered herringbone elements to induce chaotic advection29. Unfortunately, no 
direct comparison between these alternative architectures and conventional MHF chips was reported. Concentric 
capillary arrays have been recently developed by Hood and co-authors and employed as a cost-effective and facile 
route to liposome production using three-dimensional flow focusing. Liposomes produced with this method had 
comparable size and lower size dispersity compared to those obtained using traditional MHF chips20.

Open questions on liposomes by microfluidics. In spite of the promising opportunities offered by 
microfluidics for liposome preparation, a number of questions still remain to be answered (see points i-vi below). 
Notably, such issues are also relevant to the microfluidic-based production of other nanoparticulate systems, such 
as polymeric micelles and niosomes31,33.

(i)  In the literature, no comparison between liposomes produced by bulk methods and microfluidics is provided. 
This has been previously attributed to the fact that MHF methods don’t have analogous protocols at the mac-
roscale5. Notably, methods based on the use of mixers, which are routinely employed in the industry, may not 
represent a scaled up version of microfluidic flow focusing regimes.

Moreover, liposomes obtained by microfluidic MHF at various FRRs differ in terms of both lipid and alcohol 
content; therefore their dimensions cannot be directly compared. It is indeed well known that lipid content greatly 
influences the dimensions of liposomes, as evident from ethanol injection bulk methods34.

(ii)  The coating material studied is often limited to the anionic mixture DMPC/cholesterol/dihexadecylphosphate 
(DHP)22,21; limited data is provided on the comparison between different lipid mixtures or on the use of cati-
onic lipids29, which may be more suitable for medical or biotechnological applications (e.g. as delivery systems 
for anticancer drugs or as transfection reagents), and which are routinely used in the industry.

(iii)  The lipid concentration typically used for liposomes produced by microfluidics is relatively low with respect 
to liposomes present in commercial medicines (see Table S1); for instance, in the case of liposomes produced 
with a FRR =  10 or 30, the typical final total concentration of lipids ranges between 0.16 and 0.45 mM11–21.

In other studies, the concentration of lipids in the final liposome suspension typically ranges between 0.1 
to 2.0 mM, depending on the FRR. This limitation of MHF techniques is particularly critical when liposomes 
produced by microfluidics are compared with those present in commercially available medicines, where the lipid 
concentration in the ready-to-be-administered suspensions typically ranges between 5 and 25 mM3,7.

1,2-dimyristoyl-sn-glycero3-phosphoethanolamine¸PEG2000 =  PE 1,2-dimyristoyl-sn-glycero3-
phosphoethanolamine-N-[methoxy(PEG)-2000]; BS =  buffer solution; PC =  phosphatidylcholine; 
MHF =  microfluidic hydrodynamic focusing; ZS (or ZS90) = ZetaSizer.
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(iv)  In the majority of reports isopropanol (IPA) is used as the lipid solvent21,23–25; however, no data is provided on 
the residual IPA content. Only few studies explore the use of ethanol as a less toxic alternative for medicinal 
applications, which would also comply with routine industrial processes35.

Most importantly, to the best of the authors’ knowledge the effect of residual alcohol content on light scat-
tering measurements (generally used to determine the size of vesicles) has not been taken into consideration in 
the large majority of previous studies. Given that the viscosity of water/alcohol (isopropyl alcohol or ethanol) 
varies in relation to the alcohol content in the final liposome suspension (and thus on the FRR employed), a sys-
tematic determination of fluid viscosity at varying FRR regimes may be required to obtain accurate dimensional 
measurements. Notably, small variations in fluid viscosity may be sufficient to significantly affect light scattering 
measurements36. Although this effect could be reduced by significantly diluting the liposome suspension prior 
to dimensional analysis, this may not be applicable to many MHF techniques which suffer from a relatively low 
liposome concentration in the end-product, particularly when operated at high FRR.

(v)  To the best of our knowledge, only a few reports are available that consider the effect of different chip archi-
tectures (i.e. channel dimension and angle between the main and side channels) on liposome characteristics22. 
Other studies have focused on the effect of channel aspect ratio32 in conventional flow focusing geometries.

(vi)  Finally, for liposomes produced by microfluidics, there has been little or no systematic characterisation of 
drug encapsulation efficiency or the effect of drug encapsulation on liposome size.

