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In 1990, Halpern proposed the distinction between Type 1 and Type 2 statements: the former 
express statistical information about a domain of interest while the latter define a degree of belief. 
An example of Type 1 statement is “30% of the elements of a domain share the same property” 
while an example of Type 2 statement is “the element x has the property y with probability 
p”. Recently, Type 1 statements were given an interpretation in terms of probabilistic answer 
set programs under the credal semantics in the PASTA framework. The algorithm proposed 
for inference requires the enumeration of all the answer sets of a given program, and so it is 
impractical for domains of not trivial size. The field of lifted inference aims to identify programs 
where inference can be computed without grounding the program. In this paper, we identify some 
classes of PASTA programs for which we apply lifted inference and develop compact formulas to 
compute the probability bounds of a query without the need to generate all the possible answer 
sets.

1. Introduction

Answer Set Programming (ASP) [1] is an expressive formalism to represent complex combinatorial problems and it is based on 
the concept of answer set (or, equivalently, stable model). However, like most logic languages, it cannot represent uncertain data. 
During the last few years, several proposals have been put forward to overcome this limitation: some of them associate a weight 
to rules [2] while others attach a probability to facts [3]. In particular, [3] follows the Distribution Semantics (DS) [4–6]. This 
semantics only allows the representation of what Halpern calls Type 2 statements [7], or statements about a degree of belief, such 
as “the probability that a particular element of the domain has the property y is x”. These are often represented with probabilistic 
facts [8]. With the DS, it is not possible to handle Halpern’s Type 1 statements or expressions of statistical information such as “x% 
of a given population have the property y”.

Recently, the authors of [9] proposed the PASTA language, which allows the representation of Type 1 statements (called prob-

abilistic conditionals) with ASP constructs (disjunctive rules and aggregates) in Probabilistic Answer Set Programming under the 
credal semantics (PASP) [10], that associates a probability range to a query (a conjunction of ground atoms). Furthermore, they 
proposed an algorithm, also called PASTA, to compute in an exact way the probability bounds of a query which is based on the 
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enumeration of the possible worlds. This algorithm does not scale with the domain size, since the number of worlds to generate is 
exponential in the number of probabilistic facts.

The field of lifted inference [11,12] aims to identify some classes of programs where the inference task can be executed on a 
lifted level, i.e., without grounding all the variables of the program. In this paper, we identify some classes of PASTA programs with 
a single probabilistic conditional and develop lifted formulas to compute the probability for queries in these. Our approach is based 
on the identification of the worlds that contribute to the same probability bounds, that we call indistinguishable, by analyzing the 
results of the aggregates.

The paper is structured as follows: in Section 2 we provide some background knowledge. Section 3 introduces some formulas to 
perform lifted inference on PASTA programs that are empirically evaluated in Section 4. In Section 5 we survey related works and 
Section 6 concludes the paper.

2. Background

In this section, we introduce some background knowledge about the syntax and semantics of probabilistic logic programs and 
lifted inference.

2.1. Syntax

We recall here the basic concepts of Logic Programming [13] and Answer Set Programming (ASP) [1]. A rule is of the form:

ℎ1;…;ℎ𝑛 ∶− 𝑏1,… , 𝑏𝑚.,

where ℎ1; … ; ℎ𝑛 is a disjunction of atoms called head while 𝑏1, … , 𝑏𝑚 is a conjunction of literals is called body. If 𝑛 > 1, the rule 
is called disjunctive, if 𝑛 = 0, constraint, and if 𝑚 = 0 and 𝑛 = 1, fact. A rule is ground if it does not contain variables. We allow 
the 𝑏𝑗 s to be aggregates [14,15]. Their syntax is #𝑓{𝜖1, … , 𝜖𝑙} 𝑐1𝑔1, where 𝑓 is an aggregate function symbol, 𝑐1 is an arithmetic 
comparison operator, and 𝑔1 is a constant or variable called guard. Here we consider only the #𝑐𝑜𝑢𝑛𝑡 aggregate with the syntax 
#𝑐𝑜𝑢𝑛𝑡{𝑉 ∶ 𝑎(𝑉 )} =𝑁 or #𝑐𝑜𝑢𝑛𝑡{𝑉 ∶ 𝐶(𝑉 ), 𝐴(𝑉 )} =𝑁 , where 𝑉 is a vector of variables.

The authors of [9] propose the PASTA language, where Type 1 statements (also called probabilistic conditionals) can be defined 
using the syntax:

(𝐶|𝐴)[𝑙𝑏, 𝑢𝑏]
where 𝐶 is an atom called consequent, 𝐴 is a conjunction of literals called antecedent, and 𝑙𝑏, 𝑢𝑏 ∈ [0, 1], 𝑙𝑏 ≤ 𝑢𝑏.1 The meaning of the 
aforementioned formula is that the fraction of 𝐴’s that are also 𝐶 ’s is between 𝑙𝑏 and 𝑢𝑏. These conditionals are converted into three 
answer set rules:

I) 𝐶; 𝑛𝑜𝑡_𝐶 ∶− 𝐴.

II) ∶− #𝑐𝑜𝑢𝑛𝑡{𝑋 ∶ 𝐶, 𝐴} = 𝑉 0, #𝑐𝑜𝑢𝑛𝑡{𝑋 ∶𝐴} = 𝑉 1, 10 ⋅ 𝑉 0 < 10 ⋅ 𝑙𝑏 ⋅ 𝑉 1.

III) ∶− #𝑐𝑜𝑢𝑛𝑡{𝑋 ∶ 𝐶, 𝐴} = 𝑉 0, #𝑐𝑜𝑢𝑛𝑡{𝑋 ∶𝐴} = 𝑉 1, 10 ⋅ 𝑉 0 > 10 ⋅ 𝑢𝑏 ⋅ 𝑉 1.

where 𝑋 is a vector of elements containing all the variables in 𝐶 and 𝐴. The multiplication by 10 in II) and III) is due to the 
impossibility of using floating point numbers is ASP systems. Any other power of 10 can be chosen, but we stick here with 10 for 
ease of notation. Rule I) indicates that 𝐶 can be true or false (represented by 𝑛𝑜𝑡_𝐶) if 𝐴 is true. This denotes the possibility that 𝐶
may or may not (𝑛𝑜𝑡_𝐶) hold. The other two rules specify the fraction of elements that have the property 𝐶 satisfied. Note that I) 
can be equivalently expressed with a choice rule of the form {𝐶} ∶− 𝐴, but we maintain the syntax with the disjunction in the head 
to better identify whether the property 𝐶 holds in the answer sets in the examples, and that the two aggregates in II) and III) can 
sometimes be merged into a unique aggregate to speed up the computations, but we keep them separated for clarity. II) and III) can 
be omitted from the program when 𝑙𝑏 = 0 and 𝑢𝑏 = 1, respectively. Note that, since II) and III) are ASP constraints, their body must 
be false, so the comparison operators are complemented.

The Distribution Semantics [6] (DS) allows the definition of probabilistic facts that can be expressed, using the ProbLog [8]

syntax, with Π ∶∶ 𝑓 where 𝑓 is an atom and Π ∈ [0, 1]. Following the ASP syntax, we use the notation 𝑃 ∶∶ 𝑓 (𝑙..𝑢) to indicate a set of 
probabilistic facts 𝑃 ∶∶ 𝑓 (𝑙), 𝑃 ∶∶ 𝑓 (𝑙+1), … , 𝑃 ∶∶ 𝑓 (𝑢), where 𝑙, 𝑢 ∈ℕ, 𝑙 < 𝑢. In this paper we consider only ground probabilistic facts.

2.2. Semantics

The Herbrand base of an answer set program  (denoted with 𝐵 ) is the set of all ground atoms that can be constructed using the 
symbols in the program. If a set 𝐼 is a subset of the Herbrand base, it is called an interpretation. Since we allow aggregates, we need to 
distinguish between local and global variables appearing in rules. The latter occur in at least one literal not involved in aggregations 

1 In this paper, the symbol | is used exclusively in the context of a conditional. Note that the same symbol can be found in the literature [16] used to represent 
2

disjunctive heads.
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while the former are local to the aggregate they appear in [15]. We only consider local variables in aggregates. The grounding of 
an aggregate with only local variables can be obtained by substituting the local variables with ground terms in all possible ways. 
A ground atom 𝑎 is true (false) in 𝐼 if 𝑎 ∈ 𝐼 (𝑎 ∉ 𝐼). Similarly, an aggregate is true (false) in 𝐼 if the evaluation of the aggregate 
function in 𝐼 satisfies (does not satisfy) the guards. The grounding of a rule can be obtained by first substituting global variables with 
ground terms and then by substituting the local variables of every aggregate. An interpretation 𝐼 satisfies a ground rule if at least one 
of the ℎ𝑖 is true in 𝐼 when the conjunction of all the 𝑏𝑗 is true in 𝐼 . An interpretation satisfying all the groundings of all the rules of a 
program is called a model. From a ground program 𝑔 and an interpretation 𝐼 we can construct the reduct [14] of 𝑔 with respect to 
𝐼 as the program obtained by removing from 𝑔 the rules in which a 𝑏𝑗 is false in 𝐼 . An interpretation 𝐼 is an answer set (also called 
stable model) for 𝑔 if 𝐼 is a minimal model (under set inclusion) of the reduct of 𝑔 . We use the notation AS() to represent the set 
of all the answer sets of a program  . We also consider cautious and brave consequences, i.e., the intersection and the union of all 
the stable models, respectively. In some circumstances, we may be interested in projecting the answer sets on a set of atoms [17]. 
That is, given a set of ground atoms 𝑉 , the set of the projected solutions are represented by 𝐴𝑆𝑉 () = {𝐴 ∩ 𝑉 ∣𝐴 ∈𝐴𝑆()}.

All the probabilistic facts are considered independent. A world 𝑤 is an answer set program obtained by including or not every 
probabilistic fact and its probability is given by

𝑃 (𝑤) =
∏

𝑓⊤
𝑖
∈𝑤

Π𝑖 ⋅
∏

𝑓⊥
𝑖
∈𝑤

(1 − Π𝑖)

where 𝑓⊤
𝑖

indicates that 𝑓𝑖 is included in the world while 𝑓⊥
𝑖

indicates that 𝑓𝑖 is excluded from the world. In traditional Probabilistic 
Logic Programming languages such as ProbLog [8] and Logic Programs with Annotated Disjunctions [18], each world is assumed to 
have a single stable model and the probability of a query 𝑞 is given by the sum of the probabilities of the worlds where the query is 
true, i.e.,

𝑃 (𝑞) =
∑
𝑤⊧𝑞

𝑃 (𝑤).

Probabilistic Answer Set Programming under the credal semantics (PASP) [3] relaxes this and requires that every world has at least 
one stable model. With this semantics, a query 𝑞 in PASP is associated with a lower P(𝑞) and upper P(𝑞) probability, computed as:

P(𝑞) =
∑

𝑤𝑖 ∣∃𝑚∈𝐴𝑆(𝑤𝑖), 𝑚⊧𝑞

𝑃 (𝑤𝑖), P(𝑞) =
∑

𝑤𝑖 ∣∀𝑚∈𝐴𝑆(𝑤𝑖), 𝑚⊧𝑞

𝑃 (𝑤𝑖).

