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SUMMARY

Mesenchymal stem/stromal cells (MSCs) are pro-
genitor cells shown to participate in breast tumor
stroma formation and to promote metastasis.
Despite expanding knowledge of their contributions
to breast malignancy, the underlying molecular re-
sponses of breast cancer cells (BCCs) to MSC influ-
ences remain incompletely understood. Here, we
show thatMSCs cause aberrant expression ofmicro-
RNAs, which, led by microRNA-199a, provide BCCs
with enhanced cancer stem cell (CSC) properties.
We demonstrate that such MSC-deregulated micro-
RNAs constitute a network that converges on and
represses the expression of FOXP2, a forkhead
transcription factor tightly associated with speech
and language development. FOXP2 knockdown
in BCCs was sufficient in promoting CSC propaga-
tion, tumor initiation, and metastasis. Importantly,
elevated microRNA-199a and depressed FOXP2
expression levels are prominent features of malig-
nant clinical breast cancer and are associated signif-
icantly with poor survival. Our results identify molec-
ular determinants of cancer progression of potential
utility in the prognosis and therapy of breast cancer.

INTRODUCTION

Cancer cells within breast carcinomas coexist with a hetero-

geneous milieu of stromal cells that collectively constitute the
762 Cell Stem Cell 15, 762–774, December 4, 2014 ª2014 Elsevier In
tumor-associated microenvironment. Numerous studies have

provided substantial evidence that the interactions between can-

cercells andcomponentsof the tumor stromaarepivotal inbreast

cancer pathogenesis (Barcellos-Hoff et al., 2013). In particular,

such interactions—which co-opt mechanisms of wound healing,

tissuemaintenance, or development—appear to induce changes

in cancer cells that are sufficient to actuate metastatic progres-

sion (Quail and Joyce, 2013). On this front, our group and others

have shown that contextual mechanisms instigated in the cancer

cells by the tumor microenvironment can cause dramatic in-

creases in cancer malignancy via ostensibly reversible pro-

cesses, such as epithelial-to-mesenchymal transitions (EMTs)

(e.g., El-Haibi et al., 2012; Polyak and Weinberg, 2009). Indeed,

cancer cells appear to be highly responsive to promalignant

signals originating from the tumor microenvironment, providing

attractive new avenues for the development of therapeutic ap-

proaches based on the inhibition of tumor-stroma crosstalk.

Mesenchymal stem cells (MSCs; also known as mesenchymal

stromal cells) are a heterogeneous class of stromal progenitor

cells that participate in tissue maintenance under normal ho-

meostasis and are likewise closely associated with pathologic

stromal responses to tissue injury and neoplasia (Cuiffo and Kar-

noub, 2012; Prockop et al., 2010). In the context of developing

breast carcinomas, tumor-proximal MSCs have been shown to

serve as active catalysts of cancer progression, robustly promot-

ing breast cancer cell (BCC) invasion and metastasis (Karnoub

et al., 2007; Goldstein et al., 2010; Liu et al., 2011; El-Haibi

et al., 2012; Chaturvedi et al., 2013). MSCs have also been

described to play similar roles in other cancer contexts, including

lung cancer (Suzuki et al., 2011), prostate cancer (Prantl et al.,

2010), and colon cancer (Shinagawa et al., 2010), suggestive

of general promalignant activities for MSCs recruited into

epithelial tumors. Indeed, MSCs recovered from human breast,
c.
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Figure 1. Induction of miR-199a and miR-214 in MSC-Primed BCCs

(A) Schematic of MSC+BCC coculture and sorting of BCCs for miRNA profiling. Six miRNAs were enriched R2.0-fold in MSC-activated BCCs (BCCMSC)

compared to resting BCCs (APV is adjusted p value, n = 4).

(B) Semiquantitative real-time PCR (rtPCR-DDct) validation of the mature miRNAs identified in (A).

(C) rtPCR-DDct probing precursor stem-loops derived from miR-199a1 and miR-199a2 (n = 3).

(D) rtPCR-DDct probing miR-199a2-derived mature miRNAs in MSC-activated MCF7/Ras, T47D, and MDA-MB-435 cells; MCF7/RasMSC; T47DMSC; and

MDA-MB-435MSC (n = 3).

All rtPCR-DDct panels display mean fold enrichment ± SEM. *p < 0.05; **p < 0.01, ***p < 0.001 in two-tailed Student’s t test. See also Figure S1.
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prostate, or ovarian tumors display promalignant phenotypes

indicative of their crucial supportive functions in the progression

of these tumors (McLean et al., 2011; Yan et al., 2012; Jung et al.,

2013). However, at present, the molecular mechanisms underly-

ing MSC contributions to tumor pathogenesis remain incom-

pletely understood.

MicroRNAs (miRNAs, or miRs) are short noncoding RNAs that

regulate gene expression via hybridization to complementary

sequences of mRNAs, resulting in either translational inhibition

or degradation of the target sequences (Bartel, 2009). miRNAs

may affect the expression of hundreds of targets, thereby

serving to define cellular identity and differentiation state through

large-scale regulation of gene expression programs (Miyoshi

et al., 2011). Importantly, miRNAs play critical functions in cancer

pathogenesis and an expanding body of evidence has cataloged

their deregulation in multiple aspects of tumor development,

including invasion and metastasis (Ma et al., 2007; Tavazoie

et al., 2008). To date, however, promalignant alterations to the

cancer cell miRNA landscape as derived from their interactions

with stromal cells have not been comprehensively characterized.

In the present work, we sought to identify potential miRNA

deregulations associated with breast cancer malignancy insti-

gated by prometastatic MSCs. We found that MSCs trigger a

select set of miRNAs in BCCs, which, spearheaded by miR-

199a, converge on and repress the expression of the transcrip-

tion factor forkhead-box P2 (FOXP2). FOXP2 is a transcriptional

repressor that has been primarily implicated in regulating speech

and language development, as well as developmental neurogen-
Cell
esis, in humans (Fisher and Scharff, 2009; Tsui et al., 2013;

Vernes et al., 2011). Aside from serving functions in the differen-

tiation of tissues such as lung and esophagus (Shu et al., 2007),

little is known regarding the roles of FOXP2 in nonneuronal con-

texts. We report here that miR-199a overexpression, or FOXP2

silencing, endows BCCs with cancer-stem-cell (CSC)-like traits,

enhances their tumor-initiating capabilities, and fosters their

metastatic propensities. We describe miR-199a upregulation

and FOXP2 repression as prominent features of aggressive

clinical breast cancers, and we found that they represent inde-

pendent prognostic parameters for overall patient survival, indic-

ative of their critical roles in breast tumor pathogenesis. Our

work implicates a causal role for the speech gene FOXP2 in

breast cancer metastasis and elucidates elements of its tumor-

stroma-initiated miRNA regulatory network.

