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Abstract In a regularized approach to Poisson data inver-
sion, the problem is reduced to the minimization of an objec-
tive function which consists of two terms: a data-fidelity func-
tion, related to a generalized Kullback—Leibler divergence,
and a regularization function expressing a priori information
on the unknown image. This second function is multiplied
by a parameter 8, sometimes called regularization parame-
ter, which must be suitably estimated for obtaining a sensible
solution. In order to estimate this parameter, a discrepancy
principle has been recently proposed, that implies the min-
imization of the objective function for several values of 8.
Since this approach can be computationally expensive, it has
also been proposed to replace it with a constrained minimiza-
tion, the constraint being derived from the discrepancy prin-
ciple. In this paper we intend to compare the two approaches
from the computational point of view. In particular, we pro-
pose a secant-based method for solving the discrepancy equa-
tion arising in the first approach; when this root-finding algo-
rithm can be combined with an efficient solver of the inner
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minimization problems, the first approach can be competitive
and sometimes faster than the second one.
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1 Introduction

In several applications of imaging such as emission tomog-
raphy, microscopy, and astronomy, the image is formed by
counting the number of photons which come from the sources
and hit the image domain. The fluctuations of the number of
counts in a given pixel or voxel are described by a Poisson
distribution which, after the seminal paper of Shepp and Vardi
[42], is considered the main source of noise and is taken as
the starting point of a maximum likelihood (ML) approach
to image restoration.

Since the ML problem is ill-posed, a regularized approach,
based on the analogy between image modeling and statisti-
cal mechanics, is proposed by Geman and Geman [29]. The
assignment of an energy distribution to an image leads to a
prior for the pixel values, which is given by Gibbs distribu-
tion. This distribution combined with the likelihood derived
from the image model provides a posterior distribution for
those values. By taking the negative logarithm of this poste-
rior distribution, a penalized ML estimator can be obtained,
that leads to the minimization of the following function [6]

fpx;y) = folx; ) + Bfikx), B =0, (1)

where
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— the first term is given by

fo(x;y) = D(y; Hx +b), @)
D(y; z) being the generalized Kullback—Leibler (KL)
divergence defined by

m

D(y;z):Z[ylan + zi —yz], 3

i=1

where z; > 0and y;InZt Yi — (), when y; = 0; this function
coincides, except for an additive constant, with the neg-
ative logarithm of the likelihood in the case of Poisson
data [42]; it is nonnegative, convex, and coercive on the
domain [7];

— y € R™is the detected image while x € R" is the source
image to be estimated;

— H e R"™*" is the imaging matrix satisfying the following
conditions

m
Hjj =0, zHi,j > 0, “
i=1

the last condition being frequently replaced by the more
restrictive one H'1,, = 1,, 1,, € R™ 1, € R" being
the vectors with all entries equal to 1;

— b is a nonnegative background affecting the detected
image; in any case we assume Hx + b > 0;

— fi(x) is the potential function attributed to the image
and it is assumed to be nonnegative and convex; it may
be non-differentiable;

— B is a regularization parameter controlling the relative
weight of the functions fo(x; y) and f1(x).

In general y, b, H are the data of the problem, while B is
not known and, in principle, should be estimated in a suit-
able way for obtaining a sensible estimate of the unknown
source image x*. Since x* is nonnegative, the problem is
the constrained minimization of fg(x; y) on the nonnegative
orthant.

The structure of the function (1) is similar to that of
the standard Tikhonov-regularized functionals: the function
fo(x; y) plays the role of a misfit or data-fidelity func-
tion analogous to the least-square function in the Tikhonov
approach, while the potential f7(x) is analogous to the reg-
ularization function. For this reason g is often called reg-
ularization parameter even if some concepts of Tikhonov
regularization theory, such as the regularization algorithm
definition, do not apply to the case of Poisson data. It is suffi-
cient to remark that the assumption of “noise tending to zero”,
typically used in Tikhonov theory, here must be replaced by
the statement “number of counts tending to infinity”.
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Thanks to the previous assumptions the function fg(x; y)
is also nonnegative, convex, and coercive on the nonnegative
orthant; therefore, it has global minimizers for each value
of B > 0. Since the role of this parameter is crucial, the
selection of its value is an important issue in the applica-
tion of the previous approach to Poisson data reconstruc-
tion.

A plethora of methods for the selection of the regulariza-
tion parameter has been proposed in the case of Tikhonov
theory, the most popular and also theoretically sound being
the so-called Morozov discrepancy principle [24]. In the case
of Poisson data only a few have been proposed so far [2,7].
In this paper we focus on the second one [7] because it is
more similar to Morozov discrepancy principle. It can be
formulated as follows.

As shown in [46,47], if x* denotes the true source image
corresponding to the detected data y and the values of x* are
large, then the expected value of fy(x™; y) is approximately
given by m /2, m being the number of pixels or voxels in the
image domain. Therefore, if we introduce the normalized
discrepancy function

2
Du(x:y) = —D(y: Hx +b), (&)

and we denote as xg a nonnegative minimizer of (1) itis quite
natural to propose the following model for the selection of
B, equivalent to require that the discrepancy corresponding
to the selected minimizer is close to that of the true source
image.

Model 1 Select the value of 8 such that

Dp(xg;y) =n, (6)

where xg > 01is the minimizer of (1) and 7 is a given number
close to 1. If f is a solution of the Eq. (6), then ¥ = Xg is
called solution of Model 1.

The model is meaningful because, for several potential func-
tions fj(x) used in practice, the minimizer x4 is unique and,
as proved in [7], Dy (xg; y) is an increasing function of 8,
thus ensuring the uniqueness of the solution of the discrep-
ancy equation (6). We will also denote Model 1 as the Cross-
ing Model.

It has been remarked by several authors [17,18,44] that
the approach of Model 1 can lead to highly time-consuming
computations since it can require the solution of several mini-
mization problems; therefore, a Constrained Model has been
proposed and formulated as follows.

Model 2 For a given 7, solve the problem

mig fi(x), subjecttoDy(x;y) <n. (7)
x>
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Any solution x of this problem is called solution of Model 2.
It is obvious that in such a case only one minimization is
required.

The main purpose of this paper is to investigate the two
models, both in the case of a differentiable and in the case of
a non-differentiable potential function f (x). Under suitable
conditions discussed in Sect. 2, the models provide the same
parameter estimation; here we compare through a wide com-
putational study the efficiency of the numerical procedures
involved in the two approaches. For each model we use state
of the art computational techniques.

In particular our main contribution is the introduction of an
effective secant-type solver for the discrepancy equation (6).
This solver, named Modified Dai-Fletcher (MDF) method,
is able to reduce the number of function evaluations and,
consequently, the number of required solutions of the non-
negative minimization problems. This leads to efficient solu-
tion of the discrepancy equation when very effective inner
solvers are available for the nonnegative minimization prob-
lems.

We consider the case of a differentiable regularization
(HS) and the non-differentiable one (TV). In the first case
we show that MDF, combined with an efficient solver for
the inner optimization problems, enables Model 1 to be less
time demanding than Model 2. On the other hand, in the
case of TV regularization, Model 1 can be competitive with
Model 2 but the latter is definitely more efficient in some
cases.

