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Abstract

This paper deals with the modeling of learning dynamics in a large system of in-

teracting entities. The mathematical approach is based on the kinetic theory on active

particles. Their microscopic state is modeled by a scalar variable called activity, which

is assumed to be heterogeneously distributed among the particles. Nonlinear interactions

lead to collective phenomena of learning. The structure allows the derivation of specific

models and of numerical simulations related to real systems.
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1. Introduction.

A new approach to collective learning and hiding processes has recently
been proposed in [1] based on suitable developments of the kinetic theory
of active particles [2]. The leading idea proposed in [1] is that individuals
learn by interactions, whose frequency depends on a suitable metric dis-
tance, while learning and hiding are related to the state of the interacting
individuals, who may either approach their state (consensus) or increase
such a distance (competition).

Received on February 1st, 2014. Accepted on March 5th, 2014. Published on March 24th, 2014.

Licensed under the Creative Commons Attribution Noncommercial No Derivatives.

http://www.ams.org/mathscinet/msc/msc2010.html
http://creativecommons.org/licenses/by-nc-nd/2.5/it/deed.en_GB


V. Coscia et al.

The kinetic theory of active particles was specifically developed to model
living, hence complex, systems constituted by several multi-agents inter-
acting by linear or nonlinear rules. The modeling of such systems was ap-
proached by different theoretical tools such as statistical mechanics [3] and
kinetic theory [4]. An already vast bibliography is reported in these books.
Additional titles can be found in [5] and in the survey [2].

The hallmarks of the kinetic theory of active particles are the following:

• the overall system is subdivided into functional subsystems consti-
tuted by entities, called active particles, whose individual state is
called activity;
• the state of each functional subsystem is defined by a suitable, time

dependent, probability distribution over the activity variable;
• interactions are modeled by games, more precisely stochastic

games [6], where the state of the interacting particles and the output
of the interactions are known in probability;
• the evolution of the aforesaid probability distribution is obtained

by a balance of particles within elementary volumes of the space of
the microscopic states, where the dynamics of the inflow and the
outflow of particles is related to the interactions at the microscopic
scale.

This approach has been applied in a variety of different fields such as spread
of epidemics [7], social systems [8], opinion formation [9], micro-scale Dar-
winian evolution and selection [10]. Mathematical tools can be developed to
include space dynamics, for instance in vehicular traffic [11], crowd dynam-
ics [12], and many others. Space can be represented by continuous variables
or correspond to networks representation [13,14].

The aim of this paper is to present a detailed analysis of a collective
learning dynamic for a large system of interacting individuals. The learn-
ing process is characterized by nonlinear interactions among individuals
with a different level of knowledge. The contents of the paper is presented
through four more sections. Namely, the reference mathematical framework
is reported in Section 2, while the qualitative analysis of the initial value
problem is presented in Section 3. Section 4 is devoted to the derivation
of a specific two populations learning dynamic model and to the related
numerical simulations. In the first part of the section we discuss the mod-
eling methods both in the continuum and in the discrete case. We specify
the form of the encounter rate and of the nonlinearly additive interactions
characterizing the model. We remark that in our model the interactions are
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nonlinearly additive: in fact, the result of the interaction between a pair of
active particles is nonlinearly dependent not only on the states of the two
particles, but also on the states of all the particles in a defined interaction
domain.

In the second part of the section we specialize the treatment to the
case of a two populations learning dynamic, described by two functional
subsystems characterized by different levels of knowledge. Individuals of the
less evolved subsystem increase their own knowledge by taking advantage of
the interactions with the individuals of the other subsystem. We conclude
the section with a few numerical simulations which visualize the predictive
ability of the model. Finally, some concluding remarks and perspectives are
reported in the last section.

2. A reference mathematical structure.

In this section, for sake of completeness, following [1] and [2] we review
the essential aspects and definitions of the reference mathematical frame-
work, which will be necessary in the following of this paper.

