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Abstract Theories of consonance and dissonance based on the “compactness” approach include the two sub-categories of periodicity
and harmonicity. In a previous work, we discussed the related consonance and dissonance indicators for dyads; as they are given by
discontinuous functions of the dyad frequency ratio, we proposed a method to extend them to the continuum, based on the auditory
discrimination limen. Here, we generalize the compactness indicators to describe the consonance and dissonance for triads and
discuss their extension to the continuum. We compare our model predictions with perceptual data from a recent psychoacoustic test
by means of a Chi-square analysis. The result is that compactness indicators provide a quite effective, but not fully satisfactory,
description of consonance, and dissonance for triads.

1 Introduction

Explaining the auditory perceptions of consonance and dissonance (C and D) in music1 is a fascinating issue that challenged
many generations of scientists over centuries. Even nowadays, it is a subject open to scientific discussion, the actual functioning of
our hearing system being not fully understood. The aim of the present paper is to extend from dyads (intervals) to triads (triadic
chords) our previous work [1], contributing to the scientific discussion about C and D from the point of view of physics and its
methodologies.2

A brief historical review is useful to understand the status of the art. With the beginning of modern science in the 17th century,
the problem of justifying on a physical basis the perceptions of C and D started to be formulated in a quantitative way and with an
increasing amount of mathematical sophistication. The coincidence theory proposed by Galilei [4], likely building on arguments by
Benedetti and previous scholars [5], is in fact based on dyad’s waveform periodicity [1]. These ideas triggered contributions and
debates from both musicians and scientists deep into the 18th century [5], including, e.g. Euler [6] and Riccati [7]. In relation to the
discoveries about higher harmonics pioneered by Mersenne et al., arguments about the role of the fundamental bass in music were
formulated by Rameau [8] and Tartini [9]; Estève [10] related dyad’s consonance to the largest presence of common harmonics, as
did Pizzati [11], who further discussed the issue in relation to the fundamental bass [12]. The main criticism against these periodicity
and harmonicity theories was the fact that the associated C and D indicators are discontinuous functions of the frequency ratios
characterizing dyads and chords. The first pioneering tentatives to obtain an experimentally-based continuous C and D function
where carried out by Foderà [13] in the first half of the 19th century. A different approach to the field appeared in the fall of the 19th
century, when Helmholtz [14] suggested C and D to be related to the absence of the roughness sensation due to beats; the associated
C and D indicator being naturally continuous, this approach dominated until the fall of the 20th century and was further refined
by Plomp and Levelt [15] and Hutkinson and Knopoff [16, 17]. More recently, the drawbacks of the roughness approach [18]
stimulated a re-evaluation of the periodicity and harmonicity approaches, as done, e.g. by Tenney [19] and Gill and Purves [20].

Summarizing, the scientific literature developed two main categories of explanations for C and D, that we denote here for short by
“roughness” and “compactness”, the latter including the two sub-categories of periodicity and harmonicity. For an extensive review of
recent models, see for instance Ref. [21]. As already mentioned, the compactness and roughness approaches have traditionally been
considered to be alternative and somewhat competing. However, none of their representative models emerged as a fully satisfactory
explanation of the perceptual data about C and D.

Focusing on dyads, in Ref. [1], we: (1) considered various historical and recent indicators, establishing whether (or not) they
have some physical foundation, related to the periodicity or harmonicity approaches; (2) showed that periodicity and harmonicity

1 C and D are here defined according to their literal meaning, that is whether two sounds are perceived to blend well or not. In Latin, the prefixes con and
dis stand for unity and division, respectively.
2 For other recent approaches to music based on physical concepts, see, e.g. Refs. [2, 3].
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indicators are essentially equivalent; (3) proposed a method to extend compactness models to the continuum; and (4) carried
out a complete analysis to assess whether a single refined model among the two categories of compactness and roughness, or
rather a combination of them, provides a satisfactory explanation of the perceptual data. We found that combined models, with
similar weight attributed to compactness and roughness, are highly successful when confronted to the perceptual observations, and
perform significantly better than the constituent models: This nontrivial result demonstrates that compactness and roughness are
both fundamental ingredients of an effective explanation of C and D [1].

The goal of the present work is to extend compactness models from dyads to triads. We first find a generalization to triads for each
compactness model studied in Ref. [1]. This requires to study mathematically the fundamental bass, that is the virtual frequency
with period equal to that of the wave function obtained by superposing the triad’s constituent wave functions. This virtual frequency
is nevertheless “real” and extremely important from the psychoacoustic point of view. The predictions of the compactness models
have then to be confronted with the perceptual data. In particular, we exploit the results of a psychoacoustic test performed in
Bowling et al. [22], where just intonation was used to generate triadic sounds within an octave. In order to numerically estimate
the performance of each compactness model, we carry out a Chi-square analysis. The C and D indicators associated to compactness
models being intrinsically discontinuous, we develop a procedure to extend them to the continuum in the case of triads. In particular,
following the approach of Ref. [1], we exploit a Gaussian smoothing with standard deviation equal to the discrimination limen of
the hearing system. This allows also to estimate C and D for other temperaments, like for instance the equal temperament.