That is, the upper probability of a query 𝑞, P(𝑞), is the sum of the probabilities of the worlds where the query is true in at least one 
answer set, while the lower probability P(𝑞), is the sum of the probabilities of the worlds where the query is true in every answer set. 
Note again that every world must have at least one answer set. This is needed since, if a world 𝑤 has no answer sets, 𝑃 (𝑤) neither 
contributes to the probability of the query nor to the probability of the negation of the query, causing a loss of probability, i.e., 
P(𝑞) +P(𝑛𝑜𝑡 𝑞) < 1 (using negation as failure). If two worlds have the same probability and contribute to the same probability bounds 
we call them indistinguishable. Overall, the size of the domain is fixed by the syntax of the probabilistic and other logical statements, 
but not by the syntax of the conditionals.

Example 1 (Bird 4.). Consider the following example taken from [9]:

0.4::bird(1..4).
(fly(X) | bird(X))[0.6,1].

The first line states that there are 4 individuals indexed with 1, . . . , 4, each with probability 0.4 of being a bird. The conditional 
imposes that at least 60% of the birds fly (and at most 100%). Consider the query 𝑞 = 𝑓𝑙𝑦(1). After translating the conditional into 
three answer set rules as described before, we get the following probabilistic answer set program under the credal semantics:

0.4::bird(1..4).
fly(X);not_fly(X) :- bird(X).
:- #count{X: bird(X)} = H,

#count{X: fly(X), bird(X)} = FH,
100*FH < 60*H.

Rule III) is omitted since the upper bound is 1. Note again that the disjunctive rule can be equivalently expressed with the rule 
{𝑓𝑙𝑦(𝑋)} ∶− 𝑏𝑖𝑟𝑑(𝑋), and this should be preferred [19] since disjunctions may increase the computational complexity [20], but 
we stick in this example with the disjunctive rule for ease of explanation. This program has 24 = 16 worlds, listed in Table 1. For 
example, the world where all the individuals are birds (𝑤0 in Table 1) has a probability of 0.44 and it has the following 5 stable 
models (obtained by including all the four probabilistic facts):

bird(1) bird(2) bird(3) bird(4) fly(1) fly(2) fly(3) fly(4)
bird(1) bird(2) bird(3) bird(4) fly(1) not_fly(2) fly(3) fly(4)
bird(1) bird(2) bird(3) bird(4) fly(1) fly(2) not_fly(3) fly(4)
bird(1) bird(2) bird(3) bird(4) fly(1) fly(2) fly(3) not_fly(4)
3

bird(1) bird(2) bird(3) bird(4) not_fly(1) fly(2) fly(3) fly(4)
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Table 1

Worlds for Example 1. The column LP/UP indicates whether the considered world contributes to the lower (LP) or only to the upper (UP) probability. A dash in this 
column indicates that the world does not contribute to the probability bounds. 𝑏(𝑖), 𝑖 ∈ {1, .., 4} stands for 𝑏𝑖𝑟𝑑(𝑖).

id 𝑏(1) 𝑏(2) 𝑏(3) 𝑏(4) LP/UP Probability id 𝑏(1) 𝑏(2) 𝑏(3) 𝑏(4) LP/UP Probability

𝑤0 1 1 1 1 UP 0.0256 𝑤8 0 1 1 1 - 0.0384

𝑤1 1 1 0 1 UP 0.0384 𝑤9 0 1 1 0 - 0.0576

𝑤2 1 1 0 0 LP, UP 0.0576 𝑤10 0 1 0 1 - 0.0576

𝑤3 1 1 1 0 UP 0.0384 𝑤11 0 1 0 0 - 0.0864

𝑤4 1 0 1 1 UP 0.0384 𝑤12 0 0 1 1 - 0.0576

𝑤5 1 0 1 0 LP, UP 0.0576 𝑤13 0 0 1 0 - 0.0864

𝑤6 1 0 0 1 LP, UP 0.0576 𝑤14 0 0 0 1 - 0.0864

𝑤7 1 0 0 0 LP, UP 0.0864 𝑤15 0 0 0 0 - 0.1296

The query is only true in the first four, so this world only contributes to the upper probability. By extending this consideration to all 
the worlds, we get P(𝑞) = 0.2592 and P(𝑞) = 0.4. Note that, even if we change the probability associated with the probabilistic facts, 
the number of answer sets, and thus the number of worlds, will be the same. Also, the worlds that contribute only to the upper 
or both to the lower and upper probability will be the same, but with a different contribution in terms of probability (due to the 
different probability associated with the probabilistic facts). For instance, if the 𝑏𝑖𝑟𝑑𝑠∕1 facts are probabilistic with an associated 
probability of 0.3, we have the same answer sets, the worlds with the same probabilistic facts true as before contribute to the same 
bounds, but the lower and upper probability for the same query are now respectively P(𝑞) = 0.2352 and P(𝑞) = 0.3.

The authors of [21] studied the complexity of three inference tasks in the context of probabilistic answer set programming: cau-

tious reasoning, most probable explanation, and maximum a posteriori. In particular, cautious reasoning requires checking whether 
P(𝑞 ∣ 𝑒1, … , 𝑒𝑛) ≥ 𝛾 , where 𝑞 and all the 𝑒𝑖, 𝑖 ∈ [𝑖, … , 𝑛], are ground literals, and 𝛾 ∈ [0, 1]. The complexity of the three aforementioned 
tasks highly depends on the syntactical constructs allowed in programs, namely disjunction, negation, and aggregates: for cautious 
reasoning in bounded arity programs (i.e., non-ground programs were the arity of each predicate is bounded by a constant) with 

negation, disjunction in the head, and aggregates (sum, count, and max) it is PPΣ𝑝PP
3 , where PP is composed by the languages that can 

be decided in a polynomial number of steps by a probabilistic Turing machine with an error less than 0.5 for all the input instances.

2.3. The PASTA algorithm

The inference algorithm for PASTA programs proposed in [9] works as follows: after translating the conditionals as previously 
described, every probabilistic fact Π ∶∶ 𝑓 is converted into a choice rule {𝑓}. Then, the software enumerates all the answer sets 
projected [17] on the query and on the probabilistic facts. If we consider again Example 1 with query 𝑓𝑙𝑦(1), the probabilistic facts 
0.4 ∶∶ 𝑏𝑖𝑟𝑑(1..4) are translated into {𝑏𝑖𝑟𝑑(1..4)} and the probability is stored internally. This is because the probability associated 
with probabilistic facts does not influence the generation of the answer sets. The whole converted program has 20 projected (on the 
probabilistic facts 𝑏𝑖𝑟𝑑∕1 and query 𝑓𝑙𝑦(1)) answer sets in total (against the 32 total, non-projected, answer sets). The world 𝑤0 in 
Table 1, where all the probabilistic facts are true, is identified by two answer sets

bird(1) bird(2) bird(3) bird(4) fly(1)
bird(1) bird(2) bird(3) bird(4)

The first states that there is at least one answer set with the query true while the second that there is at least one answer set with the 
query false in the considered world. So, this world only contributes to the upper probability. Differently, for the world 𝑤2, with only 
𝑏𝑖𝑟𝑑(1) and 𝑏𝑖𝑟𝑑(2) included, we have a single answer set

bird(1) bird(2) fly(1)

meaning that there is at least one answer set with the query true and no answer sets with the query false or, in other words, all the 
answer sets for this world have the query true. So this world contributes to both the lower and upper probability. Again, for the 
world 𝑤8, we have

bird(2) bird(3) bird(4)

so no answer sets for this world have the query true, so it does not contribute to the probability bounds. All the projected answer 
sets are computed with a single call to the ASP solver and then analyzed one by one to reconstruct which world they represent. 
This approach cannot scale, since it requires the enumeration of 2𝑛+1 answer sets in the worst case (every world has more than one 
answer set and the query is true in some of these and false in others) and 2𝑛 in the best case (where every world has exactly one 
answer set), where 𝑛 is the number of probabilistic facts. However, there are statistical statements that allow the computation of the 
probability of a query in a lifted way, i.e., without enumerating all the answer sets. Table 1 already provides some hints, since some 
of the worlds have the same probability and contribute to the same probability bounds, such as 𝑤1, 𝑤3, 𝑤4 and 𝑤2, 𝑤5, and 𝑤6. The 
goal of this paper is to propose a set of equations to compactly compute the probability of a query in PASTA programs. The authors 
of [9] only discussed an exact algorithm based on enumeration. However, as we will show later, some configurations of statistical 
4

statements do not need such an enumeration, but a closed formula suffices, making exact inference applicable to larger domains.
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2.4. Lifted inference

The goal of lifted inference is to perform inference on a lifted level, i.e., to answer queries by considering the elements of a 
domain grouped according to certain criteria [11]. This allows to greatly speed up the computations, since individuals are not 
considered individually. Lifted inference approaches have been successfully applied in several scenarios with multiple techniques 
available [12,22–25]. Consider the following example of probabilistic logic program inspired from [22].

Example 2. The following probabilistic logic program has a non-ground probabilistic fact stating that an individual is sick (𝑠𝑖𝑐𝑘∕1) 
with probability 𝑝 or ill (𝑖𝑙𝑙∕1) if she has a friend that is sick.

p :: sick(Y).
ill(X) :- friends(X, Y), sick(Y).

By considering non-lifted inference, the program of Example 2 should be grounded and then the probability of a query, say 𝑖𝑙𝑙(𝑎), 
can be computed after encoding it into a compact form, such as Binary Decision Diagrams or Sentential Decision Diagrams [8,26]. As 
the size of the domain increases, inference becomes intractable. However, we can note that the probability of 𝑖𝑙𝑙(𝑎) can be computed 
by knowing only the number 𝑘 of friends of 𝑎, without grounding the program, with the formula 𝑃 (𝑖𝑙𝑙(𝑎)) = 1 − (1 − 𝑝)𝑘, since the 
body has an existentially quantified variable.

Lifted inference techniques have been applied to first-order languages. In the context of Probabilistic Logic Programming, the 
authors of [27] defined hierarchical probabilistic logic programs, where clauses are organized in a hierarchical way such that they 
can be represented with an arithmetic circuit, where inference is much cheaper. In [28], the authors introduced the classes of liftable 
PLP programs, a restriction of Probabilistic Logic Programming (under the distribution semantics) where inference can be performed 
at a lifted level. An overall survey can be found in [22]. The class of first order formulas restricted to two logical variables, denoted 
with 𝐹𝑂2 has been proved domain liftable [29], i.e., (weighted) model counting can be performed in a polynomial way with respect 
to the size of the domain. Despite all these approaches, to the best of our knowledge, none of them consider Probabilistic Answer 
Set Programming with aggregates, and therefore PASTA statements. In the following section, we identify some classes of PASTA 
programs and provide lifted formulas for the computation of the probability of a query.

