
Machine Learning manuscript No.
(will be inserted by the editor)

Bandit-Based Monte-Carlo Structure Learning of
Probabilistic Logic Programs

Nicola Di Mauro · Elena Bellodi · Fabrizio

Riguzzi

Received: date / Accepted: date

Abstract Probabilistic Logic Programming can be used to model domains with com-

plex and uncertain relationships among entities. While the problem of learning the

parameters of such programs has been considered by various authors, the problem

of learning the structure is yet to be explored in depth. In this work we present an

approximate search method based on a one-player game approach, called LEMUR. It

sees the problem of learning the structure of a probabilistic logic program as a multi-

armed bandit problem, relying on the Monte-Carlo tree search UCT algorithm that

combines the precision of tree search with the generality of random sampling. LEMUR

works by modifying the UCT algorithm in a fashion similar to FUSE, that considers a

finite unknown horizon and deals with the problem of having a huge branching factor.

The proposed system has been tested on various real-world datasets and has shown

good performance with respect to other state of the art statistical relational learning

approaches in terms of classification abilities.

1 Introduction

Probabilistic Logic Programming (PLP) is gaining popularity due to its ability to rep-

resent domains with many entities connected by complex and uncertain relationships.

One of the most fertile approaches to PLP is the distribution semantics (Sato, 1995),

that is at the basis of several languages such as the Independent Choice Logic (Poole,

2008), PRISM (Sato, 2008), Logic Programs with Annotated Disjunctions (LPADs)

(Vennekens et al, 2004) and ProbLog (De Raedt et al, 2007). Various algorithms for

learning the parameters of probabilistic logic programs under the distribution semantics

Nicola Di Mauro
Dipartimento di Informatica – University of Bari “Aldo Moro”,
Via Orabona, 4, 70125 Bari, Italy, E-mail: nicola.dimauro@uniba.it

Elena Bellodi
Dipartimento di Ingegneria – University of Ferrara,
Via Saragat 1, I-44122, Ferrara, Italy, E-mail: elena.bellodi@unife.it

Fabrizio Riguzzi
Dipartimento di Matematica e Informatica – University of Ferrara,
Via Saragat 1, I-44122, Ferrara, Italy, E-mail: fabrizio.riguzzi@unife.it

2

have been proposed, such as PRISM (Sato and Kameya, 2001), LFI-ProbLog (Gutmann

et al, 2011) and EMBLEM (Bellodi and Riguzzi, 2013). Fewer systems have been de-

veloped for learning the structure of these programs. Among these, SLIPCASE (Bellodi

and Riguzzi, 2012) performs a beam search in the space of possible theories using the

log-likelihood (LL) of the examples as the heuristic. The beam is initialized with a

number of simple theories that are repeatedly revised using theory revision operators:

the addition/removal of a literal from a rule and the addition/removal of a whole rule.

Each refinement is scored by learning the parameters with EMBLEM and using the LL

of the examples returned by it. SLIPCOVER (Bellodi and Riguzzi, 2014) differs from

SLIPCASE because the beam search is performed in the space of clauses. In this way,

a set of promising clauses is identified and these are added one by one to the empty

theory, keeping each clause if the LL improves.

Since SLIPCASE and SLIPCOVER search space is extremely large, in this paper we

investigate the application of a new approximate search method. In particular, we pro-

pose to search the space of possible theories using a Monte Carlo Tree Search (MCTS)

algorithm (Browne et al, 2012). MCTS has been originally and extensively applied to

Computer Go and recently used in Machine Learning in FUSE (Feature UCT Selec-

tion) (Gaudel and Sebag, 2010), that performs feature selection, and BAAL (Bandit-

Based Active Learner) (Rolet et al, 2009), that focuses on active learning with small

training sets. In this paper, similarly to FUSE, we propose the system LEMUR (LEarn-

ing with a Monte carlo Upgrade of tRee search) relying on UCT, the tree-structured

multi-armed bandit algorithm originally introduced in (Kocsis and Szepesvári, 2006).

We tested LEMUR on seven datasets: UW-CSE, Mutagenesis, Hepatitis, Carcino-

genesis, IMDB, Mondial and HIV. We compared it with various state of the art systems

for structure learning of PLP and Markov Logic Networks. LEMUR achieves higher

areas under the Precision Recall and ROC curves in most cases, thus showing its

classification abilities. To investigate LEMUR behaviour in modeling distributions, we

computed the LL of the test sets and we analyzed its performance on the HIV dataset,

where we try to model all the predicates at once. In this case LEMUR is exceeded by

five systems out of twelve in terms of LL, thus highlighting an area for improvement.

The paper is organized as follows. Section 2 presents Probabilistic Logic Program-

ming, concentrating on LPADs. Section 3 defines the multi-armed bandit problem

while Section 4 provides an overview of Monte Carlo Tree Search (MCTS) algorithms.

Section 5 describes the LEMUR system. Section 6 presents related work, Section 7

experimentally evaluates our system and Section 8 concludes the paper.

2 Probabilistic Logic Programming

We introduce PLP focusing on the distribution semantics (Sato, 1995). We use LPADs

as the language for their general syntax and we don’t allow function symbols; for the

treatment of function symbols see (Riguzzi and Swift, 2013).

LPADs (Vennekens et al, 2004) consist of a finite set of annotated disjunctive

clauses Ci of the form hi1 : Πi1; . . . ;hini
: Πini

: −bi1, . . . , bimi
, where hi1, . . . hini

are

logical atoms and bi1, . . . , bimi
are logical literals. {Πi1, . . . , Πini

} are real numbers

in the interval [0, 1] such that
∑ni

k=1Πik ≤ 1. bi1, . . . , bimi
is called the body and is

indicated with body(Ci). Note that if ni = 1 and Πi1 = 1 the clause corresponds to a

non-disjunctive clause. If
∑ni

k=1Πik < 1, the head of the annotated disjunctive clause

implicitly contains an extra atom null that does not appear in the body of any clause

3

and whose annotation is 1−
∑ni

k=1Πik. We denote by ground(T) the grounding of an

LPAD T .

An atomic choice is a triple (Ci, θj , k) where Ci ∈ T , θj is a substitution that

grounds Ci and k ∈ {1, . . . , ni} identifies a head atom of Ci. Ciθj corresponds to a

multi-valued random variable Xij and an atomic choice (Ci, θj , k) to an assignment

Xij = k. A set of atomic choices κ is consistent if only one head is selected from a

ground clause. A composite choice κ is a consistent set of atomic choices. The probability

P (κ) of a composite choice κ is the product of the probabilities of the individual atomic

choices, i.e. P (κ) =
∏

(Ci,θj ,k)∈κΠik. A selection σ is a composite choice that, for each

clause Ciθj in ground(T), contains an atomic choice (Ci, θj , k). A selection σ identifies

a normal logic program wσ defined as wσ = {(hik ← body(Ci))θj |(Ci, θj , k) ∈ σ},
which is called a world of T . Since selections are composite choices, we can assign a

probability to worlds: P (wσ) = P (σ) =
∏

(Ci,θj ,k)∈σΠik. We denote by ST the set

of all selections and by WT the set of all worlds of a program T . A composite choice

κ identifies a set of worlds ωκ = {wσ|σ ∈ ST , σ ⊇ κ}. We define the set of worlds

identified by a set of composite choices K as ωK =
⋃
κ∈K ωκ.

We consider only sound LPADs, where each possible world has a total well-founded

model, so wσ |= Q means a query Q is true in the well-founded model of the program

wσ. The probability of a query Q given a world w is P (Q|w) = 1 if w |= Q and 0

otherwise. The probability of Q is then:

P (Q) =
∑

w∈WT

P (Q,w) =
∑

w∈WT

P (Q|w)P (w) =
∑

w∈WT :w|=Q

P (w) (1)

Example 1 The following LPAD T models the fact that if somebody has the flu and

the climate is cold, there is the possibility that an epidemic or a pandemic arises:
C1 = epidemic : 0.6; pandemic : 0.3 : −flu(X), cold.

C2 = cold : 0.7.

C3 = flu(david).

C4 = flu(robert).
T has 18 instances, the query Q = epidemic is true in 5 of them and its probability is

P (epidemic) = 0.6·0.6·0.7+0.6·0.3·0.7+0.6·0.1·0.7+0.3·0.6·0.7+0.1·0.6·0.7 = 0.588.

2.1 Inference

Since it is unfeasible to enumerate all the worlds where Q is true, inference algorithms

find in practice a covering set of explanations for Q, i.e. a set of composite choices K

such that Q is true in a world wσ iff wσ ∈ ωK . For Example 1, a covering set of ex-

planations is {{(C1, {X/david}, 1), (C2, ∅, 1)}, {(C1, {X/robert}, 1), (C2, ∅, 1)}} where

θ1 = {X/david}, θ2 = {X/robert} and non-disjunctive clauses are omitted.

From the set K, the following Boolean function can be built:

fK(X) =
∨
κ∈K

∧
(Ci,θj ,k)∈κ

(Xij = k) (2)

where X = {Xij |Ci is a clause and θj is a grounding substitution of Ci} is a set of

multi-valued random variables. The domain of Xij is 1, . . . , ni and its probability

distribution is given by P (Xij = k) = Πik. The problem of computing the probability

4

P (Q) can be solved by computing the probability that fK(X) takes on value true. For

Example 1, (2) is given by

fK(X) = (X11 ∧X21) ∨ (X12 ∧X21) (3)

where X11 corresponds to (C1, {X/david}), X12 corresponds to (C1, {X/robert}) and

X21 corresponds to (C2, ∅).
fK(X) in (2) can be translated into a function of Boolean random variables by

encoding the multi-valued variables. Various options are possible, we found that the

following provides good performance (Sang et al, 2005; De Raedt et al, 2008a): for a

multi-valued variable Xij , corresponding to the ground clause Ciθj , having ni values,

we use ni−1 Boolean variables Xij1, . . . , Xijni−1 and we represent the equation Xij =

k for k = 1, . . . ni − 1 by means of the conjunction Xij1 ∧ . . .∧Xijk−1 ∧Xijk, and the

equation Xij = ni by means of the conjunction Xij1 ∧ . . . ∧Xijni−1. For Example 1,

X11 = 1 is represented as X111 and X11 = 2 as X111 ∧X112. Let us call f ′K(X′) the

result of replacing multi-valued random variables with Boolean variables in fK(X).

The probability distribution of the Boolean random variables Xijk is computed

from that of multi-valued variables as πi1 = Πi1, . . . , πik = Πik∏k−1
j=1 (1−πij)

up to k = ni−

1, where πik is the probability that Xijk is true. With this distribution the probability

that f ′K(X′) is true is the same as fK(X) and thus is the same as P (Q). For Example

1, f ′K(X′) is given by

f ′K(X′) = (X111 ∧X211) ∨ (X121 ∧X211) (4)

Computing the probability that f ′K(X′) is true is a sum-of-products problem and it

was shown to be #P-hard (see e.g. Rauzy et al, 2003). An approach that was found to

give good results in practice is knowledge compilation (Darwiche and Marquis, 2002),

i.e. translating f ′K(X′) to a target language that allows answering queries in polynomial

time. A target language often used is that of Binary Decision Diagrams (BDD). From

a BDD we can compute the probability of the query with a dynamic programming

algorithm that is linear in the size of the BDD (De Raedt et al, 2007). Algorithms that

adopt such an approach for inference include (Riguzzi, 2007b, 2009, 2014; Riguzzi and

Swift, 2010, 2011).

A BDD for a function of Boolean variables is a rooted graph that has one level

for each Boolean variable. A node n in a BDD has two children: one corresponding

to the 1 value of the variable associated with n, indicated with child1(n), and one

corresponding to the 0 value of the variable, indicated with child0(n). When drawing

BDDs, the 0-branch - the one going to child0(n) - is distinguished from the 1-branch

by drawing it with a dashed line. The leaves store either 0 or 1.

BDDs can be built by combining simpler BDDs using Boolean operators. While

building BDDs, simplification operations can be applied that delete or merge nodes.

