
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 151.42.20.125

This content was downloaded on 20/01/2017 at 09:09

Please note that terms and conditions apply.

Analysis and Application of Advanced Control Strategies to a Heating Element Nonlinear

Model

View the table of contents for this issue, or go to the journal homepage for more

2017 J. Phys.: Conf. Ser. 783 012027

(http://iopscience.iop.org/1742-6596/783/1/012027)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Benchmarking of Advanced Control Strategies for a Simulated Hydroelectric System

S. Finotti, S. Simani, S. Alvisi et al.

Study of the Time Response of a Simulated Hydroelectric System

S Simani, S Alvisi and M Venturini

Indirect intelligent sliding mode control of a shape memory alloy actuated flexible beam using

hysteretic recurrent neural networks

Jennifer C Hannen, John H Crews and Gregory D Buckner

Quantifying the benefits of a slender, high tip speed blade for large offshore wind turbiness

Lindert Blonk, Patrick Rainey, David A J Langston et al.

Semi-active variable stiffness vibration control of vehicle seat suspension using an MRelastomer

isolator

Haiping Du, Weihua Li and Nong Zhang

Motion control of a large gap magnetic suspension system for microrobotic manipulation

David Craig and Mir Behrad Khamesee

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/783/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1742-6596/783/1/012041
http://iopscience.iop.org/article/10.1088/1742-6596/570/5/052003
http://iopscience.iop.org/article/10.1088/0964-1726/21/8/085015
http://iopscience.iop.org/article/10.1088/0964-1726/21/8/085015
http://iopscience.iop.org/article/10.1088/1742-6596/524/1/012014
http://iopscience.iop.org/article/10.1088/0964-1726/20/10/105003
http://iopscience.iop.org/article/10.1088/0964-1726/20/10/105003
http://iopscience.iop.org/article/10.1088/0022-3727/40/11/004


Analysis and Application of Advanced Control

Strategies to a Heating Element Nonlinear Model

C. Turhan1, S. Simani2, I. Zajic3, G. Gokcen Akkurt1

1Izmir Institute of Technology, Department of Mechanical Engineering, Gulbahce Campus,
Urla – 35430 Izmir, Turkey. 2Department of Engineering, University of Ferrara. Via Saragat
1E, 44122 Ferrara (FE), Italy. 3Control Theory and Applications Centre, Coventry University,
Coventry, United Kingdom.

E-mail: cihanturhan@iyte.edu.tr, silvio.simani@unife.it, zajici@uni.coventry.ac.uk

Abstract. This paper presents the design of different control strategies applied to a heating
element nonlinear model. The description of this heating element was obtained exploiting a
data–driven and physically meaningful nonlinear continuous–time model, which represents a
test–bed used in passive air conditioning for sustainable housing applications. This model has
low complexity while achieving high simulation performance. The physical meaningfulness of
the model provides an enhanced insight into the performance and functionality of the system.
In return, this information can be used during the system simulation and improved model–
based and data–driven control designs for tight temperature regulation. The main purpose of
this study is thus to give several examples of viable and practical designs of control schemes
with application to this heating element model. Moreover, extensive simulations and Monte–
Carlo analysis are the tools for assessing experimentally the main features of the proposed
control schemes, in the presence of modelling and measurement errors. These developed control
methods are also compared in order to evaluate advantages and drawbacks of the considered
solutions. Finally, the exploited simulation tools can serve to highlight the potential application
of the proposed control strategies to real air conditioning systems.

1. Introduction
Buildings are responsible for approximately 40% of the total energy consumption in the entire
world [1, 2]. In developed countries, 50% of this energy is used for air conditioning purposes in
buildings [3].

Energy control of the air conditioning systems is crucial to satisfy thermal comfort
including relative humidity and temperature which is the primary variable in controlling air
conditioners. Heating Elements (HEs) play an essential role for supplying treated air with
specified temperature to the conditioned space in the buildings. Building control strategies
require extensive computational requirements and necessity of a mathematical model of the
HE system. Since the mathematical model is a description of the system behaviour, accurate
modelling for a complex nonlinear system is very difficult to achieve in practice.