RESULTS

MSC Priming Induces miR-199a-3p and miR-214 in
BCCs
To characterize the miRNA alterations exhibited by MSC-primed

BCCs, we cultured GFP-labeled MDA-MB-231 BCCs together

with human bone-marrow-derived MSCs (BCC:MSC ratio of

1:3) for 3 days. GFP-BCCs were then isolated by fluorescence-

activated cell sorting (FACS; MDA-MB-231MSC), and their

mature miRNAs were profiled by subtractive miRNA arrays (Agi-

lent) using RNA derived from resting GFP-BCCs cultured alone

as control (Figure 1A). These analyses revealed that only six
Stem Cell 15, 762–774, December 4, 2014 ª2014 Elsevier Inc. 763
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miRNAs were significantly enriched (R2-fold; adjusted p <

0.05) in MDA-MB-231MSC when compared to control BCCs (Fig-

ure 1A): miR-199a-3p, miR-34a, miR-762, miR-214, miR-let-7b,

and miR-1915. Semiquantitative real-time PCR (rtPCR-DDct)

was used to validate the microarray findings, and it confirmed

a multifold induction of these miRNAs in MSC-activated BCCs

(Figure 1B).

Among this set, miR-199a-3p particularly attracted our atten-

tion. Noticeably, miR-199a-3p levels exhibited the highest levels

of enrichment in MDA-MB-231MSC compared to the other MSC-

triggered miRs, rising more than �65-fold over those of controls

(Figure 1B). Interestingly, miR-199a-3p upregulation, while not

previously functionally correlated with human breast carcinoma

development, has been observed in other cancer contexts, such

as esophageal (Feber et al., 2011), gastric (Brenner et al., 2011),

or lung (Sakurai et al., 2011) carcinomas, suggesting a potential

role for miR-199a-3p in breast cancer pathogenesis.

We observed that the MDA-MB-231MSC population continued

to produce high levels of miR-199a-3p even after separation

from MSCs (Figure S1A available online), suggesting that its in-

duction was sustained and intrinsic to BCCMSC. In this regard,

miR-199a-3p derives from two separate genomic regions in hu-

mans: one located on chromosome 19 and the other on chromo-

some 1, comprising themiR-199a1 (A1) andmiR-199a2 (A2) loci,

respectively. We proceeded to determine the relative contribu-

tions of A1 or A2 to the levels of mature miR-199a-3p present

in MDA-MB-231MSC by assessing the levels of the distinct lo-

cus-specific miRNA precursor stem-loops (pri-miRs) using

rtPCR-DDct. These experiments revealed that both pri-miR-

199a1 and pri-miR-199a2 were significantly increased in MDA-

MB-231MSC, with a slightly elevated contribution of A1 (�60%)

compared to A2 (�40%) (Figure 1C). Interestingly, miR-199a2

is transcribed from an intronic sequence of the DNM3OS gene,

which also encodes for miR-214. miR-214 was similarly identi-

fied in our profiling arrays as induced by �15-fold in MDA-MB-

231MSC (Figure 1B) and likewise maintained elevated levels

3 days after separation from MSCs (Figure S1A). These

observations suggest that miR-199a-3p (produced from the A1

and A2 loci) and miR-214 (produced form the A2 locus) are func-

tionally coregulated in MDA-MB-231MSC.

To probe whether the ability of MSCs to trigger miR-199a-3p

and miR-214 upregulation in BCCs is idiosyncratic to the

MDA-MB-231 model, we tested the response of other BCCs to

MSCs. Indeed, admixture of MSCs to MCF7/Ras, T47D, and

MDA-MB-435 cells caused significant upregulation of both

miR-199a-3p and miR-214, albeit to different extents with

differing ratios of miR-199a-3p/miR-214 (Figure 1D), likely a

consequence of the relative contributions of A1 versus A2 loci

in these systems.

Of note is that robust induction of miR-199a-3p and miR-214

by bone-marrow-derived MSCs required cell-cell contact be-

tween BCCs and MSCs (Figure S1B) and did not occur upon

the contact of BCCswith phenotypically similar fibroblastic cells,

such asWI-38 cells or panniculus-derivedMSCs (ad-MSCs; Fig-

ure S1C). Interestingly, the contact of BCCs with human-breast-

derived MSCs (Br-MSCs; derived from reduction mammoplasty)

or activated fibroblasts (CAFs; derived from human breast

tumors) resulted in only miR-199a-3p upregulation, and not

that of miR-214 (Figure S1C). Together, these observations sug-
764 Cell Stem Cell 15, 762–774, December 4, 2014 ª2014 Elsevier In
gest that bone-marrow-derived MSCs may be uniquely capable

of activating both A1 and A2 loci, while highlighting miR-199a-3p

activation as a potential common element of the BCC response

to activated stroma in multiple settings.

miR-199a and miR-214 Promote Metastasis and CSC
Phenotypes
Because our miRNA profiling studies were conducted on whole

BCCMSC populations, we could not rule out the possibility that

certain BCCs within the total population express both miR-

199a-3p and miR-214 (i.e., where both loci, or the A2 locus

alone, is active), while others express only miR-199a-3p (i.e.,

when A1 locus alone is active). Accordingly, we proceeded to

model both possibilities, stably expressing exogenous miR-

199a, or both miR-199a and miR-214, in MDA-MB-231 cells

(BCC199a and BCC199a/214, respectively). The expression levels

of the respective miRNAs in BCC199a and BCC199a/214, verified

by rtPCR-DDct and compared to control counterparts harboring

an empty vector (BCCnull), showed >40-fold and >3-fold upre-

gulation in miR-199a-3p and miR-214 levels, respectively

(Figure S2A).