The paper is organized as follows. In Sect. 2, we comment on the methodology adopted by Bowling et al. [22] to carry out
their test and discuss their results. Section 3 is devoted to the mathematical study of the fundamental bass. In Sect. 4, we consider
compactness models, of the periodicity and harmonicity type, showing that they are essentially equivalent. In Sect. 5, we compare
compactness model predictions with perceptual data by means of a Chi-square analysis. In Sect. 6, the compactness indicators are
extended to the continuum, and comments on the equal temperament are provided. Our comments and conclusions are discussed in
Sect. 7. App. A is devoted to the Euler’s indicator [6].

2 Previous tests

There are not many psychoacoustic tests available for triads. An interesting one has been performed by Rasmussen et al. [18] in
2014, with the goal of comparing the C and D rankings of dyads and triads. Overall, the latter were not found to be more dissonant
than dyads. The authors thus suggested that the hypothesis according to which consonance decreases with the amount of interaction
between present harmonics might not hold for chords. In other words, the roughness approach cannot account for the observed
results: This supports the relevance of the compactness approach. Unfortunately, Ref. [18] considers only a small set of triads, so
it is not suitable for the sake of our analysis.

A relevant test for the sake of our discussion has been carried out by Bowling et al. [22] in 2018. They tested all 12 dyads, 66
triads, and 220 tetrads that can be formed using the intervals specified by the chromatic scale over one octave, with just intonation
ratios. Individual tones were created using a synthesized piano. Participants were instructed about the test, defining consonance as the
musical pleasantness or attractiveness of a sound, and the opposite for dissonance. On each trial of the experiment, the participants
heard a single chord and provided a rating of consonance/dissonance using a four-point scale: “quite consonant”; “moderately
consonant”; “moderately dissonant”; and “quite dissonant”.

The results of Ref. [22] for the 66 triads, normalized to a scale from 0 to 1 in order of increasing consonance, are reproduced in
Table 1. The first column displays the number assigned to each chord, according to an organization criterion linked to the pitch class
concept. The pitch class of a frequency fi takes values in the interval [0, 12) and is given by pci � [9 + 12 log2( fi/440 Hz)]mod 12.
Introducing the three frequencies f1 < f2 < f3, a triad can be characterized by a pitch class set, (pc1 , pc2 , pc3 ), as shown in the
second column3 of Table 1. In this way, for instance, all C’s and G’s have pitch class 0 and 7, respectively. For an easier understanding
of the type of chord, we display in the the third column the notes associated to the pitch class set.

In the fourth column of Table 1, we include, when possible, the name of the triad according to the common denomination used in
music theory. From the music theory point of view, the notation should describe the constituents intervals. Indeed, triads are denoted
in reference to the type of interval formed by the dyad f1 and f2, and the one formed by the dyad f1 and f3, as shown in the fifth
column. For instance, if such intervals are a M3 and a P5, the chord is called a major chord in the rest position, and it is denoted
by maj (r); if such intervals are instead a m3 and a P5, the chord is called a minor chord in the rest position, and it is denoted by
min (r). Diminished and augmented chords at rest are characterized, respectively, by m3 and TT and by M3 and m6. In addition,
chords can be in one among three possible positions: rest (r), first inversion (1), and second inversion (2). A relevant category of
triads is the so-called power chords, where f3 is fixed to be the octave of f1, that is f3/ f1 � 2; the intermediate frequency f2 thus
fully characterizes power chords. We denote them by “pc X”, where X stands for the interval formed by f2 and f1, for instance
X=P5, P4, M3.

3 Bowling et al. [22] adopted this notation, even though its use in a context dealing with just intervals is a bit misleading as, strictly speaking, such notation
only applies to equal temperament (see, e.g. [23] and references therein); for this reason, we will not use it in the following sections.
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Table 1 Triad ratings according to Bowling et al. [22], rescaled to the range [0, 1]