Results and Discussion
Design principles for MHF chips. In the present study, different device architectures have been considered 
for liposome production. Devices include microscale chips (cross-sectional dimensional range of 100–320 μ m)  
with mixing channel displaying distinct architectural features (i.e., straight, serpentine-like, and containing 
micropillar structures) and scaled-up versions of microscale flow focusing architectures, with cross-sectional 
channel dimension in the millimetre range. Considering the spectrum of different architectures described in 
the literature, the following general principles have been considered in this study for designing and constructing 
chips employed for liposome production.

(i) Chip dimensions. The total width and length of the chip should be defined to comply with the dimensional 
constraints imposed by the typical size of microscope stages that are routinely used to assess the correct 
functioning of the chips. As a general design principle, the microchannel architecture should fit within 
the maximum width and length of conventional glass slides for microscopy (i.e., width =  25–50 mm and 
length =  75 mm). At the same time, the thickness of the device should comply with the working distance of 
microscope objectives. It should be noted that whilst in situ microscope observation may not be required in 
an industrial setting, we consider it as a desirable requirement at a research and development stage.

(ii) Channel dimensions. The inlet channels should be long enough to allow the fluid flows to fully develop before 
they intersect with each other, allowing for a stable and predictable flow focusing regime. Channels should 
also be designed so as to guarantee sufficient spacing between the inlet ports, allowing for robust and practi-
cal connection with tubing and pumping units. A typical inlet channel length for MHF chips is in the range 
of 5–10 mm; note that longer channels result in higher backpressure, which could potentially compromise 
device usability. Finally, the mixing channel should be designed to allow for complete mixing of the solvents 
(ethanol or isopropanol, and water) at the selected operating flow rates, and to comply with the dimensional 
requirements imposed by microscope interfacing.

(iii) Relative orientation of the inlet channels. In MHF chips, the angle between the side and central inlet channels 
should be defined so as to minimise fluid dynamic perturbations at the intersection between flows, particu-
larly if devices are designed to operate at high throughput regimes. An angle in the range 30°–60° was deemed 
suitable for the applications described in the present study.

(iv) Materials. The constitutive materials should satisfy different requirements, including resistance to solvents, op-
tical transparency, compatibility with microfabrication and bonding techniques, low surface roughness, and 
commercial availability. In this specific study, PDMS has been identified as the optimal material choice, given its 
compatibility with pharmaceutical-grade solvents (i.e., ethanol), ease of surface treatment by exposure to oxygen 
plasma, ability to conform to a surface, and potential for bonding with commercially available glass slides.

(v) Fabrication method. Traditional soft lithographic methods based on SU-8 moulding can be employed for pro-
ducing PDMS microchannel architectures, which can be irreversibly coupled to glass substrates using plasma 
bonding techniques. Notably, glass is chemically inert and its surfaces smoothness is suitable for optical mi-
croscopy. With an aim to develop cost-effective and facile microfabrication methods with potential for large-
scale chip fabrication, we also employed an in-house developed technique which combines micromilling with 
epoxy-based replica moulding. Both these methods allow for obtaining well-defined cross-sectional channel 
features, which may be complex to achieve using wet etching techniques.

(vi) Operating regime. Microfluidic flow focusing was selected as a microfluidic-based regime for nanoscale lipos-
ome production, and its performance compared with other micromixing geometries. Notably, MHF operated 
at laminar flow conditions has been previously demonstrated to allow for precise control over the interfacial 
boundaries between solvent and co-solvent streams, resulting in diffusion dominated mass transfer and lead-
ing to liposomes of relatively uniform physical properties. Furthermore, liposome size and dispersity in MHF 
chips has the advantage of being potentially controlled on-demand by finely adjusting the hydraulic boundary 
conditions. MHF devices were compared with other micromixing geometries, including those containing 
serpentine-like microchannels and micropillar arrays.
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Production of liposomes using different microfluidic architectures. In the remainder of this man-
uscript, the “real” advantages of microfluidics over bulk methods are discussed in order to address the issues 
reported above. Specifically, the production of liposomes employing different microfluidic chips (see Fig. 1) and 
lipid formulations was evaluated in terms of the size and homogeneity of the end product, with particular empha-
sis on the potential industrialisation of microfluidic methods.

