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Introduction

The celebrated Milnor—-Moore Theorem [32, Theorem 5.18] establishes, in characteris-
tic zero, an equivalence between the category of primitively generated braided bialgebras
and the category of Lie algebras. The functors giving the equivalence are the universal
enveloping algebra functor U, associating the universal enveloping algebra U (L) to a
Lie algebra L, and the primitive functor P which gives the primitive part P (B) of a
given bialgebra B. The fact that the counit UP — Id of the adjunction involved is an
isomorphism just encodes the fact that the bialgebras considered are primitively gener-
ated. On the other hand the crucial point in the proof of the theorem is that the maps
nL : L — P (U (L)) giving the unit of the adjunction (U,P) are isomorphisms. Now
observe that the tensor algebra T (V'), defined for any vector space V, yields a functor T'
from the category of vector spaces to the category of bialgebras which is a left adjoint of
the functor P obtained from P forgetting the Lie algebra structure. In this case the unit
V — P (T (V)) fails to be an isomorphism in general. Note also that U (L) is a quotient
of T (L). Thus we could say that (U, P) is a refinement of the adjunction (T, P) obtained
by restricting the codomain of P and changing the left adjoint in order to obtain a new
adjunction with invertible unit.

Considering the wider context of a monoidal category M, bialgebras and Lie algebras
are substituted by their symmetric braided analogue (for instance a braided symmetric
bialgebra in M is an object equipped with an algebra structure, a coalgebra structure
and a symmetric Yang-Baxter operator satisfying the expected compatibility axioms);
the same happens for the primitive functor and the enveloping functor. Such a category
M is called Milnor-Moore (MM) exactly when the unit of this adjunction is an isomor-
phism. In this case, the category of symmetric braided Lie algebras can be described
by the so-called monadic decomposition of the primitive functor (see below). When the
category M is also symmetric, then we can consider bialgebras and Lie algebras in M
as in the case of vector spaces. In this case we prove that if M is a MM-category then
the unit 1 : Id — PU of the corresponding adjunction (U, P) is an isomorphism too
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and that the category of Lie algebras can be recovered from the starting category M
by means of the same iterated procedure. For this reason, the remaining part of our
investigation focuses on giving examples of MM-categories. The first example is the cat-
egory 9 of vector spaces in characteristic zero. Then, under mild conditions, we find
that a monoidal category M endowed with a conservative and exact monoidal functor
M — 9t preserving denumerable coproducts is still MM. As a consequence we can prove
that monoidal Hom-Lie algebras, Lie color algebras, Lie superalgebras and other type of
generalized Lie algebras are recovered by means of the same iterated construction based
on Eilenberg-Moore categories.

In order to explain our results more precisely, we need now to enter into the technical
details of our setting. Let (L: B — A,R: A— B) be an adjunction with unit n and
counit €. Then RL is a monad on B (with multiplication ReL and unit 1) and one can
consider the Eilenberg—Moore category gy B associated to this monad and the so-called
comparison functor K : A — rpB which is defined by KX := (RX, ReX) and K f :=
Rf. This gives the diagram

rLU

where the undashed part commutes. In the case when K itself has a left adjoint A, one
can repeat this construction starting from the new adjunction (A, K). Going on this way
one possibly obtains a diagram of the form

Ida Ida Ida
A A A
A A A
Lo \L Ro Ly J/ Ry Lo \L Ro>
Uo,1 Ui,z Us,s
By By By

where it is more convenient to relabel (L, R) and (A, K) as (Lo, Ry) and (L1, Ry) respec-
tively. If there is a minimal N € N such that Ly is full and faithful, then R is said to
have monadic decomposition of monadic length N. This is equivalent to requiring that
the forgetful functor Uy n41 is a category isomorphism and no U, 41 has this property
for 0 <n < N —1 (see e.g. [4, Remark 2.4]). In [4, Theorem 3.4], we investigated the
particular case

. IdBialgyy . IdBialggy .
Bialggyy <——— Bialgyy, <——— Bialgyy,
Th| P T P 7" P2
Uo,1 Ui,z
m Ny My

where 91 denotes the category of vector spaces over a fixed base field k, Bialgyy, is the
category of k-bialgebras, T is the tensor bialgebra functor (the barred notation serves to
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distinguish this functor from the tensor algebra functor 7": 9t — Alg,y, which goes into
k-algebras) and P is the primitive functor which assigns to each k-bialgebra its space
of primitive elements. We proved that this P has a monadic decomposition of monadic
length at most 2. Moreover, when char (k) = 0, for every Vo = ((V, ), 1) € M2 one can
define [z, y] := pu (zy — yx) for every x,y € V. Then (V,[—, —]) is an ordinary Lie algebra
and ToVo = TV/ (zy — yx — [x,9] | ,y € V) is the corresponding universal enveloping
algebra. This suggests a connection between the category s and the category Liegn
of Lie k-algebras. It is then natural to expect the existence of a category equivalence A
such that the following diagram

) ldBialggy . IdBialggy .
Bialggy, = Bialgyy Bialggy
‘ —
A IdBialggy A I}EBialg\m
T |P T iPl Bialggy Ty | P2
_ A
Uo,1 UNP U,
m \% mQ
Hy; . /
- Llegm

commutes in its undashed part, where Hy;, denotes the forgetful functor, U the universal
enveloping bialgebra functor and P the corresponding primitive functor.

A first investigation showed that, in order to solve the problem above, it is more
natural to work with braided k-vector spaces instead of ordinary k-vector spaces and to
replace the categories I, Bialggy, and Liegy with their braided analogues Bron, BrBialggy
and BrLiegy consisting of braided vector spaces, braided bialgebras and braided Lie
algebras respectively. We were further led to substitute 20t with an arbitrary monoidal
category M. We point out that, in order to produce a braided analogue of the universal
enveloping algebra which further carries a braided bialgebra structure, the assumption
that the underlying Yang—Baxter operator is symmetric is also needed. Thus let Brf,
BrBialg}, and BrLie, be the analogue of Bry,, BrBialg,, and BrLiey consisting of
objects with symmetric Yang-Baxter operator. Let T, : Brj, — BrBialg}, be the
symmetric braided tensor bialgebra functor and let Pg, be its right adjoint, the primitive
functor. We look for a condition for P, to have monadic decomposition of monadic length
at most two. On the other hand the functor P§, induces a functor Pg, : BrBialg), —
BrLie%, which turns out to have a left adjoint U, the universal enveloping bialgebra
functor.

In view of the celebrated Milnor-Moore Theorem, see Remark 7.5, we say that a
category M is a Milnor—Moore category (MM-category for short) whenever the unit of
the adjunction (U3, Ps,) is a functorial isomorphism (plus other conditions required
for the existence of the functors involved). One of the main results in the paper is
Theorem 7.1, which ensures that, for a MM-category M, the functor P§, has a monadic
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decomposition of monadic length at most two. Moreover, in this case, we can identify
the category (Brf,), with BrLie}, through an equivalence Ag, : (Brj,), — BrLiej,.

) IdBrBialgj\A IdBrBialng )
BrBialg? BrBialg’, BrBialg?,
| o
A Idg:Bialgy, A SBerlgM A
T, | Pix (Tgr | (P BrBialg}, (T)z | (P2
Z/_ls }\ PS
s UOJ s Br Br U1‘2 o
Brj, ?& (Briv)2
HE Lo . ‘A/Br
BrLie},

Hence MM-categories, besides having an interest in their own, give us an environment
where the functor Pg, has a behavior completely analogous to the classical vector space
situation we investigated in [4, Theorem 3.4]. In the case of a symmetric MM-category
M the connection with Milnor—-Moore Theorem becomes more evident. In fact, in this
case, we can apply Theorem 7.2 to obtain that the unit of the adjunction (271 ,77) is a
functorial isomorphism.

. IdBialg 4 . IdBialg 54 .
Bialg,, =— Bialg, Bialg
[ T
A IdBialgM A ILiBlalg/\A
T P T l Py BlalgM Ts P>
_A
Uo,1 u:|r Ui,z
M \Ml M,
e | /
LleM

The next step is to provide meaningful examples of MM-categories. A first result
in this direction is Theorem 8.1, based on a result by Kharchenko, which states that
the category 91 of vector spaces over a field of characteristic 0 is a MM-category. Note
that the Lie algebras involved are not ordinary ones but they depend on a symmetric
Yang—Baxter operator.

Much of the material developed in the paper (see e.g. Proposition 3.7, Theorem 8.3 and
the construction of the adjunctions used therein) is devoted to the proof of our central
result namely Theorem 8.4 which allows us to lift the property of being a MM-category
whenever a suitable monoidal functor is given. A main tool in this proof is the concept
of commutation datum which we introduce and investigate in Section 2. We use this
Theorem 8.4 in the case of the forgetful functor F': M — 91 where M is a subcategory
of M. The goal is to provide, in this way, meaningful examples of MM-categories M and,
in the case when M is symmetric, to recognize the corresponding type of Lie algebras.
A first example of MM-category obtained in this way is the category of Yetter—Drinfeld
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modules, over a Hopf algebra over a field of characteristic zero, which is considered in
Example 9.1. Subsection 9.1 (resp. 9.2) deals with the case when M is the category of
modules (resp. comodules) over a quasi-bialgebra (resp. over a dual quasi-bialgebra). We
prove that the forgetful functor satisfies the assumptions of Theorem 8.4 if and only if
the quasi-bialgebra (resp. the dual quasi-bialgebra) is a deformation of a usual bialgebra,
see Lemma 9.4 (resp. Lemma 9.13). As particular cases of this situation we prove that
the category H (9M) of [16, Proposition 1.1] is an MM-category, see Remark 9.10. Note
that an object in Liepg, for M = H (9), is nothing but a monoidal Hom-Lie algebra.
In Remark 9.17, we recover (H, R)-Lie algebras in the sense of [13, Definition 4.1] by
considering the category of comodules over a co-triangular bialgebra (H, R) regarded as
a co-triangular dual quasi-bialgebra with trivial reassociator. In particular, let G be an
abelian group endowed with an anti-symmetric bicharacter x : G x G — k \ {0} and
extend x by linearity to a k-linear map R : k[G] ® k[G] — k, where k[G] denotes the
group algebra. Then (k[G], R) is a co-triangular bialgebra and, as a consequence, we
recover (G, x)-Lie color algebras in the sense of [33, Example 10.5.14], in Example 9.18,
and in particular Lie superalgebras in Example 9.19.

The appendices contain general results regarding the existence of (co)equalizers in
the category of (co)algebras, bialgebras and their braided analogue over a monoidal
category. These results are applied to obtain Proposition B.11, which is used in the
proof of Theorem 7.1.

1. Preliminaries

In this section, we shall fix some basic notation and terminology.

Notation 1.1. Throughout this paper k will denote a field. All vector spaces will be defined
over k. The unadorned tensor product @ will denote the tensor product over k if not stated
otherwise.

1.2. Monoidal Categories. Recall that (see [26, Chap. XI|) a monoidal category is a
category M endowed with an object 1 € M (called unit), a functor ® : M x M — M
(called tensor product), and functorial isomorphisms axy,z : (X®Y)®Z - X®(Y®2),
Ix 10X - X, rx : X®1 — X, forevery X, Y, Z in M. The functorial morphism a is
called the associativity constraint and satisfies the Pentagon Axziom, that is the equality

(U®avwx)oavvewx o (avvw ® X) = arv,wex © WeV,w,x

holds true, for every U, V, W, X in M. The morphisms [ and r are called the unit
constraints and they obey the Triangle Aziom, that is (V @ lw)oay1w =ry @ W, for
every V, W in M.

A monoidal functor (also called strong monoidal in the literature)

(F7 ¢07¢2) : (M,®,1,a,l,r) - (MI7®/71/7a/7l/77J)
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between two monoidal categories consists of a functor F' : M — M’, an isomorphism
P(U,V) : FU)®' F(V) - F(U ® V), natural in U,V € M, and an isomorphism
¢o: 1" — F(1) such that the diagram

, , $2(U,V)®'F(W) , $2(URV,W)
(FU)QFV)®FW) ————FU V)" F(W) ———— = F(U V) W)

a’F(U).FlV).F(W) F(aU\LV,W)

, , PU)R¢2(V,W) , ®2(U,VOW)
FUO)' (F(V)&' F(W)) ————= FU)@ FVaeW) ————= FU® (Ve W)

is commutative, and the following conditions are satisfied:

F(ly) 0 ¢2(1,U) © (902 F(U)) = Iy, Flru) 0 ¢2(U,1) o (F(U)& bo) = 1" p(w)-
The monoidal functor is called strict if the isomorphisms ¢q, ¢o are identities of M’.

The notions of algebra, module over an algebra, coalgebra and comodule over a coal-
gebra can be introduced in the general setting of monoidal categories.

As it is noticed in [28, p. 420], the Pentagon Axiom solves the consistency problem
that appears because there are two ways to go from (U@ V)W) X to U ® (V ®
(W ® X)). The coherence theorem, due to S. Mac Lane [31, Chapter VII, Section 2],
solves the similar problem for the tensor product of an arbitrary number of objects
in M. Accordingly with this theorem, we can always omit all brackets and simply write
X1 ®---®X, for any object obtained from X7, ..., X, by using ® and brackets. Also as
a consequence of the coherence theorem, the morphisms a, [, r take care of themselves,
so they can be omitted in any computation involving morphisms in M. Thus, for sake of
simplicity, from now on we will omit the associativity and unit constraints unless needed
to clarify the context.

Let V be an object in a monoidal category (M, ®,1). Define iteratively V®" for all
n € N by setting V¥ :=1 for n =0 and V& := V=1 @V for n > 0.

Remark 1.3. Let M be a monoidal category. Denote by Alg,, the category of algebras
in M and their morphisms. Assume that M has denumerable coproducts and that the
tensor products (ie. M @ (=) : M — M and (=) ® M : M — M, for every object M
in M) preserve such coproducts. By [31, Theorem 2, page 172], the forgetful functor

Q:Algy — M

has a left adjoint T': M — Alg,,. By construction QTV = ®,enV®" for every V € M.
For every n € N, we will denote by

a,V: Ve 5 QTV
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the canonical injection. Given a morphism f : V — W in M, we have that T f is uniquely
determined by the following equality

QT f o,V = a,W o f€" for every n € N. (1)
The multiplication mgry and the unit uqpy are uniquely determined by

mary © (@mV @ a,V) = aminV, for every m,n € N, (2)

uQTVv = OZ()V (3)

Note that (2) should be integrated with the proper unit constrains when m or n is zero.
The unit  and the counit € of the adjunction (7, 2) are uniquely determined, for all
Ve Mand (A, ma,ua) € Alg,, by the following equalities

nV =V and Qe (A,ma,un)oanA = mj}l_l for every n € N (4)

where mfffl : A®™ 5 A is the iterated multiplication of A defined by m;l i=uq,mY =
Id4 and, for n > 2, m’}(l = mA(mff(Z ® A).

Definition 1.4. Recall that a monad on a category A is a triple Q := (Q, m, u), where @ :
A — Aisafunctor, m : QQ — Q and u : A — @ are functorial morphisms satisfying the
associativity and the unitality conditions mom@ = moQm and moQu = Idg = mouQ.
An algebra over a monad Q on A (or simply a Q-algebra) is a pair (X, u) where X € A
and g : QX — X is a morphism in A such that poQu=pomX and pouX =Idx. A
morphism between two Q-algebras (X, u) and (X', ') is a morphism f: X — X’ in A
such that ¢/ o Qf = f o u. We will denote by g.A the category of Q-algebras and their
morphisms. This is the so-called Filenberg—Moore category of the monad Q (which is
sometimes also denoted by A? in the literature). When the multiplication and unit of
the monad are clear from the context, we will just write ) instead of Q.

A monad Q on A gives rise to an adjunction (F,U) := (oF,qU) where U : g A — A
is the forgetful functor and F': A — @A is the free functor. Explicitly:

UX,p) =X, Uf:=f and FX:=(QX,mX), Ff:=Qf.

Note that UF = @. The unit of the adjunction (F,U) is given by the unit u : A —
UF = @ of the monad Q. The counit A : FU — @A of this adjunction is uniquely
determined by the equality U (A (X, u)) = p for every (X, p) € gA. It is well-known
that the forgetful functor U : g.A — A is faithful and reflects isomorphisms (see e.g. [12,
Proposition 4.1.4]).

Let (L:B— A, R: A— B) be an adjunction with unit 7 and counit e. Then
(RL,ReL,n) is a monad on B and we can consider the so-called comparison functor



496 A. Ardizzoni, C. Menini / Journal of Algebra 448 (2016) 488-563

K : A — gpB of the adjunction (L, R) which is defined by KX := (RX, ReX) and
Kf:= Rf. Note that pU o K = R.

Definition 1.5. An adjunction (L : B — A, R : A — B) is called monadic (tripleable
in Beck’s terminology [10, Definition 3, page 8]) whenever the comparison functor K :
A — g B is an equivalence of categories. A functor R is called monadic if it has a left
adjoint L such that the adjunction (L, R) is monadic, see [10, Definition 3’, page 8]. In a
similar way one defines comonadic adjunctions and functors using the Eilenberg-Moore
category “f* A of coalgebras over the comonad induced by (L, R).

The notion of an idempotent monad is tightly connected with the monadic length of
a functor.

Definition 1.6. (See [8, page 231].) A monad (Q,m,u) is called idempotent whenever m
is an isomorphism. An adjunction (L, R) is called idempotent whenever the associated
monad is idempotent.

The interested reader can find results on idempotent monads in [8,34]. Here we just
note that (L, R) is idempotent if and only if nR is a functorial isomorphism.

Definition 1.7. (See [4, Definition 2.7], [5, Definition 2.1] and [34, Definitions 2.10 and
2.14].) Fix a N € N. We say that a functor R has a monadic decomposition of monadic
length N whenever there exists a sequence (R,), -5 of functors R, such that

1) Ry = R; -

2) for 0 < n < N, the functor R, has a left adjoint functor L,;

3) for 0 < n < N — 1, the functor R,; is the comparison functor induced by the
adjunction (L, R,) with respect to its associated monad;

4) Ly is full and faithful while L,, is not full and faithful for 0 <n < N — 1.

Compare with the construction performed in [29, 1.5.5, page 49].

Note that for functor R : A — B having a monadic decomposition of monadic
length N, we have a diagram

Ida Ida Ida Ida
A A A cee A
A A A A
Lo Ry Ly R, Lo R Ln RN
Uo,1 Ui,z Uz 3 Un_1,N
By B, B, e < By

where By = B and, for 1 <n < N,

e B, is the category of (R,_1L,_1)-algebras r,_,1,_,B, ;
e Up_1n: B, = B, is the forgetful functor g, ,r, ,U.
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We will denote by 7, : Idg, — R,Ly and €, : L, R, — Id4 the unit and counit of
the adjunction (L, R,) respectively for 0 < n < N. Note that one can introduce the
forgetful functor Uy, ,, : B, = By, for all m <n with 0 <m,n < N.

Proposition 1.8. (See [4, Proposition 2.9].) Let (L : B — A, R : A — B) be an idempotent
adjunction. Then R : A — B has a monadic decomposition of monadic length at most 1.

We refer to [4, Remarks 2.8 and 2.10] for further comments on monadic decomposi-
tions.

Definition 1.9. We say that a functor R is comparable whenever there exists a sequence
(Rp), ey of functors R, such that Ry = R and, for n € N,

1) the functor R,, has a left adjoint functor L,;

2) the functor R,4+1 is the comparison functor induced by the adjunction (L., R;)
with respect to its associated monad.

In this case we have a diagram as (5) but not necessarily stationary. Hence we can
consider the forgetful functors U, : By, — By, for all m < n with m,n € N.

Remark 1.10. Fix a N € N. A functor R having a monadic decomposition of monadic
length N is comparable, see [4, Remark 2.10].

By the proof of Beck’s Theorem [10, Proof of Theorem 1] one gets the following result.

Lemma 1.11. Let A be a category such that, for any (reflexive) pair (f,g) [15, 3.0,
page 98] where f, g: X — Y are morphisms in A, one can choose a specific coequalizer.
Then the comparison functor K : A — grB of an adjunction (L, R) is a right adjoint.
Thus any right adjoint R : A — B is comparable.

Let F : A — B be a functor. We denote by Im(F’), the image of F', the full subcategory
of B whose objects are those of the form F'A for some A € A.

Lemma 1.12. Let F' : C — B be a full and faithful functor which is also injective on
objects.

1) Let G : A — B be a functor such that Im(G) C Im(F'). Then there is a unique
functor G : A— C such that FG = G.

2) Let G, G' : A — B be functors as in 1). For any natural transformation v : G — G’
there is a unique natural transformation 7 : G — G’ such that Fy =+.

2. Commutation data

Definition 2.1. A functor is called conservative if it reflects isomorphisms.



498 A. Ardizzoni, C. Menini / Journal of Algebra 448 (2016) 488-563

Lemma 2.2. Let (L, R) and (L', R") be adjunctions that fit into the following commutative
diagram of functors

AL
r) | ® (6)

B—S-p

Then there is a unique natural transformation ¢ : L'G — F'L such that

R'(on'G=Gn (7)
holds, namely
= (L’G Y6 'GRL = 'R FLEEE FL) . 8)
Moreover we have that
¢F = Feo(R. 9)

Definition 2.3. We will say that (F,G) : (L, R) — (L', R') is a commutation datum if

1) (L, R) and (L', R") are adjunctions that fit into the commutative diagram (6).

2) The natural transformation ¢ : L'G — FL of Lemma 2.2 is a functorial isomor-
phism.

The map ¢ will be called the canonical transformation of the datum.

Proposition 2.4. Let (F,G) : (L,R) — (L',R’) and (F',G") : (L',R") — (L",R") be a
commutation data. Then (F'F,G'G): (L,R) — (L", R") is a commutation datum.

In the following result we will adopt the notations of Definition 1.7 for Ly, Ry, B; and
their analogue with primes.

