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33 Abstract

34 Background: The medial and maxillary aspects of the upper lip originate at separate 

35 embryonic stages and therefore may experience different maternal exposure patterns 

36 which may affect methylation. Based on this hypothesis, we investigated the level of 

37 methylation of the methylene tetrahydrofolate reductase promoter gene (mMTHFR) in 

38 tissues from cleft lip, and mMTHFR levels by MTHFR c.677C>T genotype. We further 

39 investigated whether mMTHFR mitigates the effect of smoking on long interspersed 

40 nuclear element (LINE-1) methylation in these tissues. 

41 Methods. DNA extracted from medial and lateral tissues of 26 infants with non-

42 syndromic cleft lip with or without cleft palate (nsCL/P) was bisulfite converted and 

43 mMTHFR was measured on a pyrosequenser. LINE-1 methylation and MTHFR 

44 c.677C>T genotype data were obtained in our previous study. 

45 Results. There was no substantial difference in mMTHFR (p=0.733) and LINE-1 

46 (p=0.148) between the two tissues. mMTHFR was not influenced by MTHFR c.677C>T 

47 genotype, but there was suggestive evidence that the difference was larger among infants 

48 exposed to maternal smoking compared to non-exposed. LINE-1 methylation differences 

49 were significant (p=0.025) in infants born to non-smoking mothers, but this was not 

50 apparent (p=0.872) in infants born to mothers who smoked. Our Pearson’s correlation 

51 analysis suggested a weak inverse association between mMTHFR and LINE-1 (r= -0.179; 

52 p=0.381).

53 Conclusion. Our preliminary observation of differences in patterns of mMTHFR levels 

54 in lip tissue suggests the interplay of gene and environment in establishment of 

55 methylation in tissues at both sides of cleft lip. This requires investigation in a larger 

56 cohort, integrated with metabolic assessment.

57 Keywords: Non-syndromic cleft lip with or without cleft palate, DNA methylation, 

58 MTHFR c.677C>T, LINE-1, MTHFR promoter methylation 
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59  Introduction 

60 Orofacial clefts (OFCs) are collectively among the most common human congenital 

61 anomalies that can occur in isolation or as part of a syndrome (Mossey et al., 2011). Some 

62 environmental and multiple genetic risk factors have been identified for non-syndromic 

63 form of OFCs (Leisle & Marazita, 2013; Khan et al., 2018a, Mossey et al., 2017; Raut et 

64 al., 2019; Johnson & Little, 2008; Little, Cardy, & Munger, 2004) but the causes of these 

65 defects remain largely unknown.    

66 OFCs develop in early life, when the embryo is extremely susceptible to perturbation of 

67 the in-utero environment (Dixon, Marazita, & Beaty, 2010). Among environmental 

68 factors, tobacco smoking has been found to influence facial morphology (Xuan et al., 

69 2016), and is reported to be the most consistent and strongest risk factor for OFCs (Raut 

70 et al., 2019). Such perturbation of the early life environment affects developmental 

71 programming in the embryo, with sustained changes potentially detectable in tissues from 

72 medial nasal and maxillary sides of the upper lip in cases with non-syndromic cleft lip 

73 with or without cleft palate (nsCL/P) as observed by our group in recent studies (Khan et 

74 al., 2018b, Khan et al., 2018c, Khan et al., 2019a, Khan et al., 2019b). 

75 Methylene tetrahydrofolate reductase (MTHFR) is the rate-limiting enzyme in the one-

76 carbon cycle, a pathway that is critical to metabolism of folate. Folate is a specific nutrient 

77 involved in development of craniofacial structures (Jiang, Bush, & Lidral, 2006) and 

78 provides methyl group for DNA methylation (Sinclair et al., 2007). MTHFR activity is 

79 mainly regulated by the combination of two mechanistic aspects – 1) variants within the 

80 gene that essentially acts at the level of enzyme activity and specificity; 2) methylation 

81 of the gene promoter that mainly affects level of expression. Both the c.677C>T 

82 (rs1801133) and c.1298A>C (rs1801131) variants of the MTHFR gene have been 

83 demonstrated to reduce enzyme activity (Liew & Gupta, 2015; van der Put et al., 1998). 