We first explored the malignant potential of BCC199a and

BCC199a/214 by examining their tumorigenic and metastatic abil-

ities compared to BCCnull. For this purpose, equal numbers of

cells of each group were implanted subcutaneously into athymic

Nude mice and allowed to form tumors for 10–14 weeks. While

BCC199a and BCC199a/214 tumors did not differ from BCCnull

tumors in average weight at the time of tissue harvest (�0.5–

0.65 g; Figure 2A), enumeration of the GFP-positive BCC col-

onies in the lungs of the respective animals using fluorescence

microscopy revealed that mice implanted with either BCC199a

or BCC199a/214 had �3-fold the average of lung metastases per

gram of tumor when compared with BCCnull controls (Figures

2B and 2C). These experiments demonstrated an enhanced

malignancy of BCC199a and BCC199a/214 in vivo and prompted

us to further characterize their metastasis-associated pheno-

typic attributes in vitro.

In these regards, BCC199a and BCC199a/214 exhibited no pro-

liferative advantage over their control counterparts in 2D culture

conditions (Figure S2B). Furthermore, these cells did not

display increased expression of mesenchymal markers, such

as vimentin, N-cadherin, smooth muscle actin (SMA), or lysyl

oxidase (LOX) at the mRNA and/or protein levels, and they

exhibited some resurgence in E-cadherin mRNA expression

(Figures S2C and S2D). In addition, BCC199a and BCC199a/214

manifested an �50% reduced intrinsic motility compared to

BCCnull in Boyden chamber motility assays (Figure S2E).

These observations suggested that the increased metastasis

observed in BCC199a and BCC199a/214 is manifested through

pathways distinct from those governing proliferation, invasion,

and motility.

Our group and others have previously demonstrated that MSC

activation of BCCs increases the population of putative CSCs as

demonstrated by multifold upregulation in ALDH1 positivity and

mammosphere-forming capacities (El-Haibi et al., 2012; Liu

et al., 2011). CSCs are characterized by their distinctive capacity

for tumor initiation, a trait that is thought to be integral to meta-

static colonization because disseminated cancer cells engender

new growths at distant sites (Malanchi et al., 2012). Supporting
c.
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Figure 2. miR-199a and miR-214 Expression Causes Propagation of CSC Traits and Metastasis

(A)Meanweights (gram) ± SEMofmatched tumors isolated frommice 8–14weeks after implantation of BCCnull (n = 77), BCC199a (n = 53), andBCC199a/214 (n = 81).

(B) Metastatic index. Mean number of GFP-positive lung metastases ± SEM per gram of primary tumor burden per mouse. BCCnull (n = 37), BCC199a (n = 27), and

BCC199a/214 (n = 37).

(C) Representative images of lung GFP-positive colonies in mice in (B). Upper panels: fluorescence microscopy; lower panels: anti-GFP immunohistochemistry.

(D) Minimal serum tumbling assay. Left: mean numbers of viable cells ± SEM, determined by trypan exclusion (n = 3). Right: percentage of apoptotic cells from left

assessed by 7AAD staining/FACS analysis (n = 3).

(E) Sphere formation assay. Representative mean number of spheres in primary (1ary), secondary (2ary), and tertiary (3ary) passaged cultures ± SEM (n = 3).

(F) Left: representative ALDEFLUOR analyses of the indicated cells. DEAB, a specific inhibitor of ALDH1, was used as a control. Right: quantification of

ALDEFLUOR assays (± SEM; n = 3).

(G) Tumor-initiation assay. Table indicating number of tumors initiated (>0.05 g) and total number of BCC injections per cell dilution (#cells/injection) is shown. p

values calculated using ELDA (see Experimental Procedures) for BCC199a and BCC199a/214, respectively, are: 500K cell group: 0.232, 1; 100K cell group: 0.407;

50K cell group: 1,1; 10K cell group: 0.004, 0.152; 1K cell group: 0.064, 0.046; 100 cell group: 0.009, 0.005. *p < 0.05; **p < 0.01, ***p < 0.001 in two-tailed Student’s

t test.

See also Figure S2.
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this notion, we observed that highly metastatic BCCMSC

exhibited increased tumorigenic properties in limiting dilution

tumor-initiation analyses, forming subcutaneous tumors in

Nude mice �2.5 times more frequently than in controls, with as

little as 100 cells per injection (Figure S2F).

With this information, we proceeded to determine whether the

increased metastasis of BCC199a and BCC199a/214 correlated

with their acquisition of CSC characteristics. Interestingly,

BCC199a and BCC199a/214 displayed enhanced resistance to sus-

pension-induced cell death in a minimal serum tumbling assay,

exhibiting >50% survival rates after 24 hr of suspension, and

a corresponding >50% reduction in their apoptosis rates as
Cell
measured by 7-aminoactinomycin D (7AAD; Figure 2D). In addi-

tion, BCC199a and BCC199a/214 displayed increased abilities to

grow in low-attachment mammosphere growth conditions after

serial passages (Figure 2E), and they showedmultifold increases

in the expression levels of the CSC-associated marker ALDH1

(Ginestier et al., 2007), as determined by rtPCR (Figure S2G)

and by ALDEFLUOR-based FACS assays (Figures 2F). Most

importantly, however, BCC199a and BCC199a/214 possessed

markedly enhanced tumor-initiating capabilities in limiting-dilu-

tion tumor assays in Nude mice, forming tumors at 100 cells

per injection at �2–3 times the rate of their BCCnull controls (Fig-

ure 2G). These observations suggested that the enhanced
Stem Cell 15, 762–774, December 4, 2014 ª2014 Elsevier Inc. 765
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metastasis of BCC199a and BCC199a/214 correlated with their

acquisition of CSC-like traits.

We found that the enhanced metastasis-related phenotypes

of BCC199a were largely similar or identical to those of

BCC199a/214, suggesting that the promalignant activities of

BCC199a/214 rested largely on the actions of miR-199a. To distin-

guish between the effects of mature miR-199a-3p and miR-

199a-5p, both of which are produced by stable expression of

pre-miR-199a from our vector, we transfected individual RNA

duplexes—offset to allow generation of only a specific single

mature miRNA—coding for either 199a-3p or 199a-5p into

MDA-MB-231 cells. While transient expression of 199a-3p led

to a significant �2.5-fold increase in ALDH1 positivity, 199a-5p

expression did not (Figure S2H), despite substantial expression

levels of 199a-5p in these cells (Figure S2I). This suggested

that miR-199a-3p is the critical miRNA produced from miR-

199a in enhancing the observed population of putative CSCs.

