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Abstract
Modeling real world domains requires ever more
frequently to represent uncertain information. The
DISPONTE semantics for probabilistic description
logics allows to annotate axioms of a knowledge
base with a value that represents their probability.
In this paper we discuss approaches for perform-
ing inference from probabilistic ontologies follow-
ing the DISPONTE semantics. We present the al-
gorithm BUNDLE for computing the probability of
queries. BUNDLE exploits an underlying Descrip-
tion Logic reasoner, such as Pellet, in order to find
explanations for a query. These are then encoded
in a Binary Decision Diagram that is used for com-
puting the probability of the query.

1 Introduction
Representing uncertain information is of foremost impor-
tance in order to effectively model real world domains.
Many authors studied the integration of probability with logic
[Straccia, 2008] and in particular with Descrition Logics
(DLs) [Lukasiewicz and Straccia, 2008]. In the field of Logic
Programming, the distribution semantics [Sato, 1995] has
emerged as one of the most effective approaches. Following
this line, in [Riguzzi et al., 2012] we presented DISPONTE
for “DIstribution Semantics for Probabilistic ONTologiEs”
(Spanish for “get ready”) which applies the distribution se-
mantics to DLs. The main idea is to annotate axioms of a
theory with a probability and assume that each axiom is inde-
pendent of the others. A DISPONTE knowledge base (KB)
defines a probability distribution over regular KBs (worlds)
and the probability of a query is obtained from the joint prob-
ability of the worlds and the query.

In [Riguzzi et al., 2013] we presented the system BUN-
DLE for “Binary decision diagrams for Uncertain reasoNing
on Description Logic thEories”. BUNDLE exploits an un-
derlying ontology reasoner, such as Pellet [Sirin et al., 2007],
for performing inference over DISPONTE DLs and uses the
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inference techniques developed for probabilistic logic pro-
grams under the distribution semantics, in particular Binary
Decision Diagrams (BDDs), for computing the probability of
queries. BUNDLE first finds the set of the explanations for
the query by means of Pellet and then encodes them into a
BDD from which the probability of the query can be com-
puted in time linear in the size of the diagram.

In this paper we update and review [Riguzzi et al., 2013]
by providing more information about BUNDLE, discussing
the complexity of the algorithm and presenting further ex-
periments. The complexity results imply that inference in
DISPONTE is intractable in the worst case, thus limiting
the general applicability of BUNDLE. However the experi-
mentation shows that in practice BUNDLE is able to han-
dle domains of significant size. The paper is organized as
follows. Section 2 introduces DLs and Section 3 illustrates
DISPONTE. Section 4 describes BUNDLE and discusses its
complexity while Section 5 presents related work. Section
6 illustrates the results of scalability experiments with BUN-
DLE and, finally, Section 7 concludes the paper.

2 Description Logics
Description Logics (DLs) are knowledge representation for-
malisms that possess nice computational properties such as
decidability and/or low complexity, see [Baader et al., 2003;
2008] for excellent introductions. DLs are particularly use-
ful for representing ontologies and have been adopted as the
basis of the Semantic Web. For example, the OWL DL sub-
language of OWL 1 is based on the SHOIN (D) DL. While
DLs can be translated into predicate logic, they are usually
represented using a syntax based on concepts and roles. A
concept corresponds to a set of individuals of the domain
while a role corresponds to a set of couples of individuals
of the domain. In the rest of this Section we concentrate on
SHOIN (D).

Let A, R and I be sets of atomic concepts, atomic roles
and individuals, respectively. A role is either an atomic role
R ∈ R or the inverse R− of an atomic role R ∈ R. We use
R− to denote the set of all inverses of roles in R. Concepts
are defined by induction as follows. Each A ∈ A, ⊥ and
> are concepts and if a ∈ I, then {a} is a concept called a
nominal. If C, C1 and C2 are concepts and R ∈ R ∪ R−,
then (C1 u C2), (C1 t C2) and ¬C are concepts, as well as
∃R.C and ∀R.C and ≥ nR and ≤ nR for an integer n ≥ 0.
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An RBox R consists of a finite set of transitivity axioms
Trans(R), where R ∈ R, and role inclusion axioms R v S,
where R,S ∈ R ∪R−. A TBox T is a finite set of concept
inclusion axioms C v D, where C and D are concepts. We
use C ≡ D to abbreviate C v D and D v C. An ABox
A is a finite set of concept membership axioms a : C, role
membership axioms (a, b) : R, equality axioms a = b, and
inequality axioms a 6= b, where C is a concept, R ∈ R and
a, b ∈ I. A knowledge base K = (T ,R,A) consists of a
TBox T , an RBoxR and an ABox A.