84 The effect of both these variants have been investigated in relation to nsCL/P in the index 

85 child, and/or one or both parents but the results from these studies have been inconclusive 

86 (Rai, 2018; Mossey, & Little, 2002; Reutter et al., 2008; Shaw, Todoroff, Finnell, Rozen, 

87 & Lammer, 1999; Zhou et al., 2020). Our group; however, considered an alternative 

88 mechanism involving DNA methylation to decipher the role of MTHFR gene variants in 
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89 nsCL/P, and found that a variant in MTHFR gene plays a role in the establishment of 

90 methylation in cleft lip tissues (Khan et al., 2019b). 

91 We know that methylation within MTHFR promoter (mMTHFR) contributes to variation 

92 in MTHFR protein activity similar to that conferred by MTHFR variants (Coppede, 

93 Denaro, Tannorella, & Migliore, 2016), and has been shown to contribute to many 

94 developmental (Asim, Agarwal, Panigrahi, Sai; yed, & Bakshi, 2017; Coppede et al., 

95 2016) and pregnancy related disorders (Ge et al., 2015; Mishra et al., 2019). However, to 

96 our knowledge, there appears to be no evidence of information regarding the methylation 

97 profile of mMTHFR, or the contribution of MTHFR variants to MTHFR methylation level 

98 in nsCL/P. Therefore, we undertook this preliminary study to assess the level of 

99 mMTHFR, and further investigate the relationship between MTHFR c.677C>T variant 

100 and mMTHFR utilizing tissues from medial and lateral aspects of the upper lip in 

101 individuals with nsCL/P. 

102 mMTHFR could also be involved in differences in regulation of methylation repair 

103 activity and hence might contribute to individual differences by altering enzyme activity. 

104 This could either affect the availability of activated methyl group or increase the rate of 

105 loss of methylation (over time) in response to exposures associated with demethylation 

106 such as cigarette smoking (Beach et al., 2017). Alternatively, when MTHFR is more 

107 active, the availability of methyl group is more likely enhanced, potentially alleviating 

108 the impact of exposures such as smoking that would otherwise cause demethylation 

109 (Beach et al., 2017; Stover, 2009). Intrigued by this concept, we examined whether 

110 mMTHFR in the indexed infant could mitigate the adverse effects of active maternal 

111 smoking exposures, and potentially be reflected as changes in LINE-1 methylation level 

112 – widely accepted to be a proxy for overall genomic DNA methylation content (Lisanti 

113 et al., 2013). 

114 Materials and Methods

115 Tissue samples from the medial and lateral sides of cleft lip were collected from 26 cases 

116 with nsCL/P that were recruited between 2016 and 2018 in the Centre for Orofacial Clefts 

117 and Craniofacial Anomalies, San Paolo Hospital, Milan, Italy (PENTACLEFT: prot. no. 

118 08–2011). Our sample included 13 female and 13 male cases. Fifteen cases had cleft lip 
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119 and 10 had cleft lip and palate (phenotypic data missing for one case – due to 

120 mismatching). Among the mothers of these 26 cases, fifteen were non-smokers and eight 

121 actively smoked during the periconceptional period – 3 months before to 3 months after 

122 conception (smoking data missing for three mothers – due to non-response on survey).

123 The DNA extracted from tissues were bisulfite converted and methylation of the MTHFR 

124 gene promoter was measured using PyroMark Q96 predesigned CpG assay 

125 (#PM00000091) on a PyroMark Q96 ID pyrosequenser (Qiagen GmbH, Hilden, 

126 Germany), with minor modification of the method previously described (Khan et al., 

127 2018b). Briefly, the amplification of bisulfite converted DNA was performed by PCR 

128 with MTHFR primer, and pyrosequencing done using MTHFR specific sequencing 

129 primers. The predesigned assay contained the following sequence 5’-

130 GGTCACTGAGTCACCGATGGGGGCGAGGAYACGGGC-3’ (prior to bisulfite 

131 conversion) including 3 CpG sites to assess in promoter region of MTHFR. The 

132 nucleotide dispensation order was: 

133 TGTCATGATGATATCGAGTGGTCGAGATATCG. LINE-1 methylation and 

134 MTHFR c.677C>T genotype data for this cohort were obtained in our previous study 

135 (Khan et al., 2019b). The Kolmogorov-Smirnov test showed that the data were normally 

136 distributed, hence, parametric comparison of within and between samples were performed 

137 using Student’s t-test. In addition, we report parametric effect size estimate (Hedge’s gs) 

138 associated with independent sample Student’s t-test, and Pearson’s correlation to 

139 determine relationship between mMTHFR and LINE-1 (Pautz, Olivier, & Steyn, 2018; 

140 McLeod, 2019). Considering the total of 26 cases included in this study, we calculated 

141 statistical power using G*POWER software 3.1.9.2 version (Faul, Erdfelder, Lang, & 

142 Buchner, 2007). Considering a two-tailed t-test and an equally serious α & β error (β/α = 

143 1), an effect size dz of 0.2, we calculated the power (1-β-error) of 0.60.

