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Large quadratic programs in training Gaussian

support vector machines

T. SERAFINI – G. ZANGHIRATI – L. ZANNI

Abstract: We consider the numerical solution of the large convex quadratic pro-
gram arising in training the learning machines named support vector machines. Since
the matrix of the quadratic form is dense and generally large, solution approaches based
on explicit storage of this matrix are not practicable. Well known strategies for this
quadratic program are based on decomposition techniques that split the problem into
a sequence of smaller quadratic programming subproblems. For the solution of these
subproblems we present an iterative projection-type method suited for the structure of
the constraints and very effective in case of Gaussian support vector machines. We de-
velop an appropriate decomposition technique designed to exploit the high performance
of the proposed inner solver on medium or large subproblems. Numerical experiments
on large-scale benchmark problems allow to compare this approach with another widely
used decomposition technique. Finally, a parallel extension of the proposed strategy is
described.

1 – Introduction

This work is concerned with the numerical solution of the large
quadratic programming (QP) problem arising in training the learning
machines named support vector machines (SVMs) [4], [5], [31].
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Given a training set of labelled examples

D = {(xi, yi), i = 1, . . . , N, xi ∈ IRm, yi ∈ {−1, 1}} ,

the SVM algorithm performs pattern recognition by finding a classifier
F : Rm → {−1, 1} of the form

(1) F (x) = sign
( N∑

i=1

α∗
i yiK(x, xi) + b∗

)
,

where K(·, ·) denotes a kernel function defining the classifier type. In
case of linear SVMs, the kernel function is linear and (1) becomes

F (x) = sign
( N∑

i=1

α∗
i yix

T xi + b∗
)

,

while nonlinear SVMs can be obtained by choosing special nonlinear ker-
nel functions such as polynomial kernels

K(s, t) = (1 + sT t)d, s, t ∈ IRm ,

or Gaussian kernels

K(s, t) = e−‖s−t‖2
2/(2σ2), σ ∈ IR .

The coefficients α∗
i in (1) are the solution of the following QP problem

(2)
min f(α) =

1
2

αT Qα −
N∑

i=1

αi

sub. to yT α = 0 ,

0 ≤ αi ≤ C , i = 1, . . . , N ,

where y = (y1, y2, . . . , yN)T , α = (α1, α2, . . . , αN)T , C ∈ IR and the
entries Qij of Q are defined as

Qij = yiyjK(xi, xj), i, j = 1, 2, . . . , N .

The training examples corresponding to nonzero α∗
i are the only examples

used in the classifier definition; they are called support vectors (SVs) and
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their number is usually much smaller than N . The support vector having
α∗

i = C are often called bound support vectors (BSVs).
Since the threshold b∗ is easily derived from the α∗

i , we may con-
clude that the training of an SVM consists in solving the convex QP
problem (2). The size of this problem is equal to the number of training
examples and, consequently, in many real-world SVMs applications we
have to solve a very large QP problem. In these cases, since Q is dense,
the main trouble in solving (2) is that standard QP solvers based on ex-
plicit storage of the quadratic form matrix cannot be used. Among the
various approaches proposed to overcome this trouble we may recognize
two main classes. The first class includes algorithms that exploit the spe-
cial structure of (2), while the second collects the techniques based on
different formulations of the optimization problem behind the classifier.
These last reformulations lead to more tractable optimization problems,
but the criteria they use to determine the classifier are, in some cases,
considerably different with respect to the one of the standard SVMs [7],
[11], [12], [15], [16], [17]. Since the numerical results show a remarkable
gain in training time (with test set correctness statistically comparable to
that of standard SVM classifiers), these approaches appear an important
tool for very large data sets. Among the methods of the first class we
recall the interior point method proposed in [6] for training linear SVMs
and the decomposition techniques [2], [9], [21], [22], [24]. The method
in [6] is suitable for both the special definition of Q in the linear case
(Qij = yiyjx

T
i xj) and the simple structure of the SVM constraints. This

approach, by using an appropriate implementation of the linear algebra
and out-of-core computations, can handle massive problems with training
set size larger than a few millions. On the other hand, the decomposi-
tion techniques are based on the idea of splitting the problem (2) into a
sequence of smaller QP subproblems. These techniques differ from each
other in the strategy employed to identify the variables to update at
each iteration and in the chosen subproblems size. In particular, the de-
composition techniques proposed in [2], [21] involve subproblems whose
size scales with the number of support vectors; hence, they may not be
able to handle large-scale problems. This disadvantage is avoided in the
schemes of [9], [22], [24], where the subproblems size is independent on
the expected number of support vectors.