3. Lifted inference for statistical statements

As usual in lifted inference, let us restrict the type of theories. We consider programs with only one conditional. Note that, in 
general, it is not always possible to simply group the worlds by probability and count their number, since worlds with the same 
probability may contribute differently to the lower and upper probability bounds. This is due to the presence of constraints with 
aggregates. We suppose that the probabilistic facts have the predicates 𝑎∕1, 𝑏∕1, and 𝑏∕2, and their arguments are increasing integer 
numbers, such as 𝑎(1), 𝑎(2), 𝑏(1), 𝑏(1, 1), and so on. Most of the following formulas involve the upper probability, but these can 
be straightforwardly extended to the lower probability, since the worlds to consider are the same, the only difference is in the 
contribution. We also use the terms random variable and probabilistic fact interchangeably. Furthermore, we suppose that every 
world has at least one stable model, as required by the credal semantics. This requirement already imposes some constraint on the 
structure of the conditionals, as stated in the following theorem.

Theorem 1. For a program with a single conditional of the form (𝑐(𝑋)|𝑎(𝑋))[𝑙𝑏, 𝑢𝑏] where 𝑎∕1 is defined by probabilistic facts, if 𝑙𝑏 > 0 and 
𝑢𝑏 < 1 there are some worlds without answer sets, so the program fails to have a credal semantics.

Proof of Theorem 1. The conversion of the conditional introduces two constraints: i) ∶− 10 ⋅ 𝑛𝑐𝑎 < 𝑙𝑏 ⋅ 𝑛𝑎 and ii) ∶− 10 ⋅ 𝑛𝑐𝑎 > 𝑢𝑏 ⋅ 𝑛𝑎

where 𝑛𝑐𝑎 and 𝑛𝑎 are respectively the results of the aggregates #𝑐𝑜𝑢𝑛𝑡{𝑋 ∶ 𝑐(𝑋), 𝑎(𝑋)} and #𝑐𝑜𝑢𝑛𝑡{𝑋 ∶ 𝑎(𝑋)}. For a world 𝑤, constraint 
i) imposes that the value of 𝑛𝑐𝑎 cannot be 0 when the value of 𝑛𝑎 is greater than 0. At the same time, ii) requires that 𝑛𝑐𝑎 cannot be 
equal to 𝑛𝑎. If we ignore the two constraints, every world including only one probabilistic fact 𝑎(𝑘) has only two answer sets: {a(k)} 
and {c(k) a(k)}. However, the first is removed by constraint i), since 𝑛𝑐𝑎 is 0, and the second by constraint ii), since here both 𝑛𝑐𝑎

and 𝑛𝑎 are 1. Thus, both answer sets are removed, and the world has no answer sets, so it is unsatisfiable and the conditional fails to 
have a credal semantics. □

Moreover, the following theorem also holds:

Theorem 2. For a program with a single conditional of the form (𝑐(𝑋)|𝑎(𝑋))[0, 𝑢𝑝] where 𝑎∕1 is defined by probabilistic facts and a ground 
query 𝑐(𝑗), P(𝑐(𝑗)) = 0.

Proof of Theorem 2. The conversion of the conditional includes into the answer set program a constraint that prevents the query 
being true in 100 ⋅ 𝑢𝑝% of the answer sets. Thus, the query can never be true in all the answer sets, thus none of the worlds contribute 
5

to the lower probability. □
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3.1. Conditionals with one variable

Let us start with the simplest program:

p::a(l..u).
(c(X)|a(X))[lb,ub].

We are interested in computing the lower and upper probabilities for a query 𝑐(𝑗), 𝑗 ∈ [𝑙, 𝑢]. We can identify two possible scenarios: 
the first, where 𝑝 = 0.5, and the second, with 𝑝 ≠ 0.5. After discussing these two cases, we expand the discussion to the case where 
there are different clusters of probabilities, that is, groups of probabilistic facts with the same probability. Let us denote with 𝑛 the 
number of probabilistic facts, i.e., 𝑛 = 𝑢 − 𝑙 + 1.

If all the random variables have probability 0.5, the probability of every world is 0.5𝑛, since, for each random variable 𝑥, 
𝑃 (𝑥) = 1 − 𝑃 (𝑥) = 0.5. In this case, we do not need to compute the probability and the answer sets for every world: we can consider 
only one world for each number of random variables true and compute the answer sets for it. Furthermore, we just need to consider 
2𝑛∕2 worlds, since only 2𝑛∕2 worlds have the corresponding 𝑎(𝑗) random variable set to true. There are 

(𝑛−1
𝑘

)
worlds with 𝑘 a’s true 

(we consider 𝑛 − 1 since we already fixed 𝑎(𝑗)), so

P(𝑞) = 0.5𝑛
(

𝑛−1∑
𝑖=0

(
𝑛− 1

𝑖

)
⋅ 𝛿𝑖+1(𝑞)

)
(1)

where

𝛿𝑖(𝑞) =
⎧⎪⎨⎪⎩
1 if q is true in at least one answer set for the world

with 𝑖 probabilistic facts true

0 otherwise

(2)

The equation for the lower probability is analogous, but with 𝛿𝑖(𝑞) replaced by 𝛿
𝑖
(𝑞) which is 1 if 𝑞 is true in every answer set for 

the world with 𝑖 probabilistic facts true, 0 otherwise. Overall, with this formula, with 𝑛 random variables we need to compute 𝑛 − 1
worlds and, for each world, the brave and cautious consequences for the upper and lower probability respectively. If we consider 
Example 1 where all the probabilities are set to 0.5, with 𝑞 = 𝑓𝑙𝑦(1) and 𝑛 = 4, Equation (1) requires computing

P(𝑞) = 0.54 ⋅ (1 ⋅ 𝛿1(𝑞) + 3 ⋅ 𝛿2(𝑞) + 3 ⋅ 𝛿3(𝑞) + 1 ⋅ 𝛿4(𝑞))

where all the 𝛿𝑖(𝑞) = 1, 𝑖 ∈ 1,… ,4, resulting in 0.5. For the lower probability, only 𝛿1(𝑞) and 𝛿2(𝑞) are 1, resulting in P(𝑞) = 0.25.

Consider now the case where the probability of the probabilistic facts is not 0.5, as in Example 1. Here, for each world, we may 
get a different probability value, so Equation (1) does not hold, but we can easily generalize it with:

P(𝑞) =
𝑛−1∑
𝑖=0

(
𝑛− 1

𝑖

)
⋅ 𝑝𝑖+1 ⋅ (1 − 𝑝)𝑛−1−𝑖 ⋅ 𝛿𝑖+1(𝑞). (3)

For the upper probability of the query 𝑓𝑙𝑦(1) of Example 1 we get:

1 ⋅ 0.41 ⋅ 0.63 ⋅ 𝛿1(𝑞) + 3 ⋅ 0.42 ⋅ 0.62 ⋅ 𝛿2(𝑞) + 3 ⋅ 0.43 ⋅ 0.61 ⋅ 𝛿3(𝑞) + 1 ⋅ 0.44 ⋅ 0.60 ⋅ 𝛿4(𝑞)

resulting in 0.4. For the lower probability we get 0.2592 since the worlds with 3 and 4 birds do not contribute. Equation (3) derives 
from the following theorem.

Theorem 3. Let 𝑃 be a program with a single conditional of the form (𝑐(𝑋)|𝑎(𝑋))[𝑙𝑏, 𝑢𝑏] and a set of probabilistic facts for 𝑎∕1 with 
an associated probability 𝑝. For a ground query 𝑐(𝑗), all the worlds that include the probabilistic fact 𝑎(𝑗) and have the same number of 
probabilistic facts true are indistinguishable.

Proof of Theorem 3. Consider two worlds, 𝑤𝑎 and 𝑤𝑏 with the same number 𝑛 of probabilistic facts true. Consider the constraint 
with the aggregates #𝑐𝑜𝑢𝑛𝑡{𝑋 ∶ 𝑎(𝑋)} and #𝑐𝑜𝑢𝑛𝑡{𝑋 ∶ 𝑐(𝑋), 𝑎(𝑋)}. The result of the first aggregate is fixed for the two worlds, since 
the number of probabilistic facts is the same and fixed. The second counts the number of 𝑐(𝑙) with the corresponding 𝑎(𝑙) true. There 
can be one or zero 𝑐(𝑙) for every 𝑎(𝑙), so at most 𝑛 𝑐’s in an answer set and at most 2𝑛 possible answer sets for both worlds. Some of 
these violate the constraint with the 𝑙𝑏 and 𝑢𝑏 bounds and are discarded. 𝑙𝑏 and 𝑢𝑏 are the same for both worlds, so the remaining 
number of answer sets for every number of 𝑐’s is the same. Thus, the two aggregates have the same value in the two worlds and the 
number of answer sets for every possible number of 𝑐’s is the same for 𝑤𝑎 and 𝑤𝑏 so they contribute to the same probability bounds 
with the same value and thus they are indistinguishable. □

In both cases, with the algorithm of [9] we need to compute at least 2𝑛 answer sets (possibly 2𝑛−1 by considering only the ones 
with 𝑎(𝑗) for the query 𝑐(𝑗)) with a single call to the ASP solver, while with the lifted algorithm we need to call the ASP solver 
2 ⋅ (𝑛 − 1) times to compute both brave and cautious consequences. Thus, a linear number of answer sets instead of exponential. In 
6

Section 4 we will empirically assess this improvement by running some experiments.
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Let us focus now on a more interesting scenario, where there are 2 or more probability clusters (i.e., some random variables have 
the same probability). In the previous case, there was only one probability cluster. In the worst case, there will be 𝐶 probability 
clusters, one for each random variable (all with different probabilities), so the approach will eventually require the computation of 
all the worlds, with an exponential complexity in the number of random variables. Consider an extension of the program shown 
before, where there are two clusters with probability 𝑝0 and 𝑝1:

p0::a(l0..u0).
p1::a(l1..u1).
(c(X)|a(X))[lb,ub].

Example 3. We can modify Example 1 and consider 5 individuals and 2 probability clusters, 0.2, with 3 variables, and 0.3, with 2 
variables:

0.2::bird(1..3).
0.3::bird(4..5).

Consider the query 𝑞 = 𝑓𝑙𝑦(1). We can already halve the number of worlds to consider and remove 𝑏𝑖𝑟𝑑(1) from the first cluster, as 
previously discussed. We can describe the worlds using the product of different binomial coefficients. For the world with 5 birds (all 
bird facts true), one is fixed and must be true (𝑏𝑖𝑟𝑑(1)). For the others, we need to select the birds for all the clusters. This can be 
represented with 

(2
2

)
⋅
(2
2

)
= 1. If we consider 4 birds, we can select two birds from the first cluster and one from the other, or vice 

versa, obtaining 4 possible combinations: 
(2
2

)
⋅
(2
1

)
+
(2
1

)
⋅
(2
2

)
= 4. The remaining combinations are 

(2
2

)
⋅
(2
0

)
+
(2
1

)
⋅
(2
1

)
+
(2
0

)
⋅
(2
2

)
= 6 for 3 

birds, 
(2
1

)
⋅
(2
0

)
+
(2
0

)
⋅
(2
1

)
= 4 for 2 birds, and 

(2
0

)
⋅
(2
0

)
= 1 for 1 bird (𝑏𝑖𝑟𝑑(1)). In total, as expected, we consider 1 +4 +6 +4 +1 = 16 = 25−1

worlds. Let us now call representative product the product of the binomials in every term of the sum. We do not need to compute 
the probabilities for all the worlds since some of them are indistinguishable (i.e., have the same probability), but we just need to 
consider, for every number of probabilistic facts selected, a number of worlds equal to the number of representative products. We 
have: 1 world with 4 birds + 1 (we need to compute its probability), 4 worlds with 3 birds + 1 (we need to compute the probability 
only for two worlds), 6 worlds with 2 birds + 1 (we need to compute the probability of only three worlds), 4 worlds with 1 bird 
+ 1 (we need to compute the probability only for two worlds), and 1 world with 0 birds + 1 (we need to compute its probability). 
Overall, we calculate 1 + 2 + 3 + 2 + 1 = 9 (instead of 24 = 16) worlds and their respective cautious and brave consequences.

