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Abstract

Nonsyndromic orofacial clefts are common birth defects with multifactorial etiology. The
most common type is cleft lip, which occurs with or without cleft palate (hsCLP and nsCLO,
respectively). Although genetic components play an important role in nsCLP, the genetic
factors that predispose to palate involvement are largely unknown. In this study, we carried
out a meta-analysis on genetic and clinical data from three large cohorts and identified
strong association between a region on chromosome 15q13 and nsCLP (P = 8.13x10~"* for
rs1258763; relative risk (RR): 1.46, 95% confidence interval (Cl): 1.32—1.61)) but not
nsCLO (P =0.27; RR: 1.09 (0.94—1.27)). The 5 kb region of strongest association maps
downstream of Gremlin-1 (GREM1), which encodes a secreted antagonist of the BMP4
pathway. We show during mouse embryogenesis, Grem1 is expressed in the developing lip
and soft palate but not in the hard palate. This is consistent with genotype-phenotype corre-
lations between rs1258763 and a specific nsCLP subphenotype, since a more than two-fold
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increase in risk was observed in patients displaying clefts of both the lip and soft palate but
who had an intact hard palate (RR: 3.76, Cl: 1.47-9.61, P4;#<0.05). While we did not find lip
or palate defects in Grem1-deficient mice, wild type embryonic palatal shelves developed
divergent shapes when cultured in the presence of ectopic Grem1 protein (P = 0.0014). The
present study identified a non-coding region at 15q13 as the second, genome-wide signifi-
cant locus specific for nsCLP, after 13931. Moreover, our data suggest that the closely
located GREM1 gene contributes to a rare clinical nsCLP entity. This entity specifically
involves abnormalities of the lip and soft palate, which develop at different time-points and
in separate anatomical regions.

Author Summary

Clefts of the lip and palate are common birth defects, and require long-term multidisci-
plinary management. Their etiology involves genetic factors and environmental influences
and/or a combination of both, however, these interactions are poorly defined. Moreover,
although clefts of the lip may or may not involve the palate, the determinants predisposing
to specific subphenotypes are largely unknown. Here we demonstrate that variations in
the non-coding region near the GREM1I gene show a highly significant association with a
particular phenotype in which cleft lip and cleft palate co-occur (nsCLP; P = 8.13x10™'%).
Our data suggest that the risk is even higher for patients who have a cleft lip and a cleft of
the soft palate, but not of the hard palate. Interestingly, this subphenotype corresponds to
the expression of the mouse Grem1 gene, which is found in the developing lip and soft pal-
ate but not in the hard palate. While GremI-deficient mice display no lip or palate defects,
we demonstrate that ectopic Grem1 protein alters palatal shelve morphogenesis. Together,
our results identify a region near GREM1 as the second, genome-wide significant risk
locus for nsCLP, and suggest that deregulated GREM I expression during craniofacial
development may contribute to this common birth defect.

Introduction

Nonsyndromic cleft lip with or without cleft palate (nsCL/P) is a common human birth defect
with a multifactorial etiology, including a strong genetic component [1, 2]. Previous studies
have identified 16 genetic risk loci for nsCL/P. These studies comprised candidate gene and
linkage analyses [3-5], genome-wide association studies (GWAS) with follow-up approaches
[6-11], and a meta-analysis [12]. Despite these advances in deciphering the genetic architec-
ture of nsCL/P, a number of additional risk loci still await identification. Some of these as yet
unknown susceptibility variants may be detectable in GWAS datasets but have escaped detec-
tion at a genome-wide significant level due to low statistical power, which is secondary to lim-
ited sample sizes. This suggests that further risk variants for nsCL/P might be identified via one
of the following approaches: the combining of available data sets, targeted replication analyses
in independent cohorts, and/or the reduction of clinical heterogeneity using detailed subphe-
notype information.

NsCL/P shows considerable phenotypic variability in terms of affected anatomical struc-
tures, and can be subdivided into two main forms: nonsyndromic cleft lip only (nsCLO) and
clefts involving both the lip and the palate (nsCLP) [2]. This distinction is important in terms
of the degree of physical handicap and treatment. Although epidemiological data indicate that

PLOS Genetics | DOI:10.1371/journal.pgen.1005914 March 11,2016 2/21


https://www.ukb.uni-bonn.de/

@'PLOS | GENETICS

GREMT1 in Palate and Lip Formation

these subtypes are determined at least in part by genetic predisposition [13], few data are avail-
able concerning the specific genetic factors determining the formation of nsCLP as opposed to

nsCLO. To date, one locus (at 13q31) has shown a specific association with nsCLP but not with
nsCLO [12, 14], while IRF6 has shown a predominant effect in nsCLO [5].

Previous research has implicated the Gremlin-1 (GREM1) locus in human orofacial clefting.
This research has involved the investigation of gene networks and, more recently, the finding
of association between variants at 15q13 and human nsCL/P [10, 15]. However, associations of
common variants were not yet significant at the genome-wide level. Also, sequencing studies of
GREM1 in nsCL/P patients and controls have been conducted in limited sample sizes only,
with inconclusive results: although our group has previously generated some evidence for the
role of rare variants in the GREM1 coding and untranslated region [16], the functional rele-
vance of the identified variants remained unclear, and the results of burden analyses varied
depending on the test applied. In another sequencing study, no deleterious rare variants were
identified in GREM1 [15].

Analyses of Grem1-deficient mouse models have shown that during embryogenesis Grem1
function is crucial for limb development and kidney formation. However, complete loss of
Grem1 function causes no obvious craniofacial defects [17, 18]. GREM1 acts as a secreted
antagonist of various members of the bone morphogenetic protein (BMP) family, which has
been shown to play a critical role in both lip and palate development [19, 20]. Notably, previous
research has indicated a particular role for BMP4, which is involved in facial genesis [21, 22].
Moreover, rare mutations within BMP4 have been associated with human clefting [23], and it
is established that soluble GREM1 binds with high affinity to BMP4 [24]. Loss-of-function and
overexpression studies of the related Bmp antagonist Noggin in mice have previously demon-
strated the critical role of restricted Bmp signaling during lip and palate development, as well
as for midfacial morphogenesis [25-27].