A KB K is usually assigned a semantics in terms of
set-theoretic interpretations and models of the form I =
(∆I , ·I), where ∆I is a non-empty domain and ·I is the in-
terpretation function that assigns an element in ∆I to each
a ∈ I, a subset of ∆I to eachC ∈ A and a subset of ∆I×∆I

to each R ∈ R. The mapping ·I is extended to all concepts
(where RI(x) = {y|(x, y) ∈ RI} and #X denotes the car-
dinality of the set X) as:

(R−)I = {(y, x)|(x, y) ∈ RI}
>I = ∆I

⊥I = ∅
{a}I = {aI}

(C1 u C2)I = CI1 ∩ CI2
(C1 t C2)I = CI1 ∪ CI2

(¬C)I = ∆I \ CI
(∀R.C)I = {x ∈ ∆I |RI(x) ⊆ CI}
(∃R.C)I = {x ∈ ∆I |RI(x) ∩ CI 6= ∅}
(≥ nR)I = {x ∈ ∆I |#RI(x) ≥ n}
(≤ nR)I = {x ∈ ∆I |#RI(x) ≤ n}

SHOIN (D) allows the use of datatype roles which map
an individual to an element of a datatype (integers, floats,
etc). Then new concept definitions involving datatype roles
are added that mirror those involving roles introduced above.
We also assume that we have predicates over the datatypes.

A query over a KB is usually an axiom for which we want
to test the entailment from the KB. The entailment test may
be reduced to checking the unsatisfiability of a concept in the
KB, i.e., the emptiness of the concept. For example, the en-
tailment of the axiom C v D may be tested by checking the
unsatisfiability of the concept C u ¬D. A DL is decidable
if the problem of checking the satisfiability of a KB is de-
cidable. In particular, SHOIN (D) is decidable iff there are
no number restrictions on roles which are transitive or have
transitive subroles.

3 The DISPONTE Semantics for Probabilistic
Description Logics

DISPONTE applies the distribution semantics to probabilistic
DL theories. The distribution semantics underlies many prob-
abilistic logic programming languages such as PRISM [Sato,
1995; Sato and Kameya, 2001], Independent Choice Logic
[Poole, 1997], Logic Programs with Annotated Disjunctions
(LPADs) [Vennekens et al., 2004] and ProbLog [De Raedt
et al., 2007]. A program in one of these languages defines
a probability distribution over normal logic programs called
worlds. Each language has its own ways of specifying the

distribution but all offer the possibility of specifying alterna-
tives in clauses. The probability of a world is obtained by
multiplying the probabilities associated to each alternative as
these are considered independent of each other. This gives
a probability distribution P (w) over the worlds. This is ex-
tended to the joint probability of the worlds and the query and
the probability of the latter is obtained by marginalization.
The distribution semantics was applied successfully in many
domains [De Raedt et al., 2007; Sato and Kameya, 2001;
Bellodi and Riguzzi, 2012] and various inference and learn-
ing algorithms are available for it [Kimmig et al., 2011;
Riguzzi, 2009; Bellodi and Riguzzi, 2013; 2015].

In DISPONTE, a probabilistic knowledge base K is a set
of probabilistic axioms that take the form

p :: E (1)
where p is a real number in [0, 1] and E is a DL axiom.

The idea of DISPONTE is to associate independent
Boolean random variables to probabilistic axioms. By as-
signing values to every random variable we obtain a world,
the set of axioms whose random variable is assigned to 1.
The probability p can be interpreted as an epistemic proba-
bility, i.e., as the degree of our belief in axiom E. For ex-
ample, a probabilistic concept membership axiom p :: a : C
means that we have degree of belief p in C(a). The state-
ment that Tweety flies with probability 0.9 can be expressed
as 0.9 :: tweety : Flies. A probabilistic concept inclusion
axiom of the form p :: C v D represents the fact that we
believe in the truth of C v D with probability p. Note that
this means that C is a subclass of D with probability p, not
that each individual of C has probability p of belonging toD.

