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Abstract

In this work we propose a novel numerical method for the solution of the incompressible Navier-Stokes equations on

Cartesian meshes in 3D. The semi-discrete scheme is based on an explicit discretization of the nonlinear convective flux

tensor and an implicit treatment of the pressure gradient and viscous terms. In this way, the momentum equation is formally

substituted into the divergence-free constraint, thus obtaining an elliptic equation on the pressure which eventually maintains

at the discrete level the involution on the divergence of the velocity field imposed by the governing equations. This makes

our method belonging to the class of so-called structure-preserving schemes. High order of accuracy in space is achieved

using an efficient CWENO reconstruction operator that is exploited to devise a conservative finite difference scheme for the

convective terms. Implicit central finite differences are used to remove the numerical dissipation in the pressure gradient

discretization. To avoid the severe time step limitation induced by the viscous eigenvalues related to the parabolic terms in

the governing equations, we propose to devise an implicit local discontinuous Galerkin (DG) solver. The resulting viscous

sub-system is symmetric and positive definite, therefore it can be efficiently solved at the aid of a matrix-free conjugate

gradient method. High order in time is granted by a semi-implicit IMEX time stepping technique. Convergence rates up to

third order of accuracy in space and time are proven, and a suite of academic benchmarks is shown in order to demonstrate

the robustness and the validity of the novel schemes, especially in the context of high viscosity coefficients.
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1. Introduction

The incompressible Navier-Stokes equations constitute a well-established physical model which gov-
erns fluids in the incompressible limit that is obtained from the compressible Navier-Stokes equations.
Indeed, in the low Mach limit the pressure of compressible gases tends to become constant and there-
fore an involution related to the divergence of the velocity field is retrieved from the energy equation.
From the numerical viewpoint, the main difficulty is given by the solution of the pressure Poisson equa-
tion such that the divergence-free constraint is maintained at the discrete level. The satisfaction of the
divergence-free condition at a local discrete level, i.e. within each computational cell, plays a crucial role
when dealing with transports of solutes or other quantities by the main flow field. The computation of
the pressure which respects the divergence-free involution typically involves an associated linear equation
system to be solved, as originally proposed within the SIMPLE method [1].

The incompressible Navier-Stokes equations take the form of a saddle-point problem than can be
formulated by means of a set of elliptic problems, thus boundary conditions affect instantaneously the
solution everywhere inside the domain. As a consequence, continuous finite element methods are very
popular [2–8] as well as finite difference schemes [9–12]. Discontinuous Galerkin methods for the incom-
pressible Navier-Stokes equations have been recently investigated in [13–20]. The technique of artificial
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compressibility, originally introduced by Chorin in [21], has been used in the DG framework [22]. Stag-
gered grids combined with finite difference schemes and semi-implicit time discretizations have been
widely studied in the literature [9–12,23–25] to devise structure-preserving methods that can respect the
divergence-free involution on the velocity field.

A similar, though different, time stepping technique is given by the family of implicit-explicit (IMEX)
methods [26–30] which have recently been employed to design asymptotic preserving methods for the
inviscid [31] and viscous [32,33] compressible flows. IMEX-BDF schemes have been investigated in [34,35],
while IMEX combined with continuous finite element schemes have been presented in [36].

In this work we aim at developing a high order numerical scheme in space and time for the full
3D incompressible Navier-Stokes equations on cell-centered Cartesian grids. The nonlinear convective
terms will be discretized explicitly using a finite difference conservative formulation that is based on an
efficient CWENO reconstruction technique [37,38]. The pressure is taken implicitly, so that the momentum
equation is inserted into the divergence-free constraint to obtain an elliptic Poisson equation on the
pressure that guarantees the preservation of the involution up to machine precision. An additional novelty
is given by the implicit discretization of the viscous terms, relying on a local weak formulation of the
viscous sub-system. The idea comes from the semi-implicit discontinuous Galerkin methods proposed
in [39], and it is here extended to a complete different setup given by cell-centered finite difference
schemes with Runge-Kutta time marching.

The outline of this article is as follows. In Section 2 we introduce the governing equations, while
Section 3 is devoted to the description of the numerical method. Specific care is taken to detail the
solution of the Poisson equation on the pressure and the novel implicit discretization of the viscous sub-
system. Numerical convergence studies and applications to a set of test problems is shown in Section 4. A
concluding section finalizes the article where we draw some conclusions and present an outlook to future
research.

2. Governing equations

The computational domain Ω ∈ R𝑑 is defined in space dimension 𝑑 ∈ {1, 2, 3} with the vector of spatial
coordinates 𝒙 = (𝑥, 𝑦, 𝑧) ∈ Ω and time variable 𝑡 ∈ R+. The incompressible Navier-Stokes equations are
given by

𝜕𝒖

𝜕𝑡
+ ∇ · F𝑐 + ∇𝑝 − a ∇2𝒖 = 0,(1a)

∇ · 𝒖 = 0,(1b)

where 𝒖 = (𝑢, 𝑣, 𝑤) is the velocity vector with components along each spatial direction and 𝑝 = 𝑃/𝜌 is
the normalized fluid pressure, 𝑃 being the physical pressure and 𝜌 denoting the constant fluid density.
The kinematic viscosity coefficient is computed by a = `/𝜌, and ` is the dynamic viscosity of the fluid.
The flux tensor of the nonlinear convective terms explicitly writes

(2) F𝑐 := 𝒖 ⊗ 𝒖 =


𝑢𝑢 𝑢𝑣 𝑢𝑤

𝑣𝑢 𝑣𝑣 𝑣𝑤

𝑤𝑢 𝑤𝑣 𝑤𝑤

 .
In what follows we will present a numerical discretization for the model (1).

3. Numerical scheme

The time coordinate is bounded in the interval 𝑡 ∈ [0; 𝑡 𝑓 ], and the final time 𝑡 𝑓 is reached performing
a sequence of time steps Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛. The size of the time step is determined according to a CFL-type
stability condition based on the magnitude of the flow velocity, that is

(3) Δ𝑡 ≤ CFLmin
Ω

(
|𝑢 |
Δ𝑥

+ |𝑣 |
Δ𝑦

+ |𝑤 |
Δ𝑧

)−1
, CFL ∈ (0; 1).
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Notice that there is no dependency on the parabolic viscous terms because they will be discretized
implicitly, hence remarkably improving the efficiency of the resulting scheme.