The paper is organized as follows. In Sect. 2, we recall
the results proved in [44] concerning the relations between
the two models in the case y > 0 (Sect. 2.1). Moreover it is
shown that, in the case of a differentiable potential function
f1(x),1tis possible to generalize the results to the case y > 0,
which is relevant in medical imaging and microscopy; proofs
are givenin Appendix 1.In Sect. 2.2, we recall the results con-
cerning existence and uniqueness of the discrepancy equation
(6) and we show that these results can be extended to semi-
norm regularization. In Sect. 3, we discuss the solvers for
the two models and, in particular, the proposed root-finding
method for solving the discrepancy equation (6) is presented.
The setting of the main parameters involved by the solvers
is detailed in Appendix 2. In Sect. 4 the numerical experi-
ments are described. These are based on two different source
images, both well known: the cameraman and the spacecraft.
In both cases three noise levels are considered by changing
the total number of counts. Finally, the main conclusions
on the numerical efficiency of the two models are drawn in
Sect. 5.

Throughout the paper we denote by levy f (¢) the level set
of a function f (¢),i.e.,{t; f(t) < «}, andby ic the indicator
function of a closed and convex set C. Furthermore, given
two vectors x and y, y > 0, the operator ;% is to be intended
component-wise.

2 Relations Between the Two Models

In this section we show, using and extending results proved
in [44], that the two models have exactly the same solutions
for a suitable class of potential functions. Some of the proofs
required for the extension of the results are given in Appen-
dix 1. Moreover we report and extend results, proved in [7],
concerning Model 1.

For a unified treatment of the cases we are investigating if
it is convenient to set

Jf1(x) = R(Lx), ®)

where R(?) is a convex and nonnegative function and L is
a suitable matrix. We recall that any seminorm on R” can
be written as || L - ||, and therefore it can be referred by the
notation (8).

2.1 Relations Between Penalized and Constrained Convex
Problems

In order to have notations close to those used in [44], we set
T=n%and A = % Moreover we introduce the quantities

r():migD(y; Hx + D), 9
x>
= min D(y; Hx + b),

x>0,xeN (L)

where NV'(L) is the null space of the matrix L in Eq. (8).
We consider the following problems, strictly connected to
the Models (6) and (7):

mig R(Lx) +1D(y; Hx +b), A1 >0, (10)
x>

and

mig R(Lx), subjectto D(y; Hx +b) <, (11)
x>

with T > 19. Moreover in this work we focus on the following
regularization functions:

— Tikhonov-like:
1
R(Lx) = §||Lx||%, (12)

where L is the identity or a first/second-order finite dif-
ference operator;
— Hypersurface potential (HS) [35]:

()

n

R(Lx) =)

i=1

—ns, (13)
2
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where § is a positive parameter, L; is the d x n discrete
gradient operator for ad-dimensional image (d = 1, 2, 3)
and L = (LT, ..., LT, L e RP*", p =nd,

— discrete Total Variation (TV):

R(Lx) = |[Lix]). (14)
i=1

When R(Lx) is (12) or (13), we have a differentiable func-
tion while (14) is a non-differentiable version of (13). In
all the three cases, R satisfies a set of general assumptions,
applicable to other regularization functions such as, for exam-
ple, || Lx]||; or Markov random-field regularizations [29]. We
denote as Assumption REG the following assumptions, also
satisfied by any seminorm:

— R : R?” — R is a proper, convex, continuous function,
suchthat R(t) > 0and R(1) =0 <t =0;

— thelevel setslevy R(t) of R(¢) are nonempty and bounded
fora > 0;

— L eRP p>n.

Under Assumption REG, it is evident that A/(L) is the set
of minimum points of R(Lx).

Theoretical results about the relations between the convex
problems (10) and (11) can be found in [33]; we point out that,
when the minimizer of a general penalized problem A F'(x) +
G (x) is not unique, F'(x) can assume different values at the
minimum points; furthermore, it may happen that the mul-
tiplier of the constrained problem min  G(x) is not

xeleve (F(x))
unique [21].

In [44], the authors specialize these general results to the
problems (10) and (11), devising the conditions that assure
their equivalence when R(Lx) is a seminorm and y > O.
The discussion can be easily extended to a differentiable
R(Lx) satisfying the Assumption REG (as, for example,
Tikhonov-like regularization or Hypersurface potential). For
sake of completeness, we report these results, requiring only
Assumption REG for R(Lx).

Theorem 1 [44, Theorem 3.2] Let H € R™*" be such that

K={x>0:Hx+b>0}#0 (15)
and
{x >0} £ N(H). (16)

We assume L € RP*" with N (LYNN (H) = {0} and R(Lx)
satisfying the Assumption REG. Then we have

(1) the problems (10) with A > 0 and (11) with T > 19 have
a solution;

@ Springer

(i1) under the assumption y > 0, if X and X are solutions
of (10) for a given A > 0, then R(LX) = R(LX) and
Hx = HX, i.e., D(y; HX + b) = D(y; HX + b);

(iil) let argmin,oD(y; Hx + b) N N(L) = @ and 1y <
T < 71; under the assumption 'y > 0, if x and X are
solutions of (11) for a given t, then R(LX) = R(LX) and
Hx = HX, with D(y; HX +b) = D(y; HX + b) = 1.

In presence of nonzero background, the assumption (16)
allows to exclude the trivial case when the nonnegative
orthant is a subset of A/(H). Obviously, when H satisfies
the conditions (4), the assumptions (15) and (16) hold.

Using part (iii) of Theorem 1 and a relationship between
the value of A and the corresponding solutions of problem
(10) (the extension of this relationship to the case of differ-
entiable regularization term satisfying Assumption REG is
given in Appendix 1), the following theorem states the rela-
tionship between problems (10) and (11).

Theorem 2 [44, Theorem 3.4] Let H € R™*" be such that
(15)—(16) hold and L € RP*" with N' (L) N N'(H) = {0}.
Let argmin, oD (y; Hx+b)NN (L) =@ andto < © < 1.
When R(Lx) is a seminorm regularization or a differentiable
Sunction satisfying the Assumption REG, if x is a solution
of (11), then there exists a unique % > 0 such that % is a
solution of (10).

In conclusion Theorem 2, combined with part (ii) and part
(iii) of Theorem 1, states that Model 2 has solutions and that
they are all the solutions of Model 1.

For suitable differentiable regularizations, the previous
results can be established under assumptions weaker than
those of the previous Theorem 2: more precisely one can
remove the assumption that all the values of y are strictly
positive. Before introducing these results, we recall the con-
ditions for the existence and uniqueness of the solution of the
problem (10) for A > 0 in some special cases and we extend
part (iii) of Theorem 1. The proofs are reported in Appendix
1.

Letl) ={i |y >0}and b, = {1,2,...,m} — I1. The
cardinality of /; is denoted by m 1. We denote by y;, the vector
of nonzero entries of y and by H;, and H;, the submatrices
of H given by the rows with indices in /1 and I,, respectively.
The following Lemma is a generalization of a result proved
in [14].

Lemma 1l Let H € R™ " be such that the assumptions
(15)—~(16) hold and L € RP*". Let N(L) N N'(Hy,) = {0},
I # 0. If R(Lx) satisfies the Assumption REG and R(t) is
a differentiable function with positive-definite Hessian, then
the problem (10) for . > 0 has a unique solution.

Lemma 1 holds for Tikhonov-like regularization, HS poten-
tial and Markov random-field functions.
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Under the assumptions of Lemma 1, the following relation
between A and the unique solution x of the problem (10)
holds:

o (ViROl=yi LY)

(7t Hin ) = (L. HE)

)

where the quotient of the vectors is intended component-
wise. Furthermore, part (iii) of Theorem 1 can be restated
under more general assumptions.

Theorem 3 Let H € R"™*" be such that the assumptions
(15)—(16) hold, L € RP*" and let R(Lx) satisfy Assump-
tion REG. Let argmin, oD (b, Hx + b) NN (L) = @, and
79 < T < t1; under the assumption N'(L) NN (Hy,) = {0},
Iy # @, if x and X are solution of (11), then R(Lx) = R(LX)
and D(y; Hx+b) = D(y; Hx+b) = v, with H;,x = Hy X
and (Liy—my, HpX) = (Lin—m , H12)2>‘

Finally, following the same arguments used in [44] for prov-
ing Theorem 2, Theorem 3 enables to extend the results of
Theorem 2 to the case y > 0 for differentiable regularization
functions satisfying Lemma 1.