Num Pitch class Notes Name Intervals ( f2/ f1, f3/ f1) Mean σ n, m, �

1 (0,1,2) C − C� − D m2, M2 (16/15, 9/8) 0.022 0.084 120,128,135

2 (0,1,3) C − C� − D� m2, m3 (16/15, 6/5) 0.222 0.253 15,16,18

3 (0,1,4) C − C� − E m2, M3 (16/15, 5/4) 0.167 0.191 60,64,75

4 (0,1,5) C − C� − F . m2, P4 (16/15, 4/3) 0.367 0.220 15,16,20

5 (0,1,6) C − C� − F� m2, TT (16/15, 7/5) 0.267 0.203 15,16,21

6 (0,1,7) C − C� − G m2, P5 (16/15, 3/2) 0.133 0.167 30,32,45

7 (0,1,8) C − C� − G� m2, m6 (16/15, 8/5) 0.156 0.169 15,16,24

8 (0,1,9) C − C� − A m2, M6 (16/15, 5/3) 0.089 0.150 15,16,25

9 (0,1,10) C − C� − A� m2, m7 (16/15, 9/5) 0.056 0.126 15,16,27

10 (0,1,11) C − C� − B m2, M7 (16/15, 15/8) 0.067 0.161 120,128,225

11 (0,1,12) C − C� − C m2, P8 (16/15, 2/1). 0.156 0.190 15,16,30

12 (0,2,3) C − D − D� M2, m3 (9/8, 6/5) 0.200 0.241 40,45,48

13 (0,2,4) C − D − E M2, M3 (9/8, 5/4) 0.533 0.271 8,9,10

14 (0,2,5) C − D − F M2, P4 (9/8, 4/3) 0.567 0.265 24,27,32

15 (0,2,6) C − D − F� M2, TT (9/8, 7/5) 0.456 0.205 40,45,56

16 (0,2,7) C − D − G sus 2 M2, P5 (9/8, 3/2) 0.644 0.230 8,9,12

17 (0,2,8) C − D − G� M2, m6 (9/8, 8/5) 0.256 0.226 40,45,64

18 (0,2,9) C − D − A M2, M6 (9/8, 5/3) 0.300 0.268 24,27,40

19 (0,2,10) C − D − A� M2, m7 (9/8, 9/5) 0.267 0.203 40,45,72

20 (0,2,11) C − D − B M2, M7 (9/8, 15/8) 0.344 0.270 8,9,15

21 (0,2,12) C − D − C M2, P8 (9/8, 2/1) 0.400 0.238 8,9,16

22 (0,3,4) C − D� − E m3, M3 (6/5, 5/4) 0.067 0.136 20,24,25

23 (0,3,5) C − D� − F m3, P4 (6/5, 4/3) 0.467 0.241 15,18,20

24 (0,3,6) C − D� − F� dim (r) m3, TT (6/5, 7/5) 0.456 0.239 5,6,7

25 (0,3,7) C − D� − G min (r) m3, P5 (6/5, 3/2) 0.800 0.225 10,12,15

26 (0,3,8) C − D� − G� maj (1) m3, m6 (6/5, 8/5) 0.878 0.205 5,6,8

27 (0,3,9) C − D� − A m3, M6 (6/5, 5/3) 0.411 0.226 15,18,25

28 (0,3,10) C − D� − A� dim (1) m3, m7 (6/5, 9/5) 0.511 0.243 5,6,9

29 (0,3,11) C − D� − B m3, M7 (6/5, 15/8) 0.178 0.190 40,48,75

30 (0,3,12) C − D� − C pc m3 m3, P8 (6/5, 2/1) 0.600 0.308 5,6,10

31 (0,4,5) C − E − F M3, P4 (5/4, 4/3) 0.378 0.259 12,15,16

32 (0,4,6) C − E − F� M3, TT (5/4, 7/5) 0.300 0.182 20,25,28

33 (0,4,7) C − E − G maj (r) M3, P5 (5/4, 3/2) 0.933 0.136 4,5,6

34 (0,4,8) C − E − G� aug (r) M3, m6 (5/4, 8/5) 0.311 0.213 20,25,32

35 (0,4,9) C − E − A min (1) M3, M6 (5/4, 5/3) 0.678 0.270 12,15,20

36 (0,4,10) C − E − A� M3, m7 (5/4, 9/5) 0.478 0.258 20,25,36

37 (0,4,11) C − E − B M3, M7 (5/4, 15/8) 0.533 0.207 8,10,15

38 (0,4,12) C − E − C pc M3 M3, P8 (5/4, 2/1) 0.844 0.190 4,5,8

39 (0,5,6) C − F − F� P4, TT (4/3, 7/5) 0.122 0.223 15,20,21

40 (0,5,7) C − F − G sus 4 P4, P5 (4/3, 3/2) 0.711 0.273 6,8,9

41 (0,5,8) C − F − G� min (2) P4, m6 (4/3, 8/5) 0.600 0.221 15,20,24

42 (0,5,9) C − F − A maj (2) P4, M6 (4/3, 5/3) 0.878 0.255 3,4,5

43 (0,5,10) C − F − A� P4, m7 (4/3, 9/5) 0.456 0.223 15,20,27

44 (0,5,11) C − F − B P4, M7 (4/3, 15/8) 0.433 0.217 24,32,45

45 (0,5,12) C − F − C pc P4 P4, P8 (4/3, 2/1) 0.889 0.160 3,4,6

46 (0,6,7) C − F� − G TT, P5 (7/5, 3/2) 0.222 0.202 10,14,15

47 (0,6,8) C − F� − G� TT, m6 (7/5, 8/5) 0.544 0.223 5,7,8

48 (0,6,9) C − F� − A dim (2) TT, M6 (7/5, 5/3) 0.411 0.209 15,21,25

49 (0,6,10) C − F� − A� TT, m7 (7/5, 9/5) 0.311 0.276 5,7,9

50 (0,6,11) C − F� − B TT, M7 (7/5, 15/8) 0.300 0.237 40,56,75

51 (0,6,12) C − F� − C TT, P8 (7/5, 2/1) 0.456 0.283 5,7,10

52 (0,7,8) C − G − G� P5, m6 (3/2, 8/5) 0.278 0.177 10,15,16

53 (0,7,9) C − G − A P5, M6 (3/2, 5/3) 0.500 0.273 6,9,10
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Table 1 continued

