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1 DINFO, Università degli Studi di Firenze, Italy,
{paola.cappanera,marco.roma}@unifi.it
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Abstract. Chronic patients suffering from non-communicable diseases are often
enrolled into a diagnostic and therapeutic care program featuring a personalized
care plan. Healthcare is mostly provided at the patient’s home, but those exami-
nations and treatments that must be delivered at the hospital have to be explicitly
booked. Booking is not trivial due to, on the one hand, the several time constraints
which become particularly tight in the case of comorbidity, on the other hand, the
limited availability of both staff and equipment at the hospital care units. This sug-
gests that the scheduling of the clinical pathways for enrolled outpatients should
be managed in a centralized manner, taking advantage of the fact that demand
for services is known well in advance. The aim is to serve as many requests as
possible (unattended requests are supplied by contracted private health facilities)
in a timely manner, taking patients priority into account. Booking involves setting
a date and a time for each selected health service, which is rather complex. In
this work, we provide a declarative approach by encoding the problem in Answer
Set Programming (ASP). In order to improve the scalability of the ASP approach,
we present and compare two heuristic approaches, respectively based on service
demand and time decomposition. All approaches are tested on instances of in-
creasing size to assess scalability with respect to time horizon and number of
requests.

Keywords: clinical pathways; outpatient appointment scheduling; Answer Set
Programming; decomposition approaches

1 Introduction

Increasing life expectancy in most of the countries world wide comes at the price of
an ever increasing share of the elderly population. A large percentage of these peo-
ple suffers from so-called Non-communicable Chronic Diseases (NCDs), such as
diabetes, hypertension, cirrhosis, obesity, just to mention a few of them. For most
NCDs, medical guidelines, built along standardized protocols and evidence-based
medicine, are nowadays well-assessed. Beside drug therapies, such guidelines in-
volve health services such as treatments and medical examinations to be repeated

∗This work was partially supported by GNCS-INdAM.
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on a regular basis. Once enrolled in a diagnostic and therapeutic care program, an
NCD patient is assigned a personalized care plan, known as Clinical Pathway (CP
in the following). A CP merges the medical guidelines regarding diagnosed NCDs
and customizes them to the specific patient features [1]. As NCDs are chronic dis-
eases, patients are expected to abide by their individual care plan for their entire
life. Therefore, besides periodic reassessments, the health services included in a
given CP are known a priori over a long time horizon, which allows for well in
advance planning.
Less critical NCD patients live at home and are attended at their own domicile.
Indeed, permanent hospitalization is postponed as long as possible to improve
lifestyle quality and for the sake of budget containment. Nevertheless, such patients
have to access hospital premises on a regular basis as outpatients in order to comply
with their CPs and receive at the hospital those health services which cannot be
delivered at home - think of dialysis for patients with renal failure. To add to this
complexity, elderly patients often suffer from comorbidities, i.e., a same patient
is subject to more than one NCD, which leads to more complex CPs and more
frequent trips to the hospital. Care effectiveness relies on delivering assistance in a
timely manner, according to each specific CP. Therefore the appointment schedule
should strictly abide by the CP timetable.
Scheduling such CPs means to i) assign a date and ii) set a starting time for
each health service a patient must receive at the hospital, that is i) build the
master plan and ii) set the daily agenda for each day of the planning horizon.
Such process can be quite challenging when limited resources do not allow to
satisfy all requests (residual ones are outsourced to private health clinics). On the
one hand, request selection should prioritize the most critical patients, such as
minimizing the number of residual requests of highest priority as first, and so on.
On the other hand, regarding selected services, schedule feasibility can be quite
challenging as it requires to deal with several features: ensure regular frequency
of periodic services, ensure that interfering services are not too close in time,
ensure that when a service can be delivered only provided that another one is
also delivered in a given time window, this requirement is satisfied. Patients, in
particular if elder and fragile, are not able to take care of such complexity by
themselves. Because of that, in Italy, following the guidelines given by the Euro-
pean Community https://www.euro.who.int/__data/assets/pdf_file/
0004/53860/E92341.pdf the Family Health Nurse role has been recently in-
troduced to act as the case manager, i.e., someone who is in charge of (beside
other duties) scheduling an appointment for each health service included in the
CP at each upcoming period (see https://www.uslnordovest.toscana.it/
attachments/article/7380/Progetto%20IFC%20Dipartimento%20Inf.%20co%

20Asl%20TNO_all._Delibera.pdf). However, at present, the Family Health
Nurse interacts with the booking systems of the different care units one at a time,
when booking one service at a time, trying to cope with the complexity of the
time requirements in a trial and error strategy. Indeed, Family Health Nurses op-
erate in a greedy manner, in the sense that they book the appointments one after
the other at the different care units, unaware of the requests of other patients.
Since the availability of resources at hospital care units - both in terms of staff
and equipment - is limited, patients compete for access, and fairness (intended as
giving top priority to the most critical patients) may not be ensured. This situation
has been further exacerbated by the recent pandemic situation. Thus, appointment
scheduling is a very critical and time consuming task for the Family Health Nurse,
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putting at stake the timely delivery of care [10]. Indeed, coordination is crucial.
Consider for example, a patient 𝑝1 booking a service on day 𝑑 and saturating the
service capacity for that day. Then, another patient, say 𝑝2, with higher priority
than 𝑝1, asks for service. If 𝑑 is the only possible date for 𝑝2, 𝑝2 will fail to
book an appointment, while other dates could have been likely possible for 𝑝1.
Therefore, (i) coordination and (ii) patient prioritization are essential in building
feasible schedules when available resources do not allow to serve every request.

We argue that a centralized management of the CPs of all the enrolled patients
would allow to i) optimize resource availability, ii) account for fairness by po-
tentially considering patient priority, iii) ensure timely delivery of the care plans,
iv) exploit the potential advantages of synchronized activities, and v) help the
National Health System (NHS) save money by limiting the involvement of con-
tracted private suppliers that come into play whenever the public system is not
able to meet the requests on time. This yields a very challenging problem that
will be called the Non-communicable Chronic Diseases Agenda problem (NCD
Agenda). Despite of a rich literature on outpatient multi appointment scheduling
- see [9] for a recent review - to our knowledge this particular problem has never
been addressed.

This work aims at providing an automated tool to solve the NCD Agenda, thus
releasing Family Health Nurses from this task, so that i) scarce resources are
optimized and fairly managed, ii) clinical pathways are timely implemented, iii)
as many requests as possible are satisfied by the NHS, prioritizing patient requests
according to the patient status.