Proposition 2.5. Let (F,G) : (L,R) — (L', R') be a commutation datum of functors as
in (6). Assume also that F preserves coequalizers of reflexive pairs of morphisms in A and
that the comparison functors Ry and Ry have left adjoints L and Ly respectively. Then
G lifts to a functor Gy : By — Bj such that G1 (B, ) := (GB,Guo R'(B), G1 (f) =Gf
and the following diagrams commute.

B - B AP
g e o) s
B—S.p B - B,

Moreover (F,G1) : (L1, Ry) — (Ly, R}) is a commutation datum.
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Furthermore the functor Gy is conservative (resp. faithful) whenever G is.
If G is faithful then G1 is full (resp. injective on objects) whenever G is.

Proof. Denote by ¢ the canonical map of the datum (F,G) : (L,R) — (L', R’). Set
A:=R(:(RL)G — RFL =G(RL). By Lemma 2.2, ¢ fulfills (9). By (7), we have
Aon'G = Gn and

GReL o ARL o R'L'\ = GReL o R'CRL o R'L'R'C = R' [FeL o (RL o L'R'(]
Y RI€FLoL'R =R [CodL'Gl=AoReL'G

Hence we can apply [23, Lemma 1] to the case "K” = R'L', "H” = RL and "T” = G.
Thus we get a functor Gy : By — Bj such that U'Gy = GU. Explicitly Gy (B, p) =
(GB,Guo R'(B), G1 (f) = Gf. We have
G1R1A =G (RA,ReA) = (GRA,GReA o R'CRA)
— (RFA,R [FeAo (RA) Y (RFA, R'{FA) = R FA
and G1R1f = GRf = R'Ff = R{Ff so that GiRy = R}F. By the proof of [10,

Theorem 1], if we set m := eLy o LU, we get the following coequalizer of a reflexive
pair of morphisms in A.

L w(B,
LB = LU (B, ) —— 2

LRLB

Ll (B7 :U’)
eLB

Since F preserves coequalizers of reflexive pairs of morphisms in A, we get the bottom
fork in the diagram below is a coequalizer.

L'(GuoR'¢B) Fr(B,u)oCB
L'R'L'GB L'GB ——""""+ FLy (B, p)
CRLBoL'R'CB \L crap \L (B J,IdFLl(B,w (10)
FLp Fr(B,u)
FLRLB FLB FLi(B,pu)
FeLB

We compute

FLpo (CRLBoL'R'(B) = (BoL'GuoL'R'(B =(BolL (GuoR(B),
FeLBo(CRLBo L'R'¢B) 2 ¢FLBo L'R'(B = (BodL'GB
so that diagram (10) serially commutes. Since, in this diagram, the vertical arrows are

isomorphisms, the upper fork is a coequalizer too. In a similar way, if we set 7’ :=
€L} o L'U’n} we have the coequalizer
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L/H, 7r'( ,»/J'/)
L'R'L'B’ L'B’ Li(B', 1)
e L'B’
For (B', 1) := G1 (B, 1) we get the coequalizer
L' (GuoR/¢B) 2 Gr(B.p)
L'R'L'GB L'GB L1G1 (B, )
¢ L'GB

By the foregoing, F'r (B, ) o (B coequalizes the pair (L' (Guo R'(B),e'L’GB). By the
universal property of coequalizers, there is a unique morphism ¢y (B, u) : L1 Gy (B, 1) —
FL, (B, u) such that ¢; (B, ) on'Gy (B, ) = Fr (B, p) o (B. By the uniqueness of the
coequalizers, ¢; (B, ) is an isomorphism.

Let us check that ¢; (B, u) is natural. Let f: (B,u) — (B, ') in By. Then

FLif oG (B,p)on'Gy(B,p) = FLif o Fr(B,p)o(B=Fr(B',u')o FLUf o (B
=Fr (B, y)o(B o L'GUf=¢ (B, ))on’'Gy (B, /) o L'U'G1 f
=0 (B y)o LG for'Gy (B, p)

sothat FLifo( (B,p) = ¢ (B, 1)o LGy f and hence we get a functorial isomorphism
¢ : LYGy — FLy. We have

epomRy =€ 0el1Ryo LUN Ry =€eo LRey o LU Ry = €eo LU [Rieg o Ry] = ¢,
RmonU = ReL; o RLUn; onU = Rely onUR1 L1 oUn = RelLy onRLyoUn = Uy

so that, we obtain that ¢; o mR; = € and Rm onU = Umn; and similar equations for
(L', R"). We compute

U’ (Rllcl © 77/1G1) = R,C1 o R/W'Gl o n/U’Gl deiql

Y R'FroGnU = G[RronU] = GUp = U'Gyip

R FroR(Uon/GU

so that R{(; o niG1 = Gim. Let us check that Gy is conservative whenever G is. Let
f:(B,p) = (B',1) in By be such that Gy f is an isomorphism. Then U'G,f = GU f is
an isomorphism. Since G and U are conservative (see [12, Proposition 4.1.4, page 189]),
we get that f is an isomorphism.

If G is faithful, from U’'G; = GU and the fact that U is faithful, we deduce that G
is faithful.

Assume G is faithful and full. Let f € B{(Gi(B,u),G1 (B, u)). Then U'f €
B' (GB,GB’) so that there is h € B (B, B") such that Gh = U’ f. We have
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G (i o RLh)o R'(B =Gy o GRLho R'(B =Gy o RFLho R'(B
— G o R(B o RL'Gh =Gyl o RiCB o RLU' f
=U'foGuoR(B=GhoGuoR'(B=G(hopu)oR(B.

Since ( is an isomorphism and G is faithful, we get that p' o RLh = h oy so that there
is a unique morphism k € By ((B,u),(B’,i')) such that Uk = h. Hence U'f = Gh =
GUk = U'G1k and hence f = G1k. Thus G, is faithful and full.

Assume G is faithful and injective on objects. If Gy (B,u) = Gy (B',u) ie.
(GB,GuoR'¢(B) = (GB',Gu o R'¢B’) then GB = GB’ and Guo R'(B = Gu' o R'¢(B’.
In view of the assumptions on G and since ¢ is an isomorphism, we get (B, u) = (B, i)
so that G is faithful and injective on objects. O

Lemma 2.6. Let (L, R) and (L', R') be adjunctions of functors as in (6). Assume that
R/CR is a functorial isomorphism where ¢ : L'G — FL is the natural transformation
of Lemma 2.2. Assume also that G is conservative.
1) Let A € A be such that n’ R'F A is an isomorphism. Then nRA is an isomorphism.
2) If the adjunction (L', R'") is idempotent then (L, R) is idempotent.

Proof. 1) Since  R’'FA = n'GRA is an isomorphism and R'(R is an isomorphism,
we get that R'"CRA o /GRA is an isomorphism. By (7) this means that GnRA is an
isomorphism. Since G is conservative, we conclude.

2) (L, R) is idempotent if and only if nR is a functorial isomorphism and similarly for
(L', R). Thus (L', R') is idempotent if and only if 'R’ is a functorial isomorphism. If
the latter condition holds then n'R’'F is a functorial isomorphism and, by 1), so is nR
and hence (L, R) is idempotent. O

Lemma 2.7. Let (F,G) : (L,R) — (L', R’) be a commutation datum. If G is conservative
and n' is an isomorphism so is 1.

Proof. By (7), we have R'C oG =Gn. O

Corollary 2.8. Let (F,G) : (L,R) — (L', R") be a commutation datum. Assume also that
F preserves coequalizers of reflexive pairs of morphisms in A and that G is conservative.
Assume that both R and R’ are comparable. Let N € N.

1) Let A € A be such that nyRyFA is an isomorphism. Then nnyRyA is an isomor-
phism.

2) If (Ly, RYy) is idempotent so is (Ln, Rn).

Proof. Apply Proposition 2.5 and Lemma 2.6. O

Next lemma will be a useful tool to construct new commutation data.
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Lemma 2.9. Let (L', R') be an adjunction and let F and G be full and faithful functors
which are also injective on objects and have domain and codomain as in the following
diagrams. Assume that Im(L'G) C Im(F) and that In(R'F) C Im(G). Set L := L'G
and R := R'F with notation as in Lemma 1.12 so that L and R are the unique functors
which make the following diagrams commute

Ao AT
A

L . ?L’ R, . \LR’
B—— B B—— B

Then (L, R) is an adjunction with unit n : Idg — RL and counit € : LR — Id 4 which
satisfy

Gn=1G and Fe=¢F (11)

where n' and € are the corresponding unit and counit of (L', R’). Moreover (F,G) :
(L,R) — (L', R) is a commutation datum and the canonical transformation ¢ : L'G —
FL is IdL’G-

Proof Apply Lemma 1.12 once observed that RL = R'L’ G LR=IL'RF F, G= Idp and
_IdA Then define n _77’G and € ;= ¢F. O

3. Braided objects and adjunctions

Definition 3.1. Let (M, ®,1) be a monoidal category (as usual we omit the brackets
although we are not assuming the constraints are trivial).

1) Let V be an object in M. A morphism c=cy : V@V — V ®V is called a Yang-
Bazter operator (see [26, Definition XII1.3.1]) if it satisfies the quantum Yang—Baxter
equation

V)V (caV)=(Veae)(crV)(Vec) (12)

on V@V ®V. We further assume that ¢ is invertible. The pair (V,¢) will be called
a braided object in M. A morphism of braided objects (V,cy) and (W, e ) in M is a
morphism f: V — W such that ey (f @ f) = (f ® f)ey. This defines the category Brag
of braided objects and their morphisms.

2) [9] A quadruple (A, m,u,c) is called a braided algebra if

o (A,m,u) is an algebra in M;
e (A, c) is a braided object in M;
e m and u commute with ¢, that is the following conditions hold:
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c(m@ A)=(Aom)(c® A)(A®c), (13)
c(Adm)=(me A)(Axc)(c® A), (14)
clu® At = (Aou)ry’, c(Au)r,' = (ue A)i;" (15)

A morphism of braided algebras is, by definition, a morphism of algebras which, in
addition, is a morphism of braided objects. This defines the category BrAlg,, of braided
algebras and their morphisms.

3) Dually one introduces the category BrCoalg,, of braided coalgebras and their
morphisms.

4) [39, Definition 5.1] A sextuple (B, m,u, A, ¢, c) is a called a braided bialgebra if

o (B,m,u,c) is a braided algebra;
o (B,A,e,c)is a braided coalgebra;
« the following relations hold:

Am=(m®@m)(B®c® B)(A® A), Au = (u® u)Aq, (16)
em=mq(e®e), eu = Id;. (17)

A morphism of braided bialgebras is both a morphism of braided algebras and coal-
gebras. This defines the category BrBialg,, of braided bialgebras.

Recall that a Yang-Baxter operator c is called symmetric or a symmetry whenever
¢ = Id. Denote by Brf,, BrAlg’, BrCoalg}, and BrBialg?, the full subcategories of the
respective categories above consisting of objects with symmetric Yang—Baxter operator.
Denote by

Br ¢ Briyy — Bra, If, a1 - BrAlgh, — BrAlg,,

Broalg * BrCoalgl, — BrCoalg 4, [}, Bialg : BrBialg), — BrBialg

the obvious inclusion functors. Note that they are full, faithful, injective on objects and
conservative.

Remark 3.2. Let M be a monoidal category. Let A be one of the following categories
Bray, BrAlg,,, BrCoalg ,, and BrBialg,, let .AA® be the corresponding full subcategory
of objects with symmetric Yang-Baxter operator and denote by I% : A® — A the obvious
inclusion functor. Let D 4 : A — M be the forgetful functor.

1)Let X € A,Y*® € A° and let @ : X — [5Y* be a morphism in A such that o := D 4&
is a monomorphism. Set X := D4X and Y := ]DA]I‘;‘YS. Since « is braided we have
(a®a)ck =ci (a®a) = a®a where cx and cy are the Yang—Baxter operators of X
and Y respectively. Assume that a® « is a monomorphism. Then we obtain c3 = Idxgx
so that we can write X = Hj)_(s for some X*® € A° and @ is a morphism in A%. Since D 4
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reflects monomorphisms, we have proved that A° is closed in A for those subobjects in
A which are preserved by D4 and by (—)®? oD 4 where (=) M 5> M:V - VaV.

2) Dually A® is closed in A for those quotients in A which are preserved by D4 and
by (—)* o D.

3.3. Let M and M’ be monoidal categories. Following |6, Proposition 2.5], every monoidal
functor (F, ¢g, d2) : M — M’ induces in a natural way suitable functors BrF, AlgF,
BrAlgF and BrBialgF such that the following diagrams commute

BrF AlgF BrAlgF
Bry; —— Bray Alg, —— Algp BrAlg,, — BrAlg,,
iy F | f{/ @ \L h \L & Haie | AlgF e
M M M - M Alg, — Alg)
BrAlgF BrBialgF
BrAlgM — BI‘AlgM/ BI‘BlalgM — BrBialgM/
by BrF b o BrAlgF | ok
BrM e BrM/ BrAlgM — BrAlgM/

where the vertical arrows denote the obvious forgetful functors. Moreover

(1) The functors H, €, Halg, OBy, Op, are conservative.

(2) BrF, AlgF', BrAlgF and BrBialgF are equivalences (resp. isomorphisms or conser-
vative) whenever F' is.

(3) F preserves symmetric objects (this follows by definition of the Yang—Baxter oper-
ator induced by F'). Thus we can define Br’F, BrAlg®F and BrBialg®F' such that

Br'F BrAlg®F . BrBialg®F
Bri, — Bri BrAlg), — BrAlg), BrBialg’, — BrBialg’,
I | [ oo | [ene Thomiae | [
BrF BrAlgF . BrBialgF .
Bray — Bray BrAlg,, — BrAlg, BrBialg ,, — BrBialg
(18)

Next aim is to recall some meaningful adjunctions that will be investigated in the
paper.

3.4. Let M be a monoidal category. Assume that M has denumerable coproducts and
that the tensor products preserve such coproducts. In view of [6, Proposition 3.1], the
functor Qp, has a left adjoint Ty, and the following diagrams commute.

Halg Hag
BrAlg,, —— Algy, BrAlg,, —— Alg,
i | br ow o (19)

Bryf ——= M Bryf —— M
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The unit np; and the counit eg, are uniquely determined by the following equations
Hnpy =nH, Hpigepr = €Hag, (20)

where 7 and e denote the unit and counit of the adjunction (T, 2) of Remark 1.3. Using
Lemma 2.9, one shows that the adjunction (I, 2p,) induces an adjunction (75, Q%)
such that the following diagrams commute.

HSBrAlg HlSSrAlg
BrAlg), —— BrAlg,, BrAlg), —— BrAlg,,
s, T T 03, i Q. (21)
I3, v I,
Bri, —— Bru Bri, —— Bru

The lemma can be applied by the following argument. It is clear that Im(Qp, I, 1,) €
Im(I%,). Let (M, c) € Bri, and set (A, ma,ua,ca) = Tp 1%, (M,c).
Using [6, (42)], we have ca (@M @ a, M) = (0, V @ o, M) €)™ s0 that

A (amM @ ayM) = ca (@, V @ ap M) 3™ = (M @ a, M) 3™
and ¢y = Idp emem . The latter is proved by induction on ¢t = m +n € N using
[6, Proposition 2.7].

Thus ¢ (M @ ap,M) = (M @ a,, M) for every m,n € N and hence ¢ = Idaga.
Therefore (A, ma,ua,ca) € BrAlg), and Tg.I5, (M, c) = I3, AL (A,ma,ua,ca). Hence
Im(T,13,) C Im(I, 5),). Thus, by Lemma 2.9 we have the desired adjunction with unit
Mgy IdBrfv1 — Q3. 15, and counit ef, : T5,Q%, — IdBrAlngl which are uniquely defined
by

HsBrAlgesBr = 6Blf]I%rAlg and HsBrn%r = nBrHsBr‘ (22)

Furthermore (I, 01, 13,) © (T8, ,) = (TBr, QB:) is a commutation datum with canon-
ical transformation given by the identity.

Definition 3.5. Let M be a preadditive monoidal category with equalizers. Assume that
the tensor products are additive. Let C := (C, A¢,e¢,uc) be a coalgebra (C, Ac,ec)
endowed with a coalgebra morphism uc : 1 — C. In this setting we always implicitly
assume that we can choose a specific equalizer

£C Ac
PC)——C cCdC (23)
(CRuc)rg' +(uc®C)ig"

We will use the same symbol when C comes out to be enriched with an extra structure
such us when C will denote a bialgebra or a braided bialgebra.
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We now investigate some properties of Tg;.

3.6. Let M be a preadditive monoidal category with equalizers and denumerable co-
products. Assume that the tensor products are additive and preserve equalizers and
denumerable coproducts. By 3.4, the forgetful functor Qg, : BrAlg,, — Bras has a left
adjoint Tp, : Braq — BrAlg,,. In view of [6, Lemma 3.4], Tp, induces a functor Tg,
such that

BrBialg x4 O BrAlg ,,
(24)
BI‘M

Explicitly, for all (V,c) € Br, we can write Tg, (V,c) in the form (A, ma,ua, Aa,ca,
ca) where Ay : A — A® A and €4 : A — 1 are unique algebra morphisms such that

AgoonV =26 +67, (25)
gaomV =0, (26)

where 5%, =(ua®a1V)o l;l and 07, := (a1V @uy) o r‘jl. Moreover
a0,V =d,0ld1, for every n € N. (27)

In view of [6, Theorem 3.5], the functor Tg, has a right adjoint Pg, : BrBialg,, —
Brag, which is constructed in [6, Lemma 3.3]. The unit 7, and the counit ég, are
uniquely determined by the following equalities

Ty © Br = NBr, (28)
erUBr © T8¢ = Up:énr, (29)

where (V,c) € Bra, B € BrBialg,, while g, and e, denote the unit and counit of the
adjunction (Tg;, Qp;) respectively. Moreover ¢ : Pg, — Qp,UOp; is a natural transforma-
tion induced by the canonical morphism in (23).

Note that from 3.4 it is clear that Im(T's,If,) C Im(If,p;,,)- Let B € BrBialg),
and set (P, cp) := Pp,lp p;,,B. Since the tensor products preserve equalizers, we have
that (B ® ¢B is a monomorphism so that we can apply 1) in Remark 3.2 to get that
(P,cp) € Briy. Thus Im(Pp,Ig,pi,) € Im(Ip,). Hence, by Lemma 2.9 we have an
adjunction (T, P§,) such that the diagrams

. s ]IErBialg . . s H%x"Bialg .
BrBialg),, — BrBialg BrBialg),, — BrBialg,
T A = 5 (30)
- P T
Ty 5 T Tr Bry I \L Py

Brf, — > Br Br, — > Bry
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commute and the unit 73, : Idgrs, — P35 T, and the counit & : T3 P, — Idg;Bialgs,,
are uniquely defined by

s -s = s s =5 _ = s
]IBrBialgEBr - 6BlfHBrBialg and ]IBrnBr - nBrHBr' (31)

Moreover (H%rBialg,]IsBr) : (T4, P5,) = (T'sr, Ppy) is a commutation datum with canon-
ical transformation given by the identity. Note that the functor Op, induces a functor
B, such that the following diagrams commute.

B3, 5,
BrBialg’, . BrAlgi, Bri, ° BrBialg,
HSr ia ]Isr (32)
BrB lg\L . \L BrAlg }‘\ %}ér
BrBialg , — BrAlg, BrAlgi,

Furthermore, by Lemma 1.12; the natural transformation £ : Pg, — Q5,:0p; induces a
natural transformation & := €15, Bialg © P — 05,05, such that I £ = EIE Bialg-

Proposition 3.7. Let (F, ¢g,¢p2) : M — M’ be a monoidal functor between monoidal
categories. Assume that M and M’ have denumerable coproducts and that F and the
tensor products preserve such coproducts. Then both

(AlgF, F) : (T,Q) — (T",Q) and (BrAlgF, BrF) : (Tgy, Qp:) — (Thy, U5,)
are commutation data.

Proof. First we deal with (AlgF, F) : (T,Q) — (T,Q). By 3.3, we have that Q' o
AlgF = F o Q. By Remark 1.3, we have that Q and Q' have left adjoints T" and T’
respectively. The structure morphisms ¢q, ¢o induce, for every n € N, the isomorphism
OV : (FV)®" — F (V®™) given by

bV i=do, oV i=Idpy, V=g (V,V),  and, for n> 2

GuV =65 (VD V) o (du 1 @ FV),

Using the naturality of ¢» and (2) it is straightforward to check, by induction on
n € N, that

m?A_l;F)TV o (FayV)®" = Fa,V 0 ¢, V. (33)

Let ¢ be the map of Lemma 2.2 i.e. ( = € (AlgF) T o T'Fn. We compute
Y¢Voa,FV =Q'¢ (AlgF)TV o Q'T'FnV o a, FV

Yo (AlgF)TV o Q'T'FouV o an FV = Q¢ (AlgF) TV 0 a, FATV o (Foy V)"
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33

4 e n ) ~
:>m(AléF)TV °© (Fa1V)® E Foa,Vo¢,V

= (VienFaV) 0 juV 0 6uV = (ViewFoiV) o (@endiV ) o anFV

where 5,V : F(VO") — @ienF (V) denotes the canonical morphism. Since this equal-
ity holds for an arbitrary n € N, we obtain Q'¢V = (VyenFanV)o (@neNanV) Now an
is an isomorphism by construction and V,enFa,V : @penF (VO?) — F (DpenVe") is
an isomorphism as F' preserves denumerable coproducts. Hence 'CV is an isomorphism.
This clearly implies (V' is an isomorphism and hence (AlgF, F') : (T,Q) — (T7,8) is a
commutation datum.