260 T. SERAFINI – G. ZANGHIRATI – L. ZANNI [4]

In this work, we present an iterative solver for the decomposition
techniques inner QP subproblems and we show that it can be an useful
tool for improving their performance. In Section 2, we recall one of the
most used decomposition strategy: the SVM light algorithm proposed by
Joachims in [9]. In Section 3, we introduce the iterative solver for the
inner QP subproblems. It is a variable projection method [26], [27] very
efficient in the case of Gaussian SVMs and suited for the constraints
structure of this application. A new implementation of the SVM light

decomposition strategy, designed to exploit the effectiveness of this inner
solver, is described in Section 4. Finally, in Section 5 we compare the
behavior of our implementation with Joachims’ SVM light package on well
known large-scale test problems.

2 – Decomposition techniques

Here we briefly recall the main ideas behind the decomposition tech-
niques for problem (2).

At each step of the decomposition strategies proposed in [9], [22],
[24], the variables αi in (2) are splitted into two categories:

• the set B of free (or basic) variables,
• the set N of fixed (or nonbasic) variables.

The set B is usually referred to as the working set. Suppose to arrange
the arrays α, y and Q with respect to B and N :

α =
(

αB
αN

)
, y =

(
yB
yN

)
, Q =

[
QBB QBN
QNB QNN

]
.

Given a generic ᾱ = [ᾱT
B , ᾱT

N ]T , the idea behind the decomposition tech-
niques consists in make a progress toward the minimum of f(α) by substi-
tuting ᾱB with the vector α̃B obtained by solving (2) with respect to the
working set variables only. Different implementations of this idea may be
found in literature. In [24], α̃B is analytically computed from a 2-elements
working set selected by special choice heuristics. In [9], [22] the size of B
is a constant procedure parameter and a numerical QP solver is used
for the subproblems solution. Of course, the convergence rate of these
techniques is strictly dependent on the variables chosen for updating B
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at each iteration. While the procedure in [22] updates the working set
by simply including some variables violating the KKT conditions, in the
SVM light technique a more promising updating is performed by follow-
ing an idea similar to the Zoutendijk’ steepest feasible descent approach.
Since both the discussion and the numerical experiments that follow will
be concerned with this last decomposition strategy, we summarize the
main steps of the SVM light algorithm:

Step 1. Let α(1) be a feasible point for (2), let Nsp and Nc be two
integer values such that(1) N ≥ Nsp ≥ Nc; arbitrarily choose Nsp indices
for the working set B and set k = 1.

Step 2. Compute the elements of QBB, q = QT
NBα

(k)
N − (1, 1, . . . , 1)T

and e = −yT
Nα

(k)
N .

Step 3. Solve the subproblem

(3)
min g(αB) =

1
2

αT
BQBBαB + qT αB

sub. to yT
BαB = e,

0 ≤ αi ≤ C, for i ∈ B ,

and let α
(k+1)
B denotes an optimal solution. Set α(k+1) =

(
α

(k+1)
B
α

(k)
N

)
.

Step 4. Update the gradient

(4) ∇f(α(k+1)) = ∇f(α(k)) +
[

QBB
QNB

]
(α(k+1)

B − α
(k)
B )

and terminate if α(k+1) satisfies the KKT conditions.

(1)Nc is the maximum number of new variables entering the working set in each itera-
tion. A value Nc < Nsp is generally advisable to prevent zigzagging.
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Step 5. Find the indices corresponding to the nonzero components
of the solution of

(5)

min ∇f(α(k+1))T d

sub. to yT d = 0 ,

di ≥ 0 for i such that αi = 0 ,

di ≤ 0 for i such that αi = C ,

− 1 ≤ di ≤ 1 ,

#{di | di �= 0} ≤ Nc .