Let us consider a large system of many interacting entities, called active
particles grouped into n different functional subsystems. Each subsystem
consists of entities which collectively express the same strategy through a
scalar variable u ∈ Du ⊆ R+, called activity, with a possibly different mean-
ing in each functional subsystem. In the modeling approach under study
space and velocity variables have no relevant physical meaning. As a con-
sequence, such variables do not play any role in the interactions.
We assume that there are only interactions which modify the microscopic
state of the particles. Interactions involve three kinds of particles: candi-
date, test and field. The interaction rule is as follows: candidate particles can
acquire, in probability, the state of the test particles, after an interaction
with field particles; test particles instead, lose their state after interactions.

In the following we assume that the activity of individuals is hetero-
geneously distributed in each functional subsystem, with the overall state
described by the probability distributions:

(1) fi = fi(t, u) : [0, T ]× R+ → R+, i ∈ {1, ..., n} ,

which correspond to the test particles, representative of each subsystem.
Moreover, the fis in (1) are divided by the number of particles in each
subsystem, which is assumed to be constant. As a consequence, the fis
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are probability densities. There follows that, under suitable integrability
assumptions, fi(t, u)du denotes, for all t ≥ 0, the probability of finding an
active particle whose state is in the elementary volume [u, u + du] at time
t. Moreover for upfi ∈ L1(R+), p ∈ N, higher order moments corresponding
to the macroscopic description are to be computed as:

(2) Ep
i [fi](t) =

∫
R+

upfi(t, u)du,

where

(3) p = 0 ⇒ E0
i [fi](t) =

∫
R+

fi(t, u)du = 1, ∀ t ≥ 0, i ∈ {1, ..., n} .

The time evolution of fi is obtained as a balance equation between the
inlet-outlet flows in the elementary volume [u, u+du] of the space of the mi-
croscopic states. Such equation can be derived once the following quantities
are specified through a detailed modeling of the microscopic interactions:

• ηij = ηij [f ](u∗, u
∗) is the encounter rate between the candidate (or

test) active particle with state u∗ of the i-th functional subsystem
and the field active particle with state u∗ of the j-th functional
subsystem.
• Bij = Bij [f ](u∗ → u|u∗, u∗) is the probability density that a candi-

date particle with state u∗ of the i-th functional subsystem ends up
into the state u of the test particle in the same subsystem, after in-
teracting with the field particle, with state u∗, of the j-th functional
subsystem.

Both quantities ηij and Bij can be conditioned by the probability distri-
butions f = {f1, ..., fn} of the interacting pairs. As a consequence, due to
the influence of collective distributions, the resulting interactions are non-
linearly additive.

Remark 1. Bij satisfies for all i, j ∈ {1, ..., n}, the following condition:

(4)

∫
R+

Bij [f ](u∗ → u |u∗, u∗)du = 1, ∀u∗, u∗ ∈ R+, ∀f .

The balance of particles in the elementary volume of the microscopic states
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yields:

∂tfi(t, u) = Ji [f ] (t, u) =

=
n∑

j=1

∫
R+×R+

ηij [f ] (u∗, u
∗)Bij [f ] (u∗ → u | u∗, u∗)fi(t, u∗)fj(t, u∗)du∗du∗

− fi(t, u)

n∑
j=1

∫
R+

ηij [f ] (u, u∗)fj(t, u
∗)du∗.

(5)

The above equation (5) has been derived under the assumption that the
variable u is continuous over R+. Condition (1) therefore implies that the
densities fi decay rapidly to zero at infinity. On the other hand, it is also
useful in several applications to consider a discrete set for the values of the
activity variable. This is indeed the case of the learning dynamics, where
it is useful to consider a discrete variable u ∈ [0, 1] describing the different
levels of knowledge. In particular, u = 0 and u = 1 correspond to the lowest
and to the highest levels of knowledge, respectively.

Accordingly, let us introduce the set Iu = {u1 = 0, ..., ur, ..., um = 1} ,
such that discrete probability densities follow:

(6) fir = fi(t, u = ur) : [0, T ]→ R+, i ∈ {1, ..., n} , r = 1, ...,m

such that

(7)
m∑
r=1

fir(t) = 1, ∀t ≥ 0, i ∈ {1, ..., n} .