Merging is performed when the diagram contains two identical sub-diagrams, while

deletion is performed when both arcs from a node point to the same node. In this way

a reduced BDD is obtained, often with a much smaller number of nodes with respect to

the original BDD. The size of the reduced BDD depends on the order of the variables:

finding an optimal order is an NP-complete problem (Bollig and Wegener, 1996) and

several heuristic techniques are used in practice by highly efficient software packages

such as CUDD1. Alternative methods involve learning variable order from examples

(Grumberg et al, 2003). A BDD for function (4) is shown in Figure 1.

1 Available at http://vlsi.colorado.edu/~fabio/CUDD/

http://vlsi.colorado.edu/~fabio/CUDD/

5

X111 n1

X121 n2

X211 n3

1 0

Fig. 1: BDD for function (4).

2.2 Parameter Learning

BDDs are employed to efficiently perform parameter learning of LPADs by the system

EMBLEM (Bellodi and Riguzzi, 2013), based on an Expectation Maximization (EM)

algorithm. EMBLEM takes as input a set of interpretations, i.e., sets of ground facts

describing a portion of the domain. It is targeted at discriminative learning, since the

user has to indicate which predicate(s) of the domain is/are target, the one(s) for which

we are interested in good predictions. The interpretations must contain also negative

facts for target predicates. All ground atoms for the target predicates will represent

the positive and negative examples (queries Q) for which BDDs are built, encoding the

disjunction of their explanations. After building the BDDs, EMBLEM then maximizes

the LL for the positive and negative target examples with an EM cycle, until it has

reached a local maximum or a maximum number of steps is executed. The E-step

computes the expectations of the latent variables directly over BDDs and returns the

LL of the data that is used in the stopping criterion. For each target fact Q, the

expectations are E[Xijk = x|Q] for all Cis, k = 1, . . . , ni − 1, j ∈ g(i) := {j|θj is a

substitution grounding Ci} and x ∈ {0, 1}. E[Xijk = x|Q] is given by

E[Xijk = x|Q] = P (Xijk = x|Q) · 1 + P (Xijk = (1− x)|Q) · 0 = P (Xijk = x|Q).

From E[Xijk = x|Q] one can compute the expectations E[cik0|Q] and E[cik1|Q] where

cikx is the number of times a Boolean variable Xijk takes on value x for x ∈ {0, 1}
and for all j ∈ g(i). The expected counts E[cik0] and E[cik1] are obtained by summing

E[cik0|Q] and E[cik1|Q] over all examples. P (Xijk = x|Q) is given by
P (Xijk=x,Q)

P (Q)
,

where P (Xijk = x,Q) and P (Q) can be computed with two traversals of the BDD

built for the query Q.

The M-step updates the parameters πik for all clauses as:

πik =
E[cik1]

E[cik0] + E[cik1]

for the next EM iteration.

Other EM-based approaches for parameter learning include PRISM (Sato and Kameya,

2001), LFI-ProbLog (Gutmann et al, 2011), ProbLog2 (Fierens et al, 2013) and RIB

(Riguzzi and Di Mauro, 2012).

PRISM imposes a restriction on the kind of allowed programs: the body of clauses

sharing an atom in the head must be mutually exclusive. This restriction allows PRISM

to avoid using BDDs but severly limits the class of programs to which it can be applied;

Example 1, for instance, does not satisfy this requirement, as there are two clauses in

6

the grounding of the program that share the atom epidemic (and pandemic) in the

head but the bodies are not mutually exclusive.

LFI-ProbLog, the most similar to EMBLEM, also performs EM using BDDs but,

while LFI-ProbLog builds a BDD for an interpretation that represents the application

of the whole theory to the interpretation, EMBLEM focuses on a target predicate, the

one for which we want to obtain good predictions, and builds BDDs starting from

ground atoms for the target predicate. ProbLog2 improves on LFI-ProbLog by using

d-DNNFs instead of BDDs, a representation that is more succinct than BDDs, but

again considers whole interpretations rather than focusing on target predicates.

RIB uses a specialized EM algorithm but is limited to example interpretations

sharing the same Herbrand base.

3 Multi-armed Bandit Problem

A multi-armed bandit problem (see (Bubeck and Cesa-Bianchi, 2012) for a review of

stochastic and adversarial bandits) is a sequential allocation problem characterized by a

set of arms (choices or actions)2. The process sequentially allocates a unit resource to an

action obtaining an observable payoff. The aim is to maximize the total obtained payoff.

A bandit problem is a sequential decision making problem with limited information

where one has to cope with the exploration versus exploitation dilemma, since the

player should try to balance the exploitation of already known actions having a high

payoff and the exploration of other probable profitable actions. The multi-armed bandit

problem represents the simplest instance of this dilemma.

The bandit problem may be defined as follows. Given K ≥ 2 arms, a K-armed

bandit problem is defined by random variables Xi1 , . . . , Xin , where it ∈ {1, . . . ,K} is

the index of an arm and n represents the length of the finite horizon, or the rounds.

Xit is the unknown reward associated with arm it in round t. Successive plays of

arm i yield rewards that are independent and identically distributed according to an

unknown probability distribution νi on [0, 1], Xi ∼ νi, with unknown expectation

µi = EXi∼νk [Xi] (mean reward of arm i). We denote by it the arm the player selected

at time step t, and by Ti(t) =
∑t
s=1 I(is = i) the number of times the player selected

arm i on the first t rounds, where I(x) is the indicator function that is 1 if x is true

and 0 otherwise.

Definition 1 (The stochastic bandit problem)

Available parameters: number of arms K and (possibly) number of rounds n ≥ K
Unknown parameters: probability distributions ν1, . . . , νK on [0, 1]

for each round t = 1, 2, . . . , n do

the player chooses it ∈ {1, . . . ,K}
the environment draws the reward xitt ∼ νit independently from the past

the player receives the reward xitt

Objective: maximize xi11 + . . .+ xinn

2 The term one-armed bandit is an American slang for slot-machine, while the term multi-
armed bandit derives from the scenario of a casino where the player faces a row of slot machines
when deciding which machines to play. The name is due to Robbins (1952), who pictured a
gambler who has the option to play any of a number of slot machines (one-armed bandits)
with unknown reward distributions and who wishes to maximize his total expected gain.

7

A policy is an algorithm that chooses the next arm to play based on the sequence of

past plays and obtained rewards. Knowing in advance the arm distributions an optimal

policy corresponds to selecting the single arm with the highest mean at each round,

obtaining an expected reward of nµ∗ where µ∗ = max
i=1,...,K

µi. Since the distributions of

the arms are unknown, it is necessary to pull each arm several times (exploration) and

to pull increasingly often the best ones (exploitation).

The (expected) regret from which a bandit algorithm (or a policy) suffers with

respect to the optimal arm after n rounds is defined by

Rn = nµ∗ −
K∑
i=1

µiE[Ti(n)],

where E[Ti(n)] denotes the expected number of plays for arm i in the first n rounds.

This defines the loss resulting from not knowing from the beginning the reward

distributions. For bandit problems it is useful to know the upper confidence bound

(UCB) of the mean reward of an arm (i.e., the upper bound of a confidence interval

on the mean reward of each arm). Auer et al (2002) proposed a simple UCB, called

UCB1, given by

UCB1 = Xi +

√
2 ln t

Ti(t)
, (5)

where Xi is the average reward obtained from arm i. The algorithm that at trial t,

after playing each arm once for initialization, chooses the arm i that maximizes UCB1

achieves logarithmic regret uniformly over n rounds without any preliminary knowledge

about the reward distributions (apart from the fact that their support is in [0, 1]).

This upper confidence bound is used to cope with the exploration-exploitation

dilemma, and the corresponding technique converges to the optimal solution for multi-

armed bandit problems (Auer et al, 2002).

4 Monte Carlo Tree Search (MCTS)

MCTS (see (Browne et al, 2012) for a survey) is a family of algorithms aiming at find-

ing optimal decisions by taking random samples in the decision space and by building

a search tree in an incremental and asymmetric manner. In each iteration of the al-

gorithm, first a tree policy is used in order to find the most urgent node of the tree

to expand, trying to balance exploitation and exploration. Then a simulation phase

is conducted from the selected node, by adding a new child node (obtained with a

move from the selected node) and using a default policy that suggests the sequence of

actions (“simulation”) to be chosen from this new node. Finally, the simulation result

is backpropagated upwards to update the statistics of the nodes that will inform future

tree policy decisions.

In computer game-playing MCTS is used in combination with bandit algorithms

to explore more efficiently the huge tree of game continuations after a chosen move.

Kocsis and Szepesvári (2006) proposed a MCTS strategy for hierarchical bandits called

UCT (UCB applied to Trees), derived from the UCB1 bandit algorithm, that led to a

substantial advancement in Computer Go performance (Gelly and Wang, 2006).

The general MCTS algorithm is shown in Algorithm 1, where v0 is the root node

of the search tree, vl is the last node reached during each tree policy iteration, and

8

Algorithm 1 The general MCTS approach

1: function MCTS(v0)
2: while within a computational budget do
3: vl ← TreePolicy(v0)
4: ∆← DefaultPolicy(vl)
5: Backup(vl,∆)

return a(BestChild(v0))

∆ is the reward for the terminal state reached by running the default policy from vl.

Finally, the action that leads to the best child of the root node a(BestChild(v0)) is

returned. In particular, the tree policy component of the algorithm starts from the root

node v0 and then recursively selects child nodes according to some utility function until

a node vl−1 is reached that either describes a terminal state or is not fully expanded.

Now, an unvisited action a from this state is selected and a new leaf node vl is added

to the tree. In the default policy component, a simulation is executed from the new

leaf node vl in order to obtain a reward value ∆, which is then backpropagated in the

backup phase up the sequence of nodes selected during the tree policy (i.e., from the

newly added node vl to the root v0) to update their statistics (i.e., incrementing their

visit count and updating their average reward according to ∆). In the simplest case,

the default policy is uniformly random.

The goal of a MCTS algorithm is to approximate the true values of the moves that

may be taken in a given node of the tree. In (Kocsis and Szepesvári, 2006) the choice of

a child node in the tree policy is treated as a multi-armed bandit problem, i.e. the value

of a child node is the expected reward approximated by Monte Carlo simulations. In

particular, a child j (an arm) of a node i is selected to maximize the following formula:

UCT =

{
Qj + 2C

√
2 lnNi
Nj

if Nj > 0

FPUj otherwise
(6)

where Qj is the average reward from arm j, Ni is the number of times the current

node i (the parent of node j) has been visited, Nj is the number of times child j

has been visited and C > 0 is a constant. Generally, there is no way of determin-

ing the unexplored nodes visiting order and typically UCT visits each unvisited node

once in random order before revisiting them. To address this issue, first-play urgency

(FPU) (Gelly and Wang, 2006) is used, that assigns a fixed value FPUj to unvisited

nodes (when Nj = 0).

The UCT formula in Equation (6) tries to balance exploitation (the first term of

the sum) and exploration (the second term of the sum ensuring that each child has a

non-zero probability of selection). The constant C in the formula can be set to control

the amount of exploration. The value C = 1/
√

2 was shown by Kocsis et al (2006) to

satisfy the Hoeffding inequality3 with rewards in the range [0, 1].

Each node v is characterized by two values, updated every time v takes part of a

tree policy simulation from the root: the number Nv of times it has been visited and a

value Qv that corresponds to the total reward of all playouts4 that passed through the

3 Hoeffding’s inequality gives us the upper bound on the probability that the sum of random
variables deviates from its expected value.

4 As in (Browne et al, 2012), we understand the terms playout (or simulation) to mean
“playing out the task to completion according to the default policy”, i.e. the sequence of
actions chosen after the tree policy steps of selection and expansion have been completed.

9

node. Thus, Qv = Qv/Nv is the average reward obtained from node v and represents

an approximation of the theoretic value of v.

5 LEMUR: Learning LPADs as a Multi-armed Bandit Problem

When applying the UCT algorithm for learning the structure of LPADs, we consider

each clause to be added to the theory as a bandit problem, where each legal clause

revision5 is an arm with unknown reward. We start from the empty theory and then we

iteratively add clauses to it. At each iteration i we start a new execution of a MCTS to

find the clause C to be added to the theory Ti−1. In particular, each node of the search

tree is a clause and its children are its revisions that are selected according to the UCT

formula (6). The reward of a clause/arm is computed by learning the parameters of

the current theory plus the clause with EMBLEM and using the resulting log-likelihood

(LL), appropriately scaled so that it belongs to [0, 1]. During the search, both in the

tree and in the default policy, the best clause in terms of LL is included in the current

theory. The approach is shown in Algorithm 2.