Update B to include these Nc indices; set k ← k + 1 and go to Step 2.
We refer to [9], [13], [14] for a discussion about the convergence prop-

erties of the scheme and about other important aspects, such as how to
solve the nonexpensive linear program (5) and how to check the KKT
conditions for this special QP problem. Here we are interested in dis-
cussing how an effective implementation of this strategy may be carried
out. In each iteration, the main computational resources are employed for
computing the elements of [QBB QT

NB]T and for solving the QP subprob-
lem (3). In fact, the kernel evaluations required to update QBB and QNB
may be very expensive if the dimension of the input space is large and
the training examples have many nonzero features. Furthermore, when
the size Nsp is not very small, also the numerical solution of (3) may sig-
nificantly increase the cost of each iteration. Various efficient tricks are
used in the Joachims’ implementation to reduce the computational cost of
these tasks. In particular, a caching strategy to avoid the recomputation
of previously used elements of Q and a shrinking strategy to reduce the
problem size are implemented. For the working set size Nsp, very small
values are suggested in [9] (in the SVM light package the default value
is 10). This makes the subproblem (3) efficiently solvable by many QP
packages, does not significantly increase the cost of each iteration and, in
addition to the caching and shrinking strategies, reduces the total num-
ber of kernel evaluations required by the scheme. On the other hand, in
general, small values of Nsp imply many iterations of the SVM light tech-
nique. The subproblems QP solvers suggested in the SVM light package
are the Hildreth and D’Esopo method and a version of the primal-dual
infeasible interior point method of Vanderbei [30], named pr LOQO and
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implemented by Smola [29]. Of course, other robust general solvers like,
for example, MINOS [19] may be used (see [21]). Nevertheless, special
methods designed for the characteristics of problem (3) and effective also
for medium to large Nsp values are crucial: this allows to improve the
efficiency of general QP-based decomposition schemes and, furthermore,
to develop new implementations of the SVM light strategy.

3 – The variable projection method as inner QP solver

In case of SVMs with Gaussian kernel, we introduce an iterative
solver suited for exploiting both the structure of the constraints and the
particular Hessian matrix nature. The method is the variable projection
method (VPM) [26], [27] with a diagonal scaling matrix and a special up-
dating rule for the projection parameter, appropriately studied for the QP
problem of this application.

The VPM steps for subproblem (3) are the following:

Step 1. Let S = diag{s1, . . . , sNsp}, si > 0 ∀i, z(0) ∈ IRNsp arbitrary,
ρ1 > 0, � = 1.

Step 2. Compute the unique solution z̄(�) of the subproblem

(6)
min

1
2

zT S

ρ�

z +
(

q +
(

QBB − S

ρ�

)
z(�−1)

)T

z

sub. to yT
Bz = e ,

0 ≤ zj ≤ C, j = 1, . . . , Nsp .

Step 3. If � �= 1, compute the solution θ� of

min
θ∈(0,1]

g(z(�−1) + θd(�)) where d(�) = z̄(�) − z(�−1) ,

else θ� = 1.

Step 4. Compute z(�) = z(�−1) + θ�d
(�).

Step 5. Terminate if z(�) satisfies a stopping criterion, otherwise
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update ρ�+1 by the rule

ρ�+1 =



ρ� if ‖QBBd(�)‖2 ≤ ε‖d(�)‖2
d(�)T QBBd(�)

d(�)T QBBS−1QBBd(�)
if mod (�, �̃) <

�̃

2
d(�)T Sd(�)

d(�)T QBBd(�)
otherwise

where ε > 0 is a prefixed small tolerance; then � ← �+1 and go to Step 2.

The R-linear convergence of VPMs for convex quadratic programs
is proved in [27]. When VPM is applied to the subproblems (3), the
requirement for its convergence is only that the sequence {ρ�} is bounded
by positive constants. Proceeding as in [28], it’s easy to see that the
projection parameter satisfies

min
(

ρ1,
λmin(S)

λmax(QBB)

)
≤ ρ�+1 ≤ max

(
ρ1,

λmax(S)λmax(QBB)
ε

)
,

where λmin(·) and λmax(·) denote the minimum and the maximum eigen-
value of a matrix, respectively. An example of a parameters setting suited
for the QP problems arising in training SVMs will be given later.