In these regards, BCC199a exhibited marked increases in the

expression levels of additional breast CSC-associated markers,

such as MYC (Figure S2J), GD2S, and POSTN (Figure S2K; (Liu

et al., 2009; Malanchi et al., 2012; Battula et al., 2012; Nair et al.,

2014). Furthermore, stable overexpression of miR-199a in other

BCC lines, such as MCF7/Ras, T47D, or MDA-MB-435 cells,

led to �10-, �6-, and �4-fold increases, respectively, in their

ALDH1 positivity (Figure S2L). Similarly, such expression caused

upregulation of POSTN (Figure S2M) and the CD44high/CD24low

population (Figure S2N) in T47D cells and increased MYC

expression in MCF7/Ras cells (Figure S2J), suggesting that

the ability of miR-199a-3p to regulate CSC phenotypes is not

idiosyncratic of MDA-MB-231 cells. Notably, >65% of mice

tail-vein-injected with BCC199a exhibited lung metastases at

limiting conditions where BCCnull controls exhibited none (Fig-

ure S2O), suggesting that the induction of CSC traits by miR-

199a contributes to secondary tissue colonization.

Downregulation of the Speech Gene FOXP2, Observed
in BCC199a and BCC199a/214, Promotes CSC Traits and
Metastasis
We next aimed to elucidate the mechanistic details underlying

the malignancy of BCC199a and BCC199a/214. For this purpose,

we probed BCC199a and BCC199a/214 for the expression levels

of >20 published targets for miR-199a-3p (or miR-214), but we

did not find consistent downregulation of such targets in both

BCC199a and BCC199a/214 as compared to BCCnull (Figures S3A

and S3B; see Supplemental Information), underscoring the

importance of cellular context in determining miRNA functions.

To identify potential miRNA effectors in BCC199a and

BCC199a/214, we proceeded to utilize array-based approaches,

focusing upon those that have been correlated with the acqui-

sition or maintenance of stem-like properties. In these regards,

we carried out a targeted rtPCR-DDct array screen of 84

genes associated with stem cell maintenance or differentiation

(QIAGEN), evaluating their relative mRNA levels in BCC199a and

BCC199a/214 as compared to BCCnull. These analyses indeed

identified a number of stem-cell-associated genes that were

significantly upregulated in BCC199a and/or BCC199a/214,

including GATA-binding protein-6/GATA6 (Zhang et al., 2008),

lin-28 homolog B/Lin28B (Zhou et al., 2013), homeobox C9/

HOXC9 (Okamoto et al., 2007), andmsh homeobox 2/MSX2 (Do-
766 Cell Stem Cell 15, 762–774, December 4, 2014 ª2014 Elsevier In
rado et al., 2011). Surprisingly, only forkhead box P2/ FOXP2

was found to be significantly (R2-fold; p < 0.005) downregulated

in both cell types, exhibiting 7- and 13-fold reductions in its

expression levels in BCC199a and BCC199a/214, respectively

(Figure S3B).

FOXP2 is amember of the forkhead family of transcription fac-

tors (Myatt and Lam, 2007). It has been described to act as a

transcriptional repressor, primarily in the context of neural devel-

opment and function (Spiteri et al., 2007). Its functions have been

shown to be essential for developmental neurogenesis (Tsui

et al., 2013), for neuronal plasticity, and for the capacity for hu-

man speech (Fisher and Scharff, 2009). FOXP2 has likewise

been shown to serve an essential role in the development and

differentiation of nonneuronal tissues, such as lung and esoph-

agus (Shu et al., 2007; Shu et al., 2001). However, a causal

role for FOXP2 deregulation in breast cancer pathogenesis has

not been established. We validated the array results regarding

FOXP2 using independent rtPCR-DDct analyses (Figure 3A),

and we further found that its protein levels were severely

repressed in both BCC199a and BCC199a/214 (Figure 3B), as well

as in BCCMSC (Figure 3C). Because loss of FOXP2 was shown

to preserve progenitor cell identity and block differentiation in

the abovementioned contexts, we hypothesized that FOXP2

downregulation might play a role in defining the CSC-like pheno-

types of BCC199a, BCC199a/214, and BCCMSC.

We tested this possibility first by probing for FOXP2 levels

in the FACS-enriched ALDH1-positive fractions of MDA-MB-

231MSC. Indeed, ALDH1-positive cells, which possess tumor-

initiating capacities (forming 60% tumors at 10,000 cells per

injection compared to ALDH1-negative counterparts; Fig-

ure S3C), exhibited a striking >95% reduction in their FOXP2

content (Figure 3D). Furthermore, expression of miR-199a in

T47D cells, which enhanced their CSC-like characteristics (Fig-

ures S2L-S2N), also prompted a marked downregulation of

FOXP2 (Figure 3E). These findings correlated FOXP2 downregu-

lation with the propagation of CSC-like traits.

To determine the functional consequences of FOXP2 inhibition

on the induction of CSC-like phenotypes and breast cancer

progression, eight different retroviral plasmids expressing

various short-hairpin RNAs designed for knockdown of FOXP2

(shFOXP2) were stably expressed in MDA-MB-231 cells

(BCCshFOXP2). The functionality of each hairpin was verified by

western blot analyses, and this revealed two efficient hairpins,

shFOXP2-1.5 and shFOXP2-2.2, that precipitated an �70%

reduction of FOXP2 protein levels (Figure 4A). When probed

with ALDEFLUOR, BCCshFOXP2-1.5 and BCCshFOXP2-2.2 exhibited

significant (>40- and >10-fold, respectively) upregulation in their

ALDH1 positivity compared to control cells expressing a scram-

bled hairpin control (BCCshSCRAM; Figures 4B and S4A). In addi-

tion to increases in their ALDH1 positivity, shFOXP2-expressing

cells also exhibited increases in OCT4 (Figure S4B) and c-Myc

(Figures 4C and S4C) and a 2-fold increase in their CD44high/

CD24low populations (Figure S4D). Furthermore, shFOXP2

expression enhanced mammosphere colony formation in sus-

pension by an average of �2.5-fold (Figure 4D) and provided

BCCs with enhanced abilities to resist anoikis (Figure S4E).