The computational domain Ω(𝒙) = [𝑥min; 𝑥max] × [𝑦min; 𝑦max] × [𝑧min; 𝑧max] is discretized using a
Cartesian grid composed of a total number 𝑁𝑒 = 𝑁𝑥×𝑁𝑦×𝑁𝑧 of cells 𝐶𝑖, 𝑗 ,𝑘 with volume |𝐶𝑖, 𝑗 ,𝑘 | = Δ𝑥 Δ𝑦 Δ𝑧.
The characteristic mesh sizes are given by

(4) Δ𝑥 =
𝑥max − 𝑥min

𝑁𝑥

, Δ𝑦 =
𝑦max − 𝑦min

𝑁𝑦

, Δ𝑧 =
𝑧max − 𝑧min

𝑁𝑧

,

while the cell center is indicated as 𝑥𝐶 = (𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘) and interfaces are given by half indexes, e.g. 𝑥𝑖+1/2 =
𝑥𝑖+Δ𝑥/2 is the right interface in 𝑥−direction of cell 𝐶𝑖, 𝑗 ,𝑘 . The discrete representation of a generic quantity
𝑞(𝒙, 𝑡) in a given cell 𝐶𝑖, 𝑗 ,𝑘 at a given time level 𝑡𝑛 is labeled with 𝑞𝑛

𝑖, 𝑗,𝑘
. Data are stored as point values

in the finite difference framework, hence

(5) 𝑞(𝒙, 𝑡𝑛) = 𝑞(𝒙𝑖, 𝑗 ,𝑘 , 𝑡𝑛) := 𝑞𝑛
𝑖, 𝑗,𝑘

.

Let us also introduce the reference element 𝐶𝐸 = [0; 1]3 defined in the reference space with coordinates
𝝃 = (b, [, Z) through the mapping

(6) b = b (𝑥, 𝑖) = 1

Δ𝑥

(
𝑥 − 𝑥𝑖−1/2

)
, [ = [(𝑦, 𝑗) = 1

Δ𝑦

(
𝑦 − 𝑦 𝑗−1/2

)
, Z = Z (𝑧, 𝑘) = 1

Δ𝑧

(
𝑧 − 𝑧𝑘−1/2

)
.

The one-dimensional reference interval 𝐼 = [0; 1] is used to define a nodal basis given by 𝑁 + 1 linearly
independent Lagrange interpolating polynomials of maximum degree 𝑁, i.e. {𝜙𝑙}𝑁+1

𝑙=1 , passing through a
set of 𝑁 + 1 nodal points {b𝑟 }𝑁+1

𝑟=1 , which are assumed to be the Gauss-Lobatto nodes. The interpolation
property holds by construction, thus

(7) 𝜙𝑙 (b𝑟 ) = 𝛿𝑙𝑟 , 𝑙, 𝑟 = 1, . . . , 𝑁 + 1,

and the basis can be extended to 3D with a tensor product in all spatial dimensions, that is

(8) 𝜙𝑚(b, [, Z) = 𝜙𝑙1 (b)𝜙𝑙2 ([)𝜙𝑙3 (Z), 𝑙1, 𝑙2, 𝑙3 = 1, . . . , 𝑁 + 1 𝑚 = 1, . . . , (𝑁 + 1)3,

with 𝑚 = 𝑚(𝑙1, 𝑙2, 𝑙3) being a multi-index. All the integrals appearing in the numerical scheme are evalu-
ated using Gaussian quadrature formulae of suitable accuracy [40].

The set of basis functions (8) is employed for achieving high order of accuracy in space. Starting from
the known cell values given by (5), the CWENO reconstruction procedure introduced in [37] permits to
compute a high order polynomial representation 𝑤(𝒙, 𝑡) that writes

(9) 𝑤(𝒙, 𝑡𝑛) = 𝜙𝑚(b, [, Z) �̂�𝑛
𝑖 𝑗𝑘,𝑚,

where �̂�𝑛
𝑖 𝑗𝑘,𝑚

denote the expansion coefficients. Einstein summation convention implying summation over
repeated indexes is adopted in this article. The reconstruction operator is compactly indicated with
𝑤 = ℝ(𝑞), meaning that a quantity 𝑞 is reconstructed by means of a polynomial 𝑤 of degree 𝑁 of the
form (9) following the same algorithm detailed in [37].

3.1. Semi-implicit cell-centered scheme

The semi-discrete scheme is derived from the following considerations. To avoid severe limitations on
the maximum admissible time step, the viscous terms a ∇2𝒖 are discretized implicitly. On the other hand,
an explicit treatment of the convective flux tensor F𝑐 is adopted to remove any non-linearity in the implicit
solver. Finally, to satisfy the divergence-free constraint (1b) at the discrete level, the pressure is taken
implicitly in (1a) and then the momentum equation is substituted into the continuity equation [23,41]
using the fully discrete space-time scheme. In this way, an elliptic equation on the pressure is derived,
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which guarantees that the new pressure respects the involution on the divergence of the velocity field at
the new time level.

Along the lines of the asymptotic preserving methods recently developed for compressible flows [31,
32,42], a semi-implicit IMEX scheme [37,43] can be formulated for the incompressible Navier-Stokes
equations (1):

𝒖𝑛+1
𝑖, 𝑗 ,𝑘

− 𝒖𝑛
𝑖, 𝑗,𝑘

Δ𝑡
+ 𝔽𝑖, 𝑗 ,𝑘 (𝒖𝑛) + 𝔾𝑖, 𝑗 ,𝑘 (𝑝𝑛+1) − a𝕃𝑖, 𝑗 ,𝑘 (𝒖𝑛+1) = 0,(10a)

𝔻𝑖, 𝑗 ,𝑘 (𝒖𝑛+1) = 0.(10b)

The spatial operators 𝔽𝑖, 𝑗 ,𝑘 , 𝔾𝑖, 𝑗 ,𝑘 and 𝔻𝑖, 𝑗 ,𝑘 are introduced hereafter referring to a generic variable
𝑞(𝒙, 𝑡) at a given time 𝑡 = 𝑡𝑛, while the discretization of the Laplace operator 𝕃𝑖, 𝑗 ,𝑘 will be presented in
the next section.

• Numerical flux operator 𝔽(𝑞) in the 𝑥−direction:

(11) 𝔽𝑖 (𝑞) =
1

Δ𝑥

©«
𝑦 𝑗+1/2∫

𝑦 𝑗−1/2

𝑧𝑘+1/2∫
𝑧𝑘−1/2

F𝑖+1/2, 𝑗 ,𝑘 (𝑞) Δ𝑦Δ𝑧 −
𝑦 𝑗+1/2∫

𝑦 𝑗−1/2

𝑧𝑘+1/2∫
𝑧𝑘−1/2

F𝑖−1/2, 𝑗 ,𝑘 (𝑞) Δ𝑦Δ𝑧
ª®®¬ .