The interaction terms are defined as follows:

• ηhkij = ηij [f ] (uh, uk) is the encounter rate between the i-h candidate
(or test) particle, with state uh and the j-th field particle, with state
uk;
• Bhk

ij (r) = Bij [f ] (uh → ur | uh, uk) is the probability that an i-th
candidate particle, with state uh ends up into the state ur of the test
particle of the same functional subsystem, after interacting with the
j-th field particle with state uk.

Remark 2. Bhk
ij (r) satisfies for all i, j ∈ {1, ..., n} and for all h, k ∈

{1, ...,m} the following conditions:

(8) ηhkij ≥ 0, Bhk
ij (r) ≥ 0,

m∑
r=1

Bij [f ] (uh → ur | uh, uk) = 1, ∀ f .
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The evolution in the discrete case then follows as:

d

dt
fir(t) = Qir [f ] (t) =

=
n∑

j=1

m∑
h,k=1

ηij [f ] (uh, uk)Bij [f ] (uh → ur | uh, uk)fih(t)fjk(t)

− fir(t)
n∑

j=1

m∑
k=1

ηij [f ] (uh, uk)fjk(t) , i = 1, . . . , n; r = 1, . . . ,m ,(9)

where f denotes the set of all fir components of the probability density.

3. Qualitative analysis.

In view of the derivation of a specific two populations learning dynamic
model (see Section 4), in this section the initial value (I.V.) problem in the
discrete case is considered. It is shown that the solution of such I.V. prob-
lem exists and is a positive, regular function of time, of class C1 ([0, T ]).
We point out that global existence and uniqueness of the solution for the
I.V. problems belonging to the same class was reported in [15] for the con-
tinuous case.

In order to obtain the time evolution of the distribution functions fir(t),
i ∈ {1, ..., n}, we consider the I.V. problem for equation (9):

(10)

{
d

dt
fir(t) = Qir [f ] (t) ,

fir(0) = fi(0, ur) ,
i = 1, . . . , n; r = 1, . . . ,m .

We introduce the space:

(11) X =
{
fi : [0, T ]→ R , fi ∈ C1 ([0, T ]) , i = 1, ..., n; T > 0

}
equipped with the norm:

(12) ‖fi(t)‖X =
m∑
r=1

|fir(t)| .

Moreover, we introduce the space X = Xn equipped with the norm:

(13) ‖f(t)‖X =

n∑
i=1

‖fi(t)‖X ,

and set:

(14) X+ = {f ∈ X | fi ≥ 0, i = 1, ..., n} .
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The following theorem states a result of local existence and uniqueness for
the solution of the I.V. problem (10).

Theorem 1. Consider the I.V. problem (10) with
f0 = {f1(0, u), ..., fn(0, u)} ∈ X+. Assume that (8) holds, together with the
following hypotheses:

• the encounter rate ηhkij satisfies the following condition:

m∑
r=1

ηij [f ] (uh, uk) ≤ C,

∀ i, j = 1, ..., n, ∀h, k ∈ {1, ...,m} and ∀ f ∈ X with C positive
constant;

• ∀ f , g ∈ X the probability Bhk
ij and the encounter rate ηhkij are

Lipschitz continuous in X, that is, ∀h, k ∈ {1, ...,m} it results

n∑
i,j=1

m∑
r=1

|Bij [f ] (uh → ur | uh, uk) −Bij [g] (uh → ur | uh, uk)| ≤ L1 ‖f − g‖X ,

n∑
i,j=1

m∑
r=1

|ηij [f ] (uh, uk)− ηij [g] (uh, uk)| ≤ L2 ‖f − g‖X ,

with L1, L2 a positive constants.

Then, there exist T > 0 and a unique solution f(t) in X for the I.V. problem
(10) on the time interval [0, T ]. Moreover, f(t) ∈ X+, t ∈ [0, T ].

Proof. We start observing that if we formally sum the equations (10)1 on
r = 1, . . . ,m and use the condition (8), we get:

(15)
d

dt

m∑
r=1

fir(t) = 0 ,

that implies:

(16) ||f(t)||X = ||f(0)||X , for any t ≥ 0.