Most importantly, BCCshFOXP2-2.2 initiated subcutaneous tumors

in Nude mice at a frequency of 28% and with as little as 100 cells

per injection, a dilution prohibitive for BCCshSCRAM (Figure 4E).
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Figure 3. A Targeted PCR Screen Identified FOXP2 as a Putative Target in BCC199a and BCC199a/214

(A) Representative rtPCR-DDct probing FOXP2 in the indicated cell lines (± SEM; n = 3). Inset: DNA gel from rtPCR-DDct.

(B) Western blot probing for FOXP2 in whole lysates as indicated. b-tubulin was used as a loading control (n = 3).

(C) Western blot for FOXP2 in whole-cell lysates of resting or MDA-MB-231MSC cells. b-actin was used as a loading control (n = 3).

(D) rtPCR-DDct analysis showing relative abundance of FOXP2 mRNA in FACS-fractionated ALDH1-positive versus ALDH1-negative MDA-MB-231MSC cells (±

SEM; n = 3).

(E) FOXP2 western blot in the indicated whole T47D lysates (n = 2). b-actin was used as a loading control.

*p < 0.05; ***p < 0.001 in two-tailed Student’s t test. See also Figure S3.
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These results indicated that FOXP2 inhibition produces cells with

in vitro and in vivo phenotypes consistent with those of CSCs.

Mirroring the phenotypes of BCC199a/214, BCCshFOXP2 did not

exhibit enhanced proliferation in vitro (Figure S4F) or enhanced

tumor growth in vivo (Figure 4F). However, mice bearing

BCCshFOXP2 tumors exhibited a dramatic �9-fold increase in

the numbers of metastatic lung foci per gram of primary tumor

as compared to controls bearing BCCshSCRAM tumors (Figures

4G and 4H). Altogether, these results demonstrate that FOXP2

inhibition is sufficient to promote the propagation of CSC-like

phenotypes in BCCs, paralleling an observed marked enhance-

ment of metastasis.

FOXP2 Downregulation and miR-199a-3p Upregulation
Are Prominent Features of Aggressive Clinical Breast
Cancer
Wesought to determine the clinical relevance of our findings, first

concentrating on whether FOXP2 downregulation represents a

feature of clinical breast cancer. For this purpose, we mined the

recently published breast cancer sequencing data made avail-

able by the Cancer Genome Atlas Network (2012), and we found

FOXP2 to be downregulated�4-fold in primary breast tumors as

compared to normal tissues (Figure S5A). Importantly, we found

that FOXP2 levels were repressed �2-fold in invasive ductal

breast carcinomas (IDCs) as compared to benign lesions (Fig-

ure S5B; Chen et al., 2010). To explore whether FOXP2 depres-

sion is associated with particular breast cancer subtypes, we

interrogated publicly available luminal A, luminal B, HER2-en-

riched, and basal-like breast tumor expression data sets (Pawi-

tan et al., 2005; Dedeurwaerder et al., 2011; Sabatier et al.,

2011). These analyses revealed FOXP2 downregulation as a

common feature of all these subtypes (Figures 5A, S5C, and

S5D) and were mirrored by our own rtPCR-DDct analysis on

RNA derived from macrodissected breast cancers, in which we

observed a striking�80% FOXP2 repression across tumor sam-

ples (n = 74) when compared to RNA derived from normal tissues

(n = 5; Figure 5B). Importantly, we found that low FOXP2 expres-

sion inversely correlated with overall disease-free survival (Fig-

ure 5C), as well as distant metastasis-free survival (Figure 5D) in
Cell
independent cohorts, suggesting that FOXP2 repression is indic-

ative of increased malignancy in clinical breast cancer.

Similarly, we found miR-199a-3p levels to be elevated in IDC

samples compared to in situ ductal cancers (Figure S5E; Farazi

et al., 2011; Volinia et al., 2012). Within IDC, miR-199a-3p levels

correlated with disease progression and associated significantly

with lymph node positivity (N1 or N2) in a study of >600 breast

cancer patients (Figure 5E; Cancer Genome Atlas Network,

2012). Most interestingly, miR-199a-3p levels were significantly

elevated in primary tumors of patients who exhibited relapse

(Figure 5F) and also correlated with decreased patient survival

over 5- and 10-year intervals (Figures 5G). Collectively, these

observations suggested that deregulation of FOXP2 and miR-

199a-3p are common features of breast cancer progression

and highlight important prognostic values for these players in

breast cancer pathogenesis.

FOXP2 Is a Common Target for a Converging and
Interrelated Set of MSC-Regulated miRNAs
We aimed to gain molecular insight into the regulation of FOXP2

by MSC-induced miR-199a-3p. We analyzed the proximal (�1

kb) FOXP2 30 UTR for consensus miRNA seed sites using

in silico miRNA target prediction algorithms, such as RNAhybrid,

miRWalk, Targetscan, and Pictar, but we were unable to find

strong consensus seed sites for miR-199a-3p with the pre-

dicted free energy cutoff of%�25 kcal/mol. However, these ap-

proaches did reveal putative target sites for each of the other

miRNAs induced in BCCMSC, namely miR-762, miR-let-7b,

miR-34a, and miR-1915 (Figures S6A and S6B). For this reason,

we tested the capability of these particular miRNAs in repressing

FOXP2 mRNA expression. Indeed, stable expression of miR-

762 or miR-1915, or transient expression of miRNA mimics for

miR-let-7b or miR-34a (Figure S6C), brought about a significant

reduction in FOXP2 levels in MDA-MB-231 cells (Figures 6A

and 6B). Consistent with FOXP2 downregulation, these cells

exhibited an increase in ALDH1 positivity as determined by

ALDEFLUOR assays, displaying �20-, �75-, �30-, and �30-

fold increases by miR-let-7b, miR-34a, miR-762, and miR-

1915, respectively (Figure 6C).
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Figure 4. FOXP2 Downregulation Drives CSC Phenotypes and Metastasis

(A) FOXP2 western blot after knockdown by the indicated shRNAs.

(B) Representative ALDEFLUOR analyses of the indicated cell lines (n = 4). DEAB was used as a control.

(C) Representative western blot for c-Myc in whole-cell lysates of the indicated MDA-MB-231 cells. b-actin was used as a loading control (n = 3).

(D) Sphere formation assay. Representative images and quantification of secondary spheres (n = 3).

(E) Tumor-initiation assay. Table indicates the number of tumors initiated (>0.05 g) and the total number of BCC injections for each cell dilution (#cells/injection).