144 Results

145 We found a non-significant difference of 1.3% in mMTHFR between medial and lateral 

146 tissues (p=0.733; Table 1). mMTHFR was not influenced by MTHFR c.677C>T genotype 

147 (Table 2). Similarly, LINE-1 methylation was not significantly different (1.7%) across 

148 tissues in this cohort (p=0.148; Table 1). 
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149 To examine the role of mMTHFR as a source in compensating for the effect of smoking 

150 on LINE-1 methylation level, we compared the level of methylation in MTHFR and 

151 LINE-1 in medial and lateral tissues between infants born to mothers who smoked in the 

152 periconceptional period and infants of non-smoking mothers. Among infants exposed to 

153 smoking, the difference in mMTHFR was larger (6.1%) but showed a lowered level of 

154 methylation (p=0.293; Table 1) compared to infants born to non-smoking mothers in 

155 whom mMTHFR was similar ( ̴38%) in the two tissues (p=0.866; Table 1).  Interestingly, 

156 LINE-1 methylation differences were significant (p=0.025) in infants born to non-

157 smoking mothers; this however, was not apparent (p=0.872) in infants born to mothers 

158 who smoked, with medial and lateral tissues showing equal level (72%) of methylation 

159 (Table 1). 

160 Comparisons between these groups were non-significant for both mMTHFR (p=0.554) 

161 and LINE-1 (p=0.209). We also calculated the effect size (ES) for between comparisons 

162 and found a small ES for mMTHFR ( =0.26). While LINE-1 showed medium ( =0.56) 𝑔𝑠 𝑔𝑠

163 ES, our Pearson’s correlation analysis suggested a weak inverse association between 

164 mMTHFR and LINE-1 (r= -0.179; p=0.381).  

165 Discussion

166 In this preliminary study, we found a small non-significant difference in mMTHFR and 

167 LINE-1 methylation across medial and lateral tissues. A difference in mMTHFR was 

168 observed in infants of mothers who smoked but not among infants born to non-smoking 

169 mothers. By contrast, a significant difference in LINE-1 methylation was apparent in 

170 infants born to non-smoking mothers, but not in infants born to smoking mothers. 

171 Our observation of small changes in methylation in mMTHFR and LINE-1 is compatible 

172 with reports that the magnitude of epigenetic effect associated with exposure in children 

173 is generally small; large changes may not be compatible with continued development 

174 (Breton et al., 2017). Hence, a small imbalance in methylation in progeny cells of the 

175 medial and maxillary tissues might result in an apparently small distinction between 

176 sufficient and insufficient methylation. Insufficient methylation might in turn interfere 

177 with the fusion process, so leading to the development of a cleft lip. Persistence of this 

178 small imbalance throughout pregnancy and into the postnatal period would be manifested 
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179 as differences in tissues from medial and lateral side of cleft lip. Such a difference could 

180 therefore provide insight into epigenetic effects of early life environmental exposures 

181 (Richmond et al., 2017).  

182 The pattern of mMTHFR levels suggests that nearly equal levels of folate are available 

183 for tissues developing at distinct embryonic periods, but the level of availability could 

184 likely be influenced by external factors such as smoking (Nafee, Farrell, Carroll, Fryer, 

185 & Ismail, 2008). Importantly, we found lower mMTHFR in the smoking group that 

186 suggests an increase in folate availability. This increased folate availability might provide 

187 methyl-group to mitigate/overcome the effect of smoking resulting in the observation of 

188 nearly equal levels of LINE-1 methylation in the medial and lateral tissues (72%). The 

189 lower mMTHFR level in the smoking group further suggests smoking-associated 

190 demethylation at a single gene promoter, whereas there was little difference in global 

191 methylation. This is in line with the suggestion that small changes in global methylation 

192 of developing tissues might have substantial effects in the longer term (Breton et al., 

193 2017). Pearson’s correlation analysis showed a weak association between mMTHFR and 

194 LINE-1. This provides some support for a role of mMTHFR in moderating epigenetic 

195 response to smoking, and our previous findings that lip tissues are highly responsive to 

196 maternal environmental exposures (Khan et al., 2018b). We acknowledge that our results 

197 are based on small sample size, because collecting tissues from the cleft cases presents 

198 considerable challenges (Stock et al., 2016). We did not correct for multiple comparisons 

199 because reducing the risk of type I error can be at the expense of increasing type II error, 

200 and because of the preliminary nature of the study, identifying hypotheses for further 

201 investigation (Perneger 1998; Armstrong, 2014). A limitation of using tissue from the 

202 clefts is the difficulty of obtaining an appropriate reference group from which lip tissue 

203 samples could be collected. This problem arises from concerns about ethical issues and 

204 selection bias and is highly likely to be encountered in other studies.