The problem now translates to the generation of the 𝑘𝑖s for binomials 
(𝑛𝑖
𝑘𝑖

)
in every representative product, where 𝑛𝑖 is the number 

of random variables in the cluster with probability 𝑝𝑖. Recall from combinatorics the following definition [30]:

Definition 1 (Composition). A composition is a way of writing an integer 𝑛 as a sum of 𝑚 integers > 0 where the order of the addends 
is significant. If the numbers are ≥ 0 (i.e., 0 is admitted), it is called weak composition. To count the number of weak compositions 
we need to bound the number of possible terms. For example, if 𝑛 = 3, its compositions are 3, 2 + 1, 1 + 1 + 1, 1 + 2, while some of its 
weak compositions of size 3 are 3 + 0 + 0, 2 + 1 + 0, . . . .

Weak compositions of length 𝑚 (the number of clusters) are needed to generate the 𝑘𝑖s for the binomials. Among all the weak 
compositions, we need to select the ones that are compatible with the number of random variables in the clusters. We indicate 
the weak compositions with the tuple (𝑘1, … , 𝑘𝑚), where 𝑘𝑙 ≥ 0 and ∑𝑙 𝑘𝑙 = 𝑖 (where 𝑖 is the number of random variables currently 
considered) and each 𝑘𝑙 represents the number of elements selected for the cluster 𝑙. If we have 3 random variables and 2 probability 
clusters, one with 1 random variable and the other with 2, the weak composition (3, 0) cannot be considered since the first cluster 
has 2 elements, while the weak composition (2, 1) can. We call the weak compositions where ∀𝑙, 𝑘𝑙 ≤ 𝑛𝑙 , admissible, where 𝑛𝑙 is the 
number of variables in the cluster 𝑙. Thus, we are interested only in admissible weak compositions.

If we consider again the bird example, with 10 total birds with all the same probability and query 𝑓𝑙𝑦(1), there are 
(9
5

)
= 126

worlds with 6 birds but we just need to consider one. If instead we have two probability clusters with 5 birds each (suppose that 
𝑏𝑖𝑟𝑑(1) involved in the query is in the first cluster) we still have(

4
0

)
⋅
(
5
5

)
+
(
4
1

)
⋅
(
5
4

)
+
(
4
2

)
⋅
(
5
3

)
+
(
4
3

)
⋅
(
5
2

)
+
(
4
4

)
⋅
(
5
1

)
= 126

worlds with 6 birds but 5 to consider (instead of 1), one for each representative product, and compute the cautious and brave 
consequences for these. Similarly for the other numbers of birds. Note that the 𝑛𝑖s for every representative product sum to the 
number of birds that can be chosen (9) and the 𝑘𝑖s sum to the number of birds considered (5 here). If 𝑛 is the total number of random 
variables (note again that one is fixed to true as previously discussed), 𝑘𝑖𝑙 is the 𝑙-th element of the weak composition representing 
the cluster 𝑙 for the current number of variables 𝑖 considered, and there are 𝐶 clusters, we get:

P(𝑞) =
𝑛−1∑
𝑖=0

⏟⏟⏟
A

𝛿𝑖(𝑞)
⏟⏟⏟

B

⋅
∑

𝑘𝑖1+𝑘𝑖2+⋯+𝑘𝑖𝐶=𝑖
𝑘𝑖𝑙≥0
𝑘𝑖𝑙≤𝑛𝑙

𝐶∏
𝑙=1

⏟⏟⏟
D

(
𝑛𝑙

𝑘𝑖𝑙

)
⏟⏟⏟

E

⋅𝑝𝑘𝑖𝑙

𝑙
⋅ (1 − 𝑝𝑙)𝑛𝑙−𝑘𝑖𝑙

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
F

⋅ 𝑝fix
⏟⏟⏟

G

. (4)
7

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
C
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If 𝐶 = 1 (only one cluster) we obtain Equation (3). Equation (4) has many terms, let us analyze them one by one: A is the sum over 
all the number of random variables 𝑖; B is as in Equation (2); C is the sum over all the possible admissible weak compositions, where 
𝐶 is the (number of clusters); D is the product over all the clusters; E is the number of elements selected for the current cluster; F is 
the contribution to the probability of the query of the current cluster; G is the probability of the fixed probabilistic fact. The formula 
for the lower probability is analogous, but with 𝛿𝑖(𝑞) replaced with 𝛿

𝑖
(𝑞) discussed above. The correctness of Equation (4) is proven 

in the following theorem.

Theorem 4. Let 𝑃 be a program with a single conditional of the form (𝑐(𝑋)|𝑎(𝑋))[𝑙𝑏, 𝑢𝑏] and a set of probabilistic facts for 𝑎∕1 with 
(possibly) different probabilities. Then, the probability of a query 𝑐(𝑗) can be computed with Equation (4) by considering only the worlds that 
include 𝑎(𝑗).

Proof of Theorem 4. We prove the correctness of Equation (4) by induction. Consider the base case, where there is only 1 cluster, 
i.e., all the probabilistic facts have the same probability. In this case, we fallback to Equation (3), whose correctness is proved 
by means of Theorem 3. Consider now the case of 𝐶 + 1 clusters and suppose that the formula holds for 𝐶 clusters with 𝑛 total 
probabilistic facts (of which one is fixed). That is, for 𝐶 clusters, the formula considers the contribution of all the 2𝑛−1 worlds. 
Suppose there are 𝑣 probabilistic facts in the (𝐶 +1)-th cluster with an associated probability of 𝑝𝐶+1. By introducing the new cluster 
we need to consider the contribution of 2𝑣 more worlds. We need to multiply the formula for 𝐶 clusters by ∑𝑣

𝑟=0
(𝑣
𝑟

)
⋅ 𝑝𝑟

𝐶+1 ⋅ (1 −
𝑝𝐶+1)𝑣−𝑟 and consider 𝛿𝑖+𝑟(𝑞) instead of 𝛿𝑖(𝑞). This is equivalent to extend the summation 𝐴 up to 𝑛 − 1 + 𝑣, the summation 𝐶 over 
𝑘𝑖1 + 𝑘𝑖2 +⋯ + 𝑘𝑖𝐶 + 𝑘𝑖𝐶+1, and the product 𝐷 up to 𝐶 + 1, and we obtain again Equation (4). The worlds are grouped by the number 
of probabilistic facts, and we know from Theorem 3 that these contribute to the same probability bounds. □

Example 4 (Computation of the probability of Example 3). Let us apply Equation (4) to Example 3 with query 𝑞 = 𝑓𝑙𝑦(1). For the upper 
probability we have 𝑛 = 5, 𝑛1 = 2, 𝑛2 = 2, 𝐶 = 2, 𝑝fix = 𝑝1 = 0.2, 𝑝2 = 0.3. For the summation A we have five terms. D is always over 2 
terms (𝑙 = 1 and 𝑙 = 2). For example, for 𝑖 = 1 there are two weak compositions and both are admissible, so C is over 2 terms: (0, 1)
and (1, 0). For 𝑖 = 1 and 𝑙 = 1, C, D, E, F, and G results in:(

2
0

)(
2
1

)
⋅ 𝑝01 ⋅ (1 − 𝑝1)2 ⋅ 𝑝12 ⋅ (1 − 𝑝2)1 ⋅ 𝑝fix +

(
2
1

)(
2
0

)
⋅ 𝑝11 ⋅ (1 − 𝑝1)1 ⋅ 𝑝02 ⋅ (1 − 𝑝2)2 ⋅ 𝑝fix

which is 2 ⋅ 0.82 ⋅ 0.3 ⋅ 0.7 ⋅ 0.2 + 2 ⋅ 0.2 ⋅ 0.8 ⋅ 0.72 ⋅ 0.2 = 0.08512. Overall, we get the following summations for 𝑖 from 0 to 4: 0.0627 +
0.08512 + 0.04232 + 0.00912 + 0.00072 = 0.2, which is the value of the upper probability since 𝛿𝑖(𝑞) = 1 for 𝑖 ∈ {0, … , 4}. For the 
lower probability we only have the first two terms of the sum, so 0.0627 + 0.08512 = 0.14782. Note that for 𝑖 = 3, there are 4 weak 
compositions but only (2, 1) and (1, 2) are admissible, so the sum is only over 2 elements instead of 4. Similarly, with 𝑖 = 4, where out 
of 5 possible weak compositions, only (2, 2) is admissible.

The number of probabilistic facts and clusters is fixed. The variable part is the number of admissible weak compositions for 
the number of probabilistic facts selected. If all the clusters have the same number of elements, we can consider the following 
lemma [30]:

Lemma 1. Let 𝑤(𝑛, 𝑗, 𝑘) be the number of weak compositions of 𝑛 into 𝑘 parts, where each part must be less than 𝑗. Then,

𝑤(𝑛, 𝑗, 𝑘) =
∑

𝑟+𝑠𝑗=𝑛

(−1)𝑠
(
𝑘+ 𝑟− 1

𝑟

)(
𝑘

𝑠

)
for every pair (𝑟, 𝑠) ∈ℕ2 such that 𝑟 + 𝑠𝑗 = 𝑛.

So, in this case, the sum in C of Equation (4) will be over 𝑤(𝑛, 𝑗, 𝑘) terms.