Respective p values for BCCshSCRAM and BCCshFOXP2 calculated by ELDA were as follows: 100K cells group: 0.536; 10K cells group: 1; 1K cells group: 0.736; 100

cells group: 0.0375.

(F) Mean weight (grams) ± SEM of matched subcutaneous primary tumors derived from Nude mice after 8–14 weeks of BCCshSCRAM (n = 30) or BCCshFOXP2

(n = 46) injections.

(G) Metastatic index. Mean numbers of GFP-positive lungmetastases ± SEMper gram of primary tumor burden permouse are shown; n = 16 for BCCshSCRAM and

n = 25 for BCCshFOXP2-2.2.

(H) Representative images of GFP-positive colonies and anti-GFP IHC in the lungs of BCCshSCRAM or BCCshFOXP2-2.2 mice in (G).

*p < 0.05; ***p < 0.001 in two-tailed Student’s t test. See also Figure S4.
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Based on these results and the fact that miR-199a-3p was not

predicted to target the proximal 30 UTR of FOXP2, we asked if

miR-199a might repress FOXP2 through the actions of these

four miRNAs. Indeed, we found that the expression levels of

miR-let-7b, miR-34a, miR-762, and miR-1915 were all elevated

�7-, �4.5-, �5-, and �4.5-fold, respectively, in BCC199a/214 (Fig-

ure 6D), suggesting a coregulatory relationship gathering these

miRs with miR-199a-3p. In support of this notion, and using

targeted qPCR assays, we found that the expression levels of

miR-199a-3p in clinical breast cancer specimens correlated with

the expression levels of miR-let-7b, miR-34a, and miR-1915 (Fig-

ure 6E; we were unable to test miR-762 because the sensitivity of

the assay necessitated the use of prohibitively large amounts of

primary RNA material). These findings are consistent with the

existence of an operational crosstalk between MSC-induced

miRNAs in BCCs and highlight one mechanism through which
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miR-199a-3p represses FOXP2 expression. Of translational

importance, high concerted expression levels of miR-199a-3p,

miR-let-7b, miR-34a, and miR-1915 were indicative of overall

poorer survival in breast cancer patients as assessed by Kaplan-

Meier analyses (Figure 6F) and Cox multivariate analysis (Fig-

ure S6D), suggesting that the described miR network represents

a powerful and significant prognostic indicator in clinical breast

cancer. These results reveal functional cooperation between

members of an interrelated regulatory network of miRNAs, led

by miR-199a, which converge to inhibit the expression of FOXP2

and thereby promote tumor initiation and metastasis (Figure 6G).

DISCUSSION

By probing for BCC miRNAs deregulated by MSC stimulation,

we identified a set of interrelated miRs whose actions converge
c.
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Figure 5. Upregulation of miR-199a and Downregulation of FOXP2 in Clinical Breast Cancer
(A) FOXP2 levels (Log2) in normal versus the indicated breast cancer subtypes in GSE20711. p values for normal (n = 2) versus HER2 (n = 26), Lum A (n = 13), Lum

B (n = 22), and BLBC (n = 27) were 0.0005325, 0.001527, 4.573 3 e�6, and 0.03824, respectively. Significance was determined using unpaired Student’s t test.

(B) FOXP2 rtPCR-DDct on macrodissected breast cancer specimens derived from HER2 (n = 12), Lum A (n = 25), Lum B (n = 25), and BLBC (n = 12) subgroups

versus normal (n = 5). Significance was determined using unpaired Student’s t test.

(C) Upper: disease-free survival of high- and low-FOXP2 expression groups from van de Vijver (2002) NKI platform (n = 221 and 74, respectively). Reporter Contig

usedwas 35884_RC, HR = 1.7(1.1� 2.6), and Chi-square p = 0.016. Lower: disease-free survival analyses performed on high- and low-FOXP2 expression groups

in Pawitan et al. (2005) platform HG-U133B (n = 119 and 40, respectively). Reporter used was 243278_at, HR = 1.9(1.0 � 3.7), and Chi-square p = 0.041.

(D) Upper: metastasis-free survival analyses from Miller (2005) using platform HG_U133B (n = 195 and 65, respectively). Reporter used was 235201_at, HR =

1.7(1.0 � 2.8), and Chi-square p = 0.046. Lower: disease-free survival analyses performed on high- and low-FOXP2 expression groups in Pawitan et al. (2005),

platform HG-U133B (n = 119 and 40, respectively). Reporter used was 243278_at, HR = 2.2(1.1 � 4.2), and Chi-square p = 0.025.

(E) miR-199a-3p expression in IDC patients (n = 664; Cancer Genome Atlas Network, 2012) with or without lymph node positivity. N0 geometric mean RPM is

1780.7 (n = 301), N1 geometric mean is 1951.8 (n = 223), and N2 geometric mean is 2141.3 (n = 82). Spearman correlation test N0 < N1 < N2, p = 0.013.

(F) NormalizedmiR-199a-3p levels (rtPCR-DDct) on primary-tumor-derived RNA in relapse-free breast cancer patients (n = 34) versus relapsed patients (n = 40) in

Cimino et al. (2013). Mann-Whitney p = 0.029 and Wilcoxon p = 0.0193.

(G) miRNA-199a-3p median fold change (FC) stratified the independent populations in Cimino et al. (2013) into two groups, which were significantly different in

their survival probability (n = 73).

See also Figure S5.
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to downregulate the developmental transcription factor FOXP2.

We demonstrated that expression of these miRs or knockdown

of FOXP2 was sufficient to increase breast CSC-like traits,

fostering increased tumor-initiating abilities and enhancing

tumor metastasis. These results incriminate miRNA-regulated

pathways in breast CSC propagation and metastasis and

describe an involvement of the speech-associated transcrip-

tion factor FOXP2 in regulating breast cancer malignancy,

thereby providing mechanistic insights into breast cancer

pathogenesis.