The numerical flux function F (𝑞) is evaluated according to [44] using a finite difference formulation

(12) F𝑖+1/2, 𝑗 ,𝑘 (𝑞) = ℝ( 𝑓 +𝑖, 𝑗 ,𝑘) +ℝ( 𝑓 −𝑖+1, 𝑗 ,𝑘), 𝑓 ±𝑖, 𝑗 ,𝑘 =
1

2
( 𝑓 (𝑞𝑖, 𝑗 ,𝑘) ± |𝑢𝑖, 𝑗 ,𝑘 | 𝑞𝑖, 𝑗 ,𝑘),

which corresponds to a Lax-Friedrichs flux splitting with 𝑓 (·) representing the physical flux re-
lated to variable 𝑞. High order of accuracy is efficiently obtained by: i) performing a CWENO
reconstruction for all 𝑓 ±

𝑖, 𝑗 ,𝑘
, i.e. ℝ( 𝑓 ±) that allows boundary extrapolated numerical fluxes to

be obtained, and ii) by using the conservative flux formulation (11) with Gaussian quadrature
formulae for the evaluation of the integrals. Notice that this is different from standard high
order WENO finite difference schemes [44], since a polynomial (and not a pointwise) representa-
tion of the split fluxes 𝑓 ±

𝑖, 𝑗 ,𝑘
is evaluated. The same applies to the other spatial directions, thus

𝔽𝑖, 𝑗 ,𝑘 (𝑞) = 𝔽𝑖 (𝑞) +𝔽 𝑗 (𝑞) +𝔽𝑘 (𝑞). The CWENO reconstruction procedure is fully described in [37].
• The gradient operator 𝔾(𝑞) is based on a central finite difference discretization:

(13) 𝔾𝑖, 𝑗 ,𝑘 (𝑞) =
©«
−𝑞𝑖+2, 𝑗,𝑘+8𝑞𝑖+1, 𝑗,𝑘−8𝑞𝑖−1, 𝑗,𝑘+𝑞𝑖−2, 𝑗,𝑘

12Δ𝑥 + O(Δ𝑥4)
−𝑞𝑖, 𝑗+2,𝑘+8𝑞𝑖, 𝑗+1,𝑘−8𝑞𝑖, 𝑗−1,𝑘+𝑞𝑖, 𝑗−2,𝑘

12Δ𝑦 + O(Δ𝑦4)
−𝑞𝑖, 𝑗,𝑘+2+8𝑞𝑖, 𝑗,𝑘+1−8𝑞𝑖, 𝑗,𝑘−1+𝑞𝑖, 𝑗,𝑘−2

12Δ𝑧 + O(Δ𝑧4)

ª®®®®®¬
.

• The divergence operator directly follows from the gradient operator, thus obtaining

𝔻𝑖, 𝑗 ,𝑘 (𝑞) =
−𝑞𝑖+2, 𝑗 ,𝑘 + 8𝑞𝑖+1, 𝑗 ,𝑘 − 8𝑞𝑖−1, 𝑗 ,𝑘 + 𝑞𝑖−2, 𝑗 ,𝑘

12Δ𝑥

+
−𝑞𝑖, 𝑗+2,𝑘 + 8𝑞𝑖, 𝑗+1,𝑘 − 8𝑞𝑖, 𝑗−1,𝑘 + 𝑞𝑖, 𝑗−2,𝑘

12Δ𝑦

+
−𝑞𝑖, 𝑗 ,𝑘+2 + 8𝑞𝑖, 𝑗 ,𝑘+1 − 8𝑞𝑖, 𝑗 ,𝑘−1 + 𝑞𝑖, 𝑗 ,𝑘−2

12Δ𝑧
+ O(Δ𝑥4,Δ𝑦4,Δ𝑧4).(14)

The semi-implicit scheme (10) is solved as follows. The Laplace operator related to the viscous terms
in the momentum equation (10a) is evaluated implicitly, hence obtaining a provisional velocity field 𝒖∗

𝑖, 𝑗,𝑘
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at the new time level which already contains the computation of both explicit convection and implicit
viscous contribution, that is given by the solution of the following equation:

(15) 𝒖∗
𝑖, 𝑗,𝑘

− Δ𝑡 a𝕃𝑖, 𝑗 ,𝑘 (𝒖∗) = 𝒖𝑛
𝑖, 𝑗,𝑘 − Δ𝑡 𝔽𝑖, 𝑗 ,𝑘 (𝒖𝑛) − Δ𝑡 𝔾𝑖, 𝑗 ,𝑘 (𝑝𝑛).

Due to the symmetry and positive definiteness of the Laplace operator that will be introduced in the next
section, the system (15) can be efficiently solved using a matrix-free conjugate gradient method. Notice
that the above linear system involves all components of the velocity vector, which can however be solved
in a decoupled manner thanks to the component-wise definition of the viscous forces. This is different
from the compressible Navier-Stokes system [32,42], where the viscous stress tensor fully couples all the
components of the gradient of the velocity vector, thus requiring more computational efforts to solve the
viscous sub-system (15). Once the solution is found, the momentum equation (10a) reads

(16)
𝒖𝑛+1
𝑖, 𝑗 ,𝑘

− 𝒖∗
𝑖, 𝑗 ,𝑘

Δ𝑡
+ 𝔾𝑖, 𝑗 ,𝑘 (𝑝𝑛+1)−𝔾𝑖, 𝑗 ,𝑘 (𝑝𝑛) = 0.

The above equation is substituted in its fully discrete formulation into the fully discrete divergence-free
constraint (10b), hence obtaining an elliptic equation on the pressure 𝑝𝑛+1

𝑖, 𝑗,𝑘
:

(17) 𝔻
𝑖, 𝑗,𝑘

(
𝒖∗
𝑖, 𝑗 ,𝑘 + Δ𝑡 𝔾𝑖, 𝑗 ,𝑘 (𝑝𝑛) − Δ𝑡 𝔾𝑖, 𝑗 ,𝑘 (𝑝𝑛+1)

)
= 0.

The new pressure 𝑝𝑛+1 does thus guarantee that the divergence-free constraint is satisfied up to the
precision of the solution of the associated linear system. Typically we prescribe a tolerance Y = 10−12

while solving the system (17) with the GMRES method [45].

3.2. High order implicit Laplace operator

The Laplace operator 𝕃𝑖, 𝑗 ,𝑘 in the semi-implicit scheme (10) will be solved at the aid of a discontinuous
Galerkin (DG) discretization as done in [39]. Notice that the reconstruction polynomial 𝑤(𝒙, 𝑡) obtained
using the operator ℝ can be directly interpreted as a piecewise DG representation of the quantity 𝑞(𝒙, 𝑡).
In this section the upper indexes (𝑝, 𝑞, 𝑟) indicate the element of the mesh, while lower indexes are used
for the degrees of freedom of the DG expansion according to (9). Therefore we label with 𝕃𝑝,𝑞,𝑟 the same
object addressed with 𝕃𝑖, 𝑗 ,𝑘 in the discretization (10).