The most expensive operations in each iteration of this scheme are the
matrix-vector product QBBz̄(�) and the solution of the QP subproblem (6),
having the same constraints of (3). The vector QBBz̄(�) is necessary for
computing θ� in Step 3, ρ�+1 in Step 5 and for updating the vector storing
QBBz(�):

t(�) ← QBBz(�) = QBB(z(�−1) + θ�d
(�)) = t(�−1) + θ�(QBBz̄(�) − t(�−1)) .

About the subproblem (6), we observe that by selecting a diagonal scal-
ing matrix S we make (6) a separable QP problem (refer to [1] for an
introduction to scaled projection methods). Because of the special con-
straints structure, for the solution of this separable problem very efficient
algorithms are available, suitable for both scalar and parallel computa-
tion [3], [20], [23]. Currently we are using the O(Nsp) algorithm proposed
in [23]. Thus, since the matrix QBB is dense, the main computational cost
of each iteration is due to the matrix-vector product QBBz̄(�). However,
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when Nsp is large and the solution α
(k+1)
B of (3) has few nonzero compo-

nents, this cost may be significantly reduced by exploiting the expected
sparsity of z̄(�): if Nnz is the number of nonzero components of z̄(�), the
product QBBz̄(�) can be performed with O(NspNnz) operations. Finally,
the particular updating rule for the projection parameter ρ� implies a re-
markable improvement in the linear convergence rate of the scheme when
the Hessian matrix QBB comes from training SVM with Gaussian kernels.
Unfortunately, this updating rule is not equally effective in the case of
polynomial kernels. The reader may refer to [32] for further discussion
of VPM performance on this kind of problems and to [8] for the VPM
behavior on more general QP problems. Here, in order to show that this
method is a promising inner solver for decomposition techniques, we re-
port the results of a comparison with the pr LOQO solver on some small
to medium problems of the form (2) (note that, between the two solvers
suggested in the SVM light package, pr LOQO appears the most effective
when the problem size increases).

Table 1: test problems from the MNIST data set.

N iter. sec. SV BSV

200 13 0.15 76 0
pr LOQO 400 14 1.2 120 0

800 15 10.0 176 0
1600 16 111.5 239 0

200 57 0.02 76 0
VPM 400 82 0.1 120 0

800 124 0.3 176 0
1600 232 1.7 238 0

Our test problems are obtained by training Gaussian SVMs on the
handwritten digits MNIST database from AT&T Research Labs [10] and
on the UCI Adult data set [18]. In the MNIST database the inputs are
784-dimensional non-binary sparse vectors; the sparsity level is 81% and
the database size is 60000. For these experiments we construct reduced
test problems of size N = 200, 400, 800, 1600, by considering the first
N/2 inputs of the digits 8 and 9. The UCI Adult data set we consider
allows to train a SVM to predict whether a household has an income
greater than $50000. After appropriate discretization of the continuous
attributes [24], the inputs are 123-dimensional binary sparse vectors with
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a sparsity level equal to 89%. We consider the versions of the data set
with size N = 1605, 2265, 3185. We use C = 10, σ = 1800 for the MNIST
data set and C = 1, σ2 = 10 for the UCI Adult data set.

Table 2: test problems from the UCI Adult data set.

N iter. sec. SV BSV

1605 15 131.6 691 584
pr LOQO 2265 15 383.9 1011 847

3185 15 1081.4 1300 1109

1605 136 2.3 691 584
VPM 2265 171 5.8 1011 847

3185 237 14.6 1299 1113

The results in tables 1 and 2 are obtained on a Compaq XP1000
workstation at 667MHz with 1GB of RAM, running standard C code.
In VPM, the stopping rule consists in the fulfillment of the KKT condi-
tions within a tolerance of 0.001 (we follow [9] for the computation of the
equality constraint multiplier). In general, a higher accuracy does not sig-
nificantly improve the SVM performance [9], [24]. The VPM parameters
are set as follows: S is equal to the identity matrix, ρ1 = 1, ε = 10−16,
�̃ = 6 and z(0) = 0. The pr LOQO solver was run with sigfig max = 8
because lower values gave classification accuracies too worse than VPM.