A series of studies have described the enrichment of A1 and

A2 loci miRNAs in cancer tissues. Indeed, miR-199a expression

has been found to be elevated in a number of solid malignancies,

such as lung cancer (Mascaux et al., 2009), colorectal cancer
Cell
(Wan et al., 2013), ovarian cancer (Iorio et al., 2007), and mela-

noma (Pencheva et al., 2012). Similarly, upregulated levels of

miR-214 have been reported in ovarian (Yang et al., 2008),

pancreatic (Zhang et al., 2010), and oral (Scapoli et al., 2010)

cancers. In breast, two reports have described increased levels

of miR-199a-3p in malignant myoepithelioma of the breast

(Bockmeyer et al., 2011) and elevated miR-214 levels in the

blood of patients diagnosed with malignant breast tumors

(Schwarzenbach et al., 2012). Despite these intriguing studies,

the functional contributions of miR-199a and miR-214 to breast

cancer progression were unknown. Recently, miR-199a has

been shown to target apolipoprotein E (ApoE) and the heatshock

factor DNAJA4 in the context of melanoma, which was shown to

relieve the inhibitory influence of ApoE on endothelial
Stem Cell 15, 762–774, December 4, 2014 ª2014 Elsevier Inc. 769
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Figure 6. MSC-Induced miRNAs Converge on FOXP2

(A) Upper: rtPCR-DDct for FOXP2 mRNA levels in MDA-MB-231 cells transiently transfected with miR-let-7b or miR-34a mimics compared to mock. (± SEM;

n = 3). Lower: rtPCR-DDct of FOXP2 in MDA-MB-231 cells stably expressing miR-762 (BCC762), miR-1915 (BCC1915), or controls (BCCnull) (± SEM; n = 3).

(B) Western blots showing FOXP2 levels in MDA-MB-231 whole lysates of BCCnull, BCC762, or BCC1915 (left) or in BCCs transiently transfected with miR-let-7b or

miR-34a mimics (right) (n = 3).

(C) Relative fold ALDH1-positive cells compared to controls in the indicated groups in (B) (± SEM; n = 3).

(D) rtPCR-DDct for the indicated miR in BCCnull and BCC199a/214 (± SEM; n = 3).

(E) Pearson coefficient ofmiRNA fold changes shows significant correlations between expression levels of miR-199a-3p andmiR-1915,miR-let-7b, andmiR-34a,

as determined by rtPCR-DDct on clinical samples from Cimino et al. (2013).

(F) Median fold change (FC) of the combined expression levels of miR-199a-3p, miR-34a, miR-let-7b, and miR-1915 stratify the population in Cimino et al. (2013)

into two groups with different 5 year survival probability (n = 73).

(G) Model: MSC stimulation of BCCs induces a set of miRNAs, led my miR-199a/214, which converge on FOXP2. The downregulation of FOXP2 is sufficient to

promote tumor initiation and metastasis.

*p < 0.05; **p < 0.01, ***p < 0.001 in two-tailed Student’s t test. See also Figure S6.

Cell Stem Cell

FOXP2 Regulates Breast Cancer Metastasis
recruitment, thereby affording cancer colonies with enhanced

vascularization (Pencheva et al., 2012). While we cannot rule

out similar paracrine actions of miR-199a/214 in our models,

we did not find ApoE and DNAJA4 to be downregulated in

MDA-MB-231 stably expressing these miRNAs, underscoring

the importance of cell context inmiRNA targeting of complemen-

tary mRNAs. Here, we have elucidated an ostensibly autocrine

mechanism of action for A1 and A2 loci miRNAs in breast carci-

noma pathogenesis.

To determine how BCC199a and BCC199a/214 acquire their ma-

lignant phenotypes, we tested the expression levels of a large

subset of published targets for miR-199a, but we were unable
770 Cell Stem Cell 15, 762–774, December 4, 2014 ª2014 Elsevier In
to verify consistent target downregulation across BCC199a,

BCC199a/214, and BCCMSC. Influenced by the observations that

BCC199a, BCC199a/214, and BCCMSC acquired CSC-like traits,

we conducted stem-cell-factor-focused screens and identified

FOXP2 as a factor that was significantly and consistently

repressed in all three conditions.

FOXP2 is a transcription factor that has been tightly linked

to nervous system development, encompassing activities that

range from neuronal maturation to axonal guidance and speech

regulation (Fisher and Scharff, 2009; Tsui et al., 2013; Vernes

et al., 2011). On the molecular level, FOXP2 functions in

transcriptional repressor complexes, which downregulate the
c.
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expression of a multitude of targets involved in lineage determi-

nation (Shu et al., 2001; Li et al., 2004; Shu et al., 2007; Konopka

et al., 2009). However, to our knowledge, functions for FOXP2 in

breast cancer development have not been previously reported.

We found FOXP2 downregulation to be sufficient for enhanced

tumor-initiating and metastatic abilities of cancer cells in ani-

mals, and we further observed FOXP2 to be significantly down-

regulated across multiple clinical subtypes of breast cancers.

Particularly, we observed that HER2-enriched tumors exhibited

a reproducible and statistically significant 4-fold downregulation

of FOXP2 (and �2.5-fold increase in miR-199a-3p) when

compared to the BLBC subtype (Figure S5F), suggestive of a

preferential enrichment for this pathway in HER2 breast cancer.

Interestingly, HER2 tumors displayed increased SMA-positive

fibroblastic cell infiltrates (consistent with CAF/MSC-like cells)

when compared to BLBC (Toullec et al., 2010; data not shown),

which draws a strong association between CAF/MSC tumor

content and a depression of FOXP2 expression in clinical breast

cancer. Furthermore, we found that expression of a UTR-free

FOXP2 cDNA in BCCs in the context of miR-199a overexpres-

sion or in the background of MSC stimulation significantly in-

hibited both lung colonization (Figure S4G) and ALDH1 positivity

(Figure S4H). Together, these observations strongly suggest that

FOXP2 plays a critical role in breast cancer pathogenesis. It

remains unclear as to whether FOXP2 exerts these activities

via transcriptional repression and whether its downregulation in

clinical breast cancer is an event that occurs early or late in tumor

development. Because of its involvement in tumor initiation and

metastasis, we hypothesize that FOXP2 may serve dual roles,

both in tumorigenesis and in tumor progression to metastasis.

Efforts to decipher the molecular mode of action of FOXP2 in

breast cancer initiation, maintenance, and progression are

currently underway.

The present work also highlights pathways utilized by tumor-

associated MSCs to foster the malignancy of BCCs. Previous

work from our group and others has shown that the contact

between MSCs and BCCs resulted in gene expression changes

in both cell types, favoring the development of a microenviron-

ment that is conducive to metastatic progression. Indeed, BCC-

activated MSCs primarily produce the chemokine CCL5, which

acts back on the neighboring BCCs in a paracrine fashion and

through CCR5, fostering their invasive migration and increased

lung colonization (Karnoub et al., 2007; Chaturvedi et al., 2013).