The present study analyzed the putative risk locus on human chromosome 15q13 in differ-
ent nsCL/P cohorts, using detailed clinical subphenotype information. The genetic analyses
were complemented by functional analyses of the mouse ortholog of the GREM1I gene, which is
located adjacent to the associated region. Finally, existing comprehensive genomics data sets
were analyzed to annotate the associated region and to establish GREM1 as a plausible candi-
date gene for nsCL/P at 15q13.

Results
The 15913 region is a genome-wide significant risk locus for nsCL/P

Regional association statistics for 219 variants at 15q13 (chr15: 32.95-33.5 Mb, hg19) were
extracted from a previously published meta-analysis (referred to as Ludwig 2012 meta-analy-
sis) [12] (Table 1, S1 Dataset). The top associated variant at 15q13 in this Ludwig 2012 meta-
analysis data set was rs1258763 (PyscL/p_meta_all = 1.81x107°%, Fig 1 and S1 Dataset), with the
A-allele representing the risk allele.

As part of the present study, rs1258763 was then genotyped in an independent case-control
cohort of mixed ethnicity (replication I, Table 1 and S2 Dataset). After quality control, 580
cases and 1,684 controls remained in the analysis. In this replication I data, rs1258763 showed
strong association with nsCL/P (Pnscr/p_rep_1 = 4.34x107%, relative risk (RR) for the major
allele A: 1.58, 95% confidence interval (95% CI): 1.36-1.84, S2 Dataset). Additionally,
rs1258763 had been previously genotyped in an independent trio sample from the EuroCran
cohort [10] (replication II, Table 1). Re-analysis of this data (to exclude individuals that were
also part of replication I) revealed Pyscr/p_rep_ir = 0.072 (S2 Dataset), with the A-allele being
overtransmitted to affected children.
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Table 1. Sample overview.

Study cohort ? Design Ethnicity Sample size ¢ Subphenotype References ¢
information available?
Sample Genotypes
description
Ludwig 2012 meta- case- Central 399 cases, 1,318 yes [29] (101, (121f
analysis © control European °© controls
trio European 666 trios yes [6] [12]
Asian 795 trios
replication | case- Central 223 cases, 978 yes [29] Genotyped for rs1258763 in
control European °© controls the present study
Mexican 156 cases, 337 yes [30]
controls
Yemeni 231 cases, 422 no [31]
controls
replication Il trio European 600 trios yes [10] [101°¢
(EuroCran)

& _The meta-analysis of all three study cohorts in the present study is referred to as “combined analysis”.

®_The Ludwig 2012 meta-analysis contained two analyses, i.e., metag,r (in Which the Central European case-control cohort and the European trios were
combined), and meta,, (which additionally included the Asian trios). Full information on these analyses at 15q13 are provided in S1 Dataset.

°—Number of individuals included in each study. For replication |, pre-genotyping numbers are provided here while post-genotyping data can be found in
S2 Dataset.

d_References are provided separately for description of the samples and genotype data for rs1258763, respectively.

®—All individuals are drawn from the Bonn cohort. Individuals included in the Ludwig 2012 meta-analysis have not been included in the replication | study.
Therefore, both study cohorts can be considered independently.

_In the present study, the 15q13 region was imputed using genotypes from Ludwig et al 2012,

9—In the EuroCran study that was part of Mangold et al. 2010, 65 trios from the Bonn cohort were included. To avoid overlap of individuals in the
combined analysis of the present study, these individuals were excluded and data re-analyzed. For further details, see sample description in the Methods
section.

doi:10.1371/journal.pgen.1005914.t001

Combined analysis of the Ludwig 2012 meta-analysis and both replication I and II data sets,
respectively, totaling 979 nsCL/P cases, 3,002 controls, and 2,061 trios, yielded genome-wide
significance (Pyscr/p_comb = 2.23x107"%), with a strong genetic risk observed for the major allele
A (1.35(1.24-1.46), S2 Dataset).

Imputation analysis of the 15q13 region in the Central European cohort that was part of the
Ludwig 2012 meta-analysis (see Methods) revealed a 5 kb region of strongest association
(Chr15: 33.050-33.055 Mb), located intergenically between GREM1 and Formin-1 (FMNI),
with 152600520 being the most strongly associated variant in the imputed data (Phscr/p_imp =
5.05x10"", Fig 2A and S3 Dataset).

Subphenotype analysis reveals strong association with cleft lip and
palate

To determine associations between variants at 15q13 and particular clefting subphenotypes,
individuals from the three study cohorts were classified as nsCLP or nsCLO on the basis of
available clinical information (S2 Dataset). Variant rs1258763 showed significant association
with nsCLP in the genotyped data of the Ludwig 2012 meta-analysis (Pnscrp_meta = 8.0x107%),
replication I (Pyscrp_rep 1= 1.28x10”%) and replication II (PnscLp_rep_11 = 0.035 Fig 3 and S2
Dataset). No significant association was detected for nsCLO (P>0.2 in all cohorts, S2 Dataset).
For each of the three cohorts, the difference in relative risk between nsCLP and nsCLO was sta-
tistically significant (P<0.05).

PLOS Genetics | DOI:10.1371/journal.pgen.1005914 March 11,2016 4/21
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Fig 1. Regional association plot for the 15q13 region. P-values for SNPs at 15q13 that were analyzed as
part of the Ludwig 2012 meta-analysis (PnscLp_meta) are plotted against their chromosomal position (hg19).
Full data are provided in S1 Dataset. For each variant, color code denotes linkage disequilibrium to
rs1258763, based on 1000genomes. After combination with data from replication | and Il, the top variant
rs1258763 (purple diamond; indicated by dotted line) reaches genome-wide significance. Plot was generated
using LocusZoom [28].

doi:10.1371/journal.pgen.1005914.g001

The overall association P-value for nsCLP in the combined analysis was Puscrp comb =
8.13x107"* (1.46 (1.32-1.61), Fig 3), in contrast to Ppscro comp = 0.27 (1.09 (0.94-1.27)) for
nsCLO. The difference in relative risks between nsCLO and nsCLP in the combined sample
was statistically significant in both multiplicative (P = 0.0015) and general (P = 0.0033) model.
In the subphenotype analysis of the imputed data generated from the Central European case-
control cohort rs2600520 remained the most significantly associated variant with nsCLP
(PnscLp_imp = 3.19x107%, Fig 2B), while only marginal associations were observed with nsCLO
(Fig 2C).