Num Pitch class Notes Name Intervals ( f2/ f1, f3/ f1) Mean σ n, m, �

54 (0,7,10) C − G − A� P5, m7 (3/2, 9/5) 0.389 0.304 10,15,18

55 (0,7,11) C − G − B P5, M7 (3/2, 15/8) 0.422 0.276 8,12,15

56 (0,7,12) C − G − C pc P5 P5, P8 (3/2, 2/1) 0.944 0.126 2,3,4

57 (0,8,9) C − G� − A m6, M6 (8/5, 5/3) 0.067 0.136 15,24,25

58 (0,8,10) C − G� − A� m6, m7 (8/5, 9/5) 0.322 0.239 5,8,9

59 (0,8,11) C − G� − B m6, M7 (8/5, 15/8) 0.211 0.185 40,64,75

60 (0,8,12) C − G� − C pc m6 m6, P8 (8/5, 2/1) 0.733 0.238 5,8,10

61 (0,9,10) C − A − A� M6, m7 (5/3, 9/5) 0.078 0.143 15,25,27

62 (0,9,11) C − A − B M6, M7 (5/3, 15/8) 0.178 0.169 24,40,45

63 (0,9,12) C − A − C pc M6 M6, P8 (5/3, 2/1) 0.678 0.297 3,5,6

64 (0,10,11) C − A� − B m7, M7 (9/5, 15/8) 0.067 0.184 40,72,75

65 (0,10,12) C − A� − C m7, P8 (9/5, 2/1) 0.267 0.221 5,9,10

66 (0,11,12) C − B − C M7, P8 (15/8, 2/1) 0.067 0.136 8,15,16

The last column shows the values of (n, m, �), according to Eq. (4)

Fig. 1 Bowling et al. [22] results, rescaled to the C and D range [0, 1]

From the physical point of view, it is useful to characterize a triad by the pair of frequency ratios ( f2/ f1, f3/ f1), written in simple
form (that is without common factors between numerator and denominator), as shown in the sixth column of Table 1; the third
ratio f3/ f2 can thus be easily determined. The mean value and the standard deviation σ of the score assigned to each triad [22]
(upon rescaling the results to the range [0, 1]) are reported in the seventh and eight columns. For an easy visual comparison, these
normalized results are reproduced in Fig. 1.

The two best performing triads are pc P5 and maj (r), with a mean consonance value larger than 0.9. This is not surprising: Only
the consonant P5 interval is involved, together with the M3 for the latter. The third best performing triad is pc P4; the fourth best
performing are maj (1) and maj (2), with the same score. Then, in decreasing order of consonance, we find: pc M3, min (r), pc m6,
sus 4, pc M6, min (1), sus 2, min (2), triad n.30, etc. As for the most dissonant triads, in order of increasing consonance, we find:
triad n.1 (or cluster chord); triad n.9; and triads n.10, 22, 57, 65, and 66, all with the same score.

The results of the test by Bowling et al. [22] are globally reasonable, but there are some critical points. It is generally agreed by
musicians that maj (2) is more consonant than maj (r); the opposite result obtained by the participants to the test might be due to
a cultural bias, maj (r) being very popular in Western music. The same cultural bias might apply to min (r), which also gets a high
score from the test; musicians would for instance typically consider sus 4 and pc m6 to be more consonant than min (r).

3 The fundamental bass

For dyads, compactness models and their generalization to continuum were studied in detail in Ref. [1], stressing the relevance of
the fundamental frequency f0 of the sound wave obtained by summing the two sound waves having (fundamental) frequencies f1
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and f2. This frequency is important for both periodicity and harmonicity models. It is referred to in many ways, including missing
fundamental or virtual pitch.

It is indeed a virtual frequency, in the sense, that it is not actually present in the spectrum of the dyad; nevertheless, it plays an
important role in psychoacoustics, as the hearing system is able to reconstruct it (see, e.g. [24] and references therein). It is by now
accepted that the brain processes the information present in a set of tones to calculate the associated fundamental frequency f0; the
precise way in which it does so is still a matter of debate, but the processing seems to be based on an autocorrelation involving the
timing of neural impulses in the auditory nerve [25]. In music theory, the relevance of this fundamental frequency f0 is also largely
recognized: It corresponds to the frequency of the fundamental bass which, as well known, plays a crucial role in the characterization
of harmonic structures [8, 9]. In the following, we will adopt the music theory denomination.