Now, let us consider (BrAlgF,BrF) : (I, Q) — (Th,, Q5,). By 3.4, the functor
Qp, : BrAlg,, — Bra has a left adjoint Tg, : Bray — BrAlg,, and the (co)unit of
the adjunction obeys (20). Moreover Ha1gTs, = TH. By 3.3, we have H' (BrF') = FH,
Q' (AlgF) = FQ, Hy), (BrAlgF) = (AlgF) Halg and Qp, (BrAlgF) = (Brf') Qp,. In
view of Lemma 2.2 the diagrams

BrAlgF AlgF
BrAlg,, —— BrAlg Alg —— Algy
6 | [E— o (34)
BrF F ,
BI‘M BI‘M/ M M

induce the maps (g, : Tj, (BrF) — (BrAlgF) I, and ¢ : T'F — (AlgF) T defined by
(pr = e, (BrAlgF) Tp, o Tg, (BrF) e, and (=€ (AlgF)ToT'Fn. (35)
One easily checks that

HjyyCor = CH. (36)

By the first part of the proof, ¢ is a functorial isomorphism so that we get that H IA]gCBI'
is a functorial isomorphism too. Since H /Alg trivially reflects isomorphisms, we get that
(B is a functorial isomorphism. O

Proposition 3.8. Let M and M’ be preadditive monoidal categories with equalizers. As-
sume that the tensor functors are additive and preserve equalizers in both categories. For
any monoidal functor (F, g, p2) : M — M’ which preserves equalizers, the following
diagram commutes

BrBialgF
BrBialg ,, — BrBialg

| 7, (37

BrF
Bray — L Brag
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where BrBialgE' and BrF are the functors of 3.3. Moreover we have
¢ (BrBialgF') = (BrF)¢. (38)

Assume also that the categories M and M’ have denumerable coproducts and that F
and the tensor products preserve such coproducts. Then (BrBialgF, BrF) : (TBY,PBr) —
(T,, Ph,) is a commutation datum.

Proof. The first part is [6, Proposition 3.6]. Let us prove the last assertion. As-
sume that the monoidal category M has denumerable coproducts and that the tensor
products preserve such coproducts. By 3.6, we have that Pg, and P, have left ad-
joints T'p, and T, respectively. By 3.3, we have U, (BrBialgF) = (BrAlgF) Ug, and
Qf, (BrAlgF) = (BrF) Qg,. By (24), we have Up,T's, = Tg,. The commutative diagrams
(37) and (34)-left induce the natural transformations (g, : Ty, (BrF) — (BrBialgF) T's,
and (g, : T, (BrF) — (BrAlgF') Tg, of Lemma 2.2 i.e.

(B = &, (BrBialgF) Tg, o Ty, (BrF) iz,  and
(pr = €p, (BrAlgF) Tp, o T, (BrF) ng,.

Using (29), (38) and (28), one easily checks that U (g, = (.. By Proposition 3.7, we
know that (g, is a functorial isomorphism. Since U, is trivially conservative, we deduce
that (g, is a functorial isomorphism too. O

4. Braided categories

4.1. A braided monoidal category (M, ®,1,c) is a monoidal category (M, ®, 1) equipped
with a braiding c, that is an isomorphism cyy : U ®@ V — V ® U, natural in U,V € M,
satisfying, for all U, V,W € M,

CUVew = (V [ CU,W) ¢} (CU,V ® W) and CUQV,W = (CU,W X V) o (U 024 CV,W)~

A braided monoidal category is called symmetric if we further have cy. iy ocyy = Idugv
for every U,V € M.

A (symmetric) braided monoidal functor is a monoidal functor F : M — M’ such
that F (cp,v) © ¢2(U, V) = ¢2(V,U) 0 €y p(yy- More details on these topics can be
found in [26, Chapter XIII].

Remark 4.2. Given a braided monoidal category (M, ®, 1, ¢) the category Alg ,, becomes
monoidal where, for every A, B € Alg,, the multiplication and unit of A ® B are given
by

Mmagp:=(Ma®mp)o(AQRcpa®B): (A®B)®(A® B) - A® B,

uA®B::(uA®uB)ol1_1:1—>A®B.
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Moreover the forgetful functor Alg,, — M is a strict monoidal functor, cf. [25, page 60].

Definition 4.3. A bialgebra in a braided monoidal category (M,®,1,¢) is a coalge-
bra (B, A,¢) in the monoidal category Alg,,. Equivalently a bialgebra is a quintuple
(A, m,u, A, e) where (A, m,u) is an algebra in M and (A, A, ¢) is a coalgebra in M such
that A and ¢ are morphisms of algebras where A ® A is an algebra as in the previous
remark. Denote by Bialg ,, the category of bialgebras in M and their morphisms, defined
in the expected way.

4.4. Let M be a braided monoidal category. In view of [6, Proposition 4.4], there are
obvious functors J, Jalg and Jpialg such that the diagrams

JBialg Jaig
Bialg ,, — BrBialg, Alg g BrAlg ,,
(§) $ ¢ Ugr Q ¢ ¢ Qpr (39)
J
Alg e BrAlg M ! Bra

commute. In fact the functors J, Jaiz and Jpiae add the evaluation of the braiding of
M on the object on which they act. Moreover they are full, faithful, injective on objects
and conservative.

Assume that M has denumerable coproducts and that the tensor functors preserve
such coproducts. Then, by [6, Proposition 4.5], the following diagram

Jalg

Alg BrAlg
r - (40)
M ! BI‘M

is commutative. When M is symmetric the functors J, Jajz and Jgiale factor through
functors J°, J3,, and Jg;,, i.e. the following diagrams commute (apply Lemma 1.12).

Js

M

Bri, Alg

NS s
BI"M

BrAlg ,,

BrAlgi,

s
I alg

Jsia
Bialg 4 S B BrBialg’,

JBEA / (41)

. H]SBrBialg
BrBialg

Note that they are full, faithful, injective on objects and conservative and the following
diagram commutes.
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s
JBialg

Bialg ,, — BrBialg},

s \L s J{ s, (42)

Alg,, — BrBialg),

4.5. Let M be a preadditive braided monoidal category with equalizers. Assume that
the tensor products are additive and preserve equalizers. Define the functor

P:=HoPg,0 JBialg : BlalgM - M

For any B := (B,mp,up,Ap,eg) € Bialg,, one easily gets that P(B) =
P (B,Ap,ep,up), see [6, 4.6]. The canonical inclusion &P (B,Apg,ep,up)
P (B,Ap,ep,up) — B will be denoted by £B. Thus we have the equalizer

¢B Ap
B B®B
(Beup)rg +(up®B)l5"

P (B)

By [6, Proposition 4.7], we have a commutative diagram

. JBialg .
Bialg ., — BrBialg,

P J{ i Pg: (43)
M

BI“M

where the horizontal arrows are the functors of 4.4. Furthermore

§JBialg = JE. (44)

Assume further that M has denumerable coproducts and that the tensor products pre-
serve such coproducts. By Remark 1.3, the forgetful functor Q : Alg,, — M has a left
adjoint T': M — Alg,,. Note that

40)

21 (41) ( (41)
]ISBrAlgT]i;)r']s = Tpr ]S3r‘]s =TgJ = JAlgT

s ]
- I[BrAngAlgjj

and hence, since I, 4, is both injective on morphisms and objects, we get that the
following diagram commutes

J,Zlg s
Alg BrAlgi,
] o fm (45)
M ! Bri,

In view of [6, 4.8], there is a functor
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T : M — Bialg,
such that the following diagrams commute.

. JBialg .
Bialg ,, — BrBialg,,

T ¢ ? Ther (46)
M

BI‘M

Bialg \, Alg

~_ _7 (47)
T M T

By [6, Theorem 4.9], the functor T is a left adjoint of the functor P : Bialg,, — M. The
unit 77 and counit € of the adjunction are uniquely determined by the following equalities

Ton=n,  BoTt="Uk (48)

where 7 and € denote the unit and counit of the adjunction (7, 2) respectively. We have
that

— (30) = (41) = (46) — (41) —
]I]SEErBiaIgT]SEErJS = TBT SBrJS = TBYJ = JBialgT = I[%rBiang]%ialgT

and that
(30) (41) (43) (41)
sBrplngl%ialg = Ppr sBrBianglgialg = PBrJBialg = JP = HsBrJSP
so that the following diagram commutes.
gialg gialg
Bialg,;, —— BrBialg}, Bialg,; —— BrBialg},
rf by, e 7%, (49)
M ! Br', M ! Bré,

Proposition 4.6. Let M be a preadditive braided monoidal category with equalizers.
Assume that the tensor products are additive and preserve equalizers. Assume further
that M has denumerable coproducts and that the tensor products preserve such coprod-
ucts. Then the morphism C : TpJ — JBialgT of Lemma 2.2 is IdTBrJ' In particular
(JBialg, J) : (7_’, P) — (TBT,PBr) is a commutation datum.

Proof. Consider the commutative diagram (43). By Lemma 2.2, then there is a unique
natural transformation ¢ : Tg,J — JBialgT such that Pg.C o fjg,;J = J7j. By [6, Equal-
ity (75)], we also have 7p,J = J7. By uniqueness of ¢, we have ( =Ids, ;. O
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Proposition 4.7. Let M be a preadditive symmetric monoidal category with equalizers.
Assume that the tensor products are additive and preserve equalizers. Assume further that
M has denumerable coproducts and that the tensor products preserve such coproducts.
Then the morghz’sm & : T4 J5 — J}%ialgT of Lemma 2.2 is Idgpy yo. In particular
(Jﬁialg, J*) (T, P) = (T%,, PS,) is a commutation datum.

Proof. Consider the commutative diagram (49). By Lemma 2.2, then there is a unique
natural transformation ¢* : T J* — J]‘%ialgT such that P5.(° o 73,J° = J°7. Now

31) _ g (41) _ 41)

s —s 718 s () ;- ( s 785=
]IBrnBrJ = 7Br BrJ = 77BrJ = J77 = HBrJ n
where in (%) we used [6, Equality (75)]. Thus 7%, J° = J°7. By uniqueness of ¢*, we have

¢ = IdT% s« (note that we are using that the domain and codomain of ¢* coincide by
(49)). O

4.8. Let M and M’ be braided monoidal categories. Following [6, Proposition 4.10],
every braided monoidal functor (F, ¢g, ¢2) : M — M’ induces in a natural way a functor
BialgF' and the following diagrams commute.

F BialgF BialgF"
M— M Bialg ,;, — Bialg Bialg ., — Bialg
J J’! JBialg Jt ia /
J’ BrF ‘L o J’ BrBialgF ‘L piale © J’ AlgF ‘L ©
BrM E—— BrM’ BrBialgM ——— BrBialgM/ Alg/\/{ E—— AlgM’
Moreover

1) BialgF is an equivalence (resp. category isomorphism or conservative) whenever F'
is.
2) If F preserves equalizers, the following diagram commutes.

BialgF'
Bialg,, — Bialg

‘| I

M r M

5. Lie algebras

The following definition extends the classical notion of Lie algebra to a monoidal
category which is not necessarily braided. We expected this notion to be well-known,
but we could not find any reference. We point out that in the following definition we
should more properly speak of “right braided Lie” algebra as condition (51) and its left

b

analogue (56) seem not to be equivalent in general, see Lemma 5.3
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Definition 5.1. 1) Given an abelian monoidal category M a braided Lie algebra in M con-

sists of a tern (M, ¢,[—] : M @ M — M) where (M, ¢) € Br and the following equalities
hold true:
[-] = =[] o ¢ (skew-symmetry); (50)
[~Jo (M@ [-]) o [dmermem + (M &c)(c® M)+ (c® M) (M ®c)]
=0 (Jacobi condition); (51)
co(M@[-])=(-]eM)o(M®c)o(c®M); (52)
co([-JeM)=M@[-])o(caM)o(M®c). (53)

Of course one should take care of the associativity constraints, but as we did before, we
continue to omit them. A morphism of braided Lie algebras (M, ¢, [—]) and (M’, ¢, [-]')
in M is a morphism f : (M,c) — (M’,c) of braided objects such that f o [—] =
[<] o (f ® f). This defines the category BrLie of braided Lie algebras in M and their
morphisms. Denote by

Hp1e : Bl"LieM — BI"M : (Mv & [_D = (M7 C)

the obvious functor forgetting the bracket and acting as the identity on morphisms. Note
that Hp;Lie 1s faithful and conservative.

Denote by BrLie), the full subcategory BrLieas consisting of braided Lie algebras
with symmetric Yang-Baxter operator. Denote by

I3,1 : BrLie, — BrLie

the inclusion functor. It is clear that, by Lemma 1.12, the functor Hp,ri induces a
functor Hg, ;. such that the diagram

s
HBrLie

BrLie, —— Bri,
s s (54
]IBK‘LIS ¢ Ho.L, ¢HBr )

BrLiepy ———— Bryg

commutes. Since Hp,1,;c and both vertical arrows are faithful and conservative, the same
is true for H{,q 40

2) Let M be an abelian braided monoidal category. A Lie algebra in M consists of
a pair (M, [—]: M @ M — M) such that (M, ca ar, [—]) € BrLieaq, where cps s is the
braiding ¢ of M evaluated on M. A morphism of Lie algebras (M, [—]) and (M’,[-]")
in M is a morphism f : M — M’ in M such that f o [~] =[] o (f ® f). This defines
the category Liep of Lie algebras in M and their morphisms. Note that there is a full,
faithful, injective on objects and conservative functor
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JLie : Lieaq — BrLieaq : (M, [=]) — (M, epr, [—])

which acts as the identity on morphisms. This notion already appeared in [30, ¢) page 82],
where a Lie algebra in M is called an M-Lie algebra. Denote by

Hise : Liepyg = M2 (M, [—]) —» M

the obvious functor forgetting the bracket and acting as the identity on morphisms. Note
that HBrLieJLie = JHLie~

3) Let M be an abelian symmetric monoidal category. Given (M, [—]) € Liea it is
clear that (M, cp,am, [—]) € BrLie’y so that J;e factors through a functor J7;, such that
the following diagrams commute.

Li JLie BrLi BrLie® Hg, e Bré
e rLie rLie},, —— Br’,
. s o (55)
Jlie IEiLie Hiie
BrLief Liefy, —— M

Remark 5.2. We point out that BrLiej, = YBLieAlg(M) with the notations of [21,
Definition 2.5] (note that (52) follows from (53) as we are in the symmetric case).

Lemma 5.3. Let M be an abelian monoidal category. Consider a tern (M,c,[-] : M ®
M — M) where (M,c) € Bra. If ¢ = 1d and (50) holds, then we have that (51) is
equivalent to

(o (1@ M) o [[yeyisy + (M ®c) (c® M)+ (c® M) (M@ )] =0.  (56)

Proof. This proof is essentially the same as [20, Lemma 2.9]. O

Remark 5.4. In view of Lemma 5.3, in the particular case when M is the category of
vector spaces and (M, c) € Bray, conditions (50) and (56) encode the notion of Lie
algebra in the sense of Gurevich’s [19].

Definition 5.5. Let M a preadditive monoidal category with equalizers and denumerable
coproducts. Let (M, ¢) € Bray. For aaM as in of Remark 1.3, we set

Oar,e) = aaM o (Idygar —c¢) : M@ M — QT'M. (57)
When M is braided and its braiding on M is cps,a we will simply write 6as for Oaz,c,, 5)-

Definition 5.6. Let M be a monoidal category. Let (A, m4,u4) be an algebra in M and
let f: X — A be a morphism in M. We set

Api=mao(my @A) o (AR fRA): ARX ®A— A (58)
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When the category M is also abelian we can consider the two-sided ideal of A generated
by f which is defined by ((f),is) := Im (Ay) and it has the following property (see e.g.
[7, Lemma 3.18]): for every algebra morphism g : A — B one has that g o iy = 0 if and
only if go f = 0.

Remark 5.7. Let M be an abelian monoidal category. Let (A,ma,u4) be an algebra
in M.

1) Note that Ay — Ay = Ay, for every f, g: X — A.

2) Assume that the tensor products preserve epimorphisms. Let f : X — A be a
morphism in M and set (S,j:S — A) := Im (f). Define the ideal (S) generated by S
by setting ((S),¢) := Im (A;). Write f = j o p where p: X — S is an epimorphism. We
compute Im (Af) = Im (Ajop) = Im (Ajop) = Im(Ajo (A®p® A)) = Im(A;) so that
((F) »ig) i=Tm (Ag) = ((S) ). Therefore (f) = (Im (f).

Next aim is to construct suitable universal enveloping algebra type functors.

Remark 5.8. Let M an abelian monoidal category with denumerable coproducts. Assume
that the tensor products preserve denumerable coproducts. Note that M has also finite
coproducts as it has a zero object and denumerable coproduct. Thus, by [37, Proposition
3.3] the tensor products are additive as they preserve denumerable coproducts.

Proposition 5.9. Let M an abelian monoidal category with denumerable coproducts. As-

sume that the tensor products are right exact and preserve denumerable coproducts.
Let (M,c,[—]: M @ M — M) € BrLiey and set

f = f(M,c,[f]) = OélMO [—] — H(M,c) : M® M — QT M.

Let Ug, (M, c,[-]) == R := QTM/(f) and let pr : QTM — R denote the canonical
projection. Then there are morphisms mp, ur, cr such that (R, mp,ug,cr) € BrAlg,,
and pr is a morphism of braided algebras. This way we get a functor

Up: : BrLiepq — BrAlg ,,,

and the projections pr define a natural transformation p : Te, HprLie — Upy. Moreover
there is a functor Ug, : BrLie’, — BrAlg’, such that the diagram

. s H]S3rLie .
BrLiej}; —— BrLiey

U, J{ By \LuBr (59)

BrAlgy, ——— Alg,,

commutes and there is a natural transformation p® : T5 HR 1. — U5, uniquely defined
by



A. Ardizzoni, C. Menini / Journal of Algebra 448 (2016) 488-563 517

]I%rAlgps = p]I]%rLie' (60)

Proof. Set (A, ma,ua,ca) = Tpy (M, c). We will use the equalities for the graded part

m,n

c'" of the Yang-Baxter operator ¢4 which are in [6, Proposition 2.7]. Note that, by [6,
(42)], we have that ¢4 o (an, M ® a, M) = (@, M ® ay,, M) o ¢'y"™ for every m,n € N. By
induction on n € N, using (52), one checks that
o (ME" @ [-]) = ([] @ M®™) o y2. (61)
If we apply [6, (32) and (34)], we get
ci’{ﬁm (M®l ® cg’”) = (cf’" ® M®l) cf;‘"“".
If we apply this equality to the case 7 (I,m,n)” = (n,1,1), we obtain

P (MP" @) = (c@ M®™) y?, for every n € N. (62)

Since (f) is an ideal of TM, it is clear that R is an algebra and pg is an algebra
morphism. Consider the exact sequence

0= ()5 APER 0
If we apply to it the functor A ® (—), we obtain the exact sequence

A (N E A0 A A0 R 50

We have that ((f),if) := Im (Ay) so that we can write Ay = iy o py where py : A®
X ® A — (f) is an epimorphism. Since the tensor products preserve epimorphisms,
we have that A ® py is an epimorphism so that (pr ® A)ca (A®iy) = 0 if and only
if (pr® A)ca(A®Ay) = 0. Using the definition of ca, (61) and (62) one checks that
(pr®A)ca (A® f) (anM & M ® M) = 0. Since this holds for every n € N and the
tensor products preserve the denumerable coproducts, we get

(pr®A)ca(A® f) =0. (63)
Now using (14) and (63) one gets (pr ® A) ca (A ® Ay) = 0. Hence, by the foregoing, we

get (pr ® A)ca (A® i) = 0. Thus there is a unique morphism cx p: AQ R - R® A
such that ca.r o (A®pr) = (pr ® A) 0 c4. Consider now the exact sequence

(HoR" S A0 R™"Ro R - 0.

We will prove that (R ® pr)ca.r(iy ® R) =0.
This equality is equivalent to prove (R ® pr) ca,r (Af ® R) = 0. We have
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(R®pr)car(Af@R) (AQM @M ® A® pr)
= (R@pR) CA,R (A®pR) (Af ®A) = (R@pR) (pR®A) caA (Af ®A)
=(pr®R) (A®@pr)ca(Af@ A).

Note that the latter term vanishes as (A ® pr) ca (Af ® A) = 0 by a similar argument to
the one used to prove (pr ® A) ca (A ® Ay) = 0 and using (53). Since AQM QM @ ARpr
is an epimorphism, we get that (R ® pr) ca,r (Af ® R) = 0 and hence there is a unique
morphism cg : R® R — R® R such that cg o (pr ® R) = (R® pr) o ca,r. We get

cr (PrR®PR) =cr(PRO® R) (A®pRr) = (R® pR) cA,r (A® pR)
= (R®pr) (pr ® A)ca = (PR ® pr) Ca.

If we rewrite (52) and (53) in terms of ¢~! we get that (M,c™') fulfills (52) and
(53). Thus we can repeat the argument above obtaining a morphism ¢, such that
cr (PR QpR) = (pR®pR)c:11. It is easy to check that ¢f; is an inverse for cg. By
Lemma B.4, we get that (R,cg) is an object in Bras and pgr becomes a morphism
in Bray from (A4, cy4) to this object. We have

cr(mr ® R) (pr @ Pr @ PR) = crR (PR ®DR) (MA ® A) = (pr ®PR) caA(Mma ® A)

= (pr@pr) (Aem)(co A)(A®0)

= (R®@mpg)(cr ® R)(R® cr) (Pr ® pr ® PR)

so that (13) holds for (R, mg, cg). Similarly one proves (14). Moreover

cr(ur ® R)lg'pr = cr(ur ® R) (L@ pr) ;" = cr(prua @ pr)ly"

_ 15 _
— (pr @ pr) calua @ A" E (pr @ pr) (A ua) ;!
= (pr®ur)r," = (RO uR)r; pr

and hence cr(ugr ® R)ZEI = (R®ug) 7"1_%1. Similarly one gets cgr(R ® uR)r}El =
(ur ® R) l;il. We have so proved that (R, mpg,ur,cr) € BrAlg,,. It is clear that pg
is a morphism of braided algebras.