Let us now give the formal definition of DISPONTE. An
atomic choice is a pair (Ei, k) where Ei is the ith proba-
bilistic axiom and k ∈ {0, 1}. k indicates whether Ei is
chosen to be included in a world (k = 1) or not (k = 0). A
composite choice κ is a consistent set of atomic choices, i.e.,
(Ei, k) ∈ κ, (Ei,m) ∈ κ ⇒ k = m (only one decision
for each formula). The probability of composite choice κ
is P (κ) =

∏
(Ei,1)∈κ pi

∏
(Ei,0)∈κ(1 − pi), where pi is the

probability associated with axiomEi. A selection σ is a com-
posite choice that contains an atomic choice (Ei, k) for every
probabilistic axiom of the theory. A selection σ identifies a
theory wσ called a world in this way: wσ = {Ei|(Ei, 1) ∈
σ}. Let us indicate with SK the set of all selections and with
WK the set of all worlds. The probability of a world wσ is
P (wσ) = P (σ) =

∏
(Ei,1)∈σ pi

∏
(Ei,0)∈σ(1−pi). P (wσ) is

a probability distribution over worlds, i.e.
∑
w∈WK

P (w) =
1. We can now assign probabilities to queries. Given a world
w, the probability of a query Q is defined as P (Q|w) = 1
if w |= Q and 0 otherwise. The probability of a query can
be defined by marginalizing the joint probability of the query
and the worlds:

P (Q) =
∑

w∈WK

P (Q,w) (2)

=
∑

w∈WK

P (Q|w)P (w) (3)

=
∑

w∈WK:w|=Q

P (w) (4)
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Example 1 The following KB is inspired by the ontology
called people+pets proposed in [Patel-Schneider et al.,
2003]:

∃hasAnimal.Pet v NatureLover
(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

0.4 :: fluffy : Cat (5)
0.3 :: tom : Cat (6)
0.6 :: Cat v Pet (7)

The KB indicates that the individuals that own an animal
which is a pet are nature lovers and that kevin owns the
animals fluffy and tom. Moreover, we believe in the fact
that fluffy and tom are cats and that the class of cats is a
subclass of the class of pets with a certain probability. This
KB has eight worlds and the query axiom Q = kevin :
NatureLover is true in three of them, those corresponding
to the following selections:

{((5), 1), ((6), 0), ((7), 1)}
{((5), 0), ((6), 1), ((7), 1)}
{((5), 1), ((6), 1), ((7), 1)}

so the probability is

P (Q) = 0.4 ·0.7 ·0.6+0.6 ·0.3 ·0.6+0.4 ·0.3 ·0.6 = 0.348.

4 BUNDLE
BUNDLE (“Binary decision diagrams for Uncertain reasoN-
ing on Description Logic thEories”) computes the proba-
bility of queries from a probabilistic KB that follows the
DISPONTE semantics. Using (4) to compute the probability
of a query is not practical as it involves generating all possible
worlds. Since their number is exponential in the number of
probabilistic axioms, we follow a different approach in which
explanations for queries are found. From the set of explana-
tions, BUNDLE builds a Binary Decision Diagram (BDD) for
computing the probability of the query. In order to discuss the
approach, we first need to introduce some definitions.

A composite choice κ is an explanation for a query Q if
Q is entailed by every world of ωκ, where ωκ = {wσ|σ ∈
SK, σ ⊇ κ} is the set of worlds compatible with κ. We
also define the set of worlds identified by a set of composite
choices K as ωK =

⋃
κ∈K ωκ. A set of composite choices

K is covering with respect to Q if every world w ∈ WK in
which Q is entailed is such that w ∈ ωK .

We can associate a Boolean random variable Xi to proba-
bilistic axiom Ei. An atomic choice (Ei, k) then corresponds
to Xi assuming value k. The variables X = {Xi|(Ei, k) ∈
κ, κ ∈ K} are pairwise independent and the probability that
Xi takes value 1 is pi, the probability associated with the ith
axiom.

