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Abstract: R-(+)-limonene, one of the major constituents of citrus oils, is a monoterpene that is widely
used as a fragrance additive in cosmetics, foods, and industrial solvents. Nowadays, its detection
mainly relies on bulky and expensive analytical methods and only a few research works proved
its revelation through affordable and portable sensors, such as electrochemical and quartz crystal
microbalance sensors. In response to the demand for effective miniaturized sensing devices to
be integrated into Internet of Things systems, this study represents a pioneering investigation of
chemoresistive gas sensor capabilities addressed to R-(+)-limonene detection. An array of seven
metal-oxide sensors was exploited to perform a complete electrical characterization of the target
analyte. The experimental evidence allowed us to identify the WO3-based sensor as the most
promising candidate for R-(+)-limonene detection. The material was highly sensitive already at
sub-ppm concentrations (response of 2.5 at 100 ppb), consistent with applicative parameters, and
it resulted in selective vs. different gases at a lower operating temperature (200 ◦C) than the other
sensors tested. Furthermore, it exhibited a humidity-independent behavior under real-life conditions
(relative humidity > 20%). Finally, the WO3 sensor also demonstrated a remarkable cross-selectivity,
thus enabling its exploitation in cutting-edge applications.

Keywords: chemoresistive gas sensors; limonene; metal oxides; sensor arrays; selectivity; cosmetics;
food industry

1. Introduction

Limonene, the ordinary and commercial name to indicate 4-isopropenyl-1-methyl-1-
cyclohexene, is an organic chemical compound belonging to the family of terpenes. As a
chiral molecule without any plane of symmetry, it exists in nature mainly in the form of
two enantiomers: R-(+)-limonene and S-(+)-limonene [1–5]. The former is certainly the
most common and is present in large quantities in the essential oils produced in Citrus fruit
peels, such as lemons (hence the name), oranges, and limes, but also in cumin, dill, and
bergamot oils. On the other hand, S-(+)-limonene is less frequent, can be found in the oily
resins of some conifers and gives off a strong turpentine odor (Figure 1) [1].

The availability of the pristine material, essentially created through distillation or cen-
trifugation from plant waste, together with its appreciated organoleptic properties, allows
it to find space in numerous industrial applications. For instance, thanks to its pleasant
citrus smell and characteristic taste, limonene is often exploited in the food and beverage
industry as a flavoring and preservative element (e.g., in fruit juices, baked goods, sweets,
chewing gums, ice creams, etc.). In addition, it is widely used in beauty and personal care
products, such as soaps, shampoos, perfumes, and cosmetics in general. Finally, it can
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also be found in household products (detergents, cleaning products, room fresheners), in
certain types of natural solvents, and as the active principle in ecological pesticides [1,3,5].
R-(+)-limonene is a volatile organic compound (VOC) that is also frequently found in
indoor air. As a pure substance, it is considered to be a chemical with fairly low toxicity and
safe for human beings if inhaled in small doses, such as at typical indoor concentrations [2].
Many studies also report promising positive effects: limonene is rapidly metabolized, it
has no mutagenic risks, and it is therapeutic against viruses, diabetes, inflammation, and
other diseases [1,3,5].
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several practical drawbacks that undermine their use on a large scale. For example, GC–
MS requires heavy, bulky, and expensive equipment, specialized personnel, and 
complicated pre-treatment steps, thus making it unsuitable for real-time detections [4,10–
12]. Therefore, it is clear that techniques of this type are far from practical for simple and 
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However, it has also been largely demonstrated that it interacts with ozone and some
free radicals present in the air, oxidizing and producing volatile substances that contribute
to air pollution [6,7]. These include secondary organic aerosols and photochemical smog,
which are reactive and show potent toxic effects, causing airway and skin irritation [1,8].
The time-weighted average threshold limit value (TLV-TWA) of R-(+)-limonene is about
30 ppm. Therefore, having at disposal a good monitoring system is important in order to
keep R-(+)-limonene levels within potentially dangerous limits [9].

