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1 Introduction

The quark-gluon plasma (QGP) is a state of matter with asymptotically free partons,
which is expected to exist at extremely high temperature and density. It is predicted that
heavy quarkonium production will be significantly suppressed in ultrarelativistic heavy-
ion collisions if a QGP is created [1]. This suppression is regarded as one of the most
important signatures for the formation of the QGP. Heavy quarkonium production can
also be suppressed in proton-nucleus (pA) collisions, where hot nuclear matter, i.e. QGP,
is not expected to be created and only cold nuclear matter (CNM) effects exist. Such CNM
effects include: initial-state nuclear effects on the parton densities (shadowing); coherent
energy loss consisting of initial-state parton energy loss and final-state energy loss; and
final-state absorption by nucleons, which is expected to be negligible at LHC energies [2—-
9]. The study of pA collisions is important to disentangle the effects of QGP from those of
CNM, and to provide essential input to the understanding of nucleus-nucleus collisions.

Nuclear effects are usually characterized by the nuclear modification factor, defined as
the production cross-section of a given particle per nucleon in pA collisions divided by that
in proton-proton (pp) collisions,
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where A is the atomic mass number of the nucleus, y (pr) is the rapidity (transverse
momentum) of the produced particle, and /syy is the centre-of-mass energy of the proton-
nucleon system. Throughout this paper, y always indicates the rapidity in the nucleon-
nucleon centre-of-mass system.

The suppression of quarkonium and light hadrons at large rapidity has been observed
in pA collisions [10-13] and in deuteron-gold collisions [14-18]. The proton-lead (pPb)
collisions recorded at the LHC in 2013 enable the study of CNM effects at the TeV scale.
With these pPb data, the production cross-sections of prompt J/i) mesons, J/i) mesons
from b-hadron decays, and T mesons were measured, and the CNM effects were studied
by determining the nuclear modification factor R,py, and the forward-backward production
ratio Rpg [19, 20]. Working in the nucleon-nucleon rest frame, the “forward” and “back-
ward” directions are defined with respect to the direction of the proton beam. The ratio
Rrg is defined as
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The advantage of measuring this ratio is that it does not rely on knowledge of the pro-
duction cross-section in pp collisions. Furthermore, part of the experimental systematic
uncertainties and theoretical scale uncertainties cancel in the ratio.

The measurements in the fixed-target pA collisions [10-12] showed stronger suppression
at central rapidity for ¢(25) mesons than for J/i) mesons, while at forward rapidity the
suppressions were compatible within large uncertainties. The PHENIX experiment made
similar observations at central rapidity in dAu collisions at RHIC [18]. The ALICE experi-
ment measured the ¥(2S) suppression in the forward and backward rapidity regions in pPb
collisions at the LHC [21]. Nuclear shadowing and energy loss predict equal suppression of
Jp and (2S) mesons, and so cannot explain the observations. One explanation for the
fixed-target results is that the charmonium states produced at central rapidity spend more
time in the medium than those at forward rapidities; therefore the loosely bound (25
mesons are more easily suppressed than J/i) mesons at central rapidity [22-24]. In this
picture it is expected that the charmonium states will spend a much shorter time in the
CNM at LHC energies than at lower energies, leading to similar suppression for ¢(2S5) and
J/ib mesons even at central rapidity.

The excellent reconstruction resolution of the LHCb detector for primary and sec-
ondary vertices [25] provides the ability to separate prompt (2S) mesons, which are
produced directly from pp collisions, from those originating from b-hadron decays (called
“)(2S) from b” in the following). In this analysis, the production cross-sections of prompt
1(25) mesons and (25) from b are measured in pPb collisions at /syy = 5.02TeV,
approximated in the following to 5TeV. The nuclear modification factor R,p;, and the
forward-backward production ratio Rgp are determined in the range 2.5 < |y| < 4.0. Using
the production cross-sections of (2S) from b and J/i from b, the bb production cross-
section in pPb collisions is obtained.