In tables 1 and 2, “N” denotes the problem size, “iter.” is the number
of iterations and “sec.” the seconds required by the solvers. Furthermore,
SV and BSV denote the number of support vectors (0 < α∗

i < C) and
bound support vectors (α∗

i = C), respectively. From the tables we may
observe the higher effectiveness of VPM, especially when the problem
size increases. In particular, VPM allows the solution of medium size
problems (N > 1000) in few seconds. Thus, this method may be an
useful inner QP solver to improve the performances of decomposition
techniques for large-scale SVMs. Furthermore, we emphasize that the
method is easily parallelizable, since each iteration consists essentially in
a matrix-vector product; hence, new parallel decomposition schemes can
be based on VPM [32].

Remark. Since the previous experiments are aimed to compare the
two solvers, the test problems are solved without decomposition. Of
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course, this may not be the best way to proceed; as an example, if Nsp =
20 and Nc = 10 the problem sized 3185 in table 2 is solved in 4.0 seconds
by the SVM light package combined with pr LOQO.

4 – A VPM-based decomposition technique

From the previous discussion it could be devised that a simple way to
improve the performance of the SVM light package is to introduce VPM as
inner solver and to use decompositions with larger subproblems. This is
not generally true because, as previously explained, this package is specif-
ically designed to give the best performance when small size subproblems
are used in the decomposition. In particular, the computation of Nsp rows
of the Hessian matrix is required at each iteration (see [9]) and, conse-
quently, when Nsp is not sufficiently small the additional computational
cost for the larger number of kernel evaluations degrades the performance.
This disadvantage is partially reduced by the caching strategy, but it is
enough to vanish the benefits, in terms of number of iterations, coming
from the use of large Nsp values.

These reasons motivate our implementation of the SVM light strategy,
more suited than Joachims’ package to handle decompositions based on
large subproblems and thus able to exploit the high VPM performance.
The main feature of our implementation is related to the matrix-vector
products involving the submatrix QNB. At each iteration, instead to
compute the whole array as suggested in [9], the expected sparsity of the
vectors involved in the products is exploited to compute only the strictly
needed elements of QNB. In practice, we fill the caching area with the
QNB columns involved in (4), that is those columns corresponding to
the nonzero components of (α(k+1)

B − α
(k)
B ). The rational for this simple

strategy is the following: in the working set updating at the end of each
decomposition iteration, some of the current working set nonzero vari-
ables will be included in the new one. Hence, our updating procedure
first includes in the new working set the indices given by (5), then, to fill
the set up to Nsp entries, it adds the indices satisfying 0 < α

(k+1)
j < C,

j ∈ B. If these indices are not enough, it adds those such that α
(k+1)
j = 0,

j ∈ B, and, eventually, those satisfying α
(k+1)
j = C, j ∈ B. Of course, this

procedure may not be optimal for all problems; sometimes we find conve-
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nient to exchange the last two criteria. When the size of the subproblems
is sufficiently large these simple tricks produce an appreciable saving in
the number of kernel evaluations and, combined with an efficient inner
solver like VPM, allow good performance.

Furthermore, since this VPM-based decomposition technique can
work with large Nsp values, it is well suited for an efficient implemen-
tation on multiprocessor systems [32]. In fact, for large Nsp we expect
few expensive iterations, which can be easily faced in parallel by solving
the QP subproblems with a parallel version of VPM and by perform-
ing distributed kernel evaluations. We show some results of the parallel
approach in the next section.

5 – Numerical experiments on large problems

In this sectionwe compare on some large-scale problems the Joachims’
package with our SVM light implementation, named variable projection
decomposition technique (VPDT).

As in Section 3, the test problems comes from Gaussian SVMs trained
on the cited MNIST and UCI Adult data sets, with the same C and σ as
before. We consider the three UCI Adult data sets sized 16101, 22697,
32562. On the other hand, by training a classifier for digit 8, we generate
from MNIST two test problems sized 40000 and 60000: for the former we
consider the first 5000 inputs of the digit 8 and the first 35000 of the other
digits, while for the latter we use the whole database. All the experiments
are carried out on the Compaq XP1000 workstation previously described
and by running standard C code.