Let v : (M,e,[-]) — (M’',d,[-]') be a morphism of braided Lie algebras.
Consider the morphism of braided algebras Tg,v : Tg, (M,c) — Tg, (M’ ). Set
R = Ug, (M, ¢, [f]/) and denote by pgs the corresponding projection and set f’ :=
f(M’,c’,[f]')' We have

(19)
pr © QHaTe: HprLiev © f = pr 0 QTHHpiev 0 (01 M o [—] = O(ar0))
= pr o QT HHp,Liev 0 a1 M o [—] — prr 0o QT HHp,1iev 0 s M o (Idpsgar — )

QPR’ ooy M' o HHpyriev © [—] — prr 0 ao M’ o (HHp,1ieV © HHpypiel)
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o (Idmem — ¢

=prr o 1M o HHpiev © [=] = prr 0 aa M’ o (Idprgar — )
o (HHpLiev @ HHpy1ieV)

=pr oarM' o[- o (HHpLiev ® HHp1iev) — Pre © 0017 e
o (HHp;Liev ® HHp;1icV)

=pr o [ o (HHgLiev ® HHg;Liev) = 0.

Since PR’ © QHAlgTBrHBrLieVO is an algebra morphism we get PR’ © QHAlgTBrHBrLieV ]
iy = 0 so that there is a unique morphism Up,v : Up: (M, ¢, [—]) — Up: (M, ¢, 1)
such that Ug,v o pr = prr © TerHpLieV- It is easy to check that Ug,v is a morphism of
braided bialgebras. Since Ty, is a functor it is then clear that U, becomes a functor as
well and that the projections define a natural transformation p : T, Hg;Lie — UB:-

Let us construct Ug,. We already observed that the functor I, 5, is full, faithful and
injective on objects.

Let (M,c,[—]) € BrLie),. Then, by Remark 3.2-2), we get that R = Up, (M, ¢, [—]) €
BrAlgj, as R is a quotient of Tg,Hgyrie (M, ¢, [—]) which is preserved by the required
functors. Hence Im(Up,Ip,1,;.) C Im(Iy, 5),). By Lemma 1.12, there is a unique functor

Ug, = Z/lBr/H%Jie such that (59) commutes. We have

(

54) (21)
= TBI" 133rH183rLie = sBrAlngngl%rLie' (64)

T HpsLiel B, ie
By Lemma 1.12, we have TBrH;LEISBrLie = T35, HE Lo U@ie = U3, and there is a
unique natural transformation p® := pl§; ;.. : T35, Hp, 1. — U, such that (60) holds. O

Lemma 5.10. Let M a preadditive monoidal category with denumerable coproducts.
Assume that the tensor products are additive and preserve such coproducts. Let
(M,c,[-]: M ® M — M) € BrLienq, set (A,ma,ua, Aa,ca,ca) :=Tp, (M,c) and use
the notations of 3.6. Then,

Apobinre = [(ua®A)oly' + (A®ua)ory'] 0 Oare if & =Idyem;  (65)

Ajqoa M = [(uA®A)OZzl+(A®uA)Or21] ooy M. (66)

Proof. Using, in the given order, (2), the multiplicativity of A4, (25), the definitions of
84, and 4%, the equalities c4 0o (a;M @ aj M) = (a; M ®@ a; M) oy for i,j € {1,2}, the
equalities 0114’0 = l;er,ci{l =c, 0?4’0 =Iy'r; and 0?4’1 = r;le, the equalities (3) and (2),
the equalities ry; © M = M ® Iy and 71 @ M = 1® Ly, the equalities I, @ M = /5.,
M ® l;l = r];[l ®1and M ® 1“;41 = r;/[1®M7 the equalities my1 = r1 = Iy, the naturality
of the unit constraints, lIT/[l QM = ZX;(X)M, M ® 7“;41 = TX;@M and rpy @ M = M ® Iy,
the equality (3) and the naturality of the unit constraints one proves that
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AjgoagM = [(UA(X)A)OlEl +(A®UA)O’I’ZI} oagM
+ (1M @ a1 M) o Idpgn + ¢) .

From this equality, composing with Idy/ga — ¢ on both sides, we get (65) holds true
when ¢2 = Idyrgnr-

On the other hand, (66) follows by (25), the definitions of &4, and d%,, the naturality
of the unit constraints. O

Proposition 5.11. Let (B, mp,up, Ap,ep,cp) € BrBialg,, be a bialgebra in a monoidal
category M. Assume that the category M is abelian and the tensor products are additive
and right exact. Let (R, mp,ur,cr) € BrAlg,, and let pr : B — R be an epimorphism
which is a morphism of braided algebras. Set (I,iy: I — B) := Ker (pr). Assume that

(PR ®pRr) o Apoir =0, (67)
egoir =0. (68)

Then there are morphisms Ag, er such that (R,mg,ur, Ar,er,cr) € BrBialg,, and
PR 18 a morphism of braided bialgebras.

Proof. Since (R,pr) = Coker (ir), by (67), there is a unique morphism Ag: R -+ R® R
such that Agopr = (pr ® pr)oAp and, by (68), there is a unique morphism e : R — 1
such that egopr = ep. The rest of the proof is straightforward and relies on the fact that
Pr®pr = (pr ® R) (A ® pr) is an epimorphism by exactness of the tensor functors. O

Theorem 5.12. Let M an abelian monoidal category with denumerable coproducts. As-
sume that the tensor products are right exact and preserve denumerable coproducts. Then
there is a functor U3, : BrLiel, — BrBialgh, such that

s
uBr

BrLie, BrBialg’,
(69)
W
BrAlgi,

Moreover there is a natural transformation p* : Ty Hg 1.0 — U, uniquely defined by

UBFH]S?)rBialgps = p]ISBrLic and G]S_%rﬁs = ps (70)

where p : Tey HprLie — Usy and p® : T5 HE 1. — UR, are the natural transformations of
Proposition 5.9.

Proof. Let (M,c,[~]) € BrLie, and set (A,ma,ua,Aa,ca,ca) = Tg, (M, c) and
I = foue - Set (R,mg,ugr,cr) = Up: (M, c,[~]) and let pr be the morphism in
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M underlying the canonical projection p (M, ¢, [—]) : Tp: (M,¢) — Up: (M, ¢,[-]). By
Proposition 5.9, we know that pr : A — R is a morphism of braided algebras. Using
(65) and (66), we get

AAof:[(UA@)A)olZlJr(A@uA)orzl]of (71)

Since pr is an algebra morphism and proi; = 0, we get that pro f = 0. We want to
apply Proposition 5.11 to the case (I,i7) = ((f),iy). Since (pr ® pr) 0 A4 is an algebra
morphism as a composition of algebra morphisms (use e.g. [6, Proposition 2.2-3)] to
prove that pr ® pg is an algebra morphism and use (16) to have that A, is an algebra
morphism), we have that (67) is equivalent to (pr ® pr)oA o f = 0 and the latter holds
by (71), unitality of pr, naturality of the unit constraints, and the equality pr o f = 0.

Since € 4 is an algebra morphism, we have that (68) if and only if 4 o f = 0 and the
latter holds by definition of f and (27). Then, by Proposition 5.11, there are morphisms
AR, eg such that (R, mp,ur, Ar,€r,cr) € BrBialg,, and pg is a morphism of braided
bialgebras. By Remark 3.2-2) one easily checks that (R, mg, ur, Ar,€r, cr) € BrBialg},.
We denote this datum by U3, (M, c,[~]). Let v : (M,c,[~]) — (M’,¢,[~]") be a mor-
phism in BrLie},. We know that © := QHa,Up,v : R — R’ is a morphism in BrAlg,,.
Using that pg is comultiplicative and natural, and that QHAlgUBrTBrHBrLieU is a coal-
gebra morphism one easily gets that (0 ®7?) o Ag o pgr = Ag 0V o pr and hence v is
comultiplicative. A similar argument shows that v is also counitary and hence Ug,v is
a morphism in BrBialg’,. This defines a functor U, : BrLie}, — BrBialg, such that
O, 0 L_{%r = Ug,. Since pg is a morphism of braided bialgebras and it is natural in R at
the level of BrAlg ,, it is clear that p* such that Up, I, pi,1,P° = PI,p,. exists. Moreover
we have

(60) _.(32) _
S S \__ S _ S S \_ = S S S
HBrAlgp = plgiLie = UBTHBrBialgp = IBraigYBrP

and hence p® = 03, p°. O
6. Adjunctions for enveloping functors

Given a braided algebra B, in general it is not true that the commutator bracket
[~z = mp o (Idpgp — cp) defines a braided Lie algebra structure on B as in the
classic case unless ¢ is a symmetry. For example, let (V,¢) be a braided vector space and
consider the braided tensor algebra B := Tg.(V,c). Assume that [—], fulfills (50). An
easy calculation shows that the restriction of this equality to V ® V forces ¢ (whence
also ¢p) to be a symmetry. For this reason in this section we restrict to symmetries in
order to construct an adjoint for Ug,.

Proposition 6.1. Let M an abelian monoidal category with denumerable coproducts. As-
sume that the tensor products are right exact and preserve denumerable coproducts. Then
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the functor Uy, : BrLie}, — BrAlg), has a right adjoint L}, : BrAlgj, — BrLiej,
acting as the identity on morphisms and defined on objects by L. (B,mp,up,cp) :=
(B,cB,[—]g), where [=]5 := mp o (Idpgp — cB). The unit g, : ldp;Lies, — L3,U5,
and the counit e,y : U, Lf, — Idpralgs, of the adjunction fulfill

s sp,rs 8 S s S S S _ S s
€pyr, © P L, = €y and Hp, 1,6 £8:0° © M3 Hprie = HBrvieMhrr- (72)

Proof. The construction of the functor £, is given in [21, Construction 2.16] where
BrAlg’, plays the role of YBAlg(M) therein. Let us check that (Ug3,, £3,) is an adjunc-
tion.

Consider the natural transformation p® : T§ Hg ;. — Uj, of Proposition 5.9.

Note that H]%rLie‘C%r (B7 mp,uB, CB) = H]%rLie <B7 CB; [_]B) = (B7 CB) =
O3, (B,mp,up,cp) and HJ ;. L5, and Qf both act as the identity on morphisms
so that Hy..Ls, = Qf,. Then we have p°L3, : T5,Qf, — UR.LE,. Consider

€p, ¢ 15,805, — Idpralgs,. Using the notation of Proposition 5.9, by means of (22),
(20), (57) and (4) we get

S S
QHa1glB 1B (BsmB,uB, ¢B) © fra (Bimpup.cs) = 0-

Since e, is a morphism of braided algebras, by construction of U5 L{ ., the latter equality
implies there is a unique morphism e g : Ug L§, — Idpralgy, such that eg 1 o p° L3, =
€G-

Consider the morphism H§ . ;.L3,0° o 5, Hi e @ Himie — HimicLoUp,-
Let (M,cm,[-]) € BrLiely, and set v = HI; HY 1 Lo.p® (M, e, [—]) o
HIE n3 HE o (M, ear, [—]), (R, mp,ug, cr) = US, (M, e, [—]) and (A, ma,ua,ca) =
T5, (M, cp). Clearly v @ (M,cp) — (R,cr) is a morphism of braided objects. Using
(54), (22), (60), (20), (4) and the equality pr = HQp,pIg 150 (M, car, [—]) (which follows
by definition of p in Proposition 5.9), we obtain that v = pr o ay M. By the latter
formula, the fact that pr is a braided morphisms, the definition of ¢4 given by [6, (42)],
the multiplicativity of pg, using (2), (57) and the formula pr o f(as.c,, -)) = 0, we ob-
tain [—|, o (v®v) = v o[—]. Since v is the morphism in M defining H ;. L5,.p° ©
M Lo © HirLie = HirLie L Un,, We get that there is a unique natural transforma-
tion n,p, ¢ IdprLies, — L£p,Ug, such that Hyq; Lh.0° o 03, H e = Hi i 1b 18
straightforward to check that this gives rise to the claimed adjunction. Note that

H]I]SBrH]?’)rLien]S?)rL (M7 CM, [7}) =UV=PRO arM. (73)
The latter equality will be used elsewhere. 0O
As a consequence of the construction of Up, we can introduce an enveloping algebra

functor U in the braided case. We remark that in [22, 2.2] such a functor is just assumed
to exist and the functor £ : Alg,, — Liepq in the following result is also considered.
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Theorem 6.2. Let M be an abelian symmetric monoidal category with denumerable co-
products. Assume that the tensor products are right exact and preserve denumerable
coproducts. There are unique functors U and L such that the following diagrams com-
mute.

‘]Zlg . leg .
Alg,;, ——— BrAlg}, Alg,, BrAlgy,
T L R T ™)
Liep; — > BrLie}, Liep;, — > BrLie},

Moreover (U, L) is an adjunction with unit ni, : Idie,, — LU and counit €1, : UL —
Idayg,, defined by

J:zlgEL = 65BrLJZlg and inenL = n]%rLJIiie’ (75)

and (qungie) (U, L) = (UE,, LE,) is a commutation datum with canonical trans-
formation given by the identity. The functor U can be described explicitly by U :=
HagUprJrie while £ : Alg,, — Lieaq acts as the identity on morphisms and is defined
on objects by L (B, mp,up) = (B,[—]g), where [—]5 :=mp o (Idper — ¢B,B).

Proof. The existence and uniqueness of &/ and L as in the statement follows by
Lemma 2.9. It remains to prove the last sentence. The equality U = Ha1,Up:J1ie follows
by (74), (59) and (55). For (B,mp,up) € Alg,,, by the foregoing, we have

74
JI‘jie‘C (vaB7uB) (:) ‘C%rjjilg (Bv vauB) = (B7 [_]B 703’3)

so that £(B,mp,up) = (B,[~]p). Since Jf;,, Ly, and J3,, act as the identity on
morphisms so does £. O

Proposition 6.3. Let M be an abelian monoidal category with denumerable coproducts.
Assume that the tensor products are right exact and preserve denumerable coproducts.
Then the functor Uy, : BrLiey, — BrBialgh, has a right adjoint Pg, : BrBialg}, —
BrLie}, such that the following diagram commutes

BrBialg),

Py g Q (76)

BrLie

BrLiej, Bri,

and the natural transformation & : P3, — Qp, 0, induces a natural transformation
§:Pg, — EsB_r Br such that Hg 1.6 = & The unit g,y : ldpiLies, — P}%ri%r and the
counit €g,q, : U, Pl — ldBiBialgs, of the adjunction satisfy

ga]S?)r © 7_7]S3rL = 77]SBrL and 6SBILUSBI o u]%rg = U1831r€SBrL' (77)
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Proof. Let B := (B,mp,up,Ap,ep,cg) € BrBialg),. Write P§.B = (P,cp). By [21,
Proposition 6.6(i)], there is a morphism [~], := P ® P — P such that P3 B :=
(P,cp,[—]p) € BrLiej, and (B : (P, cp,[—]p) — (B,cB,[—]|p) is a morphism in BrLie’,
where [—], :=mpo(ldpgp — ¢B). Clearly [—]p is uniquely determined by the compati-
bility with {B. In this way we get a functor Pj, : BrBialg’, — BrLie}, which acts as Pj,
on morphisms. Let us check that there is a unique morphism 73,1, : Idprvies, — Pg, Us,.
such that &US, o 7%, = n5,.- Let (M, ¢, [—]) € BrLie),, set (R, mpg,ur, Ar,€Rr,cr) 1=
Ug, (M, c,[—]) and set also (A,ma,ua,Aa,ea,ca) = T4 (M,c). Using that pg is co-
multiplicative, the equality (25), unitality of pg and the naturality of the unit constraints,
one easily checks that

V= H]I]s_%rH]%rLien]sBrL (M7 Cy [_]) (2)]7]2 ° alM M —= R

is equalized by the fork in (23). Hence v induces a morphism v/ : M — P (U5, (M, ¢, [-]))
=: P such that U3, (M, c,[~]) o/ = v. One easily proves that v/ defines a natural
transformation 7,1, ¢ IdprLies, — P, U3, such that EU3, o %1 = ni,.p- Let us check
there is a natural transformation &} 1 : U, Pg, — ldpiBialgy, such that ef; Of olU3 £ =
Oty

Let B := (B, mp,up,Ap,€B,cp) € BrBialg), and consider

Y= HQBT]I]S?)rAlg (EISBrLUfBr]E Ou]%rgB) :R— B

where (R,mp,ur, Ar,cr,cr) = UL P B. By definition v is a morphism of braided
algebras and a direct computation shows that yopr = H QBTUBréBrH%rBiaIgIB%, using
the equality pr = HQpIj,0,p° P35, B and the equalities (72), (22), (21), (32), (29).
Since €I, pia1B is @ morphism of braided bialgebras and pg is an epimorphism and a
morphism of braided bialgebras, it is straightforward to prove that also -y is. Hence there
is a unique morphism &5; B : U5, P5 B — B such that HQp, I, 01,65, B = 7. From the
definition of v and the fact that HQBT]ISBTAlg is faithful, we deduce eg,; U5,B o UR.EB =
Ug,€5,1,B. The naturality of the left-hand side of the latter equality and the faithfulness
of Uf, yield the naturality of €, B. One easily checks that the n%,; and é},; make
(UL, PE,) an adjunction. O

Next aim is to prove that, in the symmetric case, the functor U factors through a
functor U : Lieps — Bialg,, such that Uoll =U.

Theorem 6.4. Let M an abelian symmetric monoidal category with denumerable co-
products. Assume that the tensor products are right exact and preserve denumerable
coproducts. Then there are unique functors U and P such that the following diagrams
commute
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s s
JBialg JBialg

Bialg ,, — BrBialg}), Bialg ,, — BrBialg’,

al las, 7| |75
Ji Ji

Lie Lie

Liepy — BrLiej, Liepy — BrLiej,
Lie g “ Bialg
(78)
u &
Alg

where U is the functor of Theorem 6.2. Moreover (Zjl,”P) is an adjunction with unit
7L« Idpie,, — PU and counit &, : UP — IdBialgM uniquely determined by

S = __ =8 S S - _ -8 S
JLielL = MBI Lie and JBialgGL = eBrLJBialga (79)

and (J3ia1g: Jie) U, P) — U, Py, is a commutation datum with canonical transfor-
mation given by the identity. Furthermore there is a natural transformation p : T Hyie —
U such that

]58 Jiie = J]%ialgz3 and UBrJBialg]_) = pJLie (80)

where p°* @ T4 HE 1. — Uy, is the natural transformation of Theorem 5.12 and
p : T HprLie — Up; is the natural transformation of Proposition 5.9. The natural trans-
formation £ : P3, — L, 08, induces a natural transformation & : P — LU such that

ijieg = E‘Jgialg :

Proof. The first part is a consequence of Lemma 2.9. The commutativity of the third
diagram of (78) follows by (42), (78), (69) and (74). By Lemma 1.12, there is a natural
transformation p := ;z‘)TJ]f\le : THrio — U such that JRia1gh = P Jise- Using (41) (80), (70)
and (55) we get UpJBialgh =(55) pJLie- By Lemma 1.12, there is a natural transformation
€= €0y : P — LU such that Ji, € = €J5,,,. O

Remark 6.5. By Lemma 1.12, there is a natural transformation g := 1‘7?J\Em :THype — U
such that

J]%ialgq = szﬁie' (81)

Using (81), (70) and (55) one checks that Ug = HaigpJric where p is the morphism of
Proposition 5.9. This means that for every (M, [—]) € Lieps the morphism g (M, [—]) is
really induced by the canonical projection pg : QTM — R := U§, Jrie (M, [—]) defining
in this lemma the universal enveloping algebra. Summing up, as a bialgebra in M we have
that U (M, [—]) is a quotient of THyse (M,[~]) = TM via g (M, [~]) and the underlying
algebra structure is the original one underlying Ug Jrie (M, [—]).



526 A. Ardizzoni, C. Menini / Journal of Algebra 448 (2016) 488-563

7. Stationary monadic decomposition

Theorem 7.1. Let M be an abelian monoidal category with denumerable coproducts. As-
sume that the tensor products are exact and preserve denumerable coproducts.

IdBrBialgﬁ\A IdBrBialgj\A
BrBialg’, BrBialg BrBialg’,
I s
A IldgrBialgs A EBeralgM A
T3, | Pi (T3 l(ﬂ;,)l BrBialg’, (Ta)z | (P2
=s Al ps
s Uo,1 s Ug,: ° | Por Uss A
Briy (Briv) (Briv)2

e

Hos . .
e BrLiej,

(82)

The functor P3, is comparable so that we can use the notation of Definition 1.9. There is
a functor Ag, : (Brl,), — BrLie}, such that Ap,o(P§,), = P, and Hf,;.0A: = Up 2.
Moreover there exists a natural transformation Xg, :ZTISBIABr — (TSBr)lULQ such that

Xgr © D°Apr = U1 2 (83)

where p° is the natural transformation of Theorem 5.12 and 75 : T Uo1r — (Th,)1 is
the canonical natural transformation defining (T%,)1.
Assume 03,1, ABr s an isomorphism.

1) The adjunction (U, P,) is idempotent.

2) The adjunction (T, )1, (Pg,),) is idempotent, we can choose (T, )2 := (T,)1U1 2,
w5 =Idp, ), and (T%,)2 is full and faithful i.e. (75,), is an isomorphism.

3) The functor P§, has a monadic decomposition of monadic length at most two.

4) (Idp:Bialgs, » Anr) 1 (Th)2, (PSy)s) — (U, PE,) is a commutation datum whose
canonical transformation is Xg, -

5) The pair ((P§,), U, Apy) is an adjunction with unit 7§, and counit (775&);1 o
(Pg§,) Xy S0 that Ap, is full and faithful. Hence 0%y, is an isomorphism if and only
if (P§)yUsy, AB:) is an equivalence of categories. In this case ((T'g,)2, (Pg,),)
identifies with (U, P§,) via Ap,.