Let us assume to start from a generic cell-centered scalar field 𝑣𝑝,𝑞,𝑟 (𝒙) ≈ 𝜙𝑘 (𝝃 (𝒙, 𝐶 𝑝,𝑞,𝑟 ))𝑣𝑝,𝑞,𝑟
𝑘

for
all elements 𝐶 𝑝,𝑞,𝑟 . The stencil needed to derive the final Laplace operator is shown in Figure 1 for the
two-dimensional case. The construction of 𝕃𝑝,𝑞,𝑟 is done in two steps: i) evaluation of a face-staggered
gradient, and ii) evaluation of a cell-centered divergence operator that is based on the previously computed
face-based gradients. Since the viscous terms in the momentum equations are given as the Laplacian of
the velocity field along each single momentum direction, the gradient and divergence operators can
be efficiently defined in a decoupled manner performing an efficient direction-by-direction approach.
Therefore, let us consider the one-dimensional case along the 𝑥−direction. We aim at evaluating the
face-staggered gradient 𝛼𝑝+ 1

2 given by

(18) 𝛼𝑝+ 1
2 =

𝜕𝑣(𝒙)
𝜕𝑥

, 𝒙 ∈ [𝑥𝑝; 𝑥𝑝+1] .

A variational formulation of (18) over the face-staggered control volume yields

𝑥𝑝+1∫
𝑥𝑝

𝜙𝑘𝜙𝑙�̂�𝑙
𝑝+ 1

2 𝑑𝑥 =

𝑥𝑝+1∫
𝑥𝑝

𝜙𝑘

𝜕𝑣

𝜕𝑥
𝑑𝑥

=

𝑥𝑝+1/2∫
𝑥𝑝

𝜙𝑘

𝜕𝜙𝑙

𝜕𝑥
𝑣
𝑝

𝑙
𝑑𝑥 +

𝑥𝑝+1∫
𝑥𝑝+1/2

𝜙𝑘

𝜕𝜙𝑙

𝜕𝑥
𝑣
𝑝+1
𝑙

𝑑𝑥 +
𝑥𝑝+1/2∫

𝑥𝑝+1/2

𝛿

(
𝜙𝑘𝜙𝑙𝑣

𝑝+1/2
𝑙

)
𝑑ℓ,(19)
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Figure 1. Sketch of the discrete gradient and divergence operator.

where 𝜙𝑘 is a test function and 𝛿(·) is the Dirac function. The integral on the right hand side has been
split into a left, a right and a jump contribution. Notice that for 𝜙𝑘 = 𝜙𝑙 = 1, the evaluation of (19)
reduces to the jump term only, which corresponds to a second order central finite difference discretization
of the derivative (18). The basis functions are always defined in the reference interval b ∈ [0; 1], however
they must be shifted depending on the face-staggered element under consideration. Using the mapping
(6) and performing a variable transformation in order to rescale all integrals to the reference unit element,
the face-staggered gradient can be compactly written as

(20) M𝑥
𝑘𝑙 �̂�𝑙

𝑝+ 1
2 = R𝑥

𝑘𝑙 𝑣
𝑝+1
𝑙

− L𝑥
𝑘𝑙 𝑣

𝑝

𝑙
,

where the following matrices have been defined:

M𝑥
𝑘𝑙 =

1∫
0

𝜙𝑘 (b)𝜙𝑙 (b) 𝑑b,(21a)

R𝑥
𝑘𝑙 = 𝜙𝑘

(
1

2

)
𝜙𝑙 (0) +

1

2

1∫
0

𝜙𝑘

(
b

2
+ 1

2

)
𝜙′
𝑙

(
b

2

)
𝑑b,(21b)

L𝑥
𝑘𝑙 = 𝜙𝑘

(
1

2

)
𝜙𝑙 (1) −

1

2

1∫
0

𝜙𝑘

(
b

2

)
𝜙′
𝑙

(
b

2
+ 1

2

)
𝑑b,(21c)

with 𝜙′
𝑙
= 𝜕𝜙𝑙/𝜕b. The extension to 3D can be done by considering the tensor product of matrices along

each spatial direction. For instance, the 3D mass matrix can be assembled as follows:

(22) M
𝑥𝑦𝑧

𝑘𝑙
= M

𝛽

𝑚(𝛽,𝑘) ,𝑚(𝛽,𝑙) ,
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where 𝛽 = {1, 2, 3} indicates the spatial direction and 𝑚(𝛽, 𝑘), 𝑚(𝛽, 𝑙) are multi-indexes that map the one-
dimensional indexes (𝛽, 𝑘), (𝛽, 𝑙) to the global index (𝑘, 𝑙) in M

𝑥𝑦𝑧

𝑘𝑙
. Notice that the one-dimensional mass

matrix always corresponds to (21a) in each spatial direction, since it is defined in the reference interval.
The 3D face-staggered gradient operator is then given along each direction by defining the following 3D
matrices:

M
𝑥𝑦𝑧

𝑘𝑙
�̂�
𝑝+1/2,𝑞,𝑟
𝑥,𝑙

=
M

𝑦𝑧

𝑘𝑙

Δ𝑥

(
R𝑥

𝑘𝑙𝑣
𝑝+1,𝑞,𝑟
𝑙

− L𝑥
𝑘𝑙𝑣

𝑝,𝑞,𝑟

𝑙

)
:=,R3𝐷,𝑥

𝑘𝑙
𝑣
𝑝+1,𝑞,𝑟
𝑙

− L3𝐷,𝑥

𝑘𝑙
𝑣
𝑝,𝑞,𝑟

𝑙
(23a)

M
𝑥𝑦𝑧

𝑘𝑙
�̂�
𝑝,𝑞+1/2,𝑟
𝑦,𝑙

=
M𝑥𝑧

𝑘𝑙

Δ𝑦

(
R

𝑦

𝑘𝑙
𝑣
𝑝,𝑞+1,𝑟
𝑙

− L
𝑦

𝑘𝑙
𝑣
𝑝,𝑞,𝑟

𝑙

)
:=,R

3𝐷,𝑦

𝑘𝑙
𝑣
𝑝,𝑞+1,𝑟
𝑙

− L
3𝐷,𝑦

𝑘𝑙
𝑣
𝑝,𝑞,𝑟

𝑙
,(23b)

M
𝑥𝑦𝑧

𝑘𝑙
�̂�
𝑝,𝑞,𝑟+1/2
𝑧,𝑙

=
M

𝑥𝑦

𝑘𝑙

Δ𝑧

(
R𝑧

𝑘𝑙
𝑣
𝑝,𝑞,𝑟+1
𝑙

− L𝑧
𝑘𝑙
𝑣
𝑝,𝑞,𝑟

𝑙

)
:=,R3𝐷,𝑧

𝑘𝑙
𝑣
𝑝,𝑞,𝑟+1
𝑙

− L3𝐷,𝑧

𝑘𝑙
𝑣
𝑝,𝑞,𝑟

𝑙
.(23c)

Now, the Laplace operator can be simply obtained as the divergence of the vector field 𝜶 = (𝛼𝑥 , 𝛼𝑦 , 𝛼𝑧),
which indeed represents the gradient of the cell-centered scalar field 𝑣(𝒙, 𝑡) according to (18):

(24) 𝑔 = ∇ · 𝜶.