Therefore the solution of (10), if it exists, remains bounded in X for any
time t ≥ 0. The latter observation assures that the operator Qi [f ] (t) in
the right hand side of (10) is a closed map in X. Let us now prove that
Qi [f ] (t) is Lipschitz continuous in X, i.e. given ‖f‖X and ‖g‖X ≤ M , it
follows that:

(17) ‖Qi [f ] (t)−Qi [g] (t)‖X ≤ L ‖f − g‖X
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with L a positive constant depending on M . Indeed, when (9) is used to-
gether with (12) and (13), for the right hand side of (17) we can write:

n∑
i=1

m∑
r=1

∣∣∣∣∣∣
 n∑
j=1

m∑
h,k=1

ηij [f ] (uh, uk) Bij [f ] (uh → ur | uh, uk) fih(t)fjk(t)

−fir(t)

n∑
j=1

m∑
k=1

ηij [f ] (uh, uk) fjk(t)


−

 n∑
j=1

m∑
h,k=1

ηij [g] (uh, uk) Bij [g] (uh → ur | uh, uk) gih(t)gjk(t)

−gir(t)

n∑
j=1

m∑
k=1

ηij [g] (uh, uk) gjk(t)

∣∣∣∣∣∣ ≤
n∑

i=1

m∑
r=1


n∑

j=1

m∑
h,k=1

∣∣ηij [f ] (uh, uk) Bij [f ] (uh → ur | uh, uk)
[
fih(t)fjk(t)− gih(t)gjk(t)

]
+gih(t)gjk(t)

[
ηij [f ] (uh, uk)Bij [f ] (uh → ur | uh, uk)

− ηij [g] (uh, uk)Bij [g] (uh → ur | uh, uk)
]∣∣

+

n∑
j=1

m∑
k=1

∣∣ηij [f ] (uh, uk)
[
fir(t)fjk(t)− gir(t)gjk(t)

]
+gir(t)gjk(t)

[
ηij [f ] (uh, uk)− ηij [g] (uh, uk)

]∣∣} ≤
n∑

i=1

m∑
r=1

 n∑
j=1

m∑
h,k=1

∣∣ηij [f ] (uh, uk)Bij [f ] (uh → ur | uh, uk) fih(t)
[
fjk(t)− gjk(t)

]∣∣
+

n∑
j=1

m∑
h,k=1

∣∣ηij [f ] (uh, uk)Bij [f ] (uh → ur | uh, uk) gjk(t) [fih(t)− gih(t)]
∣∣

+

n∑
j=1

m∑
h,k=1

∣∣gih(t)gjk(t)ηij [f ] (uh, uk)
[
Bij [f ] (uh → ur | uh, uk)

−Bij [g] (uh → ur | uh, uk)
]∣∣

+

n∑
j=1

m∑
h,k=1

∣∣gih(t)gjk(t)Bij [g] (uh → ur | uh, uk)
[
ηij [f ] (uh, uk)

−ηij [g] (uh, uk)
]∣∣

+

n∑
j=1

m∑
k=1

∣∣ηij [f ] (uh, uk)fir(t)
[
fjk(t)− gjk(t)

]∣∣
+

n∑
j=1

m∑
k=1

∣∣ηij [f ] (uh, uk)gjk(t) [fir(t)− gir(t)]
∣∣

+

n∑
j=1

m∑
k=1

∣∣gir(t)gjk(t)
[
ηij [f ] (uh, uk)− ηij [g] (uh, uk)

]∣∣ ≤
2n2m2CM ‖f − g‖X +m2M2CL1 ‖f − g‖X +m2M2L2 ‖f − g‖X
+2n2mCM ‖f − g‖X +M2mL2 ‖f − g‖X ≤ L ‖f − g‖X ,

that proves (17). Then, the existence of a unique solution f(t) in X, local
in time, to (10) follows. Non negativity of such a solution is easily obtained
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observing that the components fir(t) of the solution satisfy the condition:

(18) fir(t) ≥ 0 ∀i = 1, ..., n e ∀r = 1, ...,m,

when f(0) ∈ X+. We set:

Ri(f, f)(t) =
n∑

j=1

m∑
h,k=1

ηij [f ] (uh, uk) ·Bij [f ] (uh → ur | uh, uk) fih(t)fjk(t),

Si(f)(t) =
n∑

j=1

m∑
k=1

ηij [f ] (uh, uk) .