Moreover, a detailed analysis is provided of the effects of the operating parameters (especially FRR) on lipos-
ome dimensions, taking into consideration the effect of residual alcohol on the viscosity of the liposomal samples 
and thus on the determination of liposome size by light scattering measurements. Liposomes produced using 
MHF were compared with those obtained by the bulk ethanol injection method.

Ethanol injection was selected as a bulk technique since, in our opinion it strongly resembles MHF liposome 
formation (in terms of simplicity and physical conditions) relative to other bulk techniques. Notably, this method 
results in the formation of small unilamellar vesicles (SUV); therefore it does not require post-processing homog-
enisation steps. Similar to many microfluidic protocols, phospholipids are firstly dissolved in ethanol; a small 
amount of the lipid solution is then injected into water, above the transition temperature (Tm), triggering SUV 
formation.

Analogously to MHF, the formation of liposomes is ascribed to the miscibility of ethanol and water that causes 
the diffusion of alcohol molecules into water and the consequent “self assembly” of lipids to form liposomes. The 
size and homogeneity of the SUVs is dependent upon the experimental parameters, specifically: lipid concentra-
tion, rate of injection of the alcoholic lipid solution and stirring rate1. In this study an injection method, more 
strictly resembling microfluidic approaches, was employed. The lipid mixture was injected by a syringe pump at a 
constant flow rate of 500 μ L/min and the water phase was maintained under mechanical stirring by a three blades 
impeller, at 300 r.p.m. In addition, bulk experiments were conducted varying both the quantity of lipid (from 0.86 
to 4.0 mM) at a fixed ethanol content, and the ethanol content (from 1.9 to 9.0%, v/v) at a fixed quantity of lipid 
(see Table S2).

Data reported in Fig. 2, referring to liposomes produced by the “controlled” injection method, show that 
the concentration of ethanol and lipid significantly affected the dimensional characteristics of liposomes. For 
instance, upon increasing the lipid concentration a concomitant size increase of the liposome (Fig. 2A) was 
observed. The liposome mean diameter was equal to 46 ±  9 nm and 109 ±  5 nm at a lipid concentration of 1 mM 
and 4 mM, respectively (data correspond to the Z-average, determined by DLS, and are the mean of three inde-
pendent samples, measured in triplicate ±  S.D.). The ethanol content had the opposite effect; the progressive 
increase from 2% to 9% (v/v) caused a decrease in liposome size (Fig. 2B). Finally, in Fig. 2C the effect of the 
concomitant variation of lipids and ethanol content is reported. In this case, the two effects counterbalanced each 
other; in fact liposomes maintained an almost constant size of ~115 nm. For comparison, the size of liposomes 
produced by MHF is also reported (dashed line). Notably, liposomes produced by MHF were smaller than those 
produced by the bulk method, although the overall dimensional trend was similar.

With respect to the lipid formulation, the results reported in Fig. 3 strongly suggest that, as for bulk proce-
dures, the lipid composition plays a fundamental role in determining the size of liposomes produced by micro-
fluidics. It is evident that the use of a cationic lipid mixture resulted in a marked decrease in liposome size when 
compared to a neutral lipid formulation. For instance, at FRR =  30 neutral liposomes had an average size of 
87 ±  4 nm compared to 28 ±  2 nm for cationic liposomes (data correspond to the Z-average, determined by DLS, 
and are the mean of three independent samples, measured in triplicate ±  S.D.). The macroscopic and microscopic 
appearance of the produced liposomes is also reported in Fig. 3.

Importantly, our microfluidic experiments demonstrate that small and uniform liposomes can be produced 
using relatively high concentrations of lipids. The final concentration of lipids was indeed comprised between 
9.0 mM (at FRR =  10) and 3.2 mM (at FRR =  30), which corresponds to 6.8 mg/ml (at FRR =  10) and 2.4 mg/ml 
(at FRR =  30). Notably, the total concentration of lipids (expressed in mg/ml) in liposomes present in medicines 
ranges between 0.1 mg/ml (for Epaxal® ) and 103 mg/ml (for Marqibo® ), and typically falls within the 5–15 mg/ml 
range for the majority of formulations (see Table S1). It can therefore be concluded that microfluidic methods are 
potentially suitable for the preparation of liposomal suspensions to be included in commercial, pharmaceutical 
formulations. Moreover, in order to minimise the content of toxic constituents we demonstrate that ethanol is a 
suitable substitute for the more toxic isopropanol in microfluidic experiments, particularly in view of a potential 
translation of this technology into the industrial environment.