The HE system is a nonlinear system in the control of view, therefore, most of temperature
control systems use conventional controllers like on–off controllers, including standard PID or
PI regulators for its relative simplicity. However, these controllers do not always produce fast
response and suffer the problem of overshoot, large settling time. Moreover, the tuning of
the conventional controllers is difficult [4]. For example, when HE systems include bilinear
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terms depending on temperature and mass flow rate, advanced control systems can be needed
to optimise the design problem. To this aim, Artificial Intelligence (AI) has been applied to
temperature control due to substantial advantages of applicability to nonlinear systems with
unknown or partially known dynamics [5].

In the last years, AI based methods, namely, Fuzzy Logic (FL), Adaptive Neuro–Fuzzy
Inference System (ANFIS), Artificial Neural Network (ANN) and Model Predictive Controllers
(MPC) have been considered for trying to achieve more comfortable environments in buildings,
see e.g. [6, 7, 4, 8, 9, 10, 11, 12]. These controllers have better advantages compared to the
conventional ones. For instance, the paper [11] addressed the implementation of a MPC for the
temperature control of a building. The controller achieved a saving of 17 − 24% compared to
a weather–compensated control technique. Similarly, the work [3] shows the development of a
MPC algorithm to maintain the thermal comfort resulting in 28% of heating energy savings.
In addition to the MPC, FL controllers were studied to control the temperature in heating
systems by some authors [10, 9]. The authors demonstrated that the nonlinearity of the system
can be easily managed with a FL controller, thus obtaining good performances. The paper [4]
compared PID and ANN controllers. The authors designed an ANN controller feeding–back the
air conditioning system. The ANN controllers allowed for shorter rise time and zero overshoot
of the controller output. Although ANNs are widely used in the literature [8], some researchers
studied more efficient control techniques based on the ANFIS tool, with the advantages of
both ANN and FL [10, 5, 13]. In particular, the paper [13] used ANFIS controller effectively
to model nonlinear functions to obtain thermal comfort conditions including temperature and
relative humidity. The authors observed that maximum absolute error was less than 0.015 oC
for temperature control. Adaptive controllers help the heating systems to maintain thermal
comfort, while enhancing energy savings, as shown e.g. in [3]. Note finally that the increased
popularity of AI control techniques for building temperature control is incontrovertible; however
most of them do not give a comparison with extensive simulations.

This paper is focussed on the design of different control strategies with application to the
HE nonlinear model developed by one of the same authors in [14]. The simulations and the
comparisons with the achieved performances have been implemented in the Matlab and Simulink
environments.

The rest of the paper is organised as follows. The heating element system is summarised
in Section 2. Section 3 provides the control methods. The achieved results are summarised in
Section 4. Comparisons among the different control methods and their performances with respect
to measurements and modelling errors are also investigated and discussed. Finally, Section 5
concludes the paper by summarising the main achievements of the work, and providing some
suggestions for further research topics.

2. Heating Element Model Description
The HE is a large test–bed system for testing and modelling of Phase Change Materials (PCM)
used in the passive air conditioning for sustainable housing applications. The test–bed is installed
in a large indoor space with approximately constant ambient temperature, as shown in Fig. 1.

The inputs of the HE system are the speed and temperature of air, v [ms−1] and Ti [K],
respectively, passing through the tested PCM. The output is the outlet temperature To [K]. The
air is conditioned by passing through the considered HE, which is connected in a downstream
series connection with a cooling unit. The schematic diagram of the heating element installed
in the supply duct is represented in Fig. 2. The measurements of v, Ti, and To are taken from
the centre of the cross sectional area of the supply duct.