LEMUR takes as input four parameters: the maximum number K of LPAD clauses

to be learned, the number L of UCT rounds, the constant C used in the UCT formula

and the maximum random specialization steps S of the default policy. LEMUR starts

from an empty theory T ∗ (line 1) and then iteratively adds at most K clauses to T ∗
(lines 2-16). Each iteration i corresponds to an application of a UCT procedure in order

to extend the current best theory T ∗ with another clause. The iterative process can

be stopped when adding a new clause does not improve the LL. The computational

budget for each UCT application corresponds to the execution of L playouts (line 6).

The tree policy in LEMUR (lines 17-20) is implemented as follows. During each

iteration, LEMUR starts from the root of the tree corresponding to a clause with an

empty body. At each node, LEMUR selects one move by calling the BestChild function

(lines 33-34). The move corresponds to a possible clause revision, according to the UCT

formula (6). LEMUR then descends to the selected child node and selects a new move

until it reaches a leaf. The tree policy part ends by calling the Expand function (lines

35-43) that computes all the children of the leaf.

We implemented a first play urgency approach by assigning the LL of the parent

node to score all the expanded children nodes. Expand then considers the first child of

the leaf, it computes its true LL by parameter learning and returns the couple (node,

LL). This LL is compared with the current best (line 8) in order to check whether a

new optimum has been reached.

Then LEMUR starts the default policy (lines 21-32) consisting of a random sequence

of revisions applied to the new leaf node vl until a finite unknown horizon is reached:

LEMUR stops the simulation after k steps, where k is a uniformly sampled random

integer smaller than the input parameter S. Once the horizon is reached, LEMUR

produces a reward value ∆ corresponding to the best LL of the theory visited during

this random simulation. Logic theories are scored by learning their parameters with

EMBLEM and by using the resulting LL.

This reward value ∆ is then backpropagated by calling the procedure Backup

(lines 44-49) along the sequence of nodes selected for this iteration in order to update

their statistics. The LL LLT of a theory T computed by EMBLEM is normalized as

5 In this paper we consider specializations only as revisions.

10

Algorithm 2 LEMUR(K,L,C, S)

Input: K: maximum number of clauses; L: number of UCT rounds; C: UCT constant; S:
maximum random specialization steps in the default policy.

Output: T ∗: the best LPAD Theory

1: T ∗ ← ∅; LL← −∞
2: for i = 1, . . . ,K do . K UCT iterations
3: create a root node v0 with a clause with an empty body
4: BC∗ ← v0 . best clause
5: LL∗ ←EMBLEM((T ∗ ∪ {v0})) . best clause’s LL
6: for j = 1, . . . , L do
7: (w,LLw)← TreePolicy(v0, T ∗, C) . a clause and its corresponding LL
8: if LLw > LL∗ then
9: LL∗ ← LLw

10: BC∗ ← w
11: (BC∗,∆)← DefaultPolicy(w, T ∗, S,BC∗, LL∗)
12: Backup(w,∆)
13: CheckAMAF(BC∗, w,∆)
14: LL∗ = ∆
15: if (LL∗ − LL) > ε then
16: T ∗ ← T ∗ ∪ {BC∗}; LL← LL∗

17: function TreePolicy(v, T , C)
18: while v is not a leaf node do
19: v ← BestChild(v, C)

20: return Expand(v, T)

21: function DefaultPolicy(v, T , S,BC,LL)
22: BC∗ ← BC
23: ∆← LL
24: k ← rand(1, S) . finite horizon
25: for i = 1 . . . k do
26: select a revision rv of v uniformly at random
27: LL =EMBLEM(T ∗ ∪ {rv})
28: if LL > ∆ then
29: ∆← LL
30: BC∗ ← rv
31: v ← rv
32: return (BC∗,∆)

33: function BestChild(v, C)

34: return argmax
w∈children of v

Qw
Nw

+ 2C
√

2 lnNv
Nw

35: function Expand(v, T)
36: add all the child nodes (revisions) to v in the tree
37: for each child w of v do
38: Nw = 1 . initializations for the FPU
39: Qw = 1/(1− LLv)
40: LLw = LLv

41: x =the first child of v
42: LLx =EMBLEM(T ∪ {x})
43: return (x, LLx)

44: procedure Backup(v,∆)
45: while v is not the root of the tree do
46: Nv ← Nv + 1
47: Qv ← Qv + 1/(1−∆)
48: v ← parent of v

49: Nv ← Nv + 1 . updates the visits of the root node

50: procedure CheckAMAF(BC, v,∆)
51: for each node u of the tree not ancestor of v do
52: if the clause corresponding to u subsumes BC then
53: Nu ← Nu + 1
54: Qu ← Qu + 1/(1−∆)

11

QT = 1/(1 − LLT) in order to keep the values of ∆ and thus of Qj for each node j

within [0, 1].

Clause revisions are performed using a downward refinement operator (Nienhuys-

Cheng and de Wolf, 1997): a function ρ that takes as argument a clause C and returns

a set of clauses ρ(C) containing only refinements of C according to theta subsumption,

the usual generality order in ILP.

The refinement operator ρ that we use adds a literal to a clause and selects the

literal according to a language bias specified in terms of mode declarations. Following

Muggleton (1995), a mode declaration m is either a head declaration modeh(r, s) or

a body declaration modeb(r, s), where s, the schema, is a ground literal and r is an

integer called the recall. A schema is a template for literals in the head or body of a

clause and can contain special placemarker terms of the form #type, +type and -type,

which stand, respectively, for ground terms, input variables and output variables of a

type. An input variable in a body literal of a clause must be either an input variable

in the head or an output variable in a preceding body literal in the clause. If M

is a set of mode declarations, L(M) is the language of M , i.e. the set of clauses

{C = h1; . . . ;hn :− b1, . . . , bm} such that the head atoms hi (resp. body literals bi)

are obtained from some head (resp. body) declaration in M by replacing all + (resp. -)

placemarkers with input (resp. output) variables. Differently from Muggleton (1995),

the mode declarations are not used to build a bottom clause from which to extract the

literals but these are directly obtained from L(M).

Note that in our case the problem we are solving with UCT can be represented as a

directed acyclic graph, since similar clauses can be reached through different sequences

of revisions. In other words, our operator is not optimal, in the usual ILP terminology

(Nienhuys-Cheng and de Wolf, 1997). However, we can not expect to do better as opti-

mal refinement operators do not exist for the language we chose (Nienhuys-Cheng and

de Wolf, 1997). A way to solve this problem is to consider the enhancement All Moves

As First (AMAF) first proposed in (Gelly and Silver, 2007). The AMAF algorithm

treats all moves played during a tree policy as if they were played on a previous tree

policy. This means that the reward estimate for an action a from a state s is updated

whenever a is encountered during a playout, even if a was not the actual move chosen

from s (i.e., a is not actually traversed in the selected playout). The AMAF approach

implemented in LEMUR is reported in procedure CheckAMAF (lines 50-54) that up-

dates the statistics of each node i of the tree whose corresponding clause Ci subsumes

the one returned by the default policy C, since C can be reached also from the node i

after a given number of specializations. The algorithm implements the general AMAF

procedure, without considering its variants. Furthermore, the independence assump-

tion made for the rewards yielded by the arms is mitigated by the adopted AMAF

approach, as reported in the following explanatory example.

Suppose that we have three predicates a/2, p/1 and q/1, and we want to predict the

predicate a/2. The language bias contains a modeh declaration, modeh(*,a(+l,+l)),

and modeb declarations such as modeb(*,p(+l)) and modeb(*,q(+l)).

Figure 2 shows snapshots of LEMUR’s learning states. Each node in the figure is

labeled with its corresponding literal plus the cumulative reward over the number of

visits. Figure 2a reports the selection process of the Tree Policy phase where, starting

from the root, a leaf is reached by making the best choice for each node, according to the

UCT formula. When on a leaf node, the expansion process is executed (Figure 2b) and

the simulation phase follows (Figure 2c). By looking at Figure 2d, the expansion has

generated two nodes, q(A) and p(B). As we already said, we implemented a first-play

12

urgency (FPU) approach by using the LL of the parent node to score all the expanded

children nodes that are not used to start the simulation. Now, the reward value corre-

sponding to the best LL of the theory visited during the simulation (the downward zig

zag arrow starting from p(B) in Figure 2c) is backpropagated to the parent nodes. The

clause corresponding to the last leaf node from which the backpropagation started is

subsumed by other clauses in the tree and hence the AMAF procedure updates their

values.

5.1 Execution Example

We now show an execution example for the UW-CSE dataset, used in the experi-

ments discussed in Section 7. UW-CSE describes the Computer Science department

of the University of Washington with 22 different predicates, such as advisedby/2,

yearsinprogram/2 and taughtby/3. The aim is to predict the predicate advisedby/2,

namely the fact that a person is advised by another person. The language bias con-

tains modeh declarations such as modeh(*,advisedby(+person,+person)) and modeb

declarations such as modeb(*,courselevel(+course, -level)).

The first clause may be obtained by the first UCT application (line 2 of Algorithm 2

(i = 1)) as follows. LEMUR starts with a tree having an empty body clause as the

root node. The first application of the TreePolicy function (line 7 of Algorithm 2)

corresponds to the application of the Expand function on the empty clause and then

to the execution of the DefaultPolicy, which returns the following new best clause

with LL −246.51:

advisedby(A, B):0.5 :- professor(B).

In a further application (line 7-16 of Algorithm 2) of both the TreePolicy and De-

faultPolicy functions, the node of the tree corresponding to the following clause

having a LL equal to −215.46 could be reached:

advisedby(A, B):0.1089 :- professor(B), student(A).

No more clauses with a better LL are found in this first iteration.

The second iteration (line 2 of Algorithm 2 (i = 2)) then starts with a theory con-

taining the best clause obtained in the previous one. Applications of the TreePolicy

and the DefaultPolicy functions find a clause that when added to the current theory

gives the following one with a LL equal to −189.50:

advisedby(A,B):0.11536 :- professor(B), student(A).

advisedby(A,B):0.285709 :- student(A), publication(C,A),

professor(B), publication(C,B).

6 Related Work

The idea of applying a MCTS algorithm to Machine Learning problems is not new.

Indeed, MCTS has been recently used by Gaudel and Sebag (2010) in their FUSE

(Feature Uct SElection) system to perform feature selection, and by Rolet et al (2009)

in BAAL (Bandit-based Active Learner) for active learning with small training sets.

Gaudel and Sebag (2010) firstly formalize feature selection as a Reinforcement Learning

(RL) problem and then provide an approximation of the optimal policy by casting the

13

Fig. 2: States of LEMUR’s Tree Search.

(a) Selection

a(A,B)

p(A) p(B) q(A) q(B)

p(B) q(A) q(B) p(A) q(A) q(B) p(A) p(B) q(B)

1.14/3 0.67/3 0.87/3 0.03/1

2.68/9

0.34/1 0.24/1 0.56/1 0.34/1 0.11/1 0.21/1 0.24/1 0.11/1 0.52/1

(b) Expansion

a(A,B)

p(A) p(B) q(A) q(B)

p(B) q(A) q(B) p(A) q(A) q(B) p(A) p(B) q(B)

p(B) q(A)

1.14/3 0.67/3 0.87/3 0.03/1

2.68/9

0.34/1 0.24/1

0.56/1

0.34/1 0.11/1 0.21/1 0.24/1 0.11/1 0.52/1

(c) Simulation

a(A,B)

p(A) p(B) q(A) q(B)

p(B) q(A) q(B) p(A) q(A) q(B) p(A) p(B) q(B)

p(B) q(A)

1.14/3 0.67/3 0.87/3 0.03/1

2.68/9

0.34/1 0.24/1

0.56/1

0.34/1 0.11/1 0.21/1 0.24/1 0.11/1 0.52/1

(d) Backpropagation and AMAF

a(A,B)

p(A) p(B) q(A) q(B)

p(B) q(A) q(B) p(A) q(A) q(B) p(A) p(B) q(B)

p(B) q(A)

1.61+0.47
4+1

0.67+3·0.47
3+3 0.87/3

0.03+0.47
1+1

3.15+5·0.47
10+5

0.34+0.47
1+1

0.24/1

1.03/2

0.34+0.47
1+1

0.11/1 0.21+0.47
1+1

0.24/1 0.11/1 0.52/1

0.47/1 0.56/1

14

RL problem as a one-player game whose states are all possible subsets of features and

whose actions consist of choosing a feature and adding it to a subset. The problem

is then solved with the UCT approach leading to the FUSE algorithm. Rolet et al

(2009) focus on Active Learning (AL) with a limited number of queries. The authors

formalized AL under bounded resources as a finite horizon RL problem. Then they

proposed an approximation of the optimal policy leading to the BAAL algorithm that

combines UCT and billiard algorithms (Rujan, 1997).