To evaluate the potential effect of chip geometry and material properties on liposome preparation, three differ-
ent microfluidic devices were constructed; each having significantly distinct design parameters (see Fig. 1). Our 
results, shown in Fig. 4, indicate that liposome size and size distribution are not only functions of flow rate ratio, 
but are also influenced by the device size and architecture. For all chips, the increase in FRR caused, as expected, 
a progressive decrease of the liposome dimensions; liposomes prepared with #chip1-MHF were smaller than 
those prepared with all other chips. In particular, the liposomes obtained by #chip1-MHF were in the range 30 
and 80 nm, depending on FRR. This effect was tentatively attributed to the fact that #chip1-MHF has the small-
est channels and the MHF geometry has two interfaces for ethanol diffusion, whilst #chip2-YJ has only a single 
surface of boundary between the water phase and the lipid ethanol solution. Potential establishment of secondary 
flows (i.e. Dean flows) within curved channels (present in both #chip2-YJ and #chip3-PM) may have influenced 
on mass transport of solvent and co-solvent in these geometries, and therefore also the obtained liposome size. 
Furthermore, differences in the total area available for mixing across different chips is also likely to have influ-
enced the physical properties of the end-product.

Finally, the effective encapsulation of drugs by liposomes produced using MHF was investigated. Ivermectin 
was employed as a model drug since it has recently been shown to be a highly potent inhibitor of yellow fever 
virus replication and, although less efficiently, of several other flaviviruses. Figure 5 shows that this drug did 
not cause large modification of the liposome size produced by MHF microfluidics, as the liposome containing 
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ivermectin were only marginally larger than the empty ones. Notably, the encapsulation efficiency of ivermectin 
in liposomes was extremely high, exceeding 95%. All together, the favourable characteristics of ivermectin loaded 

Figure 1. Schematic representation of the process of liposome formation. Panel A shows a schematic 
representation of a microfluidic device, namely a MHF microchip (#chip1-MHF), and the process of liposome 
(SUV) self-assembly. Panel B shows a schematic representation of the ethanol injection procedure. Panel C 
illustrates the geometrical characteristics of the chips employed for the microfluidic experiments. #chip1-MHF 
comprises three inlet microchannels with 30° intersection angle between each other, and a mixing microchannel 
having width, depth and length of 150 μ m, 100 μ m and 30 mm, respectively. #chip2-YJ comprises two inlet 
microchannels with 120° intersection angle between each other, and a mixing microchannel having width, 
depth and length of 320 μ m, 320 μ m and 66 mm, respectively. #chip3-MP comprises three inlet microchannels 
with 90° intersection angle between each other, and a mixing microchannel with three pillar mixing elements, 
having width, depth and length of 150 μ m, 150 μ m and 65 mm, respectively. TeflonTM tubes were used to connect 
the microfluidic platform with syringes. The volumetric flow rate was controlled using syringe pumps.
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liposomes could be potentially ascribed to the physico-chemical properties of the drug molecule (i.e. size, charge, 
solubility etc.).

Figure 2. Effect of the variation of lipid concentration (A), ethanol content (B) and simultaneous variation 
of both parameters (C) on the dimension of liposomes produced by ethanol injection. For comparison, 
data relative to liposomes prepared by MHF microfluidics are also reported in panel C (dashed line). Data 
correspond to the Z-average, determined by DLS. Liposomes were constituted of PC/cholesterol 4.0− 0.4 mM, 
and data represent the mean of three independent samples, measured in triplicate ±  S.D.
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Industrially applicable microdevices. Much remains to be proven about the industrial applicability of 
microfluidics, especially in the search for methods (microdevices) which are able to fulfill the different require-
ments of clinically relevant formulations. In this respect, the development of microfluidic-based technology 
with clear advantages over bulk methods represents an ongoing challenge. A possible way to bring microflu-
idic techniques to an industrial level would be the development of easy-to-handle microfluidic chips based on:  
(a) cost-effective microfabrication technologies or (b) “off-the-shelf ” components that are commonly employed 
for high performance liquid chromatography (HPLC) procedures. In a series of experiments we demonstrated 
that both #chip4-OFF3 and #chip5-MHF-LC (depicted in Fig. 6) represent interesting examples of easy-to-build 
MHF chips for liposome production. Particularly, #chip5-MHF-LC represents a scaled-up version of conven-
tional MHF architectures, with channel cross-section of 1 mm ×  1 mm and a 30° intersection angle between cen-
tral and side inlet channels. Chips were produced using μ Mi-REM, a facile and cost-effective replica moulding 
technique developed in house (see Fig. 6C)21. The method relies on the following steps: (i) milling of the micro-
channels in a block of acrylic (negative mould); (ii) pouring of low-cost epoxy adhesive resin over the milled 
acrylic block and curing; (iii) decoupling of the solidified resin layer from the acrylic block (positive mould), 
pouring of liquid PDMS over the epoxy layer and curing; finally (iv) plasma bonding of the PDMS layer to a glass 