Tables 3–5 report the results obtained by running the SVM light pack-
age and the VPDT program with the same stopping rule, based on the
fulfillment of the KKT condition within 10−3. Both codes use sparse
vector representation, which is crucial to optimize kernel evaluations [25]
and to reduce memory consumption. All those tables show the number of
decomposition procedure iterations (iter.), the training time in seconds
(sec.), the number of support vectors (SV) and the number of bound
support vectors (BSV).

The results in table 3 are obtained with a 350MB caching area and
different Nsp, Nc values. We observe that the SVM light package ob-
tains its best performance for a very small value of the subproblem size
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(Nsp = 8), while for increasing Nsp values each iteration becomes too
expensive and its effectiveness decreases. In these cases, using VPM as
inner QP solver can improve the performances. However, since in this
setting the QP subproblem solution is a cheap task of each iteration, the
improvement due to VPM is not enough to compensate for the increased
training time.

On the other hand, VPDT shows the best behavior for large Nsp
values. In particular, as previously explained, when Nsp is close to (or
larger than) the support vectors number, this decomposition scheme re-
quires very few expensive iterations. This, combined with the high VPM
performances, gives training times lower than those of the SVM light pack-
age.

The same conclusions hold for the MNIST test problem of size N =
60000. For this problem, table 4 reports the results obtained by varying
the caching area size (the SVM light inner solver here is always pr LOQO).
The two implementations benefit in a similar way from increasing caching
space.

Table 3: results on the MNIST test problem of size N = 40000.

Nsp Nc iter. sec. SV BSV inner solver

8 4 7724 1710.6 2714 135 pr LOQO
40 10 2111 1790.2 2714 135 pr LOQO
40 20 1596 1848.6 2716 135 pr LOQO
100 20 865 1828.7 2713 135 pr LOQO

SVM light 100 50 575 2138.3 2717 135 pr LOQO
200 20 685 2059.9 2714 135 pr LOQO
200 100 250 2624.8 2717 135 pr LOQO
200 20 716 1915.6 2714 135 VPM
200 100 257 2511.3 2716 135 VPM

2000 500 25 2551.0 2715 135 VPM
2000 600 21 2385.5 2716 135 VPM
2000 700 20 2343.1 2714 135 VPM
2600 600 8 1036.1 2714 135 VPM

VPDT 2600 800 8 1150.2 2715 135 VPM
2600 1000 7 1043.7 2714 135 VPM
3000 800 7 1139.4 2713 136 VPM
3000 1000 7 1197.8 2715 135 VPM
3000 1200 6 1053.7 2715 136 VPM
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Table 4: results on the MNIST test problem of size N = 60000.

caching area
in MB iter. sec. SV BSV

50 9699 4405.6 3153 158

SVM light 150 9527 4063.6 3151 158
Nsp = 8 250 9430 3764.9 3153 159
Nc = 4 350 9334 3434.6 3155 160

450 9397 3247.0 3154 160

50 7 3602.4 3156 159
VPDT 150 7 3370.1 3156 159
Nsp = 3100 250 7 2972.4 3154 159
Nc = 1200 350 7 2607.3 3156 159

450 7 2333.6 3156 159

Table 5 shows the behavior of the two packages on the UCI Adult
data set. For each test problem, we report the results corresponding to
the values of the parameters Nsp and Nc producing the best performance.
A 150MB caching area is used. In these tests, the kernel evaluations are
less expensive than in the case of the MNIST database (due to the lower
dimension of the input space and to the higher sparsity of the examples),
but there are much more support vectors (about 36% of N). This last
feature prevents VPDT from working with subproblems of size close to the
number of support vectors, thus requiring more decomposition iterations.
However, considerable improvements are still observed with respect to the
SVM light package.