2 Detector and datasets

The LHCb detector [25, 26] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < 1 < 5, designed for the study of particles containing b or ¢
quarks. The detector includes a high-precision tracking system consisting of a silicon-strip
vertex detector surrounding the pPb interaction region, a large-area silicon-strip detector
located upstream of a dipole magnet with a bending power of about 4 Tm, and three sta-
tions of silicon-strip detectors and straw drift tubes placed downstream of the magnet.
The tracking system provides a measurement of momentum, p, of charged particles with
a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The
minimum distance of a track to a primary vertex, the impact parameter, is measured with
a resolution of (15 + 29/pr) um, where pr is the component of the momentum transverse
to the beam, in GeV/c. Different types of charged hadrons are distinguished using infor-
mation from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are
identified by a calorimeter system consisting of scintillating-pad and preshower detectors,
an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a
system composed of alternating layers of iron and multiwire proportional chambers. The
online event selection is performed by a trigger, which consists of a hardware stage, based
on information from the calorimeter and muon systems, followed by a software stage, which
applies a full event reconstruction.

With the proton beam travelling in the direction from the vertex detector to the muon
system and the lead beam circulating in the opposite direction, the LHCb spectrometer
covers forward rapidities. With reversed beam directions backward rapidities are accessible.
The data sample used in this analysis is collected from the pPb collisions in early 2013,
corresponding to an integrated luminosity of 1.1nb™! (0.5nb™!) for forward (backward)

0%7 2571, five orders of

collisions. The instantaneous luminosity was around 5 x 1 cm™
magnitude below the nominal LHCb luminosity for pp collisions. Therefore, the data were
taken using a hardware trigger which simply rejected empty events. The software trigger
for this analysis required one well-reconstructed track with hits in the muon system and
pr greater than 600 MeV/c.

Simulated samples based on pp collisions at /s = 8 TeV are used to determine the
acceptance and reconstruction efficiencies. The simulation samples are reweighted so that
the track multiplicity distribution reproduces the experimental data of pPb collisions at
Vs = 5TeV. In the simulation, pp collisions are generated using PYTHIA [27] with a specific
LHCDb configuration [28]. Decays of hadronic particles are described by EVTGEN [29],
in which final-state radiation is generated using PHOTOS [30]. The interaction of the
generated particles with the detector, and its response, are implemented using the GEANT4

toolkit [31, 32] as described in ref. [33].

3 Event selection and cross-section determination

The measurement of 1)(2S5) production is based on the method described in refs. [19, 34, 35].
The ¢ (25) candidates are reconstructed using dimuon final states from events with at least



one primary vertex. The tracks should be of good quality, have opposite sign charges and
be identified as muons with high pr. The two muon tracks are required to originate from
a common vertex with good vertex fit quality, and the reconstructed (2S) mass should
be in the range 4145 MeV/c? around the known 1(2S5) mass [36].

Due to the small size of the data sample, only one-dimensional differential cross-sections
are measured. The differential production cross-section of ¢ (2S5) mesons in a given kine-

matic bin is defined as
do N

X  LxBxAX’

where X denotes pr or y, N is the efficiency-corrected number of 1)(2S5) signal candidates

(3.1)

reconstructed with the dimuon final state in the given bin of X, AX is the bin width,
L is the integrated luminosity, and B is the branching fraction of the % (2S) — u™p~
decay, B(¢(2S) — putp~™) = (7.9 £0.9) x 1073 [36]. Assuming lepton universality in
electromagnetic decays, this branching fraction is replaced by that of the ¥(2S) — eTe™,
which has a much smaller uncertainty, B(¥(2S) — eTe™) = (7.89 4 0.17) x 1073 [36].

The integrated luminosity of the data sample used in this analysis was determined
using a van der Meer scan, and calibrated separately for the pPb forward and backward
samples [37]. The kinematic region of the measurement is pr < 14 GeV/c and 1.5 < y < 4.0
(=5.0 < y < —2.5) for the forward (backward) sample. For the single differential cross-
section measurements, the transverse momentum range pp < 14 GeV/c is divided into five
bins with edges at (0, 2, 3, 5, 7, 14) GeV/c. The rapidity range is divided into five bins
of width Ay = 0.5.

4 Signal extraction and efficiencies

The numbers of prompt ¢(25) and 1(2S5) from b in each kinematic bin are determined
from an extended unbinned maximum likelihood fit performed simultaneously to the dis-
tributions of the dimuon invariant mass M, and the pseudo proper decay time ¢, [34],
defined as

(Zw — va) X M¢
Dz ’

t, = (4.1)

where zy is the position of the 1(2S5) decay vertex along the beam axis, zpy that of the
primary vertex refitted after removing the two muon tracks from the ¢(2S) candidate, p,
the z component of the measured (25) momentum, and My, the known (2S5) mass [36].