Figure 3. Effect of the variation of lipid composition on the size (upper part, panel A) and dispersity (upper part, 
panel B) of liposomes produced by MHF microfluidics. Liposomes were constituted of PC/DDAB 9.0− 1.0 mM 
(filled circles, dashed line) or PC/cholesterol 9.0− 1.0 mM (open circles, plain line). Data correspond to the Z-average, 
determined by DLS, and are reported as the mean of three independent samples, measured in triplicate ±  S.D. In the 
lower part, cryo-TEM and macroscopic aspect (insets) of empty PC/cholesterol (A) and PC/DDAB (C) are reported. 
For comparison, images of the corresponding ivermectin loaded liposomes are also reported (B,D). Bar corresponds 
to 100 nm.
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surface. With this method, microscale architectures can be fabricated without resorting to advanced technological 
equipment or laborious and time-consuming intermediate procedures.

In order to directly compare our results obtained using #chip5-MHF-LC with those obtained using other 
MHF architectures reported in the literature, we selected a lipid formulation employed in a recent comparative 
study by Hood and Devoe, in which three different MHF devices were tested and characterised22. Particular 
attention was also devoted to the selection of a lipid mixture suitable for pharmaceutical applications and resem-
bling the composition of liposome containing medicines. Figure 7 shows the mean size and dispersity index of 
liposomes obtained using this device. Note that the term “dispersity” is used in this manuscript as an alternative 
to “polydispersity”, to comply with IUPAC recommendations9.

Despite the large channel dimension, compared to previously reported microfluidic devices, liposomes 
obtained using #chip5-MHF-LC had a mean size and dispersity comparable to conventional microfluidic 
approaches (Fig. 7A,B). Importantly, we demonstrated the production of clinically relevant liposomes, in terms 
of size, lipid composition and content (see specific considerations reported in the previous paragraph), at TFR of 
up to 18 ml/min. Notably, this flow rate is significantly higher than any other value reported in studies describing 
microfluidic techniques (see Table 2). Liposome size was observed to reduce with increasing TFR (at a fixed FRR 
of 100), while increasing FRR resulted in increased liposome size. This finding appears to be contrary to previous 

Figure 4. Comparative analysis of liposomes produced by microfluidic technique with different 
microchips. Data refer to Z-average of liposomes produced by #chip1-MHF (circles), #chip2-YJ (hexagons) 
or #chip3-PM (triangles). Liposomes were constituted of PC/DDAB 9.0− 1.0 mM, produced at the indicated 
FRR and TFR =  37.50 μ l/min. Data are reported as the mean of three independent samples, measured in 
triplicate ±  S.D.

Figure 5. Effect of the encapsulation of 0.1 mM ivermectin on the size of microfluidic produced liposomes 
(filled circles). For comparison, the size of empty (water-filled) liposomes is also reported (open circles). 
Liposomes were produced by #chip1-MHF at TFR =  37.50 μ l/min and FRR =  30. Data are reported as the mean 
of three independent samples, measured in triplicate ±  S.D.
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results obtained using different microscale geometries and therefore merits further investigations (i.e., particu-
larly on the fluid dynamic and mass transport phenomena occurring within these scale-up architectures).

Finally, we demonstrated that #chip4-OFF3 assembled from off-the-shelf components produced liposomes 
with small dimensions (90–150 nm) and uniform distribution (Đ <  0.3) (data not shown). Notably, the use of 
“off-the-shelf ” components could allow an easy implementation of parallelised networks (see Fig. 6 for a sug-
gested configuration) for mass production of liposomes (or other colloidal assemblies intended for consumables). 
Being produced at an industrial scale, these components also present low inter-sample variability which is of 
particular importance for parallelisation purposes.