Given a covering set of explanationsK for a queryQ, each
world where the query is true corresponds to an assignment
of X for which the following Boolean function takes value 1:

fK(X) =
∨
κ∈K

∧
(Ei,1)∈κ

Xi

∧
(Ei,0)∈κ

Xi (8)

Thus we can compute the probability of Q by computing
the probability that fK(X) takes value 1. This formula is
in Disjunctive Normal Form (DNF) but we can’t compute
P (fK(X)) by summing the probability of each individual ex-
planation because the different explanations may not be mu-
tually disjoint. To solve the problem, we can apply knowledge
compilation to the propositional formula fK(X) [Darwiche
and Marquis, 2002] in order to translate it into a target lan-
guage that allows the computation of the probability in poly-
nomial time. A target language that was found to give good
performances is the one of BDD.

A BDD for a function of Boolean variables is a rooted
graph that has one level for each Boolean variable. A node n
in a BDD has two children: one corresponding to the 1 value
of the variable associated with n, indicated with child1(n),
and one corresponding to the 0 value of the variable, indi-
cated with child0(n). The leaves store either 0 or 1.

A BDD performs a Shannon expansion of the Boolean
formula fK(X), so that if X is the variable associated to
the root level of a BDD, the formula fK(X) can be rep-
resented as fK(X) = X ∧ fXK (X) ∨ X ∧ fXK (X) where
fXK (X) (fXK (X)) is the formula obtained by fK(X) by set-
ting X to 1 (0). Now the two disjuncts are mutually ex-
clusive and the probability of fK(X) can be computed as
P (fK(X)) = P (X)P (fXK (X)) + (1 − P (X))P (fXK (X)).
Figure 1 shows the function PROB that implements the dy-
namic programming algorithm of [De Raedt et al., 2007] for
computing the probability of a formula encoded as a BDD.

1: function PROB(node)
2: Input: a BDD node
3: Output: the probability of the Boolean function asso-

ciated to the node
4: if node is a terminal then
5: return value(node) . value(node) is 0 or 1
6: else
7: let X be v(node) . v(node) is the variable

associated to node
8: P1 ←PROB(child1(node))
9: P0 ←PROB(child0(node))

10: return P (X) · P1 + (1− P (X)) · P0

11: end if
12: end function

Figure 1: Function that computes the probability of a formula
encoded as a BDD.

BDDs can be built by combining simpler BDDs using
Boolean operators. While building BDDs, simplification op-
erations can be applied that delete or merge nodes. Merging
is performed when the diagram contains two identical sub-
diagrams, while deletion is performed when both arcs from
a node point to the same node. In this way a reduced BDD
is obtained, often with a much smaller number of nodes with
respect to the original BDD. The size of the reduced BDD de-
pends on the order of the variables: finding an optimal order
is an NP-complete problem [Bollig and Wegener, 1996] and
several heuristic techniques are used in practice by sophisti-
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Figure 2: BDD for Example 1.

cated software packages such as CUDD1. Alternative meth-
ods involve learning variable order from examples [Grumberg
et al., 2003].

Example 2 Let us consider the KB of example 1. A
covering set of explanations for the query axiom Q =
kevin : NatureLover is K = {κ1, κ2} where κ1 =
{((5), 1), ((7), 1)} and κ2 = {((6), 1), ((7), 1)}.

If we associate the random variables X1 with (5), X2 with
(6) and X3 with (7), the BDD associated to the set K of
explanations is shown in Figure 2. By applying algorithm in
Figure 1 we get

PROB(n3) = 0.6 · 1 + 0.4 · 0 = 0.6

PROB(n2) = 0.4 · 0.6 + 0.6 · 0 = 0.24

PROB(n1) = 0.3 · 0.6 + 0.7 · 0.24 = 0.348

in accordance with the semantics.

The problem of finding explanations for a query has been in-
vestigated by various authors [Schlobach and Cornet, 2003;
Kalyanpur, 2006; Kalyanpur et al., 2007; Horridge et al.,
2009]. For example, Pellet finds explanations by using a
tableau algorithm [Kalyanpur, 2006]. A tableau is a graph
where each node represents an individual a and is labeled
with the set of concepts L(a) to which a belongs. Each edge
〈a, b〉 in the graph is labeled with the set of roles L(〈a, b〉) to
which the couple (a, b) belongs. Tableau algorithms repeat-
edly apply a set of consistency preserving tableau expansion
rules until a clash (i.e., a contradiction) is detected or a clash-
free graph is found to which no more rules are applicable.
A clash is for example a couple (C, a) where C and ¬C are
present in the label of a node, i.e. {C,¬C} ⊆ L(a).