205  Our result is consistent with previous reports involving a large number of healthy Italian 

206 participants showing no association of MTHFR c.677C>T with mMTHFR indicating that 

207 c.677C>T variant does not act as a cis regulatory element to regulate its own gene 

208 promoter (Piras et al., 2020; Coppede et al., 2019; Ni et al., 2017), although there are 

209 reports that MTHFR c.677C>T genotype influences mMTHFR (Mandaviya et al. 2017; 
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210 Nash et al., 2019). Accordingly, we found that mMTHFR in TT homozygotes are 

211 hypomethylated in both medial and lateral tissues, which seems to reflect a compensatory 

212 higher expression of MTHFR gene. This is in line with a previous report of the complexity 

213 of the effect of MTHFR variants on DNA methylation (De Gobbo, Price, Hanna, & 

214 Robinson, 2018). A comprehensive metabolic assessment is necessary to advance our 

215 understanding of one-carbon nutrients on DNA methylation involved in nsCL/P.   

216 The investigation of LINE-1 methylation in response to smoking does not necessarily 

217 reflect changes in methylation at specific loci that have been reported to be influenced by 

218 smoking (Andersen, Dogan, Beach, & Philibert, 2015). Hence, for understanding aspects 

219 of the apparent mitigating effect of mMTHFR on smoking, we in future plan investigation 

220 based on larger samples, and genetic loci/CpGs previously identified as being associated 

221 with smoking and also implicated in non-syndromic OFCs (Joubert et al., 2016). Another 

222 potential limitation of this study is non availability of RNA from these tissues to access 

223 relationship between mMTHFR and its expression (mRNA level) - which can be 

224 modulated by other epigenetic processes such as histone modification and micro-RNAs. 

225 In this regard, there is evidence suggesting that miRNAs (miR-324-3p and miR-223), are 

226 able to regulate MTHFR gene in salivary cells taken from nsCL/P cases (Grassia et al., 

227 2018). Once tissue collections still in process, are completed, we also plan to investigate 

228 miRNAs and functional analysis in these tissues to better understand the complex 

229 aetiology of nsCL/P. 

230 In conclusion, our study highlights the interplay of gene and environment in moderating 

231 the establishment of methylation in medial and maxillary sides of the upper lip tissues. 

232 The study requires replication in a larger study, including genes associated with smoking 

233 and oral clefts. We consider that the study further champions the potential value of 

234 investigating lip tissues, integrated with metabolomics for nutrient assessment, in order 

235 to develop a clearer understanding of the aetio-pathogenesis of non-syndromic orofacial 

236 clefts. 
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Table 1. Mean methylation level (%) at LINE-1 and MTHFR gene promoter (mMTHFR) in 
medial and lateral cleft tissues.   

Mean ± standard deviation (SD) values of total non-syndromic CL/P cases or cases categorized 
by smoking and non-smoking, along with mean difference, 95% confidence interval (C.I) and 
nominal p-value of t-test.

Infant DNA Medial side 
Mean ± SD 

Lateral side  
Mean ± SD 

Mean difference
(95% C.I.) p-value

LINE 1 (26)

Total (n=26) 73.19 ± 2.57 71.50 ± 4.65 1.69 (-0.64 to 4.02) p=0.148

Non-smoking 
(n=15) 73.78 ± 2.48 70.22 ± 4.95 3.55 (0.51 to 6.59)

p=0.025 p=0.209

Smoking (n=8) 72.00 ± 2.56 72.38 ± 5.15 -0.38 (-5.70 to 4.94)
p=0.872

mMTHFR (26)

Total (n=26) 37.04 ± 1.63 35.69 ± 1.85 1.34 (-6.69 to 9.38) p=0.733

Non-smoking 
(n=15) 37.50 ± 1.82 38.28 ± 1.81 -0.77 (-10.33 to 8.77)

p=0.866 p=0.554

Smoking (n=8) 31.13 ± 11.50 25.00 ± 11.73 6.12 (-6.60 to 18.85)
p=0.293

Abbreviations: n, number of cases; SD, standard deviation; CI, confidence interval. 
Footnote: Maternal smoking data was available for only 23 cases. 
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Table 2. mMTHFR level (%) in medial and lateral cleft lip tissues of total non-syndromic 
CL/P cases, stratified by MTHFR c.677C>T genotype. 