Lab-based analyses are the primary methods used to monitor limonene emissions. The
laboratory techniques conventionally used to investigate and quantify limonene and other
VOCs, in general, can be of various types: cyclic (CV) or differential pulse voltammetry
(DPV), high-performance liquid chromatography (HPLC), gas chromatography coupled
with mass spectrometry (GC–MS), and electrochemical impedance spectroscopy (EIS) [10].
The physical principles driving the operation of these methodologies are distinct from each
other, and in terms of performance, GC–MS is among the most accurate and reliable tools
for gaseous compound identification, establishing itself as the de facto standard for this
field. However, all these solutions have several practical drawbacks that undermine their
use on a large scale. For example, GC–MS requires heavy, bulky, and expensive equipment,
specialized personnel, and complicated pre-treatment steps, thus making it unsuitable
for real-time detections [4,10–12]. Therefore, it is clear that techniques of this type are far
from practical for simple and rapid routine detections. Rather, methods featuring reduced
costs for the equipment, reduced processing time, fast responses, and a reduced amount of
solvents and samples are needed.
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Nowadays, gas sensors represent the most affordable alternative to lab-based analyses
for rapid and promising R-(+)-limonene detection. For instance, electronic nose (e-nose)
systems have been explored in odor assessments due to their versatility and similarity
to the human olfactory system [13,14]. However, e-noses require complex analysis and
pattern recognition modules, resulting in a long training procedure [12]. The majority
of studies on limonene sensors can be classified into electrochemical and quartz crystal
microbalance sensors. Concerning electrochemical sensors [10,15], besides a short lifetime
(one to three years) due to greater exposure to the target gas, their output signal (current) is
proportional to the area of the electrode. Thus, avoiding a bulky size of the device means
limiting the active surface exposed to the analyte. Moreover, they suffer from interference,
and it is difficult to identify failure modes unless very advanced methods of monitoring
are used. Recently, sensors based on a quartz crystal microbalance (QCM) coated with
organic conducting polymers have been studied and employed in e-noses [16]. QCM
sensors, widely used in food detection, are affected by temperature and humidity, and they
have a high detection limit. They also suffer from the mass change of the sensor surface,
since the thickness of their layer limits its capabilities to adsorb more water molecules,
and consequently of the device to measure higher dew points [11,16]. Accordingly, QCM
sensors are typically designed to operate in low moisture applications. This represents an
impediment for real-life applications that are not able to leave humidity out of consideration.
Moreover, QCM sensors feature a strongly limited lifetime [11], which is too short for
potential commercialization. Finally, despite a high reactivity, the conductive polymers
used as functional materials in QCM are expensive and their poor solubility limits large-
scale sensor production.

Although the gas sensing performance of solid-state devices based on inorganic mate-
rials are usually lowered in humid conditions, this category of sensors still allows a fair
compromise to measure moistures in a wide range of concentrations with an adequate
accuracy in the lower end. Chemoresistive gas sensors based on metal-oxide (MOX) semi-
conductors are commonly known for their sensitivity, low cost and power consumption,
scalable production, durability, and integrability in Internet of Things (IoT) systems. MOX
materials for gas sensing applications were an important focus in recent years since they
can be tailored to achieve desired surface-to-volume ratios and morphologies, so as to
attain various levels of performance. However, the number of studies explicitly focusing on
MOXs for limonene detection is extremely limited. They are mostly integrated into more
complex and expensive olfactory systems, such as e-noses, and they usually need to be
supported by refined laboratory methodologies with the sole purpose of discriminating
between fingerprints of different VOCs [4,17]. Despite their popularity and widespread
use in a myriad of sectors, an exhaustive and systematic study of their sensing capabilities
towards R-(+)-limonene is hitherto lacking [15]. Therefore, in order to probe their potential-
ity in R-(+)-limonene detection, in this work we decided to perform a complete sensing
performance characterization of a chemoresistive sensor array based on seven diverse
MOX materials.