The invariant mass distribution of the signal in each bin is modelled by a Crystal Ball
(CB) function [38], where the tail parameters are fixed to the values found in simulation
and the other parameters are allowed to vary. For differential cross-section measurements,
the sample size in each bin is very small. Therefore, in order to stabilise the fit, the mass
resolution of the CB function is fixed to the value obtained from the J/i) sample, scaled
by the ratio of the known (2S) and J/i) masses [36]. The invariant mass distribution of
the combinatorial background is described by an exponential function with variable slope
parameter. The signal distribution of ¢, can be described [39] by a d-function at t, = 0
for prompt ¢(2S5) and an exponential function for the component of 1(2S) from b, both
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Figure 1. Projections of the fit results to (top) the dimuon invariant mass M, and (bottom)
the pseudo proper decay time t, in (left) pPb forward and (right) backward data. In all plots the
total fitted function is shown by the (black) solid line, the combinatorial background component is
shown as the (green) hatched area, the prompt signal component by the (blue) shaded area, and
the b-component by the (red) light solid line.

convolved with a Gaussian resolution function. The width of the resolution function and
the slope of the exponential function are free in the fit. The background distribution of ¢,
in each kinematic bin is modelled with an empirical function determined from sidebands
of the invariant mass distribution.

Figure 1 shows projections of the fit to M, and ¢, for the full pPb forward and
backward samples. The combinatorial background in the backward region is higher than
that in the forward region, because the track multiplicity in the backward region is larger.
The mass resolution is 13 MeV/c? for both the forward and backward samples. The total
estimated signal yield for prompt 1(25) mesons in the forward (backward) sample is 285 +
34 (81 & 23), and that for ¢(2S5) from b in the forward (backward) sample is 108 + 16
(21 + 8), where the uncertainties are statistical only.

The efficiency-corrected signal yield N is obtained from the sum of w;/e; over all
candidates in the given bin. The weight w; is obtained with the sPlot technique using M,,,
and t, as discriminating variables [40]. The total efficiency ¢;, which depends on pr and vy,
includes the geometrical acceptance, the reconstruction efficiency, the muon identification
efficiency, and the trigger efficiency. The acceptance and reconstruction efficiencies are
determined from simulation, assuming that the produced 1 (2S5) mesons are unpolarised.
The efficiency of the muon identification and the trigger efficiency are obtained from data
using a tag-and-probe method as described below.



Source Forward Backward
prompt from b inclusive | prompt from b inclusive
Correlated between bins
Track reconstruction 1.5 1.5 1.5 1.5 1.5 1.5
Muon identification 1.3 1.3 1.3 1.3 1.3 1.3
Trigger 1.9 1.9 1.9 1.9 1.9 1.9
Luminosity 1.9 1.9 1.9 2.1 2.1 2.1
Branching fraction 2.2 2.2 2.2 2.2 2.2 2.2
Track quality and radiative tail 1.5 1.5 1.5 1.5 1.5 1.5
Mass fit 3.8-6.9 0339 3282 | 92-10 16-20 3.0-54
Uncorrelated between bins
Multiplicity reweighting 0.7 0.7 0.7 1.7 1.7 1.7
Simulation kinematics 0.6-10 0.4-10 0.2-9.8 1.4 2.4 0.7-23
t, fit 1.6-12  0.3-92 0.1-18 1.4-7.8 8529 0.1-17

Table 1. Summary of the relative systematic uncertainties on cross-section measurements (%).

5 Systematic uncertainties

Several sources of systematic uncertainties affecting the production cross-section measure-
ments are discussed in the following and summarised in table 1.

The uncertainty on the muon track reconstruction efficiency is studied with a data-
driven tag-and-probe method, using a J/t sample in which one muon track is fully re-
constructed while the other one is reconstructed using only specific sub-detectors [41].
Taking into account the difference of the track multiplicity distribution between data and
simulation, the total uncertainty is found to be 1.5%.

The uncertainty due to the muon identification efficiency is assigned to be 1.3% for both
the forward and backward samples as obtained in the J/i) analysis in pPb collisions [19].
It is estimated using J/3 candidates reconstructed with one muon identified by the muon
system and the other identified by selecting a track depositing the energy of a minimum-
ionising particle in the calorimeters.

The trigger efficiency is determined from data using a sample unbiased with respect
to the trigger decision. The corresponding uncertainty of 1.9% is taken as the systematic
uncertainty due to the trigger efficiency.