In silico annotation supports GREM1 as candidate gene at 15913

For the 5 kb region of strongest association, no compelling evidence for the presence of regula-
tory elements was found in ENCODE [32], except for a 200 bp region identified as DNAse
hypersensitivity site in four cell types, three of which had been derived from skin tissue
(chr15:33,052,666-33,052,875, hgl9) [33]. In datasets of relevance to craniofacial development
[34, 35], no active regulatory elements were detected.

According to HaploRegv3 [36], the top associated variant rs2600520 and a second single
nucleotide polymorphism (SNP), rs2600519, which is in high linkage disequilibrium (LD) and
located four base pairs away, modify a chromatin mark that involves the transcriptional repres-
sor Sin3A. The analysis of blood-sample expression quantitative trait loci (eQTL) yielded 38
SNPs with cis-eQTL effects on GREM1 expression, six of which had false discovery rates below
0.05 (S1 Table). The strongest eQTL effect was observed for rs17816375, which showed a P-
value of 0.033 in the imputed nsCLP data. Of the 38 SNPs, the SNP with strongest association
to nsCLP was 1516958561 (P = 2.82x10~°%). This SNP maps around 6 kb distal to rs2600520,
and the two SNPs are in substantial LD (D' = 1 in the European population (1000 Genomes
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Fig 2. Regional association plots for the 15q13 region in different types of nsCL/P. In the imputed data of the Central European cohort, the 15913
region was analyzed in the overall phenotype nsCL/P (A) and both subphenotypes, i.e. nsCLP (B) and nsCLO (C). For each SNP, the P-value is plotted
against its chromosomal position (hg19). In nsCL/P and nsCLP, a highly associated cluster of SNPs in strong linkage disequilibrium is present, located

between GREM1 and FMN1. The lowest P-value was observed for rs2600520 (purple diamond). In each panel, the top genotyped variant rs1258763 is

marked by an open circle. For all other variants, color code denotes linkage disequilibrium to rs2600520, based on 1000genomes. Regional association plots
were generated using LocusZoom [28].

doi:10.1371/journal.pgen.1005914.9002

phase 1)). No trans- or cis-eQTL effect was identified for FMN1, despite the fact that one FMNI-
targeting probe was represented on the expression array used [37]. Analysis of chromatin interac-
tion data [38] obtained in human epidermal keratinocytes (NHEK), umbilical vein endothelial
cells (HUVEC) and mammary epithelial cells (HMEC) revealed a topologically associated
domain (TAD) encompassing the entire GREM1 gene, the associated region and parts of the
SCG5 and FMNI coding regions. Standard annotation of contact domains reveals a subdomain
separating the 5' region of FMNI from its 3' end and GREM1 (S1 Fig). Further analysis of the
TAD data using virtual 4C reveals evidence that direct interaction loops are present between the
associated region and the GREM1 transcription start site at the given resolution (S2 Fig).

Grem1 is expressed in a specific pattern and alters palatal shelve
morphogenesis in vitro

X-Gal staining of the craniofacial region of heterozygous mutants of a mouse model of Grem1
deficiency [17] revealed GremI expression in the proximal region of both lateral and medial
nasal prominences at E11.5 and E12.5 (Fig 4A and 4B). In addition, bilateral GremI expression
was detected in the merging zones of the maxillary and medial nasal prominences during lip

PLOS Genetics | DOI:10.1371/journal.pgen.1005914 March 11,2016 6/21
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Fig 3. Forest plot for association of rs1258763 and nsCL/P subphenotypes. Subphenotype analyses of
cleft lip and palate (nsCLP, black) and cleft lip only (nsCLO, grey) were conducted in the Ludwig 2012 meta-
analysis data, the replication | and Il cohorts, and in the combined analysis of the present study. Boxes
represent point estimates of the relative risk for each of the four studies, with box sizes scaled according to
the number of affected individuals. Lines indicate the extent of the confidence interval. These data illustrate
the consistent association between rs1258763 and nsCLP across the various studies, and the presence of a
narrow effect size range in the combined cohort. Please note that confidence intervals for nsCLO are larger
due to the lower number of nsCLO patients. Informed by the specific expression of Grem1 in lip and soft
palate development in the mouse embryo (see below) we also analyzed the effect size of the particular soft
palate subphenotype (nsCLP¢.). The arrow indicates the point estimate for rs1258763 and nsCLPgq.

doi:10.1371/journal.pgen.1005914.g003

development at E12.5 (Fig 4B). Grem1 was also expressed in the mesenchyme of the develop-
ing secondary palate between E12.5 and E15.5, with expression being restricted to the posterior
palatal shelf region in which the soft palate forms (Fig 4C-4G).

Although no craniofacial defects have been reported for GremI-deficient mice [17], we
tested the hypothesis that loss of GremI results in alterations of lip and palate morphology
without manifesting any profound craniofacial phenotype. However, a histological analysis
revealed no developmental abnormalities in the embryonic secondary palate or during lip for-
mation in Grem1”’~ mouse mutants (Fig 5A-5D). Next, E13.5 secondary palate shelves were
cultured in the presence of exogenous Grem1 protein to assess whether this treatment could
affect their development. Significant growth (approximately 25% increase) of the palatal
shelves was observed in both Grem1-treated and control groups during the 48 hour culture
period, with no significant difference in the final size of the shelves observed between groups
(P =0.27, S2 Table). However, Grem1-treated palatal shelves showed a more rounded shape,
with retraction of their medial edges (Fig 5E-5G). Measurement of the area between both pala-
tal shelves at 0 and 48 hours revealed a stable area in the control group but a significant
increase in the Grem1-treated group (P = 0.0014 for difference between control and Grem1--
treated pairs; Fig 5H, S3 Table).