This paper is an extended version of [3], which is here expanded in several di-
rections as summarized hereafter. Recall that in [3] only the master plan was
addressed, that is the problem of assigning a day to as many requests as possible.
In that problem, neither a start time nor an operator is assigned to each scheduled
service. As a first contribution, this paper addresses the whole problem by provid-
ing an Answer Set Programming (ASP) approach for the daily agenda problem.
Second, in order to improve the scalability of the ASP approach, we propose two
ways of decomposing the problem, named Time Granularity Based and Patient
Priority Based decomposition, respectively. Each decomposition could be thought
of as a greedy heuristic where each step is an invocation of the ASP solver, in a
sense similar to [16]. Thanks to decomposition, we are able to solve large size
instances and, as a further plus, the Time Granularity Based approach may yield
an upper bound that helps to evaluate the quality of the heuristic solutions.

All approaches are compared based on the results of an extensive experimental
campaign, ranging from small to large instances.

The paper is organized as follows: Fundamentals of ASP are recalled in Section 2.
Section 3 briefly reviews ASP based approaches devoted to optimization problems
in the healthcare domain in order to shortly summarize the state of the art and
highlight the paper novelties. Section 4 provides an abstract description of the
NCD Agenda problem, introducing the decisions, the objective function, and the
constraints specific to this problem in a general way. An ASP formalization for the
abstract problem is presented in Section 5, while Section 6 presents the decom-
position based solution approaches. Finally, computational results are discussed
in Section 7 while conclusions are drawn in Section 8, where on going works are
also sketched.
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2 Preliminaries

Logic programming is one of the four programming paradigms [8]; a logic pro-
gram consists of a set of clauses, in the form of implications 𝐻𝑒𝑎𝑑 ← 𝐵𝑜𝑑𝑦,
where 𝐻𝑒𝑎𝑑 is an atom (or a disjunction) and 𝐵𝑜𝑑𝑦 is a conjunction of literals
(atoms, possibly negated). Atoms can have parameters that can be variables or
constants. An atom (or a clause) is ground if it does not contain variables. A
Declarative Semantics provides a formal meaning to a logic program by assigning
a truth value to each ground atom in such a way to satisfy all the clauses. ASP is a
logic programming language relying on the Stable Models semantics [5]; a logic
program can have zero, one, or more than one stable models. In ASP, each solution
to a combinatorial problem is associated with a stable model. There exist several
solvers, based on different technologies; however, the best-performing ones are
based on a two-phase solution scheme: a grounding phase, that generates a ground
program equivalent to the original one, followed by a solving phase, in which a
stable model of the ground program is computed. The ground program can be
built by substituting to the variables in each clause all the possible constants ap-
pearing in the program (although modern grounders may avoid generating useless
clauses), and, in the worst case, it is exponentially larger than the original one.
One of the best ASP solvers is Clasp [4], which finds stable models by using tech-
nologies developed in SAT solvers such as conflict graphs, conflict-directed clause
learning, and restarts. These technologies are very efficient in proving satisfiabil-
ity/unsatisfiability of a problem; optimization problems are usually transformed
into a sequence of satisfiability problems. ASP solvers can solve problems up to
Σ𝑃

2 . As a rule of thumb, to get an efficient solving algorithm one should produce
programs whose grounding is not too large; for example, if some parameter of an
atom can take a large variety of different values, the ground program can be very
large.
Beside the basic syntax for clauses, recent ASP solvers accept several extensions
[2]. A clause of the format 𝐿 ≤ {𝐻𝑒𝑎𝑑} ≤ 𝑈 ← 𝐵𝑜𝑑𝑦 states that, in case the
𝐵𝑜𝑑𝑦 is true, then the solver can choose the truth value of the atom in 𝐻𝑒𝑎𝑑; this
is the usual syntax for defining decision variables in optimization problems. The
bounds 𝐿 and 𝑈 are optional; if they are present, then the number of true atoms
matching with 𝐻𝑒𝑎𝑑 in the stable model must be between 𝐿 and 𝑈. If a clause is
without head,← 𝐵𝑜𝑑𝑦, then the head is intended as the literal false, it is called
an Integrity Constraint (IC) and in all stable models the 𝐵𝑜𝑑𝑦 must be false.

3 Related papers

In the last few years, several decision problems in the health care domain have been
tackled by means of ASP based approaches. A short review covering the latest on
this topic can be found in [15]. In the following, the most notable contributions
are recalled, emphasizing decomposition when present.
The study in [16] deals with scheduling outpatients due to take pre-operative
exams before surgery. The problem is decomposed into two steps: First, high level
scheduling decisions are taken, i.e., exam areas are staffed and patients are given
an appointment day. Second, exams starting times are set, complying with first
level decisions, so that served patients are maximized and waiting time minimized.
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Since the two phases are solved in pipe, in a greedy way, demand is over estimated
in phase one to ensure feasibility in phase two.
The study in [7] schedules multi appointments for rheumatic outpatients at a
Hospital Day Service where multidisciplinary diagnostic tests and therapies are
delivered. The problem is encoded into ASP. To face large computing times,
patients are partitioned into three classes with decreasing priority, and the problem
is solved three times, starting from the highest priority class. Residual capacity is
updated at the end of each iteration.
In [13] the nurse (re)scheduling problem is addressed. Nurse scheduling consists
of determining a shift assignment for each nurse for a given planning horizon
such that working hours, shift mix, and rest days comply with hospital rules.
Rescheduling is due in case of nurse temporary absences, and consists of feasibly
scheduling vacant duties, while minimizing deviations between the new and the
original schedule. This work improves on the representation of hospital and work
balance constraints presented by [14]. In particular, the new encoding avoids
parameters combinations that do not lead to feasible schedules.
Appointment scheduling for patients in need for chemotherapy treatments ([19])
must deal with the availability of special equipment, either a chair or a bed,
that are assigned to a patient for the whole session. Patients have a preference
for one of the two. A treatment encompasses up to 4 subsequent steps, some of
which are optional, whose duration is patient dependant and known. In case of
multiple treatments, a treatment frequency is given. While resource assignment
is a bottleneck, evenly spreading patients requiring blood collection is a target.
The weekly problem is solved, as well as the rescheduling one. The ASP program
is further generalized to include patient priority and staff and drugs availability.
Results show an improvement with respect to real schedules.
Rehabilitation sessions for inpatients are scheduled in [18]. There, two types of
resources are present: gyms, whose access is restricted to patients on the same
floor and have a given capacity, and operators, who can supervise a maximum
number of patients at the same time. Solution quality criteria and constraints
include: on the patient side, continuity of care and preferred time slots; on the
operator side workload balancing and abiding by the working rules. The daily
problem is decomposed into two subsequent decision phases, namely the board
and the agenda, which are solved in pipe: to build the board, patients are assigned
to operators with an eye to care continuity and by keeping the cumulative working
time below the limits; to fill the agenda according to the board, a starting and
ending time is set for each session, considering gym capacity, with an eye to slot
preferences. There is no guarantee that a feasible agenda exists which is board-
compatible and complies with the rules. Therefore, some rules are overridden,
i.e., potential overlapping are admitted: some sessions are partially turned from
one-to-one care to supervision (one operator supervises a few patients at a time).
Experiments run on real and realistic data assess efficacy and efficiency of the
approach.
Finally, ASP has been proved effective in tackling a very challenging problem in
health care management: the (re)scheduling of operating rooms. Difficulties arise
since it is deeply intertwined with the management of staff and resources. Indeed,
a planned surgery requires a free bed at the specialty ward or at intensive care
units, starting from surgery date for the predicted length of stay ([20]), and a bed
at the post anaesthetic care unit for temporary post-surgery staying ([17]). Since a
surgical team is made of surgeons, anesthesiologists, and nurses, the whole surgery
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slot must be fully contained into the current working shift of each team member.
Based on its specialty, priority, special needs, and expected duration, a request
is assigned a day and a time during the operating rooms time blocks reserved to
its specialty. The proposed ASP encoding proved able to tackle realistic instances
and to scale well with time.
In conclusion, we observe, as a general statement, that ASP proved able to cap-
ture and easily represent the complex features of several challenging scheduling
problems arising in the health care domain. Decomposition schemes are often
implemented, motivated by the need for solving large instances in a reasonable
time. Usually, such decomposition patterns consist of splitting the decision set
into several subsets according to different strategies, either hierarchical (with an
increasing detail level) or based on the value of some attributes of the input;
then, the resulting sub-problems are solved in pipe. Thus, not only optimality is
not guaranteed, but in some cases even feasibility may not be ensured without
resorting to heuristic patches.
This paper builds upon [3] and extends it in several ways. In that paper, the problem
was introduced for the first time and the focus was on scheduling the master plan.
Here, we address the whole problem and discuss different decomposition schemes
to face the computational burden that arises when solving realistic instances.