Table 5: results on test problems from the UCI Adult data set.

inner
N Nsp Nc iter. sec. SV BSV solver

16101 20 10 1857 138.2 5949 5359 pr LOQO

SVM light 22697 20 10 3002 337.4 8346 7495 pr LOQO
32562 20 10 4457 742.9 11699 10615 pr LOQO

16101 700 400 34 94.0 5959 5357 VPM
VPDT 22697 900 500 40 241.4 8377 7482 VPM

32562 1300 850 39 593.3 11767 10558 VPM

We remarked that the proposed VPM-based approach is well suited
for parallel implementation on distributed memory multiprocessor sys-
tems, since the few expensive iterations required can be efficiently faced
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in parallel. In fact, recall that Steps 2, 3 and 4 of the decomposition
technique involve the heaviest computations (which are essentially due
to matrix-vector products) and that the VPM computational core is the
product QBBz̄(�). Hence, a suitable data distribution of QBB and QBN
rows among the available processors allows to design a parallel version
of VPM and to exploit, through the caching strategy, the large total
memory usually available on multiprocessor systems. The solution of the
separable QP subproblem (6) in VPM could also be parallelized [20], but
this step is much less time-consuming than the matrix-vector product.
In [32] a parallel version of the VPDT is coded in standard C with MPI
1.2 communication routines and tested on a Cray T3E MPP system with
256 DEC Alpha EV5 processors (PEs) at 600 MHz, equipped with 256
MB of RAM each.

Table 6: performances of parallel VPDT on CRAY T3E for the MNIST data set with
N = 60000.

PEs Nsp Nc iter. sec. SV BSV spr effr

VPDT 1 3200 800 8 9979.1 3159 158

4 3200 800 8 2511.1 3159 158 4.0 1.000
Parallel 8 3200 800 8 1170.0 3159 158 8.5 1.063
VPDT 16 4000 1200 6 629.1 3161 159 15.9 0.994

32 4000 1200 6 461.7 3161 159 21.6 0.675

In order to give an idea of the effectiveness of the proposed parallel
approach, in table 6 we report the results obtained on the largest MNIST
test problem (N =60000) for different number of processors. In column
spr we show the relative speedup of parallel VPDT, defined as the ratio of
the time Ts needed by the program in a sequential setting of the parallel
machine to the time Tp needed by the same program on p PEs, that is
to say spr(p) = Ts/Tp. Column effr shows the relative efficiency effr =
spr(p)/p.

Empirically determined “optimal” values was used for parameters
Nsp and Nc, which allowed the best exploitation of the available com-
puting resources. These optimal values and the storage resources depend
on the number of processors; hence, parallel VPDT might behaves dif-
ferently with respect to serial VPDT (as far as number of decomposition
iterations and kernel evaluations are concerned). This is the reason for
the superlinear speedup.
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The results clearly show how the parallel approach can benefit from
large subproblem size and how well the presented implementation scales.
It exploits very well the available computational resources, even with
very few PEs. The performance becomes suboptimal for 32 PEs, since
the problem size is no longer large enough to fully exploit the machine
power, as confirmed by the relative efficiency value. However, this allows
to expect very good performance on larger (even huge) test problems.

We refer the reader to [32] for a deeper analysis of parallel VPDT
and a wider numerical experimentation.

6 – Conclusions

In this work we considered decomposition techniques for solving the
large quadratic program arising in training SVMs. These decomposition
schemes require to solve a sequence of smaller QP subproblems. For
these subproblems, we proposed an iterative projection-type method well
suited to exploit the constraints structure and very effective in case of
Gaussian SVMs. Furthermore, this solver is easily parallelizable. By us-
ing this method as inner solver, we developed a new implementation of
the decomposition strategy proposed by Joachims in [9]. Our implemen-
tation is appropriately designed to exploit the inner solver effectiveness,
by working with sufficiently large subproblems and few expensive decom-
position iterations. Conversely, the Joachims’ package gets its best results
with very small subproblems, leading to many nonexpensive decomposi-
tion iterations. The two implementations are compared on large-scale
test problems arising from the MNIST and the UCI Adult data sets. Our
implementation allows a remarkable improvement of the decomposition
technique performances on both the data sets. Moreover, the proposed
approach is well suited for an implementation on distributed memory mul-
tiprocessor systems, since its few expensive decomposition iterations can
be efficiently faced in parallel. Some numerical experiments on large-scale
test problems are presented, to assess the effectiveness of this parallel ap-
proach.
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