
Scaling Structure Learning of Probabilistic Logic
Programs by MapReduce

Fabrizio Riguzzi1 and Elena Bellodi2 and Riccardo Zese2

and Giuseppe Cota2 and Evelina Lamma2

Abstract. Probabilistic Logic Programming is a promising
formalism for dealing with uncertainty. Learning probabilistic
logic programs has been receiving an increasing attention in
Inductive Logic Programming: for instance, the system SLIP-
COVER learns high quality theories in a variety of domains.
However, SLIPCOVER is computationally expensive, with a
running time of the order of hours. In order to apply SLIP-
COVER to Big Data, we present SEMPRE, for “Structure
lEarning by MaPREduce”, that scales SLIPCOVER by fol-
lowing a MapReduce strategy, directly implemented with the
Message Passing Interface.

1 Introduction

Probabilistic Logic Programming (PLP) is an interesting lan-
guage for Inductive Logic Programming (ILP), because it al-
lows algorithms to better deal with uncertain information.
The distribution semantics [5] is an approach to PLP that is
particularly attractive for its intuitiveness and for the inter-
pretability of the programs. Various algorithms have been pro-
posed for learning the parameters of probabilistic logic pro-
grams under the distribution semantics, such as ProbLog2 [3]
and EMBLEM [1]. Recently, systems for learning the struc-
ture of these programs have started to appear. Among these,
SLIPCOVER [2] performs a beam search in the space of
clauses using the log-likelihood as the heuristics.

This system was able to learn good quality solutions in a
variety of domains [2] but is usually costly in terms of time.

In this paper, we propose the system SEMPRE for “Struc-
ture lEarning by MaPREduce”, that is a MapReduce version
of SLIPCOVER.

We experimentally evaluated SEMPRE by running it on
various datasets using 1, 8, 16 and 32 nodes. The results
show that SEMPRE significantly reduces SLIPCOVER run-
ning time, even if the speedup is often less than linear because
of a (sometimes) relevant overhead.

The paper is organized as follows. Section 2 summarises
PLP under the distribution semantics. Section 3 discusses
SEMPRE and presents the experiments, while Section 4 con-
cludes the paper.

1 Dipartimento di Matematica e Informatica – University of
Ferrara, Via Saragat 1, I-44122, Ferrara, Italy. Email: fab-
rizio.riguzzi@unife.it

2 Dipartimento di Ingegneria – University of Ferrara Via Sara-
gat 1, I-44122, Ferrara, Italy Email: [elena.bellodi, riccardo.zese,
giuseppe.cota, evelina.lamma]@unife.it

2 Probabilistic Logic Programming

We introduce PLP focusing on the distribution semantics.
We consider Logic Programs with Annotated Disjunctions
(LPADs) as the language for their general syntax and we do
not allow function symbols; for the treatment of function sym-
bols see [4].

An LPAD is a finite set of annotated disjunctive clauses
of the form hi1 : Πi1; . . . ;hini : Πini :- bi1, . . . , bimi . where
bi1, . . . , bimi are literals forming the body, hi1, . . . hini are
atoms whose disjunction forms the head and Πi1, . . . ,Πini

are real numbers in the interval [0, 1] s.t.
∑ni

k=1
Πik ≤ 1. If∑ni

k=1
Πik < 1, the head contains an extra atom null absent

from the body of every clause annotated with 1 −
∑ni

k=1
Πik

Given an LPAD P , the grounding ground(P ) is obtained by
replacing variables with terms from the Herbrand universe in
all possible ways. If P does not contain function symbols and
P is finite, ground(P ) is finite as well. ground(P ) is still an
LPAD from which we can obtain a normal logic program by
selecting a head atom for each ground clause. In this way we
obtain a so-called world to which we can assign a probability
by multiplying the probabilities of all the head atoms chosen.
We thus get a probability distribution over worlds from which
we can define a probability distribution over the truth values
of a ground atom: the probability of an atom q being true is
the sum of the probabilities of the worlds where q is true3.

3 Distributed Structure Learning

SEMPRE parallelizes three operations of the structure learn-
ing algorithm SLIPCOVER [2] by employing n workers, one
master and n− 1 slaves.

The first operation is the scoring of the clause refine-
ments [lines 8-14 in Algorithm 1]: when the revisions for a
clause are generated, the master process splits them evenly
into n subsets and assigns n−1 subsets to the slaves. One sub-
set is handled by the master. Then, SEMPRE enters the Map
phase [lines 15-25], when each worker scores a set of refine-
ments by means of (serial) EMBLEM [1] which is run over a
theory containing only one clause. Then, SEMPRE enters the
Reduce phase [lines 26-31], where the master collects all sets
of scored refinements from the workers and updates the beam
of promising clauses and the sets of target and background

3 We assume that the worlds all have a two-valued well-founded
model.



Algorithm 1. Function SEMPRE

1: function SEMPRE(I, n,NInt,NS ,NA,NI ,NV , ε, δ)
2: IBs =InitialBeams(I,NInt,NS ,NA) . Clause search
3: TC ← [], BC ← []
4: for all (PredSpec,Beam) ∈ IBs do
5: Steps ← 1, NewBeam ← []
6: repeat
7: while Beam is not empty do
8: if MASTER then
9: Refs ←ClauseRefinements((Cl,Literals),NV )