Despite the potential advantages offered by the proposed microfluidic systems, a more pervasive understand-
ing of the effect of the microfluidic architecture on liposome characteristics may be beneficial to optimise device 
performance and their scaling-up for mass production of liposomes. This will represent the subject of future 
investigations.

Figure 6. (A) Geometrical characteristics of easy-to-build chips for liposome production. (B) Schematic of 
#chip4-OFF3, and potential parallelized network for mass production of liposomes. (C) Schematic of #chip5-
MHF-LC and related fabrication method developed in house (μ Mi-REM).
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Concluding Remarks
The potential for microfluidic-based technology to produce nanoscale lipid vesicles for medical applications has 
already been demonstrated. However, the translation of this method to the industrial environment has been 
hindered by several limiting factors. In this paper, we critically review the state-of-the-art microfluidic methods 
and perform additional experiments in an attempt to address the associated research questions. The following 
concluding remarks can be drawn from our studies:

(i) A suitable bulk counterpart to MHF microfluidic methods has been identified (referred to as “controlled 
ethanol injection”), which makes it possible to carry out a systematic comparison between the two methods. 
Using this technique, we have demonstrated that liposomes produced using microfluidics were smaller and 
more uniform in size than the ones produced by controlled injection, whilst no appreciable differences in 
liposome dimensional stability were found over time (data not shown). MHF thus has the potential advan-
tage of being able to generate a wider range of mean liposome sizes, whilst maintaining lower size dispersity 
compared to bulk counterparts. Furthermore, it allows for flexible, application-specific tuning of liposome 
size through changes of the hydrodynamic boundary conditions.

(ii) Both lipid and ethanol concentration have a significant effect on liposome properties (in both bulk and mi-
crofluidic methods). This is of particular importance when results taken at different FRRs are compared 
and interpreted. Notably, changing FRR not only causes changes in the fluid dynamic field (i.e., width of the 
focused stream) but also in the physico-chemical properties of the fluidic environment.

(iii) The lipid formulation plays an important role in determining liposome properties. Specifically, charged 
lipids generated smaller vesicles compared to uncharged lipids, under identical experimental conditions. 
Importantly, MHF microfluidic methods were also found to be suitable for producing different liposome 
formulations.

(iv) Microfluidic methods are suitable for producing small and uniform liposomes at relatively high concentra-
tions of lipids and using solvents with relatively low toxicity (i.e., ethanol). This has important implications 
for the potential utility of this technology in the pharmaceutical industry. Furthermore, compared to bulk 
methods, no post-production processing (i.e., sonication, extrusion, freezing and thawing) is required with 
MHF methods to obtain liposomes of desirable characteristics.

(v) It is possible to efficiently encapsulate biologically active compounds in liposomes produced using micro-
fluidics. Notably, on-chip liposome loading with bioactive compounds (both hydrophilic and lipophilic) has 

Figure 7. Size and size distribution of liposomes produced by high-throughput microfluidic architecture 
with scaled up channel dimension (#chip5-MHF-LC). (A,B) Dependence of liposome mean size (A) and 
dispersity index (B) on the flow rate ratio (FRR, ranging from 5 to 100) at a fixed TFR of 6 ml/min. (C,D) 
Dependence of liposome mean size (A) and dispersity index (B) on the total flow rate (TFR, ranging from 3 to 
18 ml/min) at a fixed FRR of 100.
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seen a limited number of advancements in recent years, and may represent an exciting avenue of research in 
the near future.

(vi) High-throughput and easy-to-build microfluidic architectures can be constructed for mass production of 
liposomes, without significantly influencing the quality of the end-product compared to conventional MHF 
devices. In this study, we have demonstrated liposome production at volumetric flow rates of up to 18 ml/min.