Multiplication of the above equation by a test function, integration over the cell-centered control volume
𝐶𝑝,𝑞,𝑟 and application of Gauss theorem leads to∫

𝐶𝑝,𝑞,𝑟

𝜙𝑘𝑔 𝑑𝑉 =

∫
𝐶𝑝,𝑞,𝑟

𝜙𝑘∇ · 𝜶 𝑑𝑉

=

∫
𝜕𝐶𝑝,𝑞,𝑟

𝜙𝑘𝜶 · n 𝑑𝑆 −
∫

𝐶𝑝,𝑞,𝑟

∇𝜙𝑘 𝜶 𝑑𝑉,(25)

with 𝜕𝐶 𝑝,𝑞,𝑟 representing the boundary of the cell 𝐶𝑝,𝑞,𝑟 with outward pointing unit normal vector n. On
a Cartesian grid, one has n𝑥 = (0, 1, 0), n𝑦 = (0, 0, 1) and n𝑧 = (0, 0, 1). Inserting the DG approximations
𝑔 = 𝜙𝑙𝑔𝑙 and 𝜶 = 𝜙𝑙 (�̂�𝑥,𝑙, �̂�𝑦,𝑙, �̂�𝑧,𝑙) in the weak form (25), splitting the integral on the right hand side
into all contributions belonging to each face-staggered control volume where 𝜶 is defined, and employing
the explicit definitions of the outward normals, one gets

M
𝑥𝑦𝑧

𝑘𝑙
𝑔
𝑝,𝑞,𝑟

𝑙
=

∫
𝜕𝐶𝑝+1/2,𝑞,𝑟

𝜙𝑘𝜙𝑙 �̂�
𝑝+1/2,𝑞,𝑟
𝑥,𝑙

𝑑𝑆 −
∫

𝜕𝐶𝑝−1/2,𝑞,𝑟

𝜙𝑘𝜙𝑙 �̂�
𝑝−1/2,𝑞,𝑟
𝑥,𝑙

𝑑𝑆

+
∫

𝜕𝐶𝑝,𝑞+1/2,𝑟

𝜙𝑘𝜙𝑙 �̂�
𝑝,𝑞+1/2,𝑟
𝑦,𝑙

𝑑𝑆 −
∫

𝜕𝐶𝑝,𝑞−1/2,𝑟

𝜙𝑘𝜙𝑙 �̂�
𝑝,𝑞−1/2,𝑟
𝑦,𝑙

𝑑𝑆

+
∫

𝜕𝐶𝑝,𝑞,𝑟+1/2

𝜙𝑘𝜙𝑙 �̂�
𝑝,𝑞,𝑟+1/2
𝑧,𝑙

𝑑𝑆 −
∫

𝜕𝐶𝑝,𝑞,𝑟−1/2

𝜙𝑘𝜙𝑙 �̂�
𝑝,𝑞,𝑟−1/2
𝑧,𝑙

𝑑𝑆

− ©«
∫

𝐶𝑝,𝑞,𝑟

𝜕𝜙𝑘

𝜕𝑥
𝛼𝑥 +

𝜕𝜙𝑘

𝜕𝑦
𝛼𝑦 +

𝜕𝜙𝑘

𝜕𝑧
𝛼𝑧 𝑑𝑉

ª®¬ .(26)

Notice that for 𝜙𝑘 = 𝜙𝑙 = 1, the divergence operator 𝔻𝑝,𝑞,𝑟 given by (14) is retrieved with second order
accuracy, since the volume integrals vanish. Because the vector field 𝜶 is defined on the face-staggered
mesh, the volume integrals appearing in (26) must be split into a left and a right contribution. For instance,
in the 𝑥−direction we have two sub-volumes given by 𝐶

𝑝,𝑞,𝑟

𝑥,𝐿
= [𝑥𝑝−1/2; 𝑥𝑝]×[𝑦𝑞−1/2; 𝑦𝑞+1/2]×[𝑧𝑟−1/2; 𝑧𝑟+1/2]

and 𝐶
𝑝,𝑞,𝑟

𝑥,𝑅
= [𝑥𝑝; 𝑥𝑝+1/2] × [𝑦𝑞−1/2; 𝑦𝑞+1/2] × [𝑧𝑟−1/2; 𝑧𝑟+1/2], that is

(27)

∫
𝐶𝑝,𝑞,𝑟

𝜕𝜙𝑘

𝜕𝑥
𝛼𝑥 𝑑𝑉 =

∫
𝐶

𝑝,𝑞,𝑟

𝑥,𝐿

𝜕𝜙𝑘

𝜕𝑥
𝜙𝑙�̂�

𝑝−1/2,𝑞,𝑟
𝑥,𝑙

𝑑𝑉 −
∫

𝐶
𝑝,𝑞,𝑟

𝑥,𝑅

𝜕𝜙𝑘

𝜕𝑥
𝜙𝑙�̂�

𝑝+1/2,𝑞,𝑟
𝑥,𝑙

𝑑𝑉.
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Applying the same strategy to all spatial directions, mapping the integrals to the reference system with
consequently shifting the basis functions according to the face-staggering where the jump integrals of
(26) are defined, and using the 3D matrix notation introduced in (23), the Laplace operator 𝕃𝑝,𝑞,𝑟 in the
semi-implicit momentum equation (10a) can be eventually discretized as follows:

𝕃𝑝,𝑞,𝑟 (𝑔) = M
𝑥𝑦𝑧

𝑘𝑙
𝑔
𝑝,𝑞,𝑟

𝑙

=

[(
L3𝐷,𝑥

𝑘𝑙

)⊤
�̂�
𝑝+1/2,𝑞,𝑟
𝑥,𝑙

−
(
R3𝐷,𝑥

𝑘𝑙

)⊤
�̂�
𝑝−1/2,𝑞,𝑟
𝑥,𝑙

]
1

Δ𝑥

+
[(
L
3𝐷,𝑦

𝑘𝑙

)⊤
�̂�
𝑝,𝑞+1/2,𝑟
𝑦,𝑙

−
(
R

3𝐷,𝑦

𝑘𝑙

)⊤
�̂�
𝑝,𝑞−1/2,𝑟
𝑦,𝑙

]
1

Δ𝑦

+
[(
L3𝐷,𝑧

𝑘𝑙

)⊤
�̂�
𝑝,𝑞,𝑟+1/2
𝑧,𝑙

−
(
R3𝐷,𝑧

𝑘𝑙

)⊤
�̂�
𝑝,𝑞,𝑟−1/2
𝑧,𝑙

]
1

Δ𝑧
.(28)

The Laplace operator is symmetric and positive definite [39], therefore the implicit viscous sub-system
(15) can be solved using the conjugate gradient method in its matrix-free implementation.