Since our aim is to generalize compactness models to triads, which are composed by three tones with frequencies f1 < f2 < f3,
we first calculate the fundamental bass of such triad. By definition, this corresponds the fundamental frequency of the sound wave
obtained by summing the three sound waves having (fundamental) frequencies f1, f2, and f3. We fix f1 to some frequency and
define f2/ f1 � M12/N12 and f3/ f1 � M13/N13, where M12, N12 and M13, N13 are integers. For i j � 12, 13 (but not for i j � 23),
we introduce the integers

mi j � Mi j

GCD[Ni j , Mi j ]
, ni j � Ni j

GCD[Ni j , Mi j ]
, for i j � 12, 13. (1)

With this notation, f2/ f1 � m12/n12 and f3/ f1 � m13/n13 are written in the simplest form, namely with numerator and denominator
having no prime factors in common.

As for the ratio f3/ f2, since it can be written as the product of f3/ f1 and f1/ f2, one would obtain f3/ f2 � m13n12/(n13m12),
which in general is not in its simplest form. Nevertheless, it can be written in its simplest form by introducing the simple ratio
m23/n23 � f3/ f2, where

m23 � m13 n12

GCD[n13 m12,m13 n12]
, n23 � n13 m12

GCD[n13 m12,m13 n12]
. (2)

The fundamental bass of the dyad with frequency ratio f j/ fi , with i j � 12, 13 and 23, has frequency given by:

f (12)
0 � 1

n12
f1 � 1

m12
f2, f (13)

0 � 1

n13
f1 � 1

m13
f3, f (23)

0 � 1

n23
f1 � 1

m23
f3. (3)

The fundamental bass of these three fundamental basses can be calculated as follows. Defining

n � n12 n13

GCD[n12, n13]
, m � n

m12

n12
� m12 n13

GCD[n12, n13]
, � � n

m13

n13
� n12 m13

GCD[n12, n13]
, (4)

the fundamental bass of the three (fundamental) frequencies constituting the triad is

f0 � 1

n
f1 � 1

m
f2 � 1

�
f3. (5)

As already stressed, it is a virtual sound, not present in the spectrum of the triad, but it is of remarkable importance for the hearing
system and for music theory. So, let us focus on the harmonic spectrum of a tone with (fundamental) frequency f0 and denote it
by {n0 f0} with n0 � 1, 2, 3, .... Clearly, the constituent (fundamental) tones of the triad discussed previously correspond to the
harmonic numbers n0 � (n, m, �) of the harmonic spectrum of f0. This offers another useful notation to denote a chord; in the
last column of Table 1, we show the values of (n, m, �) for each of the 66 triads that can be built within the octave, using a just
intonation scale.

The highness of the fundamental bass has been itself interpreted as a C and D indicator [11, 12]: The more (n, m, l) are small,
the more the three frequencies belong to the low harmonics of the fundamental bass, and the more there is consonance.

In particular, the knowledge of n for each of the 66 triads of Table 1 allows for an easy calculation of f0, according to Eq. (5).
In Fig. 2, we show a graphical representation of the magnitude of f0, taking f1 fixed, say for instance to C4; a larger ellipse is
associated to a higher value of f0.

From Table 1 and Fig. 2, we can see that, for triads within the octave, the highest value of the fundamental bass occurs for pc
P5, and it is one octave below f1; indeed, in this case n � 2, so that f0 � f1/2=C3. The second highest value of the fundamental
bass happens when n � 3 and corresponds to f0 � f1/3 �F2: This is the case for pc P4, pc M6, and maj (2). The third highest
fundamental bass is lower than f1 by two octaves: n � 4 for both maj (r) and cp M3, so that f0 � f1/4 �C2. This is in agreement
with musicians common experience that maj (2) is more consonant than maj (r)—although the results of Bowling et al. [22] test
showed the opposite. The fourth highest fundamental bass is f0 � f1/5, which is obtained by dim (r), maj (1), and dim (1). The
other triads have a lower f0. For instance, sus 4 has n � 6, while min (r) has n � 10. The cluster chord n.1 and the triad n.10 are
the chords with the lowest fundamental bass, having n � 120.