Proof. By 3.6 we have an adjunction (T%1r7 Pgr). By Proposition B.11, the right adjoint
functor R = Pj, is comparable and we can use the notation of Definition 1.9.

Let My = (My, 1) € (Briy),. Then we can write My = (Mo, o) € (Brj), and
My = (M,c) € Briy. Let Oarey := O () * M @ M — QT (M) be defined as in
(57) and set A = (A,ma,ua,Aa,c4,c4) := Tp, Mo = Ty, (M,c). Since ¢ = Idyen
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we have that 0,/ fulfills (65). Thus there is a unique morphism é(M,C) = 9H%T(M,C) :
M @M — P (Tg, (M, c)) such that

EA o é(M,c) = 0(,c)- (84)
Set
[—] := HIE, po oé(Mﬁ) M@ M — M.

Let us check that (M,c,[-]) € BrLie},. Now p; o (7g,); M1 = Ida, so that
(M%), My is a split monomorphism. Set S := (S, mg,us, As, €5, ¢cs) := (TSBr)l M. Thus
HIg,Uo1 (M5,); M1 : M — P(S) is a split monomorphism too. Let n§ : T% .Uy —
(T3,), be the canonical natural transformation defining (T%,),. By construction one
has

]D];)r’n-‘lg © 7_7183rU0,1 = UOJ (ﬁ%r)l . (85)
We have

HgTBrHSBr © HHSBrﬁSBr =H (ETBT]IEI‘ © ]I]SBrﬁsBr)

31 = 28 20
(:> H (gTBr]ISBr o ’F}BTHSBr) <:) HT}BF SBr <:) nH]I]S?)r (86)

In particular, we have

EA © HH]S_%rﬁsBrMO = é-A © HHSBrﬁ]SZ%rMO = HfTBTH]S_%rMO © H]I]S_%r?_?sBrMO

Qo HT Mo = nM < oy M

so that
fA ¢} H]I]s?)rf]sBrMO = OélM (87)
We compute

fA © [_]P(A) © (H]Igirﬁ]g?\rMO ® HH%rﬁErMO>
=[], 0 (EA® EA) o (HIE, 75, Mo @ HIp, 05, Mo)
=ma o (Idaga —ca) o (A ® EA) o (HIE, 75, Mo @ HIE, 7, Mo)
(87)

= mAO(IdA®A 7CA) o} (a1M®a1M) :mAO(OélM@OélM) o (IdM®M 7611471)

(2 (57 84) _
2 ayM o (Idymem — ¢ = O(a1,e) Ceao O(Me)-

Since £A is a monomorphism we get
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é(MvC) = [_]P(A) o (H]IéBrﬁ]éBrMo ® HH%rﬁErMO) . (88)

Moreover since m{M; : A = T%rU071M1 — (TSBr)l M; =S is a morphism in BrBialg’,,

76 . 1rs , . . .
we have that HI% PS5 mi M o HI% HE i Peemi M1 commutes with Lie brackets i.e.

[_]P(S) o (H]I%rP]ngfMl ® H]IsBrPESBrﬂ—iMl) = H]I]%rP]ngiMl o [_]P(A) (89)
Hence we get

(=] © (HIg Vo (h,); M1 ® Hlp, U (1g,); M1)

<85) S S S S S S S =S S =S
= [~lpE) o (HIg Pgmi My ® HIg, Py M) o (Hlp,ip, Mo ® HIg, 75, Mo)

<8()) S S S S =8 S =S
= Hlg, P, mi My o [=]py) o (HIg, g, Mo @ Hlp, g, Mo)

(88)

= HH]SBr'Plgr’]TiMl °© é(Mvc)

(85)

= ‘E[HSBI‘U'O’1 (ﬁ%r)l M1 o [_}

© |y, P73 My o HI, 7, Uo .y My o HI, 10 0 Oar.c)

where in (%) we used that P§ m5My o 7i§,Uo1 My o po = P§,m; My which follows from
My o T jio = m My o &5 T My (true by definition of 71) and [4, Lemma 3.3]. We
have so proved

[_]P(S) o (HI[%rUO,l (ﬁsBr)l M1 ® H]IErU071 (ﬁéBr)l Ml) = 'PIHSBIIJO,1 (ﬁ%r)l M1 o [_} .
(90)

Using the fact that HI§ U1 (773,), M1 is a monomorphism in M and

(P(®).cre) [Flpe) = PiS € Brlicy,

one easily checks that Ap, (M) := (M, ¢, [-]) € BrLie}, and that HI% Uo 1 (75,), M1 :
M — P (S) is a morphism in BrLie},. Let v : My — M3 be a morphism in (Brj,),.
It is clearly a morphism of braided objects. Since, by (76), we have HI} P5 =
HI% HE 16 PB,», then HHSBrP]ngSBrUO,QV commutes with Lie brackets and hence

O ey © (HIg,Up ov @ HIg Up ov)

= (=] peary © (HIg 75 My ® Hlg, g, Mg) o (HIg,Uoov @ HI, U 2v)

= [~ p@n o (HIg, P5, T, Uo v @ HIg, Pj, T, Uo2v) o (HIg, 75, Mo ® HIg, 75, Mo)
= HIg, P, T3, Uo2v © [ pay © (HIg, 715, Mo @ Hl, 75, Mo)

) HI3, Py, T3, Uo.ov 0 0ar e
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so that é(M/,C/) o (HIE Uyov @ HIE Upov) = HPBYTBer’BrUO’gz/ o 9(M7C). Using the
latter equality, (30) and that v is a morphism in (Brf,), we obtain that [-]" o
(HIZ Uy ov @ HIE Up ov) = HIE Upov o [—]. Thus v induces a morphism Ag,v €
BrLie,. It is clear that this defines a functor Ap, : (Br},), — BrLie}, acting as the iden-
tity on morphisms. Let B := (B,mp,up, Ap,cp,cp) € BrBialg),. Set M := (P§,),B.
Then

(Mlalu’l) : M2 = ((Plgr)lBa (Plgr)l (E%r)lﬁ)V
(M07 ,U,()) =M = (Plgr)l B= (Plger PESBrEIS%rB) )
(M,c) : = My = P5,B

The bracket for this specific M is
[_] = HH%r:U‘O o é(M,C) = HH%rPErg%rB o éPﬁ,B'

It is straightforward to prove that {Bo[~] =[] o ({B ® {B) = {B o [] 5y, so that
[-] = [~]p(s) and hence

Ag: (Pi)y B = (Pa,B, [lp(s) ) = PhcB.

It is clear that the functors A, (P§,), and P, coincide also on morphisms so that we
obtain Ap; o (P§,), = Pg,. Let M € (Brj,),. Then

Hp oA Mo = Hiyp 0 (M ¢, [=]) = (M, c) = Uo,2Ms>.

Since Hg, 1., Apr and Up 2 act as the identity on morphisms, we get Hg ;. o A, = Up 2.

In view (87), naturality of £, the equality (x) used above and (84) we obtain

rLie

H]I%rQSBrU%erMl oMo [_] = HHEBrQSBrUESrﬂ-fMl © Q(M,C)'
Thus we get HIE QF 0%, 7 My o fag.m, = 0.

Since mjM; is an algebra map, we have HIp Qp O, miM o if, . = 0 so that,
by construction of U5, there is a braided algebra morphism xi Mo : Uf A Ma —
USBr (Tls?)r)l Ml SuCh

XSBrMQ OpSABrM2 = OJSBrTrfMl = UErﬂiULQMQ'

By naturality of the other terms we obtain that also x§,M> is natural in My so that we
get

Xgr © P°Apr = Op, 11U 2.
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By (70) we get x§,005,0°Apr = U, m7U1 2. Since both p°Ag, and 75U, 2 are morphism of
braided bialgebras and the underlying morphism in M of p° is p which is an epimorphism,
one gets that xp, is a morphism of braided bialgebras too that will be denoted by
X, - UL Apr — (T%r)l Ui,2. Thus U, X5, = X&, and hence

Xpr © P Apr = 7 U 2. (91)

S =S8

A direct computation, shows that I3 n% =13 £T% oI 7% and hence
Mise = §T 8 © iy

Thus, using (76), naturality of £, (77), (72), (70), (91), again naturality of £ and (85) in
the given order, we get

5 (TSBr)l U172 © H]SSrLie (P]‘_g)r)_CSBr © ﬁSBrLABY) = g (T%r)l U172 © UOJ (ﬁsBr)l U172'

Therefore, we obtain

H]%rLic (P]%rXSBr © ﬁSBrLABY) = UOJ (ﬁSBr)l U1»2' (92)

The latter is a split monomorphism. Since Hy is faithful, we get that the evaluation

rLie
on objects of P X%, © 75,1, ABr is @ monomorphism.

Assume that 7, Apr is an isomorphism. Note that 7§, Apy isomorphism implies
N5, ABr (P5,), isomorphism. Since Pj. = Ag, (Pg,), this means that 73, Pg, is an
isomorphism and hence the adjunction (Uf,,P5,) is idempotent, cf. [34, Proposi-
tion 2.8]. Moreover, since 75,1 Ap, is an isomorphism, then the evaluation of P§ %, :
P UL A — Py, (TSBr)l Ui 2 is a monomorphism. Let M, € (Brj,), and consider the

coequalizer

T, 10 T M,y

T]%rplngsBrMO TsBrMO - (TsBr)lMl

EErTErMO
Then, from ¥, o p°Apy = 7{Ui 2, we get X, M2 o p°AprM; o T%r/m = Xp M2 o
PP Ap Mol T M. If we apply Pg, from the fact that P x5, M is a monomorphism,
we obtain
Pi, (P°ApeMa o T, puo) = Pg, (p° A Mz 0 &3, T, M) .

If we apply on both sides HE 1., by (76), we obtain

P, (p°Ap:e Mz 0 T po) = P, (p°Ap:eMa 0 &5, T, M) .
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Since (U5, Pj,) is idempotent, by [34, Proposition 2.8], we also have that &}, U5,
is an isomorphism. Note that the arguments of Pj, in the above displayed equality are
morphisms of the form T“”BrX — Y for some objects X, Y. Given two such morphisms
f,9:Tg4. X — Y with Py f = P5.g we have

f=foeThX oThinX =&Y o Ty, Py, f o T, iy, X
= &, Y 0 T, Pyg o Ty iy, X = g 0 €5, T X 0 Ty, X = g

In our case we get p*Ap, My o T o = p*Ap, My 0 &5 T4 My. By the universal property
of the coequalizer above, there is a braided bialgebra morphism 7M; : (TSBr)l M, —
U Ap, My such that

TM> 0 WfMl = psABng.

Note that, by Proposition B.11, the morphism 7§ M; can be chosen in such a way to be a
coequalizer when regarded as a morphism in M. We already observed that p° is also an
epimorphism in M. Using these facts one easily checks that X, M2 and 7M; are mutual
inverses and hence X3, : U Ap, — (TISBr)l U2 is an isomorphism.

Therefore Uy 1 (73,); Ur,2 = Hp,1ie (PR XB:r © 5., ABr) is an isomorphism. Since U,y
reflects isomorphisms, we conclude that (73,); U1 2 is an isomorphism. We have so proved
that the adjunction ((T%,),,(Pg,);) is idempotent. Note that in this case we can
choose (T§,), = (T4,),Urz2 (and 75 to be the identity) and it is full and faithful
(cf. [4, Proposition 2.3]) i.e. (7%, ), is an isomorphism. By the quoted result we also have
(ﬁ]%r)l ULQ = U1’2 (ﬁ%r)Q so that

_ _ (92) s i _
H]%rLie (PngsBr © n%rLABr) = U0:1 (nBr)l U172 = U071U1,2 (nBr)Z = HérLieABr (nsBr>2

and hence Py Xp, © M3,,ABr = Ap: (715,),- This proves (7) holds i.e. that (Idp;Bialgs, ;
Ape):((T5,), (PS)s) = U, P,) is a commutation datum whose canonical transfor-
mation is Xg,. Let us check that ((Pg,), U5, Ap:) is an adjunction with unit and counit
as in the statement. We have

A (703" © (Pi)a X ) © s Ame = Apr (7)3 " © Ar (P X © Tiser. A
=S5 \— 5 =S —S —s \—1 =5
= Agr (M51)2 to PExXi © ML ABr = Abr (M5:)2 - © Abr (71B:)2 = Abr-

Moreover, by (9) applied to our commutation datum, we have (€g,), o X3, (P§,)s =
€h,1, So that

(002" © (Pa)a X ) (i) U © (P ) Ui

—s \—1 s 775 s —s s 7S s 775 =S
= (UBr)z (PBr)2uBr o (PBr)Q XBr (PBr)QuBr © (PBr)2 U, B,
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= (Plgr)Q (é%r)2zj_{]s3r o (Pér)Q >_<bBr (Pér)ZaéBr o (Pgr)Zg%rﬁ]%rL
= (Plgr)Z [(é%r)2a%r © Xlijr (Pl_)g’r)QZ/_{]%r © Z/_{%rﬁ%rL]
= (Plgr)Q [é%rLg%r © g%rﬁ%rL] = (P]_%r)Q N

Note that the counit is an isomorphism so that Ag, is full and faithful.

It is then clear that ((Pg,), U5, As:) is an equivalence of categories if and only if
Mg, is an isomorphism (see e.g. [11, Proposition 3.4.3]). O

Theorem 7.2. Let M be an abelian symmetric monoidal category with denumerable co-
products. Assume that the tensor products are exact and preserve denumerable coproducts.

5 s . IdBialg 4 . IdBialg \4 .
My —— (Briy)2 Bialg .y =—— Bialg Bialg 4
A A A IdBialgM Al Id}‘ial?:/:/l A

Br _ . _
. T |P Ty l Py Bialg Ty | P2
. Lie .
Liepy — BrLiej, Uo s atl P .,
M \Ml My
Hyie . K
t LleM

(93)

The functor P is comparable so that we can use the notation of Definition 1.9. We have
HyiP = P and there is a functor A : My — Lieaq such that Ap,JS = J{;, A, AoPy =P
and Hyio o A = Uy 2. Moreover there exists a natural transformation X : UA — TlULQ
such that

JBiargX = C1U1,2 © X5, S5, XopA=mUip

where p is the natural transformation of Theorem 6./ and mw : TUOJ — T is the
canonical natural transformation defining T1.
Assume 7,1, ABr s an isomorphism.

1) The adjunction (U, P) is idempotent.

2) The adjunction (Tl, Pl) is idempotent, we can choose Ty = TlULQ, Ty = IdT2 and
Ts is full and faithful i.e. 7y is an isomorphism.

3) The functor P has a monadic decomposition of monadic length at most two.

4) (IdBiaig,,, A) : (T2, P2) — (U, P) is a commutation datum whose canonical transfor-
mation s X.

5) The pair (PQQ,A) is an adjunction with unit 71, and counit (7‘72)71 o PoX so that
A is full and faithful. Hence 7, is an isomorphism if and only if (PQZ/_[,A) is an
equivalence of categories. In this case (Tg, Pg) identifies with (L_L’P) via A.

6) If 7%, is an isomorphism so is 7,.
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Proof. We have

JSHLieP (£> H]SBrLieJﬁieP (§> H]SBrLie,P]%rJgialg <2) Plnglgialg MZQ) J°P

so that HypiP = P. By Proposition 4.7, (J]‘;ialg,Js) : (T, P) — (T}, P§,) is a com-
mutation datum. Moreover, by Lemma A.5, JBialg © Blalgy — BrBialg), preserves
coequalizers. By Proposition B.11, the right adjoint functor R = Pj, is comparable
and we can use the notation of Definition 1.9. By Lemma A.4 and Lemma 1.11 we
have that P is also comparable. Applying iteratively Proposition 2.5, we get functors
Jn + My — (Briy),,, for all n € N, such that J3 o P, = (P§,)n © J§;,,- Let Mz € Mo
and consider Ap;J5M,. Note that, by construction we have

JQSMQ = (Jlle, Jf,ul o (P}gr)1<fM1) and Jlle = (JSM07 JSN,O o PérCSMo)

where ¢§ : (T%,)iJ7 — JgialgTi for i = 0,1 are the canonical transformations of the
respective commutation data. By construction we have Ap,J§Ms = (Mo, ¢y, My, [—])
where

[~ := HIg, T o 0 HIg, Pi, (5 Mo 0 0 = po © HI} PG5 Mo 0 Oy

Mo,cng, M)

Now Ag,J5Ms € BrLie’ so that (Mo, ¢y, m,, [—]) € BrLieas ie. (Mo, [—]) € Liem
and ApyJs My = JP;, (Mo, [—]). Thus Im(Ag,J3) C Im(Jf,,). Hence, by Lemma 1.12,
there is a unique functor A : My — Lienq such that Ap.J5 = J; A. This equality
implies that A acts as the identity on morphisms and that

AM; = (M07 [_]) :

Note that, by Proposition 4.7, we have (§ = Idff3 s+ so that we obtain

[-]:==hoo éMo'
We have
s _ s _ s s (82) s 715 (78) 1s
JLic‘/‘\‘P2 - ABTJQ Py = ABT(PBr)QJBiaIg - PBrJBialg - JLicP'

Since J7, is both injective on morphisms and objects, we get AP» = P. It is clear that
HLieA = U072. We have

TN B U T A = U Ay 5

-

so that Z/_I‘E‘BTABYJQ9 = UA. Thus, by Lemma 1.12, there is a natural transformation y :=
CGUr2 o X5, J5 ¢ UA — T1U172 such that J§1a1g>_< = ({U1,2 o X, J5. We compute
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(7 ))
JieTLA = Mg, JTieN = Mo, ABr 3 (94)

so that

J*Hrie (PX 0o L) = J°HriePX © J° HrieL A

(55) (49),(94)

= ‘]SPX ° HBrLle‘]LlenLA Plgrjéialgx o I{]%rLie77SB1‘LABFJ§q

= P§,(1U12 © PR, XBr /3 © Hpie Mo, ABr 5

(76)

= PBrCl Ul ,2 © HBI‘LIQPBI‘XBTJQ © HBrLlenBrLABI‘JQ
= P5,GU12 0 H e (PeXir © M1, ABr) J5

)2) S =S S
=Uoa (PBr> GGU120Up1 (77Br)1 Ui2J;

(92)

= Uoa (P5,)1 GUr20Uo1 (B,)1 J7Ur2 = Uo1 (Pgy) 65 © (MBr)1 J1) Ut 2
=Up1JimUie = J°Up1mUi 2

so that
Hise (Px o iLA) = U1 Uy 2. (95)

We have

— _ (80)
J]%ialg (X © pA) JBlang © JBlalgpA - Cl U1 20 XBrJQ op JLleA

= Ui 20Xp,J5 0 p°AprJ3 = YR OWfUl 2J3

= (GUigomiJiUi2 = ((fomiJ7) Ur 2 (JBlalgTrl OCO) Ui,z

_ S
= JBiatgmU1,2

where () follows by construction of ( (see the proof of Proposition 2.5). Thus we obtain
X opA = m U 2.

Assume 7§, Ay is an isomorphism. By Theorem 7.1, we have that Xg, is an isomor-
phism. Thus, from Jg;, . X = (§U1,2 0 X, /3 and the fact that ¢7 is an isomorphism, we
deduce that ¥ is an isomorphism too. Moreover, by (94), we also have that fjpA is an
isomorphism. From this we get that 7, AP, is an isomorphism. Since AP, = P we have
that 7jp,P is an isomorphism. By [34, Proposition 2.8|, this means that the adjunction
(U, P) is idempotent.

Moreover, since 7, A is an isomorphism, by (95), we deduce that 7, U 2 is an isomor-
phism ie. (71, P1) is idempotent (cf. [4, Remark 2.2]). Note that in this case we can
choose Ty := TlUl,g and it is full and faithful (cf. [4, Proposition 2.3]) i.e. fj2 is an
isomorphism. The choice Ty := TlULg implies we can choose the canonical projection

9 TlULg — T4 to be the identity. In this case by definition, 7; is given by the for-
mula 71Uy 2 = U 2%2. Thus the second term of 95 becomes Uy 171U1,2 = Uy 1U1 272 =
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Uo,2fle = HrieATj2. Since Hi;e is faithful, by (95) we obtain Py o A = A7y which
means that (Idgiaig,,, A) : (T2, P2) — (U, P) is a commutation datum whose canonical
transformation is Y.

We already observed that Ap,J5 = Jf;,A. Moreover, from J;; o P, = (P§,)n © i
we deduce

_ — (78) _
J5 (PaU) = (Pg)2 8 = ((Pho)oUss:) Jise-

We know that Ji,, is full, faithful and injective on objects. Since J° fulfills the same
e J%) : (T.P) =
(T B P]gr), we deduce that the same is true for J; and hence, by same argument, also
for J5. Thus we can apply Lemma 2.9 to the case L' = ((Pér)zafar) R = A, F =
J5,.G = J§,,. Then L = PU{ and R = A, the pair (L, R) is an adjunction and the
unit and counit of (L, R) and (L', R') are related by (11). Since F' and G are both
conservative, we get that e and 1 are an isomorphism whenever € and 1’ = 7g,;, are. By

properties, by Proposition 2.5 applied to the commutation datum (Jg

Theorem 7.1, we know that Ag; is full and faithful i.e. € is an isomorphism and hence
€ is an isomorphism i.e. A is full and faithful. It is clear that (Pslf, A) is an equivalence
if and only if 1 is an isomorphism. By (79), we have J7; 7., = 75,1,J/5: 1-€- GiL = 7'G.
Thus, since G is faithful, (11) implies n = 7. If we write (7) for the commutation datum
(Jhiatgs J5) : (T2, Po) = ((T,)2, (P,)2), we get (Pg§,)2C5 o (715,)4 J5 = J572 (note that
(M), is an isomorphism by Theorem 7.1-2)). Using this equality we compute

J5 ((32)7 0 Pox) = J5 (72) ™ 0 S5 Pax = J5 (7)™ © (Pi)2 i X
= J5 (72) " o (Pg)2 ((iUr2 0 X3, J5)
= [(P5,)2G5 © (T3,)2 J317" © (P5)2Gi Ut 2 © (Piy)2 X J3
= (T3)7 ' J5 0 (P2 (G3) ™" o (P3)2G U2 © (Ph,) X, s -
Now, by construction of (5 (see the proof of Proposition 2.5), the fact that mo :

T1Ui2 — T is the identity and that also 75 is the identity (see Theorem 7.1-2)), we
have that (5 = (7U;,2 and hence

F () o Bx) = J5 (1) o Pox) = (h)s ' J5 © (P)oXh /3
= (@) "o (Pio)aXi, ) J5 = €F.
Thus, by (11), we get € = (7j2) " o P,X. O
The following remark was inspired by the comments of the Referee.