MTHFR c.677C>T Medial side 
Mean ± SD 

Lateral side  
Mean ± SD 

Mean difference
(95% C.I.) 

p-value*

mMTHFR (26)

CC (n=7) 44.57 ± 1.46 37.71 ± 2.11 6.86 (-17.57 to 31.28) ref.

CT (n=13) 38.54 ± 16.62 37.77 ± 18.90 0.7 (-9.97 to 11.51) p=0.649

TT (n=6) 25.00 ± 12.36 28.83 ± 15.94 -3.83 (-22.28 to 14.61) p=0.390

Abbreviations:   n, number of cases; SD, standard deviation; CI, confidence interval; ref., 
reference. 
*Nominal p‐value of comparisons of mean difference between medial and lateral sides 
considering CC genotype as reference.
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33 Abstract

34 Background: The medial and maxillary aspects of the upper lip originate at separate 

35 embryonic stages and therefore may experience different maternal exposure patterns 

36 which may affect methylation. Based on this hypothesis, we investigated the level of 

37 methylation of the methylene tetrahydrofolate reductase promoter gene (mMTHFR) in 

38 tissues from cleft lip, and mMTHFR levels by MTHFR c.677C>T genotype. We further 

39 investigated whether mMTHFR mitigates the effect of smoking on long interspersed 

40 nuclear element (LINE-1) methylation in these tissues. 

41 Methods. DNA extracted from medial and lateral tissues of 26 infants with non-

42 syndromic cleft lip with or without cleft palate (nsCL/P) was bisulfite converted and 

43 mMTHFR was measured on a pyrosequenser. LINE-1 methylation and MTHFR 

44 c.677C>T genotype data were obtained in our previous study. 

45 Results. There was no substantial difference in mMTHFR (p=0.733) and LINE-1 

46 (p=0.148) between the two tissues. mMTHFR was not influenced by MTHFR c.677C>T 

47 genotype, but there was suggestive evidence that the difference was larger among infants 

48 exposed to maternal smoking compared to non-exposed. LINE-1 methylation differences 

49 were significant (p=0.025) in infants born to non-smoking mothers, but this was not 

50 apparent (p=0.872) in infants born to mothers who smoked. Our Pearson’s correlation 

51 analysis suggested a weak inverse association between mMTHFR and LINE-1 (r= -0.179; 

52 p=0.381).

53 Conclusion. Our preliminary observation of differences in patterns of mMTHFR levels 

54 in lip tissue suggests the interplay of gene and environment in establishment of 

55 methylation in tissues at both sides of cleft lip. This requires investigation in a larger 

56 cohort, integrated with metabolic assessment.

57 Keywords: Non-syndromic cleft lip with or without cleft palate, DNA methylation, 

58 MTHFR c.677C>T, LINE-1, MTHFR promoter methylation 
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59  Introduction 

60 Orofacial clefts (OFCs) are collectively among the most common human congenital 

61 anomalies that can occur in isolation or as part of a syndrome (Mossey et al., 2011). Some 

62 environmental and multiple genetic risk factors have been identified for non-syndromic 

63 form of OFCs (Leisle & Marazita, 2013; Khan et al., 2018a, Mossey et al., 2017; Raut et 

64 al., 2019; Johnson & Little, 2008; Little, Cardy, & Munger, 2004) but the causes of these 

65 defects remain largely unknown.    

66 OFCs develop in early life, when the embryo is extremely susceptible to perturbation of 

67 the in-utero environment (Dixon, Marazita, & Beaty, 2010). Among environmental 

68 factors, tobacco smoking has been found to influence facial morphology (Xuan et al., 

69 2016), and is reported to be the most consistent and strongest risk factor for OFCs (Raut 

70 et al., 2019). Such perturbation of the early life environment affects developmental 

71 programming in the embryo, with sustained changes potentially detectable in tissues from 

72 medial nasal and maxillary sides of the upper lip in cases with non-syndromic cleft lip 

73 with or without cleft palate (nsCL/P) as observed by our group in recent studies (Khan et 

74 al., 2018b, Khan et al., 2018c, Khan et al., 2019a, Khan et al., 2019b). 