Previous work on learning the structure of probabilistic logic programs includes

(Kersting and De Raedt, 2008), that proposed a scheme for learning both the proba-

bilities and the structure of Bayesian logic programs by combining techniques from the

learning from interpretations setting of ILP with score-based techniques for learning

Bayesian networks. We share with this approach the scoring function, the LL of the

data given a candidate structure, and the greedy search in the space of structures.

Paes et al (2005) perform theory revision of Bayesian logic programs using a variety

of heuristic functions, including the LL of the examples. LEMUR differs from this work

because it searches the clause space rather than the theory space.

Early systems for learning the structure of LPADs are LLPAD (Riguzzi, 2004) and

its successor ALLPAD (Riguzzi, 2007a, 2008) that however are restricted to learning

ground programs with mutually exclusive clauses.

De Raedt et al (2008b) presented an algorithm for performing theory compression

on ProbLog programs. Theory compression means removing as many clauses as possible

from the theory in order to maximize the likelihood w.r.t. a set of positive and negative

examples. No new clause can be added to the theory.

SEM-CP-logic (Meert et al, 2008) learns parameters and structure of ground CP-

logic programs. It performs learning by considering the Bayesian networks equivalent

to CP-logic programs and by applying techniques for learning Bayesian networks. In

particular, it applies the Structural Expectation Maximization (SEM) algorithm (Fried-

man, 1998): it iteratively generates refinements of the equivalent Bayesian network and

it greedily chooses the one that maximizes the BIC score (Schwarz, 1978). LEMUR dif-

fers from SEM-CP-logic because it searches the clause space instead of the theory space

and it refines clauses with standard ILP refinement operators, which allows it to learn

non ground theories.

More recently, SLIPCASE (Bellodi and Riguzzi, 2012) can learn probabilistic logic

programs without these restrictions. It is based on a simple beam search strategy in

the space of possible theories, that refines LPAD programs by trying all possible theory

revisions. It exploits the LL of the data as the guiding heuristics. The beam is initialized

with a number of trivial theories that are repeatedly revised using theory revision

operators: the addition/removal of a literal from a clause and the addition/removal of

a whole clause. Each refinement is scored by learning the parameters with EMBLEM.

LEMUR differs from SLIPCASE because it searches the space of clauses and does it

using an approximate search method.

SLIPCOVER (Bellodi and Riguzzi, 2014) learns the structure of probabilistic logic

programs with a two-phase search strategy: (1) beam search in the space of clauses in

order to find a set of promising clauses and (2) greedy search in the space of theories. In

the first phase, SLIPCOVER generates refinements of a single clause at a time starting

from a bottom clause built as in Progol (Muggleton, 1995), which are evaluated through

LL. In the second phase, the search in the space of theories starts from an empty

theory which is iteratively extended with one clause at a time from those generated in

the previous beam search. Background clauses, the ones with a non-target predicate

15

in the head, are treated separately, by adding them en bloc to the best theory for

target predicates. A further parameter optimization step is executed with EMBLEM

and clauses that are never involved in a target predicate goal derivation are removed.

LEMUR differs from SLIPCOVER for the use of a MCTS search strategy rather than

a beam search. Moreover, there is no separate search for clauses and for theories, since

clauses are learned one by one adding each one to the current theory. Thus, clauses are

not evaluated in isolation as in SLIPCOVER but are scored together with the current

theory. The only random component of SLIPCOVER is the selection of the seed example

for building the bottom clauses, while randomization is a crucial component of LEMUR

default policy.

Structure learning has been thoroughly investigated for Markov Logic. Mihalkova

and Mooney (2007) proposed a bottom-up algorithm (BUSL) for learning Markov Logic

Networks (MLNs) that is based on relational pathfinding: paths of true ground atoms

that are linked via their arguments are found and generalized into first-order rules.

Huynh and Mooney (2008) introduced a two-step method (ALEPH++ExactL1) for

inducing the structure of MLNs: (1) learning a large number of promising clauses

through a specific configuration of Aleph6 (ALEPH++), followed by (2) the application

of a new discriminative MLN parameter learning algorithm. This algorithm differs from

the standard weight learning one (Lowd and Domingos, 2007) in the use of an exact

probabilistic inference method and of a L1-regularization of the parameters, in order

to encourage assigning low weights to clauses. Kok and Domingos (2010) presented

the algorithm “Learning Markov Logic Networks using Structural Motifs” (LSM). It

is based on the observation that relational data frequently contain recurring patterns

of densely connected objects called structural motifs. LSM limits the search to these

patterns. LSM views a database as a hypergraph and groups nodes that are densely

connected by many paths and the hyperedges connecting the nodes into a motif. Then

it evaluates whether the motif appears frequently enough in the data and finally it

applies relational pathfinding to find rules. This process, called createrules, is followed

by weight learning with the Alchemy system.

A set of recent boosting approaches have been proposed to reduce structure learning

of probabilistic relational models to relational regression (Khot et al, 2011; Natarajan

et al, 2012). Khot et al (2011) turned the problem of learning MLNs into a series of

relational functional approximation problems, using two kinds of representations for

the gradients on the pseudo-likelihood: clause-based (MLN-BC) and tree-based (MLN-

BT). At each gradient step, the former version simply learns a set of Horn clauses

with an associated regression value, while the latter version views MLNs as a set of

relational regression trees, in which each path from the root to a leaf can be seen as

a clause and the regression values in the leaves are the clause weights. The goal is to

minimize the squared error between the potential function and the functional gradi-

ent over all training examples. Natarajan et al (2012) turned the problem of learning

Relational Dependency Networks (RDNs) into a series of relational function approxi-

mation problems using Friedman’s functional gradient-based boosting. The algorithm

is called RDN-B. RDNs approximate the joint distribution of a relational model as a

product of conditional distributions over ground atoms. They consider the conditional

probability distribution of each predicate as a set of relational regression trees each

of which approximates the corresponding gradient. These regression trees serve as the

individual components of the final potential function. They are learned such that at

6 http://www.cs.ox.ac.uk/activities/machlearn/Aleph/

http://www.cs.ox.ac.uk/activities/machlearn/Aleph/

16

each iteration the new set of regression trees aims at maximizing the likelihood. The

different regression trees provide the structure of the conditional distributions while

the regression values at the leaves form the parameters of the distributions.

Poor scalability in problems with large search spaces and many examples are two

challenges faced by many ILP systems employing deterministic search methods. These

challenges have been successfully addressed by randomizing the search with Stochastic

Local Search (SLS) procedures (Hoos and Stützle, 2004) as in (Paes et al, 2008),

(Železný et al, 2002) and (Zelezný et al, 2006). In a SLS algorithm, one starts by

selecting an initial candidate solution and then iteratively moving from one candidate

solution to a neighboring candidate solution. The decision at each search step is based

on local knowledge. Both the decisions as well as the search initializations can be

randomized.

In particular, (Paes et al, 2008) apply Stochastic Local Search for first-order the-

ory revision from examples, starting from the implementation of the FORTE system

(Richards and Mooney, 1995). SLS relies on randomized decisions while searching for

solutions: stochastic or greedy moves are chosen according to a fixed probability p.

Stochastic moves include randomization of antecedent search (for clause-level refine-

ment) and randomization of revision search (for theory-level refinement).

Železný et al (2002) propose to randomize the lattice search of clauses: for a max-

imum number of tries (restarts), the algorithm begins by randomly selecting a start-

ing clause (seed), generating its subsequent deterministic refinements through a non-

traditional refinement operator producing a “radial” lattice, and returning the first

clause satisfying conditions on the minimal accuracy. This implementation is called

randomized rapid restarts (RRR).

In order to be informative during the search, a local search algorithm should use an

evaluation function mapping each search position onto a real number. In case of ILP

this corresponds to use a well-known expensive evaluation function for clauses/theories.

In contrast, MCTS yields a larger and unbiased sample of the search neighborhood,

and requires state evaluations only at the endpoints of each playout. Its evaluation

function depends only on the observed outcomes of the playout, and continues to

improve from additional playouts (the lack of need for domain-specific knowledge is

one of its most significant benefits). In our specific case, each move is not estimated

with a local inspection of the neighborhood that may lead to a local optimum, but

with a deep inspection of the tree.

MCTS develops in a highly selective, best-first manner, expanding promising re-

gions of the search space much more deeply. Instead of randomly searching promising

solutions, MCTS tries to discover the optimal policy (the revision steps in our case)

leading to the optimal solutions.

Furthermore, SLS algorithms often suffer from getting trapped in a local optimum

(local optimum stagnation), a problem non existing for systematic search algorithms.

A common solution to the stagnation problem is to restart the algorithm when no

progress is observed (Mart́ı et al, 2010). On the other side the UCT algorithm for

MCTS uses an upper confidence bound exploration/exploitation technique. This upper

confidence bound technique converges to the optimum solution for multi-armed bandit

problems (Auer et al, 2002).

17

7 Experimental Validation

The proposed LEMUR system has been implemented in Yap Prolog (Santos Costa

et al, 2012) and has been compared with SLIPCASE, SLIPCOVER (for PLPs), BUSL,

LSM, ALEPH++ExactL1, MLN-BC, MLN-BT (for MLNs), RDN-B (for RDNs), SLS and

RRR (for structure learning by randomized search techniques). All experiments were

performed on GNU/Linux machines with an Intel Core 2 Duo E6550 (2,333 MHz)

processor and 4 GB of RAM. The systems have been tested on the following seven

real world datasets: UW-CSE, Mutagenesis, Hepatitis, Carcinogenesis, IMDB, Mondial

and HIV. To evaluate the performance, we computed the log likelihood over the test

examples and we drew Precision-Recall curves and Receiver Operating Characteristics

curves, computing the Area Under the Curve (AUC-PR and AUC-ROC respectively)

with the methods reported in (Davis and Goadrich, 2006; Fawcett, 2006). For each

dataset we report the results for those systems that completed the task successfully.

The missing results indicate an out-of-memory error. Statistics on all the domains are

reported in Table 1. The number of negative testing examples is sometimes different

from that of negative training examples because, while for training we explicitly provide

negative examples, for testing we consider all the ground instantiations of the target

predicates that are not positive as negative.

Dataset Target C P T TrPEx TrNEx TeNEx F

UW-CSE advisedby 1323 15 2673 113 4079 16601 5
Mutagen. active 7045 20 15249 125 63 63 10
Carcinogen. active 13835 36 24533 182 136 19 1
Hepatitis type 6491 19 71597 500 500 500 5
IMDB workedUnder 316 6 1540 382 14236 14236 5
Mondial christianReligion 3012 11 10985 572 308 308 5
HIV 41L,67N,70R, 0 6 2184 590 1594 1594 5

210W,215FY,219EQ

Table 1: Characteristics of the datasets for the experiments: target predicates (Target),

number of constants (C), of predicates (P), of tuples (T) (i.e., ground atoms), of positive

(TrPEx) and negative training and testing (TrNEx and TeNEx) examples for target

predicate(s), of folds (F). The number of tuples includes the target positive examples.

7.1 Parameter Settings

LEMUR requires four input parameters: the maximum number K of clauses to be

learned, the number L of UCT rounds, the UCT constant C and the maximum number

S of random specialization steps in the default policy. For all the datasets we set the

C constant to 0.7 ≈ 1/
√

2 as indicated in (Kocsis et al, 2006). The other parameters

were set as S = 8, L = 200 and K = 20. These values were chosen in order to allow for

a sufficiently deep search and a sufficiently complex target theory while containing the

computation time. We also experimented with other parameter values and we obtained

similar results, showing that LEMUR is not extremely sensitive to parameter values.