The HE system is mainly described by 3 nonlinear differential relations. The energy balance
equations for the HE, the control volume of air surrounding the HE and the adjacent duct walls
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are represented by Eqs. (1), (2), and (3), respectively:

Ch
dTh(t)

dt
= q(t)− (UA)h [Th(t)− To(t)] (1)

0 = (UA)h [Th(t)− To(t)] +

−v(t) ρaAa ca [To(t)− Ti(t)] + (2)

− (UA)int [To(t)− Tw(t)]

Cw
dTw(t)

dt
= (UA)int [To(t)− Tw(t)] + (3)

− (UA)ext [Tw(t)− Ta(t)]

where Ch [J/K] is the thermal capacity of the heating element, Cw [J/K] the thermal wall
capacity (insulated plywood), ca [J/kgK] is the air specific heat capacity, Aa [m2] denotes the
cross sectional area of the duct, ρa [kg/m3] is the air density.

Figure 1. The HE test–bed.

Heating element

Air flow

v T, i To

Figure 2. HE schematic diagram.

The heat transfer coefficient is denoted by U [J/m2K], whilst the products of the heat
transfer coefficient by the efficient surface area, A [m2], through which the heat is transmitted
are denoted with (UA)h [J/K] (when referred to the HE), (UA)int [J/K] (with reference to the
inner duct wall), and (UA)ext [J/K] (for the the outer duct wall). The mean temperature of the
heating element and wall temperature are represented by Th(t) [K] and Tw(t) [K], respectively.
q(t) is the power supplied by the heating element. Eq. (2) assumes that the passing air has
negligible thermal capacity, hence the left hand side of Eq. (2) equals to zero. Note finally that
the HE model was described in more detail in [14].

3. Control Scheme Designs
The general description of the dynamic model of the HE can be represented by the nonlinear
dynamic function P :

y = P (u, t) (4)

where y is the process output, u is its input, and t is the time. The control strategy applied to
the HE should determine the control input such that the controlled process is able to track a
given reference r(t) [14].
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It can be shown that the overall dynamic behaviour of the HE process (4) can be approximated
with very good accuracy by a product of 2 second–order continuous–time transfer functions, as
shown in [14]. On the other hand, the continuous–time linearised state–space description of the
HE nonlinear process (4) is described by the system (5):{

ẋ(t) = Ax(t) +B u(t)
y(t) = C x(t)

(5)

with x ∈ <4. The control input is represented by the mass flow rate speed u(t) = v, and the
measured output is y(t) = To. In general, Heating, Ventilation, and Air Conditioning (HVAC)
systems have a second input Ti, i.e. the air flow input temperature, which is considered as a
measurable disturbance, d.

This paper recalls different control strategies including the standard PID controller as well as
AI techniques, such as fuzzy logic, adaptive, model predictive controllers, which are used for the
regulation of the outlet temperature of the HE system. These methodologies are briefly outlined
in the following subsections.

3.1. PID Controller Design
Standard PID regulators are the most commonly used feedback controllers for industrial
processes. The control logic is based on the computation of the error e(t) between the desired
and the measured values of the output, i.e. e(t) = r(t) − y(t), which is fed back to the system
after proportional, integral and derivative operations [15]. In this way, the continuous–time
control law of the PID regulator is described by Eq. (6):

u(t) = Kp e(t) +Ki

∫ t

0
e(τ) dτ +Kd

de(t)

dt
(6)

where Kp, Ki, Kd are the PID proportional, integral, and derivative gains. The optimal selection
of this gains is performed by using the automatic tuning algorithm in the Simulink environment
that balances the performance (response time) and the robustness (stability margins) of the
controlled system [16]. The PID automatic tuning Simulink toolbox uses the linearised model
(5) of HE system.

3.2. Fuzzy Controller Design
Fuzzy Logic Controllers (FLCs) are extensively used in processes where the system dynamics
are either very complex or exhibit highly nonlinear characteristics [10]. The controller design
approach relies on the identification of transparent rule–based Takagi–Sugeno (TS) fuzzy models
using an Adaptive Neuro–Fuzzy Inference System (ANFIS) tool implemented in the Simulink
toolbox [17].