Methods
Chemicals. Highly pure phosphatidylcholine (PC) 90% from soybean was purchased from Phospolipon 90G 
Lipoid, Germany; cholesterol 97% from Fluka, Germany; and dimethyldioactdecyl-ammoniumbromide (DDAB) 
from Sigma-Aldrich, UK. 1,2-dimyristoyl-sn-slycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glyce-
ro-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt) (14:0 PEG2000 PE) were 
purchased from Avanti Polar Lipids; polydimethylsiloxane (PDMS) monomer Sylgard®  184 and curing agent 
were purchased from Dow Corning (USA); SU-8 photoresist was obtained from Chestech (UK); trichloro (1 H,
1 H,2 H,2 H)-perfluorooctylsilane, hydrofluoric acid, ammonium fluoride, ivermectin, and suramin sodium salt 
were purchased from Sigma-Aldrich (UK). All the other regents and solvents not included in this section were 
also purchased from Sigma-Aldrich (UK).

Microfluidic device fabrication. “Cross-flow” chip. The “Cross-flow” #chip1-MHF consists of poly-
dimethylsiloxane (PDMS) and glass layers, and was produced with conventional soft lithography techniques. 
Firstly, an SU-8 mould with the designed microchannel pattern, consisting of three inlets and one reaction chan-
nel, was prepared following the standard lithography protocols. Subsequently, the mould was covered with a layer 
of a 10: 1 (w/w) PDMS precursor and curing agent mixture and heated for 1 h at 80 °C for the polymer to cure. The 
PDMS sheet with the microchannel architecture fabricated on the surface was then removed from the mould and 
permanently bonded to a glass slide after oxidizing its surface via plasma treatment.

“Y-junction” chip. The “Snake mixer slide” #chip2-YJ was obtained from Thinxxs, Germany. The mixer was 
integrated on a microscope slide made of cyclic olefin copolymer (COC).

“Three-inlets pillars” chip. For the fabrication of the “three-inlets pillars” #chip3-PM, a photolithography/wet 
etching procedure was used. Briefly, the channel network was designed using AutoCAD drawing software first. A 
film negative of the desired final size was then prepared by a commercial photo mask producer to form the optical 
mask. Crown white glass plates (thickness of 1.5 mm) coated with a thin layer of chromium metal mask plus an 
upper layer of positive photoresist were used for channel network fabrication. With UV exposure, the pattern of 
interconnecting channels was transferred from the negative film to the photoresist layer on the glass which was 
then developed and removed, together with the chromium layer, to reveal the channel areas of the glass to be 
etched. The glass plate was baked in an oven at 80 °C overnight to dry and harden the mask on glass. The channels 
were then etched using 1% hydrofluoric acid buffered with 5% ammonium fluoride solution at 65 °C, under ultra-
sonic agitation (Ultrasonic Cleaner, VWR, UK). Finally, the etched glass was thermally bonded (595 °C for 3 h)  
with a top plate of the same material into which outlet and inlet holes had been previously drilled. Prior to the 
bonding step, the cross-sectional profile of the etched microchannel was measured using a surface profilometer.

Liposome preparation (bulk methods). Ethanol injection. The ethanol injection method was applied 
to prepare liposomes. The required quantities of lipids were dissolved in ethanol: PC 90G (40–90 mM), choles-
terol (4–10 mM), DDAB (10 mM). The resulting organic solution (0.5 ml) was then injected by a syringe pump  
(KD scientific, New Era pump System) at flow rate of 500 μ l/min under magnetic stirring (300 rpm) in an appro-
priate volume of water (4.5 ml). Spontaneous liposome formation occurred as soon as the ethanolic solution 
came into contact with the aqueous phase. The liposome suspension was then kept under stirring by vortexing for 
5 minutes at room temperature. The obtained liposomal suspension was stored at 20 °C.

Liposome preparation (microfluidic methods). “Cross-flow” chip (#chip1-MHF). Liposomes were 
prepared by injecting a lipid mixture (PC 90G 90 mM DDAB 10 mM) dissolved in ethanol into the central chan-
nel of the microfluidic network of #chip1-MHF; water was injected into two oblique side channels intersecting 
with the central channel. The flow rate ratio (FRR) is defined here as the ratio between the water volumetric flow 
rate and the ethanol volumetric flow rate. The FRR was varied from 10 to 50. Liposome formation at different 
shear forces was investigated by changing the total flow rate (TFR) from 18.75 to 75.00 μ l/min. The flow focusing 
was observed and monitored with a Dino-Eye Eyepiece camera (Dino-lite Digital Microscope).