Theorem 4 Let H € R"™*" be such that the assumptions
(15)—(16) hold and L € RP*". Let N(L) N N'(Hy,) = {0},
Iy # 9. Let argmin, oD (b, Hx +b) NN (L) = ¥, and 1y <
T < 1. Assume that R(Lx) satisfies Assumption REG
and R(t) is a differentiable function with positive-definite
Hessian. If X is a solution of (11), then there exists a unique
X > 0 such that X is a solution of (10).

2.2 Existence and Uniqueness of the Solution of the
Discrepancy Equation

In [7], conditions for the existence and uniqueness of the solu-
tion of the discrepancy equation (6) are devised for denoising
and deblurring of images corrupted by Poisson noise, when
f1(x) = R(Lx) is the Tikhonov-like regularization (12) or
the HS potential.

Using the results of Sect. 2.1, the discrepancy equation
can be used also when R(Lx) is a seminorm regularization.
We recall that xg denotes a solution of the penalized problem

min f5(x: y) = D(y: Hx +b) + BR(Lx). (18)

The following theorem states the conditions assuring the
well-definiteness of the function Dy (xg; y) for y > 0.

Theorem 5 Let H € R™*" be such that (15)—(16) hold and
L € RP*" with N (L) N N (H) = {0}. When y > 0 and
R(Lx) satisfies the Assumption REG, Dy (xg; y) is well
defined for B > O.

Proof Given B > 0, Theorem 1 assures that the problem
(10) with A = % has at least a solution and, if we con-
sider two different solutions of the problem x and X, we have
D(y; Hx + b) = D(y; Hx + b). Therefore for all 8 > 0,
Dy (xp; y) is well defined. O

Finally, Theorem 6 establishes the uniqueness of the solu-
tion of Model 1 for seminorm regularization (i) and restates
the results already obtained in [7] (ii).

Theorem 6 Let H € R™*" be such that (15)—(16) hold and
L € RPX" ywith N(L) NN (H) = {0}.

Assume T = n% such that v < T < 7T (i.e. argmin,s
D(y; Hx + b) NN (L) = @). Thus we have:

(i) underthe assumption'y > 0, the solution p of the discrep-
ancy equation combined with a seminorm regularization
exists and is unique;

(ii) let R(Lx) be a differentiable regularization term sat-
isfying Assumption REG, such that the Hessian of
R(t) is positive definite; under the assumption N'(L) N
N (Hp) = {0}, I} # W, the solution B of the discrepancy
equation combined with the regularization term R(Lx)
exists and is unique; furthermore the vector xg corre-
sponding to the solution is unique.

Proof (1) We consider the problem (11) with 7 = n% and
R(Lx) given by a seminorm. For part (iii) of Theorem 1,
the solution x of this problem exists and D(y; Hx+b) =
7. For Theorem 2, there exists a unique A > 0 such that
% is a solution of (10) with A = 1/ and this value does
not depend on . Then 8 = 1/ is the unique solution of
the discrepancy equation combined with the seminorm
regularization.

(ii)) We consider the problem (11) with T = n% and R(Lx)
satisfying Assumption REG. For Theorem 3, the solu-
tion x of this problem exists and D(y; Hx+b) = 7. Since
R(t) is a differentiable function with positive-definite
Hessian, Theorem 4 assures that there exists a unique
A > 0 such that X is a solution of (10) with A = 1/8
and this value does not depend on X. Then g = 1/A is
the unique solution of the discrepancy equation. Further-
more, from Lemma 1, the solution x B of (10) for a given

B is unique. O

In [7], under the assumption of part ii) of the previous
theorem, for differentiable function with positive-definite
Hessian R(¢) and under the assumption (4) on H, the authors
give the conditions that assure 79 < n% < 17, for HS and
Tikhonov-like regularization. For example, for image decon-
volution (n = m and H1, = 1,), the condition 5 < 7 is
satisfied if
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1 o
= yilogy > 5 + ylog§. (19)
n 2
iel
where y = M

n

3 Numerical Methods

In this section we briefly describe the solvers used in the two
models and, in particular, we propose a very efficient root-
finding method for the solution of the discrepancy equation.

3.1 The ADMM Solver for the Constrained Model

In [44], the authors propose to estimate the regularization
parameter by solving the constrained problem (11) with
the well-known alternating direction method of multipliers
(ADMM) [28,30]. The problem (11) is equivalent to

. 1
min F(x,z) + —||Ax — ¢ — zII%,
X 2y
subject to Ax = z +c, (20)

where y is a positive parameter, F(x,2) = iley, p(y:z;) T
i;>0 + R(Z) and z = (z], 27, z")T. The linear constraint
depends on R(Lx); for example, for discrete TV we have

H <1 —bly,
Ix=[zn|+] o 1)
L 3 0

with 7 = z3, while for HS potential the constraint is

H Z1 —bl,,

I | 2 0

L X = 2 + 0 (22)
0 28 _51n

with z = (1, z]H7.

The basic idea of ADMM method is to compute a sad-
dle point of the Augmented Lagrangian L(x, z, p) of the
problem (20), decoupling the minimization step of the Aug-
mented Lagrangian method in a sequence of minimizations
with respect to the different sets of variables x and z; [9].
The application of ADMM for the constrained problem (11)
is analyzed in [44] for a seminorm regularization: the authors
describe the algorithm in detail and prove the convergence of
the sequence of multipliers obtained for the inner subproblem
in z; to the multiplier A of D(y; Hx +b) < t. In view of the
theorems of the previous section, these results can be easily
extended to suitable differentiable regularization functions.
We mention that the subproblem concerning the minimiza-
tion with respect to x requires the solutions of a linear sys-
tem that can be obtained by fast transforms; the minimization
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- - - ! 12 ()
with respect to 71, that is min —llzi=v" |5 W"
zaieleve (DGiy) 2V
depending on the current iteration), requires the solution of

a nonlinear equation. This can be obtained by few iterations
of the Newton’s method [17].

It is well known that the performance of ADMM can be
strongly dependent on the choice of the parameter y . In order
to reduce this drawback, in [32,45] strategies for adaptively
adjusting y at any iteration have been proposed. The conver-
gence of this adaptive version of ADMM is proved, assuming
that ¥ becomes fixed after a finite number of iterations. Then
the choice of the updating strategy is based on the numerical
effectiveness. The procedure proposed in [32] is based on the
control of the [, norm of two vectors, the so-called primal
and dual residual:

PO = Ax® 0 ¢

s = Larg0, (23)
14
with 0@ = @ — z(=D Indeed the vectors r) and o) are
crucial components of the upper bound of the absolute error
between the objective function at the current iterate and its
minimum value. In the experiments of Sect. 4, we use the
following updating procedure:
S5 it rOf > pllo® ) and i < kinax

ay D if oD > ullrO | and i < kmax  (24)
y®  otherwise

YD =

where « and  are positive values greater than 1 and y© is
a prefixed positive value. From the practical point of view,
this adaptive version of ADMM appears less dependent on
the parameter settings than the standard ADMM approach.
Finally, we mention that other methods have been adapted in
[44] for the numerical solution of the constrained problem,
as Arrow—Hurwitz method [1] or its extrapolated version
[20]. As in the case of ADMM, the performance of these
algorithms depends on a suitable selection of two prefixed
parameters. Then, in the numerical experiments described in
Sect. 4, for Model 2 we focus the attention on ADMM.