3.2. Variable in the antecedent not appearing in the consequent

Consider conditionals of the form

(c(X)|a(X),b(Y))[lb,ub].

where 𝑎∕1 and 𝑏∕1 are defined by probabilistic facts with the same probability. We would like to remove the dependency of this 
conditional from 𝑏∕1, since the variable 𝑌 in 𝑏(𝑌 ) does not appear elsewhere. Thus, the goal is to obtain a conditional

(c1(X)|a(X))[l1,u1].

such that P(𝑐1(𝑗)) = P(𝑐(𝑗)) and P(𝑐1(𝑗)) = P(𝑐(𝑗)), since the latter is liftable (Equation (3)). Let us start from the constraints. We note 
that #𝑐𝑜𝑢𝑛𝑡{𝑋 ∶ 𝑎(𝑋)} counts the number of 𝑎’s, while #𝑐𝑜𝑢𝑛𝑡{𝑋, 𝑌 ∶ 𝑎(𝑋), 𝑏(𝑌 )} counts the pairs of 𝑎’s and 𝑏’s. If 𝑛𝑎 is the number of 
𝑎’s and 𝑛𝑏 is the number of 𝑏’s, the former aggregate results in 𝑛𝑎 while the latter in 𝑛𝑎 ⋅ 𝑛𝑏. Similarly for #𝑐𝑜𝑢𝑛𝑡{𝑋 ∶ 𝑐1(𝑋), 𝑎(𝑋)} and 
#𝑐𝑜𝑢𝑛𝑡{𝑋, 𝑌 ∶ 𝑐1(𝑋), 𝑎(𝑋), 𝑏(𝑌 )}, where the former counts the number 𝑛𝑐1 of 𝑐1’s (since 𝑐1(𝑖) is true if 𝑎(𝑖) is true, but not necessarily 
8

vice versa) while the latter the product of the count 𝑛𝑐1 of 𝑐1’s and the count of 𝑏’s. Thus, if we consider the lower bound of the 
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original conditional we have ∶− 10 ⋅ 𝑛𝑎 ⋅ 𝑛𝑏 < 𝑙𝑏 ⋅ 𝑛𝑐 ⋅ 𝑛𝑏. We can simplify and remove the dependency on 𝑏∕1 (by supposing that 𝑛𝑏 is 
greater than 0) and we obtain ∶− 10 ⋅ 𝑛𝑎 < 𝑙𝑏 ⋅ 𝑛𝑐 , which is exactly the constraint for the lower bound for (𝑐1(𝑋)|𝑎(𝑋))[𝑙1, 𝑢1]. Thus, 
𝑙1 = 𝑙𝑏 and 𝑢1 = 𝑢𝑏. Consider now the computation of the upper probability. The first thing to note is that the conditional with both 
𝑎∕1 and 𝑏∕1 requires that at least one of the 𝑏∕1 is true, but the combinations of the 𝑎∕1 that make 𝑐∕1 true are the same as the 
conditional without 𝑏∕1. Thus, P(𝑐1(𝑗)) > P(𝑐(𝑗)). To compute the difference of the two probabilities we need to subtract from P(𝑐1(𝑗))
the probability for all the worlds where all the 𝑏∕1 are false in the initial conditional. Call 𝑘(𝑎, 𝑏) the set containing all the worlds 
obtained by selecting the 𝑎’s in all possible ways while all the 𝑏’s are false. We have:

P(𝑐(𝑗)) = P(𝑐1(𝑗)) −
∑

𝑤∈𝑘(𝑎,𝑏)
𝑃 (𝑤).

𝑘(𝑎, 𝑏) contains an exponential (2𝑛) number of elements. However, we can avoid computing all of these, since they can be grouped 
in clusters where each cluster contains a fixed number of 𝑎’s true (as previously discussed). Call 𝑝𝑘 =

∏
𝑙 1 − P(𝑏(𝑙)). We need to 

enumerate all the worlds and compute their contribution to the probability for the query 𝑐(𝑗). We can leverage Equation (3) to avoid 
this enumeration and compute P(𝑐1(𝑗)). Lastly, P(𝑐1(𝑗)) must be multiplied by 𝑝𝑘, to account for the fact that all the 𝑏(𝑖) are false in 
the original conditional. Overall, we get:

P(𝑐(𝑗)) = P(𝑐1(𝑗)) − P(𝑐1(𝑗)) ⋅ 𝑝𝑘 = P(𝑐1(𝑗)) ⋅ (1 − 𝑝𝑘).

Thus, the dependency from the 𝑏∕1 can be removed. The same considerations hold for the lower probability and can be as well 
extended to consider multiple probability clusters, as in Equation (4).

To clarify, consider the following program:

0.4::a(1..3).
0.4::b(1..3).
(c(X)|a(X),b(Y))[0.4,1].

with query 𝑐(1), that has probability in the range [0.112896, 0.3136]. If we remove the dependency from 𝑏∕1, we get the range 
[0.144, 0.4]. If we consider only the 𝑎’s, there are 23 = 8 worlds. Half of them (4) can be ignored since 𝑎(1) is false. The remaining 
have probability 0.064 (one world with 3 𝑎’s true), 0.096 (2 worlds with 2 𝑎’s true), and 0.144 (1 world with a single 𝑎 true). Then, 
𝑝𝑘 = (1 − 0.4)3. P(𝑐(1)) = 0.144 ⋅ (1 − 𝑝𝑘) = 0.112896 which is exactly the value of the lower probability. For the upper probability, 
P(𝑐(1)) = 0.4 ⋅ (1 − 𝑝𝑘) = 0.3136.

3.3. A binary predicate in the antecedent

Consider now conditionals of the form

(c(X)|a(X),b(X,Y))[lb,ub].

with the query 𝑐(𝑖). We have two possible cases: there is exactly one 𝑏(𝑗, _) for every 𝑎(𝑗) or there are multiple 𝑏(𝑗, _) for a given 𝑎(𝑗). 
Let us focus on the first case and suppose that all the probabilistic facts have the same probability. Note that if there are some 𝑏(𝑘, _)
such that 𝑎(𝑘) is not present in the program, these can be removed, and it is proven in the following theorem.

Theorem 5. Let 𝑃 be a program with a single conditional of the form (𝑐(𝑋)|𝑎(𝑋), 𝑏(𝑋, 𝑌 ))[𝑙𝑏, 𝑢𝑏] and a set of probabilistic facts for 𝑎∕1 and 
𝑏∕2. If for a given 𝑏(𝑘, _) there is not a corresponding 𝑎(𝑘) or for a given 𝑎(𝑘) there is not at least one 𝑏(𝑘, _), then, for the former case, all the 
probabilistic facts of the form 𝑏(𝑘, _), and for the latter case all the probabilistic facts 𝑎(𝑘), can be ignored and removed from the program.

Proof of Theorem 5. After applying the translation for conditionals described in Section 2, we get the aggregates 𝐶1 = #𝑐𝑜𝑢𝑛𝑡{𝑋, 𝑌 ∶
𝑎(𝑋), 𝑏(𝑋, 𝑌 )} and 𝐶2 = #𝑐𝑜𝑢𝑛𝑡{𝑋, 𝑌 ∶ 𝑐(𝑋), 𝑎(𝑋), 𝑏(𝑋, 𝑌 )}. 𝐶1 counts the tuples (𝑋, 𝑌 ) such that both 𝑎(𝑋) and 𝑏(𝑋, 𝑌 ) are true. Thus, 
for (𝑋, 𝑌 ), if 𝑎(𝑋) is not paired with a 𝑏(𝑋, 𝑌 ) (whether it is set to false in the current world or not present in the program) or vice 
versa, the tuple is not considered, so does not contribute to the count. Similarly for 𝐶2, where we also have an additional atom to 
consider. Moreover, the antecedent 𝑎(𝑋), 𝑏(𝑋, 𝑌 ), after applying the translation for conditionals described in Section 2 is considered 
as the body of a clause with head 𝑐(𝑋). To make 𝑐(𝑋) true both 𝑎(𝑋) and 𝑏(𝑋, 𝑌 ) must be true. If there are (is) no 𝑏(𝑋, 𝑌 ) (𝑎(𝑋)) for 
a given 𝑎(𝑋) (𝑏(𝑋, 𝑌 )) in the program, there is not a contribution to neither 𝐶1 nor 𝐶2, since the two will be always unpaired, so the 
𝑏(𝑋, 𝑌 ) (𝑎(𝑋)) can be removed from the program. Note that, if for a particular world, 𝑎(𝑋) is true while 𝑏(𝑋, 𝑌 ) is false, or vice versa, 
𝑎(𝑋)∕𝑏(𝑋, 𝑌 ) cannot be removed since it is only set to false in the current world. □

Let us denote with 𝛿𝑤(𝑞) the contribution, either to the lower and the upper, only to the upper, or to none of the two bounds, of 
a world 𝑤 for a query 𝑞. The first thing to note is that the worlds with the same probability are no more indistinguishable, i.e., they 
may contribute differently to the lower and upper probability, proven by the following theorem.

Theorem 6. Let 𝑃 be a program with a single conditional of the form (𝑐(𝑋)|𝑎(𝑋), 𝑏(𝑋, 𝑌 ))[𝑙𝑏, 𝑢𝑏] where the 𝑎∕1 and 𝑏∕2 are defined with 
9

probabilistic facts with the same probability. For all the pair of worlds 𝑤𝑖 and 𝑤𝑗 , 𝑃 (𝑤𝑖) = 𝑃 (𝑤𝑗 ) ̸⟹ 𝛿𝑤𝑖
(𝑞) = 𝛿𝑤𝑗

(𝑞).
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To see why Theorem 6 holds, consider Example 5.

Example 5. The following program has 6 probabilistic facts.

0.4::a(1..3).
0.4::b(1..3,1).
(c(X)|a(X),b(X,Y))[0.4,1].

Consider the query 𝑐(1). The worlds 𝑤𝑗 = {𝑎(1), 𝑎(2), 𝑛𝑜𝑡 𝑎(3), 𝑏(1, 1), 𝑏(2, 1), 𝑛𝑜𝑡 𝑏(3, 1)} and 𝑤𝑘 = {𝑎(1), 𝑎(2), 𝑛𝑜𝑡 𝑎(3), 𝑏(1, 1), 𝑛𝑜𝑡 𝑏(2, 1), 
𝑏(3, 1)} (where with 𝑛𝑜𝑡 𝑓 we indicate that the probabilistic fact 𝑓 is not included) have the same probability (0.009216) but the 
former contributes only to upper probability while the latter contributes to both the lower and upper probability.