75 Methylene tetrahydrofolate reductase (MTHFR) is the rate-limiting enzyme in the one-

76 carbon cycle, a pathway that is critical to metabolism of folate. Folate is a specific nutrient 

77 involved in development of craniofacial structures (Jiang, Bush, & Lidral, 2006) and 

78 provides methyl group for DNA methylation (Sinclair et al., 2007). MTHFR activity is 

79 mainly regulated by the combination of two mechanistic aspects – 1) variants within the 

80 gene that essentially acts at the level of enzyme activity and specificity; 2) methylation 

81 of the gene promoter that mainly affects level of expression. Both the c.677C>T 

82 (rs1801133) and c.1298A>C (rs1801131) variants of the MTHFR gene have been 

83 demonstrated to reduce enzyme activity (Liew & Gupta, 2015; van der Put et al., 1998). 

84 The effect of both these variants have been investigated in relation to nsCL/P in the index 

85 child, and/or one or both parents but the results from these studies have been inconclusive 

86 (Rai, 2018; Mossey, & Little, 2002; Reutter et al., 2008; Shaw, Todoroff, Finnell, Rozen, 

87 & Lammer, 1999; Zhou et al., 2020). Our group; however, considered an alternative 

88 mechanism involving DNA methylation to decipher the role of MTHFR gene variants in 
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89 nsCL/P, and found that a variant in MTHFR gene plays a role in the establishment of 

90 methylation in cleft lip tissues (Khan et al., 2019b). 

91 We know that methylation within MTHFR promoter (mMTHFR) contributes to variation 

92 in MTHFR protein activity similar to that conferred by MTHFR variants (Coppede, 

93 Denaro, Tannorella, & Migliore, 2016), and has been shown to contribute to many 

94 developmental (Asim, Agarwal, Panigrahi, Sai; yed, & Bakshi, 2017; Coppede et al., 

95 2016) and pregnancy related disorders (Ge et al., 2015; Mishra et al., 2019). However, to 

96 our knowledge, there appears to be no evidence of information regarding the methylation 

97 profile of mMTHFR, or the contribution of MTHFR variants to MTHFR methylation level 

98 in nsCL/P. Therefore, we undertook this preliminary study to assess the level of 

99 mMTHFR, and further investigate the relationship between MTHFR c.677C>T variant 

100 and mMTHFR utilizing tissues from medial and lateral aspects of the upper lip in 

101 individuals with nsCL/P. 

102 mMTHFR could also be involved in differences in regulation of methylation repair 

103 activity and hence might contribute to individual differences by altering enzyme activity. 

104 This could either affect the availability of activated methyl group or increase the rate of 

105 loss of methylation (over time) in response to exposures associated with demethylation 

106 such as cigarette smoking (Beach et al., 2017). Alternatively, when MTHFR is more 

107 active, the availability of methyl group is more likely enhanced, potentially alleviating 

108 the impact of exposures such as smoking that would otherwise cause demethylation 

109 (Beach et al., 2017; Stover, 2009). Intrigued by this concept, we examined whether 

110 mMTHFR in the indexed infant could mitigate the adverse effects of active maternal 

111 smoking exposures, and potentially be reflected as changes in LINE-1 methylation level 

112 – widely accepted to be a proxy for overall genomic DNA methylation content (Lisanti 

113 et al., 2013). 

114 Materials and Methods

115 Tissue samples from the medial and lateral sides of cleft lip were collected from 26 cases 

116 with nsCL/P that were recruited between 2016 and 2018 in the Centre for Orofacial Clefts 

117 and Craniofacial Anomalies, San Paolo Hospital, Milan, Italy (PENTACLEFT: prot. no. 

118 08–2011). Our sample included 13 female and 13 male cases. Fifteen cases had cleft lip 
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119 and 10 had cleft lip and palate (phenotypic data missing for one case – due to 

120 mismatching). Among the mothers of these 26 cases, fifteen were non-smokers and eight 

121 actively smoked during the periconceptional period – 3 months before to 3 months after 

122 conception (smoking data missing for three mothers – due to non-response on survey).