Genotype-phenotype correlation is strongest in a rare clinical entity

Informed by the murine expression pattern of GremI, we tested for involvement of the soft palate
in human data sets. Twenty-one patients with a cleft lip and a cleft of the soft palate in the pres-
ence of an intact hard palate (nsCLP.q) were selected (see Methods). In this group, analysis of
rs1258763 revealed P = 0.03 and an RR of 3.76 (95% CI: 1.47-9.61) in nsCLP.g, representing a
two-fold increase of effect size in comparison to 320 patients with complete cleft lip and palate
(nSCLPpardsoft, Fig 3 and Table 2). While only a limited number of patients with this rare
nsCLP,q phenotype could be recruited this association P-value passed the statistical significance
threshold after permutation-based correction (P = 0.04). No association was found in a group of
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Fig 4. Grem1 expression during mouse craniofacial development. (A-E) Expression of Grem1 is
visualized by X-Gal staining of heterozygous Grem1-#°Z whole mount embryos. (A) At E11.5, Grem1 is
expressed in the dorsal part of the lateral nasal prominence (Inp). Stippled lines demarcate the nasal pits. (B)
At E12.5, Grem1-positive domains are also detectable in the merging zones (arrowheads) of medial nasal
prominences (mnp) and maxillary prominences (mxp). (C-G) Secondary palate development. (C) At E13.5,
Grem1-positive domains are observed in the forming soft palate (sp). (D) At E14.5, the hard palate (hp) has
formed while the Grem1-expressing shelves of the soft palate are not yet fused. (E) At E15.5, the soft palate
has fused and Grem1 expression extends posterior to the pharynx (ph). Note the sharp anterior boundary of
Grem1 expression in the soft palate (arrowheads). (F, G) Sections of whole mount stained embryos. (F)
Cross section at the level indicated in (D) showing that Grem1 expression is restricted to the mesenchyme.
(G) Cross section at the level indicated in (E) showing Grem1 expression in the soft palate, which separates
the nasopharynx (np) from the oral cavity (oc). Additional abbreviations: a, anterior; |, lateral; m, medial; mdp,
mandibular prominence; p, posterior. Scale bars: 500um.

doi:10.1371/journal.pgen.1005914.g004

45 patients with cleft of the soft palate only and an intact lip (P,scpo_sot = 0.94, Table 2), or in
115 patients with a submucous cleft of the soft palate (Ppscpo_submuc = 0.85, Table 2).

Discussion

Previous studies have reported suggestive associations between markers in the 15q13 region
and nsCL/P [10, 15]. In the present study, we now conclusively confirm 15q13 as risk locus for

PLOS Genetics | DOI:10.1371/journal.pgen.1005914 March 11,2016 8/21
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Fig 5. Analyses of the effect of Grem1 loss of function and of ectopic Grem1 protein on secondary
palate development. (A-D) Hematoxilin/Eosin staining of paraffin sections. (A,B) At the level of the posterior
hard palate, the palatal shelves have fused and epithelial rests (arrowheads) are seen in both Grem1** (A)
and Grem17-(B) embryos at E14.5. At E15.5, the soft palate has fused in both Grem7*~ (C) and Grem1™-
embryos (D). (E-H) Organ culture experiments of secondary palatal shelves dissected at E13.5. (E) The area
(A) between palatal shelves was measured at the onset and after 48 hours of culture. The presence of Grem1
protein led to an increase in the area (F), whereas the size of the area did not change in controls (G). Stippled
lines demarcate the medial edges of the secondary shelves at the onset of culture. (H) The difference in area
(As = Asgnours—Aonours) is significantly larger in the Grem1-treated palatal shelves compared to those of
controls. Abbreviations: a, anterior; hp, hard palate; |, lateral; m, medial; np, nasopharynx; oc, oral cavity; p,
posterior; sp, soft palate. Scale bars: 200um in A-D, 500um in E-G.

doi:10.1371/journal.pgen.1005914.g005

nsCL/P by reaching genome-wide significance. In addition, the present study is the first to
demonstrate a specific subphenotype effect in patients with nsCLP. While 15q13 is not associ-
ated with nsCLO in any cohort analyzed in this study, a strong association with nsCLP was
observed in different ethnicities, suggesting the 15q13 risk locus generally acts on various pop-
ulation backgrounds. The strength of association, however, varied between ethnicities (1.28 to
1.87 in the present study), which might be due to heterogeneity at the population or allelic
level, respectively. Notably, we observed the lowest effects size in the replication II cohort
which is a trio data set of European ethnicity. As heterogeneity can be considered rather
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Table 2. Analysis of rs1258763-subphenotype effect on the soft palate.

Phenotype Genotypes cases
NSCLP_phardssoft 13/130/167

NSCLP_goft 1/3/17

NSCPO_so 1/28/16
NSCPO_submuc 12/55/48

MAF cases Genotypes controls MAF controls P-value RR allelic (95% Cl)
0.252 149/590/578 0.337 3.53x107%° 1.51 (1.24-1.85)
0.119 2.99x1073 3.76 (1.47-9.61)
0.333 0.94 1.02 (0.65-1.59)
0.343 0.85 0.97 (0.73-1.29)

Abbreviations: MAF—minor allele frequency, RR—allelic odds ratio (provided for the risk allele A), Cl—confidence interval, ns—non-syndromic, CLP—
cleft lip and palate, CPO—cleft palate only, submuc—submucous. Genotypes are presented with the minor allele first, i.e. GG/AG/AA.

doi:10.1371/journal.pgen.1005914.1002

unlikely here, an additional explanation would be differences in the composition of the sam-
ples, e.g., in the frequency of individuals with a positive family history. This should be investi-
gated in further studies.