Remark 7.3. 1) Theorem 7.1 establishes that the functor P§, has a monadic decompo-
sition of monadic length at most two whenever 73 ; Ag, is invertible. In this case note



536 A. Ardizzoni, C. Menini / Journal of Algebra 448 (2016) 488-563

that this monadic decomposition cannot have monadic length 0 as 7%, is not full and
faithful in general: the unit 7%, : Id — P35 T4, needs not to be invertible; for instance, if
M is the category of vector spaces over a field k and V' is a vector space endowed with
the canonical flip 7, then 7% (V,7) is not surjective. It is not clear to us if the length
above can be exactly 2. A similar argument applies to the setting of Theorem 7.2.

2) Tt is natural to wonder if there is a primitive type functor, similar to the one in
Theorem 7.1, but having monadic decomposition of monadic length strictly greater than
two. In this direction, consider the adjunction (TBr,PBr) of 3.6 in the case when M
is the category of vector spaces over a field k. Then we expect that the functor Pg,
has a monadic decomposition of monadic length strictly greater than two. Analogously
the functor P of Theorem 7.2 is expected to have a monadic decomposition of monadic
length strictly greater than two if we drop the assumption that M is symmetric. These
facts will be hopefully investigated in a different paper.

Definition 7.4. An MM-category (Milnor-Moore-category) is an abelian monoidal cat-
egory M with denumerable coproducts such that the tensor products are exact and
preserve denumerable coproducts and such that the unit 73, @ IdprLies, — P US, of
the adjunction (Z/_l%r, Pgr) is a functorial isomorphism i.e. the functor ZT{“”Br : BrLie, —
BrBialg’, is full and faithful (see e.g. [11, dual of Proposition 3.4.1, page 114]).

Remark 7.5. 1) The celebrated Milnor—-Moore Theorem, cf. [32, Theorem 5.18] states
that, in characteristic zero, there is a category equivalence between the category of Lie
algebras and the category of primitively generated bialgebras. The fact that the counit
of the adjunction involved is an isomorphism just encodes the fact that the bialgebras
considered are primitively generated. On the other hand the crucial point in the proof
is that the unit of the adjunction is an isomorphism.

In our wider context this translates to the unit of the adjunction (U}, Pf,) being a
functorial isomorphism. From this the definition of MM-category stems. Note that for a
MM-category M we can apply Theorem 7.1 to obtain that the functor Pg, has a monadic
decomposition of monadic length at most two. Moreover we can identify the category
(Bri), with BrLie’.

2) In the case of a symmetric MM-category M the connection with Milnor-Moore
Theorem becomes more evident. In fact, in this case, we can apply Theorem 7.2 to obtain
that the unit of the adjunction (Z/_{ , 77) is a functorial isomorphism.

8. Lifting the structure of MM-category

We first prove a crucial result for braided vector spaces.

Theorem 8.1. The category of vector spaces over a fixed field k of characteristic zero is
a MM-category.
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Proof. Let M = 901 be the category of vector spaces over k. We have just to prove that
g1, 1s an isomorphism. Let (M, ¢, [—]) € BrLie’,. Since we are working on vector spaces,
we can express explicitly the universal enveloping algebra U (M, ¢, [—]) with elements
as follows

T, (M, c)

H%r(M’C’[_]): ([m®y]—x®y+6(1’®y) |$,y€M).

By Lemma 5.3, (M,[-]) is a Lie c-algebra and U5, (M,c,[~]) coincides with the
corresponding universal enveloping algebra in the sense of [27, Section 2.5|. Hence we
can apply [27, Lemma 6.2] to conclude that the canonical map from M into the primitive
part of U3, (M, c,[—]) is an isomorphism. In our notation this means that

HHSBrHErLiCﬁSBrL (Mv & [_]) M — HH%rHErLiCPEra]%r (M, ¢, [_])

is bijective. Note that H, I3, and Hg ;. are conservative by 3.3, Definition 3.1 and
Definition 5.1 respectively. Thus HI% HE ;. is conservative and hence we get that
Ng,, (M, ¢, [—]) is an isomorphism for all (M, ¢,[—]) € BrLie},. We have so proved that
Mg, is an isomorphism. O

In the rest of this section we will deal with symmetric braided monoidal categories
M endowed with a faithful monoidal functor W : M — 9 which is not necessarily
braided. The examples we will treat take M = 9 for a dual quasi-bialgebra H or
M = g for a quasi-bialgebra case. Note that in general the obvious forgetful functors
need not to be monoidal, see e.g. [28, Example 9.1.4] so that further conditions will be
required on H. Note that the results on 9 and g9t are not dual each other, unless H
is finite-dimensional.

Lemma 8.2. Let M and N be monoidal categories. Any monoidal functor (F,¢g, ¢2) :
M — N induces a functor BrLieF : Brlien, — Brliex which acts as F' on mor-
phisms and such that BrLieF (M, car, [—],,) = (F M, cpa, [=]ppy) where (FM, cpar) =
BrF (M, cy) and

gy =F [y od2(M,M): FM ® FM — F (M).

Moreover the first diagram below commutes and there is a unique functor BrLie® F such
that the second diagram commutes.

. BrLieF . . BrLie® F .
BrLiepy —— BrLiey BrLiej, —— BrLie},

Hp:Lie ¢ ¢ Hp:Lie I8, Lie ¢ wIsBrLie
BrF . BrLieF .
Brpy ——— Bry BrLiep —— BrLiens
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BrLie, Prlie I BrLiej,
Hiunie | } Hevie (96)
Br°F

Bri, Brj,

Furthermore the functors BrLieF and BrLie®F are conservative whenever F is.
Proof. It is straightforward. O

Theorem 8.3. Let M and N be monoidal categories. Assume that both M and N are
abelian with denumerable coproducts, and that the tensor products are exact and pre-
serves denumerable coproducts. Assume that there exists an exact monoidal functor
(F, ¢o, p2) : M — N which preserves denumerable coproducts. Then we have the fol-
lowing commutation data with the respective canonical transformations

(BrAlg®F,BrLie® F) : (UgS,, L) — Uz, LB,) ,
Chop s UG, (BrLie® F) — (BrAlg® F)Ug,,
(BrBialg®F, BrLie®F) : (U3, Pg,) = Ut Pi:)
(oo s U, (BrLie F) — (BrBialg® F) U, .

Proof. A direct computation using (96) shows that
I§,Lie (BrLie®F) L3, (B, mp,up, cg) = I§,1.Le, (BrAlg®F) (B,mp,up,cB) .

Since both functors act as F on morphisms, we get I3, (BrLie’F)Ls =
I3 e L, (BrAlg®F). Since 1§, is both injective on morphisms and objects we ob-
tain

(BrLie®’F') L, = L5, (BrAlg®F).
Now, using in the given order (54), (96), again (54), (38) and again (96), we get
the equality I% HE ;. (BrLie®F)¢ = I HE ;..6 (BrBialg®F). Then one shows that
(BrLie®F) ¢ and ¢ (BrBialg®F) have the same domain and codomain. Thus, from
I3 HE 1. (BrLie®F) & =I5 HE ;.6 (BrBialg®F) we deduce that
(BrLie’F) ¢ = £ (BrBialg™F) .

Consider the natural transformation (%, : Uy, (BrLie’F) — (BrBialg®F)Ug, of
Lemma 2.2. By definition

EISBrL = EISBrL (BrBlalgsF> _%r o géBr (BI‘LIGGF) ﬁ%rL'

It is straightforward to check that
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%rz]%rL = C]%rL (97)

where ¢, : U5, (BrLie®F) — (BrAlg®F) U, is the canonical morphism of Lemma 2.2,
and also

CISBrL o ps (BI‘LIGSF) = (BI‘A]gSF) ps o Cl%ngrLie‘
Let (M,cn,[—],,) € BrLiej,. Then we have that (M ® M,cygm) € BrLie), where

eveom = (M ®@cpy @ M) (epr @ epr) (M & cpr @ M). Tt is easy to check that [—-] : M ®
M — M and 0., : M ®@ M — QT M induce morphisms of braided objects

[=]°: (M & M, cypen) — (M, cpr) and
fM,cM) : (M® M, CM®M) - QSB]rjj}%r <M7 CM)

such that
HHSBr [_]s = [_] and HHSBrefM,cNI) = Q(M,CM)'
Let us check that the following is a coequalizer in BrAlgj,

T}gr[_]s p° (]VI»CMv[*]M)
T, (M @ M, cnrem) T, (M, en) ————— U, (M, ear, [=]) s -

B Te (Moear)oTE, 000 ¢ 1)

(98)
By applying Haiglf, ), to this diagram we get the diagram
T[] Hargplg e (Moear,[—],y)
T(M & M) T (M) ——= = HaglTtyie (M., [-]),
€TMOTO(rr )
(99)

which can be checked to be a coequalizer in Alg,,. By Lemma B.6 we have that Haj,
reflects coequalizers and by [11, Proposition 2.9.9], we have that I, Alg reflects coequal-
izers. Thus (98) is also a coequalizer. By Lemma B.10, since F' preserves coequalizers,
we get that AlgF preserves the coequalizer (99). Denote by AlgF(99) the coequalizer
obtained in this way. Now, with the same notation, AlgF'(99) can also be obtained as
Hpglp, o1 (BrAlg® F)(98) (this is straightforward). Since we already observed that both
Hplg and I, ), reflect coequalizers, we deduce that (BrAlg®F)(98) is a coequalizer too.
This coequalizer appears in the second line of the diagram
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T5e[=1rm p®(BrLie® F)M

T3, (FM @ FM, cryuerm) T Hpop s (BrLie* F) M ———= U3, (BrLie* F) M
B T8 (FM,crnn)oT5,00mnr, o)
l Bt M l Char M
_ v FT35,[-1° _ Fp° M _ o
FTg, (M ® M, cargnr) FT§, (M, car) Fug, M

F (e T (Moern) 0T, 6r,c, )
where, for sake of shortness, we set M := (M, cpr, [—],,) and F := BrAlg®F. One proves
that the morphism

TS ¢o(M,M
) o240

T3, (FM ® FM, craorar T4 (F (M © M), cp(uem))

= T3, (Br*F) (M & M, earnr) M)

(BrAlg®F) T, (M @ M, carenr)

is an isomorphism (we just point out that, as one easily checks, the morphism ¢o (M, M)
is a braided morphism so that the morphism above is well-defined) and it completes
the diagram above on the left making it a serially commutative diagram. The fact it is
serially commutative depends on the following equality that can be easily checked

IBrA1CBr = CBrlB:- (100)

Now, by (100) we have I, 1,(8, = (eI, On the other hand, by Proposition 3.7 (here we
use the fact that F' preserves denumerable coproducts), we know that (g, is a functorial
isomorphism. Since I, 5}, is conservative, we deduce that (3, is a functorial isomor-
phism. Thus, by the uniqueness of coequalizers (note that the first line in the diagram
above is just (98) applied to (BrLie®F) (M, car, [—],,) = (FM, cpum, [=]p,,) instead of
(M, cnm, [—]m)), we get that (5.1 (M, ¢, [—]) is an isomorphism too. Thus (g ¢ is a func-
torial isomorphism.

By (97) we have Uf (% 1 = (5., so that (% ; is a functorial isomorphism too. O

Theorem 8.4. Let M be an abelian monoidal category with denumerable coproducts and
such that the tensor products are exact and preserve denumerable coproducts. Let N be a
MM-category and assume that there exists a conservative (see 2.1) and exact monoidal
functor (F,¢o,p2) : M — N which preserves denumerable coproducts. Then M is a
MM-category.

Proof. By Theorem 8.3, we have the following commutation datum
(BrBialg®F, BrLie’F) : (Ug,, Pg,) — (U, Pa;) -

By Lemma 8.2, we know that BrLie®F' is conservative as F' is. By Lemma 2.7, we have
that the unit 7,1, : IdpyLies,, — Pg.UE. is a functorial isomorphism. O

Theorem 8.5. Let M be the category of vector spaces over a field k with chark = 0. Let
M be an abelian monoidal category with denumerable coproducts, such that the tensor
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functors are exact and preserve denumerable coproducts. Assume that there exists a con-
servative and exact monoidal functor (F, ¢g, ¢2) : M — I which preserves denumerable
coproducts. Then M is a MM-category.

Proof. By Theorem 8.1 we have 9 is a MM-category. We conclude by Theorem 8.4. O
9. Examples of MM-categories

Example 9.1. Let k be a field with char (k) = 0. Let H be any Hopf algebra over k
and consider the monoidal category of Yetter—Drinfeld modules (gyD, Rk, lk). Then the
forgetful functor F : (gyD,(&k,k) — (M, Rk, k) is monoidal. One can prove by hand
that gyD is abelian with denumerable coproducts. The tensor products are clearly exact
and preserve denumerable coproducts in gyD as this is the case in 9. Furthermore F' is
clearly conservative and exact and preserves denumerable coproducts. By Theorem 8.5,
we conclude that (g)ﬂD,&k,k) is a MM-category. Note that, by Theorem [35], this
category, with respect to its standard pre-braiding, is not symmetric unless H = k.

9.1. Quasi-bialgebras

The following definition is not the original one given in [17, page 1421]. We adopt the
more general form of [17, Remark 1, page 1423] (see also [26, Proposition XV.1.2]) in
order to comprise the case of monoidal Hom-Lie algebras. Later on, for dual quasi-
bialgebras, we will take the simplified respective definition from the very beginning
having no meaningful example to treat in the full generality.

Definition 9.2. A quasi-bialgebra is a datum (H, m,u, A, e, ¢, A, p) where (H,m,u) is an
associative algebra, A : H — H ® H and € : H — k are algebra maps, \,p € H are
invertible elements, ¢ € H ® H ® H is a counital 3-cocycle i.e. it is an invertible element
and satisfies

HH®A)(9) (ARHH) () =(1a®¢) (HRARH)(¢) (¢®1n),
(Hoe® H)(¢)=p2 A"

Moreover A is required to be quasi-coassociative and counitary i.e. to satisfy

(HoA)A(h)=¢- (A H)A(h) ¢,
(e®@ H)A(h) = \"1h), (H®e)A(h)=p thp.
A morphism of quasi-bialgebras Z : (H,m,u, A, e, ¢, A, p) — (H',m/ v/, A& &' N, p)

(see [26, page 371]) is an algebra homomorphism = : (H,m,u) — (H',m’,u’) such that
(EQE)A = ANVS, &S = ¢, (EQERE)(¢) = ¢, Z2(\) = N and E(p) = o It is
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an isomorphism of quasi-bialgebras if, in addition, it is invertible. We will adopt the
standard notation

P ®¢*® ¢ :=¢ (summation understood).

In the case when ¢ is not trivial and A = p = 1y, we call H an ordinary quasi-bialgebra.
If further ¢ is trivial we then land at the classical concept of bialgebra.

A quasi-subbialgebra of a quasi-bialgebra H' is a quasi-bialgebra H such that H is a
vector subspace of H' and the canonical inclusion is a morphism of dual quasi-bialgebras.

Let (H,m,u,A, e, ¢, \,p) be a quasi-bialgebra. It is well-known, see [26, page 285
and Proposition XV.1.2], that the category g9t of left H-modules becomes a monoidal
category as follows. Given a left H-module V, we denote by u = pt, : HeV — V,
u(h ® v) = ho, its left H-action. The tensor product of two left H-modules V' and W
is a module via diagonal action i.e. h(v® w) = hjv ® how. The unit is k, which is
regarded as a left H-module via the trivial action i.e. hk = ¢ (h) k, for all h € H, k € k.
The associativity and unit constraints are defined, for all VW, Z € g2 and v € V,w €
W,z € Z,by ay.w.z(v@w)®2) := ¢lv@(P*w@¢32), lv (1&v) := Av and ry (v®1) := po.
This monoidal category will be denoted by (g9, ®,k, a,l, 7). Given an invertible element
a € H® H, we can construct a new quasi-bialgebra H, = (H, m,u, Ay, €, day A, Pa)
where

Ao(h)y=a-A()-a™t, A=A-(ea@H)(a™), pa=p - (Hoep)(a ™),
b =(1gp@a) (HRA)(a) ¢- (A2 H)(a™') (e ' ®1x).

Definition 9.3. We refer to [26, Proposition XV.2.2] but with a different terminology
(cf. [17, page 1439]). A quasi-bialgebra (H,m,u,A,e,¢, A, p) is called quasi-triangular
whenever there exists an invertible element R € H ® H such that, for every h € H, one

has
| (#esred) (R 10 R?) (¢ e¢®®e?)
(A H)(R) = 19 R ® R?) (¢' ® ¢ ® ¢?)
B (¢3®¢1®¢2)—1 (R1®1®R2) (¢2®¢1®¢3)
(H®A)(R) = (R'@ R?®1) (¢' @ ¢ ®<;53f1

AP (h) = RA (k) R™*

where ¢ := ¢! ® > ® ¢, R = R' ® R?. A morphism of quasi-triangular quasi-bialgebras
is a morphism = : H — H' of quasi-bialgebras such that (E® E) (R) = R'.

By [26, Proposition XV.2.2], g9t = (gM, ®,k, a,l,r) is braided if and only if there is
an invertible element R € H ® H such that (H,m,u, A, e, $, A, p, R) is quasi-triangular.
Note that the braiding is given, for all X,Y € g9, by
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cxy: XY 2YeX:r@y— Ry R

Moreover g1 is symmetric if and only if we further assume R?> ® R' = R™'. Such
a quasi-bialgebra will be called a triangular quasi-bialgebra. A morphism of triangular
quasi-bialgebras is just a morphism of the underlying quasi-triangular quasi-bialgebras
structures.

Given an invertible element « € H ® H, if H is (quasi-)triangular so is H, with
respect to Ry = (0? ® o) Ra™!, where a := o! ® o?.

Let (H,m,u,A, e, ¢, A, p) be a quasi-bialgebra. We want to apply Theorem 8.5 to
the case M = gN. Let F' : g9t — 9 be the forgetful functor. We need a monoidal
(F,’(ﬂo,i/)g) : (Hi)ﬁ7®7k,a,l7r) — M.

Lemma 9.4. Let (H,m,u,A,e,¢,\,p) be a quasi-bialgebra. Let F : g9 — M be the
forgetful functor. The following are equivalent.

(1) There is a natural transformation g such that (F,Idy,v2) : (g9, ®,k,a,l,r) —
M is monoidal.

(2) There is an invertible element o € H ® H such that H, is an ordinary bialgebra.

(3) There is an invertible element « € H ® H such that

p=HA) (a) - (lg@a) (a®1ly) (A H)(a), (101)
(en®H)(a)=2A,  (H®eg)(a)=p. (102)

Moreover, if (2) holds, we can choose vy (V,W) (v @ w) := a1 (v @ w).

Proof. (1) < (2) Cf. [2, Proposition 1]. (2) < (3) We have that H, is an ordinary
bialgebra if and only if ¢, = 1y ® 1y ® 1y, A\q = 1y and p, = 1y, if and only if «
fulfills the equations in (3). O

Note that F' : g9t — 9 is clearly conservative and preserves equalizers, epimorphisms
and coequalizers. Furthermore we need 91 to be braided.

Theorem 9.5. Let (H,m,u,A,e,¢,\, p) be a quasi-bialgebra such that (101) and (102)
hold for some invertible element v € H ® H. Let M be the monoidal category
(g9, ®,k, a,l,r) of left modules over H. Assume chark = 0. Then M is a MM-category.
In particular, if (H, m,u,A,e,¢,\, p) is endowed with a triangular structure, then M is
a symmetric MM-category.

Proof. First note that M is a Grothendieck category. In M the tensor products are
exact and preserve denumerable coproducts. We can apply Theorem 8.5 to the monoidal
functor (F,Idg,vs) : (g9, ®,k,a,l,r) — M of Lemma 9.4. Then M is a MM-category.

If (H,m,u,Ae,¢, A, p) is endowed with a triangular structure, by the foregoing M
is also symmetric monoidal. O
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Example 9.6. Let H be a bialgebra over a field k of characteristic zero. Then H is a
quasi-bialgebra with ¢, A, p trivial. Note that (101) and (102) hold for v = ey ®e . Thus,
by Theorem 9.5, the monoidal category g9 of left modules over H is an MM-category.

Example 9.7. Examples of triangular quasi-bialgebra structures on the group algebra
k [G] over a torsion-free abelian group G are investigated in [2, Proposition 3]. Consider
the particular case when G = (g) is the group Z in multiplicative notation, where g is
a generator. Let (¢, a,b) € (k\{0}) X Z x Z. In view of [2, Proposition 3|, we have the
triangular quasi-bialgebra

k[(9)]5" = (kl(9)], A, e, 0, A, p, R)

on the group algebra k[(g)] which is defined by

Alg)=g®g. <elg=1 ¢=¢"0lyg

A=aq9™"  p=q¢", R=g""og "
In order to apply Theorem 9.5 in case H = k[(g)]%*, we must check that (101) and (102)
hold for some invertible element v € H ® H. By [2, Theorem 2|, one has k[(g)]%" =
k[(g)]o Where o := ¢ 1g7% ® g® and k[(g)] is the usual bialgebra structure on the group
algebra regarded as a trivial triangular quasi-bialgebras (i.e. ¢, A, p, R are all trivial).
Set v := a™! = q¢? ® g7°. Then H, = k(g) which is an ordinary bialgebra so that,
by Lemma 9.4 we have that (101) and (102) hold for our . Hence by Theorem 9.5 the
symmetric monoidal category (g9, ®,k, a,l, ) of left modules over H is a MM-category.