“Y-junction” chip (#chip2-YJ). Liposomes were prepared via a similar procedure to that applied for the 
#chip1-MHF apart from the fact that the lipid mixture (PC 90 mM and DDAB 10 mM) dissolved in ethanol was 
injected into one channel of the Y geometry, while water was injected into the other channel. TFR was set between 
18.75 and 75.00 μ l/min, and FRR was varied from 10 to 50.

“Three-inlets pillars” chip (#chip3-PM). The preparation of liposomes by the “Three-inlets pillars” chip 
(#chip3-PM) was analogous to the procedure described for “cross-flow” (#chip1-MHF). The TFR was varied 
from 18.75 to 75.00 μ l/min and the FRR was varied from 10 to 50.
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Off the shelf chip (#chip4-OFF3). Microchip constituents were obtained from IDEX Health & Science, USA. 
#chip4-OFF3 components were made from PEEK and specifically designed with a 0.006” thru-hole that delivers 
a low swept volume and includes F-112 and P-416 fittings. To connect the “off-the-shelf ” devices to the syringes, 
TeflonTM tubes with an inner diameter of 750 μ m were employed. KDS syringe pumps (KD scientific, New Era 
pump System, USA) were used to control the flow rate of liquids pumped through the devices.

Large channel MHF chip (#chip5-MHF-LC). Liposomes were again prepared using a similar procedure to that 
above for #chip1-MHF apart from the fact that the central ethanol stream contained DMPC, Cholesterol and 
14:0 PEG2000 PE at a concentration of 10, 8 and 2 mM/L (30 mM, 20 mM and 6 mM), respectively. The TFR was 
varied from 3 to 18 ml/min and the FRR was varied from 5 to 100.

Physical and chemical characterization. Dynamic light scattering (DLS) analysis. All dimensional 
analysis of the liposome dispersions were performed using a DLS Zetasizer Nano-ZS (Malvern Instruments, 
Worcs., UK) with a backscattering detection angle of 173°, a He/Ne laser that emits at 633 nm, and a 4.0 mW 
power source was used to report the intensity mean diameter (Z-average) and the dispersity of the liposome for-
mulations. The mean particle size was obtained from the results of three experiments. The size distribution was 
evaluated in terms of the dispersity index (Đ). The measurements of vesicle size and dispersity were carried out 
at 21 °C in water, without dilution (1 ml).

Cryogenic transmission electron microscopy (cryo-TEM). A 3 mL aliquot of sample solution was pipetted on to 
plasma-treated (Gatan Solarus Model 950 Advanced Plasma System, p =  70 mTorr, H2 flow 6.4 sccm, O2 flow 
27.5 sccm, orward RF target 50 W, time 30 s) carbon copper grids (Quantifoil R 3.5/1) in the environmental cham-
ber of a fully automated vitrification device for plunge freezing (FEI Vibrot), having relative air humidity of 100% 
and a temperature of 22 °C. The excess solution was removed by blotting with filter paper for 2 s followed by 1 s 
draining and plunging of the samples into 1:1 mixture of liquid ethane and liquid propane, which was cooled to 
− 170 °C. Vitrified samples were cryo-transferred into a Jeol JEM3200FSC cryo-TEM operating at − 194 °C. The 
temperature of the samples was − 187 °C during image acquisition. The microscope was operated in the bright 
field mode, using a 300 kV acceleration voltage; the in-column energy filter was set to 0–20 eV energy-loss range 
(zero-loss imaging). Micrographs were recorded with a Gatan Ultrascan 4000 CCD camera.

Determination of drug entrapment efficiency. The determination of drug entrapment efficiency in liposomes 
was performed by loading 250 μ l of a liposome dispersion into a Sheparose®  4B column (1.0 cm in diameter 
and 10 cm long; GE Healthcare, USA), eluted with Isotonic Palitzsch buffer. The void volume peak fractions 
containing drug loaded liposomes were collected and quantitated for drug content. UV-VIS measurement  
(at 253 nm) was conducted by diluting 300 μ l of each fraction with 700 μ l of ethanol. UV spectra were recorded 
with a Hewlett-Packard 8452 diode array spectrophotometer. Drug encapsulation efficiency (EE) was calculated 
as follows:

= ×EE (C /C ) 100%1 0

where C0 and C1 correspond to the total and liposome-associated amount of drug, respectively.
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