To estimate the uncertainty due to reweighting the track multiplicity in simulation,
the efficiency is calculated without reweighting. The difference between cross-sections
calculated with these two efficiencies is considered as the systematic uncertainty, which
is less than 0.7% in the forward sample, and about 1.7% in the backward sample.

The possible difference of the pr and y spectra inside each kinematic bin between data
and simulation can introduce a systematic uncertainty. To estimate the size of this effect
the acceptance and reconstruction efficiencies have been checked by doubling the number of
bins in pr or in y. The difference from the nominal binning scheme is taken as systematic
uncertainty, which is 0.2% — 10% (0.7% — 23%) in the forward (backward) sample. For the
backward sample the separation into prompt ¢ (2S5) and 1(2S) from b was not done in bins
of pr and y due to the limited sample size.



prompt [pb] from b [ub] inclusive [ub]

(+1.5<y<+4.0) 138+17+ 8 53.7+7.9+3.6 192+19+ 10

Backward (—=5.0 <y < —25) 93+£25+10 2024+80+43 113+26+11
Forward (42.5 <y < +4.0) 6510+ 6 214+454+1.1 86E£11+ 7
Backward (—4.0 <y < —2.5) 76+£23+10 13.84+6.9+57 90+24 412

Forward

Table 2. Integrated production cross-sections for prompt ¢ (2S5), ¥(2S) from b, and inclusive
¥(2S5) in the forward region and the backward region. The pr range is pr < 14 GeV/c. The first
uncertainty is statistical and the second is systematic.

The luminosity is determined with an uncertainty of 1.9% (2.1%) for the pPb forward
(backward) sample [37]. The uncertainty on the ¢(25) — p*p~ branching fraction is 2.2%.
The combined uncertainty related to the track quality, the vertex finding and the radiative
tail is estimated to be 1.5%.

The uncertainty due to modelling the invariant mass distribution is estimated by using
the signal shape from simulation convolved with a Gaussian function, or by replacing the
exponential function by a second-order polynomial. The maximum differences from the
nominal results are taken as the systematic uncertainties due to the mass fit. To estimate
the corresponding systematic uncertainty on the differential production cross-section due
to the fixed mass resolution, the mass resolution is shifted by one standard deviation.
It is found that this uncertainty is negligible. The uncertainty due to modelling the ¢,
distribution is estimated by fitting the signal sample extracted from the sPlot technique
using the invariant mass alone as the discriminating variable.

6 Results

6.1 Cross-sections

The differential cross-sections of prompt ¥(2S5), 1¥(25) from b and inclusive 1(25) in the
pPb forward region as functions of pt and y are shown in figure 2. The differential cross-
sections of inclusive 1(2S) in the pPb backward region as functions of pr and y are shown
in figure 3. As stated in section 5, for the differential production cross-section in the
backward data sample, no attempt is made to separate prompt ¥ (2S) and 1(2S) from b
due to the small statistics. However, these two components are separated for the integrated
production cross-sections. All these cross-sections decrease with increasing |y|.

The integrated production cross-sections for prompt ¥ (2S5), ¥(2S) from b, and their
sum representing inclusive (25, are given in table 2. To determine the forward-backward
production ratio Rpg, the integrated production cross-sections in the common rapidity
region, 2.5 < |y| < 4.0, are also given in the table.

The production cross-sections, o (bb), of the bb pair can be obtained from

a(bb) = o (1(25) from b)/2f, y(asy = o(J/ib from b)/2fy, 1, (6.1)
where  fy_,p29) (fo—jp) indicates the production fraction of b — (25)X
(b— JX). The world average values are f,,;, = (1.16 £ 0.10) x 1072 and
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Figure 2. Differential cross-section of 1(2S5) meson production as a function of (left) pr and
(right) v in pPb forward collisions. The (black) dots represent inclusive ¢(25), the (blue) triangles
indicate prompt ¢ (25), and the (red) squares show ¢ (25) from b. The error bars indicate the total

uncertainties.
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Figure 3. Differential cross-section of 1(2S) meson production as a function of (left) pr and (right)
y in pPb backward collisions. The error bars indicate the total uncertainties.

fomyp(es) = (2.83 £0.29) x 1073 [36]. The production cross-sections o (bb) obtained from
the results of J/p and 1 (2S5) from b are shown in table 3. The results of the bb cross-
sections obtained from ¢ (2S5) from b are consistent with those from J/i) from b.