4 The NCDs Agenda problem

Let us formally introduce the problem components, i.e., the decisions to be taken,
the objective function that measures the quality of a solution, and the constraints
that define the conditions under which a schedule is feasible. These constraints
range from those concerning individual patients up to those affecting different
patients who share the same care unit on the same day.
Table 1 summarizes the formal notation. Consider a planning horizon (i.e., a set
of days) denoted as 𝐻𝑜𝑟𝑖𝑧𝑜𝑛. Each pathway 𝑐𝑝(𝑝) consists of a set of packets
Π𝑝 , where a packet 𝜋 ∈ Π𝑝 is made of a set of services 𝑆(𝜋). In the following,
𝑠 ∈ 𝑆(𝜋) will be written as 𝑠 ∈ 𝜋 to simplify the notation. Each 𝑠 ∈ 𝜋 has a given
duration 𝑑𝑢𝑟𝑠 and can be delivered by any operator of a given care unit 𝑐𝑢(𝑠).
All 𝑠 ∈ 𝜋 must either be all delivered on the same date or rejected. In the second
case we speak of residual packets and residual services. Ideally, the delivery date
of packet 𝜋 is 𝑑∗ (𝜋) ∈ 𝐻𝑜𝑟𝑖𝑧𝑜𝑛, with a tolerance of ±𝜌(𝜋) days.A schedule is
described in terms of i) delivered packets Π∗ =

⋃
𝑑 Π(𝑆𝑃(𝑑)) and residual ones

Π; ii) for each delivered packet 𝜋, the delivery date, denoted as 𝜏(𝜋) (as the one
of all services in that packet); iii) the starting time of each delivered service 𝑠,
denoted as 𝑡 (𝑠), and iv) the operator who will deliver each scheduled service 𝑠,
denoted as 𝑂𝑝(𝑠). At the end of the solution process, Π = Π∗ ∪ Π .

4.1 A patient’s pathway feasibility

The schedule of a pathway must comply with three types of time-constraints, i.e.,
Frequency, Interdiction, and Necessity, called FIN constraints in the following.
Frequency ensures the timely delivery of care and it is satisfied once the date of 𝜋
belongs to [𝑑∗ (𝜋) − 𝜌(𝜋), 𝑑∗ (𝜋) + 𝜌(𝜋)].
Regarding interdiction and necessity, consider two health services 𝑠𝑖 , 𝑠 𝑗 in differ-
ent packets of the same pathway. The following constraints may be given:
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Table 1: Mathematical notation
Symbol Description
Input data
𝐻𝑜𝑟𝑖𝑧𝑜𝑛 = {1, .., 𝑛𝐻 } A planning horizon, i.e., a set of days.
𝑆 = {𝑠1, 𝑠2, . . . } A set of health services.
𝑃 = {𝑝1, 𝑝2, . . . } A set of patients.
𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑝) Priority of patient 𝑝.
𝑃I, 𝑃II, 𝑃III Patient sets with decreasing priority.
𝑐𝑝(𝑝) The clinical pathway of patient 𝑝.
Π𝑝 The set of packets in 𝑐𝑝(𝑝).
Π =

⋃
𝑝 Π𝑝 The set of packets.

𝜋 = ⟨𝑆(𝜋), 𝑑∗ (𝜋), 𝜌(𝜋)⟩ A packet, defined as a triplet.
𝑆(𝜋) ⊆ 𝑆 The services of packet 𝜋, to be delivered

on the same day even if at different care units.
𝑑∗ (𝜋) Ideal delivery date of 𝜋.
𝜌(𝜋) Tolerance with respect to the ideal delivery date.
𝑑𝑢𝑟𝑠 Duration of service 𝑠.
𝑐𝑢(𝑠) The care unit entitled to deliver service 𝑠.
ShiftStart𝑑 (𝑜) Starting time of the working shift

of operator 𝑜 on day 𝑑.
ShiftDur𝑑 (𝑜) duration of the shift of operator 𝑜 on day 𝑑.
𝑆ℎ𝑖 𝑓 𝑡𝑑 (𝑜) the working shift of operator 𝑜 on day 𝑑[

ShiftStart𝑑 (𝑜), ShiftStart𝑑 (𝑜) + ShiftDur𝑑 (𝑜)
]