The TS fuzzy model consists of a set of rules Ri, where the consequents are deterministic
functions fi:

Ri : IF x isAi THEN ui = fi(x) (7)

with i = 1, 2, . . . , K and K is the number of clusters or rules of the rule–based system, x
represents the vector of the antecedent variables, and ui describes the consequent output. Ai
represents the antecedent fuzzy set of the i–th rule, defined by its (multivariable) membership
function µAi(x) → [0, 1] The function fi is represented by suitable parametric models, whose
structure remains equal in all rules, whilst the parameters can vary. A parametrisation in affine
form is usually exploited, and described by Eq. (8):

ui = ai x+ bi (8)
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where the vector ai and the scalar bi are the i–th submodel parameters. The vector x contains a
suitable number n of delayed samples of the model inputs and output. In this way, the product
ai x represents an Auto–Regressive eXogenous (ARX) parametric dynamic model of order n.

The final output u of the TS fuzzy model is the weighted average of all rule outputs, computed
as:

u =

∑K
i=1 µAi(x) yi(x)∑K

i=1 µAi(x)
(9)

The modelling approach used by ANFIS is similar to many system identification techniques.
First, the TS fuzzy model structure described by the its order n, the form of the membership
functions µAi and the number of clusters K are hypothesised. Next, the input–output data are
used by ANFIS for training the TS model according to a chosen error criterion, thus determining
the optimal values of the controller parameters ai and bi [17].

The paper considers also an alternative approach to ANFIS for the derivation of the controller
fuzzy model, which is represented by the Fuzzy Modelling and Identification (FMID) toolbox
developed in the Matlab environment [18]. Also in this case, the estimation of the controller
prototype relies on the identification of rule–based fuzzy models and using the input–output
data acquired from the controlled process. This method exploits Takagi–Sugeno fuzzy models
and employs the Gustafson–Kessel clustering method to divide the data into subsets with a
common local linear (affine) behaviour [18].

The identified fuzzy controller is thus obtained by selecting an proper model structure n and
a number of clusters K. The FMID toolbox provides the parameters ai, bi and the estimation
of the membership functions µAi of the optimal controller minimising the tracking error e(t),
i.e. the difference between the reference signal r(t) and the measured output y(t).

Note finally that the fuzzy controller in the form of Eq. (9) is described by a discrete–time
input–output model, which is connected to the controlled continuous–time nonlinear system of
Eq. (4) using Digital–to–Analog (D/A) and Analog–to-Digital (A/D) converters.

3.3. Adaptive Control Design
The adaptive control method exploited in this paper is based on the on–line identification of a
second order discrete–time transfer function of an ARX time–varying model in the form:

G(z) =
b1 z

−1 + b2 z
−2

1 + a1 z−1 + a2 z−2
(10)

whose parameters are recursively estimated at each sampling time tk = k T , with k =
1, 2, . . . , N , N the number of samples, and T the sampling interval. z represents the unit
advance operator. The parameters in (10) are estimated using the Recursive Least–Square
Method (RLSM) with directional forgetting factor [19].

The synthesis of the adaptive control law is derived using a modified Ziegler–Nichols criterion,
in the form of Eq. (11):

uk = q0 ek + q1 ek−1 + q2 ek−2+
+(1− γ)uk−1 + γ uk−2

(11)

where ek is the tracking error e(t) at the sampling time tk, uk the control signal u(t) at the
sampling time tk, whilst q0, q1, q2, and γ are the time–varying controller parameters, which are
calculated by solving a Diophantine equation that leads to the following relations [19]:

q0 = 1
b1

(d1 + 1− a1 − γ) , γ = q2
b2
a2

q1 = a2
b2
− q2

(
b1
b2
− a1

a2
+ 1
)
, q2 = s1

r1

(12)
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where r1 = (b1 + b2)
(
a1 b2 b1 − a2 b21 − b22

)
and s1 = a2 ( (b1 + b2) (a1 b2 − a2 b1) +

+b2 (b1 d2 − b2 d1 − b2) ). It is assumed that the final closed loop model has a behaviour similar
to a second–order continuous time system with characteristic polynomial s2 +2 δ ω s+ω2, where
δ and ω represent its damping factor and natural frequency, respectively. In this case, if δ ≤ 1,

d1 = −2 e−δ ω T cos
(
ω T
√

1− δ2
)

and d2 = e−2 δ ω T .