Some expansion rules are non-deterministic, i.e., they gen-
erate a set of tableaux. Thus the algorithm keeps a set of
tableaux that is consistent if there is any tableau in it that is
consistent, i.e., that is clash-free. Each time a clash is de-
tected in a tableau G, the algorithm stops applying rules to
G. Once every tableau in T contains a clash or no more ex-
pansion rules can be applied to it, the algorithm terminates.
If all the tableaux in the final set T contain a clash, the algo-
rithm returns unsatisfiable as no model can be found. Oth-
erwise, any one clash-free tableau in T represents a possible
model for the concept and the algorithm returns satisfiable.
In Pellet each expansion rule updates as well a tracing func-
tion τ , which associates sets of axioms with labels of nodes
and edges. Function τ maps couples (concept, individual) or
(role, couple of individuals) to a fragment ofK. For example,
τ(C, a) (τ(R, 〈a, b〉)) is the set of axioms needed to explain

1http://vlsi.colorado.edu/∼fabio/CUDD/

the addition of C (R) to the label of a (〈a, b〉). The function τ
is initialized by assigning the values {a : C} and {(a, b) : R}
to τ(C, a) and τ(R, 〈a, b〉) if a : C and (a, b) : R are in the
ABox respectively. τ is initialized as the empty set for all the
other elements of its domain.

In order to find a covering set of explanations, Pellet first
finds a single explanation and then iteratively removes from
the theory an axiom belonging to an explanation and looks
for a new explanation.

BUNDLE finds a covering set of explanations for the query
using Pellet and then builds a BDD from which it computes
the probability. BUNDLE, shown in Figure 3, first builds a
data structure PMap that associates each DL axiom E with
its probability p. Then BUNDLE finds the explanations and
initializes the array V arAxAnn that stores in the ith cell the
pair (Axiom,Prob) associated to the ith Boolean variable of
the BDD. BUNDLE builds the BDD with a cycle over the
set of explanations: for each explanation, it builds the BDD
representing the conjunction of the random variables associ-
ated to the atomic choices and then computes the disjunction
of the BDDs for individual explanations. At the end, it com-
putes the probability by calling the dynamic programming al-
gorithm that visits the BDD.

1: function BUNDLE(K, C)
2: Input: K (the knowledge base)
3: Input: C (the concept to be tested for unsatisfiability)
4: Output: the probability of the unsatisfiability of C w.r.t. K
5: Build Map PMap from DL axioms to probabilities
6: Find a covering set of explanations Explanations with

Pellet
7: Initialize V arAxAnn to empty . V arAxAnn: array of

pairs (Axiom,Prob)
8: BDD ←BDDZERO
9: for all Explanation ∈ Explanations do

10: BDDE ←BDDONE
11: for all Ax ∈ Explanation do
12: p← PMap(Ax)
13: Scan V arAxAnn looking for Ax
14: if !found then
15: Add to V arAxAnn a new pair (Ax, p)
16: end if
17: Let i be the position of (Ax, p) in V arAxAnn
18: B ← BDDGETITHVAR(i)
19: BDDE ←BDDAND(BDDE,B)
20: end for
21: BDD ←BDDOR(BDD,BDDE)
22: end for
23: return PROB(BDD) . V arAxAnn is used to compute

P (X) in PROB
24: end function

Figure 3: Function BUNDLE: computation of the probability
of a concept C given the knowledge base K.

To manipulate BDDs, we use JavaBDD2 that is an interface
to a number of underlying BDD manipulation packages. As
the underlying package we use CUDD.

BUNDLE has the possibility of setting a maximum number
of explanations to be found. In this case the probability that

2http://javabdd.sourceforge.net/
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is computed is a lower bound of the true probability.

4.1 Computational Complexity
[Jung and Lutz, 2012] considered the problem of comput-
ing the probability of conjunctive queries to probabilistic
databases in the presence of an ontology. Probabilities can
occur only in the ABox while the TBox is certain. In the
case where each ABox assertion is associated with a Boolean
random variable independent of all the others, they prove
that only very simple conjunctive queries can be answered
in PTime, while most queries are #P-hard when the ontology
is a DL-Lite TBox and even when the ontology is an ELI
TBox. The setting considered by [Jung and Lutz, 2012] is
subsumed by DISPONTE as it is equivalent to having proba-
bilistic axioms in the ABox only of a DISPONTE KB. So the
complexity result provides a lower bound for DISPONTE.