This shows that the height of the fundamental bass is indeed an efficient C and D indicator. It has, however, some weak points:
dim (r) has higher fundamental bass than min (r), but the common experience by musicians is that dim (r) is more dissonant than
min (r)—in agreement with Bowling et al. [22] test. It is reasonable to expect that C and D indicators including the effect of
roughness should be better suited to explain this feature.
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Fig. 2 Visual representation of the
highness of the fundamental bass
f0, for the 66 just intonation triads
within one octave, taking f1 fixed
(say to C4). A larger ellipse and
colder colors are associated to
triads with increasingly higher
values of f0

Table 2 Examples of triads
beyond the octave having f0 � f1

Notes Intervals ( f2/ f1, f3/ f1) n, m, l

C4 − C5 − G5 P8,cP5 (2/1, 3/1) 1,2,3

C4 − C5 − C6 P8,cP8 (2/1, 4/1) 1,2,4

C4 − G5 − C6 cP5,cP8 (3/1, 4/1) 1,3,4

It is worth to consider which triads have the fundamental bass as high as possibile, that is f0 � f1; this requires n � 1, while m
and � are not constrained. We call them super harmonic chords, as f2 and f3 belong to the harmonic series of f1. Necessarily, f3 is
in the second octave, so they are compound chords, which have not been tested by Bowling et al. [22]. Table 2 displays three such
super harmonic chords, those with (n, m, �) equal to (1, 2, 3), (1, 2, 4), and (1, 3, 4).

Notice also that, in general, the ratio f3/ f2, even in its simple form, might involve larger integers in the numerator and denominator
with respect to those characterizing f2/ f1 and f3/ f1 in the just intonation scale. This is for instance the case for the triad n.1, for
which f3/ f2 � (34 × 5)/27. In general, this happens for triads having a low fundamental bass. On the contrary, triads with a high
fundamental bass typically display small integers in the numerator and denominator of f3/ f2. This for instance the case for maj (2),
which has f3/ f2 � 5/4.

4 Compactness models

There are two categories of compactness models, those based on periodicity and those on harmonicity. In Ref. [1], we showed
explicitly for dyads that they are associated to indicators that are numerically much similar. Indeed, the criterion of having the period
of the dyadic sound wave as short as possible and the criterion of having the highest possible number of common harmonics in the
constituent dyad tones are practically equivalent. We expect that the same holds in the case of triads.

4.1 Periodicity indicators

We start by analysing periodicity models for triads. According to the periodicity approach, the more the period of the triadic sound
wave is short with respect to the period of its component tones, the more the triad is consonant. So, more consonant chords should
be those with the highest value of f0 with respect to the chord’s frequencies.

Comparing the fundamental bass f0 with the lowest/middle/highest sound of the chord gives the following three periodicity
consonance indicators

I P1 � f0
f1

� 1

n
, I P2 � f0

f2
� 1

m
, I P3 � f0

f3
� 1

�
. (6)

These indicators span a smaller range than the interval [0, 1] for the 66 triads of Table 1; in the following, we will discuss how
to normalize them. Notice that I P1 corresponds to using just the fundamental bass as an indicator, since it compares f0 with the
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lowest tone of the triad f1, taken to be fixed; the dependence on the values of f2 and f3 is then fully encoded in the value of f0. The
indicators I P2 and I P3 have instead a stronger dependence on the fact that the middle and highest tone of the triad should be close to
f0.

The indicator I P3 is particularly interesting. It compares the period of the fundamental bass with the period of the highest frequency
of the triad: The more � is small, the more the triad is compact from the periodicity point of view. This indicator is somewhat related
to an extension to triads of Galilei’s arguments [4] about dyads coincidence theory.4

Comparing the fundamental bass frequency f0 with some mean value of the triad frequencies might be an interesting option to
find more sophisticated periodicity indicators. We define the arithmetic, geometric, and harmonic means

f A � f1 + f2 + f3
3

, fG � ( f1 f2 f3)1/3, fH � 3
1
f1

+ 1
f2

+ 1
f3

, (7)

so that

I PA � f0
f A

� 3

n + m + �
, I PG � f0

fG
� 1

(n m �)1/3 , I PH � f0
fH

� m � + n � + n m

3 n m �
. (8)

These indicators are expected to give predictions in between I P1 and I P3 , and they correspond to the following combinations of the
three indicators above,

I PA � 3
1
I P1

+ 1
I P2

+ 1
I P3

, I PG � (I P1 I P2 I P3 )1/3, I PH � 1

3
(I P1 + I P2 + I P3 ). (9)

The indicator I PH can be seen as an extension to triads of the dyadic consonance indicator suggested, on the basis of very different
arguments, in Ref. [26].

More in general, any non-decreasing monotonic function of the three indicators I Pi (i � 1, 2, 3) can be used to define a consonance
indicator somewhat related to periodicity. For instance, even the function ln I P3 � − ln � can be viewed as a consonance indicator
related to periodicity.

Equivalently, any non-decreasing monotonic function of the three numbers n, m, � can be used to define a dissonance indicator
somewhat related to periodicity. For instance, the product nmwas suggested by G.B. Benedetti as an estimator for dyads rankings [5].
Of course, not all such guessed indicators turn out to explain perceptual results in a satisfactory way. This is for instance the case
for the indicator proposed by L. Euler [6] and discussed in app. A for historical completeness.