𝑂 (𝑐𝑢) Operators at the same care unit 𝑐𝑢.
𝐶𝑈 = {𝑐𝑢1, 𝑐𝑢2, . . . } A set of care units.
Decision variables
𝜏(𝜋), 𝜏(𝑠) Date of packet 𝜋, date of service 𝑠.
𝑡 (𝑠) Starting time of service 𝑠.
𝑂𝑝(𝑠) Operator delivering service 𝑠.
Π(𝑀𝑃) Set of packets selected in the master plan.
Π(𝑆𝑃(𝑑)) Packet set scheduled in the agenda of day 𝑑.
Π∗ Set of delivered packets in a solution.
Π Set of residual packets. In particular, Π(𝑀𝑃) denotes

those discarded by the master problem and Π(𝑆𝑃(𝑑))
those discarded by 𝑆𝑃(𝑑).
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Forward (Backward) Interdiction:
𝜏(𝑠𝑖) = 𝑑 ⇒ 𝜏(𝑠 𝑗 ) ∉ [𝑑, .., 𝑑 + 𝛿] ([𝑑 − 𝛿, .., 𝑑]).
Forward (Backward) Necessity:
𝜏(𝑠𝑖) = 𝑑 ⇒ 𝜏(𝑠 𝑗 ) ∈ [𝑑 + 𝛿 + 1, .., 𝑑 + 𝛿 + Δ] ([𝑑 − 𝛿 − Δ, .., 𝑑 − 𝛿 − 1]).
Note that interdiction constraints are satisfied even if 𝑠 𝑗 is never scheduled, while
necessity constraints require 𝑠 𝑗 to be given a date that must be next but not too
close to the date of 𝑠𝑖 . Examples regarding interdiction include the case of one
service affecting the results or the effectiveness of another service when too close
in time, i.e., at least 𝛿 days must elapse between the two dates. Necessity typically
concerns the timing of a primary activity and a secondary one which is functional
to the first one only if sufficiently but not too close in time.
Any time constraint set on 𝜏(𝑠) propagates on all the other services in the same
packet. Therefore, the available options for feasible dates may become rather
limited, despite of tolerance. For a given staffing level, an incremental booking
process - which to our knowledge is common practice in most cases - may fail
to find time-feasible dates with enough residual capacity to accommodate all
requests, since previous booking has been done without knowledge of incoming
demand.
The FIN constraints so far presented concern the schedule of individual pathways,
with no interaction among patients, and characterize the master plan. The set of
packets selected in the master plan, i.e., all 𝜋 s.t. 𝜏(𝜋) = 𝑑, 𝑑 ∈ 𝐻𝑜𝑟𝑖𝑧𝑜𝑛 will be
denoted by Π(𝑀𝑃). However, patients who receive service from the same care
unit on the same day compete for operators’ time and other limited resources. At
this stage of the project, operators in the same unit 𝑐𝑢, 𝑂 (𝑐𝑢), have identical skills
but potentially different shifts, which may also vary on a daily basis, denoted as[
ShiftStart𝑑 (𝑜), ShiftStart𝑑 (𝑜) + ShiftDur𝑑 (𝑜)

]
. Therefore additional constraints

are also necessary to ensure feasibility, as discussed hereafter.

4.2 The daily agenda problem

For each day 𝑑, the daily agenda sub-problem 𝑆𝑃(𝑑) receives from the master
plan the list of packets that the master problem has scheduled on day 𝑑, formally
the set {𝜋 ∈ Π(𝑀𝑃) s. t. 𝜏(𝜋) = 𝑑}. Each sub-problem 𝑆𝑃(𝑑) consists of
computing a feasible schedule for as many such packets as possible. In detail,
select the maximum number of packets (according to patients priority) such that
for each of their services 𝑠 it is possible to set a starting time 𝑡 (𝑠) and an operator
𝑂𝑝(𝑠) so that: i) a patient does not receive more than one service at a time; ii)
operator 𝑂𝑝(𝑠) will serve at most one patient at a time, and iii) operator 𝑜 can
deliver each service that has been assigned to him/her (namely, the set of services
{𝑠 : 𝑂𝑝(𝑠) = 𝑜}) without preemption and within her/his working shift defined as[
ShiftStart𝑑 (𝑜), ShiftStart𝑑 (𝑜) + ShiftDur𝑑 (𝑜)

]
.

In particular, given two different service 𝑠𝑖 and 𝑠 𝑗 , with 𝑖 ≠ 𝑗 ,
i) requires that either 𝑡 (𝑠𝑖) + 𝑑𝑢𝑟𝑠𝑖 ≤ 𝑡 (𝑠 𝑗 ) or 𝑡 (𝑠 𝑗 ) + 𝑑𝑢𝑟𝑠 𝑗 ≤ 𝑡 (𝑠𝑖) whenever
both 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑐𝑝(𝑝) (that is, whenever the two services belong to the pathway
of the same patient, the time intervals in which the services are delivered do not
overlap);
ii) requires that the same non overlapping condition holds when𝑂𝑝(𝑠𝑖) = 𝑂𝑝(𝑠 𝑗 )
(the two services 𝑠𝑖 and 𝑠 𝑗 are delivered by the same operator);
iii) means that ShiftStart𝑑 (𝑂𝑝(𝑠𝑖)) ≤ 𝑡 (𝑠𝑖), that is, any service must start not
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earlier than the beginning of the shift, and 𝑡 (𝑠𝑖) + 𝑑𝑢𝑟𝑠𝑖 ≤ ShiftStart𝑑 (𝑂𝑝(𝑠𝑖)) +
ShiftDur𝑑 (𝑂𝑝(𝑠𝑖)) stating that any service must end no later than the end of the
shift.
We refer to these constraints as the daily agenda constraints.

4.3 A minimization problem

Patients are classified according to their health conditions and a priority is given
accordingly, yielding 𝑁 classes of patients, being the first class the highest priority
one, namely 𝑃I, 𝑃II, · · · , 𝑃N. The aim is to serve as many requests as possible
according to priority. A hierarchical objective function based on patients priority
is then proposed. This means that, for each 𝑝 ∈ 𝑃I and each 𝜋 ∈ 𝑐𝑝(𝑝), either
schedule 𝜋 (and set the values of 𝜏(𝜋), 𝑡 (𝑠) and 𝑂𝑝(𝑠)) or discard it, so that the
number of residual packets of highest priority patients is minimized. Then, and in
case of ties, the number of residual packets of patients in 𝑃II is minimized, and
so on, until the least priority class is processed.
Summing up, given the clinical pathways of all patients in 𝑃 and the resource
availability for the current planning horizon described in terms of the working time
windows of the operators of each care unit, the NCDs Agenda problem consists
of taking decisions at three levels: 1) for each 𝑝 ∈ 𝑃 and each 𝜋 ∈ 𝑐𝑝(𝑝), either
select 𝜋 or discard it, in order to minimize the hierarchical objective function;
2) for all selected 𝜋 assign a date 𝜏(𝑠) to each 𝑠 ∈ 𝜋 so that FIN constraints are
satisfied; 3) for all 𝑑, and for all 𝑠 such that 𝜏(𝑠) = 𝑑 set a time 𝑡 (𝑠) so that the
daily agenda constraints are satisfied.