In the combination of the results the partial correlation between fy_,2s) and fy_, j
is taken into account. The systematic uncertainties due to the muon identification, the
tracking efficiency, and the track quality are considered to be fully correlated. The system-
atic uncertainties due to the luminosities are partially correlated. The averaged results are
also shown in table 3.

6.2 Cold nuclear matter effects

Cold nuclear matter effects on 1(2S) mesons can be studied with the production cross-
sections obtained in the previous section. As defined in eq. (1.2), the forward-backward
production ratio, Rpg, can be determined with the cross-sections in the common rapidity



oFwd(bb) [mb] OBwd (bb) [mb]
(pr¥ < 14GeV/e, 1.5 < y¥ < 4.0) (pr¥ < 14GeV/e, —5.0 < y¥ < —2.5)
¥(2S) 9.49 £1.40 £0.64 £ 0.97 3.07T+£1.41£0.76 £ 0.37
Jp 7.16 £0.18 £ 0.40 £ 0.62 5.09£0.29+£0.53 +0.44
Averaged  7.43 &+ 0.56(uncorr) £ 0.49(corr) 4.87 £ 0.62(uncorr) + 0.32(corr)

Table 3. Production cross-sections o (bb) of bb pairs in pPb collisions obtained from the production
cross-sections of J/ip and (2S) from b. The superscript ¢ denotes J/y or (2S). The first
uncertainties are statistical, the second are systematic, and the third are due to the production
branching fractions. The last row gives the average of the J/) and ¥(2S5) results taking account of
their correlation. The correlated and uncorrelated uncertainties are provided separately.

range (2.5 < |y| < 4.0). The results are

0.93 £ 0.29 + 0.08, inclusive,
Res(pr < 14 GeV/c, 2.5 < |y| < 4.0) = < 0.86 + 0.29 £ 0.10, prompt,
1.55 + 0.84 £ 0.59, from b,

where the first uncertainties are statistical and the second systematic. The ratios Ryg for
inclusive 1(2S) production as functions of y and pr are shown in figure 4. For comparison,
the plots also show the results for inclusive J/i production [19] and the theoretical pre-
dictions for 1(2S5) [3-5]. The uncertainties for the theoretical predictions are obtained by
taking into account minimum and maximum nuclear shadowing effects, with many of them
cancelling in the ratios. Calculations in ref. [3] are based on the Leading Order Colour
Singlet Model (LO CSM) [42, 43], taking into account the modification effects of the gluon
distribution function in nuclei with the parameterisation EPS09 [2] or nDSg [44]. The next-
to-leading order Colour Evaporation Model (NLO CEM) [45] is used in ref. [5], considering
parton shadowing with the EPS09 parameterisation. Reference [4] provides theoretical
predictions of a coherent parton energy loss effect both in initial and final states, with
or without additional parton shadowing effects according to EPS09. The single free pa-
rameter o in this model is 0.055 (0.075) GeV?/fm when parton shadowing in the EPS09
parameterisation is (not) taken into account. Within uncertainties the measurements agree
with all these calculations.

To obtain the nuclear modification factor Rppy, the ¥(2S) production cross-section in
pp collisions at 5TeV is needed, which is not yet available. However, it is reasonable to
assume that

o (5TeV) o (TTeV)
) (5TeV)  ol*(7TeV)

6.2)
Y( (

Opp
where oy, indicates the production cross-section of J/i) or ¢(2S) in pp collisions. The
systematic uncertainty due to this assumption is taken to be negligible compared with the
statistical uncertainties in this analysis. The ratio R of nuclear matter effects between
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Figure 4. Forward-backward production ratios Rpg as functions of (left) |y| and (right) pr for
inclusive 1(2S5) mesons, together with inclusive J/i) results [19] and the theoretical predictions [3—
5], only some of which are available for |y|. For ¢(2S5) results, the inner error bars (delimited
by the horizontal lines) show the statistical uncertainties; the outer ones show the statistical and
systematic uncertainties added in quadrature. For J/i results, only total uncertainties are shown.