The region of strongest association, which was identified by imputation of common variants
in Central Europeans, encompasses several variants in high LD located within a 5 kb region,
about 40 kb downstream of the GREM1 transcription start site (TSS). Two hypotheses regard-
ing the nature of the functional causative variant(s) arise: First, the common variant(s) might
be functionally relevant themselves. This has been previously observed in nsCL/P for common
variants at the high-risk locus IRF6, where a common variant in the IRF6 enhancer mediates
craniofacial disturbances by altering an Ap-2alpha binding site [5] and, recently, for rs227727
at the 17q22-locus [39]. Alternatively, rare but highly penetrant sequence variants might confer
functional effects in some patients. Those variants are missed by imputation, and their detec-
tion would require re-sequencing of the entire associated region in large cohorts of either mul-
tiply affected families (to infer co-segregation) or trios with sporadic cases (to detect de novo
occurrences). The successful outcome of such an approach has recently been demonstrated in
a large trio re-sequencing study of nsCL/P risk loci. In that study, functionally relevant rare
variants were identified, including a non-coding variant in FGFR2 [39].

The formation of lip and palate is completed by the 10™ week of human embryonic develop-
ment. In the absence of functionally annotated material from human embryonic craniofacial
tissue we here used different approaches to assess a potential regulatory effect of the common
variant rs2600520 or any other highly associated variants. First, we checked the functional reg-
ulatory landscape at 15q13 using previously published Hi-C data [38]. This analysis showed
that GREM1 locates within a topologically associated domain (TAD) that includes the associ-
ated region as well as parts of the adjacent genes SCG5 and FMNI. Notably, in silico annotation
of contact domains suggests that the 3' FMNI region, together with GREM], is located in one
functional unit which is different from that containing the FMNI 5' region and FMNI pro-
moter. While closer analysis of the region reveals evidence for an interaction of the GREM -
TSS with the GREM1/FMNI intergenic region, little evidence is provided for interaction
between the associated region and any of the SCG5 or FMNI promoters.

We also accessed data from a large and systematic analysis of gene expression from blood
samples [37], using FMNI and GREM1 as query genes. While no result was returned for
FMN1, numerous eQTLs for GREM 1 were identified. This suggests a regulatory effect of SNPs
in this intergenic region on GREM1I in general, however, none of the SNPs identified at an
FDR < 5% are associated with nsCLP in our imputed data. Notably, two of the variants with
suggestive evidence (rs16958561, rs16958734) are significantly associated in our imputed case-
control data and are in high LD with rs2600520. This suggests that common functional variant
(s) located on haplotypes tagged by rs2600520 could have an effect on GREM1 expression and
might be stronger eQTLs in data sets of relevant craniofacial tissue. Next, the 5 kb risk locus
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was analyzed in comprehensive data from the ENCODE project [32] and published datasets of
relevance to craniofacial development [34, 35]. No compelling evidence for the presence of reg-
ulatory elements was found in these data, with the exception of a 200 bp DNA hypersensitivity
site [33] in ENCODE, which indicates accessible chromatin in this region. Notably, the DNA
region around rs2600520 and rs2600519 has previously been identified as chromatin mark
involving the transcriptional repressor Sin3a [36]. Together with histone deacetylases (HDAC1
and HDAC?2) Sin3a can form part of a repressor complex that is targeted to specific DNA
regions by sequence-specific transcription factors [40]. Interestingly, at E10.5 of mouse devel-
opment Sin3a is expressed in the developing limb buds and in craniofacial prominences in a
pattern overlapping with that of Grem1 (Emage: #2906, [41]). It is conceivable that a failure to
recruit the transcriptional repressor Sin3a to this putative regulatory region could result in up-
regulated GREM1 expression, which in turn would affect lip and palate development by dis-
rupting Bmp signaling. However, the identity of the DNA-binding transcription factors that
recruit Sin3a and recognize target sites near or at rs2600520 and rs2600519 in craniofacial
prominences remain to be identified.

The functional annotation approach used in this study has two limitations. First, most of
the analyses in functional data sets are based on tissue types with no direct relevance for nsCL/
P. However, given the lack of appropriate nsCL/P-relevant material at the moment, these data
provide the opportunity to understand basic regulatory mechanisms that might be present at
the GREM1 locus. Second, methodological issues such as under-investigation of particular epi-
genetic marks or activity states (such as silencers) in the queried datasets might have been con-
founding factors in our analysis. To identify regulatory non-coding regions and to decipher
how the intergenic GREM1/FMN1 region interferes with normal craniofacial development, the
generation of comprehensive data sets in relevant tissues is warranted which might be accom-
plished by consortia projects such as Facebase [42].

Our data suggest that intergenic variants located close to FMNI affect regulatory elements
which are targeting the adjacent GREM1I gene. In nsCL/P, such long-range effects of genetic
variants on distally located genes have been previously suggested, e.g. at the 1p22 locus: Here,
associated variants map intronically within the ABCA4 gene while expression and mutation
analyses suggest the adjacent ARHGAP29 gene as causative gene [43]. However, experimental
proof of this regulation has not yet been obtained. For the 15q13 locus, evidence for long-dis-
tance regulatory effects on GREM1 is provided by studies in other mammals. Research in mice
has shown that the 3’-region of the Fmn1 gene is necessary for cis-regulation of Grem1 tran-
scription [44]. Remarkably, the developmental limb and kidney defects observed in GremI™”
mice are similar to those of Id (limb deformity) mutant mice [17, 44], which carry mutations in
the Fmnl 3’-region. These findings suggest that the Grem1I-loss of function mutation is allelic
with Id, and that GremI expression might be regulated by a global control region (GCR) located
near or at the Grem1/Fmnl intergenic region [17, 44]. The activity and function of specific
regions within the GCR, however, might be different, depending on the developmental pro-
cesses or tissues [45].