3.2 The MDF Solver for the Crossing Model

The solution 3 of the discrepancy equation (6) can be approx-
imated by solving the root-finding problem

F(B) =Dulxp;y) —n =0, (25)

where F(B) is a continuous increasing function. We solve
this problem by a specialized version of the algorithm
proposed in [22], called Modified Dai—Fletcher (MDF)
method. The root-finding solver [22] consists in two phases:
a bracketing phase to determine the extremes 0 < 8; < B,
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of an interval containing the root and a secant phase for the
root approximation. The implementation of the bracketing
phase has been changed according to the special regulariza-
tion framework we are considering. In particular, we have
taken into account that the evaluation of the discrepancy
equation in B is generally less expensive for large values
of B, due to the special form of the penalized problem pro-
viding xg. For this reason, when we start from 8 such that
F(B) < 0, we look for B; and B, by means of a secant-like
approach, allowing steps in the interval [df, 10df], where
dp denotes the previous step; on the other hand, when we
move from 8 such that 7(8) > 0, we reduce the tentative g
by a constant factor w € (0, 1), for preserving the positivity
of B and for avoiding the evaluation of the discrepancy func-
tion in too small values. The bracketing phase is sketched as
in Algorithm 1.

Algorithm 1 Bracketing Phase of Algorithm MDF
INPUT: a tentative § > 0, an initial step df > 0, and w € (0, 1).
IFFB) <0

Br=8, B=p+dp,

While F(B) <0

s = min (1, max (F(8) — F(B)) /F(B),0.1)),

Bi=B. dp=4dp/s, B=p+dB,
end
IBu = ﬁ’
ELSE
,Bu = IB’ B= ﬁllws
While F(B) >0
Bu=8, B=puow,
end
B =8,
END

OUTPUT: B;, Bu suchthat B €[, Bul.

The second phase of the MDF method is essentially the
secant-based strategy described in [22]: starting from the val-
ues 8 and B, provided by the bracketing phase, the root j is
approximated by exploiting standard secant steps or modified
steps designed to accelerate the convergence remote from the
solution. For completeness, we report the main steps of the
MDF secant phase in Algorithm 2. The stopping rule used in
the MDF secant phase is

|F(Br)| <€ or (26)
(1B — Bk—1l < e2Br  and  |F(Br)| < 10€1),

where B denotes the value of B at the k-th iteration of
Algorithm 2 and €7, €, are two small positive constants.

Algorithm 2 Secant Phase of Algorithm MDF
INPUT: 81, B, suchthat 8 € [B;, Bul.

s = (F(Buw) — FB))/FBu), dB = (Bu — B1)/s. B = Bu—dB,

WHILE (stopping rule is not satisfied)

IFF(B) >0
IFs <2
Bu= B, s=FBu)—FB)/FBu),
dp = (Bu—BD/s. B =Pu—dp,
ELSE
s =max (F(Bu) — F(B)) /F(B), 0.1),
ag=Bu—P/s,  Bu=25

B =max(B —dp, 0.756; + 0.258),
s=Bu—B)/(Bu— B,

END
ELSE

IFs >2
Bi=B, s=(FPBu)—FB))/FBu,
dg = Bu—PB/s, B=Bu—dp,

ELSE
s =max ((F(B) — F(B)) /F(B), 0.1),
dg=B—-B)/s. B =48,

B = min(B + dB, 0.758, + 0.258),
s = Bu—B)/Bu— B,

END
END
END

OUTPUT: 8 approximation of f

From a practical point of view, the MDF performance strictly
depends on the effectiveness of the minimization method
used for obtaining the solution x4 of the penalized problem
(18). In our experience, two suitable solvers for (18) are the
Scaled Gradient Projection (SGP) method [15], for the case
of differentiable objective functional, and the PIDSplit+ algo-
rithm [25,41], that can work also in case of non-differentiable
problems. The SGP method has been widely used for opti-
mization problems in imaging [4,10,12,19,38,48] and has
given rise to interesting accelerations of well-known recon-
struction algorithms such as the Richardson—-Lucy method
[36,39] and the Image Space Reconstruction Algorithm [23].
Its iteration can be described as

v = PO — sV ),

XD =3O 49,0 —xDy, g e, 1], @7

where P, (-) denotes the projection operator onto the non-
negative orthant, 0; is the line-search parameter, oy > O is a
steplength parameter and S; denotes a positive-definite diag-
onal scaling matrix. Here, a standard monotone line-search
strategy is used for defining the parameter 6;, while spe-
cial updating rules for «; and S; are exploited for achieving
improvements in the convergence rate. In order to update
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o; we use the strategy recently proposed in [37], that is
derived by adapting to the scaled gradient projection meth-
ods the steplength rule introduced in [26] for steepest descent
methods in unconstrained optimization. This updating rule
aims at capturing second-order information by exploiting
the gradients computed in a limited number of previous
iterations and, in case of quadratic unconstrained optimiza-
tion, it reduces to compute special approximations of the
Hessian’s eigenvalues, called Ritz values [31]. The compu-
tational studies reported in [26] on unconstrained optimiza-
tion problems emphasize that the new rule enables worth-
while convergence rate improvements in comparison with
the well-known Barzilai—-Borwein (BB) rule [3]. In partic-
ular, in case of the penalized problem (18), we found that
the SGP version exploiting this Ritz-like steplength updat-
ing strategy generally exhibits better convergence than the
original SGP method [37], that was based on an adaptive
alternation of the two BB rules [15,27].

A crucial role for the SGP performance is also played
by the diagonal scaling matrix S; [8,11]. When a diagonal
scaling is exploited, the challenging task consists in achiev-
ing convergence rate improvements without increasing the
cost of each iteration, as usually done by quasi-Newton
non-diagonal scaling techniques. To this end, we follow the
idea introduced in [34], that defines the diagonal entries
si,i = 1,...,n, of §; through a splitting of the objective
gradient:

<
si=min | supp, max | Siow, : ’
VP (x®D; y) + BVED; y)

where 0 < sjow < Supp are positive constants (see [13] for a
convenient choice of these values) and the vectors V2 (x; y)
and VR (x; y) are such that

V(D(y; Hx + b)) = VP (x; y) — UP(x; y),

V(R(Lx)) = VR(x; y) — UR(x; y),

VP(x;y) >0, UPx;y) =0,

VEG(iy) >0, UR@x;y) = 0. (28)

The choice of the functions V2 (x; y) and VER(x; y) is not
unique and in this paper we use the choice proposed in [46].
This strategy avoids significant additional cost and for suited
choices of the splitting can yield useful improvement in the
SGP convergence rate. Such a behavior has been observed
in several imaging problems, where the splittings (28) were
derived in a quite natural way by the structure of the gradient
[5,15,46]. In this work, we are interested in solving the prob-
lem (18) in case of the HS regularization function (13) and,
following the suggestions available in literature, we define
S; by assuming VP (x; y) = HT1,, [34] and VR (x; y) as in
[46].

An alternative inner solver, suitable also in case of non-
differentiable regularization functions, is the PIDSplit+ algo-
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rithm [25,41]; this is a specialized version of the ADMM
method, that requires to reformulate the problem (18) in the
form (20), with F(x,z) = D(y; z1) +iz,>0 + BR(z) and a
linear constraint Az = z+ ¢, depending on the regularization
term (for example (21) or (22) for TV or HS, respectively).
Also in this case, the minimization with respect to x involves
the solution of a linear system, obtained by fast transforms,
while the minimization with respect to the other sets of vari-
ables z; and the update of the related multiplier vectors are
less expensive. These last tasks are performed by closed for-
mulas requiring at most matrix-vector products or a projec-
tion on the nonnegative orthant. Moreover, as already high-
lighted for ADMM, the effectiveness of the method depends
on the choice of the parameter y. Then, also for this algo-
rithm, we can adaptively adjust this parameter by the same
procedure described in (24).