4.2 Harmonicity indicators

According to the harmonicity approach, more harmonics the tones of a chord have in common, more consonance is achieved. We
showed in Ref. [1] that harmonicity models for dyads are essentially equivalent to periodicity ones. In order to generalize to triads
the harmonicity models defined for dyads, we first introduce a few definitions.

The first (triple) coincidence of the harmonic sounds of a triad happens at

nc1
1 f1 � nc1

2 f2 � nc1
3 f3, (10)

where nc1
i , i � 1, 2, 3, are integer numbers, with nc1

3 ≥ 1 (the equality is included in order to include possible coincidences with
the fundamental of f3). Hence, we have that the ratios can be expressed as

f2
f1

� m12

n12
� nc1

1

nc1
2

,
f3
f1

� m13

n13
� nc1

1

nc1
3

,
f3
f2

� m23

n23
� nc1

2

nc1
3

, (11)

where the ratios of the type mi j/ni j are in simple form, while those of the form nc1
i /nc1

j are in general not in simple form.

We define the integers α12, α13 and α23 to be precisely those integers responsible for the non-simple form of nc1
i /nc1

j , that is

nc1
1 � α12m12 � α13m13, nc1

2 � α12n12 � α23m23, nc1
3 � α13n13 � α23n23. (12)

Hence, it turns out that

α12 � m13

GCD[m12,m13]
, α13 � m12

GCD[m12,m13]
, α23 � α12

n12

m23
, (13)

4 This indicator corresponds to the fraction of “concordant pulses”, discussed by G. Galilei in Ref. [4]. During the time interval (equal to the period of the
fundamental bass) in which the lowest string (with frequency f1) gives n vibrations, the highest string (with frequency f3) gives � vibrations. So, numbering
the vibrations of the sharper string during this time interval, it happens that just 1/� of them agree to strike simultaneously with the lowest string (i.e. � − 1
single pulses intervene between each pair of concordant pulses). We thus name after Galilei’s the coincidence indicator 1/�, even though he never suggested
this identification explicitly.
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so that the integers nc1
i are given by

nc1
1 � m13m12

GCD[m12,m13]
, nc1

2 � m13n12

GCD[m12,m13]
, nc1

3 � m12n13

GCD[m12,m13]
. (14)

Clearly, the smaller are the integers nc1
i , the larger is the number of coincidences in the lower harmonics of the triad spectrum (which

are typically those with the highest amplitudes), and the larger is consonance. So, any non-decreasing function of the ratios 1/nc1
i

can be used as a consonance indicator somewhat related to harmonicity, which turns out to be numerically similar to the periodicity
indicators discussed previously.

A valuable argument to define a harmonicity indicator is to count the overlaps among the harmonic spectrum of the fundamental
bass and each component of the triad. As already mentioned, the first coincidence is found at the frequency nc1

1 f1; this corresponds
to the harmonic number

nc1
0 � n nc1

1 � n
m13m12

GCD[m12,m13]
(15)

in the harmonic series expansion of f0. The common harmonics of f0 and fi , with i � 1, 2, 3, up to the first coincidence, are given
by nc1

i . Hence, a simple harmonicity indicator corresponds to the ratio between the number of harmonics that f0 shares with any
harmonic of fi , divided by the number of all harmonics of f0, up to the first coincidence. We thus obtain

I HS � nc1
1 + nc1

2 + nc1
3

nc1
0

� m13m12 + m13n12 + m12n13

n m13m12
, (16)

where twofold common harmonics are counted twice, and the first coincidence is counted three times.
If one wants to count just once the twofold and threefold coincidences, as suggested by Gill and Purves in Ref. [20], one can

proceed as follows.5 Up to the first coincidence, the harmonics in common between fi and f j are given by αi j . Hence, double
counting of harmonics is avoided by considering the ratio

I HGP � (nc1
1 + nc1

2 + nc1
3 ) − (α12 + α13 + α23) + 1

nc1
0

. (17)

Notice that for super harmonic chords I HGP � 1, while this is not the case for I HS , which is equal to 11/6, 7/4, and 19/12 for triads
with ( f2/ f1, f3/ f1) � (2/1, 3/1), (2/1, 4/1) and (3/1, 4/1), respectively. We now turn to discuss a proper normalization of the
compactness indicators.