2. Materials and Methods

Sensing materials. Considering the plethora of MOXs investigated in the literature so
far, the aim of this study was to explore some of them as sensing materials specifically for
R-(+)-limonene detection. We started from well-known, pure MOXs, i.e., SnO2, WO3, and
ZnO, then we moved to doped ones, i.e., Pd:SnO2 and Au:SnO2, and finally we assessed
more elaborate solid solutions, such as (Sn,Ti,Nb)xO2 and WO40Sn60Ox. The selection of
these seven nanostructured MOXs was based on the experience and understanding of our
sensor laboratory [18–23].

Sensor production. The selected materials were firstly synthesized in powder form via
simple, reproducible, and previously optimized chemical processes. Then, they were mixed
with α-terpineol, ethyl cellulose, and silica to form homogeneous pastes. Concerning the
organic solvent sources, the liquid component (α-terpineol) was from Sigma-Aldrich, with a
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mixture of isomers of ≥96%, whereas the solid component (ethyl cellulose) was from Sigma-
Aldrich with a viscosity of 5% w/w solution in 80:20 toluene:ethanol by weight at 25 ◦C. The
organic precursors can be included in a total amount ranging from 50 to 80% of the mass
depending on the consistency of the compound to be obtained for an optimal deposition,
while silica constitutes a fraction between 0.5 and 1%. Its role is to strengthen the adhesion
both among the nanostructures of the functional materials themselves and between the
sensing layer and the alumina substrate [24]. The resulting pastes were then treated by
sonication and screen-printed onto alumina substrates (substrate area 2.54 × 2.54 mm2 and
thickness 250 µm, Metallux) [25]. These were equipped with interdigitated gold electrodes
on the front side (Figure S1a, Supporting Information), which provide electrical contacts
for measuring the conductance of the sensing material, and with a platinum heater on
the back side (Figure S1b, Supporting Information) to thermally activate the sensing layer
at the desired working temperature. The screen-printing mask mesh was 250, and the
thickness of the films and the active area were 20–30 µm and 1 mm2, respectively. Finally,
the semiconducting MOX films were sintered in air for 2 h at 650 ◦C in order to (i) increase
the grain interconnectivity required for electronic conductance, (ii) improve the stability
of the structure in thermal activation, (iii) remove any residues of organic precursors, and
(iv) enable the functionality of silica improving the adhesion both among the nanostructures
of the functional material and between the sensing layer and the substrate.

At last, the electrodes and the heater were connected to the electronic system via the
pins of a commercially available TO39 support. The connection between the elements on
the substrate and the pins of the support was made using 0.06 mm diameter gold wires,
welded using thermo-compression through a wedge wire bonder.

Experimental setup. The sensors were electrically characterized in a sealed test chamber
in which temperature and relative humidity (RH%) were controlled by a commercial
Honeywell HIH-4000 (Figure S2, Supporting Information). The devices were exposed to
controlled concentrations of gaseous mixtures. Synthetic air (20% O2 and 80% N2) and
target gases were fluxed from certified cylinders (N 5.0 degree of purity, Sapio) through
mass-flow controllers (Brooks), achieving a total flow rate of 500 sccm. The filling time of
the test chamber was estimated to be about 1 min and 15 s, as it depends on its size and
geometry and on the velocity of the gas flow. The test chamber was placed into a climatic
system to maintain a constant temperature of 25 ◦C and ~2 RH%. Humid air was obtained
by injecting a fraction of the total synthetic air flux into a gas bubbler filled with deionized
water [26]. The final RH% values were cross verified using a commercial humidity sensor.
Power suppliers (Aim TTi) and a multimeter (K2000 (Keithley)) were used to provide the
necessary electric current to the sensor heater and to read the electrical conductance of the
sensing film, respectively. A constant bias of 5 V was applied to the two interdigitated gold
electrodes. The architecture of the acquisition circuit is based on an operational amplifier
(OA). Since the voltage values Vin and Vout are connected at the ends of the sensor resistor
Rs and applied load resistor Rf, respectively, then the gain is given by Vout/Vin = −Rf/Rs.
Accordingly, the expression for the sensor conductance Gs is givens is as follows:

Sensor Conductance (G s) =
1

Rs
= − Vout

R f · Vin
(1)

Considering the n-type of the semiconducting sensing films, their response was calcu-
lated as in Equations (2) and (3), where Gair is the sensor conductance in dry air and Ggas is
the conductance under selected gas exposure [23].