5 An ASP approach

The ASP formulation takes as input the description of the instance by means
of a set of predicates. Predicate patient(P,Pri) is true for each patient P
with priority Pri; his/her packets are listed with facts packet(P,Pkt). Predicate
service in packet(S,Pck) indicates that service S belongs to packet Pck. The
set of services is provided by predicate srvType(S,CU,Dur) where S identifies
the service, CU is the resource type (e.g., the care unit) and Dur the service
duration. Predicate tot capacity(D,CU,TotDur) provides the total duration of
available service in the care unit CU in day D. An interdiction of D days between two
services S1 and S2 is declared through the predicate interdiction(S1,S2,D),
while necessity(S1,S2,(Min,Max)) states that service S1 requires S2 to be
scheduled between [Min,Max] days in advance. Predicate day(D) is true for each
available day D in the horizon. Predicate ideal date(P,Pck,ID) provides, for
each packet Pck for a patient P, the ideal date ID for scheduling the packet, while
within tolerance(Pck, D, ID) is true if day D is within the given tolerance
from the ideal date ID for packet Pck.

5.1 The Master Problem

The main decision Master Problem (MP) takes is the schedule of each packet 𝜋 for
each patient; the next clause declares that given a packet Pck, it can be scheduled
in a day within the tolerance from the ideal date:
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0 <= {schedule(P, Pck, D) :

day(D), within_tolerance(Pck,D,ID)

} <= 1

:- packet(P, Pck), ideal date(P, Pck, ID).

Note that the number of schedule atoms for such packet is required to lie in
{0, 1}: in fact, a packet could be not scheduled, and the number of scheduled
packets should be maximized (see the objective function).
Interdiction between services is implemented by the following IC:

:- schedule(P, Pck1, D1), service_in_packet(S1,Pck1),

schedule(P, Pck2, D2), service_in_packet(S2,Pck2),

interdiction(S1,S2,Delta), D1<D2, D2 <= D1+Delta.

stating that if service S1 interdicts S2 for Delta days, the two services are sched-
uled for the same patient, and the day D2 in which S2 is scheduled is between D1
and D1+Delta, then such schedule is inconsistent.
Necessity is dealt with by the following IC; if a necessity is not satisfied within
the planning horizon nor it can be postponed beyond it, then the schedule is
inconsistent

:- schedule(P, Pck1, D1), service_in_packet(S1,Pck1),

necessity(S1, S2, _),

not satisfies necessity(P, Pck1, S1, S2),

not necessity beyond horizon(P, Pck1, S1, S2).

where the two predicates used in the IC are defined as

satisfies necessity(P, Pck1, S1, S2) :-

necessity(S1,S2,(Min,Max)),

schedule(P, Pck1, D1), service_in_packet(S1,Pck1),

schedule(P, Pck2, D2), service_in_packet(S2,Pck2),

D1+Min <= D2, D2 <= D1+Max.

necessity beyond horizon(P, Pck1, S1, S2) :-

D1+Max>𝑛𝐻 , necessity(S1, S2, (Min, Max)),

schedule(P, Pck1, D1), service_in_packet(S1,Pck1).

Let OpenDur be the total available hours in day D for care unit CU; if the sum of
the durations of services attended by CU and scheduled in day D exceeds OpenDur,
then the schedule is inconsistent:

:- tot capacity(D, CU, OpenDur),

#sum{Dur,P,S:schedule(P,Pck,D),service_in_packet(S,Pck),

srvType(S,CU,Dur)}>OpenDur.

The objective is defined through the so-called weak constraints, i.e., integrity
constraints that can be relaxed, with the objective to maximize the number of
the satisfied ones. Weak constraints are identified syntactically by using :∼ as
implication symbol. Each weak constraint can have a priority and a weight: the
ASP solver searches the solution maximizing the weighted sum of the highest-
priority weak constraints; among those solutions, the weight of satisfied second-
highest-priority weak constraints is maximized, and so on.
The objective function defined in Section 4.3 is simply implemented through the
weak constraint
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:∼packet(P, Pck), not schedule(P, Pck, _),
patient(P,Pri). [1@Pri,P,Pck]

maximizing the number of scheduled packets for the patients at the highest priority
class and, in case of ties, those at the second-highest priority, and so on.

5.2 The Daily agenda
Note that even if the ASP program showed in Section 5.1 provides an assignment
of packets to days, it might still be the case that for some day there exists no feasible
assignment of times of the day for each service the master plan has scheduled on
that day. For example, for some day one patient could be required to be serviced
by two different care units at the same time. In order to obtain a feasible solution
of the whole problem, we now extend the ASP formulation [3] to address also the
daily agenda problem.
For each operator Op in a care unit CU and for each day D, predicate op shift(D,
CU , Op, Start, Duration) provides the Start time and the Duration of
the shift.
The decisions the ASP program should take consist of the start time and the oper-
ator assigned to each service that was scheduled on a day. Predicate start time
assigns a start time to each service belonging to a packet scheduled in the day.

1<={start_time(P, S, Day, Start):time(Start)}<=1 :-

schedule(P,Pck,Day), service_in_packet(S,Pck).

For each scheduled service S, the assignment to the operator Op that provides it is
encoded in predicate provides(CU,Op,P,S,D), where P is the patient and D is
the day.

1<={provides(CU,Op,P,S,D) :
op shift(D,CU,Op, , ),srvType(S,CU, )}<=1
:− schedule (P,Pck,D), service in packet (S,Pck).

(1)

The constraints on the daily agenda state that two services involving the same
patient or the same operator cannot be in parallel. We first define the concept of
precedence: a service S1 for patient P1 precedes service S2 for patient P2 if the
end time of S1 is before (or in the same instant as) the start time of S2:

precedes(P1,S1,P2,S2,Day) :- srvType(S1,_,D1),

start_time(P1,S1,Day,Start1), Start1+D1<=Start2,

start_time(P2,S2,Day,Start2).