Thus, we cannot simply group the worlds by the number of random variables true and count them. Let us order the probabilistic 
facts for 𝑎∕1 and 𝑏∕2 such that 𝑎(𝑗) is in position 𝑗 and 𝑏(𝑗, _) is in position 𝑛∕2 + 𝑗 (note that 𝑛 is always even). We represent each 
world with a binary string where the bit at position 𝑗 is true if the corresponding probabilistic fact is true, 0 otherwise. For example, 
the binary strings 110|110 and 110|101 are the representation of 𝑤𝑗 and 𝑤𝑘 of Example 5 respectively. Consider the query 𝑐(1). Then, 
𝑎(1) and 𝑏(1, 1) must always be true, so we can ignore them in the binary string representation. So, 𝑤𝑗 = 10|10 and 𝑤𝑘 = 10|01. The 
aggregate #𝑐𝑜𝑢𝑛𝑡{𝑋, 𝑌 ∶ 𝑎(𝑋), 𝑏(𝑋, 𝑌 )} counts the number of pairs (𝑋, 𝑌 ) such that 𝑎(𝑋) and 𝑏(𝑋, 𝑌 ) are both true. For 𝑤𝑗 and 𝑤𝑘, 
this aggregate results in 1 and 0 respectively. In conclusion, we can count the number of 1s in corresponding positions (i.e., 𝑗 and 
𝑗 + 𝑛∕2) and group the worlds by this number, since all give different contributions but to the same probability bounds. For example, 
𝑤𝑗 contributes to the same probability bounds as 𝑤𝑙 = 10|11, but with a different probability value. Overall, if 𝑛 is the number of 
probabilistic facts minus the two that must be fixed, we get (for the upper probability):

P(𝑞) = 𝑝𝑘

𝑛∑
𝑖=0

𝑛∕2∑
𝑘=0

𝛿𝑖𝑘(𝑞) ⋅ 𝜌(𝑛, 𝑘, 𝑖) ⋅ 𝑝𝑖 ⋅ (1 − 𝑝)𝑛−𝑖 (5)

where 𝑝𝑘 = 𝑃 (𝑎(1)) ⋅𝑃 (𝑏(1, 1)) and with 𝜌(𝑛, 𝑘, 𝑖) we indicate the number of possible worlds such that the number of 1s in corresponding 
positions in a string of length 𝑛∕2 of the representation of a world (we call this value overlap) equals 𝑘 and there are 𝑖 1s in the string, 
and 𝛿𝑖𝑘(𝑞) is 1 if the query is true in at least one answer set for a world with 𝑖 probabilistic facts true and 𝑘 overlaps, 0 otherwise. 
For example, if 𝑛𝑎 = 𝑛𝑏 = 𝑛∕2 = 2, 𝑘 = 0, and 𝑖 = 1, we have 𝜌(4, 0, 1) = 4 where the elements are {10|00, 01|00, 00|10, 00|01}. Note that 
here the length of a binary string representing a world is always even, since for each 𝑎(𝑗) there is exactly one 𝑏(𝑗, _). The correctness 
of Equation (5) derives from the following theorem.

Theorem 7. Let 𝑃 be a program with a single conditional of the form (𝑐(𝑋)|𝑎(𝑋), 𝑏(𝑋, 𝑌 ))[𝑙𝑏, 𝑢𝑏] where the 𝑎∕1 and 𝑏∕2 are defined with 
probabilistic facts with the same probability and there is exactly 1 𝑏(𝑖, _) for every 𝑎(𝑖) and vice versa. Then, the worlds with the same number 
of overlaps contribute to the same probability bounds.

Proof of Theorem 7. As for the other theorems, focus first on the aggregate #𝑐𝑜𝑢𝑛𝑡{𝑋, 𝑌 ∶ 𝑎(𝑋), 𝑏(𝑋, 𝑌 )}. By hypothesis, there is 
exactly 1 𝑏(𝑖, _) for every 𝑎(𝑖). Thus, the aggregate counts the pairs (𝑎(𝑖), 𝑏(𝑖, _)) true in every world. If there is an 𝑎∕1 or 𝑏∕2 unpaired, 
this does not contribute to the count. Similarly happens with the aggregate with also 𝑐(𝑋) in the conjunction. Since the constraint 
is the only element that possibly eliminates some of the answer sets for a given world, if two worlds have the same count for both 
of the aggregates, clearly the constraint is imposed with the same values, so the two worlds will contribute to the same probability 
bounds, but with a possibly different probability value (depending on the probabilities of the probabilistic facts). □

Let us discuss the value of 𝜌(𝑛, 𝑘, 𝑖) of Equation (5). We can see that if the number of possible 1s (𝑖) is less than half of the overlaps 
(𝑘), its value is 0. Otherwise, we can fix the 1s in the first half of the string and position the remaining. So, for each 𝑖, we can place 
from 𝑘 to the minimum between 𝑛∕2 and 𝑖 1s in the first half of the string and count all the possible ways to place the others in 
the remaining half. However, this is not correct, since we need to ignore the 1s that may be placed in the second half but increase 
the number of overlaps. For example, if 𝑛 = 6, 𝑘 = 1, 𝑖 = 4, and the first half of the string is 110, there are 

(3
2

)
possible ways to fix 

the remaining 1s in the second half: 110, 101, 011. However, 110 must be ignored, since there are 2 overlaps for this combination, 
and not 1 as required. If we consider the program shown in Example 5 with the query 𝑐(1), once we fix 𝑎(1) and 𝑏(1, 1), we have 9 
worlds (1 with 2 facts true, 4 with 3 facts true, and 4 with 4 facts true) with 0 overlaps (without considering the 𝑎(1) and 𝑏(1, 1)) 
that contribute to the upper probability while the other 6 (2 with 4 facts true and 4 with 5 facts true) with 1 overlap and 1 with 
2 overlaps (1 with 6 facts true) contribute to both the lower and upper probability. Overall, we get 𝑃 (𝑐(𝑗)) = [0.112896, 0.16]. The 
number of overlaps can be computed with the formula:

𝜌(𝑛, 𝑘, 𝑖) =
𝑚𝑖𝑛(𝑛∕2,𝑖−𝑘)∑

𝑛𝑎=𝑘

(
𝑛∕2
𝑛𝑎

)
⏟⏟⏟

𝐴

⋅
(
𝑛𝑎

𝑘

)
⏟⏟⏟

𝐵

⋅
(

𝑛∕2 − 𝑛𝑎

𝑖− 𝑛𝑎 − 𝑘

)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝐶

(6)

where 𝐴 is the number of ways to place 𝑛𝑎 1s in the first half of the string, which has length 𝑛∕2, 𝐵 is the number of ways to satisfy 
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the number of overlaps, i.e., to place 𝑘 1s in the second half of the string to match the required number of overlaps with 𝑛𝑎 1s in the 
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first half of the string, and 𝐶 is the number of ways to place in the remaining 𝑛∕2 − 𝑛𝑎 positions of the second half of the string the 
remaining 𝑖 − 𝑛𝑎 − 𝑘 1s. The value 𝑛𝑎 ranges between 𝑘, the number of overlaps, and the minimum between 𝑛∕2, half of the length of 
the string, and 𝑖 − 𝑘, the difference between the total number of 1s and the required overlaps.

Finally, in the most general case where there are multiple 𝑏(𝑗, _) for a given 𝑎(𝑗), we cannot simply examine the overlaps as defined 
before, since the variables are not necessary in an even number. A possible idea could consist in still creating a binary string with a 
length double than the number of 𝑎∕1 and, for each 𝑎(𝑗), set the corresponding bit in the position 𝑗 + 𝑛 to 0 if none of the 𝑏(𝑗, _) are 
true, to 1 otherwise, and apply the same process as before. However, as discussed in Example 6, this yields a wrong result.

Example 6. Consider the query 𝑐(1) asked in the following program:

0.3::a(1..2).
0.3::b(1..2,1..2).

(c(X)|a(X),b(X,Y))[0.4,1].

There are 22+2⋅2 = 26 = 64 possible worlds. The worlds, for example, 𝑤0 = {𝑎(1), 𝑎(2), 𝑏(1, 1), 𝑛𝑜𝑡 𝑏(1, 2), 𝑏(2, 1), 𝑏(2, 2)} and 𝑤1 = {𝑎(1), 
𝑎(2), 𝑏(1, 1), 𝑏(1, 2), 𝑏(2, 1), 𝑛𝑜𝑡 𝑏(2, 2)} have the same number of probabilistic facts true (5), the same probability (0.35 ⋅ 0.7 = 0.001701), 
and the same overlaps (3) as defined for Equation (5), but 𝑤0 contributes to the upper probability while 𝑤1 to both the lower 
and upper probability. This is because, if we ignore the constraint with the aggregates, for 𝑤0, we get the following answer sets 
(we hide the probabilistic facts since they are set to be true): {𝑐𝑎𝑏(3) 𝑐𝑎𝑏𝑐(0)}, {𝑐𝑎𝑏(3) 𝑐(1) 𝑐𝑎𝑏𝑐(1)}, {𝑐𝑎𝑏(3) 𝑐(2) 𝑐𝑎𝑏𝑐(2)}, and 
{𝑐𝑎𝑏(3) 𝑐(1) 𝑐(2) 𝑐𝑎𝑏𝑐(3)}, where with 𝑐𝑎𝑏∕1 we indicate the result of the aggregate counting the pairs (𝑎(𝑋), 𝑏(𝑋, 𝑌 )) while with 𝑐𝑎𝑏𝑐∕1
the result of the aggregate counting the tuples (𝑐(𝑋), 𝑎(𝑋), 𝑏(𝑋, 𝑌 )). For 𝑤1: {𝑐𝑎𝑏(3) 𝑐𝑎𝑏𝑐(0)}, {𝑐𝑎𝑏(3) 𝑐(2) 𝑐𝑎𝑏𝑐(1)}, {𝑐𝑎𝑏(3) 𝑐(1) 𝑐𝑎𝑏𝑐(2)}, 
and {𝑐𝑎𝑏(3) 𝑐(1) 𝑐(2) 𝑐𝑎𝑏𝑐(3)}. By considering the constraint, for 𝑤0 only {𝑐𝑎𝑏(3) 𝑐(2) 𝑐𝑎𝑏𝑐(2)} and {𝑐𝑎𝑏(3) 𝑐(1) 𝑐(2) 𝑐𝑎𝑏𝑐(3)} remain: 
𝑐(1) is true in only one of the two, so we get a contribution only to the upper bound. For 𝑤1 we have {𝑐𝑎𝑏(3) 𝑐(1) 𝑐𝑎𝑏𝑐(2)} and 
{𝑐𝑎𝑏(3) 𝑐(1) 𝑐(2) 𝑐𝑎𝑏𝑐(3)}: 𝑐(1) is true in both, so we have a contribution to both the probability bounds.

To properly define an equation to compute the probability of a query for these conditionals we need to consider, as in Equation (4), 
the possible weak compositions, but in this case the clusters are on the number of random variables 𝑎(1), … , 𝑎(𝑛), 𝑏(1, _), … , 𝑏(𝑛, _), 
that we denote with increasing indexes, from 1 to 𝐶 . Note that 𝑛𝑚 = 1 for each 𝑎(𝑚) and 𝐶 is twice the number of atoms for 𝑎∕1 since 
there is at least one 𝑏(𝑖, _) for every 𝑎(𝑖). For each index 1, … , 𝐶 , we have 𝑛1, … , 𝑛𝐶 possible random variables. For example, in the 
program of Example 6, we can associate index 1 to 𝑎(1) with 𝑛𝑎(1) = 1, 2 to 𝑎(2) with 𝑛𝑎(2) = 1, 3 to 𝑏(1, _) with 𝑛𝑏(1,_) = 2 (since we 
have 𝑏(1, 1) and 𝑏(1, 2)), and 4 to 𝑏(2, _) with 𝑛𝑏(2,_) = 2 (𝑏(2, 1) and 𝑏(2, 2)). However, this is not sufficient because, in addition to this, 
we also need to consider the overlaps and the number of corresponding 𝑎(𝑖) and 𝑏(𝑖, _) for a query 𝑐(𝑖). Without loss of generality, for 
a query 𝑞 = 𝑐(1) we get:

P(𝑞) =
𝑛∑

𝑖=2

𝑛∕2∑
𝑜=1

𝑛𝑏(1,_)∑
𝑏=1

∑
𝐾𝑖∈𝑤𝑐(𝑖,𝑜,𝑏)

𝐾𝑖=(𝑘𝑖1+𝑘𝑖2+⋯+𝑘𝑖𝐶 )

𝛿𝐾𝑖
(𝑞) ⋅ 𝑝𝑖 ⋅ (1 − 𝑝)𝑛−𝑖 ⋅

𝐶∏
𝑙=1

(
𝑛𝑙

𝑘𝑖𝑙

)
. (7)

𝑤𝑐(𝑖, 𝑜, 𝑏) is the set of all the weak compositions (𝑘𝑖1, 𝑘𝑖2, … , 𝑘𝑖𝐶 ) satisfying 𝑘𝑖1 + 𝑘𝑖2 +⋯ + 𝑘𝑖𝐶 = 𝑖 (number of probabilistic facts true), 
𝑘𝑖𝑙 ≥ 0, 𝑘𝑖𝑙 ≤ 𝑛𝑙 , 𝑘𝑖1, 𝑘𝑖(𝐶∕2) > 0 (this since we suppose the query is 𝑐(1), thus the first element of the weak composition contains the 
number of 𝑎(1) while the one at the half of the tuple is the number of 𝑏(1, _); in other words, this constraint imposes that 𝑎(1) and at 
least one 𝑏(1, _) should be true), and with o overlaps and 𝑛𝑏(1,_) = 𝑏, and 𝛿𝐾𝑖

(𝑞) is similar to the one of Equation (2) and is the result of 
asking the query on a program with 𝑘𝑖1 random variables with index 1 set to true, 𝑘𝑖2 random variables with index 2 set to true, and 
so on.