Response(R) =
(Ggas − Gair)

Gair
for reducing gases (2)

Response(R) =
(Gair − Ggas)

Ggas
for oxidizing gases (3)

Sensing performance. The sensor performances were proven by making a complete
electrical characterization. First, the best operating temperature of each MOX film was
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investigated considering their response to 1 ppm of R-(+)-limonene at increased working
temperatures, ranging from 200 to 400 ◦C. Then, in order to study the sensitivity, the films
were exposed to several concentrations of R-(+)-limonene (100, 200, 300, 500, 1000, and
5000 ppb) under dry conditions. To verify the influence of possible interfering compounds,
they were also exposed to two concentrations (5 and 10 ppm) of different volatile analytes,
such as acetone, acetaldehyde, and ethanol. Gases and concentrations were chosen in
order to cover chemical species that might be relevant for cosmetics and similar above-
mentioned applications. For instance, the effective detection and monitoring of targeted
gas in cosmetics, namely ethanol and R-(+)-limonene, are essential for product quality
and human skin care. The selectivity coefficient (ks) [27] of the sensors for R-(+)-limonene
detection was calculated as in Equation (4), i.e., by the ratio of the response values to
R-(+)-limonene and the interfering gas at 5 ppm, respectively.

Selectivity Coefficient (ks) =
RR-(+)-limonene

Rinter f ering gas
(4)

By comparing the responses to several individual gas injections, it is possible to evalu-
ate the ability of the sensors to detect different analytes and, in turn, indirectly estimate
their selectivity for the target gas. However, these tests do not allow assessment of the
influence of gaseous competition mechanisms for the active sites on the surface of the mate-
rials when more than one compound is present simultaneously in the environment. Then,
the cross-selectivity of the sensors vs. 5 ppm of R-(+)-limonene starting from consecutive
exposures to 10 ppm of acetone, acetaldehyde, and ethanol was estimated.

Humidity is a very common interferent because water vapor can dissociate when
interacting with the film, affecting its conductance and generating –OH groups that limit
the adsorption site on the surface [19]. To explore its effect on the sensor performance,
500 ppb of R-(+)-limonene was injected into the gas chamber at different percentages of
relative humidity, from 2 up to 74 RH%.

Finally, the repeatability of the 7 sensors at their best working temperature was also
tested under 1 ppm of R-(+)-limonene in dry conditions. The response (τres) and recovery
(τrec) times were calculated as the times needed to attain 90% of the steady-state response
and required to switch back to 90% of the baseline value, respectively [28].

Investigation on surface reactivity. The array of sensors examined in this work aimed to
explore different promising classes of intrinsic and extrinsic active sites for R-(+)-limonene
detection. To date, it is hard to experimentally observe and measure the overall number of
each surface atom family. Consequently, it is challenging to explain why some MOXs have
higher sensitivity than others toward this target molecule.

Some hints on the surface composition can be deduced from the sensing properties
towards a series of sample analyte gases. For example, the sensitivity to NO2 was found
to be enhanced with electron donor sites, e.g., oxygen vacancies [29]. On the other hand,
the sensitivity to CO is dependent on the surface reducibility of the MOX surface, which
reflects the concentration of oxidizing sites [29]. Then, NO2 and CO were chosen as probe
molecules for the investigation of the film surface characteristics at the sensors’ optimal
temperature for R-(+)-limonene sensing. Gas concentrations of 25 ppm and 3 ppm for CO
and NO2, respectively, were selected according to their relative TLV-TWA [30,31].