Equation (9) can be rewritten as

(19)
d

dt
fir(t) + fir(t)S

i(f)(t) = Ri(f, f)(t).

Now we call

(20) λi(t) =

∫ t

0
Si(f)(t′)dt′.

If fir(t) is solution of (19), it then follows

(21)
d

dt
(exp (λi(t)) fir(t)) = exp (λi(t))R

i(f, f)(t)

which implies

(22) fir(t) = exp (−λi(t)) fir(0) +

∫ t

0

[
exp

(
λi(t

′)− λi(t)
)
Ri(f, f)(t′)

]
dt′.

The relation (22) allows us to conclude that, given f(0) ∈ X+ and the
positivity of the integral function, the function fir(t) satisfies the condition
of non-negativity (18) in its domain of existence. Moreover, when (18) is
used together with (16), we obtain that the solution to (10) is uniformly
bounded on any compact time interval [0, T ], T > 0. This latter observation
leads immediately to the following result of global existence of the solution
in X+.

Theorem 2. Consider the I.V. problem (10), under the assumptions of the
Theorem 1. Then, the solution f(t) exists for any finite time t ≥ 0.
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4. Modeling and simulations.

4.1. Modeling methods.

In order to model a collective learning dynamic, following [1], it is nec-
essary to introduce a distance between the probability densities. We first
consider the continuous case, where condition (2) allows to use the L1(R+)
space. The distance will therefore be given by the norm of the difference of
the two distributions:

(23) d (fi, fj) [f ] (t) =

∫
R+

|fi(t, u)− fj(t, u)| du, i, j ∈ {1, ..., n} .

Similarly, in the discrete case we get:

(24) d (fi, fj) [f ] (t) =

m∑
r=1

|fir(t)− fjr(t)|, i, j ∈ {1, ..., n} .

Let us now turn our attention to the modeling of the encounter rate. We
assume that such rate decays with the distance between the interacting
active particles. Accordingly, we write:

(25) ηij = η0ij e
−αij(1 + |u∗ − u∗|)(1 + d (fi, fj) [f ] (t))

where η0ij and αij are positive constants characterizing the specific system.
These quantities are defined respectively as basic interaction rate and decay
rate. Analogous considerations for the discrete case yield:

(26) ηhkij = η0ij e
−αij(1 + |uh − uk|)(1 + d (fi, fj) [f ] (t)).

In order to model the terms Bij , we assume that the result of the inter-
action is influenced not only by the states of the interacting particles but
also, at macroscopic level, by the collective action of all the other particles.

In the following we limit our analysis only to the low order moments
of the action of this particles. In particular, we consider the first order
moment:

(27) E1
i [fi](t) =

∫
R+

ufi(t, u)du.

When (27) is taken into account, the formal expression of the transition
probability density takes the form:

(28) Bij = Bij(u∗ → u | u∗, u∗,E1
i [fi](t),E1

j [fj ](t)), ∀u∗ ∈ Du
∗.

10
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Analogous considerations in the discrete case, yield:

(29) Bhk
ij (r) = Bij(uh → ur | uh, uk,E1

i [fi](t),E1
j [fj ](t)),

with

(30) E1
i [fi](t) =

m∑
r=1

urfir(t).

When the transition probability densities (28) and (29) are used in (5) and
(9) respectively, the detailed expression for the class of evolution equations
characterizing the model is obtained. In the continuous case the result is:

∂tfi(t, u) = Ji [f ] (t, u) =

=

n∑
j=1

η0ij

∫
R+×R+

e−αij(1 + |u∗ − u∗|)(1 + d (fi, fj) [f ] (t))

×Bij(u∗ → u | uh, uk,E1
i [fi](t),E1

j [fj ](t))fi(t, u∗)fj(t, u
∗)du∗du

∗

− fi(t, u)
n∑

j=1

η0ij

∫
R+

e−αij(1 + |u− u∗|)(1 + d (fi, fj) [f ] (t))fj(t, u
∗)du∗.