We can now state that if two services are provided to the same patient or by the
same operator, then one of the two services precedes the other:

:- not precedes(P,S1,P,S2,Day),

not precedes(P,S2,P,S1,Day), S1 != S2,

provides(_,_,P1,S1,Day), provides(_,_,P2,S2,Day),

schedule(P,Pck1,Day), service_in_packet(S1,Pck1),

schedule(P,Pck2,Day), service_in_packet(S2,Pck2).

:- not precedes(P1,S1,P2,S2,Day),

not precedes(P2,S2,P1,S1,Day), P1!=P2,

provides(CU,Op,P1,S1,Day), provides(CU,Op,P2,S2,Day),

schedule(P1,Pck1,Day), service_in_packet(S1,Pck1),

schedule(P2,Pck2,Day), service_in_packet(S2,Pck2).
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Finally, each service should be scheduled within the working shift of the operator
that provides it:

:- provides(CU,Op,P,S,Day), start_time(P,S,Day,Start),

srvType(S,CU,Dur), Start+Dur > ShiftStart+ShiftDur ,

op shift(Day,CU,Op,ShiftStart ,ShiftDur).

:- provides(CU,Op,P,S,Day), start_time(P,S,Day,Start),

op shift(Day,CU,Op,ShiftStart ,ShiftDur),

Start<ShiftStart.

6 Decomposition approaches

The ASP formulation described in Sections 5.1 and 5.2 is a declarative approach
able to find the optimal solution given enough computational resources. On the
other hand, in real life applications addressing NP-hard problems, the optimal
solution is often not achievable in reasonable time, and obtaining good solutions in
practical time is often enough. One solution strategy often reported in the literature
(see Section3) is to decompose the whole problem into smaller sub-problems and
solve them independently. The final solution is obtained by recombining the
subproblems solutions and enforcing coherence among them in case it is not
guaranteed. We propose two features along which decomposition may be carried
out.
The first one relies on decomposing service demand, according to which the same
problem is solved several times on a different input. In this case, we adopt patient
priority as the decomposition criterion, in line with the objective function. We
call this approach the Patient Priority Based decomposition.
The second approach is based on decomposing the time decisions according to
their granularity, and it consists of solving in pipe two different problems once: the
master problem first and the daily agenda problem second. We call this approach
the Time Granularity Based decomposition.
Typically, decomposition schemes suffer from the limit intrinsic in the greediness
of the approach as decisions taken in the first ASP program are typically never
backtracked upon. We propose some adjustments in each of our approaches to
edge against this drawback: in the Patient Priority Based greedy approach, the
starting time of the scheduled services are computed at each iteration as part of
the process of building a feasible solution; however, at each new iteration, they
can be adjusted in order to accommodate additional services. The values in the
final solution are the ones computed at the last iteration. On the other hand, in
the Time Granularity Based greedy approach, we enrich the master problem by
adding a relaxed version of the constraints of the daily agenda problem, aiming
at increasing the number of services selected by the master plan that also admit a
feasible starting time. A pictorial view of the two approaches is provided in Fig.1
and Fig.2.

6.1 Decomposition by time granularity

This two level approach exploits different time granularity and fixes the decisions
in a greedy way. At the highest granularity the time unit is the day. Indeed, the
master problem addressed by the ASP module described in Section 5.1 is solved
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and it returns a master plan. The target is to minimize the weight of the unsatisfied
requests, according to the hierarchical objective function introduced in Section 4.
To improve the chances that the master plan can be feasibly implemented at the
daily level in the following step, a partial awareness of the resource availability is
included into the master problem, i.e., beside FIN constraints, a relaxed version of
the resource constraints are added. Namely, the duration of the services requiring
an operator of care unit 𝑐𝑢 scheduled on a certain day must be not larger than∑

𝑜∈𝑂 (𝑐𝑢) 𝐸𝑛𝑑𝑜 − 𝑆𝑡𝑎𝑟𝑡𝑜 where [𝑆𝑡𝑎𝑟𝑡𝑜, 𝐸𝑛𝑑𝑜] is the time window of operator
𝑜 on that day. Nevertheless, solution optimality is not guaranteed because of
the partial awareness (other daily agenda constraints are overlooked) so that some
services selected in the master plan cannot be feasibly scheduled during the second
step. Therefore, while the whole approach is greedy-like, the decisions present in
the master plan may have to be reversed (discard an accepted service) depending
on the results of the next step.
As for the implementation, the model returned by the ASP approach contains the
schedule predicate which assigns a day (corresponding to 𝜏(𝜋)) to all delivered
packets.
In the second step, for a given master plan, for each day 𝑑 of the planning horizon
𝐻𝑜𝑟𝑖𝑧𝑜𝑛, the daily agenda problem is solved. In this case, we again solve the
ASP program in Section 5.2, with the following modifications in order to solve
an optimization problem: 1) not all services scheduled by the MP are actually
provided by an operator, i.e. in Eq 1 for each scheduled packet there can be
between 0 and 1 atoms provides/5 instead of between 1 and 1:

0<={provides(CU,Op,P,S,D) :
op shift(D,CU,Op, , ),srvType(S,CU, )}<=1
:− schedule (P,Pck,D), service in packet (S,Pck).

(2)

2) we maximize the number of packets (considering the patient’s priority) that
can be feasibly delivered, where a packet is delivered only provided that each of
its services is assigned an operator

#maximize { 1@Pri,Pat,Pkt : sat_pkt(Pat, Pkt),

priority(Pat, Pri) }.

sat_pkt(Pat, Pkt) :-

provides(_,_,Pat,Srv) : service_in_packet(Srv,Pkt);

schedule(Pat, Pkt, day).

that is, a subproblem 𝑆𝑃(𝑑) having the same objective function as the MP, whose
input are i) Π(𝑑), i.e., all the packets 𝜋 such that 𝜏(𝜋) = 𝑑, ii) the resource
availability of each care unit in terms of the starting and ending time of each
operator.
Note that the subproblems 𝑆𝑃(𝑑) can be solved in parallel.
It is worth noting that the final solution obtained by the union of the models
returned by the MP and by the sub-problems could still be inconsistent with
respect to necessity constraints. E.g., suppose the MP assigns a service 𝑠1 to
day 𝑑1, and 𝑠2 to 𝑑2 (together with several other packets), where 𝑠1 requires 𝑠2.
Suppose that, while the sub-problem 𝑆𝑃(𝑑1) is satisfiable, that for 𝑆𝑃(𝑑2) is
not (due to the various constraints within the packets of day 𝑑2), and its optimal
solution does not assign an operator to 𝑠2. Joining all the models, we have that 𝑠1
is delivered while 𝑠2 is not, despite the necessity constraint.
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For this reason, a posteriori we check the validity of each necessity constraint
and, in case one is not satisfied, we (recursively) remove from the solution the
packet requiring the non existing service. This reduces the quality of the objective
function, but provides a solution satisfying all constraints.