3. Results

The optimal working temperature of the sensors was determined by measuring
the conductance variation before and after injection of 1 ppm of R-(+)-limonene in dry
conditions at different working temperatures within 200–400 ◦C (Figure 2). The response of
the sensors based on ZnO, SnO2, Pd:SnO2, Au:SnO2, (Sn,Ti,Nb)xO2, and W40Sn60Ox initially
improved with increasing temperature, reached a maximum, and then reduced with further
increases in temperature. This behavior is generally observed in chemoresistive MOX
sensors [32]; indeed, each material exhibits its highest response level at the specific working
temperature that maximizes its catalytic activity vs. R-(+)-limonene, promoting surface
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redox reactions. Above the optimal value, the rate of gas desorption became appreciable,
lowering the sensor response [20,33,34]. Differently from the other sensors, WO3 displayed
two maxima responses at 200 ◦C and 350 ◦C, suggesting two distinct operative conditions
for optimized detection of the analyte, probably characterized by different active sites on
the surface for the chemisorption of R-(+)-limonene. According to the literature [35], the
active species resulting from the ionosorption of oxygens commonly are O2

− in the range
100–200 ◦C and O−/O2− at higher temperatures [35]. In the temperature range between
the two optimal values (200 ◦C and 350 ◦C), an unfavorable competition between different
reaction mechanisms of the analyte absorption and desorption would lead to a decrease
in WO3 sensing capabilities. The optimal temperature for each sensor is reported in
Table 1 and was chosen hereinafter for its electrical characterization. For WO3, the working
temperature of 200 ◦C is preferred to meet the requirement for low power consumption in
portable and IoT applications.
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Table 1. Optimal operating temperature of the sensors vs. 1 ppm of R-(+)-limonene derived from
Figures 2 and S3 (Supporting Information).

Sensor Optimal Working Temperature [◦C]

WO3 200
ZnO 300
SnO2 300

Pd:SnO2 250
Au:SnO2 300

(Sn,Ti,Nb)xO2 250
W40Sn60Ox 250

Figure S3 (Supporting Information) displays the raw data signal of the sensors op-
erated at their best working temperature to show their detection kinetics. The increase
in Vout, correlated with the conductance of the n-type semiconducting film according to
Equation (1), implies that R-(+)-limonene is acting as a reducing gas, releasing electrons
into the conduction band.

The sensitivity was investigated by exposing the sensors to 100, 200, 300, 500, 1000,
and 5000 ppb of R-(+)-limonene. Figure 3 highlights that WO3 and ZnO sensors at each
tested concentration exhibited higher responses than the others and they did not saturate at
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the highest value (5000 ppb). Therefore, they can detect R-(+)-limonene gas in a wide range
of concentrations that are typically found in many of the applications mentioned. Moreover,
despite a low response below 1000 ppb, the (Sn,Ti,Nb)xO2 sensor demonstrated good sensi-
tivity at high concentrations. The calibration curves of WO3, ZnO, and (Sn,Ti,Nb)xO2 were
fitted with Langmuir isotherms [36]. The parameters a (maximum adsorption capacity),
b (ratio of the adsorption and desorption rates), and c (equilibrium concentration) together
with the coefficient of determination R2, are listed in Table S1 (Supporting Information). In
particular, the goodness of the fit was found to be inappropriate (R2 lower than 0.9) for the
Au:SnO2 sensor. Due to the limited number of measurements, the adoption of a different
functional form for the regression (e.g., allometric fit) would result in strong overfitting.
Therefore, no other function could be used for the construction of a calibration curve that
could be correctly employed in device programming.
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Figure 3. Responses of the films vs. 100, 200, 300, 500, 1000, and 5000 ppb concentrations of R-(+)-limonene.
The calibration curves of WO3, ZnO, and (Sn,Ti,Nb)xO2 fitted with Langmuir isotherms are shown as
thick lines. The dash lines are designed only to track the trends of SnO2, Pd:SnO2, Au:SnO2, W40Sn60Ox.