(31)

Similarly, in the discrete case we get:

d

dt
fir(t) = Qi [f ] (t) =

=
n∑

j=1

m∑
h,k=1

η0ije
−αij(1 + |uh − uk|)(1 + d (fi, fj) [f ] (t))

×Bhk
ij (uh → ur | uh, uk,E1

i [fi](t),E1
j [fj ](t))fih(t)fjk(t)

− fir(t)
n∑

j=1

m∑
k=1

η0ije
−αij(1 + |ur − uk|)(1 + d (fi, fj) [f ] (t))fjk(t).(32)

Remark 3. In the modeling approach developed above, the interactions
are nonlinearly additive. Indeed, the outcome of the interactions is not
simply given by the sum of the actions of the field particles on the candidate
(or test) particles. The result is in fact nonlinearly dependent not only on
the states of the interacting particles, but also on the states of all the
particles in the interaction domain.

11
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4.2. Two populations dynamics.

Let us now turn our attention to the discrete case, leaving the contin-
uum case as a future application. Namely, here we consider two popula-
tions learning dynamic model, characterized by two functional subsystems,
the first one collecting more evolved individuals autonomously progressing
toward an higher knowledge level, the second one made by less evolved
agents. These latter try to increase their own knowledge by taking advan-
tage of the interactions with individuals from the first subsystem. Then,
it is clear that the activity associated to each active particle has different
meaning according to which different subsystem the active particle belongs
to. For particles of the first subsystem, the activity represents the ability to
increase and develop the knowledge through the interactions with particles
of the same subsystem. In the second subsystem, instead, the activity is
intended as the ability of learning through the interactions with particles
of the more evolved subsystem.

The probability densities are defined as:

(33) f1r = f1(t, u = ur) : [0, T ]→ R+, r = 1, ...,m,

for the evolved subsystem, and

(34) f2r = f2(t, u = ur) : [0, T ]→ R+, r = 1, ...,m,

for the second subsystem.

In the case under study, the encounter rate is modeled as:

(35)

ηhk11 = η011 e
−α11(1 + |uh − uk|)

ηhk22 = η022 e
−α22(1 + |uh − uk|)

ηhk12 = η012 e
−α12(1 + |uh − uk|)(1 + d (f1, f2) (t))

ηhk21 = η021 e
−α21(1 + |uh − uk|)(1 + d (f1, f2) (t))

where η0ij and αij , i, j ∈ {1, 2}, are positive constants and h, k ∈ {1, ...,m}.
Moreover, we assume the following hypotheses:

(1) The knowledge level of the active particles in the first subsystem is
always higher than that of the particles in the second subsystem. As
a consequence, when the second subsystem interacts with the first
one there will never be a regression as a possible output.

(2) The output of the interactions could depend on the activity distance
of the two interacting particles in addition to the presence of an
effect caused by the influence of the mean value of each population.

12
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In the corrisponding evolution equations (32), the transition probability
densities Bhk

ij consist of a set of 4m matrices with dimension m×m. These
matrices will be called tables of the game and define the rules to be followed
by the pairs in each encounter. They are stochastic tables due to the fact
that the output is a discrete random variable. In the case under analysis,
the collective learning dynamics can be formalized in the following tables
of game.

Table of game for Bhk
11 (r) and Bhk

22 (r).

In order to create the table of game for Bhk
11 (r), we consider the term:

(36) Bh
1

(
E1
1[f1]

)
= ε1

∣∣E1
1[f1]− uh

∣∣
which is proportional to the distance between the activity of the interacting
particle h and the mean value E1

1[f1], with h = 1, ...,m and 0 < ε1 ≤ 1.

Then, omitting the dependence on E1
1[f1] of Bh

1

(
E1
1[f1]

)
and considering

0 < δ1 ≤ 1, interactions for i = j = 1 are modeled as follows:

uh < uk



uh ≥ E1
1[f1]


Bhk

11 (r = h− 1) = 0

Bhk
11 (r = h) = Bh

1

Bhk
11 (r = h+ 1) = 1−Bh

1

Bhk
11 (r 6= h− 1, h, h+ 1) = 0

uh < E1
1[f1]


Bhk

11 (r = h− 1) = 0

Bhk
11 (r = h) = 1− δ1 |uk − uh| −Bh

1

Bhk
11 (r = h+ 1) = δ1 |uk − uh|+Bh

1

Bhk
11 (r 6= h− 1, h, h+ 1) = 0

uh ≥ uk



uh ≥ E1
1[f1]