Our study also provides first evidence for genetic components underlying a rare clinical
entity, i.e., a cleft lip and a cleft soft palate in the presence of an intact hard palate. Cuddapah
et al (2015) coined the phrase “interrupted clefting” to describe this phenotype [46] and chal-
lenged the classical view that cleft lip with or without cleft palate are always manifestations of a
single etiological continuum. During mouse embryogenesis, highly localized expression of
Greml was observed in the soft palate and in the processes forming the lip, while no expression
was detectable in the developing hard palate. These observations correspond well with the con-
siderably increased risk we observed in patients presenting with “interrupted clefting". Thus,
our data support a more complex situation as they suggest that a cleft palate may form
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independently of a cleft lip and that nsCLP can be caused by disruptions of genetic pathways
that are required in both lip and palate development. Although intriguing, this observation was
based on a low number of individuals only and, therefore, has to be confirmed in further inde-
pendent samples for which detailed clinical information is available. Within this context, it is
interesting to note that genotype-phenotype correlations in six previously reported nsCLP
multiplex families with rare mutations in GREM1 [16] revealed a correlation between the pres-
ence of these mutations and cleft soft palate status in 11 out of 13 affected individuals (S3 Fig).
All variants were located in the 3' UTR, and the functional impact of the identified mutations
has not been established. Importantly, it has been recently shown that rare variants in the 3'
and 5' UTR regions might have a strong effect on disease risk, which might even outweigh the
effect of rare coding mutations [47]. We hypothesize that rare GREMI mutations might have
modifier effects, thereby influencing which of the palatal structures are affected in patients pre-
disposed to nsCLP. This would contribute to the explanation why unaffected individuals in
these families are mutation carriers. Although not fully conclusive yet, this observation should
be followed up in the future, including experimental validation of the functional role of the
non-coding mutations.

Given the critical requirement of Grem1 in kidney and limb formation during mouse
embryogenesis [17, 18] it is unlikely that a ubiquitous downregulation of GREM1 transcription
during human embryogenesis would exclusively affect lip and palate development. Moreover,
our mouse data indicate that the presence of Grem1 is not essential for the development of the
lip and palate. However, GremI expression is required for limb bud development, where it
maintains a positive Shh-Fgf feedback loop through restriction of Bmp signaling, which in turn
is a negative regulator of Shh expression in the limb mesenchyme [17, 48]. In marked contrast,
a previous study identified Bmp signaling as a positive regulator of both Shh expression in the
palatal shelf epithelium and cell proliferation in the anterior palatal shelf mesenchyme [22].
These findings suggest that increased or ectopic expression of Grem1 might interfere with nor-
mal secondary palate development through: (i) inhibition of Bmp4 or Bmp2, both of which are
expressed in the anterior palate at E12.5 [22]; or (ii) inhibition of Bmp4 and Bmp7, both of
which are strongly expressed in the posterior region of the palatal shelves at E13.5 in the mouse
[49]. The results of our organ culture experiments suggest that a pathogenic effect can be
caused by increased levels of Grem1, as these data demonstrated a marked effect of ectopic
Grem1 protein on the morphogenesis of the embryonic palatal shelves during a critical phase
of secondary palate development.

Furthermore, the nsCL/P risk allele for rs1258763 has been associated with increased nasal
width [50, 51], which is consistent with results from a previous meta-analysis showing an
increased nasal width in unaffected parents of nsCL/P patients [52]. This provides additional
support for the hypothesis that regulatory regions near the GREM1 locus plays an active role in
modulating morphogenesis during craniofacial development.

Although our results support the hypothesis that GREM1 is a candidate gene at 15q13 and
expression analyses of various isoforms of murine FmnI transcripts [53] failed to implicate
Fmnl in lip and palate development, our data do not entirely exclude the possibility that Fmn1l
could play some role in craniofacial development. Fmnl has been shown to regulate aspects of
mouse limb and kidney organogenesis similar to those controlled by Grem1 [54]. However,
contrary results in terms of expression regulation have been obtained. Whereas Grem1 expres-
sion was upregulated in a Fmn1 null mouse mutant in which the Grem1/Fmn1 regulatory
region was intact [54], earlier observations demonstrated reduced Grem1 expression as a result
of the Id mutation, which affects the 3’-region of Fmn1 [44]. Thus, the Grem1/FmnI regulatory
landscape exhibits a complex architecture, which, at present, cannot be delineated more pre-
cisely due to the limited resolution of chromatin interaction data and the close proximity of the
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GREM1 and FMNI genes. However, our results suggest strong, and functionally distinct regu-
latory activities in the region, which warrants investigation in future studies that might include
higher chromatin resolution and targeted conformation assays.

Concluding remarks

The present study established that the 15q13 region contains a genetic risk factor for nsCL/P.
This is the second locus after 13q31 to show a particularly strong association with nsCLP and
not with nsCLO. Moreover, our results suggest this risk factor to be involved in nsCLP.g, and
our genetic and functional analyses provide strong support for the hypothesis that GREM1 is
an effector gene that contributes to this rare clinical subphenotype. In aggregate, our data sug-
gest that GREM plays a specific role not only in the development of the lip, but also during
formation of the soft palate. These findings provide a framework for further functional analyses
of GREM1 in human cell systems and for inducible modulation of GremI expression during
the development of specific craniofacial regions in model organisms. These analyses may
broaden our understanding of the processes that regulate facial morphogenesis, and help to
decipher the molecular mechanisms underlying the manifestation of specific nsCL/P subphe-
notypes in humans.

Materials and Methods
Ethics statement

Human genetic studies. The study was approved by the ethics committees of the respec-
tive medical faculties, and informed consent was obtained from all participants.

Animal studies. Breeding and mouse embryo production were approved by the local veteri-
nary authorities (permit 98/2011, Veterindramt Ziirich) in accordance with Swiss federal law
(TSchG, TSchV) and cantonal by-laws in full compliance with European Guideline 86/609/EC.

Sample description

Genome-wide cohorts. Association statistics for variants at 15q13 were obtained from a
large nsCL/P meta-analysis performed by our group, which is described elsewhere [12] and
referred to as “Ludwig 2012 meta-analysis” throughout this manuscript. This study included
analyses of (i) European individuals (399 cases, 1.318 controls and 666 case-parent trios,
referred to as metag,,,), and (ii) Asian and European individuals (inclusion of additional 795
Asian trios, referred to as meta,). Please note that the Central European cases from the case-
control cohort were drawn from the same Bonn cohort as was part of the replication I sample.
However, individuals were included either in the GWAS or in the replication; none of the indi-
viduals was included in both studies.

Replication cohorts.