For what concerns the use of the above inner solvers within
the MDF root-finding method, we suggest adopting a care-
ful setting for their stopping tolerance and starting vector.
When the solvers are called within the Bracketing Phase, we
found convenient to exploit a mild stopping tolerance and the
detected image y as starting approximation of xg while, in
the Secant Phase, a more severe stopping tolerance is forced
and the last xg is used as starting vector for a new call of the
inner solver. In Appendix 2, we summarize the parameters
introduced in the previous algorithms and report the values
used in our numerical experiments.

4 Numerical Experiments

This section is devoted to compare the effectiveness of the
two approaches for the regularization parameter estimation
previously described. The computational study is carried out
on test problems arising from deblurring of images corrupted
by Poisson noise. In particular, we compare the numerical
procedure MDF for the solution of the discrepancy equa-
tion (6) with respect to the ADMM approach for solving the
constrained model (7). The numerical experiments described
in this section have been performed in the MATLAB envi-
ronment (R2013a) on a workstation equipped with 2 Intel
Xeon Six-Core CPUs at 3.1GHz and 188GB of RAM. In the
experiments we consider a set of test problems, where the
Poisson noise has been simulated by the imnoise function
in the Matlab Image Processing Toolbox. The considered test
problems are described in the following.

cameraman: the test problem is similar to that used in
[44]: the original 256 x 256 image has values scaled
in [0, 3000], the image has been corrupted by Gaussian
blur (with standard deviation 1.3) and contaminated by
Poisson noise; the background is O and the values of y
are in the range [75, 2853]. This test problem is called
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Mcameraman. A second test problem, named Lcamera-
man, is generated by multiplying the object by 10, by
convolving the image with the same Point Spread Func-
tion (PSF) and then by perturbing with Poisson noise; in
this case the values of the detected image are in the range
[888, 28146]. A third test problem, named Scameraman,
is generated by proceeding as for the Lcameraman but
the object is multiplied by %; the values of the detected
image are in the range [19, 938].

spacecraft: the original image is a 256 x 256 image with
sharp details, whose values are in the range [0, 2550]
and the background term b is set to 10; following [43],
the used PSF simulates that taken by a ground-based
telescope and is downloaded from www.mathcs.emory.
edu/nagy/RestoreTools/index.html. The values of the
detected image are in the range [5, 1135]. This test prob-
lem is called Sspacecraft. A second test problem, named
Mspacecrafft, is generated by multiplying the object and
the background by 10, by convolving the image with the
same PSF and then by perturbing with Poisson noise; in
this case the values of the detected image are in the range
[134, 10766]. A third test problem, named Lspacecraft,
is generated by proceeding as for the Mspacecraft but the
object and the background are multiplied by 100; the val-
ues of the detected image are in the range [ 1585, 105383].

Figure 1 shows the original images and the corresponding
blurred and noisy images for the test problems Scameraman
and Sspacecraft.

In the subsequent tables, we report the results obtained
with one noise realization for each of the six test problems.
We checked that our results do not change significantly if the
noise realization is changed.

4.1 Estimation of the Regularization Parameter for
Hypersurface Potential

The first set of experiments concerns the case in which
the regularization term is the HS function (13), with § =
10~* max; (y;). Moreover, here and in the following we
assume 1 = 1.

As concerns Model 1, we solve the discrepancy equation
(6) with MDF, the root-finding solver described in Sect. 3.2.
In Fig. 2, we show the plot of Dy (xg; y) — 1 with respect to
B for the test problems Mcameraman and Sspacecraft. We
observe that, for the second test problem (and, in general, for
the spacecraft test problems), the behavior of this function
around its zero makes very hard the localization of the cross-
ing value. On the other hand, for Mcameraman and the related
test problems, the computation of the root of Dy (xg; y) — 1
appears easier.

The stopping rule in MDF solver is given by (26), with
€1 = 5 x 107%, e, = 5 x 1073, For what concerns the

Original - cameraman Detected image - Scameraman

Detected image - Sspacecraft

Original - spacecraft

Fig. 1 Original images and detected data for the test problems Scam-
eraman and Sspacecraft

inner subproblems solvers, in the case where SGP is used, the
iterative procedure is stopped when the following criterion
is satisfied

1, D y) = £ D5 3| < €imnl f5, 6P )] (29)

or when a maximum number of iterations, equal to 5000, is
performed without obtaining the required accuracy. We recall
that fg, denotes the objective function of the penalized prob-
lem (18) with 8 = B;. As described in Sect. 3.2, the €jp, is a
mild tolerance in the Bracketing Phase and it becomes more
severe in the MDF Secant Phase, up to a lower bound €maxinn.,
reported in the caption of the tables concerning Model 1.

When PIDSplit+ is used as inner method, the stopping
criterion (29) is coupled with a specific rule for the alternating
direction multipliers methods [16], involving current values
of the primal and dual residuals (23):

17Ol < €pri and 15| < €quar 30)

where €),,; and €4y are positive feasibility tolerances. These
tolerances are defined by means of an absolute and a relative
criterion:

€pri = €gvVm +4n 3D
+€ max (|| Ax D2, 1120112, llell),
€dual = €av/n + & | AT p@2,

where p) is the current value of the multiplier of the linear
constraint Ax = z + ¢; we fix ¢, = €, = €1. Furthermore,
in order to avoid the matrix-vector operations A7 ") and
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Fig. 2 Behavior of (Dy (xg; y) — 1) versus g for the test problems Mcameraman and Sspacecraft

AT p® (arising in the computation of s) and €qya1, respec-
tively), we overestimate || A7 - ||» with v/10 || - ||2, where /10
is an approximation of ||A”||,. Then PIDSplit+ is stopped
when one of the conditions (30) or (29) is satisfied or when
a maximum number of iteration, equal to 5000, is performed
without obtaining the required accuracy. The effectiveness
of PIDSplit+ strongly depends on the choice of y; following
[41], for the solution of the subproblem corresponding to f;,
the value of y is set equal to ﬁ where a > 0 is a fixed para-
meter in MDF; the selection of a suitable value for a requires
a trial process. To overcome this drawback, we exploit the
updating procedure (24), implementing an adaptive version
of PIDSplit+; in this case, the initial value y(o) for the i-th
subproblem of MDF is set equal to ﬁ% while the parameters
of the updating procedure are © = 5, & = 2, kpax = 3500.
Tables 1 and 2 show the results obtained when the regular-
ization parameter is estimated using MDF with inner solver
SGP and PIDSplit+, respectively. In the tables, & is the num-
ber of iterations required by MDF to satisfy the stopping
criterion, ko is the total number of iterations of the inner

solver, By is the obtained estimate, Dy = Dpy(xg,; y), err

. . . llxg, —x*|l2 .
is the relative reconstruction error ‘T"‘XT, where x™* is

the original object, and, finally, time denotes the execution
time in seconds; in particular, for each case, we report the
average execution time over ten runs. In Table 2, we show
the results of PIDSplit+ corresponding to the value of y for
which we observed the best efficiency and those obtained
with the adaptive PIDSplit+. The updating procedure (24)
within PIDSplit+ increases the performance of MDF; indeed
for each subproblem, the procedure allows to devise suitable
values for y () and to obtain within a few iterations an approx-
imate solution, satisfying the mild criterion (30) rather than
the stopping rule (29). A comparison of the results reported
in these two tables demonstrates that SGP is definitely more
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efficient than PDSplit+ as inner solver, at least with the excep-
tion in the Lspacecraft case. The small variations in the values
of Bk and in the errors resulting from the comparison of the
two tables are not significant as it concerns the quality of the
reconstructed images.