3.3. High order extension in time

Time discretization is enforced with high order of accuracy relying on the class of semi-implicit IMEX
schemes originally developed in [43], which have been proven to be a powerful tool in the context of
compressible gas dynamics [37]. First, the governing equations (1) are written under the form of an
autonomous system, that is

(29)
𝜕𝒖

𝜕𝑡
= H (𝒖(𝑡), 𝒖(𝑡)) , ∀𝑡 > 𝑡0, with 𝒖(𝑡0) = 𝒖0,

where 𝒖0 defines the initial condition at time 𝑡0. The function H represents the spatial approximation of
the terms ∇ · F𝑐 + ∇𝑝 − a∇2𝒖 in (1), which is given by the operators presented in the previous sections.
The first argument of H is discretized explicitly and it is labeled with 𝒖𝐸 , while the second argument 𝒖𝐼

is taken implicitly as well as the pressure 𝑝𝐼 . A partitioned system is then retrieved with 𝒖 = (𝒖𝐸 , 𝒖𝐼 ),
hence

(30)


𝜕𝒖𝐸

𝜕𝑡
= H (𝒖𝐸 , 𝒖𝐼 )

𝜕𝒖𝐼

𝜕𝑡
= H (𝒖𝐸 , 𝒖𝐼 )

.

As investigated in [43], the number of unknowns has not been doubled because the governing PDE can
be written in the form of an autonomous system and we will choose stiffly accurate time discretizations.
The incompressible Navier-Stokes equations can therefore be cast into the formalism (30) by defining

(31) H (𝒖𝐸 , 𝒖𝐼 ) =
{
−(𝒖 ⊗ 𝒖)𝐸 − 𝑝𝐼 + a∇𝒖𝐼

𝒖𝐼
.

High order in time is achieved making use of implicit-explicit (IMEX) Runge-Kutta schemes [29], that
are multi-step methods based on a total number of 𝑠 stages that depend on the accuracy and stability
property of the chosen IMEX-RK scheme. The time marching takes then the following structure. First
we set 𝒖𝑛

𝐸
= 𝒖𝑛

𝐼
= 𝒖𝑛, then the stage fluxes for 𝑖 = 1, . . . , 𝑠 are computed in the following way:

𝒖𝑖
𝐸 = 𝒖𝑛

𝐸 + Δ𝑡

𝑖−1∑︁
𝑗=1

𝑎𝑖 𝑗 𝑘 𝑗 , 2 ≤ 𝑖 ≤ 𝑠,(32a)

�̃�𝑖
𝐼 = 𝒖𝑛

𝐸 + Δ𝑡

𝑖−1∑︁
𝑗=1

𝑎𝑖 𝑗 𝑘 𝑗 , 2 ≤ 𝑖 ≤ 𝑠,(32b)

𝑘𝑖 = H
(
𝒖𝑖
𝐸 , �̃�

𝑖
𝐼 + Δ𝑡 𝑎𝑖𝑖 𝑘𝑖

)
, 1 ≤ 𝑖 ≤ 𝑠.(32c)
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The coefficients of the explicit and implicit Runge-Kutta method are normally described with the double
Butcher tableau:

(33)
𝑐 𝐴

𝑏⊤
𝑐 𝐴

𝑏⊤
,

with the matrices (𝐴, 𝐴) ∈ R𝑠×𝑠 and the vectors (𝑐, 𝑐, 𝑏, 𝑏) ∈ R𝑠. The tilde symbol refers to the explicit
scheme and matrix 𝐴 = (𝑎𝑖 𝑗) is a lower triangular matrix with zero elements on the diagonal, while 𝐴 =

(𝑎𝑖 𝑗) is a triangular matrix which accounts for the implicit scheme, thus having non-zero elements on the
diagonal. The implicit part to the RK scheme is in fact linearly implicit, since the 𝐴 matrix is triangular.
This clearly makes the resolution simpler than a fully implicit RK time stepping technique. Applying the
partitioned Runge-Kutta method to (31) under the assumption that the system is autonomous, only one
set of stage fluxes needs to be computed by solving the linear system (32c), that is nothing but the elliptic
equation on the pressure (17) obtained after substitution of the momentum equation into the divergence-
free constraint. We adopt stiffly accurate schemes [43], thus the new solution 𝒖𝑛+1

𝐸
= 𝒖𝑛+1

𝐼
= 𝒖𝑛+1 is simply

given by the last stage of the Runge-Kutta algorithm (32), i.e. 𝒖𝑛+1 = 𝒖𝑠. If the IMEX method is chosen
to be not stiffly accurate, then the solution at the new time level can be computed as

(34) 𝒖𝑛+1 = 𝒖𝑛 + Δ𝑡

𝑠∑︁
𝑖=1

𝑏𝑖 𝑘𝑖 .

3.4. Implementation and optimization

The SI-IMEX numerical method is implemented in a code written with Fortran language. The pa-
rameters and settings of the ongoing computation (viscosity coefficient, CFL number, mesh discretization,
...) can then be conveniently fixed at the aid of pre-processors suitably distributed throughout the code,
hence compiling only the part of code referred to the chosen setup.

The total computational time of those simulations can grow exponentially due to a high mesh gran-
ularity or an increasing in the degree of the numerical approximation, for instance. That is the reason
why we start optimizing the code by exploiting highly optimized libraries of Math Kernel Library (MKL)
of Intel. Specifically, since both high order reconstruction and Laplace operators are carried out in the
reference system, all integrals of the basis functions can be pre-computed and stored once and for all
before the beginning of the time evolution loop. As a consequence, during the computation we mainly
have to deal with matrix-matrix and matrix-vector multiplications.

In order to increase the performance, we used Intel®VTune™Profiler, which is an Intel API that can
optimize performance of applications running on Intel processors. This tool shows the execution time of
every subroutine and every instruction executed by the code in a completely isolated environment, and
by doing so we found the most expensive lines of the code. As expected, those were operations involving
matrix-matrix and matrix-vector products computed with MATMUL intrinsic function. Next, we replaced
these instructions by DGEMM subroutines of the Intel MKL library widely employed in HPC system.
This simple substitution allowed us to remarkably improve the overall algorithm efficiency, halving the
execution time of the most expensive subroutines and almost eliminating the cost of other minor functions.

Then we noticed very long computational time in the access to some variables like rank-4 arrays, in
particular with the array containing the Voronoi neighborhood of every grid element. In order to reduce
the access time, we deconstructed this array adding a new rank-2 array which reordered all neighbors in
one single row for each grid cell. In this way, when the code has to read inside the neighbor array, it can
use a rank-1 variable instead of a rank-3 making the access almost instantaneous.

Finally, we took care about other minor optimizations: we replaced some DO-loops with instructions
that take advantage from the processor vectorization and we introduced new temporary variables with
the aim of speeding up the access to other frequently used arrays. Those operations allow the code to
significantly reduce its total computational running time.
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To distribute memory consumption and improve the overall efficiency of the computation, the code
is parallelized with MPI library in order to exploit multi-processor architectures.