1. Replication I (case-control cohort). The first replication cohort was a case-control cohort
that comprised nsCL/P samples from three different populations (Bonn, Mexico, Yemen).
The Bonn sample comprised 223 independent nsCL/P patients. A total of 978 volunteer
blood donors were included as controls, which should not result in any appreciable reduc-
tion in power given the low prevalence of nsCL/P in the general population [55]. The
Mexican case-control sample was recruited as described elsewhere, and subphenotype
information was available for these subjects [30]. The Yemeni case-control sample was
recruited as described elsewhere [31]. No information on subphenotypes was available for
the Yemeni sample.
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2. Replication II (EuroCran trio cohort). Genotypes for individuals from the EuroCran cohort
for rs1258763 were retrieved from a previously published study [10]. In this study from 2010,
the EuroCran sample contained 65 trios that were from the Bonn cohort and therefore, some
of the affected index patients overlapped with individuals from the replication I cohort. To
avoid any overlap in the statistical analysis, we excluded these 65 Bonn trios from the Euro-
Cran data and re-analyzed the nsCL/P association (replication II). This explains differences in
T/NT ratios and P-values between the present study and Mangold et al 2010. Notably, in
Mangold et al. 2010, no subphenotype analysis for rs1258763 was performed.

Analysis of clinical subtypes. To characterize the cleft lip and palate phenotype in more
detail, all available clinical information was accessed. For individuals of the Central European
case-control cohort from Mangold et al. 2010, phenotype information was retrieved from our
in-house clinical database. A total number of 310 patients with a complete cleft of the lip and
clefts of the hard and soft palates were identified (CLPp,rq4soft)- Thirteen patients from the
Bonn cohort (8 from the GWAS, 5 from the replication I cohort) displayed a cleft of the lip and
the soft palate in the presence of an intact hard palate (CLP,,g), indicating the rarity of this
clinical subphenotype. To increase the size of this CLP group we reached out to other clinical
nsCL/P cohorts and identified eight patients meeting the CLPy criteria in a Dutch nsCL/P
sample [56]: Six of these patients were part of the EuroCran cohort while two patients were
drawn from an independent Dutch sample [57]. In addition, rs1258763 was genotyped in: (i)
45 patients with a cleft of the soft palate only (CPOs,g), which is an orofacial clefting subform
with a different genetic background; and (ii) 115 patients from a cohort of submucous cleft pal-
ate patients (CPOgypmuc) [58].

Genotyping and statistical analysis

Genotyping of rs1258763 in the nsCL/P replication sample and nsCPOy,¢ individuals was per-
formed using the Sequenom MassArray system (Agena Bioscience, San Diego, USA).
nsCLP,-patients from the Dutch cohort and the nsCPOgypmyc patients were genotyped using
ABI3130XL sequencing and BigDye v3.1.

The replication II sample was analyzed using the transmission disequilibrium test. In the
replication I cohort, genotype frequencies in the cases and controls of each of the three subsam-
ples (Bonn, Mexico, Yemen) were compared using the Cochran-Armitage trend test. To com-
bine all results for rs1258763, effect estimates for the different studies were combined in an
inverse variance-weighted fixed-effects meta-analysis. To test for heterogeneity of the geno-
typic RRs between the nsCLO and nsCLP phenotypes, a heterogeneity likelihood-ratio test was
applied using a general and a multiplicative model. For each of these analyses, this resulted in
an asymptotic Chi’ null distribution with two degrees of freedom.

For the analysis of rs1258763 in the nsCL/P subphenotypes nSCLP},,d.sofi- RSCLPgo, nSCPOgoi,
and nsCPOygpmue @ common set of 1,318 controls from the Central European case-control cohort
was used. To determine whether a statistically significant difference was present between the results
for nsCLP} ;4. s0ft and nsCLP.¢ and to account for the limited number of individuals in the
nsCLP; group, an empirical P-value was determined using 100,000 permutations (larger test sta-
tistics were assigned a value of 1, equal test statistics were assigned a value of 0.5).

Imputation analysis

Genotypes from the Central European case-control cohort that was part of the meta-analysis
[10] were imputed using IMPUTE2 [59] and 2,184 alleles of the 1000genomes project. Dosage
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values were included in a logistic regression model (using SNPTEST and—method expected)
in which we included as covariates the first five components e (which were obtained from
MDS analysis [60], to account for population stratification. Only variants showing a SNPTEST
info-score (detailed description: https://mathgen.stats.ox.ac.uk/genetics_software/snptest/
snptest.v2.pdf) of at least 0.4 and a minor allele frequency of at least 1% were retained, as accu-
racy of imputation is compromised for low frequency variants. The resolution of the 15q13
region (250 kb, chr15:32.95 Mb—33.2 Mb) increased from 106 variants in the genotyped data
to 1,042 variants in the imputed data. Relative risks were calculated using the beta values, rep-
resenting the logarithm of the RR. Please note that inclusion of the genome-wide data from
Beaty et al. 2010 in the imputation analysis was not possible at the time of the present study,
due to insufficient coverage of that approach in the dbGaP approval used for the Ludwig 2012
meta-analysis.

In silico annotation

Potential regulatory effects of the top associated region on either GREM1 or FMNI were
assessed using previously published eQTL and HiC-datasets. Since there is a complete absence
of eQTL studies of fetal craniofacial samples, eQTLs obtained in large datasets from other tis-
sues were used. Here we used a recently published and comprehensive study of blood samples
by Westra et al. [37]. Both FMN1 and GREM1 probes are present on the Illumina arrays used
in the Westra et al. study. To identify altered transcription factor binding we used the v3 ver-
sion of the HaploReg tool, which was developed to annotate disease-associated genetic variants
located in non-coding regions [36]. In particular, information on transcription factor binding
altered by nsCL/P risk alleles was used. These analyses were complemented by recently pub-
lished HiC-data illustrating chromatin formation and loops at 15q13 using the Juicebox tool
[38] and virtual 4C as provided at http://promoter.bx.psu.edu/hi-c/virtual4c.php using the
same data.