Fig. 1: Decision flow for Time Granularity Based in case of three priority classes and
𝑛𝐻 days

6.2 Decomposition by priorities

An alternative decomposition criterion operates on the input of the instance. It
subdivides the patient set into a few classes, as many as the different patient
priority levels - 3 in our case, 𝑃𝐼 , 𝑃𝐼 𝐼 , and 𝑃𝐼 𝐼 𝐼 . The highest priority ones 𝑃𝐼

are processed first, by solving the full problem (containing both the ASP modules
in Section 5.1 and 5.2). In this way we maximize the chances of high priority
patients requests to be served. This phase returns the value of 𝜏(𝜋) and 𝑡 (𝑠) of all
scheduled requests. The idea is to fix these decisions, update resource availability
accordingly, and solve the whole problem again with respect to 𝑃𝐼 𝐼 . Finally,
iterate on 𝑃𝐼 𝐼 𝐼 . However, to retain as much flexibility as possible, the different
time granularity of the decisions are exploited: only the values of 𝜏(𝜋) are fixed
and passed to the next step, while the starting times of scheduled services will
be recomputed in the best possible way during the next iteration. The values of
the starting time computed at the last iteration are those returned as part of the
solution. We trade computational time (as we potentially recompute the value of
the starting time of a selected service more than once) for solution improvement.
In this sense, this is a smart variant of a classical decomposition approach that has
been applied to many real problems, such as in [7] as mentioned in Section 3.
In conclusion, each criterion our decomposition is based on in the two approaches,
i.e., input decomposition and time decomposition, are not new and have been
somehow proposed in other studies, such as [7] for the first and [18] for the
second. However, we added original features to the general schemes to tailor
them to this specific problem. In our case, indeed, in the Time Granularity Based
approach, the master problem is enriched with some knowledge of the constraints
of the subproblems.In the Patient Priority Based approach we propose an enhanced
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Fig. 2: Decision flow for Patient Priority Based in case of three priority classes

variant which computes the starting time of a service as a proof of feasibility of
the current solution but may later backtrack on such a decision in favour of a better
solution. Moreover, to our knowledge, the two decomposition schemes have never
been compared on the same problem.

7 Computational results

Computational results have been obtained on randomly generated pathways, in-
spired by well assessed and publicly available medical guidelines for the most
common NCDs (such as [11] and [12] for diabetes). A brief description of the
instance generator follows. First, the generator allocates resources on a weekly
basis. Specifically, 5 CUs are considered, and on each day of the week, a num-
ber of operators drawn with uniform probability between 1 and 4 are activated
for each CU. The total capacity of each CU for each day is a value drawn with
uniform probability between 24 and 60 time slots, allocated among the operators.
The weekly resource allocation is then replicated in each week of the given time
horizon. Second, CPs are generated, each of them consisting of service packets.
Each packet is assigned a frequency, an ideal initial date and a tolerance. Each
service has a duration ranging from 6 to 15 slots and it refers to a CU. Each packet
consists of at most 4 services. In terms of service demand, given the desired
number of patients, each of them is associated with a priority class (low, medium,
and high) and a number of CPs between 1 and 4. The probability of assigning a
patient to a class is inversely proportional to the priority. The probability of as-
signing a certain number of CPs to a given patient is inversely proportional to the
number of CPs itself. The average number of slots requested daily (total number
of slots requested by services divided by the length of the time horizon) remains
nearly constant for all the instances as the length of the time horizon varies, and
is directly proportional to the number of patients.
For each combination of number of patients in {10, 20, 40} and length of the
planning horizon in {30, 60}, 20 instances are generated, summing up to 120
instances. Detailed information on the average numbers - across the 20 instances,
of packets and services, as well as the minimum and maximum number of services
among the 20 instances are given in Table 2 separately for each group of instances.
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Table 2: Instance features
Instance group Avg # packets Avg # services Min # services Max # services

10-30 56.5 69.6 32 193
20-30 118.0 147.6 69 389
40-30 229.4 286.0 125 687
10-60 112.7 138.8 65 374
20-60 234.9 294.0 140 734
40-60 456.4 568.4 263 1340

Experiments3 have been run on a Linux Mint 19.1 Tessa OS, Intel(R) Xeon(R)
Silver 4116 CPU @ 2.10GHz machine with a 64GB System Memory. The solver
version is Clingo 5.6.2.
In the following, we report computational results both in terms of efficiency and
efficacy for the three approaches proposed, i.e., monolithic (the program composed
of the two modules described in Sections 5.1 and 5.2), Patient Priority Based, and
Time Granularity Based.
Table 3 offers an overview of the results reporting separately, for each of the
three approaches and for each instance group, information about average compu-
tational times (efficiency) and number of instances successfully solved (efficacy).
Specifically, for what concerns efficiency, we report both the (average) total com-
putational time and the (average) time spent in each phase, i.e., (average) solving
and grounding times. For what concerns efficacy, we report the number of in-
stances in which the algorithm terminated within the time limit of 3600 seconds,
the number of instances that reached the time limit, and the number of instances
for which a memory error occurred - # errors. For each approach and for each
group of instances, these three values sum up to the number of instances, i.e.,
20. Interestingly, we observe the following facts: the average time spent in the
grounding phase is very limited and stable across the instance groups for the Time
Granularity Based approach. Contrarily, for the monolithic approach, the percent-
age of time spent in the grounding phase with respect to the total time ranges from
a minimum of 23.41% (on the 40-60 instances) to a maximum of 50.19% (on the
10-60 instances), with an average of 37.45% across all the 120 instances. For the
Patient Priority Based approach, the figures are: minimum of 31.61% (on the 40-
30 instances), maximum of 83.84% (on the 20-60 instances), average of 53.21%.
In addition, the Time Granularity Based method turns out to be the best option of
the three approaches in terms of number of instances successfully solved in each
group. This ability does not seem to depend on the length of the time horizon.
Instead, as the number of patients increases, the effectiveness tends to decrease,
especially when 40 patients are considered. Yet, its efficacy remains far better than
that obtained by the other two methods. Moreover, Time Granularity Based is the
only method among the three ones for which there are no memory errors.
As a further overview, Figure 3 shows the number of instances for which each
of the three methods terminated within the time plotted on the 𝑥-axis. As noted
above, the Time Granularity Based method performs the best in terms of both

3The code of the project, as well as the instances, are contained in the GitHub repository:
https://github.com/MarcoRoma96/NCD-agenda-outpatients.git

https://github.com/MarcoRoma96/NCD-agenda-outpatients.git
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Table 3: For each group of instances (columns) and for each approach (rows) the
following information are given: average (across the instances) total computational
time -Avg time, average time spent in the solving phase - Avg solving time, average
time spent in grounding phase - Avg grounding time, numbers of instances for which
a memory error occurred - # errors, number of instances solved within the time limit
fixed to 3600 seconds.
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the number of instances solved and the computation time required. The other two
methods show comparable performance between them.