Both the on–line identification procedure and the adaptive controller parameter computation
are implemented in the self–tuning controller Simulink library [19]. In this way, the sampled
output yk of the time–varying ARX model (10) should follow the sampled reference signal
rk when regulated by the control law (11). Note finally that, also in this case, the adaptive
controller (11) is connected to the continuous–time nonlinear system (4) using the D/A and
A/D converters.

3.4. Model Predictive Control Design
Model Predictive Control (MPC) relies on dynamic models of the process, most often linear
models obtained by system identification or linearisation of a nonlinear plant. The main
advantage of MPC is the fact that it allows the current sampling time to be optimised, while
keeping future sampling times in account. This is achieved by optimising a finite time–horizon,
but only implementing the current sampling time. MPC has the ability to anticipate future
events and can take control actions accordingly. PID controllers do not have this predictive
ability. MPC is nearly universally implemented as a digital control.

MPC is based on iterative, finite–horizon optimisation of the plant model. At the sample k
(k = 1, 2, . . . , N) the current plant output is sampled and a cost minimising control strategy
is computed (via a numerical minimisation algorithm) for a relatively short time horizon in
the future: [k, k +Np]. Specifically, an online calculation is used to explore state trajectories
that emanate from the current state and find (via the solution of Euler–Lagrange equations) a
cost–minimising control strategy until time k+Np. Only the first step of the control strategy is
implemented, then the plant state is sampled again and the calculations are repeated starting
from the new current state, yielding a new control and new predicted state path. The prediction
horizon keeps being shifted forward and for this reason MPC is also called receding horizon
control. Although this approach is not optimal, in practice it has given very good results [20].

An example of a cost function J for optimisation is given by:

J =

k+Np∑
k

wyk (rk − yk)2 +

k+Nc∑
k

wuk ∆u2k (13)

where wyk the weighting coefficient reflecting the relative importance of the monitored output,
and wuk the weighting coefficient penalising relative big changes in uk, with ∆uk = uk − uk−1.
Np represents the prediction horizon, whilst Nc the control horizon.

Note finally that the discrete–time MPC design is performed by using the MPC toolbox in
the Simulink environment, which computes a linearisation of the HE nonlinear model (5). The
discrete–time MPC is thus connected to the continuous–time nonlinear system of Eq. (4) using
the D/A and the A/D converters. The MPC Simulink toolbox uses the linearised model (5) of
HE system.

4. Simulation Results
This study exploits the 5 different control methods described in the previous subsections to
regulate the outlet temperature of the HE nonlinear system. The simulations are performed in
the Simulink environment and the toolboxes described above. The achieved results are compared
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in terms of settling time Ts, maximum overshoot S% and Mean Sum of Squared Errors (MSSE),
defined as:

MSSE% = 100

√√√√∑N
k=1 (rk − yk)2∑N

k=1 r
2
k

(14)

The standard control strategy for HVAC systems uses a classic PI regulator, whose complete
structure is recalled in Section 3.1 [14]. The optimal proportional and integral gains are
determined using the automatic PID tuning procedure and settled to Kp = 22 and Ki = 36,
respectively.

Fig. 3 shows the reference signal To (blue continuous line) of test–bed in Fig. 1 and the
process output (red dashed line) controlled by the PI regulator (6), as shown in Fig. 4. The
settling time achieved by the PI controller is Ts = 2.92s., with an overshoot of S% = 40.19%,
which are computed by applying a step change in the reference output temperature from 39oC
to 40oC. Using the performance index (14), the tracking error is MSSE% = 0.51%.

0 200 400 600 800 1000 1200 1400 1600 1800
20

40

Time (s)

Reference

PI contr.

25

30

35

T outlet temperatureout

[ ]°C

r

y

(t)
&
(t)

Figure 3. Outlet temperature controlled by the continuous–time PI regulator.