The selectivity of the sensors is another important parameter due to the heteroge-
neous gaseous composition occurring in real applications such as food processing, solvent
production, and especially in cosmetic and fragrance preparation. In particular, this work
sought to distinguish the selectivity toward various functional groups, including terpenes,
alcohols, aldehydes, and ketones, which are classes of gases frequently present in the afore-
mentioned applications. Figure 4 shows the sensors response vs. 5 ppm of R-(+)-limonene,
acetone, acetaldehyde, and ethanol. All samples exhibited an n-type sensing behavior,
namely, a conductance increase during exposure to reducing gases, see Figures S4–S7
(Supporting Information). The selectivity coefficients ks estimated for R-(+)-limonene detec-
tion are reported in Table S2 (Supporting Information). Despite ZnO’s higher reactivity to
R-(+)-limonene than all other sensing materials, this sensor was not selective since the
responses to ethanol and acetone were even higher than those of the target gas. The selectiv-
ity of the most commonly used SnO2 and of the other materials based on its modifications
(Pd:SnO2, An:SnO2, and (Sn,Ti,Nb)xO2, W40Sn60Ox) were likewise inadequate. On the
other hand, WO3 demonstrated an effective ability to discriminate against R-(+)-limonene
among other interfering gases.
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Figure 4. Response of the sensors vs. 5 ppm of acetone, acetaldehyde, ethanol, and R-(+)-limonene in
dry air.

The cross-selectivity of the sensors vs. 5 ppm of R-(+)-limonene in the presence of
10 ppm (baseline) of acetone, acetaldehyde, and ethanol was analyzed and displayed in
Figure 5. The response of those based on ZnO, SnO2, Pd:SnO2, Au:SnO2, (Sn,Ti,Nb)xO2,
and WO40Sn60Ox significantly fell in presence of the interferents. Remarkably, considering
the behavior to 5 ppm of R-(+)-limonene in dry conditions (~35), WO3 seemed unaffected
by ethanol and acetaldehyde as the response values were almost maintained. Only in
the presence of acetone did the WO3 sensor response (~8.5) decreased by approximately
four times compared to other measurements.
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acetaldehyde, and ethanol. Gray intervals represent the period of limonene injection. The duration of
the measure depended on the time required for the majority of the sensors to achieve the steady state
in presence of the target gas.
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The influence of humidity on the sensing performance vs. R-(+)-limonene was
examined by comparing the responses of the seven sensors against the target analyte
(500 ppb) while they were exposed to increasing concentrations of water vapor (2–74 RH%).
As shown in Figure 6, the responses significantly plummet up to 20 RH%, decreasing by
65% for WO3 and 80% for ZnO, while inhibiting the detection of SnO2, Pd:SnO2, Au:SnO2,
(Sn,Ti,Nb)xO2, and W40Sn60Ox. At humidity levels higher than 20 RH%, the response of
ZnO to R-(+)-limonene only slightly diminished, while it remained constant for the WO3
sensor. Due to the promising properties of the latter, previously reported in this work,
and since it is the least influenced by humidity, we further focused on WO3 conductance
behavior (Figure 7). Firstly, one can observe an increase in the baseline conductance of the
sensitive film when the sensor was exposed to 20 RH% due to the homolytic dissociation of
water, which reacted with the metal site and a lattice oxygen to form a terminal and a rooted
hydroxyl group. The latter acted as a surface donor, freeing an electron to the conduction
band [27,37]. Secondly, this reaction mechanism also affected the catalytic properties of
the film vs. R-(+)-limonene detection due to a change in the chemical composition of the
surface by substitution of the oxygen ion active sites, present in dry conditions, with the
newly formed hydroxyl groups. As a consequence, under wet conditions the response to
the analyte decreased. Thirdly, the conductance was only slightly affected by humidity
increases above 20 RH%, indicating that the surface was almost uninfluenced by additional
rises in water vapor content. For this reason, in the same range of RH%, the baseline
conductance and the response to R-(+)-limonene only marginally decreased, then were
almost humidity independent. These characteristics can improve sensor accuracy and
simplify calibrations [38].
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The repeatability of the dynamic response vs. 1 ppm of R-(+)-limonene during three
consecutive cycles was investigated and it is shown in Figure S8 (Supporting Information).
The films exhibited a clear reversible interaction and good repeatability for detection over
time. The response and recovery times are reported in Table 2. It was observed that they
were similar for all sensors except for ZnO, which showed faster kinetics. Response and
recovery times within minutes were already obtained for SnO2 and other materials in
our previous works [19,23]. These parameters depended on the size and geometry of the
chamber and on the gas flow velocity.