Theorem 8. If there is 1 𝑏(𝑗, _) for every 𝑎(𝑗), Equation (7) is equivalent to Equation (5).

Proof of Theorem 8. For a query 𝑐(1), we can already fix 𝑎(1) and 𝑏(1, _), and remove these variables from the summations, which 
contribute with a factor 𝑝𝑘 = 𝑝2 where 𝑝 is the probability of the facts. We can now subtract 2 (fixed values for 𝑎(1) and 𝑏(1, _)) from 
𝑛, and thus change the range of the first summation from 0 to n (instead of from 2 to 𝑛 − 2). Similarly, since we removed the two 
facts, the summation over the variable 𝑜 is now between 0 and 𝑛∕2, so the same as ∑𝑛∕2

𝑘=0 in Equation (5). Moreover, we do not need 

to sum over the number of 𝑛𝑏(1,_) since this value is always 1. We are left to prove ∑𝐾𝑖∈𝑤𝑐(𝑖,𝑜,1)
∏𝐶

𝑙=1
( 𝑛𝑙
𝑘𝑖𝑙

) ?
= 𝜌(𝑛, 𝑘, 𝑖). All the 𝑛𝑙 are 1 

and 𝑘𝑖𝑙 can be either 0 or 1 (by hypothesis, there is 1 𝑏(𝑖, _) for every 𝑎(𝑖)). So, the binomials are either 
(1
0

)
or 

(1
1

)
and, in both cases, 

they equal 1, so we have a product of 1s that clearly results in 1. The summation is over all the possible overlaps, by definition, and 
counts 1 for each of them, which is exactly what 𝜌(𝑛, 𝑘, 𝑖) does, and thus also the deltas are over the same worlds. □

The following theorem proves the correctness of Equation (7).

Theorem 9. Let 𝑃 be a program with a single conditional of the form (𝑐(𝑋)|𝑎(𝑋), 𝑏(𝑋, 𝑌 ))[𝑙𝑏, 𝑢𝑏] where the 𝑎∕1 and 𝑏∕2 are defined by 
11

probabilistic facts with the same probability. Then, the probability of a query 𝑐(𝑗) can be computed with Equation (7).
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Proof of Theorem 9. To prove the correctness of Equation (7) we still need to consider the aggregates and their values. In Theo-

rem 8, we proved that the overlaps identify indistinguishable worlds when there is a one-to-one correspondence between 𝑎(𝑖) and 
𝑏(𝑖, _). Now, this correspondence does not hold. Thus, we also need to account for the possible numbers of 𝑏(𝑗, _) for every 𝑎(𝑗), since 
they influence the value of the aggregates. However, since we are interested in the probability of a query 𝑐(𝑖), we only need to know 
the number of 𝑏(𝑖, _), since when the number of 𝑏(𝑖, _) is fixed, the maximum number of 𝑐(𝑖) is fixed as well. The variation of the other 
𝑏(𝑗, _) with 𝑗 ≠ 𝑖 influences the result of the aggregates but does not influence the generation of the 𝑐(𝑖). So, we can further group 
the weak compositions by also the number of 𝑏(𝑖, _), since these have the same number of 𝑐(𝑖) true and equally contribute to the 
probability. □

If the probabilistic facts also have different probabilities, Equation (7) can be combined with Equation (4), obtaining an even 
more complex equations that considers both the probabilities and the number of random variables. Let us apply Equation (7) to 
compute the probability of Example 6.

Example 7. Probability of Example 6. Let us rewrite here the program of Example 6.

0.3::a(1..2).
0.3::b(1..2,1..2).
(c(X)|a(X),b(X,Y))[0.4,1].

Suppose the query is 𝑐(1). For 𝑖 = 2, there is only one weak composition that satisfies all the constraints: (1, 0, 1, 0). This has 1 
overlap and 𝑛𝑏(1,_) = 1. There are 

(1
1

)
⋅
(1
0

)
⋅
(2
1

)
⋅
(2
0

)
= 2 possible worlds with this structure, {𝑎(1), 𝑏(1, 1)} and {𝑎(1), 𝑏(1, 2)}, and both 

have the same associated probability 0.32 ⋅ 0.74 = 0.021609 and contribute to the lower and upper bound. So, we get, for the first 
iteration, 2 ⋅ 0.021609 = 0.043218. For 𝑖 = 3, there are 3 admissible weak compositions: (1, 1, 1, 0), (1, 0, 1, 1), and (1, 0, 2, 0). For the 
first there are 

(1
1

)
⋅
(1
1

)
⋅
(2
1

)
⋅
(2
0

)
= 2 possible worlds with this structure, 

(1
1

)
⋅
(1
0

)
⋅
(2
1

)
⋅
(2
1

)
= 4 for the second and 

(1
1

)
⋅
(1
0

)
⋅
(2
2

)
⋅
(2
0

)
= 1

for the third. These 2 + 4 + 1 = 7 worlds have probability 0.33 ⋅ 0.73 = 0.009261, so we get 7 ⋅ 0.009261 = 0.064827 and contribute to 
the lower and upper probability. The first two have the same number of 𝑏(1, _), so can be grouped together. For 𝑖 = 4 there are 4 
admissible weak compositions: (1, 1, 2, 0), (1, 1, 1, 1), (1, 0, 2, 1), and (1, 0, 1, 2). All the four are different, since all have different 
combinations of overlaps and 𝑛𝑏(1,_). In total, there are 1 + 4 + 2 + 2 = 9 worlds with an associated probability of 0.34 ⋅ 0.72 = 0.003969. 
The first, third, and fourth contribute to the lower and upper probability, while the second only to the upper probability. For 𝑖 = 5
there are 3 admissible weak compositions: (1, 1, 2, 1), (1, 1, 1, 2), and (1, 0, 2, 2). All the three are different, since all have different 
combinations of overlaps and 𝑛𝑏(1,_). We have 2 + 2 + 1 = 5 worlds with probability 0.001701. The first and the third contribute to 
the lower and upper probability while the second only to the upper probability. For 𝑖 = 6, there is only one weak composition that 
satisfies all the constraints: (1, 1, 2, 2). There is only one world with this structure and it contributes to the upper probability with 
0.36 = 0.000729. To sum up, 𝑃 (𝑐(1)) = [0.132993, 0.153]. Overall, there are 24 worlds that contribute to the probability, but we only 
considered 11 of these (and thus called the ASP solver 11 times instead of 24).

3.4. Two variables in the consequent and two facts with respectively one and two variables in the antecedent

Consider now this type of conditionals:

(c(X,Y)|a(X),b(X,Y))[lb,ub].

and query 𝑐(𝑖, 𝑗). As before, if there are 𝑎(𝑋) or 𝑏(𝑋, 𝑌 ) unpaired, these can be removed from the program. Also here we can identify 
multiple cases. When there is exactly one 𝑏(𝑘, _) for every 𝑎(𝑘), the probability of a query can be computed with Equation (5). This 
is because the result of the aggregates is always the same. When there are multiple 𝑏(𝑘, _) for a given 𝑎(𝑘), we have two sub-cases: a 
single 𝑏(𝑖, 𝑗), 𝑖 ≠ 𝑘 and possibly multiple 𝑏(𝑘, _), or multiple 𝑏(𝑖, _) and multiple 𝑏(𝑘, _). In the former, Equation (5) can still be applicable, 
since the 𝑐(𝑖, 𝑗) are in the same number as before. In the general case, Equation (5) cannot be directly applied, because we have an 
additional value for 𝑐∕2 due to the variable (𝑌 ) to consider in the tuple (𝑐(𝑋, 𝑌 ), 𝑎(𝑋), 𝑏(𝑋, 𝑌 )). For example, if we have a world 
with 𝑎(1), 𝑏(1, 1), and 𝑏(1, 2), we have 2 answer sets for a conditional 𝑐𝑥 = (𝑐(𝑋)|𝑎(𝑋), 𝑏(𝑋, 𝑌 ))[0, 1] ({} and {𝑐(1)}, by showing only 
𝑐∕1) while 4 for the conditional 𝑐𝑥𝑦 = (𝑐(𝑋, 𝑌 )|𝑎(𝑋), 𝑏(𝑋, 𝑌 ))[0, 1] ({}, {𝑐(1, 1)}, {𝑐(1, 2)}, and {𝑐(1, 1) 𝑐(1, 2)}, by showing only 𝑐∕2). 
We can already see that, depending on the value of 𝑙𝑏 and 𝑢𝑏, Equation (5) is an upper bound for the probability of the query. For 
example, with 𝑙𝑏 = 20%, the aforementioned world for 𝑐𝑥 contributes to the lower and upper probability for 𝑐(1) (the empty answer 
set is removed) while only to the upper probability for the query 𝑐(1, 1) in 𝑐𝑥𝑦 (also here the empty answer set is removed, but we 
still remain with three answer sets where the query is true only in two of them). In general, the following theorem holds:

Theorem 10. If 𝑐𝑥 = (𝑐(𝑋)|𝑎(𝑋), 𝑏(𝑋, 𝑌 ))[𝑙𝑏, 𝑢𝑏] and 𝑐𝑥𝑦 = (𝑐(𝑋, 𝑌 )|𝑎(𝑋), 𝑏(𝑋, 𝑌 ))[𝑙𝑏, 𝑢𝑏], then the lower and upper probability for the query 
𝑐(1) asked in a program with only 𝑐𝑥, where 𝑎∕1 and 𝑏∕2 are defined by probabilistic facts, are upper bounds for the lower and upper 
probability for the query 𝑐(1, 1) asked in a program with only 𝑐𝑥𝑦 and the same probabilistic facts for 𝑎∕1 and 𝑏∕2.