+
_

HE

r(t)

u(t)

y(t)

v(t)

Ti

d(t)

To
e(t)

y(t)

PID parameter
optimiser

System linearised
model

PID automatic tuning
Simulink toolbox

PI controller

Figure 4. Block diagram of the HE system controlled by the standard PI regulator.

Standard industrial controllers, such the PID of Section 3.1, are quite simple and have the
benefit of quite straightforward implementation. However, when applied to the control of HE
systems, the control laws are not efficient, thus leading to possible high maintenance costs.
Therefore, advanced controllers are exploited to reduce energy consumption and enhance thermal
comfort.

With reference to the strategies described in Section 3.2, fuzzy identification is used to derive
the models of the controllers by exploiting the so–called model reference control approach [21].
For this purpose, the PI regulator of Fig. 1 represents the reference controller for the generation
of the data used by the identification strategy proposed described in Section 3.2. In this way,
the fuzzy controller parameters are identified such that the performances in terms of tracking
error e(t) are optimised.

In particular, with reference to the TS fuzzy controller derived with the ANFIS tool, a
sampling interval T = 0.1s. is exploited. Moreover, the fuzzy controller (9) uses a number
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K = 3 of Gaussian membership functions, with a number of delayed inputs and output n = 1.
The antecedent vector is thus x = [ek, ek−1, uk−1]. The achieved performances of the controller
obtained with the ANFIS tool are shown in Fig. 5, whilst its implementation is sketched in Fig.
6.

0 200 400 600 800 1000 1200 1400 1600 1800
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28
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36
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Figure 5. Outlet temperature controlled by the fuzzy controller obtained via the ANFIS tool.
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e
k-1

ANFIS controller

e
k

Fuzzy logic Simulink block

Figure 6. Block diagram of the HE system controlled by the ANFIS fuzzy regulator.

Fig. 5 highlights that fuzzy regulator performs slightly better than the standard PI controller.
In this case, the settling time is Ts = 3.05s., with an overshoot S% = 41.66%, and an
MSSE% = 0.47%. .

Using the same data from the PI reference regulator, a second fuzzy controller (9) has been
estimated using the FMID tool, with a number of clusters K = 3, a number of delays n = 2,
and the antecedent vector x = [uk−1, uk−2, rk, rk−1, yk, yk−1, ]. The FMID tool provides also the
optimal estimate of the shapes of the membership functions µAi . The implementation scheme
is represented in Fig. 7, and the results of this fuzzy controller are shown in Fig. 8. Note that
the high overshoot at the beginning of the simulation in Fig. 8 is due to the initial conditions
of the delay blocks of the fuzzy controller represented in Fig. 7 that are zero.

Fig. 8 highlights that the reference signal is tracked with good accuracy, with a MSSE% =
0.09%. In this case, the settling time is Ts = 3.15s. with a maximum overshoot S% = 41.25%.

On the other hand, by considering the on–line procedure recalled in Section 3.3, Fig. 9
shows the tracking capabilities of the adaptive controller (11). Its time–varying parameters
have been obtained via the relations (12) with the damping factor and the natural frequency
δ = ω = 1. The adaptive controller implementation using the Self Tuning controller Simulink
Library (STCSL) is represented in Fig. 10.

The settling time of the HE system output with the adaptive controller is Ts = 3.16s., and
the overshoot is S% = 42.87%. The tracking error is MSSE% = 5.97%.

Finally, with reference to the MPC strategy recalled in Section 3.4, the reference and the
monitored output signals are depicted in Fig. 11. Its implementation is sketched in Fig. 12.
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Figure 7. Block diagram of the HE system controlled by the FMID fuzzy regulator.
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Figure 9. Outlet temperature controlled by the adaptive controller.