SLIPCASE requires the following parameters: NIT, the number of theory revision

iterations, NR, the maximum number of rules in a learned theory, NB, the size of

18

the beam, NV, the maximum number of variables in a rule, εs and δs, respectively

the minimum difference and relative difference between the LL of the theory in two

refinement iterations. We set εs = 10−4 and δs = 10−5 in all experiments except

Mutagenesis, where we used εs = 10−20 and δs = 10−20. Moreover, we set NIT = 10,

NB = 20, NV = 4 or 5, NR = 10 in all experiments except Carcinogenesis, where we

allowed a greater beam (NB = 100) to take into account more rules for the final theory.

SLIPCOVER offers the following parameters: the number NInt of mega-examples

on which to build the bottom clauses, the number NA of bottom clauses to be built

for each mega-example, the number NS of saturation steps (for building the bottom

clauses), the maximum number NI of clause search iterations, the size NB of the beam,

the maximum number NV of variables in a rule, the maximum numbers NTC and NBC

of target and background clauses respectively. We set NInt = 1 or 4, NS = 1, NA = 1,

NI = 10, NV = 4 or 5, NB = 10, 20 or 100, NTC = 50, 100, 1000 or 10000, NBC = 50

(only UW-CSE) according to the dataset.

LEMUR, SLIPCASE and SLIPCOVER share the parameter learning algorithm EM-

BLEM. For the EM cycle performed by EMBLEM, we set the maximum number of

iterations NEM to ∞ (since we observed that it usually converged quickly) and the

stopping criteria ε to 10−4 and δ to 10−5. EMBLEM stops when the difference between

the LL of the current iteration and the previous one drops below the threshold ε or

when this difference is below a fraction δ of the current LL.

As regards LSM, we used the default parameters in the structure learning phase

and the discriminative algorithm in the weight learning phase on all datasets except for

HIV, where the generative option was set; we specified the target predicates (see Table

1) as the non-evidence predicates. Only for IMDB we set the π parameter to 0.1 as

indicated in Kok and Domingos (2010). For testing, we applied the MC-SAT algorithm

in the inference phase by specifying the target predicates as the query predicates.

For BUSL, we specified the target predicates as the non-evidence predicates in

the learning step and the startFromEmptyMLN flag to start structure learning from an

empty MLN. Moreover, we set the minWeight parameter to 0.5 for IMDB and UW-

CSE as indicated in (Mihalkova and Mooney, 2007); for Hepatitis only the mandatory

parameters were used. For testing we applied the same inference method as LSM.

For ALEPH++ExactL1 we used the induce cover command and the parameter

settings for Aleph specified in (Huynh and Mooney, 2008) on the datasets on which

Aleph could return a theory.

For MLN-BT we used the trees parameter (number of boosting trees) and for

MLN-BC the trees, numMLNClause (number of clauses learned during each gradient

step) and mlnClauseLen (length of the clauses) parameters with the values indicated

in (Khot et al, 2011).

For RDN-B, we set the depth of the trees, the number of leaves in each tree, the

maximum number of literals in the nodes as indicated in (Natarajan et al, 2012) for

the common datasets (UW-CSE, IMDB), while we increased the tree depth for Car-

cinogenesis, Mondial, Mutagenesis for building longer clauses. We present results for

all the boosting methods both with sampling of negative examples (twice the positives)

and without it. Execution with sampling is indicated with “sam.” in the Tables.

For RRR, we used the ILP system Aleph (Srinivasan (03-04-2012)) with the appro-

priate configuration for randomized search (search parameter is set to rls (randomized

local search) and rls type is set to rrr (randomized rapid restarts)). Moreover, we set

the parameters tries (maximum number of restarts) to 10, evalfn (evaluation func-

tion) to accuracy, minacc (lower bound on the minimum accuracy of an acceptable

19

clause) to 0.7 and 0.9, clauselength (number of literals in an acceptable clause) to 5

and minpos to 2 (lower bound on the number of positive examples to be covered by an

acceptable clause; it prevents Aleph from adding ground unit clauses to the theory) as

indicated in (Železný et al, 2002). Results for the two minacc values are reported as

“RRR 0.7” and “RRR 0.9” in the Tables.

For SLS, we implemented hill-climbing stochastic local search in Yap Prolog, for

both antecedent and revision search using accuracy as the evaluation function, as de-

scribed in (Paes et al, 2008). All stochastic parameters were set to 0.5. The starting

theory is composed of one definite clause with the target predicate in the head and an

empty body.

Since RRR and SLS return non-probabilistic theories, for testing we annotated the

head of each learned clause with probability 0.5, in order to turn the sharp logical

classifier into a probabilistic one and to assign higher probability to those examples

that have more successful derivations.

7.2 Results

In the following we report the results obtained for each dataset together with a brief

description of them. Tables 2-8 show the results in terms of average AUC-PR and AUC-

ROC for all datasets. Table 9 shows the average log likelihood over the test examples.

Tables 11 and 12 show the p-value of a paired two-tailed t-test of the difference in AUC-

PR and AUC-ROC between LEMUR and the other systems on all datasets (except

Carcinogenesis where we did not apply cross-validation).

7.2.1 UW-CSE

The UW-CSE dataset7 (Kok and Domingos, 2005) contains information about the

Computer Science department of the University of Washington, and is split into five

mega-examples, each containing facts for a particular research area. The goal is to

predict the target predicate advisedby(person1,person2), namely the fact that a

person is advised by another person. We employed a five-fold cross validation where

we learn from four areas and predict on the remaining area.

Table 2 reports the AUC-PR and AUC-ROC, along with the training time taken

by each system averaged over the five folds.

LEMUR is only outperformed by RDN-B in AUC-PR, and by MLN-BC (with sam-

pling), RDN-B and SLIPCOVER in AUC-ROC, with non-significant differences in both

cases. The two systems closer to LEMUR in terms of AUC-PR are the boosting ap-

proaches.

SLS low performance is due to the fact that it returns empty theory on this dataset.

7.2.2 Mutagenesis

The Mutagenesis dataset8 (Srinivasan et al, 1996) contains information about a num-

ber of aromatic and heteroaromatic nitro drugs, including their chemical structures

in terms of atoms, bonds and a number of molecular substructures such as five-

7 http://alchemy.cs.washington.edu/data/uw-cse
8 http://www.doc.ic.ac.uk/~shm/mutagenesis.html

http://alchemy.cs.washington.edu/data/uw-cse
http://www.doc.ic.ac.uk/~shm/mutagenesis.html

20

System AUC-PR AUC-ROC Time(s)

RDN-B 0.276 ± 0.065 0.957 ± 0.015 372.3
RDN-B sam. 0.265 ± 0.100 0.957 ± 0.011 79.5
LEMUR 0.230 ± 0.078 0.944 ± 0.023 667.6
MLN-BT 0.179 ± 0.066 0.930 ± 0.063 1233.1
MLN-BT sam. 0.151 ± 0.126 0.931 ± 0.018 386.7
RRR 0.7/0.9 0.135 ± 0.127 0.575 ± 0.059 220.9
MLN-BC sam. 0.117 ± 0.120 0.949 ± 0.015 49.9
SLIPCOVER 0.113 ± 0.083 0.949 ± 0.012 143.3
LSM 0.071 ± 0.053 0.845 ± 0.177 9951.9
MLN-BC 0.061 ± 0.015 0.872 ± 0.077 337.1
ALEPH++ExactL1 0.047 ± 0.011 0.580 ± 0.057 218.2
SLIPCASE 0.035 ± 0.005 0.894 ± 0.025 64.8
BUSL 0.015 ± 0.012 0.621 ± 0.151 53790.8
SLS 0.007 ± 0.002 0.500 ± 0.000 0.592

Table 2: Results of the experiments in terms of average AUC-PR, AUC-ROC and

execution time (in seconds) on the UW-CSE dataset. The standard deviations are also

shown.

and six-membered rings, benzenes, phenantrenes and others. The fundamental Pro-

log facts are bond(compound,atom1,atom2,bondtype), stating that in the compound

a bond of type bondtype can be found between the atoms atom1 and atom2, and

atm(compound,atom,element,atomtype,charge), stating that a compound’s atom is of

element element, is of type atomtype and has partial charge charge. From these facts

many elementary molecular substructures can be defined, and we used the tabulation

of these, available in the dataset, rather than the clause definitions based on bond/4

and atm/5. This greatly sped up learning.

The problem here is to predict the mutagenicity of the drugs. The prediction of

mutagenesis is important as it is relevant to the understanding and prediction of car-

cinogenesis. The subset of the compounds having positive levels of log mutagenicity

are labeled active and constitute the positive examples, the remaining ones are in-

active and constitute the negative examples. The dataset is split into two subsets

(188+42 examples). We considered the first one, composed of 125 positive and 63 neg-

ative compounds. The goal is to predict if a drug is active, so the target predicate is

active(drug). We employed a ten-fold cross validation.

Table 3 presents the AUC-PR and AUC-ROC, along with the training time taken

by each system averaged over the ten folds. LEMUR is only outperformed by RDN-B

in AUC-PR with non-significant difference, and reaches the highest AUC-ROC value

with a significant difference in many cases.

7.2.3 Hepatitis

The Hepatitis dataset9 (Khosravi et al, 2012) is derived from the ECML/PKDD 2002

Discovery Challenge Workshop held during the 13th ECML/6th PKDD conference.

It contains information on the laboratory examinations of hepatitis B and C infected

patients. Seven tables are used to store this information.

The goal is to predict the type of hepatitis of a patient, so the target predicate

is type(patient,type) where type can be b or c. Positive examples for a type are

9 http://www.cs.sfu.ca/~oschulte/jbn/dataset.html

http://www.cs.sfu.ca/~oschulte/jbn/dataset.html

21

System AUC-PR AUC-ROC Time(s)

RDN-B 0.964 ± 0.026 0.920 ± 0.060 70.0
RDN-B sam. 0.964 ± 0.034 0.928 ± 0.060 67.5

LEMUR 0.952 ± 0.062 0.935 ± 0.048 11229.9
SLIPCOVER 0.951 ± 0.050 0.885 ± 0.141 75327.7

ALEPH++ExactL1 0.949 ± 0.043 0.905 ± 0.050 198.1
MLN-BT 0.922 ± 0.087 0.867 ± 0.070 175.2
SLIPCASE 0.921 ± 0.087 0.873 ± 0.141 5135.3
RRR 0.7 0.891 ± 0.079 0.777 ± 0.120 28.2

MLN-BT sam. 0.872 ± 0.111 0.823 ± 0.102 181.237
RRR 0.9 0.862 ± 0.077 0.750 ± 0.111 29.26

MLN-BC sam. 0.831 ± 0.111 0.741 ± 0.123 44.6
MLN-BC 0.690 ± 0.201 0.553 ± 0.162 54.5

SLS 0.665 ± 0.122 0.500 ± 0.000 1.5

Table 3: Results of the experiments in terms of average AUC-PR, AUC-ROC and

execution time (in seconds) on the Mutagenesis dataset. The standard deviations are

also shown.

System AUC-PR AUC-ROC Time(s)

LEMUR 0.905 ± 0.031 0.890 ± 0.031 3342.7
RDN-B 0.879 ± 0.006 0.877 ± 0.004 310.6

RDN-B sam. 0.805 ± 0.023 0.793 ± 0.024 165.4
SLIPCOVER 0.799 ± 0.011 0.743 ± 0.013 264
MLN-BC 0.786 ± 0.021 0.749 ± 0.015 9569.7

MLN-BC sam. 0.786 ± 0.012 0.749 ± 0.017 4563.7
MLN-BT 0.779 ± 0.022 0.760 ± 0.021 682.3

MLN-BT sam. 0.772 ± 0.051 0.765 ± 0.036 1107.9
SLIPCASE 0.712 ± 0.056 0.665 ± 0.054 132.9

SLS 0.586 ± 0.029 0.567 ± 0.023 0.735
LSM 0.531 ± 0.053 0.526 ± 0.038 89997.7
BUSL 0.513 ± 0.028 0.527 ± 0.020 34771.8

RRR 0.7/0.9* 0.500 ± 0.000 0.500 ± 0.000 248

Table 4: Results of the experiments in terms of average AUC-PR, AUC-ROC and

execution time (in seconds) on the Hepatitis dataset. The standard deviations are also

shown.

considered as negative examples for the other type. We employed a five-fold cross

validation.