123 The DNA extracted from tissues were bisulfite converted and methylation of the MTHFR 

124 gene promoter was measured using PyroMark Q96 predesigned CpG assay 

125 (#PM00000091) on a PyroMark Q96 ID pyrosequenser (Qiagen GmbH, Hilden, 

126 Germany), with minor modification of the method previously described (Khan et al., 

127 2018b). Briefly, the amplification of bisulfite converted DNA was performed by PCR 

128 with MTHFR primer, and pyrosequencing done using MTHFR specific sequencing 

129 primers. The predesigned assay contained the following sequence 5’-

130 GGTCACTGAGTCACCGATGGGGGCGAGGAYACGGGC-3’ (prior to bisulfite 

131 conversion) including 3 CpG sites to assess in promoter region of MTHFR. The 

132 nucleotide dispensation order was: 

133 TGTCATGATGATATCGAGTGGTCGAGATATCG. LINE-1 methylation and 

134 MTHFR c.677C>T genotype data for this cohort were obtained in our previous study 

135 (Khan et al., 2019b). The Kolmogorov-Smirnov test showed that the data were normally 

136 distributed, hence, parametric comparison of within and between samples were performed 

137 using Student’s t-test. In addition, we report parametric effect size estimate (Hedge’s gs) 

138 associated with independent sample Student’s t-test, and Pearson’s correlation to 

139 determine relationship between mMTHFR and LINE-1 (Pautz, Olivier, & Steyn, 2018; 

140 McLeod, 2019). Considering the total of 26 cases included in this study, we calculated 

141 statistical power using G*POWER software 3.1.9.2 version (Faul, Erdfelder, Lang, & 

142 Buchner, 2007). Considering a two-tailed t-test and an equally serious α & β error (β/α = 

143 1), an effect size dz of 0.2, we calculated the power (1-β-error) of 0.60.

144 Results

145 We found a non-significant difference of 1.3% in mMTHFR between medial and lateral 

146 tissues (p=0.733; Table 1). mMTHFR was not influenced by MTHFR c.677C>T genotype 

147 (Table 2). Similarly, LINE-1 methylation was not significantly different (1.7%) across 

148 tissues in this cohort (p=0.148; Table 1). 
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149 To examine the role of mMTHFR as a source in compensating for the effect of smoking 

150 on LINE-1 methylation level, we compared the level of methylation in MTHFR and 

151 LINE-1 in medial and lateral tissues between infants born to mothers who smoked in the 

152 periconceptional period and infants of non-smoking mothers. Among infants exposed to 

153 smoking, the difference in mMTHFR was larger (6.1%) but showed a lowered level of 

154 methylation (p=0.293; Table 1) compared to infants born to non-smoking mothers in 

155 whom mMTHFR was similar ( ̴38%) in the two tissues (p=0.866; Table 1).  Interestingly, 

156 LINE-1 methylation differences were significant (p=0.025) in infants born to non-

157 smoking mothers; this however, was not apparent (p=0.872) in infants born to mothers 

158 who smoked, with medial and lateral tissues showing equal level (72%) of methylation 

159 (Table 1). 

160 Comparisons between these groups were non-significant for both mMTHFR (p=0.554) 

161 and LINE-1 (p=0.209). We also calculated the effect size (ES) for between comparisons 

162 and found a small ES for mMTHFR ( =0.26). While LINE-1 showed medium ( =0.56) 𝑔𝑠 𝑔𝑠

163 ES, our Pearson’s correlation analysis suggested a weak inverse association between 

164 mMTHFR and LINE-1 (r= -0.179; p=0.381).  

165 Discussion

166 In this preliminary study, we found a small non-significant difference in mMTHFR and 

167 LINE-1 methylation across medial and lateral tissues. A difference in mMTHFR was 

168 observed in infants of mothers who smoked but not among infants born to non-smoking 

169 mothers. By contrast, a significant difference in LINE-1 methylation was apparent in 

170 infants born to non-smoking mothers, but not in infants born to smoking mothers. 

171 Our observation of small changes in methylation in mMTHFR and LINE-1 is compatible 

172 with reports that the magnitude of epigenetic effect associated with exposure in children 

173 is generally small; large changes may not be compatible with continued development 

174 (Breton et al., 2017). Hence, a small imbalance in methylation in progeny cells of the 

175 medial and maxillary tissues might result in an apparently small distinction between 

176 sufficient and insufficient methylation. Insufficient methylation might in turn interfere 

177 with the fusion process, so leading to the development of a cleft lip. Persistence of this 

178 small imbalance throughout pregnancy and into the postnatal period would be manifested 
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179 as differences in tissues from medial and lateral side of cleft lip. Such a difference could 

180 therefore provide insight into epigenetic effects of early life environmental exposures 

181 (Richmond et al., 2017).  