Mouse husbandry and Grem1 expression analysis

LacZ
Greml1°

staged using mid-day on the day of vaginal plug detection as embryonic day 0.5 (E0.5). Geno-
typing of embryos was carried out using allele-specific PCR. The wild type allele was detected
as a 435bp product using primers 5’-TGCAATTGTGTCAGGAGCCA-3’ and 5’-ACTGGGTC
TGCTCAGAGTCA-3’. The lacZ allele was detected as an approximately 550bp product using
primers 5-TGCAATTGTGTCAGGAGCCA-3’ and 5-GGGAACAAACGGATTGACCG-3’.
Following embryo dissection, mandibles and tongues were removed to facilitate the penetra-

mutant mice [17] were kept on a C57Bl/6 genetic background and embryos were

tion of fixatives and staining solutions. Expression of Grem1 was visualized by X-Gal staining
of heterozygous Grem1"**
elsewhere [61]. To assess tissue-specific domains of Grem1 expression, 15um cryosections of

whole mount embryos using standard procedures, as described

whole mount stained embryos were prepared and mounted onto glass slides. Images were
obtained using an Axiocam color camera mounted on a Zeiss Stemi SV11. Images were pro-
cessed using the softwares Axiovision AC (release 4.4) and Photoshop C4 (version 11).

Organ culture experiments and histology

Organ culture experiments of secondary palatal shelves were carried out using conditions
essentially similar to those described elsewhere [61, 62]. Briefly, palatal shelves were dissected
at E13.5 and cultured for 48 hours on sterilized filter papers (Millipore) placed on a metal grid
located on the central well of a culture dish. With the aboral side facing downwards, the palatal
shelves were cultured in Dulbecco’s modified eagles medium (DMEM), supplemented with
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10% (v/v) fetal bovine serum, 1% (v/v) penicillin/streptomycin (5000 units/ml, 5000ug/ml), 1%
glutamine (200mg/ml) and 1% (v/v) ascorbic acid (50mg/ml). Grem1 recombinant protein
(Peprotech (USA)) was used at a final concentration of 10pug/ml medium. The organ rudiments
were cultured at 37°C using 5% CO, for 48 hours and culture medium was replaced after 24
hours. Images were obtained using a Axiocam mounted onto a Zeiss Stemi SV6 stereomicro-
scope. Areas between palatal shelves were measured using imagej (http://imagej.nih.gov/ij/).
To calculate P-values, arbitrary units quantifying the area between the palatal shelves were ana-
lyzed using a one-tailed t-test. For the craniofacial phenotype analysis of GremI-deficient
mouse embryos, processing of heads for embedding in paraffin and generation of Hematoxi-
lin/Eosin stained sections were performed as described elsewhere [61].

URLs

For the purposes of the present study, the following databases were accessed: https://www.
broadinstitute.org/mpg/snap/ [63], http://genenetwork.nl/bloodeqtlbrowser/ [37], http://www.
emouseatlas.org/gxdb/dbImage/segment1/2906/2906.html [41], http://www.aidenlab.org/
juicebox/ [38].

Supporting Information

S1 Fig. Chromatin interaction analyses data for the 15q13 locus. Chromatin interaction data
for three different celltypes were drawn from [38]. RefSeq genes are plotted above the interac-
tion map, together with CTCF binding sites identified in the respective cell lines. GREM1 posi-
tion is highlighted in red, adjacent genes SCG5 and FMN1 are also labeled. + /—below the
RefSeq annotation denotes strand orientation of the gene. Yellow lines indicate contact regions,
blue squares show regions of loop interactions, both as defined by the original study. The dot-
ted line indicates co-localization of the GREM1 / 3°FMNI1 region within one topologically asso-
ciated domain (TAD) which is separate from the 5° FMNI region. TAD structure is stable
between each of the three cell types. (A) NHEK-normal human epidermal keratinocytes, in
situ combined, 5kb resolution, (B) HUVEC-human umbilical vein endothelial cells, in situ
combined dataset, 5kb resolution(C) HMEC-human mammary epithelial cells.

(TTF)

S2 Fig. Local chromatin structure at GREM1 / FMN1. Zoom-in into the GREM1/FMN]1
region is provided for the HUVEC cells. (A) Local TAD structure (chr15: 33.000.000-
33.100.000) with arrow indicating potential interaction loops between the GREM1 transcrip-
tion start site (TSS, 33,010,204) and the intergenic region (33,040,000-33,044,999). The exact
location of the loop cannot be further narrowed down due to the given resolution (5 kb). Data
were drawn from [38]. Color code denotes number of observed reads. (B) Same data in virtual
4C visualisation. Using the GREM1-TSS as anchor point, regions of interactions are provided
as peaks, with number of observed read counts as quantitative measure. Again, arrow high-
lights a potential interaction candidate at 33,040,000-33,044,999 bp.

(TIF)

S3 Fig. Pedigrees of families with an index patient carrying a rare GREM1 mutation. Phe-
notype: empty symbol-unaffected, half-filled symbol-cleft of the lip and hard palate only (soft
palate intact), full symbol-cleft of the lip, hard and soft palate. Carrier status: + carrier,—non-
carrier. Phenotype-genotype correlation: red symbols—individuals with concordant genotype-
phenotype correlation, black symbols-individuals with discordant genotype-phenotype corre-
lation. *—Family BN-45 has four variants that are transmitted together: rs2280738,
rs117317622, rs137899769, rs151194761. Please note that four more index patients with rare
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mutations but without any additional affected family members have a complete cleft of lip,
hard and soft palate: BN-139 (rs201006159), BN-241 (rs201134502), BN-251 (g.33023715),
BN-317 (rs147141645). All positions hg19.

(TTF)

S1 Dataset. Summary statistics for genotyped variants at 15q13.
(XLS)

S2 Dataset. Association results for rs1258763 in different study cohorts.
(XLS)

$3 Dataset. Summary statistics and imputation results for 15q13 in Central European case-
control cohort.
(XLS)

S$1 Table. Association results and in silico annotation (A) for all variants with P<107° in
imputation analysis and (B) for 38 SNPs with eQTL effects on GREM].
(PDF)

S2 Table. Sizes of E13.5 palatal shelves cultured in the absence or presence of recombinant
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