As can be seen from Table 4, LEMUR performs better than the other learning tech-

niques both for AUC-PR and AUC-ROC and the difference is statistically significant

in all cases. RRR low performance is due to the fact that it returns empty theory on

this dataset.

7.2.4 Carcinogenesis

This dataset10 describes more than 300 compounds that have been shown to be car-

cinogenic or otherwise in rodents (Srinivasan et al, 1997). In particular, it is composed

of 182 positive and 155 negative compounds. The chemicals were selected on the basis of

their carcinogenic potential (for example, positive mutagenicity tests) and of evidence

10 http://www.cs.ox.ac.uk/activities/machlearn/cancer.html

http://www.cs.ox.ac.uk/activities/machlearn/cancer.html

22

System AUC-PR AUC-ROC Time(s)

ALEPH++ExactL1 0.738 0.725 146.7
SLS 0.709 0.643 1.085

LEMUR 0.691 0.721 23435.5
MLN-BC sam. 0.663 0.641 709.3
SLIPCASE 0.628 0.618 1.1
MLN-BC 0.619 0.632 45.3
RRR 0.7 0.606 0.604 90.6

SLIPCOVER 0.600 0.676 17586.8
RRR 0.9 0.594 0.588 100.4

RDN-B sam. 0.555 0.520 82.8
RDN-B 0.550 0.525 84.1
MLN-BT 0.503 0.361 114.1

MLN-BT sam. 0.494 0.441 358.9

Table 5: Results of the experiments in terms of AUC-PR, AUC-ROC and execution

time (in seconds) on the Carcinogenesis dataset.

of substantial human exposure. Similarly to the Mutagenesis dataset, the background

knowledge describes molecules in terms of their atoms and bonds, chemical features

and three-dimensional structure; in particular the predicates atm/5, bond/4, gteq/2,

lteq/2, =/2 are common to both domains. Moreover, it contains the results of bio-

assays about genotoxicity of the chemicals.

The goal is to predict the carcinogenic activity of the compounds, so the target

predicate is active(drug). In this case we did not apply cross-validation but we kept

the partition into training and test sets already present in the original data.

Table 5 shows that LEMUR is only outperformed by SLS in AUC-PR and by

ALEPH++ExactL1 in AUC-PR and AUC-ROC.

7.2.5 IMDB

This is a standard dataset11 (Mihalkova and Mooney, 2007) describing a movie do-

main. It contains six predicates: actor/1, director/1, movie/2, genre/2, gender/2

and workedUnder/2. We used workedUnder/2 as target predicate. Since the predicate

gender(person,gender) can take only two values, we converted it to a single argument

predicate female(person). We omitted the four equality predicates and we performed

a five-fold cross-validation using the five available folds, then we averaged the results

over all the folds.

Table 6 presents the results in terms of AUC-PR and AUC-ROC values for the

target predicate workedUnder/2, showing that LEMUR achieves perfect classification

as all other systems except MLB-BT, MLN-BC, BUSL and SLS, against which the

difference is significant in almost all cases. SLS low performance is due to the fact that

it returns empty theory on this dataset.

7.2.6 Mondial

This dataset contains geographical data from multiple web sources (May, 1999). The

dataset features information regarding geographical regions of the world, including

population size, political system and the country border relationship. We used a subset

11 http://alchemy.cs.washington.edu/data/imdb/

http://alchemy.cs.washington.edu/data/imdb/

23

System AUC-PR AUC-ROC Time(s)

LEMUR 1.000 ± 0.000 1.000 ± 0.000 1781
ALEPH++ExactL1 1.000 ± 0.000 1.000 ± 0.000 8.5

LSM 1.000 ± 0.000 1.000 ± 0.000 971.3
RDN-B 1.000 ± 0.000 1.000 ± 0.000 198.8

RDN-B sam. 1.000 ± 0.000 1.000 ± 0.000 43.4
SLIPCOVER 1.000 ± 0.000 1.000 ± 0.000 89.8
SLIPCASE 1.000 ± 0.000 1.000 ± 0.000 64.4
RRR 0.7 1.000 ± 0.000 1.000 ± 0.000 19.7
RRR 0.9 1.000 ± 0.000 1.000 ± 0.000 20.1
MLN-BT 0.977 ± 0.047 0.999 ± 0.003 459.2

MLN-BT sam. 0.977 ± 0.047 0.999 ± 0.003 130.4
MLN-BC sam. 0.968 ± 0.005 0.998 ± 0.063 93.5

MLN-BC 0.942 ± 0.071 0.996 ± 0.005 266.2
BUSL 0.030 ± 0.012 0.487 ± 0.019 35124.4
SLS 0.025 ± 0.012 0.500 ± 0.000 1.8

Table 6: Results of the experiments in terms of average AUC-PR, AUC-ROC and

execution time (in seconds) on the IMDB dataset. The standard deviations are also

shown.

System AUC-PR AUC-ROC Time(s)

ALEPH++ExactL1 0.867 ± 0.068 0.777 ± 0.078 15.1
LEMUR 0.864 ± 0.066 0.782 ± 0.038 22

SLIPCOVER 0.862 ± 0.074 0.797 ± 0.112 15.7
RRR 0.9 0.833 ± 0.048 0.729 ± 0.036 8.9
RRR 0.7 0.831 ± 0.059 0.731 ± 0.049 8.7

MLN-BT sam. 0.781 ± 0.100 0.662 ± 0.091 2368
RDN-B 0.768 ± 0.067 0.668 ± 0.060 90.3

RDN-B sam. 0.744 ± 0.093 0.652 ± 0.071 103.2
MLN-BC sam. 0.742 ± 0.085 0.594 ± 0.059 64.2

MLN-BT 0.735 ± 0.100 0.601 ± 0.079 1438.3
SLIPCASE 0.650 ± 0.065 0.500 ± 0.000 0.9

SLS 0.624 ± 0.096 0.445 ± 0.071 0.148
MLN-BC 0.585 ± 0.088 0.390 ± 0.057 65.2

Table 7: Results of the experiments in terms of average AUC-PR, AUC-ROC and

execution time (in seconds) on the Mondial dataset. The standard deviations are also

shown.

of the tables and features as in (Schulte and Khosravi, 2012). We predicted the predicate

christianReligion(country) and we employed a five-fold cross validation.

Table 7 shows a good performance for LEMUR (is only outperformed by ALEPH++-

ExactL1 in AUC-PR and by SLIPCOVER in AUC-ROC), with the differences being

statistically significant w.r.t all systems both for AUC-PR and AUC-ROC, as reported

in Tables 11 and 12.

7.2.7 HIV

The HIV dataset12 (Beerenwinkel et al (2005)) records mutations in HIV’s reverse

transcriptase gene in patients that are treated with the drug zidovudine. It contains

364 examples, each of which specifies the presence or not of six classical zidovudine

12 Kindly provided by Wannes Meert.

24

System AUC-PR AUC-ROC Time(s)

LEMUR 0.830 ± 0.050 0.945 ± 0.013 1290.2
SLIPCOVER 0.824 ± 0.053 0.947 ± 0.013 415.9
SLIPCASE 0.777 ± 0.047 0.926 ± 0.012 43.8
RRR 0.9 0.606 ± 0.039 0.505 ± 0.002 2.2
RRR 0.7 0.605 ± 0.040 0.505 ± 0.002 2.7
MLN-BC 0.512 ± 0.041 0.305 ± 0.040 124.7
BUSL 0.381 ± 0.026 0.647 ± 0.025 14678.8
LSM 0.369 ± 0.023 0.601 ± 0.022 10.31

RDN-B sam. 0.311 ± 0.017 0.520 ± 0.034 57.1
MLN-BC sam. 0.302 ± 0.047 0.513 ± 0.039 66.7

MLN-BT 0.288 ± 0.037 0.510 ± 0.047 277.7
RDN-B 0.284 ± 0.057 0.483 ± 0.067 68.5

MLN-BT sam. 0.278 ± 0.027 0.502 ± 0.016 276.9
SLS 0.272 ± 0.032 0.501 ± 0.022 1.6

Table 8: Results of the experiments in terms of average AUC-PR, AUC-ROC and

execution time (in seconds) on the HIV dataset. The standard deviations are also

shown.

System Uw-cse Mutag. Carcin. Hepat. IMDB Mondial HIV

LEMUR -108.06 -11.94 -186.88 -88.06 -9.76E-5 -26.81 -110.52
SLIPCASE -178.22 -28.58 -25.91 -119.89 0 -28.72 -120.73
SLIPCOVER -119.22 -25.28 -29.84 -104.04 0 -25.01 -107,9
BUSL -148.98 - - -273.28 -440.43 - -261,17
LSM -163.45 - - -153.58 -23.55 - -314,66
ALEPH++ -339.71 -9.36 -38.93 - -0.08 -32.18 -
RDN-B -227.59 -7.02 -31.28 -126.55 -114.78 -28.47 -40.92
RDN-B sam. -622.76 -6.86 -31.45 -139.21 -125.44 -28.89 -45.80
MLN-BC -640.12 -25.71 -34.56 -354.60 -381.96 -56.57 -48.08
MLN-BC sam. -2944.44 -20.34 -30.43 -306.41 -1199.68 -46.84 -58.87
MLN-BT -196.15 -15.15 -32.96 -147.42 -124.24 -93.33 -305.30
MLN-BT sam. -488.43 -17.15 -33.02 -150.19 -128.977 -81.76 -449.82

Table 9: Average log likelihood of the test set over all datasets. In bold the highest

LLs.

mutations, denoted by the atoms: 41L, 67N, 70R, 210W, 215FY and 219EQ. These atoms

indicate the location where the mutation occurred (e.g., 41) and the amino acid to

which the position mutated (e.g., L for Leucine).

The goal is to discover causal relationships between the occurrences of mutations

in the virus, so all the predicates are set as target. We employed a five-fold cross

validation. In testing, we computed the probability of each atom in turn given the

others as evidence.

Table 8 shows that LEMUR and SLIPCOVER get the highest results. The differences

between LEMUR and all the other systems except for SLIPCOVER are statistically

significant. SLS low performance is due to the fact that it returns the initial theory on

this dataset.

7.2.8 Summarizing Remarks

On the whole, LEMUR achieves very good results that are always comparable or supe-

rior with respect to the other best systems, in terms of both AUC-PR and AUC-ROC.

25

S PR ROC Time
2 0.831 0.787 1476
3 0.910 0.897 2192
4 0.905 0.893 2444
5 0.915 0.904 2658
6 0.907 0.892 4196
7 0.967 0.965 3715
8 0.910 0.894 3504
9 0.890 0.880 3935
10 0.899 0.878 4860

Table 10: LEMUR performance in terms of average AUC-PR, AUC-ROC and execution

time (in seconds) on the Hepatitis dataset as S, the depth of the exploration, varies.

T-tests show that area differences between LEMUR and the other systems are statis-

tically significant in its favor in all cases for the Hepatitis, IMDB, Mondial and HIV

datasets, and in half of the cases for UW-CSE and Mutagenesis.

These experiments show that LEMUR is able to perform well discriminative struc-

ture learning.

In order to clarify its ability to model distributions, we can consider Table 9 that shows

the average log likelihood of the test set. LEMUR achieves the highest or a comparable

value of LL except for Carcinogenesis and HIV. The latter dataset is particularly in-

teresting because it is the only one where all predicates where declared as target, thus

representing a generative learning problem. On HIV LEMUR has the best AUC-PR

and the second best AUC-ROC but its LL is lower than that of five other systems.

These results show that LEMUR is more targeted to discriminative learning.

Experiments also show that, when able to complete learning, the MLN structure

learning systems LSM and BUSL take the largest time, ranging from 0.27 h to 250 h

for the former and from 9.6 h to 15 h for the latter.

Scatter plots of AUC-PR and AUC-ROC versus time are shown in Fig. 3 and 4

respectively. Each point corresponds to an algorithm and a dataset.