In order to investigate the complexity of BUNDLE, we can
consider separately the two problems that it solves for an-
swering a query: finding the set of explanations and comput-
ing the probability of the query.

The computational complexity of the first problem has
been studied in a number of works [Peñaloza and Sertkaya,
2009; 2010]. In [Baader et al., 2007] the authors consid-
ered a very simple DL which allows only concept intersec-
tion and showed that there can be exponentially many expla-
nations for it. Thus in case of a more expressive DL, such
as SHOIN (D), the number of explanations may be even
larger. Corollary 15 in [Peñaloza and Sertkaya, 2010] shows
that the problem of finding the covering set of explanations
cannot be solved in output polynomial time for a sublogic of
SHOIN (D). The problem of computing the probability of
a query from the explanations can be seen as computing the
probability of a SUM-OF-PRODUCTS, which was shown to be
#P-hard [Rauzy et al., 2003]. Given that the input of the SUM-
OF-PRODUCTS problem is of at least exponential size in the
worst case, this means that computing the probability of an
axiom from a SHOIN (D) KB is intractable.

However, the algorithms that have been proposed for solv-
ing the two problems were shown to be able to work on inputs
of real world size. For example, all explanations have been
found for various entailments over many real world ontolo-
gies within a few seconds [Kalyanpur, 2006; Kalyanpur et al.,
2007]. As regards the SUM-OF-PRODUCTS problem, algo-
rithms based on BDDs were able to solve problems with hun-
dreds of thousands of variables (see e.g. the works on infer-
ence on probabilistic logic programs [De Raedt et al., 2007;
Riguzzi, 2009; Kimmig et al., 2011; Riguzzi and Swift,
2011]). Methods for weighted model counting [Sang et al.,
2005; Chavira and Darwiche, 2008] can also be used to
solve the SUM-OF-PRODUCTS problem. Moreover, Section
6 shows that in practice we can compute the probability of
entailments on KBs of real-world size with BUNDLE, too.

5 Related Work
Many works propose approaches for combining probability
and description logics. We refer to [Riguzzi et al., 2015]
for the relationships of some of them with DISPONTE. We
discuss here only P-SHIQ(D) proposed in [Lukasiewicz,

2008] because it is equipped with a reasoner, PRONTO [Kli-
nov, 2008]. P-SHIQ(D) uses probabilistic lexicographic
entailment from probabilistic default reasoning and allows
both terminological probabilistic knowledge as well as as-
sertional probabilistic knowledge about instances of concepts
and roles. P-SHIQ(D) is based on Nilsson’s probabilistic
logic [Nilsson, 1986] that defines probabilistic interpretations
instead of a single probability distribution over theories. Each
probabilistic interpretation Pr defines a probability distribu-
tion over the set of usual interpretations Int. The probability
of a logical formula F according to Pr, denoted Pr(F ), is
the sum of all Pr(I) such that I ∈ Int and I |= F . A prob-
abilistic KB K is a set of probabilistic formulas of the form
F ≥ p. A probabilistic interpretation Pr satisfies F ≥ p iff
Pr(F ) ≥ p. Pr(F ) ≥ p is a tight logical consequence of K
iff p is the infimum of Pr(F ) subject to all models Pr of K.

Nilsson’s logic allows weaker conclusions than the dis-
tribution semantics: consider a probabilistic ontology com-
posed of the axioms 0.4 :: a : C and 0.5 :: b : C and a
probabilistic KB composed of C(a) ≥ 0.4 and C(b) ≥ 0.5.
The distribution semantics allows us to say that P (a : C ∨ b :
C) = 0.7, while with Nilsson’s logic the lowest p such that
Pr(C(a)∨C(b)) ≥ p holds is 0.5. This is due to the fact that
in the distribution semantics the probabilistic axioms are con-
sidered as independent, which allows to make stronger con-
clusions. However, this does not restrict expressiveness as
one can specify any joint probability distribution over the log-
ical ground atoms interpreted as Boolean random variables,
possibly introducing new atoms if needed.