Fig. 3: For each approach, the 𝑦-axis shows the number of instances for which the
algorithm terminates within the time limit in the 𝑥-axis.

A more detailed view of the distribution of computational times over the 6 groups
of instances is shown in Figures 4, 5, 6 for the monolithic, Patient Priority Based,
and Time Granularity Based approaches, respectively. The computational results
seem to show that the impact of the number of patients on the computational time
is greater than the impact of the time horizon length, at least for the monolithic
and the Patient Priority Based approaches.
Finally, Figure 7 shows an overview of the performance of the three approaches
in terms of both computational efficiency and quality of the solution obtained.
Specifically, the quality of the solution is measured in terms of the percentage
of unscheduled services in each priority class by giving a gradually decreasing
weight to the three classes (from high to low priority). In fact, since the choice
of the optimum solution is driven by a hierarchical objective function that first
minimizes the number of unscheduled high priority services, then the number of
medium priority services, and finally the number of low priority services, these
three percentages can be transformed into a single numerical value, where the
three least significant digits represent the percentage of unscheduled low priority
services, and so on. The figure shows a rather sharp separation between the
Time Granularity Based approach on the one hand and the other two approaches
(monolithic and Patient Priority Based) on the other hand. Further investigation
is needed to understand whether the clouds shown in the figure correspond to
instances with specific characteristics for which one method is preferable to the
other.
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Fig. 4: Distribution of computation times for each group of instances - monolithic
approach

Fig. 5: Distribution of computational times for each group of instances - Patient Priority
Based approach
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Fig. 6: Distribution of computational times for each group of instances - Time Granularity
Based approach

8 Conclusions and on going work

In a historical moment such as the one we are living, exploiting in the best way
the limited resources available at public health care facilities is of paramount
importance. It is equally important to ensure uniformity of care across the country
and among patients. It therefore becomes essential to deploy their clinical paths
in order to pursue these objectives. To this aim, the current project could be easily
extended to encompass the arrival of new patients who get enrolled in a care
pathway at a time when the agenda has already been planned. To this purpose, a
similar problem to the one here discussed can be solved, in which, on the one hand,
the appointment date of the scheduled services is allowed to vary within a very
small time window, such as a±1 variation, with respect to the previously scheduled
date; on the other hand, the number of scheduled packets of the new patients are
maximized and the number of packets affected by the date shift is minimized.
The trade off between these two criteria should be carefully calibrated in order
to devise the appropriate weight to be used in a weighted objective function. We
expect such rescheduling problem to be simpler to solve with respect to the whole
NCD Agenda, as each appointment date can only be shifted of a small time window,
so the rescheduling problem might be approachable even without decomposition
(although there could be stricter requirements of quick responsiveness). We will
delve into this subject in future work.
A similar approach allows to handle periodical rescheduling, as time goes by, in
a rolling horizon framework, considering a partial overlap of successive periods.
Towards the end of one planning period, the requests of the upcoming period get
known. These are scheduled, together with the ones in the overlapping part of the
current planning period, allowing for minor date shifts of the latter ones.
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Fig. 7: Each dot corresponds to an instance. The value reported on the 𝑥-axis represents
the computational time required to solve the instance, while on the 𝑦-axis the quality of
the solution is given in terms of percentage of unscheduled health services in each patient
priority class - high, medium and low. Specifically, the three percentages are converted
in a 9-digit number, three digits for each priority class: starting from the less significant
digits, the three blocks - of three digits each, represent respectively the percentage of
unscheduled low-priority, medium-priority, and high-priority services. The conversion
reflects the hierarchical objective function that minimizes the unscheduled services
separately for each priority class. For example, if the 3 percentages were respectively
100 for the highest priority, 74 for the medium, and 82 for the lowest one, the value
shown on the 𝑦-axis would be 100,074,082.
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A further extension concerns taking into consideration fairness among patients.
To this aim, one possibility would be to minimize, for each priority class, the
maximum number of unscheduled packets of each patient, in order to avoid to
penalize specific individuals for the benefit of the others. On the other hand, such
an approach could suffer from well know effects (such as after the maximum
is minimized, the unscheduled packets of the other patients do not affect the
objective function any longer, and all solutions having the same maximum are
considered equally good) and could slow down the solution process. Therefore,
other kinds of fairness representation should be investigated. For example, in
the Constraint Programming research area one idea is minimizing the (linear or
quadratic) deviations from the average. This will be the subject of a further study.
In this paper, we tailored classical ideas about decomposition to the specific
features of the Agenda problem. In particular, in the Time Granularity Based ap-
proach, the master problem is enriched with a relaxed version of the subproblems.
In the Patient Priority Based approach, we propose an enhanced variant of the
well known input based decomposition, which computes the starting time of a
service as a proof of feasibility of the current master plan, but may later backtrack
on such a decision in favour of a better solution.
The experimental results described in this paper show that decomposing the prob-
lem proves crucial in order to respond to these needs in a short computation time
up to about 600 health services. This seems particularly true for the Time Gran-
ularity Based decomposition. However, as the problem size increases, even for
the Time Granularity Based approach, the number of instances terminated within
the time limit tends to decrease rapidly. Thus, interesting lines of future research
emerge with the goal of solving problems of even larger size. Specifically, one
possibility might be to hybridize the two proposed decomposition approaches,
namely Patient Priority Based and Time Granularity Based, so that the strengths
of each one can be exploited. Another promising line of research involves enrich-
ing the information that the subproblems send back to the master problem in a
logic-based Benders decomposition framework. The Time Granularity Based in
particular, paves the way towards this approach, because of the hierarchical rela-
tionship between the two sets of variables involved in Time Granularity Based,
i.e., the day a packet is delivered, if any, and the time of the day. Finally, it is ex-
tremely challenging to be able, for example through machine learning techniques,
to understand what are the peculiarities of the instances that make one approach
preferable to another. This will put in the hands of decision makers a set of tools
from which to choose the one that best fits the particular setting in which the
provider operates.
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