10: Split evenly Refs into n subsets
11: Send Refsj to worker j
12: else . the j-th slave
13: Receive Refsj from master
14: end if
15: for all (Cl′,Literals′) ∈ Refsj do

16: (LL′′, {Cl′′})←EMBLEM(I, {Cl′}, ε, δ)
17: NewBeamj ←Insert((Cl′′,Literals′),LL′′)

18: if Cl′′ is range restricted then
19: if Cl′′ has a target predicate in the head then
20: TC ←Insert((Cl′′,Literals′),LL′′)
21: else
22: BC ←Insert((Cl′′,Literals′),LL′′)
23: end if
24: end if
25: end for
26: if MASTER then
27: Collect all the sets NewBeamj from workers
28: Update NewBeam,TC ,BC
29: else . the j-th slave
30: Send the set NewBeamj to master
31: end if
32: end while
33: Beam ← NewBeam, Steps ← Steps + 1
34: until Steps > NI
35: end for
36: if MASTER then
37: T ← ∅, T LL← −∞ . Theory search
38: repeat
39: Remove the first couple (Cl, LL) from TC

40: (LL′, T ′)←EMBLEMMR(I, T ∪ {Cl}, n, ε, δ)
41: if LL′ > T LL then
42: T ← T ′, T LL← LL′

43: end if
44: until TC is empty

45: T ← T
⋃

(Cl,LL)∈BC
{Cl}

46: (LL, T )←EMBLEMMR(I, T , n, ε, δ)
47: return T
48: end if
49: end function

clauses (TC and BC respectively): the scored refinements are
inserted in order of LL into these lists.

The second parallelized operation is parameter learning for
the theories with the target clauses. In this phase [lines 37-
44], each clause from TC is tentatively added to the theory,
which is initially empty. In the end, it contains all the clauses
that improved its LL (search in the space of theories). In this
case, parameter learning may be quite expensive since the
theory contains multiple clauses, so a MapReduce version of
EMBLEM called EMBLEMMR is used.

The third parallelized operation is the final parameter
optimization for the theory including also the background
clauses [lines 45-46]. All the background clauses are added
to the theory previously learned and the parameters of the
resulting theory are learned by means of EMBLEMMR.

SEMPRE was implemented in Yap Prolog using the
lam mpi library for interfacing Prolog with the Message Pass-
ing Interface (MPI) framework.

SEMPRE was tested on the following seven real world
datasets: Hepatitis, Mutagenesis, UWCSE, Carcinogenesis,
IMDB, HIV and WebKB. All experiments were performed on
GNU/Linux machines with an Intel Xeon Haswell E5-2630 v3
(2.40GHz) CPU with 8GB of memory allocated to the job.

Figure 1 shows the speedup of SEMPRE as a function of

the number of workers. The speedup is always larger than 1
and grows with the number of workers, except for HIV and
IMDB, where there is a slight decrease for 16 and 32 workers
due to the overhead; however, these two datasets were the
smallest and less in need of a parallel solution.

Nodes
0 5 10 15 20 25 30 35

S
pe

ed
up

0

2

4

6

8

10

12

14

16

Hepatitis
Mutagenesis
UWCSE
Carcinogenesis
IMDB
HIV
WebKB

Figure 1. SEMPRE speedup.

4 Conclusions

The paper presents the algorithm SEMPRE for learning the
structure of probabilistic logic programs under the distribu-
tion semantics. SEMPRE is a MapReduce implementation of
SLIPCOVER, exploiting modern computing infrastructures
for performing learning in parallel. The results show that par-
allelization is indeed effective at reducing running time, even
if in some cases the overhead may be significant.

Acknowledgement This work was supported by the
“GNCS-INdAM”.

REFERENCES

[1] Elena Bellodi and Fabrizio Riguzzi, ‘Expectation Maximiza-
tion over Binary Decision Diagrams for probabilistic logic pro-
grams’, Intelligent Data Analysis, 17(2), 343–363, (2013).

[2] Elena Bellodi and Fabrizio Riguzzi, ‘Structure learning of prob-
abilistic logic programs by searching the clause space’, Theory
and Practice of Logic Programming, 15(2), 169–212, (2015).

[3] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dim-
itar Sht. Shterionov, Bernd Gutmann, Ingo Thon, Gerda
Janssens, and Luc De Raedt, ‘Inference and learning in prob-
abilistic logic programs using weighted boolean formulas’,
Theory and Practice of Logic Programming, 15(3), 358–401,
(2015).

[4] Fabrizio Riguzzi and Terrance Swift, ‘Well-definedness and ef-
ficient inference for probabilistic logic programming under the
distribution semantics’, Theory and Practice of Logic Program-
ming, 13(Special Issue 02 - 25th Annual GULP Conference),
279–302, (2013).

[5] Taisuke Sato, ‘A statistical learning method for logic programs
with distribution semantics’, in 12th International Conference
on Logic Programming, Tokyo, Japan, ed., Leon Sterling, pp.
715–729, Cambridge, Massachusetts, (1995). MIT Press.