Definition 9.8. Let C be an ordinary category. Following [16, Section 1], we associate
to C a new category H (C) as follows. Objects are pairs (M, fas) with M € C and
fu € Aute(M). A morphism € : (M, far) — (N, fy) is a morphism £ : M — N in C
such that fy o & = £ o far. The category H (C) is called the Hom-category associated
to C.

Example 9.9. Take C := 9. In view of [2, Theorem 4], to each datum (g, a,b) € (k\{0}) x
Z x 7 one associates a monoidal category

Hy* (M) = (H(M), @, (k, fi),a,1,7)
which consists of the category H(91) equipped with a suitable braided (actually symmet-
ric) monoidal structure. By [2, Theorem 4] there is a strict symmetric monoidal category
isomorphism

(W, wo, w2) : k[<g)]g=bm - HZ’b ().

The underlying functor W : i) 9t — H (9M) is given on objects by
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W(XMU’Xk[<g>]®X_>X):(X7fXX_>X)7

where fx () := px (9 ® z), for all z € X, and on morphisms by W¢ = £.

Composing W~ with the forgetful functor k{(g”g,bim — M we get a monoidal func-
tor H2 (M) — M to which we can apply Theorem 8.5 to get that H® (9M) is an
MDM-category.

Remark 9.10. By [2, Proposition 5], M := H1"~" (M) is the symmetric braided monoidal
category H (9M) of [16, Proposition 1.1]. Thus, by the foregoing, H (90) is a MM-category.
By [16, page 2236], an object in (M, [—]) € Liex, is nothing but a monoidal Hom-Lie alge-
bra. By Remark 6.5, U (M, [~]) as a bialgebra is a quotient of TM. The morphism giving
the projection is induced by the canonical projection pg : QT'M — R := U§,Jrie (M, [—])
defining the universal enveloping algebra. At algebra level we have

ol (M, [-]) = o
(1,02 (@ @ Y) 2,y € M)
B ™
([Ivy] - 9(M,CM,M) (z®y)lr,y € M)
B ™
(Yl —z@ytemm (r®y) |2,y € M)
TM

([z,y] —z@y+y@zlz,y e M)

which is the Hom-version of the universal enveloping algebra, see [16, Section 8]. Note
that, as a by-product, we have that 7y, : Idric,, — PU is an isomorphism so that
(M, [-]) = PU (M, [-]).

9.2. Dual quasi-bialgebras

First, observe that dual quasi-bialgebras can be understood as a dual version of
quasi-bialgebras just in the finite-dimensional case. In fact, for an infinite-dimensional
quasi-bialgebra H (as in the case for H = kZ considered above) it is not true that the
dual is a dual quasi-bialgebra so that the results in the two settings are independent, in
general.

Definition 9.11. A dual quasi-bialgebra is a datum (H,m,u, A e,w) where (H,A,¢) is
a coassociative coalgebra, m : H ® H — H and u : k — H are coalgebra maps called
multiplication and unit respectively, we set 15 := u(ly), w: H® H® H — k is a unital
3-cocycle i.e. it is convolution invertible and satisfies

wHQHM)*xw(mMQHRQH)=(eQuw)*w(HImQ H)*(w®e) (103)
and w(h®k®l)=¢c(h)e(k)e(l) whenever 1y € {h,k,l}. (104)
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Moreover m is quasi-associative and unitary i.e. it satisfies

m(H@m)*xw=wsxm(m®e H),
m(lg®h)=h and m(h®ly)=h, for all h € H.

The map w is called the reassociator of the dual quasi-bialgebra.

A morphism of dual quasi-bialgebras Z : (H,m,u, A, e,w) = (H',m/, v/, A’ e',0') is
a coalgebra homomorphism = : (H,A,e) — (H',A’,¢’) such that m/(Z ® ) = Em,
Zu =o' and W (E®E®E) = w. It is an isomorphism of dual quasi-bialgebras if, in
addition, it is invertible.

A dual quasi-subbialgebra of a dual quasi-bialgebra H’ is a quasi-bialgebra H such
that H is a vector subspace of H' and the canonical inclusion is a morphism of dual
quasi-bialgebras.

Let (H,m,u, A, ¢, w) be a dual quasi-bialgebra. It is well-known that the category 9
of right H-comodules becomes a monoidal category as follows. Given a right H-comodule
V', we denote by p=p}, : V =V @ H, p(v) = vy ® v, its right H-coaction. The tensor
product of two right H-comodules V' and W is a comodule via diagonal coaction i.e.
p(v@w) = vg @ wy ® vywy. The unit is k, which is regarded as a right H-comodule
via the trivial coaction i.e. p (k) = k ® 1y. The associativity and unit constraints are
defined, for all U, V,W € M7 and uw € U,v € V,w € W,k €k, by apy.w((u®@v) @w) :=
ug @ (vg @ wo)w(uy ® v1 @ wy), ly(k @ u) := ku and ry(u ® k) := uk. This monoidal
category will be denoted by (M7, ®,k, a,l,7).

Let (H,m,u, A, e,w) be a dual quasi-bialgebra. Let v : H® H — k be a gauge trans-
formation i.e. a convolution invertible map such that v(1g ® h) = e (h) = v(h ® 1g)
for all h € H. Then HY := (H,m",u, A,e,w") is also a dual quasi-bialgebra where

mli=vsmxv ! (105)

w'i=(c@v)xv(Hem)rwxv ' (me H)* (v iee). (106)

Definition 9.12. A dual quasi-bialgebra (H, m,u, A, e,w) is called quasi-co-triangular
whenever there exists R € Reg (H ®2z ]k) such that

wiagng* R(H®lg)(H®e® H)
R H) = X ,
(m® H) [*w_l(H@)TH’H)*mk(E@R)*w
w ity nen * R(H®ly) (H®e® H)
Hem)= :
R(H@m) xw (T @ H)xmg (R®e)*w? ’

mTyg g * R =Rx*xm.

By [28, Exercice 9.2.9, page 437], [26, dual to Proposition XIII.1.4, page 318], MH =
(DﬁH, Rk, Kk, a,l, 7“) is braided if and only if there is a map R € Reg (H®2, k) such that
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(H,m,u, A, e, w, R) is quasi-co-triangular. Note that the braiding is given, for all X,V €
M by

cxy XOY 2 YOX:z@y— Y yo @ xR (@0 @)

Moreover I is symmetric if and only if cyx ocx,y =ldxgy forall X,Y € M ie. if
and only if

> w0 @y R (v @ o) R (2 @y) =roy.

This is equivalent to requiring that
R (hqy @ ly) R (L @ hyy) = e (h)em (1), for every h,l € H. (107)

Such a dual quasi-bialgebra will be called a co-triangular dual quasi-bialgebra.

Let (H,m,u,A,e,w) be a dual quasi-bialgebra. We want to apply Theorem 8.5 to
the case M = M7, We need a monoidal functor (F,dg, ¢2) : (M7, @, k,a,l,7) — M.
Take F': MH — 9 to be the forgetful functor. Note that F is clearly conservative and
preserves equalizers, epimorphisms and coequalizers. Note also that we will further need
M to be braided.

Lemma 9.13. Let (H,m,u,A,e,w) be a dual quasi-bialgebra. Let F : M — O be the
forgetful functor. The following are equivalent.

(1) There is a natural transformation ¥y such that (F,1dy, ¢2) : (M7, @k, a,l,7) —
M is monoidal.

(2) There is a gauge transformation v : H @ H — k such that HY is an ordinary
bialgebra.

(3) There is a gauge transformation v: H® H — k such that

w=v'(Heom)*(c@v ) *x(v®e)*v(m® H) (108)
Moreover, if (2) holds, we can choose ¢o (V,W) (x @ y) = 20 @ yov ! (1 @ y1)-
Proof. It is similar to the one of Lemma 9.4. O

Lemma 9.14. (Cf. /28, Lemma 2.2.2].) Let (H,m,u, A, e,w, R) be a quasi-co-triangular
dual quasi-bialgebra. Then R is unitali.e. R(1g ® h) =e(h) = R(h® 1) forallh € H.

Theorem 9.15. Let (H,m,u, A e,w) be a dual quasi-bialgebra such that w fulfills (108)
for some gauge transformation v : H ® H — k. Let M be the monoidal category
(E)JTH,@k,k,a,l,r) of right comodules over H. Assume chark = 0. Then M is a MM-
category. In particular, if (H,m,u, A e,w) is endowed with a co-triangular structure,
then M is a symmetric MM-category.
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Proof. It is analogous to the proof of Theorem 9.5 but using, from Lemma 9.13, the
functor (F,Idy, ¢2) : (M7, ®,k,a,l,7) — M. O

Example 9.16. Let H be a bialgebra over a field k of characteristic zero. Then H is a
dual quasi-bialgebra with reassociator w = eg ® ey ® eg. Note that w fulfills (108) for
v = ex ® eg. Thus, by Theorem 9.15, the monoidal category 9 of right comodules
over H is a MM-category. In particular, for H = k[N], the monoid bialgebra over the
naturals, defined by taking An = n®mn and € (n) = 1 for every n € N, then the category
IMMH is the category of N-graded vector spaces V = @p,enV, with monoidal structure
having tensor product given by (V @ W), = @' (V; ® W,_;) and unit k concentrated
in degree 0. The constraints are the same of vector spaces. The category M is braided
with respect to the canonical flip (this can be seen by showing that R = ey ® ey turns
H into a co-triangular bialgebra, see remark below).

Remark 9.17. Let (H,m,u,A,e,w, R) be a co-triangular dual quasi-bialgebra. Assume
that w fulfills (108) for vy = ey ®epg. This means w = ey Qe ey and (H,m,u, A, e, R)
is a co-triangular bialgebra i.e. for every x,y, 2z € H we have

Rzy®z)=R(x®2z1)R(y®z22), R(x®yz)=R(x1®2)R(z2QvYy),
Y121 R (22 ® y2) = R (21 @ y1) 2292

Let (M,[—]) € Lieas. Then (50) and (56) become

[,9] = = [voy 2] B (20 ®yq))
D gl 2+ oy 2] 2R (20) @ ya)20)
+ > [z 20 v0)] B (zyvay @ 2ay) =0.

This means that (M, [—]) is an (H, R)-Lie algebra in the sense of [13, Definition 4.1]. By
Remark 6.5, U (M,[~]) as a bialgebra is a quotient of TM. The morphism giving the
projection is induced by the canonical projection pr : QTM — R := U§ Jrie (M, [—])
defining the universal enveloping algebra. At algebra level we have

) 57 TM
UM, [=]) = 0UM,[-]) =
(frar ) (@ @ y) o,y € M)
_ ™ B TM
([:c,y] - Q(M,cM,M) (z®y)l|z,y € M) ([x,y —z®@y+ CM,M (z®@y)|z,y € M)
T™

([z, 9] — 2@y + >y @z 0y R (z(1y ® y1y) |z, y € M)

which is the universal enveloping algebra of our (H, R)-Lie algebra, see e.g. [18, (2.6)].
Note that, as a by-product, we have that 7y, : Idpie,, — PU is an isomorphism so that
(Ma [_D =PU (Ma [_])
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Example 9.18. Let k be a field with char(k) = 0 and let G be an abelian group endowed
with an anti-symmetric bicharacter x : G x G — k\ {0}, i.e. for all g, h, k € G, we have:

x(g, hk) = x(g,h)x(9, k), x(gh,k) = x(g,k)x(h,; k), x(g,h)x(h,g) = 1.

Extend x by linearity to a k-linear map R : k[G] ® k[G] — k, where k[G] denotes
the group algebra. Then (k[G], R) is a co-triangular bialgebra, cf. [28, Example 2.2.5].
Hence, we can apply Theorem 9.15 and Remark 9.17 to H = k [G]. Note that the category
(zmH, R, k, a,l,r, c) consists of G-graded modules V = @©4eqV;. Given G-graded mod-
ules V and W, their tensor product V@W is graded with (V @ W), := @ni= (Vi @ W1).
The braiding is given on homogeneous elements by

cvw  VOW =WV, cyw®w)=weuvx(v|, lw|]),

where |v| denotes the degree of v. In this case a (H, R)-Lie algebra (V,[—,—]) in the
sense of [13, Definition 4.1] means

[z,9] = = [y =] x (|2, [9]) ,
Yy 2wl x (el lyl =0 + Y [zl wlx (el lyl =) =

Multiplying by x (2], |z|) the two sides of the second equality, we get the equivalent

[le,y) 2 x (2l J2l) + Y (v 2]l x (el lyh) + D [z 2]yl x yl s J2l) =

This means that (V,[—,—]) is a (G, x)-Lie color algebra in the sense of [33, Ex-
ample 10.5.14]. Note that the braiding defined in [33, page 200] is cy (v @ w) =
wvx(|wl, [v]) = w@vx t(Jv], |w|) so that we should say more precisely that (V, [—, —])

is a (G, X’l)—Lie color algebra. The corresponding enveloping algebra is

TV
([z,y] —z @y +y@xx(|z],|y]) | #,y € V homogeneous) "

Uv,[-) =

Example 9.19. Lie superalgebras are a particular instance of the construction above. One
has to take G = Zs and consider the anti-symmetric bicharacter x : G x G — k \ {0}
defined by x (@,b) := (=1)™ for all a,b € Z.

Example 9.20. Let G := (Z,+,0). Let k be a field and let ¢ € k \ {0}. Then it is easy to
check that (—, —): G x G =k, (a,b) := ¢q*° is a bicharacter of G.

Remark 9.21. Let k be a field with char (k) = 0. Let H be a finite-dimensional Hopf alge-
bra. By [36, Proposition 6], the category of Yetter—Drinfeld modules gyD and g YD are
isomorphic. Moreover, by [33, Proposition 10.6.16], the z YD can be identified with the
category p(m)9M of left modules over the Drinfeld double D (H). Now p(g)I = omPH)”
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and D (H)" is a quasi-co-triangular bialgebra. Thus we can identify gyD with MPUD",
One is tempted to apply Theorem 9.15. Unfortunately, D (H) is never triangular (whence
D (H)™ is never co-triangular) in view of [35], unless H = k.
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Appendix A. (Co)equalizers and (co)monadicity

Definition A.1. (See [31, page 112].) Let Z be a small category. Recall that a func-
tor V : A — B creates limits for a functor F' : Z — A if in case VF has a limit
(X,(r7: X = VFI);.;), then there is exactly one pair (L, (o7 : L — FI);.7) which is
a limit of F' and such that VL = X, Vo; = 77 for every I € Z. We just say that
V : A — B creates limits if it creates limits for all functors F' : Z — A and for all small
category Z. Similarly one defines creation of colimits.

Lemma A.2. Let M be a monoidal category. Then the functor Q : Alg,, — M creates
limits and the functor U : Coalg,, — M creates colimits.

Proof. It is straightforward. 0O

A.3. Let M be a monoidal category. Assume that M has coequalizers and that the
tensor products preserve them. It is well-known that Alg,, has coequalizers, see e.g.
13, Proposition 2.1.5]. Given an algebra morphism o : E — A, consider A, = m? o
(A@a® A) of (58) where m% : A® A® A — A is the iterated multiplication. The
coequalizer of algebra morphisms «, 8 : E — A is, as an object in M, the coequalizer
(B,m:A— B) of (Ay,Ag) in M and the algebra structure is the unique one making 7
an algebra morphism.

Lemma A.4. Let M be a monoidal category.

1) If M has coequalizers then Coalg,, has coequalizers, and U : Coalgy, — M
preserves coequalizers. Moreover if the tensor products preserve the coequalizers in M,
then Alg,, has coequalizers.

2) If M has equalizers then Alg,, has equalizers, and Q : Alg,, — M preserves
equalizers. Moreover if the tensor products preserve the equalizers in M, then Coalg ,
has equalizers.

3) If M is braided, it has coequalizers and the tensor products preserve them, then
Bialg , has coequalizers and U : Bialg, — Alg,, preserves coequalizers.

4) If M is braided, it has equalizers and the tensor products preserve them, then
Bialg, has equalizers and €) : Bialg ,, — Coalg,, preserves equalizers.
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Proof. 1) The first part follows by Lemma A.2 and uniqueness of coequalizers in Coalg .
By A.3, Alg,, has coequalizers. 2) is dual to 1).

3) Note that Bialg ,, = Coalg,, for N := Alg . By 1) we have that A has coequalizers
and then Coalgy, has coequalizers, and U : Coalg, — N preserves coequalizers. 4) is
dual to 3). O

Lemma A.5. Let M be a braided monoidal category. Assume that M is abelian and that
the tensor products preserve equalizers, coequalizers.

1) Let o : JgiaigD — E be a morphism in BrBialg,,. Then there is a bialgebra
Q € Bialg,, a morphism m : D — @ in Bialg,, and a morphism o : Jgjaug@ — E
in BrBialg,, such that & = 0 o Jgialg (7) and o and 7™ are a monomorphism and an
epimorphism respectively when regarded as morphism in M.

2) The functor Jgialg : Bialg, — BrBialg,, preserves coequalizers.

8) Assume that M is symmetric. Then Jg;,, : Blalgy, — BrBialgh, preserves co-
equalizers.

Proof. 1) Denote by D and E the underlying objects in M of D and E. Since M is
abelian we can factor a : D — F as the composition of a monomorphism ¢ : Q — F
and an epimorphism 7 : D — @ in M where @ is the image of a in M.

It is straightforward to check that @ fulfills the required properties.

2) By 4.4, we have Jgiag (B,mp,up,Ap,ep) = (B,mp,up,Ap,cp,cp,p) and
JBialg (f) = f.

Let (eg,e1) from (B, mp,up,Ap,ep) to (D, mp,up,Ap,ep) be a pair of morphisms
in Bialg . Assume that this pair has coequalizer (E,p) in Bialg ,,

€0 P

D——F

B

Let us check that Jpjale preserves this coequalizer. Let « : Jgiajg D — Z be a morphism
in BrBialg,, such that ceg = ae;. By 1) we write @ = ¢ o Jpialg (7). Since o is a
monomorphism in M, we have that meq = me;. Since the coequalizer (E,p) is in Bialg ,,
there is a unique morphism 7 : £ — @ in Bialg,, such that Top = 7. Set & := o7 :
E — Z as morphisms in M. Then ap = o7p = o = «. Moreover ¢ and T commute
with (co)multiplications and (co)units and

(@®a)cpgp=(0®0)(TRT)crE

=(0®0)coo(TFRT)=cz(0@0)(TROT)=cz(@Ra).

We have so proved that & is a morphism in BrBialg,, from Jgj.E to Z.

Let 5 : JpiaigE — Z in BrBialg,, be such that Sp = « as morphisms in BrBialg ,,.
Then Sp = a@p as morphisms in M. Since (E,p) is a coequalizer in Bialg,, and M
has coequalizers (it is abelian) we have that (E,p) can be constructed as a suitable
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coequalizer in M (cf. the proof of Lemma A.4) so that p is an epimorphism in M. Hence
we get 3 = & as morphisms in M whence in BrBialg,,.

3) By 2) Jgiag : Bialg,, — BrBialg,, preserves the coequalizers. Since Jgialz =
HSBrBialg ) Jgialg we get that ]ISBTBi&lg 0 JRia1g PrESETVEs coequalizers. Since H%rBialg is both
full and faithful, it reflects colimits (see the dual of [11, Proposition 2.9.9]) so that Jg

preserves coequalizers. O

ialg

The following result can be obtained mimicking the proof of (1) = (2) in [12, The-
orem 4.6.2]. For the reader’s sake we write here a proof in the specific case we are
concerned.

Theorem A.6. Let M be a monoidal category.

1) If the forgetful functor Q : Alg,, — M has a left adjoint, then Q is monadic. In fact
the comparison functor is a category isomorphism.

2) If the forgetful functor U : Coalg,, — M has a right adjoint, then U is comonadic.
In fact the comparison functor is a category isomorphism.

Proof. 1) We will apply Theorem [14, Theorem 2.1] (which is a form of Beck’s Theorem).
First, in order to prove that §2 is monadic, we have to check that 2 is conservative and
that for any reflexive pair of morphisms in Alg,, whose image by (2 has a split coequalizer
has a coequalizer which is preserved by (2. Clearly if f is a morphism in Alg,, such that
Qf is an isomorphism then the inverse of 2f is a morphism of monoids whence it gives
rise to an inverse of f in Alg,,. Thus 2 is conservative.

Let (dp,dy) from A to A’ be a reflexive pair as above. Then there exists C € M and
a morphism ¢ : QA" — C such that

Qdo P

QA ——= C

QA

Qdy

is a split coequalizer, whence preserved by any functor in particular by Fj, : M — M,
the functor defined by F, := (—)®" i.e. the nth tensor power functor. Then we have a
commutative diagram with exact rows

QdoRQdo c®c
QAR QA QA RQA ——= CC
Qd1 ®Qdy
maoA \L maqa’ \L
ng c
QA QA C
le

By the universal property of coequalizers there is a unique morphism m¢e : C®C — C'in
M such that m¢c o (¢ ® ¢) = comgqas. One easily checks that Q := (C,mc,uc) € Alg,,
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where uc 1= cougqas. Moreover ¢ gives rise to a morphism ¢ : A’ — @ in Alg,, such that
Qg = c. Since Q is faithful, it is straightforward to check that (Q, q) is the coequalizer
of (do,d1) in M,,,. Thus Q is monadic.

Let us check that the comparison functor is indeed a category isomorphism. It suffices
to check that for any isomorphism f : QX — B in the category M there exists a unique
pair (A,g: X — A), where A is an object in Alg,, and g a morphism in Alg,,, such
that QA = B and Qg = f. This is trivial (just induce on B the monoid structure of X
via f).

2)Itisdualto 1). O

Example A.7. Let k be a field. Let 2t be the category of vector spaces over k.