Similarly, we previously reported that MSC-activated BCCs are

most enriched in EMT markers and phenotypes, mechanisms

predominantly mediated by LOX via a CD44-Twist signaling

axis (El-Haibi et al., 2012). Importantly, we observed that

neither CCL5 (Figures S1D and S1E) nor LOX (Figure S1F)

was sufficient in triggering CSC-associated miR-199a-3p/miR-

214 expression, consistent with our previous results that

CCL5 and LOX do not foster CSC-like traits in cancer cells

(data not shown; El-Haibi et al., 2012). Intriguingly, and despite

these observations, we found that TWIST1 expression in the

cancer cells was sufficient to promote miR-199a-3p and miR-

214 expression (Figure S1G) as well as FOXP2 repression (Fig-

ure S1H) and that it was critically required for the induction

of the A1/A2 loci by MSCs (Figure S1I). These results are indic-

ative of a complex crosstalk operating between MSC-driven

EMT and CSC machineries and are suggestive of independent
Cell
outside-in signaling axes regulating miR-199a in multiple

BCCMSC (e.g., Figure S1J).

Metastatic progression requires cancer cells to overcome dis-

similar obstacles related to loss of adhesion and local invasion,

intra/extravasation, and reacquisition of adhesion and prolifera-

tive capacities for colonization of inhospitable secondary tissues.

It is plausible to reason that negotiating these sequential steps

would require reversible shifts in gene expression programs.

For this reason, studying the steady state stable transcriptional

profiles of metastatic nodules may not provide a comprehensive

understanding of the otherwise obligatorily plastic pathways that

contribute to the establishment of secondary cancer colonies. In

these regards, the MSC-induced model of tumor metastasis,

which has gained increased attention over the past few years,

possesses distinct advantages that enable the discovery of tem-

poral, stroma-instigated pathways that permit cancer cells to

execute the multiple steps of the metastasis cascade.

EXPERIMENTAL PROCEDURES

Detailed procedures can be found in the Supplemental Information.

Cells

BCCs were cultured using standard protocols described elsewhere (Karnoub

et al., 2007; El-Haibi et al., 2012). Primary BCCs DT22 and DT28 are described

elsewhere (Drews-Elger et al., 2014). Primary human bonemarrowMSCs (BM-

MSCs), primary ad-MSCs, Br-MSCs, and WI-38 human embryonic lung fibro-

blasts were propagated as previously described (El-Haibi et al., 2012; Hanson

et al., 2013) and utilized before passage 5. CAFs were described previously

(Hu et al., 2008).

Cocultures and Sorting

For direct cocultures, MSCs, CAFs, or WI-38 cells were cocultured with GFP-

BCCs (at 3:1 ratio) for 72 hr (e.g., El-Haibi et al., 2012). All cells were cultured

individually in parallel as controls. GFP-BCCs were recovered by FACS and

processed as described below. For indirect cocultures, MSCs and BCCs

were grown for 72 hr across 0.4 mm membrane in a Boyden chamber setup,

and BCCs were collected and processed for RT-qPCR determinations as

described below.

Agilent Arrays

An Agilent oligonucleotide microarray system (miRNA AMADID 025987,

Agilent Technologies) was used to detect miRNA gene variation in MDA-

MB-231 stimulated with BM-MSCs as compared to controls.

rtPCR-DDct Analysis and Primers

Total RNAwas extracted using miRNeasy kit (QIAGEN) and was processed for

reverse transcriptase with a miScript II RT kit and via qPCR using standard

procotols. Miscript primers used and primer sequences are listed in the Sup-

plemental Information.

Constructs

pRRL3-GFP-BCCs were previously described (El-Haibi et al., 2012). For stable

miRNA overexpression, GFP-BCCs were transfected with pEGP-miR Null,

pEGP-miR-199a-2 (Cell Biolabs), or pcDNA3.2/V5 hsa-mir-214 (D. Bartel)

and stable transfectants were selected with puromycin and/or G418. pEGP-

miR-1915 and pEGP-miR-762 were generated by PCR amplification of

precursor stem-loops from human genomic DNA and were subcloned into a

miRNA Select pEGP-miR (Cell Biolabs). QIAGEN miScript miRNA Mimics

#MSY0000232 and # MSY0000231 were used for expression of miR-199a-

3p and miR-199a-5p. #MSY0000063 and #MSY0000255 RNA duplexes

(QIAGEN) were used for expression ofmiR-let-7b-5p andmiR-34a-5p, respec-

tively. pLKO.1 FOXP2 shRNAs and shSCRAM constructs (Dana-Farber

Cancer Institute) were stably expressed in MDA-MB-231 as standard. The

long-form (variant 2) of FOXP2 was purchased from Origene.
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Proliferation Assays, Western Blotting, Transwell Motility, Anoikis,

ALDEFLUOR, and Sphere Formation Assays

These assays were conducted using standard procedures described in detail

in the Supplemental Information.

Tumor Initiation and Metastasis Analyses

Female athymic Nude mice (Charles River Laboratories #490) were subjected

to 200 ml (2:1 complete DMEM/cells:Reduced Growth Factor Matrigel; BD Bio-

sciences) subcutaneous injections of BCCs. Tumorigenesis was assessed via

palpation and confirmed by fluorescencemicroscopy after excision. Statistical

analyses were performed utilizing ELDA: Extreme Limiting Dilution Analysis

software (Hu and Smyth, 2009). Fluorescence microscopy was used to assess

lung metastasis.

PCR Profiling Arrays

BCC-derived RNA was analyzed using Human Stem Cell PCR Array (QIAGEN

#PAHS-501Z), and data was analyzed using RT2 Profiler PCR Array Data Anal-

ysis software (http://www.sabiosciences.com/pcrarraydataanalysis.php).

Clinical Analyses

FOXP2 determinations were derived from ROCK (Cancer Genome Atlas

Network, 2012; Chen et al., 2010); from GSE20711, GSE21653, and

GSE1456; or from tumors collected under approved Curie IRB protocols.

miRNA determinations were derived from Farazi et al. (2011), from Cancer

Genome Atlas Network (2012), from breast cancer samples in Cimino et al.

(2013), or from the Curie set.

SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes six figures and Supplemental

Experimental Procedures and can be found with this article online at http://dx.

doi.org/10.1016/j.stem.2014.10.001.
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