These pictures show that LEMUR achieves its results within a time that is compa-

rable with that of the other systems, thus achieving a good time/performance trade-off:

while deep exploration is costly when compared to other depth-limited search strate-

gies, LEMUR naturally deeply explores promising regions. Indeed, as we can see in

Table 10, we executed LEMUR on the Hepatitis dataset by varying the depth of explo-

ration (S) from 2 to 10, having a roughly linear increase of the execution time without

a significant effect on the quality of the solution.

The comparison with SLS and RRR shows that LEMUR improvement is not due to

randomization only, but rather to the specific features of MCTS.

The benefits of MCTS are testified by the comparison with SLIPCASE/SLIPCOVER

that use the same modeling language and differ from LEMUR in the search algorithm:

both SLIPCASE and SLIPCOVER achieve smaller areas and lower LL. A possible reason

for this is that LEMUR is able to perform a deeper lookahead thus bypassing possible

plateaux of the heuristic function: often more than one literals must be added to a

clause in order to improve the heuristic. Most ILP systems allow for the specification

of a lookahead in the language bias by indicating which other literals can be added to

a clause together with a specific literal but they are often limited to one or two extra

literals, while LEMUR can consider adding several literals at once because each move is

26

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100 1000 10000 100000

A
U

C
-P

R

Time (s)

LEMUR
RDN-B

MLN-BC
MLN-BT

SLIPCASE
RDN-B sampling

MLN-BC sampling
MLN-BT sampling

LSM
BUSL

ALEPH++
SLIPCOVER

RRR 0.7
RRR 0.9

SLS

Fig. 3: Scatter plot of AUC-PR versus Time (in logscale) in seconds.

not estimated with a local inspection of the neighborhood but with a deep inspection

of the tree.

Finally, it should be noted that a direct comparison of systems based on different

modeling languages is difficult. We tried to make the comparison as fair as possible

by providing the systems with similar or equal learning settings, even if the different

encodings did not allow a perfect match. Taking into account these intrinsic differences,

we have shown that LEMUR can be a competitive approach to other SRL techniques,

especially for performing discriminative learning.

8 Conclusions

We have presented the system LEMUR that applies Monte Carlo Tree Search to the

problem of learning probabilistic logic programs. LEMUR sees the problem of adding a

new clause to the current theory as a tree search problem in which it solves a multi-

armed bandit problem to choose the clause.

We have tested LEMUR on seven datasets and compared it with four systems for

learning probabilistic and non-probabilistic logic programs, with various statistical re-

lational systems that learn Markov Logic Networks and with stochastic search algo-

rithms. We have compared the quality of the results in terms of AUC-PR and AUC-

ROC and found that LEMUR can achieve comparable or larger areas in most cases,

with the differences often statistically significant. Thus LEMUR is an appealing alter-

native for discriminative structure learning. As regards generative learning, LEMUR

27

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10 100 1000 10000 100000

A
U

C
-R

O
C

Time (s)

LEMUR
RDN-B

MLN-BC
MLN-BT

SLIPCASE
RDN-B sampling

MLN-BC sampling
MLN-BT sampling

LSM
BUSL

ALEPH++
SLIPCOVER

RRR 0.7
RRR 0.9

SLS

Fig. 4: Scatter plot of AUC-ROC versus Time (in logscale) in seconds.

System
Dataset

UW-CSE Mutagen. Hepatitis IMDB Mondial HIV

ALEPH++ 1.19E-2 • 8.63E-1 - undefined 1.76E-2 • -
BUSL 1.21E-2 • - 8.37E-6 † 7.88E-9 † - 2.09E-4 †
LSM 5.46E-2 - 5.32E-5 † undefined - 3.1E-5 †
MLN-BC 1.92E-2 • 4.9E-3 � 3.8E-3 � 9.52E-6 † 7.1E-4 † 1.21E-5 †
MLN-BC sam. 2.82E-1 1.72E-2 • 3.1E-3 � 3.73E-1 3.7E-3 � 4.97E-6 †
MLN-BT 4.93E-1 4.92E-1 1.54E-4 † 3.33E-5 † 6.1E-3 � 2.62E-5 †
MLN-BT sam. 4.02E-1 1.05E-1 2.66E-4 † 3.73E-1 1.19E-2 • 2.81E-6 †
SLIPCASE 8E-3 � 2.63E-1 1.6E-3 � undefined 4.28E-4 † 1.03E-2 •
SLIPCOVER 1.85E-1 9.78E-1 4.4E-3 � undefined 2.04E-2 • 1.06E-1
RDN-B 5E-1 6.35E-1 3.89E-4 † undefined 2.3E-3 � 2.88E-5 †
RDN-B sam. 6.91E-1 6.29E-1 3.89E-4 † undefined 5.3E-3 � 2.14E-5 †
RRR 0.7 3.61E-1 4.15E-2 • 1.22E-5 † undefined 4.5E-3 � 2.8E-3 �
RRR 0.9 3.61E-1 3.1E-3 � 1.22E-5 † undefined 2.2E-3 � 2.7E-3 �
SLS 4.9E-3 � 8.04E-7 † 1.62E-4 † 7.62E-9 † 1.5E-3 � 3.05E-6 †

Table 11: p-values of a t-test when comparing the AUC-PR of LEMUR with respect to

the other systems. The symbols •, � and † indicate, respectively, that the significance

level is smaller than 0.05, 0.01 and 0.001.

achieves good testing LL. However, on HIV, LEMUR is exceeded by five systems out of

twelve in terms of LL, thus showing that it is currently better at discriminative learn-

ing. LEMUR, together with the code and the data for all the experiments, is available

at http://sites.unife.it/ml/lemur.

http://sites.unife.it/ml/lemur

28

System
Dataset

UW-CSE Mutagen. Hepatitis IMDB Mondial HIV

ALEPH++ 3.54E-4 † 9.6E-3 � - undefined 4.6E-3 � -
BUSL 1.43E-2 • - 7.7E-6 † 6.6E-7 † - 5.66E-5 †
LSM 3.24E-1 - 3.64E-4 † undefined - 2.94E-5 †
MLN-BC 9.65E-2 1.24E-4 † 3.5E-3 � 1.81E-5 † 1.58E-4 † 2.92E-5 †
MLN-BC sam. 7.51E-1 1.1E-3 � 2.8E-3 � 3.73E-1 1.58E-4 † 2.22E-5 †
MLN-BT 7.2E-1 6.4E-2 6.66E-5 † 2.01E-5 † 1.7E-3 � 3.75E-5 †
MLN-BT sam. 1.44E-1 2.73E-2 • 7.34E-5 † 3.73E-1 1.7E-3 � 5.95E-8 †
SLIPCASE 2.68E-4 † 2.33E-1 8.32E-4 † undefined 0 † 2.39E-2 •
SLIPCOVER 7.39E-1 3.16E-1 1.3E-3 � undefined 2.2E-2 • 5.81E-1
RDN-B 3.37E-1 5.7E-1 7.65E-4 † undefined 5.91E-4 † 1.7E-4 †
RDN-B sam. 4.2E-4 † 7.8E-1 7.65E-4 † undefined 5.91E-4 † 2.05E-5 †
RRR 0.7 4.2E-4 † 7.8E-3 � 1.54E-5 † undefined 3.7E-4 † 2.42E-7 †
RRR 0.9 4.2E-4 † 2.5E-3 � 1.54E-5 † undefined 1.15E-4 † 2.42E-7 †
SLS 2.54E-6 † 5.6E-10 † 3.92E-4 † 0 † 9.81E-5 † 3.46E-7 †

Table 12: p-values of a t-test when comparing the AUC-ROC of LEMUR with respect

to the other systems. The symbols •, � and † indicate, respectively, that the significance

level is smaller than 0.05, 0.01 and 0.001.

Current challenges for structure learning include the investigation of new refinement

operators such as one using a bottom clause in the style of Progol (Muggleton, 1995)

for limiting the number of revisions, as in (Duboc et al, 2009).

Another significant challenge is to scale the system to larger datasets exploiting

modern computing facilities such as clusters of computers with multiple processors per

computer and multiple cores per processor. In particular, we plan to parallelize LEMUR

using MapReduce (Dean and Ghemawat, 2008) by dividing the search space among

Map workers and by collecting the clauses’ scores with Reduce workers.

Acknowledgments

Nicola Di Mauro would like to acknowledge the support of the European Commission

through the project MAESTRA - Learning from Massive, Incompletely annotated, and

Structured Data (Grant number ICT-2013-612944).

References

Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed bandit

problem. Machine Learning 47(2-3):235–256

Beerenwinkel N, Rahnenführer J, Däumer M, Hoffmann D, Kaiser R, Selbig J, Lengauer

T (2005) Learning multiple evolutionary pathways from cross-sectional data. Journal

of Computational Biology 12:584–598

Bellodi E, Riguzzi F (2012) Learning the structure of probabilistic logic programs.

In: Muggleton S, Tamaddoni-Nezhad A, Lisi F (eds) Inductive Logic Programming,

Springer Berlin Heidelberg, LNCS, vol 7207, pp 61–75

Bellodi E, Riguzzi F (2013) Expectation Maximization over Binary Decision Diagrams

for probabilistic logic programs. Intelligent Data Analysis 17(2):343–363

Bellodi E, Riguzzi F (2014) Structure learning of probabilistic logic programs by search-

ing the clause space. Theory and Practice of Logic Programming FirstView Articles,

doi:10.1017/S1471068413000689

http://dx.doi.org/10.1017/S1471068413000689

29

Bollig B, Wegener I (1996) Improving the variable ordering of OBDDs is NP-complete.

IEEE Trans Computers 45(9):993–1002

Browne C, Powley EJ, Whitehouse D, Lucas SM, Cowling PI, Rohlfshagen P, Tavener

S, Perez D, Samothrakis S, Colton S (2012) A survey of Monte Carlo Tree Search

methods. IEEE Trans on Computational Intelligence and AI in Games 4(1):1–43

Bubeck S, Cesa-Bianchi N (2012) Regret analysis of stochastic and nonstochastic multi-

armed bandit problems. Foundations and Trends in Machine Learning 5(1):1–122

Darwiche A, Marquis P (2002) A knowledge compilation map. J Artif Intell Res 17:229–

264

Davis J, Goadrich M (2006) The relationship between Precision-Recall and ROC

curves. In: Machine Learning, Proceedings of the 23rd International Conference

(ICML-2006), ACM, pp 233–240

De Raedt L, Kimmig A, Toivonen H (2007) ProbLog: A probabilistic Prolog and its

application in link discovery. In: International Joint Conference on Artificial Intelli-

gence, AAAI Press, pp 2462–2467

De Raedt L, Demoen B, Fierens D, Gutmann B, Janssens G, Kimmig A, Landwehr

N, Mantadelis T, Meert W, Rocha R, Santos Costa V, Thon I, Vennekens J (2008a)

Towards digesting the alphabet-soup of statistical relational learning. In: NIPS*2008

Workshop on Probabilistic Programming

De Raedt L, Kersting K, Kimmig A, Revoredo K, Toivonen H (2008b) Compressing

probabilistic Prolog programs. Machine Learning 70(2-3):151–168

Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clus-

ters. Communication of the ACM 51(1):107–113, doi:10.1145/1327452.1327492, URL

http://doi.acm.org/10.1145/1327452.1327492

Duboc A, Paes A, Zaverucha G (2009) Using the bottom clause and

mode declarations in fol theory revision from examples. Machine Learning

76(1):73–107, doi:10.1007/s10994-009-5116-8, URL http://dx.doi.org/10.1007/

s10994-009-5116-8

Fawcett T (2006) An introduction to ROC analysis. Pattern Recognition Letters

27:861–874

Fierens D, den Broeck GV, Renkens J, Shterionov DS, Gutmann B, Thon I, Janssens

G, De Raedt L (2013) Inference and learning in probabilistic logic programs using

weighted boolean formulas. Theory and Practice of Logic Programming FirstView

Articles(CoRR abs/1304.6810)

Friedman N (1998) The Bayesian Structural EM algorithm. In: Proceedings of the 14th

Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, pp 129–138

Gaudel R, Sebag M (2010) Feature selection as a one-player game. In: Proceedings of

the 27th International Conference on Machine Learning, pp 359–366

Gelly S, Silver D (2007) Combining online and offline knowledge in UCT. In: Proceed-

ings of the 24th International Conference on Machine Learning, ACM, pp 273–280

Gelly S, Wang Y (2006) Exploration exploitation in Go: UCT for Monte-Carlo Go. In:

NIPS On-line trading of Exploration and Exploitation Workshop

Grumberg O, Livne S, Markovitch S (2003) Learning to order BDD variables in veri-

fication. J Artif Intell Res 18:83–116

Gutmann B, Thon I, De Raedt L (2011) Learning the parameters of probabilistic logic

programs from interpretations. In: Gunopulos D, Hofmann T, Malerba D, Vazirgian-

nis M (eds) European Conference on Machine Learning and Knowledge Discovery in

Databases, Springer, LNCS, vol 6911, pp 581–596

http://dx.doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://dx.doi.org/10.1007/s10994-009-5116-8
http://dx.doi.org/10.1007/s10994-009-5116-8
http://dx.doi.org/10.1007/s10994-009-5116-8

30

Hoos HH, Stützle T (2004) Stochastic Local Search: Foundations & Applications. El-

sevier / Morgan Kaufmann

Huynh TN, Mooney RJ (2008) Discriminative structure and parameter learning for

markov logic networks. In: Cohen WW, McCallum A, Roweis ST (eds) Proceedings

of the 25th international conference on Machine learning, ACM, pp 416–423

Kersting K, De Raedt L (2008) Basic principles of learning Bayesian Logic Programs.