The reported results with SGP are obtained by assuming
a severe inner tolerance. Therefore we repeated the experi-
ments by reducing this parameter. Table 3 reports the results
of the MDF solver when a very weak inner tolerance is used
in SGP. Unlike Lspacecraft, that requires €maxinn = 1077,
the other test problems are solved with €maxinn = 107°; the
restored images are obtained with high efficiency. In spite
of this weak inner tolerance, the relative errors do not show
significant changes with respect to those of Table 1, since the
variations are at most equal to 3%.

As concerns Model 2, it is solved by ADMM solver. For
the stopping of the method, before verifying a condition sim-
ilar to (26), it has to be verified that the current iterate is an
approximate solution to the minimization problem; indeed,
it could happen that the constraint is satisfied but the solu-
tion of the problem is not yet sufficiently accurate. Therefore,
when the current iterate x ¥ satisfies the condition (30), the
solver switches to check that the following stopping rule is
satisfied,

D x®;y) —nl <€ or
Bk — Bi—1l < e|Bel and [Py (x®); y) — 1| < 10€)

with g; = ﬁ The maximum number of ADMM iterations
is fixed as 5000. Furthermore, at each step of ADMM, the
constrained least-squares subproblem related to z; is solved
by the Newton’s method with a stopping tolerance of 10~12
on the distance between two successive approximations. In

our experiments, after the initial iterations of ADMM, four
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Table 1 Model 1—Regularization term: HS potential

Test problem k kot Br Dr err Time

Scameraman 7 784 1.245 x 1072 1.0000 1.157 x 107! 14.44
Mcameraman 8 831 6.687 x 1073 0.9998 8.563 x 1072 15.11
Lcameraman 8 1054 1.236 x 1073 1.0004 7.112 x 1072 18.91
Sspacecraft 13 2882 5.513 x 10~* 0.9985 3.017 x 107! 49.90
Mspacecraft 14 6475 7.635 x 1073 0.9990 2.584 x 107! 111.37
Lspacecraft 15 9709 8.053 x 107° 0.9969 2301 x 1071 172.78

MDF combined with SGP, €maxinn = 5 x 1078, k is the number of MDF iterations, ko is the total number of inner solver iterations, B is the
estimate of B8, Dy = Dy (xg,; y), err is the relative reconstruction error, time is the execution time in seconds

Table 2 Model 1—Regularization term: HS potential

Test problem y k kot Br Dy err Time
Scameraman 50/B; 6 732 1.258 x 1072 1.0001 1.156 x 107! 28.43
Mcameraman 10/B; 11 1080 6.359 x 1073 1.0008 8.511 x 1072 41.90
Lcameraman 500/B; 7 682 1.167 x 1073 1.0032 7.205 x 1072 27.39
Sspacecraft 50/ Bi 4 747 1.000 x 10~* 0.9997 3.107 x 107! 27.45
Mspacecraft 75/ Bi 8 8765 1.024 x 107 0.9999 2.653 x 107! 334.56
Lspacecraft 100/B; 5 6480 1.000 x 1073 0.9999 2.309 x 107! 255.95
Scameraman Adaptive 7 535 1.214 x 102 1.0004 1.155 x 107! 21.14
Mcameraman Adaptive 13 590 6.630 x 1073 0.9986 8.516 x 1072 24.03
Lcameraman Adaptive 8 684 1.230 x 1073 1.0009 6.974 x 1072 27.30
Sspacecraft Adaptive 8 1801 5.415 x 1073 0.9997 3.216 x 107! 70.43
Mspacecraft Adaptive 17 3486 1.005 x 1076 1.0009 2.796 x 107! 135.96
Lspacecraft Adaptive 13 4108 7.965 x 1077 0.9966 2.381 x 107! 159.81
MDF combined with PIDSplit+, €maxinn = 5 X 1078, y is the parameter appearing in (20) and the other notations are as in Table 1

Table 3 Model 1—Regularization term: HS potential

Test problem k kot Bk Dy err Time
Scameraman 8 497 1.231 x 1072 0.9996 1.158 x 107! 9.36
Mcameraman 8 546 6.599 x 1073 1.0002 8.571 x 1072 10.11
Lcameraman 10 747 1.241 x 1073 1.0008 7.070 x 1072 13.75
Sspacecraft 6 1115 3.075 x 1074 0.9998 3.142 x 107! 19.51
Mspacecraft 5 1461 1.000 x 1073 0.9996 2.811 x 107! 26.48
Lspacecraft 7 4434 1.000 x 1076 0.9995 2.619 x 107! 81.15

MDF combined with SGP, €paxinn = 1076 except for Lspacecraft where €maxinn = 10~7. For the notation description see Table 1

Newton’s steps enable to compute an approximation of 1)
within the required tolerance.

Table 4 shows the results obtained by means of ADMM
with a prefixed value of y. As in the previous tables, k denotes
the number of iterations, By the computed estimate of the reg-
ularization parameter, err the relative reconstruction error,
and time the execution time in seconds. We observe how
the effectiveness of ADMM is strongly dependent on the
value of y. Furthermore, in Table 5 we report the results

obtained by ADMM combined with the updating procedure
(24), with & = 2, u = 10, and kmax = 3500. Here y©@
denotes the initial value of the parameter. This adaptive ver-
sion of ADMM allows to obtain satisfactory solutions of
Model 2 without having to find a suitable value for y. Also
in this case the effectiveness of the method can depend on the
computational setting, for example on the value of ¥, but
this dependence appears less relevant than for the standard
ADMM.
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Table 4 Model 2—Regularization term: HS potential

y k (Time) Br err k (Time) Br err k (Time) Br err
Scameraman Mcameraman Lcameraman

5 835(44.43)  1.257x 1072 1.153 x 107! 1753 (94.11) 6.714 x 1073 8.517 x 10~2 5000 * s

10 425(22.65)  1.251 x 1072 1.154 x 10~! 878(49.23)  6.714 x 1073 8.517 x 1072 5000 # *

50  974(50.09)  1.346 x 1072 1.161 x 10~! 375(22.21) 6.888 x 10~3 8.577 x 1072 1139 (60.32) 1.234 x 10~3 7.083 x 1072

150 2974 (158.96) 1.347 x 1072 1.160 x 107! 1215 (66.91) 6.908 x 1073 8.581 x 1072 434 (23.57) 12491073  7.129 x 1072

200 3969 (216.68) 1.348 x 1072 1.160 x 10~! 1627 (94.51) 6.908 x 10~3 8.581 x 1072 620 (31.53) 1.25210~3  7.150 x 102

Sspacecraft Mspacecraft Lspacecraft
0.05 782 (44.13) 4.260 x 107 3.471 x 107! 1436 (82.05) 1.845 x 107% 2.916 x 101 2971 (166.57) 7.032 x 10~% 2.498 x 10!
0.1 774 (4127) 8.506 x 1075 3.477 x 107! 1442 (85.26) 3.687 x 107% 2.915 x 101 2976 (165.86) 1.406 x 10~7 2.497 x 10!

0.5 807 (47.90) 4.167 x 10~* 3.476 x 107!
1 957 (51.33)  8.035 x 10~* 3.434 x 10!
2.5 2372(122.26) 1.623 x 1073 3.275 x 107!

1501 (86.93) 1.832 x 107> 2.909 x 107!
1589 (91.59) 3.630 x 10> 2.901 x 107!
1988 (116.41) 8.745 x 10™> 2.872 x 107!

3017 (171.53) 7.019 x 10~7 2.495 x 10!
3072 (165.61) 1.401 x 107° 2.493 x 10!
3262 (188.88) 3.476 x 1070 2.484 x 107!