182 The pattern of mMTHFR levels suggests that nearly equal levels of folate are available 

183 for tissues developing at distinct embryonic periods, but the level of availability could 

184 likely be influenced by external factors such as smoking (Nafee, Farrell, Carroll, Fryer, 

185 & Ismail, 2008). Importantly, we found lower mMTHFR in the smoking group that 

186 suggests an increase in folate availability. This increased folate availability might provide 

187 methyl-group to mitigate/overcome the effect of smoking resulting in the observation of 

188 nearly equal levels of LINE-1 methylation in the medial and lateral tissues (72%). The 

189 lower mMTHFR level in the smoking group further suggests smoking-associated 

190 demethylation at a single gene promoter, whereas there was little difference in global 

191 methylation. This is in line with the suggestion that small changes in global methylation 

192 of developing tissues might have substantial effects in the longer term (Breton et al., 

193 2017). Pearson’s correlation analysis showed a weak association between mMTHFR and 

194 LINE-1. This provides some support for a role of mMTHFR in moderating epigenetic 

195 response to smoking, and our previous findings that lip tissues are highly responsive to 

196 maternal environmental exposures (Khan et al., 2018b). We acknowledge that our results 

197 are based on small sample size, because collecting tissues from the cleft cases presents 

198 considerable challenges (Stock et al., 2016). We did not correct for multiple comparisons 

199 because reducing the risk of type I error can be at the expense of increasing type II error, 

200 and because of the preliminary nature of the study, identifying hypotheses for further 

201 investigation (Perneger 1998; Armstrong, 2014). A limitation of using tissue from the 

202 clefts is the difficulty of obtaining an appropriate reference group from which lip tissue 

203 samples could be collected. This problem arises from concerns about ethical issues and 

204 selection bias and is highly likely to be encountered in other studies.

205  Our result is consistent with previous reports involving a large number of healthy Italian 

206 participants showing no association of MTHFR c.677C>T with mMTHFR indicating that 

207 c.677C>T variant does not act as a cis regulatory element to regulate its own gene 

208 promoter (Piras et al., 2020; Coppede et al., 2019; Ni et al., 2017), although there are 

209 reports that MTHFR c.677C>T genotype influences mMTHFR (Mandaviya et al. 2017; 
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210 Nash et al., 2019). Accordingly, we found that mMTHFR in TT homozygotes are 

211 hypomethylated in both medial and lateral tissues, which seems to reflect a compensatory 

212 higher expression of MTHFR gene. This is in line with a previous report of the complexity 

213 of the effect of MTHFR variants on DNA methylation (De Gobbo, Price, Hanna, & 

214 Robinson, 2018). A comprehensive metabolic assessment is necessary to advance our 

215 understanding of one-carbon nutrients on DNA methylation involved in nsCL/P.   

216 The investigation of LINE-1 methylation in response to smoking does not necessarily 

217 reflect changes in methylation at specific loci that have been reported to be influenced by 

218 smoking (Andersen, Dogan, Beach, & Philibert, 2015). Hence, for understanding aspects 

219 of the apparent mitigating effect of mMTHFR on smoking, we in future plan investigation 

220 based on larger samples, and genetic loci/CpGs previously identified as being associated 

221 with smoking and also implicated in non-syndromic OFCs (Joubert et al., 2016). Another 

222 potential limitation of this study is non availability of RNA from these tissues to access 

223 relationship between mMTHFR and its expression (mRNA level) - which can be 

224 modulated by other epigenetic processes such as histone modification and micro-RNAs. 

225 In this regard, there is evidence suggesting that miRNAs (miR-324-3p and miR-223), are 

226 able to regulate MTHFR gene in salivary cells taken from nsCL/P cases (Grassia et al., 

227 2018). Once tissue collections still in process, are completed, we also plan to investigate 

228 miRNAs and functional analysis in these tissues to better understand the complex 

229 aetiology of nsCL/P. 

230 In conclusion, our study highlights the interplay of gene and environment in moderating 

231 the establishment of methylation in medial and maxillary sides of the upper lip tissues. 

232 The study requires replication in a larger study, including genes associated with smoking 

233 and oral clefts. We consider that the study further champions the potential value of 

234 investigating lip tissues, integrated with metabolomics for nutrient assessment, in order 

235 to develop a clearer understanding of the aetio-pathogenesis of non-syndromic orofacial 

236 clefts. 
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