1) By [38, Theorem 6.4.1], the forgetful functor U : Coalgg; — 9t has a right adjoint
given by the cofree coalgebra functor.

2) By [1, Theorem 2.3], the forgetful functor U : Bialgy, — Algyy,; has a right adjoint.

In both cases, by Theorem A.62), we have that U is comonadic and that the compar-
ison functor is a category isomorphism.

Lemma A.8. Let M be a monoidal category. Assume that the tensor products preserve
coequalizers of reflexive pairs in M. Given two coequalizers

f1 f2
Y, AN Z Xo Y, LN Zy

g1 g2

X1

in M, where (f1,91) and (fa,92) are reflexive pairs of morphisms in M, we have that

f1®f2 ®
Y, oY, 222 7 9 7,

X7 ® Xo

91®92
s a coequalizer too.

Proof. See [40, Proposition 2| (where we can drop the assumption on abelianity as the
result follows by [24, Lemma 0.17] where this condition is not used). O

Proposition A.9. Let M be a monoidal category. Assume that the tensor products preserve
coequalizers of reflexive pairs in M. Then the forgetful functor Q : AlgM — M creates
coequalizers of those pairs (f,g) in AlgM for which (Qf,Qgq) is a reflexive pair.

Proof. Let f, g: (A,ma,ua) — (B,mp,up) be a pair of morphism in AlgM that fits
into a coequalizer

Qf »

Qg
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in M such that (Qf,Qg) is a reflexive pair. By Lemma A.8, we have the following
coequalizer

QFRQf ®
BoB 2 cwcC

AR A

QgRNg

We have
pompo(Qf @Qf)=poQfoma=poQgoma =pompo(QgRNg).

The universal property of the latter coequalizer entails there is a unique morphism
me : C®C — C such that mg o (p ® p) = pomp. Set uc :=poup. It is easy to check
that (C,m¢,uc) € AlgM, that p becomes an algebra morphism from (B, mp,up) to
(C,m¢,uc) and that

(A, ma,ua) (B,mp,up) ——= (C,me, uc)

is a coequalizer in AlgM. O

Corollary A.10. Let M be a monoidal category with coequalizers of reflexive pairs. Assume
these coequalizers are preserved by the tensor products in M. Then AlgM has coequal-
izers of reflexive pairs and they are preserved by the forgetful functor  : AlgM — M.

Proof. It follows by Proposition A.9 and uniqueness of coequalizers in AlgM. O
Appendix B. Braided (co)equalizers
Lemma B.1. Let M be a monoidal category. We have functors

Brayg — Brag: (Vie) — (V,cfl) I e f
BrAlg,, — BrAlg,,: (4,m,u,c) — (A,m,u,cfl) ST

Proof. It is straightforward. O

Lemma B.2. Let M be a monoidal category and let (V,cy) be an object in Brag. Assume
there is a morphism d : D — V in M and a morphism cp : D ® D — D ® D such that
(d®@d)ep =cy (d®@d) and d ® d ® d is a monomorphism.

1) Assume that cp is an isomorphism. Then (D,cp) is an object in Bryg and d
becomes a morphism in Brag from (D,cp) to (V,ev).

2) Assume that d @ d is a monomorphism. If (V,cy) € Bri, then (D,cp) € Br,.
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Proof. Using (d® d)cp = cy (d ® d) and the quantum Yang—Baxter equation for ¢y one
gets

(d@d®d) (cp®D)(D®cp)(cp®D)=(d®d®d)(D®cp)(cp ®D)(D®cp).

Since d ® d ® d is a monomorphism we get that cp satisfies the quantum Yang—Baxter
equation.

1) Since ¢p is an isomorphism it is clear that (D, cp) € Brag and that d : (D,cp) —
(V,ey) is a morphism in Br .

2) Since (d®@d)ch = ¢ (d®d) = d® d and d @ d is a monomorphism we get
¢4 =Idpgp so that we can apply 1). O

Lemma B.3. Let M be a monoidal category and let H : Bra, — M be the forgetful
functor. Let (ep,e1) be a pair of morphisms in Brag such (Heg, Hey) is a coreflexive
pair of morphisms in M. Assume that (Heg, He1) has an equalizer which is preserved
by the tensor products. Then (eg,e1) has an equalizer in Brag which is preserved by H.
The same statement holds when we replace Brag by Bri, and H by the corresponding
forgetful functor.

Proof. Let (eg,e1) from (V,cy) to (W, ew) a coreflexive pair of morphisms in Brpy.
We denote (Heg, Heq) by (eg, e1) to simplify the notation. By definition, there exists a
morphism p: W — V in M such that p o eg = Idy = p o ey. Consider the equalizer

d €o

D——YV

w

€1
By the dual version of Lemma A.8, we have the following equalizer

eo®eo

d®d
DD —VQV W oW

e1®e1

We have

(eo®ep)ey (d@d) =cw (eg@ep) (d@d) =cw (e1®@e€1) (d®@d) = (e1®e1) ey (d®d).

Hence there is a unique morphism ¢p : D®D — D®D such that (d ® d) cp = ¢y (d @ d).

Since (V,cy,') and (W, cy;') are also braided objects, and eq, e; are also morphisms
from (V7 c‘_/l) to (VV, c;Vl), as above we can construct a morphism vp : D ® D —
D ® D such that (d®@d)yp = ¢;' (d®d). We have (d®@d)cpyp = cy (d®@d)yp =
cvc‘jl (d®d) =d®d and hence cpyp = Idpgp. Similarly ypep = Idpgp. Thus ¢p is
invertible. Since d®d®d = (d@V @V)(D®d® V) (D ® D ® d) we have that d®d®d
is a monomorphism. Thus we can apply Lemma B.2 to get that (D, cp) is an object in



556 A. Ardizzoni, C. Menini / Journal of Algebra 448 (2016) 488-563

Bray and d : (D,ep) — (V,cy) is a morphism in Brag. It is straightforward to check
that

€0

(D,ep) —2= (V,ev) (W, ew)

is an equalizer in Bra. Consider now the case of Brj, so that (eg,e1) as above is a
pair in Brj,. Since d is a monomorphism, by Remark 3.2, we get that (D,cp) € Bri,
and d becomes a morphism in this category. Since Brj, is a full subcategory of Br, we
have that I, : Br, — Bra, is full and faithful and hence it reflects equalizers (see [11,
Proposition 2.9.9]) so that the above equalizer obtained in Bra, is indeed an equalizer
in Bry,. O

Lemma B.4. Let M be a monoidal category and let (W, cy ) be an object in Br . Assume
there is a morphism d : W — D in M and a morphism cp : D ® D — D ® D such that
cp(d®d)=(d®d)ew and d® d & d is an epimorphism.

1) Assume that cp is an isomorphism. Then (D,cp) is an object in Brag and d
becomes a morphism in Brag from (W,cw ) to this object.

2) Assume that d ® d is an epimorphism. If (V,cy) € Bri, then (D,cp) € Bri,.

Proof. It is dual to Lemma B.2. O

Lemma B.5. Let M be a monoidal category and let H : Brapy — M be the forgetful
functor. Let (eg,e1) be a pair of morphisms in Brag such (Heg, Hey) is a reflexive pair
of morphisms in M. Assume that (Heg, He1) has a coequalizer which is preserved by the
tensor products. Then (eg,e1) has a coequalizer in Brag which is preserved by H.

The same statement holds when we replace Brag by Briy, and H by the corresponding
forgetful functor.

Proof. It is dual to Lemma B.3. O

Lemma B.6. Let M be a monoidal category. Assume that M has coequalizers and that
the tensor products preserve them. Then the functor Hay, : BrAlg,, — Alg,, reflects
coequalizers.

Proof. Let

(A,CA) (B,CB) L— (D,CD>

be a diagram of morphisms and objects in BrAlg,, which is sent by Hai, to a coequalizer
in Algy,. Since Hajg is faithful we have that par = pf as morphisms in BrAlg,,. Let
A (B,eg) — (E,cg) be a morphism in BrAlg,, such that Aa = AS. Then Hajg) o
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Hagao = HajgA 0 Hajg3 so that there is a unique algebra morphism XN : D — E such
that X o Hajgp = HaigA. We have

CE (Q)\/ ® Q)\/) (QHAlgp ® QHAlgp) =cCg (QHAlg)\ ® QHAlg)\) = (QHAlg)\ &® QHAlg)\) cB
= (Q)\/ (9 Q)\/) (QHAlgp ® QHAlgp) cp = (Q)\/ (9 Q)\/) CD (QHA1gp ® QHAlgp) .

By A.3, we have that (Haigo, Haig3) has a coequalizer in Alg,, which is a regular
epimorphism in M. By the uniqueness of coequalizers in Alg,,, we get that QHazp
is also regular epimorphism in M. By the assumption on the tensor products, we get
that QHaiep ® QHalep is an epimorphism in M. Thus the computation above implies
ce (AN @QN) = (ON ® QN)cp so that there is a morphism A’ : (D,cp) — (E,cg)
in BrAlg,, such that HajgA” = X. Since Hayg is faithful we get A’ o p = A. Also the
uniqueness follows by the fact that Hajg is faithful. O

Lemma B.7. Let M be a monoidal category. Let (eg,e1) : A — B be a pair of morphisms
in BrAlg,, such (XHaigeo, QHaiger1) is a reflexive pair of morphisms in M. Assume
that M has coequalizers and that the tensor products preserve them. Then (eg,e1) has
a coequalizer (C,p : B — C) in BrAlg,, which is preserved both by the functor Hag :
BrAlg,, — Alg, and the functor QHae (in particular QHap is a regular epimorphism
in M in the sense of [11, Definition 4.3.1]).

The same statement holds when we replace BrAlg,, by BrAlg), and Haiz by the
corresponding forgetful functor.

Proof. Let (A,ma,ua,ca) := A and let (B,mp,up,cg) := B. By Proposition A.9,
we have that (Haigeo, Hage1) has a coequalizer ((C,mc,uc),p @ (B,mp,up) —
(C,m¢,uc)) in Alg,, and it is preserved by €. Thus, we have the following coequalizer
in M

€o

B—p>C

A

€1

where eq, e; and p denotes the same morphisms regarded as morphisms in M (hence, by
construction, p is a regular epimorphism in M). By Lemma A.8, we have the following
coequalizer

eo®eo

BeB N cgC

AR A

e1®e;

We have

(p@p)epen®ep) =(pRp)(eo®ep)ca=(pRp)(e1®er)ca=(pRp)ce(e1Qer)

so that there is a unique morphism c¢o : C ® C — C ® C such that
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cc(p@p)=(p@p)cp.

Now, by Lemma B.1, we have that eg, ey : (A,mA,umc;l) — (B,mB,uB,cgl) are
morphisms of braided objects. Hence the same argument we used above proves that
there is a unique morphism ¢¢c : C ® C' — C' ® C such that ¢c (p®@p) = (p@ p) cz'. We
have ¢oce (p®p) = cc(p®p)eg = (pRp) cgch = p ® p and hence ccce = Idege.
Similarly cc¢e = Idege so that ¢ is invertible. By Lemma B.4, (C, ¢¢) is an object in
Brayand p: (B,cg) — (C,ce) is a morphism in Br . It is straightforward to check that
(C,me,uc, co) is a braided algebra (whence p is a braided algebra morphism) and that
((Cymeyuc,ce),p: (B,mp,up,cg) — (C,mec,uc,cc)) is the coequalizer of (e, e1).

Consider now the case of BrAlg), so that (eg, e1) as above is a pair in BrAlg?,. Since p
is an epimorphism, by Remark 3.2, we get that (C, m¢, uc, cc) € BrAlg), and p becomes
a morphism in this category. Since BrAlg), is a full subcategory of BrAlg,, we have
that I}, ), @ BrAlgh — BrAlgy,, is full and faithful and hence it reflects coequalizers
(dual to [11, Proposition 2.9.9]) so that the above coequalizer obtained in BrAlg,, is
indeed a coequalizer in BrAlg),. O

Proposition B.8. Let M be a monoidal category such that the tensor products preserve co-
equalizers. Let (eg,e1) : A — B be a pair of morphisms in BrBialg ,, such (Upreq, Uprer)
has a coequalizer in BrAlg,, which is preserved by the functor Hayg : BrAlg,, — Alg,,
and which is a regular epimorphism when regarded in M. Then (eg, e1) has a coequalizer
in BrBialg s which is preserved by the functor U, : BrBialg,, — BrAlg,,.

The same statement holds when we replace BrBialg,,, BrAlg,, and Up, by BrAlg,,
BrAlg}, and Ug, respectively and we replace Hag by the corresponding forgetful functor.

Proof. Let (A,ma,ua,A4,c4,ca) be the domain of eg and let (B, mp,up, Ap,e5,cB)
be its codomain. Now, the pair (Uprep, Upre1) has a coequalizer in BrAlg ,,, say

((CamC7u07CC)ap . (B,mB,UB,CB) — (C,mC,UC7CC)),

which is preserved by the functor Hgaje : BrAlg,, — Alg,, and such that p is
a regular epimorphism in M. Denote by eg, e; and p the same morphisms re-
garded as morphisms in Alg,,. By [6, Lemma 2.3], (A ® A, maga,uaga),€ Alg,y,
where maga = (Ma®@ma)(AR®ca®B) and uaga = (ua @ ua)Aq. Similarly
(C ® C,megce,ucge) € Algp,. Since (B,mp,up,Ap,ep,cp) is a braided bialgebra,
we have that Ap : (B,mp,up) = (A® A,maga,uaga) is an algebra map. Moreover,
by Proposition [6, 3) of Proposition 2.2], we have that p®p is a morphism in Alg,,. Thus
(p® p) Ap is an algebra map. Since Haig : BrAlg,, — Alg,, preserves the coequalizer
of (Upreo, Uprer) the first row in the following diagram is a coequalizer in Alg .
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€0 p

A B

€1
eo®eo

A® A BoB - cgC

C

e1®eq

Since the same diagram serially commutes, by the universal property of the coequal-
izer in Alg,,, we get that there is a unique algebra morphism A¢ : (C,m¢c,uc) —
(C®C,mege, ucgce) such that Agp = (p ® p) Ap. Denote by A the same morphism
regarded as a morphism in M. Since p is an epimorphism in M, one easily checks that
Ac is coassociative using coassociativity of Ap. Since the diagram

€0 p

B——C
|
1

A

€1

serially commutes, we get that there is a unique algebra morphism e¢ : (C, m¢,uc) —
(1,m1,uq) such that ecp = ep. Denote by £¢ the same morphism regarded as a mor-
phism in M. Since p is an epimorphism in M, one easily checks that A¢ is counitary
using counitarity of Ag. Hence (C,A¢,e¢) is a coalgebra in M and p: (B,Ap,ep) —
(C,Ac,ec0) is a coalgebra map.

Since p is a regular epimorphism in M we have p ® p is an epimorphism too by the
assumption on the tensor products. Using this fact, that (B, Ap,cp,cp) is a braided
coalgebra and that p is a coalgebra morphism compatible with the Yang-Baxter op-
erator, one easily checks that (C,A¢,ec,cc) is a braided coalgebra too and hence p
a morphism of these braided coalgebras. Summing up p : (B, mp,up,Ap,ep,c5) —
(C,me,uc, Ac,ec,cc) is a morphism of braided bialgebras in M. Using the fact that p
is an epimorphism in M, one easily checks it is the searched coequalizer. The symmetric
case can be treated analogously. O

Corollary B.9. Let M be a monoidal category. Let (eg,e1) be a pair of morphisms in
BrBialg , such (T'eg,Te1) is a reflexive pair of morphisms in M where I' := QH 71,0y :
BrBialg y, — M denotes the forgetful functor. Assume that M has coequalizers and that
the tensor products preserve them. Then (eg,e1) has a coequalizer in BrBialg ,, which is
preserved by the functors Up, : BrBialg,, — BrAlg,,, HajsUp: : BrBialg,, — Alg,
and T, and which is a reqular epimorphism when regarded in M.

The same statement holds when we replace BrBialg ,, BrAlg,, and Up, by BrAlg’,,
BrAlgi, and U, respectively and we replace Hais by the corresponding forgetful functor.

Proof. The pair (Upceg,Uprer) fulfills the requirements of Lemma B.7 so that
(Ugreg, Uprer) has a coequalizer in BrAlg,, which is preserved by the functors Hajg :
BrAlg,, — Algy, and QHaj, (and which is a regular epimorphism when regarded in
M). Hence we can apply Proposition B.8 to conclude. O
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Lemma B.10. Let M and N be monoidal categories. Assume that both M and N have
coequalizers and that the tensor products preserve them. Assume that there exists a
monoidal functor (F, ¢o, ¢2) : M — N which preserves coequalizers. Then

1) AlgF : Alg, — Alg,, preserves coequalizers.

2) BrBialgF : BrBialg ,, — BrBialg,, preserves coequalizers of reflexive pairs of mor-
phisms. The same statement holds when we replace BrBialg by BrBialg® everywhere.

Proof. 1) In view of A.3, the coequalizer of the pair (a, ) of algebra morphisms
E — A is, as an object in M, the coequalizer (B,7: A — B) of (Ay,Ag) in M and
the algebra structure is the unique one making 7 an algebra morphism. Since F' pre-
serves coequalizers, we get the coequalizer in N

F(Aa) o
FA—"~ FB

FAR E® A)
F(Ag)

Note that, since AlgF is a functor, we have that FFA, F'B are algebras and F'r is an
algebra morphism.

Using the definition of A, the naturality of ¢o, the equality mpa = Fm4 o ¢o (4, A)
and the definition of Ap, one proves that F (A,) o ¢a (A® E, A) o (¢ (A, E)® FA) =
Apq and similarly with 8 in place of «. Since ¢ (A® E, A) o (¢2 (A, E) ® FA) is an
isomorphism, we get the coequalizer

AFa

FAQ FE® FA rA-" rp .

Arg

By construction we get that (F B, Fr) is the coequalizer of (Apq, Arg) in N. Since, as
observed, FA and F'B are algebras and F'w is an algebra morphism, we conclude that
(FB, F'rr) is the coequalizer of (Fa, F3) in N (apply A.3 again).

2) Consider a coequalizer of a reflexive pair in BrBialg 4

(1)) d
D'~ E (109)

B

€1

If we apply the forgetful functor I' := 0H 71,0, : BrBialg,, — M to the pair, we get a
reflexive pair in M. By Corollary B.9, (eg, e1) has a coequalizer in BrBialg,, (different
from (109), in principle) which is preserved by the functor HajOp, : BrBialg,, —
Alg . By uniqueness of coequalizers, we get that the coequalizer (109) is preserved by
Ha1gOg, and hence, by 1), it is preserved by (AlgF) Ha1gOg, : BrBialg,, — Alg,,.
Hence (F'E, Fd) is the coequalizer of (Feg, Fep) in Alg,.

Note that (Feg, Fe1) is a reflexive pair of morphisms in BrBialg,,. By Corollary B.9,
(Feg, Feq) has a coequalizer (E', 7 : FD — E’) in BrBialg,, which is preserved by the
functor H/AlgU;Br : BrBialg,, — Alg,,. By uniqueness of coequalizers in Algy,,, there
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is an algebra isomorphism £ : E/ — FE such that £ o 7 = Fd. Since BrBialgF is a
functor we have that F'E is a braided bialgebra and F'd is a morphism in BrBialg,,.
Now, by construction 7 is a suitable coequalizer in N (which further inherits a proper
braided bialgebra structure) so that, by assumption it is preserved by the tensor products.
Hence both m and 7 ® 7 are epimorphisms in . Using these properties one proves that
¢: E' — FFE is a morphism in BrBialg,,.

Since ¢ is invertible, we obtain that (FE, Fd) is the coequalizer of (Feg, Fe) in
BrBialg . i.e. BrBialgF' : BrBialg,, — BrBialg,, preserves coequalizers of reflexive pairs
of morphisms. The symmetric case follows analogously once observed that F' preserves
symmetric objects, see 3.3. O

Proposition B.11. Let M be a monoidal category. Assume that M has a coequalizers and
that the tensor products preserve them. Consider a right adjoint functor R : BrBialg,, —
B into an arbitrary category B. Then the comparison functor Ry has a left adjoint Ly
which is uniquely determined by the following properties.

1) For every object (B, p) € riB, there is a morphism 7w (B, ) : LB — Ly (B, i) such
that

Lp I'n(B,
I'LB (B,p)

I'LRLB

T'eLB

is a coequalizer in M, where I' := QUHp 1,0, : BrBialg,, — M denotes the forgetful
functor.

2) The bialgebra structure of T'Ly (B, u) is uniquely determined by the fact that
T'w (B, i) is a morphism of braided bialgebras in M.

3) R is comparable.

4) The statements above still hold true when BrBialg), replaces BrBialg .

Proof. By Beck’s Theorem, it suffices to check that for every (B,u) € grB the fork
(Lp,eLB) has a coequalizer in BrBialg,,, where L denotes the left adjoint of R and
e: LR — IdBrBialgM the counit of the adjunction. Now Ly o LmB =Idpg = eLBo LnB
where 7 : Idg — RL is the unit of the adjunction. Thus (Lu,eLB) is a reflexive pair of
morphisms in BrBialg ,,. Therefore (I'Ly, 'eLB) is a reflexive pair of morphisms in M.
By Corollary B.9, the pair (Lu,eLB) has a coequalizer in BrBialg,, which is preserved
both by the functors Ug, : BrBialg,, — BrAlg,,, HazUp: : BrBialg,, — Alg,, and
I' := QHpUp, : BrBialg,, — M. By construction the coequalizer of (Lu,eLB) is
(L1 (B,p),m(B,p) : LB — Ly (B, ). Furthermore (110) is a coequalizer in M and the
bialgebra structure of I'L; (B, p) is uniquely determined by the fact that I'rm (B, ) is a
morphism of braided bialgebras in M. By Lemma 1.11, R is comparable.
The symmetric case follows analogously. O
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