Table 2. Responses at the best working temperature of the sensors to 1 ppm of R-(+)-limonene
and the response/recovery times deduced from the repeatability graph in Figure S8 (Supporting
Information).

Sensor Response 1 τres
[min]

τrec
[min]

WO3 10 18 50
ZnO 17 4 15
SnO2 6.5 17 46

Pd:SnO2 7.1 3 40
Au:SnO2 7 17 46

(Sn,Ti,Nb)xO2 5.1 24 57
W40Sn60Ox 6.3 21 57

1 The responses were obtained using Equation (2).

4. Discussion

Nanomaterials based on MOXs have been meticulously researched for use in chemore-
sistive gas sensors because their electronic properties are sensitive to chemical processes
occurring at the surface. Indeed, redox reactions of oxidizing or reducing gas molecules
control the thickness of the space-charge region of the grains composing the sensing film,
therefore influencing its overall conduction. The selectivity vs. target gas, i.e., R-(+)-
limonene, is ruled by the number and nature of the active sites at the MOX surface. Figure 8
provides a schematic two-dimensional representation of the intrinsic active sites at a pris-
tine MOX surface. This includes coordinately unsaturated metal cations and oxygen anions,
point defects (cationic and anionic vacancies, atomic interstitials, and dislocations), and
–OH groups in hydrated MOX [29].
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Figure 8. Two-dimensional schematic representation of a MOX surface with typical intrinsic active
sites. From left to right: charged oxygen vacancies (VO

−), partially reduced metal cations (M(x−1)+),
hydroxyl Brønsted sites (OH), coordinately unsaturated metal cations (Mx−+), oxygen anion (O2−),
base hydroxyl site (M–OH).

Moreover, spontaneous adsorption of oxygen and water vapor can generate intrinsic
adsorbate sites, depending on the operating temperature (Figure 9) [29]. In fact, between
100 and 500 ◦C, the interaction of the sensing layer with atmospheric oxygen leads to
ionosorption of molecular (O2−) and/or atomic (O−, O2

−) species. In the present study,
developed at an operating temperature ranging from 200 to 300 ◦C, oxygen anions such
as O− and O2

− dominate the ionosorption process. In addition to pristine structural and
spontaneous active sites, new extrinsic active sites can be created via the introduction of
additives: atoms, atomic groups, clusters, nanoparticles of metals, or metal oxides [29].
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−, and O−), and noble metal clusters, are
depicted in the Figure.