Proof of Theorem 10. For 𝑐𝑥𝑦, the choice rule {𝑐(𝑋, 𝑌 )} ∶− 𝑎(𝑋), 𝑏(𝑋, 𝑌 ) allows the generation of a 𝑐(𝑋, 𝑌 ) for every pair 
(𝑎(𝑋), 𝑏(𝑋, 𝑌 )). Similarly for 𝑐𝑥 with the choice rule {𝑐(𝑋)} ∶− 𝑎(𝑋), 𝑏(𝑋, 𝑌 ), but here, since only 𝑋 is present in 𝑐∕1, multiple 
12

pairs (𝑎(𝑋), 𝑏(𝑋, 𝑌 )) with the same value of 𝑋 are considered only once. Thus, when there is exactly one 𝑏(𝑖, 𝑗) for 𝑎(𝑖) for the query 
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Table 2

Summary of the considered conditionals together with the corresponding theo-

rems and equations to compute the probability of a query.

Conditional Theorems Equations

(𝑐(𝑋)|𝑎(𝑋))[𝑙𝑏, 𝑢𝑏] 1, 2, 3, 4 (1), (3), (4)

(𝑐(𝑋)|𝑎(𝑋), 𝑏(𝑌 ))[𝑙𝑏, 𝑢𝑏] (3)

(𝑐(𝑋)|𝑎(𝑋), 𝑏(𝑋,𝑌 ))[𝑙𝑏, 𝑢𝑏] 5, 6, 7, 8, 9 (5), (7)

(𝑐(𝑋,𝑌 )|𝑎(𝑋), 𝑏(𝑋,𝑌 ))[𝑙𝑏, 𝑢𝑏] 10 (7)

Fig. 1. Inference times for the conditional (𝑐(𝑋)|𝑎(𝑋))[𝑙𝑏, 1] with an increasing number of probabilistic facts 𝑎∕1 (left) and for the conditional (𝑐(𝑋)|𝑎(𝑋), 𝑏(𝑋, 𝑌 ))[𝑙𝑏, 1]
with an increasing number of pairs (𝑎(𝑋), 𝑏(𝑋, _)). For both, we set the probabilities of the probabilistic facts to 0.4, and 𝑙𝑏 to 0.2 and 0.8.

𝑐(𝑖, 𝑗) the computed probability is the same as the one computed with 𝑐𝑥. Otherwise, for a given world in 𝑐𝑥𝑦 we will have multiple 
𝑐(𝑖, 𝑘) and thus multiple answer sets that may not have 𝑐(𝑖, 𝑗) included, so possibly changing the contribution of the worlds. Moreover, 
when there are multiple 𝑏(𝑖, _) for a given 𝑎(𝑖), to make the query 𝑐(𝑖) true, 𝑎(𝑖) and at least one 𝑏(𝑖, 𝑘) should be true. On the contrary, 
to make the query 𝑐(𝑖, 𝑗) true, we need to have both 𝑎(𝑖) and 𝑐(𝑖, 𝑗). □

In this case, we need to proceed as in Equation (7), by considering the different numbers of pairs and the different numbers of 
𝑏(𝑖, _) for a query 𝑐(𝑖, _). The only modifications to consider are: fixing the value of 𝑎(𝑖) and 𝑏(𝑖, 𝑗) for a query 𝑐(𝑖, 𝑗) (so subtract 2 
from 𝑛 and start counting from 0 for the variable i) and, for the binomial coefficient, decrementing the value of 𝑛𝐶∕2 and 𝑘𝑖𝐶∕2 by 1 
if 𝑛𝐶∕2 > 0 and 𝑘𝑖𝐶∕2 is greater than 1 and different from 𝑛𝐶∕2. This is because, if we have, for example, 3 𝑏(1, _), say 𝑏(1, 1), 𝑏(1, 2), 
and 𝑏(1, 3), when 𝑘𝑖𝐶∕2 is set to 2, we do not have 

(3
2

)
= 3 possible combinations, but only 

(2
1

)
= 2, since 𝑏(1, 1) must be fixed to true. 

Moreover, if 𝑘𝑖𝐶∕2 = 1 and 𝑛𝐶∕2 > 1, we need to consider only 1 combination, the one with 𝑎(𝑖) and 𝑏(𝑖, 𝑗), and ignore the others.

Overall, Table 2 summarizes our contribution in terms of liftable programs. Note that all the results of the previous theorems 
apply to programs with a single conditional. If we consider programs with multiple conditionals, some of the results of the previous 
theorems may not apply, due to the possible sharing of parts of the antecedent and/or consequent. We leave the further investigation 
of these programs as subject for future work.

4. Experiments

To better analyze the actual benefits in terms of execution time and calls to the ASP solver we conducted some experiments on 
a computer running at 2.40 GHz. The time limit is 8 hours. We implemented the lifted formulas in Python3 and included them in 
the freely available PASTA framework2 that uses clingo [31] as underlying ASP solver. A comparison with other ASP solvers may 
be the subject of a potential future work. Moreover, since it is hard to represent a closed formula that counts the number of weak 
compositions, we naively generate all the possible compositions and then discard the ones that are not admissible. Thus, for the 
formulas requiring the computation of the weak compositions, the most significant value to consider is the number of these, not the 
execution time: a closed formula will clearly allow a faster execution time, but the generated number will always be the same.

In a first experiment, we considered the conditional (𝑐(𝑋)|𝑎(𝑋))[𝑙𝑏, 𝑢𝑏] (so Equation (3)) with an increasing number of probabilistic 
facts 𝑎∕1 with an associated probability of 0.4. The probability value is not significant since it does not influence the execution time. 
We run two experiments, one with 𝑙𝑏 set to 0.2 and the other with 𝑙𝑏 set to 0.8 (𝑢𝑏 is always set to 1). Results are shown in Fig. 1a. 
The execution time seems to grow exponentially, and this may be due to the requirements of the ASP solver to compute the models 
for programs of increasing size. The results by setting the lower bound to 0.2 and 0.8 are comparable in terms of execution time. 
We also plot the execution time obtained without lifted inference with the lower bound set to 0.2, to better assess the difference in 
13

2 https://github .com /damianoazzolini /pasta.

https://github.com/damianoazzolini/pasta
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Fig. 2. Execution time and number of weak compositions for the conditional (𝑐(𝑋)|𝑎(𝑋))[0.2, 1] by fixing the number of clusters and increasing the number of 
probabilistic facts per cluster.

Fig. 3. Execution time and number of weak compositions for the conditional (𝑐(𝑋)|𝑎(𝑋))[0.2, 1] by fixing the number of probabilistic facts per cluster and increasing 
the number of clusters.

performance. We report the execution time for the non lifted algorithm (PASTA) only for this conditional, since the behavior is the 
same for all the other conditionals.

Then, we tested Equation (4), with the conditional (𝑐(𝑋)|𝑎(𝑋))[0.2, 1] with an increasing number of probability clusters and 
probabilistic facts 𝑎∕1. Fig. 2a shows how the execution time varies by fixing the number of clusters to 2, 3, 4, and 5 and increasing 
the probabilistic facts, while Fig. 2b shows the number of admissible weak compositions. Both the execution time and the number 
of weak compositions exponentially increase by increasing the clusters and the number of probabilistic facts. This is particularly 
evident for the cluster of size 5. Note that on the x axis of Fig. 2b we have the number of probabilistic facts per cluster: to obtain the 
total number of probabilistic facts, we need to multiply this value by the number of clusters. Fig. 3 shows both the execution time 
and the number of weak compositions by fixing the probabilistic facts to 2, 3, 4, and 5 for every cluster and increasing the number 
of clusters. Also here we get an exponential slope, due to the naive generation of all the weak compositions.

We also tested Equation (5) for the conditional (𝑐(𝑋)|𝑎(𝑋), 𝑏(𝑋, 𝑌 ))[𝑙𝑏, 1] with an increasing number of pairs (𝑎(𝑋), 𝑏(𝑋, _)) and 𝑙𝑏
set to 0.2 and 0.8. We set the probabilities of the probabilistic facts to 0.4. Results are shown in Fig. 1b. The results are similar for 
the lower bounds set to 20% and 80%. As for Fig. 1a, the adoption of a lifted formula allows to perform inference with hundreds of 
pairs.

Finally, we tested again the conditional (𝑐(𝑋)|𝑎(𝑋), 𝑏(𝑋, 𝑌 ))[0.2, 1] (Section 3.3) with more than one 𝑏(𝑋, _) for every 𝑎(𝑋) (Equa-

tion (7)). Results are shown in Fig. 4 and Fig. 5. Here, the plots present an exponential slope after a few dozens of variables, especially 
for the case of more than three pairs.

5. Related work

Probabilistic conditionals are also discussed in [32], where the authors proposed an approach based on the maximum entropy 
14

principle. Differently from [32], the approach of [9] does not constrain the distribution of the probability on the models.
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Fig. 4. Results for the conditional (𝑐(𝑋)|𝑎(𝑋), 𝑏(𝑋,𝑌 ))[0.2,1] by fixing the number of pairs (𝑎(𝑋), 𝑏(𝑋,𝑌 )) and increasing the number of 𝑏(𝑋,𝑌 ).

Fig. 5. Results for the conditional (𝑐(𝑋)|𝑎(𝑋), 𝑏(𝑋,𝑌 ))[0.2,1] by fixing the variables per pair and increasing the number of clusters.

Most lifted inference approaches involve Probabilistic Logic Programming [33,22] or first-order knowledge bases in gen-

eral [12,34]. To the best of our knowledge, no previous works proposed lifted approaches for (a subset of) Probabilistic Answer 
Set Programming (under the credal semantics) and statistical statements. A related approach is [23], where the authors introduced 
the concept of counting formulas associated with random variables, but they still do not consider the ASP syntax and probabilistic 
conditionals.

There are different possible semantics for probabilistic answer set programming, mainly the credal semantics [3] (that we adopt 
in this paper), the LPMLN semantics [2], and the P-log [35] semantics. LPMLN represent uncertain data using weighted rules, while 
P-log uses probabilities. The relation between the two has been analyzed in [36]. Both, differently from the credal semantics, assign 
a sharp probability value to a query. However, an in-depth study of the expressive power of the three different semantics is still 
missing and may be the subject of a future work. Finally, there exist solvers that allow to perform inference in the LPMLN and P-log 
semantics, as [37], as well as on the credal semantics [9], but none of these consider lifted inference.

6. Conclusions

In this paper, we proposed multiple formulas to perform lifted inference in statistical statements expressed as probabilistic answer 
set programs under the credal semantics. Our results cover some of the possible programs that contain a single conditional that can 
be written using one atom with one or two arguments in the consequent and one or two atoms with one or two variables in the 
antecedent. We also provide an implementation of the discussed formulas and empirically assessed the performance. A potential 
future work could consist in an in-depth analysis of other structures of conditionals and their computational complexity [21], also 
15

by adopting different semantics, and the development of lifted formulas for other types of reasoning tasks, such as abduction [38].
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