The results shown in Fig. 11 have been achieved by using a prediction horizon Np = 10
and a control horizon Nc = 2. The weighting parameters have been settled to wyk = 0.1 and
wuk = 1, in order to reduce abrupt changes of the control input that would lead to higher energy
consumption. In this case, the settling time is Ts = 3.49s. and the overshoot is 40.68%. The
tracking error corresponds to MSSE% = 3.2%. The achieved results in terms of settling time,
maximum overshoot and nominal MSSE% values are summarised in Table 1.

Note that the standard PI regulator leads to the best values of settling time and maximum
overshoot, as its parameters are automatically tuned in the Simulink environment in order to
optimise these indices, as recalled in Section 3.1. On the other hand, the best performance
in terms of tracking error is obtained with the fuzzy controller estimated via the FMID tool
recalled Section 3.2.
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Table 1. Comparison of the achieved performance in terms of MSSE%.
Controller Settling time Overshoot MSSE%

type Ts S% nominal value
PI 2.92s. 40.19% 0.51%

ANFIS 3.05s. 41.66% 0.47%
FMID 3.15s. 41.25% 0.094%

Adaptive 3.16s. 42.87% 5.97%
MPC 3.49s. 40.68% 3.19%

The next section provides further results with some final comments regarding the robustness
features of the proposed controllers applied to the HE nonlinear model.
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4.1. Parameter Sensitivity Analysis
This section analyses the robustness features of the proposed controllers with respect to
parameter variations. This analysis exploits the Monte–Carlo tool, as the control performance
depends on the model–reality mismatch as well as on the input–output measurement errors.
Therefore, the analysis has been performed by describing the HE model parameters as Gaussian
stochastic processes with mean values corresponding to the nominal ones and standard deviations
of ±20%. The average, the best and the worst MSSE index values have been computed with
100 Monte–Carlo runs, and summarised in Table 2.

Table 2. Comparison of the achieved performance in terms of MSSE%.
Controller MSSE% MSSE% MSSE%

type best case average case worst case
PI 0.19% 0.51% 1.45%

ANFIS 0.12% 0.47% 3.75%
FMID 0.093% 0.094% 0.26%

Adaptive 4.22% 5.97% 6.95%
MPC 0.13% 3.19% 3.57%

A few comments can be drawn here. When the modelling of the dynamic system can be
taken into account, the MPC scheme is preferred, even if an optimisation procedure is required.
However, in the case of a system with modelling errors, after a certain amount of off–line learning,
the fuzzy–based estimation error can fall below the value of the MPC–based scheme, as shown
for the controller estimated via the FMID tool. On the other hand, the FMID controller achieves
the best control capabilities. The adaptive approach takes advantage of its improved features, as
it is able to track possible variations of the controlled system, but with quite complicated and not
straightforward design procedures. The fuzzy–based schemes rely on the learning accumulated
from off–line simulations, but the training stage can be computationally heavy. Regarding the
developed PI control strategy, it is rather simple and straightforward, even if the achievable
performances are quite limited.

Finally, the results demonstrate also that the Monte–Carlo analysis is an effective tool for
testing the suggested control methods. Moreover, in presence of uncertainty and modelling
errors, this simulation tool seems to facilitate the validation of the considered control schemes
for application to real HVAC cases.

5. Conclusion
In this study, different temperature control techniques were applied to a heating element
nonlinear model, which can represent a part of a larger system used also for modelling phase
change materials in passive air conditioning for sustainable housing applications. Simulations on
the heating element nonlinear model and the Monte–Carlo analysis were the tools for assessing
experimentally the properties of the designed control schemes, in the presence of modelling and
measurement errors. The proposed control solutions relied on standard PID, fuzzy, adaptive,
and model–predictive control strategies. The achieved results showed that these control schemes
can be successfully used for the regulation of the temperature of the heating element system.
Moreover, the proposed comparisons among the different control strategies highlighted also
that the suggested control solutions can be promising for the real building control applications.
Further studies will try to extend the developed schemes to the control of more advanced thermal
comfort parameters, such as the relative humidity and the air flow.
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[18] R. Babuška, Fuzzy Modeling for Control. Boston, USA: Kluwer Academic Publishers, 1998.
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