In: Probabilistic Inductive Logic Programming, LNCS, vol 4911, Springer, pp 189–

221

Khosravi H, Schulte O, Hu J, Gao T (2012) Learning compact Markov logic Networks

with decision trees. Machine Learning 89(3):257–277

Khot T, Natarajan S, Kersting K, Shavlik JW (2011) Learning Markov Logic Networks

via functional gradient boosting. In: Cook DJ, Pei J, 0010 WW, Zaane OR, Wu X

(eds) Proceedings of the 11th IEEE International Conference on Data Mining, IEEE,

pp 320–329

Kocsis L, Szepesvári C (2006) Bandit based Monte-Carlo planning. In: Proceedings of

the 17th European conference on Machine Learning, Springer-Verlag, pp 282–293

Kocsis L, Szepesvári C, Willemson J (2006) Improved Monte-Carlo search. Tech. rep.,

Univ. Tartu, Estonia

Kok S, Domingos P (2005) Learning the structure of Markov Logic Networks. In:

Proceedings of the 22nd international conference on Machine learning, ACM, pp

441–448

Kok S, Domingos P (2010) Learning Markov Logic Networks using structural motifs.

In: Fürnkranz J, Joachims T (eds) Proceedings of the 27th International Conference

on Machine Learning, Omnipress, pp 551–558

Lowd D, Domingos P (2007) Efficient weight learning for Markov Logic Networks. In:

Proceedings of the 11th European Conference on Principles and Practice of Knowl-

edge Discovery in Databases, Springer-Verlag, pp 200–211

Mart́ı R, Moreno JM, Duarte A (2010) Advanced Multi-Start Methods, Springer, pp

265–282

May W (1999) Information extraction and integration: The mondial case study. Tech.

rep., Universitat Freiburg, Institut für Informatik

Meert W, Struyf J, Blockeel H (2008) Learning ground CP-Logic theories by leveraging

Bayesian network learning techniques. Fundamenta Informaticae 89(1):131–160

Mihalkova L, Mooney RJ (2007) Bottom-up learning of markov logic network structure.

In: Proceedings of the 24th International Conference on Machine Learning, ACM,

pp 625–632

Muggleton S (1995) Inverse entailment and Progol. New Generation Computing

13:245–286

Natarajan S, Khot T, Kersting K, Gutmann B, Shavlik J (2012) Gradient-based boost-

ing for statistical relational learning: The relational dependency network case. Ma-

chine Learning 86(1):25–56

Nienhuys-Cheng SH, de Wolf R (eds) (1997) Foundations of Inductive Logic Program-

ming, LNCS, vol 1228. Springer

Paes A, Revoredo K, Zaverucha G, Costa VS (2005) Probabilistic first-order the-

ory revision from examples. In: Proceedings of the 15th International Confer-

ence on Inductive Logic Programming, Springer, LNCS, vol 3625, pp 295–311,

doi:10.1007/11536314 18, URL http://dx.doi.org/10.1007/11536314_18

Paes A, Zaverucha G, Costa VS (2008) Revising first-order logic theories from examples

through stochastic local search. In: Proceedings of the 17th International Conference

http://dx.doi.org/10.1007/11536314_18
http://dx.doi.org/10.1007/11536314_18

31

on Inductive Logic Programming, Springer-Verlag, Berlin, Heidelberg, ILP’07, pp

200–210, URL http://dl.acm.org/citation.cfm?id=1793494.1793518

Poole D (2008) The Independent Choice Logic and beyond. In: De Raedt L, Frasconi P,

Kersting K, Muggleton S (eds) Probabilistic Inductive Logic Programming, LNCS,

vol 4911, Springer Berlin Heidelberg, pp 222–243

Rauzy A, Châtelet E, Dutuit Y, Bérenguer C (2003) A practical comparison of methods

to assess sum-of-products. Reliability Engineering and System Safety 79(1):33–42

Richards BL, Mooney RJ (1995) Automated refinement of first-order horn-clause

domain theories. Machine Learning 19(2):95–131, doi:10.1007/BF01007461, URL

http://dx.doi.org/10.1007/BF01007461

Riguzzi F (2004) Learning logic programs with annotated disjunctions. In: Srinivasan

A, King R (eds) Proceedings of the 14th International Conference on Inductive Logic

Programming, Springer Verlag, LNCS, vol 3194, pp 270–287, doi:10.1007/978-3-540-

30109-7 21

Riguzzi F (2007a) ALLPAD: Approximate learning of logic programs with annotated

disjunctions. In: Muggleton S, Otero R (eds) Proceedings of the 16th International

Conference on Inductive Logic Programming, Springer, LNAI, vol 4455, pp 43–45,

doi:10.1007/978-3-540-73847-3 11

Riguzzi F (2007b) A top down interpreter for LPAD and CP-logic. In: Proceedings

of the 10th Congress of the Italian Association for Artificial Intelligence, Springer,

LNAI, vol 4733, pp 109–120, doi:10.1007/978-3-540-74782-6 11

Riguzzi F (2008) ALLPAD: Approximate learning of logic programs with annotated

disjunctions. Machine Learning 70(2-3):207–223, doi:10.1007/s10994-007-5032-8

Riguzzi F (2009) Extended semantics and inference for the Independent Choice Logic.

Logic Journal of the IGPL 17(6):589–629, doi:10.1093/jigpal/jzp025

Riguzzi F (2014) Speeding up inference for probabilistic logic programs. The Computer

Journal 57(3):347–363, doi:10.1093/comjnl/bxt096

Riguzzi F, Di Mauro N (2012) Applying the information bottleneck to statistical rela-

tional learning. Machine Learning 86(1):89–114, doi:10.1007/s10994-011-5247-6

Riguzzi F, Swift T (2010) Tabling and Answer Subsumption for Reasoning on

Logic Programs with Annotated Disjunctions. In: Technical Communications of the

26th Int’l. Conference on Logic Programming (ICLP’10), Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Leibniz International Proceedings in Informatics (LIPIcs),

vol 7, pp 162–171, doi:10.4230/LIPIcs.ICLP.2010.162

Riguzzi F, Swift T (2011) The PITA system: Tabling and answer subsumption for

reasoning under uncertainty. Theory and Practice of Logic Programming, 27th In-

ternational Conference on Logic Programming (ICLP’11) Special Issue, Lexington,

Kentucky 6-10 July 2011 11(4–5):433–449, doi:10.1017/S147106841100010X

Riguzzi F, Swift T (2013) Well-definedness and efficient inference for probabilis-

tic logic programming under the distribution semantics. Theory and Practice of

Logic Programming 13(Special Issue 02 - 25th Annual GULP Conference):279–302,

doi:10.1017/S1471068411000664

Robbins H (1952) Some aspects of the sequential design of experiments. Bulletin of the

American Mathematics Society 58:527–535

Rolet P, Sebag M, Teytaud O (2009) Boosting active learning to optimality: A tractable

Monte-Carlo, billiard-based algorithm. In: Buntine W, Grobelnik M, Mladeni D,

Shawe-Taylor J (eds) Prooceedingf of the European Conference on Machine Learning

and Knowledge Discovery in Databases, LNCS, vol 5782, Springer Berlin Heidelberg,

pp 302–317

http://dl.acm.org/citation.cfm?id=1793494.1793518
http://dx.doi.org/10.1007/BF01007461
http://dx.doi.org/10.1007/BF01007461
http://dx.doi.org/10.1007/978-3-540-30109-7_21
http://dx.doi.org/10.1007/978-3-540-30109-7_21
http://dx.doi.org/10.1007/978-3-540-73847-3_11
http://dx.doi.org/10.1007/978-3-540-74782-6_11
http://dx.doi.org/10.1007/s10994-007-5032-8
http://dx.doi.org/10.1093/jigpal/jzp025
http://dx.doi.org/10.1093/comjnl/bxt096
http://dx.doi.org/10.1007/s10994-011-5247-6
http://dx.doi.org/10.4230/LIPIcs.ICLP.2010.162
http://dx.doi.org/10.1017/S147106841100010X
http://dx.doi.org/10.1017/S1471068411000664

32

Rujan P (1997) Playing billiards in version space. Neural Computation 9(1):99–122

Sang T, Beame P, Kautz HA (2005) Performing bayesian inference by weighted model

counting. In: Veloso MM, Kambhampati S (eds) National Conference on Artificial

Intelligence, AAAI Press / The MIT Press, pp 475–482

Santos Costa V, Rocha R, Damas L (2012) The YAP Prolog system. Theory and

Practice of Logic Programming 12(1-2):5–34

Sato T (1995) A statistical learning method for logic programs with distribution seman-

tics. In: International Conference on Logic Programming, MIT Press, pp 715–729

Sato T (2008) A glimpse of symbolic-statistical modeling by PRISM. Journal of Intel-

ligent Information Systems 31(2):161–176

Sato T, Kameya Y (2001) Parameter learning of logic programs for symbolic-statistical

modeling. J Artif Intell Res 15:391–454

Schulte O, Khosravi H (2012) Learning graphical models for relational data via lattice

search. Machine Learning 88(3):331–368

Schwarz G (1978) Estimating the dimension of a model. The Annals of Statistics

6(2):461–464

Srinivasan A (03-04-2012) Aleph. http://www.cs.ox.ac.uk/activities/machlearn/

Aleph/aleph.html

Srinivasan A, Muggleton S, Sternberg MJE, King RD (1996) Theories for mutagenicity:

A study in first-order and feature-based induction. AI 85(1-2):277–299

Srinivasan A, King RD, Muggleton S, Sternberg MJE (1997) Carcinogenesis predictions

using ILP. In: Lavrac N, Dzeroski S (eds) 7th International Workshop on Inductive

Logic Programming, Springer, LNCS, pp 273–287

Vennekens J, Verbaeten S, Bruynooghe M (2004) Logic Programs With Annotated

Disjunctions. In: International Conference on Logic Programming, Springer, LNCS,

vol 3131, pp 195–209

Železný F, Srinivasan A, Page CD (2002) Lattice-search runtime distributions may

be heavy-tailed. In: Proceedings of the 12th International Conference on Inductive

Logic Programming, Springer

Zelezný F, Srinivasan A, Page Jr CD (2006) Randomised restarted search in ILP.

Machine Learning 64(1-3):183–208

http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html

	Introduction
	Probabilistic Logic Programming
	Inference
	Parameter Learning

	Multi-armed Bandit Problem
	 Monte Carlo Tree Search (MCTS)
	LEMUR: Learning LPADs as a Multi-armed Bandit Problem
	Execution Example

	Related Work
	Experimental Validation
	Parameter Settings
	Results
	UW-CSE
	Mutagenesis
	Hepatitis
	Carcinogenesis
	IMDB
	Mondial
	HIV
	Summarizing Remarks

	Conclusions