Each aforementioned surface site possesses a definite chemical behavior in terms
of acidity/basicity, electron donor/acceptor attitude, and specific chemisorption capac-
ity for probe molecules [29]. Such properties are described in the literature [29,39,40]
and are derived from the nature of the MOX (cationic charge and size, metal–oxygen
bond energy), its synthesis conditions, microstructure, additives, and operative conditions
(e.g., sensor operating temperature). Therefore, to demonstrate the key role of the active
sites in determining the selective interaction between sensing materials and gases of dif-
ferent nature, the sensor responses to probe molecules, i.e., 3 ppm of NO2 and 25 ppm of
CO, are shown in Figures S9 and S10 (Supporting Information), respectively. The response
of WO3 towards NO2 revealed a high reactivity. Contrarily, all other sensing materials
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were poorly reactive to this oxidizing gas. On the other hand, the WO3 response to CO
was lower than that of ZnO and comparable to that of SnO2-based sensors. These results
experimentally demonstrated a remarkable diversity in surface reactivity between WO3
and other materials, which was probably crucial for the better sensitivity of this sensor
vs. R-(+)-limonene and, above all, its highly effective cross-selectivity. Indeed, from the
response of WO3 vs. NO2, it can be deduced that its sensing performances were influenced
by a combination of (i) donor sites (e.g., oxygen vacancies), (ii) Lewis acid states (unsaturated
W6+), and (iii) preadsorbed oxygen species, which reacted with NO2 [29,41]. Instead, poor
responses towards NO2 and competitive responses to CO occurred for ZnO- and SnO2-based
sensors, indicating that their selectivity was mostly related to oxidizing sites [29].

Finally, under humid conditions, one has to consider that –OH groups produced by
the dissociation of water molecules on the surface can act as interferents [27]. In particular,
the interaction between –OH groups that behave as Lewis acid sites and surface oxygen
anions that behave as Lewis bases promoted the adsorption of R-(+)-limonene in the WO3
film, and the sensor signal remained poorly affected by the presence of moisture (Figure 7).

In summary, the research conducted so far has highlighted different active surfaces
of the materials towards redox reactions for R-(+)-limonene detection, which are more
favorable in the case of WO3. Although to the best of our knowledge the reaction of
R-(+)-limonene with chemoresistive sensor films is still unexplored, it is reported in the
literature that the surfaces of MOXs catalyze the oxidation of the target molecule to epoxides,
carvone, or carveol [42–44] which may further react with the film, contributing to the sensor
response. The overall sensing mechanism should be rather complex, but in the end, it
results in a reduction in the sensing layer and in an increase in its conductance.

5. Conclusions

The experimental evidence from sensitivity and selectivity tests, together with investi-
gations on active sites using probe molecules, could lead future works on the development
of modified MOX-based sensor arrays for the detection of R-(+)-limonene in a wide range
of concentrations and in complex environments. ZnO was sensitive to several gases and,
hence, it is not suitable for R-(+)-limonene sensing in gas mixtures. On the other hand,
doping/loading and solid solution formation strategies have not proven to be effective in
enhancing the performance of the most commonly used SnO2, which have low sensitivity
and selectivity. Among the various nanostructured MOX films tested, only the one based
on WO3 turned out to be suitable for the development of chemoresistive R-(+)-limonene
sensors operating at low temperatures, demonstrating good sensitivity, cross-selectivity,
and humidity-independent behavior for concentrations higher than 20 RH%. The investi-
gation of the active sites using probe molecules highlighted the very different reactivity
of WO3 compared to other MOXs, which was probably influenced by the presence of
donor sites (e.g., oxygen vacancies) and Lewis acid states (unsaturated W6+). Such active
sites are fundamental for R-(+)-limonene chemisorption on the surface of the material.
Furthermore, since WO3 poorly detected polar interferents, such as acetone, acetaldehyde,
and ethanol, it can be inferred that their surface adsorption sites were selective for apolar
molecules, such as R-(+)-limonene. In future works, we will investigate the size effect of
WO3 nanoparticles and the influence of the morphology on the sensing performance [18].
Moreover, the gas sensing mechanism occurring at the surface of WO3 will be studied
using DC resistance measurements combined with diffuse reflectance infrared Fourier
transformed spectroscopy (DRIFT) [45]. This advanced characterization technique could
be also effective to comprehend the R-(+)-limonene cross-selectivity of the WO3 sensor
with respect to a mixture including polar interferents, e.g., VOCs, addressing the typical
applications in which it is necessary to detect this analyte.
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