A different approach is shown in [Zese et al., 2013;
2014] where we presented TRILL, a tableau reasoner writ-
ten in Prolog able to compute the probability of queries w.r.t.
KBs that follow the DISPONTE semantics. Algorithms writ-
ten in procedural languages have to implement a search strat-
egy to explore the entire search space, while by exploiting
Prolog’s backtracking facilities we can leave the management
of the non-determinism to the Prolog language. TRILL is also
available as a web application at http://trill.lamping.unife.it.

6 Experiments
In [Riguzzi et al., 2015] we evaluate the performances of
BUNDLE with several experiments. We report here the most
significant ones, performed using the methodology proposed
in [Klinov and Parsia, 2011] for evaluating PRONTO. More
tests can be found in [Riguzzi et al., 2015]. The experiments
have been performed on Linux machines with a 3.10 GHz
Intel Xeon E5-2687W with 2GB memory allotted to Java.

In [Klinov and Parsia, 2011] the authors considered three
different datasets: an extract from the Cell3 ontology, an
extract from the NCI Thesaurus4 and an extract from the
Teleost anatomy5 ontology. The Cell ontology represents
cell types of the prokaryotic, fungal, and eukaryotic organ-
isms. The NCI ontology is an extract from the NCI Thesaurus
that describes human anatomy. The Teleost anatomy (TST

3http://cellontology.org/
4http://ncit.nci.nih.gov/
5http://phenoscape.org/wiki/Teleost Anatomy Ontology
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Table 1: Average execution time for the queries to the Cell,
TST and NCI KBs and number of queries terminated with a
time-out.

Size of the Probabilistic TBox
Dataset 0 250 500 750 1,000
Cell time (s) 0.76 2.84 3.88 3.94 4.53

time-out 0 28 39 50 55
TST time (s) 2.11 8.87 31.80 33.82 36.33

time-out 0 7 32 32 44
NCI time (s) 3.02 11.37 11.37 16.37 24.90

time-out 0 1 24 23 36

for short) ontology is a multi-species anatomy ontology for
teleost fishes.

For each of these KBs, they created four versions of in-
creasing size containing 250, 500, 750 and 1,000 new prob-
abilistic conditional constraints of P-SHIQ(D) which are
added to the publicly available non-probabilistic version of
each ontology. Conditional constraints are of the form
(D|C)[l, u] and informally mean “generally, if an object be-
longs to C, then it belongs to D with a probability in the in-
terval [l, u]”. We converted these KBs into DISPONTE by re-
placing the constraint (D|C)[l, u] with the axiom u :: C v D
and we created a set of 100 different random subclass queries
for each KB. For generating the queries we built the hierarchy
of each KB and we randomly selected two classes connected
in the hierarchy, so that each query has at least one explana-
tion. We impose a time limit of 5 minutes for BUNDLE to
answer each query.

In Table 1 we report, for each version of the datasets, the
number of queries that terminated with a time-out for BUN-
DLE and the average execution time computed on the queries
that did not end with a time-out. The column correspond-
ing to the dimension 0 of the probabilistic TBox show the
average execution time for executing queries w.r.t. the non-
probabilistic version of the KBs.

These tests show that BUNDLE is able to scale to on-
tologies of realistic size. Moreover, BUNDLE answers most
queries in a few seconds. However, some queries have a very
high complexity that causes BUNDLE to time-out, confirm-
ing the complexity results. In these cases, since the time-out
is reached during the computation of the explanations, limit-
ing the number of explanations can provide a lower bound on
the probability that becomes tighter as more explanations are
allowed.

7 Conclusions
BUNDLE computes the probability of queries from uncertain
DL knowledge bases following the DISPONTE semantics.
BUNDLE is available for download from http://sites.unife.it/
ml/bundle together with the datasets used in the experiments.
BUNDLE has been tested on ontologies of increasing com-
plexity in various domains. BUNDLE is also used in the sys-
tem EDGE for learning the parameters and LEAP for learning
the structure [Riguzzi et al., 2014] of DISPONTE ontologies.

In the future we plan to investigate approaches for improv-
ing the scalability of BUNDLE, and of the systems based on

it, by exploiting modern computing infrastructures with many
cores and large main memories. Moreover, we plan to de-
velop web interfaces to these systems along the lines of the
one developed for TRILL.
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