4. Numerical results

In this section we present some academic benchmarks in order to verify the accuracy and the robust-
ness of the novel semi-implicit IMEX schemes (SI-IMEX) for the solution of the incompressible Navier-
Stokes model (1). The time step is computed according to (3) with CFL = 0.9, and all computations are
carried out in a fully 3D domain using MPI parallelization on 64 Intel SkyLake CPUs.

4.1. 2D Taylor-Green vortex

The convergence rates of the novel SI-IMEX schemes are studied by considering the 2D Taylor-Green
vortex test, which has an exact solution in the incompressible Navier-Stokes limit:

(35)

𝑢(𝑥, 𝑦, 𝑡) = sin(𝑥) cos(𝑦) 𝑒−2a𝑡 ,
𝑣(𝑥, 𝑦, 𝑡) = cos(𝑥) sin(𝑦) 𝑒−2a𝑡 ,
𝑤(𝑥, 𝑦, 𝑡) = 0,
𝑝(𝑥, 𝑦, 𝑡) = 0.25 (cos(2𝑥) + cos(2𝑦)) 𝑒−4a𝑡 .

The computational domain is given by Ω = [0; 2𝜋]2× [0; 1] with periodic boundaries imposed everywhere,
and it is discretized with 𝑁𝑧 = 4 and a sequence of successively refined meshes on the 𝑥 − 𝑦 plane. The
simulation is run until the final time 𝑡 𝑓 = 0.2 with two different values of viscosity, namely a = 10−5

and a = 10−2. The errors are measured for the velocity components 𝑢, 𝑣 and pressure 𝑝 in 𝐿2 norms, as
reported in Tables 1-2. The formal accuracy is very well retrieved for second and third order schemes
independently of the chosen viscosity coefficient.

Table 1. Numerical convergence results of the SI-IMEX scheme with second
and third order of accuracy in space and time using the 2D Taylor-Green vortex
problem with a = 10−5. The errors are measured in 𝐿1, 𝐿2 and 𝐿∞ norms and
refer to the velocity component 𝑢 at time 𝑡 = 0.2.

SI-IMEX O(2), a = 10−5

𝑁𝑥 = 𝑁𝑦 𝑢𝐿2
O(𝑢𝐿2

) 𝑣𝐿2
O(𝑣𝐿2

) 𝑝𝐿2
O(𝑝𝐿2

)
25 3.288E-02 - 3.288E-02 - 7.167E-02 -
50 8.259E-03 1.99 8.259E-03 1.99 1.625E-02 2.14
100 2.067E-03 2.00 2.067E-03 2.00 4.098E-03 1.99
200 5.167E-04 2.00 5.167E-04 2.00 1.009E-03 2.02

SI-IMEX O(3), a = 10−5

𝑁𝑥 = 𝑁𝑦 𝑢𝐿2
O(𝑢𝐿2

) 𝑣𝐿2
O(𝑣𝐿2

) 𝑝𝐿2
O(𝑝𝐿2

)
25 3.478E-03 - 3.478E-03 - 1.082E-02 -
50 4.246E-04 3.03 4.246E-04 3.03 1.212E-03 2.99
100 5.302E-05 3.00 5.302E-05 3.00 1.525E-04 2.99
200 6.628E-06 3.00 6.628E-06 3.00 2.887E-05 2.73

Figure 2 depicts the third order numerical solution obtained at the final time on a computational
mesh with 𝑁𝑥 = 𝑁𝑦 = 200, showing no spurious oscillation and almost retrieving the analytical solution.

Finally, in Table 3 we show the computational times for all simulations carried out for the convergence
study. The optimized code with MKL is compared against the non-optimized version, demonstrating the
effectiveness of the improvements related to the implementation of the SI-IMEX schemes. For third order
and high viscosity (a = 10−2), the optimized code achieves a gaining factor greater than 4, while for
a lower viscosity (a = 10−5) the optimized code runs approximately in half time the same simulations
with respect to the non-optimized version. A visual representation of the obtained results is conveniently
shown in Figure 3.

We also measure the performance of our code on the HPC architecture Galileo100 (Cineca - Italy).
We run the 2D Taylor-Green test on a mesh composed of 2750×2750×4 cells with 𝑁 = 2, hence involving
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Table 2. Numerical convergence results of the SI-IMEX scheme with second
and third order of accuracy in space and time using the 2D Taylor-Green vortex
problem with a = 10−2. The errors are measured in 𝐿1, 𝐿2 and 𝐿∞ norms and
refer to the velocity component 𝑢 at time 𝑡 = 0.2.

SI-IMEX O(2), a = 10−2

𝑁𝑥 = 𝑁𝑦 𝑢𝐿2
O(𝑢𝐿2

) 𝑣𝐿2
O(𝑣𝐿2

) 𝑝𝐿2
O(𝑝𝐿2

)
25 3.282E-02 - 3.282E-02 - 6.275E-02 -
50 8.243E-03 1.99 8.243E-03 1.99 1.239E-02 2.34
100 2.062E-03 2.00 2.062E-03 2.00 2.750E-03 2.17
200 5.157E-04 2.00 5.157E-04 2.00 9.204E-04 1.58

SI-IMEX O(3), a = 10−2

𝑁𝑥 = 𝑁𝑦 𝑢𝐿2
O(𝑢𝐿2

) 𝑣𝐿2
O(𝑣𝐿2

) 𝑝𝐿2
O(𝑝𝐿2

)
25 3.489E-03 - 3.489E-03 - 1.067E-02 -
50 4.263E-04 3.03 4.263E-04 3.03 1.209E-03 2.98
100 5.339E-05 3.00 5.339E-05 3.00 1.527E-04 2.99
200 6.699E-06 2.99 6.699E-06 2.99 3.313E-05 2.61

Table 3. Computational time measured in seconds with and without code opti-
mization with MKL for the 2D Taylor-Green vortex problem with a = {10−2, 10−5}
with second and third order of accuracy SI-IMEX schemes. The ratio 𝛽 between
the computational times is also reported.

SI-IMEX O(2)
a = 10−2 a = 10−5

𝑁𝑥 = 𝑁𝑦 no MKL MKL 𝛽 no MKL MKL 𝛽

25 6.844E+00 3.766E+00 1.82 6.594E+00 3.641E+01 1.80
50 5.372E+01 2.997E+01 1.79 5.178E+01 3.080E+02 1.78
100 4.299E+02 2.450E+02 1.75 4.182E+02 2.446E+03 1.74
200 3.462E+03 1.983E+03 1.75 3.347E+03 1.822E+04 1.74

SI-IMEX O(3)
a = 10−2 a = 10−5

𝑁𝑥 = 𝑁𝑦 no MKL MKL 𝛽 no MKL MKL 𝛽

25 6.844E+01 1.623E+01 4.22 3.641E+01 1.233E+01 2.95
50 5.846E+02 1.355E+02 4.31 3.080E+02 9.939E+01 3.10
100 4.930E+03 1.121E+03 4.40 2.446E+03 7.921E+02 3.09
200 4.093E+04 9.212E+03 4.44 1.822E+04 6.161E+03 2.96

a total number of 816′750′000 degrees of freedom. We perform a strong scaling using from 1 to 192
CPUs. Table 4 reports the computational times of each simulation as well as the percentage related to
MPI communications. Speedup, efficiency and Kuck functions are also presented, and Figure 4 highlights
that the code could achieve an efficiency of approximately 0.75 on 192 cores.