¥ (2S) and J/ip can then be determined as

$(2S) _$(25) (25)
Rypb ~ _ Typb (5TeV) " o’ (5 TeV) _ %pPb (5TeV) " o’ (7TeV) (6.3)
J, J, 25 J, 25 ’ :
R o (5TeV) otV (5TeV) ol (5TeV)  opy) (7TeV)

R

where Rféis) and R;]/;i are the nuclear modification factors for 1(2S) and J/ib. The ratio
R indicates whether there is relative suppression between (2S) and J/i production in
the collisions. If R is less than unity, it suggests that the suppression of ¥(2S) mesons
due to nuclear matter effects in pPb collisions is stronger than that of J/i) mesons. Using
previous LHCb measurements [19, 34, 46], the values of R for prompt ¢ (25), ¥(2S5) from b
and inclusive 1(2S) are calculated. The results are shown in figure 5, together with those
from ALICE [21] and PHENIX [18]. The LHCb measurement is consistent with ALICE,
which is in a comparable kinematic range. All results suggest a stronger suppression for
prompt (2S) mesons than that for prompt J/) mesons.

The nuclear modification factor of ¥(25), RZP(,%S), can be expressed in terms of Rp‘]l/gi
and R

25 J)
RIGY = RIS < R. (6.4)

The nuclear modification factor Rﬁi was determined in a previous measurement [19]. The
result for inclusive 1(2S5) is shown in figure 6. For comparison, the inclusive J/i result
from previous measurements [19] and the result from ALICE [21] are also shown in the
plot. The LHCb measurement is consistent with ALICE. The results for prompt (25)
and 1 (2S5) from b are shown in figure 7, suggesting that in pPb collisions the suppression
of prompt ¥ (2S) mesons is stronger than that of prompt J/i) mesons. For ¢(2S) from b,
no conclusion can be made because of the limited sample size. Figure 7 also shows several
theoretical predictions [3-5, 47], where only those from ref. [47] are available for 1(25)
from b. For prompt (25), stronger suppression is seen in the data than expected by the
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Figure 5. Ratio (left) between nuclear modification factors of ¢(2S5) and J/i) as a function of y for
prompt ¥(2S5) mesons and (2S5) from b. The blue triangles represent prompt 1(25) and the red
rectangles indicate 1(25) from b. Ratio (right) between nuclear modification factors of ¥ (25) and
J/ip as a function of y for inclusive 1(2S) mesons. The black dots show the LHCb result, the hollow
circles indicate the ALICE result, and the yellow triangle is the PHENIX result at \/syy = 0.2 TeV.
The inner error bars (delimited by the horizontal lines) show the statistical uncertainties; the outer
ones show the statistical and systematic uncertainties added in quadrature. Only total uncertainties
are shown for the ALICE result.
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Figure 6. Nuclear modification factor R,py, as a function of y for inclusive ¢(25) and J/p mesons.
The black dots represent the 1)(25) result, the red squares indicate the J/i) result, and the blue hol-
low circles show the ALICE result for 1(2S5). The inner error bars (delimited by the horizontal lines)
show the statistical uncertainties; the outer ones show the statistical and systematic uncertainties
added in quadrature. Only total uncertainties are shown for the ALICE result.

theoretical calculations mentioned above. Final-state effects, such as the interaction of the
c¢ pair with the dense medium created in the collisions, could be involved [48].

7 Conclusions

The production cross-sections of prompt (2S) mesons and those from b-hadron decays
are studied in pPb collisions with the LHCb detector. The nucleon-nucleon centre-of-mass
energy in the collisions is y/syy = 5 TeV. The measurement is performed as a function of
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Figure 7. Nuclear modification factor Rppy, as a function of y for (left) prompt ¢(2S5) and (right)
¥(28) from b, together with the theoretical predictions from (yellow dashed line and brown band)
refs. [3, 47], (blue band) ref. [5], and (green solid and blue dash-dotted lines) ref. [4], where only those
from ref. [47] are available for ¢)(2S5) from b. The inner error bars (delimited by the horizontal lines)
show the statistical uncertainties; the outer ones show the statistical and systematic uncertainties
added in quadrature.

the transverse momentum and rapidity of ¥(2S) mesons in the region pr < 14 GeV/c and
1.5 < y < 4.0 (forward) and —5.0 < y < —2.5 (backward). The bb production cross-sections
in pPb collisions are extracted using the results of ¢(25) from b and J/ip from b. The
forward-backward production ratio Rpg is determined separately for prompt ¢(2.5) mesons
and those from b-hadron decays. These results show agreement within uncertainties with
available theoretical predictions. The nuclear modification factor R,py, is also determined
separately for prompt 1(2S) mesons and ¥(25) from b. These results show that prompt
1 (25) mesons are significantly more suppressed than prompt J/t mesons in the backward
region; the results are not well described by theoretical predictions based on shadowing

and energy loss mechanisms.
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