Bhk

11 (r = h− 1) = Bh
1

Bhk
11 (r = h) = 1−Bh

1

Bhk
11 (r = h+ 1) = 0

Bhk
11 (r 6= h− 1, h, h+ 1) = 0

uh < E1
1[f1]


Bhk

11 (r = h− 1) = 1− δ1 |uk − uh| −Bh
1

Bhk
11 (r = h) = δ1 |uk − uh|+Bh

1

Bhk
11 (r = h+ 1) = 0

Bhk
11 (r 6= h− 1, h, h+ 1) = 0

This table is described in terms of the effect due to the distance between uk
and uh plus that due to the distance with respect to the mean value. The
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mean value of the population has a dragging effect on the activity of the
particle h. This means that, for example, when uh ≥ E1

1[f1] the effect of the
mean value, represented by Bh

1 , tries to oppose the growth of the particle
h or tries to take it back one level. Moreover, a phenomenon of regression
appears when the particle h interacts with a particle k with a lower level
of knowledge.

The table of game for Bhk
22 (r) is constructed in a similar way to the

table for Bhk
11 (r), so we do not write it. Because it refers to the second

population, let’s consider in this case the constant 0 < δ2 ≤ 1 instead of δ1
and the term

(39) Bh
2

(
E1
2[f2]

)
= ε2

∣∣E1
2[f2]− uh

∣∣
with h = 1, ...,m and 0 < ε2 ≤ 1, instead of Bh

1

(
E1
1[f1]

)
.

Table of game for Bhk
12 (r) and Bhk

21 (r).

To create the table of game for Bhk
12 (r), we note that, due to assumption

(1), the only possibility is uh > uk ∀h, k = 1, ...,m (with no dependence
on the position of uh with respect to the mean value E1

1[f1]). Such interac-
tions will never modify the state uh of the particle h belonging to the first
subsystem, so that the table of game in this case will be described trivially
as follows.

i = 1, j = 2


Bhk

12 (r = h− 1) = 0

Bhk
12 (r = h) = 1

Bhk
12 (r = h+ 1) = 0

Bhk
12 (r 6= h− 1, h, h+ 1) = 0

The table for Bhk
21 (r) models the transition probability densities when a

particle of the second subsystem interacts with a particle of the first sub-
system. Then, still for hypothesis (1), here there is only the possibility
uh < uk ∀h, k = 1, ...,m. We therefore have the following cases for i = 2
and j = 1 in which we consider both the positions of uh and uk with respect

14
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to their own mean value.

uh ≥ E1
2[f2]



h 6= m



uk ≥ E1
1[f1]


Bhk

21 (r = h− 1) = 0

Bhk
21 (r = h) = 0

Bhk
21 (r = h+ 1) = 1

Bhk
21 (r 6= h− 1, h, h+ 1) = 0

uk < E1
1[f1]


Bhk

21 (r = h− 1) = 0

Bhk
21 (r = h) = Bh

2

Bhk
21 (r = h+ 1) = 1−Bh

2

Bhk
21 (r 6= h− 1, h, h+ 1) = 0

h = m


Bmk

21 (r = m− 1) = 0

Bmk
21 (r = m) = 1

Bmk
21 (r = m+ 1) = 0

Bmk
21 (r 6= m− 1,m,m+ 1) = 0

uh < E1
2[f2]



uk ≥ E1
1[f1]


Bhk

21 (r = h− 1) = 0

Bhk
21 (r = h) = 1−Bh

2

Bhk
21 (r = h+ 1) = Bh

2

Bhk
21 (r 6= h− 1, h, h+ 1) = 0

uk < E1
1[f1]


Bhk

21 (r = h− 1) = 0

Bhk
21 (r = h) = 1−Bh

2 ·Bh
1

Bhk
21 (r = h+ 1) = Bh

2 ·Bh
1

Bhk
21 (r 6= h− 1, h, h+ 1) = 0

If uh ≥ E1
2[f2], when the particle h interacts with a particle k (belonging to

the first subsystem) which is above the mean value E1
1[f1], the activity of h

certainly improves its level of one. Otherwise, if the activity of k is under
the mean value of the evolved subsystem, the particle h tends to improve
its level of activity but it is opposed by the effect of the mean value E1

2[f2].
In the case h = m, the table of game shows no transitions due to the con-
servative character of the subsystem.