Table 4. Data collected and processed on the Galileo100 architecture (Cineca
- Italy) for strong scaling test of the SI-IMEX code with 816′750′000 degrees
of freedom.

NCPU Time (s) % MPI Speedup Efficiency Kuck function

1 2.063E+05 - 1.000E+00 1.000E+00 1.000E+00
24 9.477E+03 9.29% 2.178E+01 9.075E-01 1.977E+01
48 4.849E+03 14.07% 4.168E+01 8.685E-01 3.620E+01
96 2.551E+03 18.51% 7.753E+01 8.076E-01 6.261E+01
192 1.411E+03 25.67% 1.432E+02 7.305E-01 1.046E+02

4.2. Double shear layer

Another classical problem for incompressible solvers is the double shear layer as proposed in [46]. The
problem consists in an horizontal jet that is initially perturbed in a periodic domain. In order to reduce to
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Figure 2. Numerical results for the 2D Taylor-Green vortex problem at 𝑡 𝑓 = 0.2 with a = 10−2. Velocity magnitude (top
left), pressure field and stream-traces (top right), main quantities computed along the lines 𝑥 = 𝜋 (bottom left) and 𝑦 = 𝜋

(bottom right).

the two-dimensional case, the computational domain is Ω = [0, 1] × [0, 0.1] × [0, 1] with periodic boundary
conditions everywhere, and it is covered with a Cartesian mesh composed of 𝑁𝑒 = 160 × 4 × 160 control
volumes, hence using a coarser resolution compared to [32,47]. The velocity field is initialized with

(36) 𝑢 =

{
tanh (\ (𝑧 − 0.25)) if 𝑧 ≤ 0.5
tanh (\ (0.75 − 𝑧)) if 𝑧 > 0.5

, 𝑣 = 0, 𝑤 = 𝛿 sin(2𝜋𝑥),

with \ = 30 and 𝛿 = 0.05. The viscosity coefficient is set to a = 5 · 10−3, while the final time of the
simulation is 𝑡 𝑓 = 1.8. The evolution of the vorticity magnitude is reported in Figure 5 showing the correct
reproduction of the vortical patterns, which are in line with those ones available in the literature [47,48]

4.3. Lid-driven cavity

We now want to test our algorithm against another classical benchmark for incompressible
solvers, namely the lid-driven cavity test case. We consider a domain Ω = [−0.5, 0.5] × [−0.5, 0.5] ×
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Figure 3. Comparison between the computational times measured in seconds in running the 2D Taylor-Green vortex test
with and without MKL optimization using second order (O(2), on the left) and third order of accuracy SI-IMEX schemes
(O(3), on the right).

 0

 50

 100

 150

 200

 0  50  100  150  200

Speedup

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  50  100  150  200

Efficiency

Figure 4. Strong scaling test with MPI of the SI-IMEX schemes. Speedup (left) and efficiency (right) obtained running the
2D Taylor-Green vortex test on a grid with 2750 × 2750 × 4 elements, using third order of space accuracy. The total number
of degrees of freedom is 816′750′000.

[−0.00625, 0.00625] in order to approach a two-dimensional cavity, covered with 𝑁𝑒 = 160 × 160 × 4 el-
ements. Since we are looking for a steady state solution, we use a third order space discretization, i.e.
𝑁 = 2, while adopting a cheaper first order in time scheme. All the quantities are set initially to zero. An
horizontal velocity 𝒖 = (1, 0, 0) is imposed on the upper face of the cavity (𝑦 = 0.5), and it is the only
responsible of the motion in the cavity induced by convection and viscous forces. No-slip wall boundary
conditions are imposed on the remaining sides in the 𝑥 and 𝑦 directions, while periodic boundary con-
ditions are assumed in the 𝑧−direction. To test the novel implicit solver for the viscous sub-system, we
set a rather high value for the viscosity a = 10−2 that corresponds to a Reynolds number of 𝑅𝑒 = 100.
The simulation runs up to 𝑡 𝑓 = 25. The resulting velocity distribution is reported in Figure 6 together
with the one-dimensional plot of the perpendicular velocities along the two lines located at (𝑥, 0, 0) and
(0, 𝑦, 0). In this case, the numerical solution computed with the SI-IMEX scheme is compared with the
reference solution that was obtained by Ghia et.al. in [49], achieving a quite good matching.
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Figure 5. Numerical results for the double shear layer test. Vorticity magnitude at output times 𝑡 = 0.8 (top left), 𝑡 = 1.2
(top right), 𝑡 = 1.8 (bottom left) and pressure field at the final time 𝑡 = 1.8 (bottom right).

5. Conclusions

In this article we have presented a semi-implicit IMEX scheme for the solution of the incompressible
Navier-Stokes equations on fully three-dimensional computational domains with Cartesian grids. High
order of accuracy in space is achieved using a finite difference scheme in flux form combined with an
efficient CWENO reconstruction which is carried out in a dimension-by-dimension fashion. The class of
semi-implicit IMEX schemes is adopted to increase the accuracy of the method in time as well. Convective
terms are discretized explicitly, while the pressure gradient is solved implicitly. The momentum equation
is directly inserted into the divergence-free constraint of the velocity field, hence obtaining an elliptic
equation on the pressure which satisfies up to machine precision the involution of the PDE system.
An implicit treatment of the the viscous terms is proposed, which is based on a weak formulation of
the gradient and divergence operators related to the parabolic viscous contribution in the momentum
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Figure 6. Obtained velocity component 𝑢 (left) and comparison with the reference solution of Ghia [49] on the central lines
(𝑥, 0, 0) and (0, 𝑦, 0) (right).

equation. A local discontinuous Galerkin scheme is then derived to obtain a symmetric and positive
definite Laplace operator, that is exploited to resolve the viscous effects implicitly. Eventually, the time
step is restricted by a CFL-type stability condition which is only based on the fluid velocity and not on
the eigenvalues of the viscous sub-system of the governing PDE. Particular care has also been devoted
to the optimization of the code relying on highly optimized Intel MKL routines and MPI parallelization.

Future research will concern the extension of the proposed approach to the Saint-Venant equations
in the context of environmental flows [23,50], with the usage of unstructured orthogonal meshes [51].
Possible applications to the volume of fluid method [52] are also foreseen.
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