ADMM with different values of y (see (20)). k is the number of ADMM iteration, B is the estimate of 8, err is the relative reconstruction error

Table S Model 2—Regularization term: HS potential

Test problem & B Dx err Time
y© =05
Scameraman 461 1.234 x 1072 0.9987 1.152 x 10~!  26.03

Mcameraman 452  6.695 x 1073 0.9997 8.535 x 10~2  26.31

Leameraman 965 1255 x 1073 1.0050 7.151 x 1072  56.08

Sspacecraft 807 4.167 x 107* 1.0050 3.476 x 10~ 47.81

Mspacecraft 1501 1.832 x 107> 1.0050 2.909 x 10~}  84.71

Lspacecraft 3017 7.019 x 10~7 1.0050 2.495 x 10! 174.36 Seamenaman Lcansesaman
y(O) =1

Scameraman 650 1.253 x 1072 0.9997 1.154 x 10~!  37.67

Mcameraman 451  6.695 x 1073 0.9997 8.535 x 1072 26.30 4

Lcameraman 583 1.241 x 1073 1.0031 7.113 x 10~2  33.51 \ y

Sspacecraft 957 8.035 x 107* 1.0050 3.434 x 10~'  54.18 " » -

Mspacecraft 1589  3.630 x 107> 1.0050 2.901 x 10! 91.15

Lspacecraft 3072 1.401 x 107% 1.0050 2.493 x 10~' 175.50

Adaptive version of ADMM. y(© is the initial value for the sequence

definedin (24), Dy = D (xp,; ¥), time s the execution time in seconds.

For the other notations see Table 4 Sspacecraft Lspacecraft

Fig. 3 Some restoration results obtained with HS regularization

From Tables 1, 2, 3, 4, and 5, we can draw the following
remarks.

— For differentiable regularization term, as HS, there exist
efficient iterative algorithms, especially tailored for the
solution of penalized problems; this is the case of SGP.

— The effectiveness of the two approaches for the estima- When MDF is coupled with this solver, it can be very

tion of the regularization parameter appears very similar;
indeed, the time for the solution of the minimization prob-
lems involved in Model 1 is comparable to that required
for the constrained problem. This is evident from Tables 2
and 5 where the penalized subproblems of the Model 1

efficient, as follows by a comparison of Tables 3 and 5,
and it allows Model 1 to be less time consuming than
Model 2.

Examples of the reconstructions obtained with the HS

and the Model 2 are faced with solvers belonging to the
same class of methods.

regularization are given in Fig. 3 for the test problems
Scameraman, Lcameraman, Sspacecraft, and Lspacecraft.
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Table 6 Model 1—Regularization term: TV

Test problem k kot Br Dy err Time

Scameraman 7 535 1.207 x 1072 1.0003 1.152 x 107! 20.24
Mcameraman 11 600 6.575 x 1073 0.9972 8.514 x 1072 22.81
Lcameraman 8 715 1.230 x 1073 1.0006 6.973 x 1072 27.40
Sspacecraft 7 1744 1.000 x 1073 0.9998 3.5456 x 107! 62.67
Mspacecraft 17 3314 1.005 x 1076 1.0009 2.796 x 107! 120.95
Lspacecraft 7 2687 1.000 x 1077 0.9999 2.401 x 107! 95.22

MDF combined with adaptive PIDSplit+, €maxinn = 5 % 1078 and y© =

notations are explained in Table 1

Table 7 Model 2—Regularization term: TV

Test problem & B Dx err Time
y© =05
Scameraman 448 1232 x 1072 0.9986 1.152 x 107! 25.58
Mcameraman 442 6.689 x 1073 0.9997 8.534 x 1072  24.86
Leameraman 966 1254 x 1073 1.0050 7.152 x 1072  55.07
Sspacecraft 807 4.167 x 107* 1.0050 3.476 x 107! 4436
Mspacecraft 1501 1.832 x 107> 1.0050 2.909 x 10~!  83.96
Lspacecraft 3017 7.019 x 10=7 1.0050 2.495 x 10~' 169.63
y© =1
Scameraman 640 1253 x 1072 0.9997 1.154 x 10~!  37.05
Mcameraman 441 6.689 x 1073 0.9997 8.534 x 1072 2491
Leameraman 583 1.240 x 1073 1.0031 7.113 x 1072 33.42
Sspacecraft 956  8.036 x 107* 1.0050 3.435 x 10~! 53.37
Mspacecraft 1589 3.629 x 107> 1.0050 2.901 x 10~! 85.98
Lspacecraft 3072 1.401 x 107% 1.0050 2.493 x 10~! 165.87

Adaptive version of ADMM. For the notation description see Table 4

4.2 Estimation of the Regularization Parameter for TV
Regularization

In this section we describe the results obtained for the test
problems by the two models combined with TV regulariza-
tion. For Model 1, the discrepancy equation (6) is solved by
MDF, using as inner solver the adaptive version of PIDSplit+.
The stopping criteria for MDF and for the inner solver and the
computational setting are the same as that of the experiments
on HS. For Model 2, the constrained problem is solved by
the adaptive version of ADMM. Also for these experiments,
we use the same stopping rules and the computational setting
of those described in the previous section.

Tables 6 and 7 show the results obtained for the two mod-
els. The analysis of these results leads to confirm the remarks
of the previous section: when the MDF algorithm and the
Constrained Model exploit a similar optimization solver, the
effectiveness of the two approaches appears comparable. In
particular, for some applications, we obtain with Model 2

1

5 where §; is the current value of the i-th MDF iteration. The other

a satisfactory reconstruction in a shorter time. Finally we
observe that, with respect to the reconstruction errors, the
HS and TV regularizations produce similar solutions.

5 Concluding Remarks

In this paper we investigate two approaches, defined as Model
1 and Model 2, for estimating the regularization parameter
in the framework of the Bayesian approach to Poisson data
inversion.

Following a discrepancy principle recently proposed for
the regularization parameter estimation, the first model asks
for the solution of a nonlinear discrepancy equation, while
the second model requires the solution of a constrained min-
imization problem whose constraint is derived from the dis-
crepancy principle. In order to apply the two approaches, a
sequence of minimization problems with simple nonnega-
tivity constraints must be faced in the first model, while an
optimization solver able to handle more general nonlinear
inequality constraints is necessary for solving the minimiza-
tion problem arising in the second model.

We first extend some results on the relations between
the two models; next we introduce an efficient root-finding
solver, called MDF, for solving the discrepancy equation
introduced by Model 1 and, finally, we compare through a
wide computational study the efficiency of the numerical pro-
cedures involved by the two models.

The numerical experiments are carried out on two well-
known test images and two different regularizations: a dif-
ferentiable one (HS) and a non-differentiable one (TV). In
the first case we show that MDF, combined with an efficient
solver for the inner optimization problems, enables Model 1
to be less time demanding than Model 2. On the other hand,
in the case of TV regularization, Model 1 can be competi-
tive with Model 2 but the latter is definitely more efficient in
some cases.

Acknowledgments This research is partially supported by the project
Learning meets time: A new computational approach for learning in

@ Springer



J Math Imaging Vis

dynamic systems, contract RBFR12M3A, funded by the Italian Ministry
of Education, University and Research Futuro in Ricerca 2012 program
and by the Italian Spinner2013 PhD project High-complexity inverse
problems in biomedical applications and social systems.