When uh < E1
2[f2], the particle h is encouraged to improve its level by

the driving effects of the two mean values, according to the position of the
activity of k.
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4.3. Simulations.

In this subsection we show the results of numerical simulations. We set
some specific parameters which will not be the subject of the sensitivity
analysis: ε1 = ε2 = δ1 = δ2 = 1

2 , η011 = 3
4 , η022 = 3

4 , η012 = 1
2 , η021 = 1

2 ,
α11 = 1

2 , α22 = 1
2 , α12 = 1, α21 = 1. Modifying these parameters, the qual-

itative behavior of the simulations does not change. We fix m = 7, i.e. for
each subsystem we consider seven different levels for the variable u which
represent the activity of the interacting particles. Then, fixed an initial
point t = 0 we observe numerically the time evolution of the two proba-
bility distribution f1(t, u1, ..., u7) and f2(t, u1, ..., u7) until their asymptotic
configuration.

The aim of our simulations is to test the influence of different initial
configurations, which correspond to different distributions of the active par-
ticles on the levels of knowledge, on the learning trends exhibited by the
two subsystems. In the following figures, we represent the first subsystem
(f1) in black and the second (f2) in white. The results reported in Fig-
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(a) Initial configuration.
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(b) Asymptotic configuration.

Figure 1. Uniform initial distribution for both f1 and f2.

ures 1 and 2 show that the final configurations of two subsystems are not
modified when the initial configuration is changed from uniform to normal
distribution.

As we see from the following Figures 3-8, the second subsystem always
shows the same qualitative behavior, as in Figures 1 and 2, reaching the
same final configuration. The outcome of the numerical simulations clearly
indicate the different “learning strategy” characterizing the individuals of
the two subsystems. Indeed, individuals belonging to the first group cannot
take any advantage from the interactions with individuals of the second
one. They can increase their level of knowledge only through interactions

16
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(b) Asymptotic configuration.

Figure 2. Normal initial distribution for both f1 and f2.
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(b) Asymptotic configuration.

Figure 3. Initial distribution only on the first four levels for f1 and normal for f2.
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(b) Asymptotic configuration.

Figure 4. Initial distribution only on the last four levels for f1 and normal for f2.
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(b) Asymptotic configuration.

Figure 5. Initial distribution on the first level for f1 and normal for f2.
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(b) Asymptotic configuration.

Figure 6. Initial distribution on the first level for f1 and f2.
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(b) Asymptotic configuration.

Figure 7. Initial distribution on the last two levels for f1 and uniform for f2.

with individuals belonging to the same group. Therefore the asymptotic
configuration of the first subsystem only depends on its initial distribution
of knowledge. In other words, the first subsystem evolves only through in-
ternal interactions, while the interactions with the second subsystem have
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(b) Asymptotic configuration.

Figure 8. Initial distribution on two levels for f1 and uniform for f2.

no effects. In this case we obtain several final configurations that depend
on the different initial conditions.

Individuals of the second subsystem instead, always tend to increase
their level of knowledge, since they can develop a strategy of learning
through the interactions with the more evolved individuals of the first sub-
system. Looking at the above result we can conclude that they always take
advantage of such interactions, reaching the same final configuration of
knowledge, independently from the initial conditions of both the subsys-
tems.

5. Perspectives.

The model of learning treated in this paper is based on the hallmarks of
the kinetic theory of active particles described in Section 1. In particular,
the learning ability of the active particles induces modifications of the activ-
ity distributions by nonlinear interactions. Moreover, the modeling involves
different representation scales. Active particles are the minimal entities of
the system; they therefore define the microscopic scale. On the other hand,
interactions involving active particles produce collective behaviors which
are observables at the macroscopic scale.

Focusing on future developments, the modeling approach can be gener-
alized by a representation in networks, namely, active particles occupy var-
ious nodes and communicate over the network. Its topology [13,14] would
in this case influence the frequency of the interactions and therefore the
dynamics of the system.
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