Appendix 1

As already stated, the proof of Theorem 2 can be extended
along the lines given in [44] to the case of a differentiable
function R(Lx) satisfying the Assumption REG. However
one point needs a few additional remarks, namely the relation
between a solution x of problem (10) and the value of A.
Under the assumptions of Theorem 1, using the same argu-
ments of the proof of Lemma 3.3 in [44], it is possible to
state that each solution x of (10) does not belong to A/ (L)
and the following relation with A holds:

3= (p1, Lx) (32)

)y _ 9
<m — ]m, H.x>

where p; € 0R(LX).

When R(Lx) is a seminorm, i.e., R(Lx) = ||Lx]||, since
X € N(L) and ||py|lx = 1 (where || - ||« is the dual norm of
Il - 1), we have (p1, Lx) = ||Lx| > 0 and, consequently,

A= R(LY) . (33)

y —
<m — lm, HX>

Then, for part ii) of Theorem 1, in the case of the seminorm
regularization, A is uniquely determined.

When R(Lx) is differentiable, p1 = V;R(t)|;=rz and the
Eq. (32) can be written as:

(ViR(D)li=Lx, LX)

A= :
y _
<m - 1m’Hx>

(34)

Then, as in the previous case, for differentiable R(¢) satisfy-
ing the Assumption REG, X is uniquely determined.
In particular, for Tikhonov-like regularization,

< ViR(0)|y=17, LX >=< X, Vo R(LX) >= ||LX|}3.

For HS regularization, taking into account the expression
of the gradient [14], we have < V,R(t)|;=rz, Lx > =
o XTLTLix

Z T VIILix|? +82

Proof of Lemma 1 (which is a generalization of results in
[14]) Under the assumption N'(L) NN (Hy,) = {0}, I} # 0
and A > 0, we prove that the objective function of the prob-
lem (10) is strictly convex by showing that the intersection

@ Springer

between the null spaces of the Hessian of D(y; Hx + b) and
R(Lx),i.e., the null space of the objective function, is trivial.

Indeed we have that N (V2D (y; Hx + b)) = N(Hp,).
On the other hand, the Hessian matrix of R(Lx) is given
by LTV2R(Lx)L. Since V2R(¢) is positive definite for any
t, N(V2R(Lx)) = N(L) = {x = argmin, R(Lx)}. As a
consequence of the assumption N'(L) N N (Hy,) = {0}, the
objective function is strictly convex and the minimum point
is unique. O

Proof of Theorem 3 When x and X are two solutions of prob-
lem (11),itisevidentthat R(Lx) = R(LX). We have to prove
that D(y; Hx 4+ b) = t for any solution x of the problem.
Since X is a solution of (11), lev; (D(y; Hx+b))Niyx>0 # @
and R(Lx) is continuous on its domain R”, there exists
v e LTOR(LR) (or v = LTVR(L%) if R(Lx) is differ-
entiable) and a nonnegative scalar u [40, §28] such that,
(v+ uVD(y; HX + b))x =0,

v+ uVD(y; HX +b) > 0,

x>0. (35)

w(D(y; HX +b) — 1) = 0,

D(y; Hx +b) <,
u=>0.
Let v = LT p for a suitable p € dR(t)|,—r3 (or p =
V:R(t)|;~rz). Since T < 77, X & N (L), and, consequently,
v is different from 0 (indeed argminR(Lx) = A/(L)). Then,
if D(y; Hx+b) < t,since u(D(y; Hx+b)—1) = 0, it fol-
lows o = 0; therefore, vx = 0 and the problem is reduced to
the minimum of R(Lx) on the nonnegative orthant. Then
x = 0 is a solution as well as x. But 0 € A/(L) and
0 glev.D(y; Hx + b). Then D(y; HX +b) = .

Now, we prove that, if X and X are solutions of (11), then
Hpx = HpX; we write £ = X1 + X and ¥ = X1 + X2
with &1, ¥1 € R(H]), &1 # %1, and %, %2 € N'(Hp,). Let
x = ux + (1 — w)x, where u € (0, 1) is chosen so that
x > 0. Then

D(y; Hx +b) = D(yy; Hy (ux + (1 — u)X) + b)
+ (Ln—m,» Hi,(nx + (1 — w)X) + b)
= D(yy,, Hy, (ux1 + (1 — w)x1) + b)
+ e, HpX + D)
+ (= w{ly—m,. HpX + b)
< w(DWOn, HyX1 +b) + (Ln—m,, H, X))
+ (0 = w)(Dy; Hy X1+ b)
+ (Ly—m,» HpX + b))
=ut+ (1 —-—wrt=r, (36)
where the strict inequality follows from the strict convexity of
D(yn,; Hpyx+b) on R(H]). Then we have D(y; Hx+b) <t.
On the other hand, we obtain
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R(Lx) = R(uLx + (1 — p)LX)
< uR(LX) + (1 — w)R(LX) (37
— R(LF) = R(LZ)

so that x should be a minimizer of (11). This is impossible
since any minimizer has to fulfill D(y; Hx +b) = 7.

Finally, since D(y; Hx + b) = D(y; HX + b) = t and
Hp x = Hj X, it follows

<1m7m1’ HIZJU = <1m7m1 s H12/€> (38)

]

Appendix 2

In this Appendix we specify the setting of the main para-
meters involved in the methods proposed for facing the two
estimation models.

The MDF Method for the Crossing Model

e Stopping criterion: formula (26) is used with €; = 5 x
1074, € =5 x 103, and a maximum number of 40
iterations is fixed.

e Starting value for §8: 0.1. In the bracketing phase, df =
w=0.1.

e The computation of the function F(B) is carried out by
an inner solver. The tolerance 61(1;)1 of the inner solver
stopping criterion at the i-th call depends on a parameter
€maxinn as follows:

— at the first call of the inner solver
0)

€inn = Max{€maxinn, min{103€maxinn7 0.1 }};

— at the i-th call of the bracketing phase, we have

O — max{emaxinn, 0.26. )

€ mn

— finally in the secant phase,
El(rllzl = €maxinn-
€maxinn 1S set equal to 5 x 1078 in all cases, except in
Table 3.
e We consider the following inner solvers:

- SGP
The maximum number of allowed iterations is 5000.
The stopping criterion is

15 D5 9) = £, ) < €D £, (D )

with Ei(Il;fl corresponding to one of the choices indi-
cated above and B; being the current value of 8 at the
i-th MDF iteration.

— PIDSplit+

The maximum number of allowed iterations is 5000.
The stopping criterion is:

(r®1 < €pri and [V < egua)
or
s @D = fa GOVl < el fs O3y,

where €,,; and equy are specified in (31) with ¢, =
€ = €].
Formula (20) shows the role of the parameter y .

— Adaptive PIDSplit+
The maximum number of allowed iterations is 5000.
The stopping criterion is:

Ur®N < €pri and [IsV < €quar)
or
1 D5 9) = £, 3 < € 5, y)),

where €),; and €qua are specified in (31) with ¢, =
€ = €].

The updating rule for y ) is given in (24), witha = 2,
w =5, kmax = 3500; y©@ = é

The ADMM Method for the Constrained Model

e The constrained problem for computing é at the i-th
iteration is solved by a Newton’s iteration with a stopping
tolerance 10~ !2 on the distance between two successive
approximations.

e ADMM is stopped when the following two conditions
are satisfied:

(Ir®1 < €pri and [s©] < equa)
and

(IDE(®;y) —nl <€ or
(IBx — Br—1] < e21Bl and | Dy (x®; y) — | < 10€));

here €p,; and €qual, depending on x® are specified in
(31), with €, = €, = €. As in MDF, ¢; = 5 x 1074,
€ =5x1073.

e Maximum number of allowed iterations: 5000.

e Two versions of ADMM are implemented:

— standard version: the value of y is a priori fixed;

— adaptive version: y @ is given by the updating rule
(24) witha = 2, u = 10, kmax = 3500; @ is set as
0.50r 1.
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