5 Comparison with perceptual data

In order to compare effectively Bowling et al. [22] results for triads within one octave with the predictions of the periodicity and
harmonicity indicators previously introduced, we have to normalize the latter so that they all predict maximal consonance (that is
1) for pc P5. So, we introduce normalized consonance indicators as

Ĩ CX � I CX
ICX |pcP5

, X � 1, 2, 3, A,G, H , S,GP , (18)

where C � P , H stands for compactness, while P and H stand for the sub-categories of periodicity and harmonicity.
In Fig. 3, Bowling et al. [22] results (red) are compared with the predictions of all the periodicity and harmonicity indicators

previously introduced. In general, the predictions of compactness models agree with perceptual data within one standard deviation.
The error bars are, however, quite large. Notice also that periodicity and harmonicity models have quite similar predictions (the same
happens for dyads [1]): This shows that the compactness of the waveform period and the compactness of the harmonic spectrum
are practically equivalent requirements. Inside each sub-category, one can recognize that there are small differences between the
models. For instance, the Galileo’s inspired indicator Ĩ P3 is slightly larger than Ĩ P1 ; the indicators Ĩ PA,G, H instead display negligible

differences among them; the harmonicity indicator Ĩ HGP is slightly larger than Ĩ P3 .
From Fig. 3, we can see that the most consonant triads according to the compactness models, do get a high score in the perceptual

test. However, a high test score is also associated to some triads that should be not so consonant according to the models: This is the
case in particular for maj (r), maj (1), and for all minor chords, for which the test scores are much above the model expectations. As
mentioned, this might be due to cultural familiarity, whose effect is possibly enhanced by the choice of the piano timbre in the test
by Bowling et al. [22]. It would be interesting to perform a perceptual test with tones generated with a “neutral” timbre, as done in
our previous work [1], to check whether such difference persists; it would also be interesting to include triads beyond one octave.
Notice also that not only Ĩ P1 , but all compactness models predict dim (r) to be more consonant than min (r); this unsatisfactory
prediction should disappear by including the effect of roughness.

5 Actually, Gill and Purves did not provide a formula in Ref. [20]. It is possible that they just did the calculation numerically; anyway, our formula agrees
with the values of their indicator.
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Fig. 3 Bowling et al. [22] results (red) compared with the predictions of Ĩ P1, 2, 3, Ĩ PA,G, H , and Ĩ HS,GP , in the top, middle, and bottom panels, respectively

Using the results at our disposal now, we perform a reduced Chi-square analysis to compare periodicity and harmonicity models
in a more quantitative way, for triads within one octave:

χ̃2 � 1

66

∑

n�1,...,66

( Ĩ CX (n) − m(n))2

σ (n)2 , (19)

where m(n) and σ (n) are Bowling et al. [22] means and standard deviations, displayed in Table 1. The results of the calculations
are summarized in Table 3: For all models, a reduced Chi-square around unity is achieved, which means that compactness models
reproduce experimental data in a satisfactory way. The differences in the reduced Chi-square among the compactness models are
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Table 3 Reduced Chi-square for indicated periodicity and harmonicity models, calculated by using the 66 triads within one octave according to Bowling
et al. [22]

Ĩ P1 Ĩ P2 Ĩ P3 Ĩ PA Ĩ PG Ĩ PH Ĩ HS Ĩ HGP

χ̃2 1.26 0.97 0.96 1.03 1.05 1.08 1.08 0.81

not very significant: This is also related to the fact that the standard deviations of the perceptual test of Ref. [22] are quite large. We
can see that the best periodicity model is Ĩ P3 , the Galilei’s inspired model. The smallest reduced Chi-square among all compactness
models is, however, obtained by Ĩ HGP , as was the case also for dyads [1]: This allows to conclude that the extension from dyads to
triads provides consistent results.

6 Extension to continuum

The extension to continuum is quite a delicate task and was addressed in many different ways, from adopting arbitrary mathematical
simplifications [26, 27] to exploiting signal processing techniques [28]. In [1], we proposed an analytical procedure for the
extension to the continuum, based on the hearing system auditory property called discrimination limen (DL) [29]. Here, we extend
this procedure to triads, by considering the plane with horizontal axis x and vertical axis y, to be identified, respectively, with f2/ f1
and f3/ f1.

Suppose that M12, 13 and N12, 13 take all integer values from 1 up to 30, for instance. To study triads inside the octave, we select
(avoiding double counting) the k different points of the type (m12/n12, m13/n13), such that 1 < m12/n12 < 2 and m12/n12 <

m13/n13 < 2, and we denote them by (xi , yi ), with i � 1, .., k. The associated normalized consonance indicator, Ĩ CX (xi , yi ), is thus
defined in the plane (x, y) only for the k discrete values (xi , yi ).

Our aim is to extend the indicator to any value of the (x, y) domain such that 1 < x < 2 and x < y, thus rendering it more
“physical”. We recall that, as derived by Zwicker et al. [29], the DL turns out to be about 1/30 of the critical bandwidth (CB) [30],
which is frequency dependent. In particular, the ear has a DL of about 3 Hz at the frequency of middle C, that is fDL (C4) � 3 Hz,
where C4 � 261.63 Hz; the DL increases up to 6 Hz two octaves above [29].

We propose to simulate the effect of the DL by smoothing the consonance peaks with a Gaussian 6 characterized by a standard
deviation which reflects the magnitude of the DL at the frequencies characteristics of the triads to be considered, σ ≡ fDL ( f̄ )/ f1,
where f̄ is some mean value between f2 and f3. Indeed, a variation of fDL ( f̄ ) in the value of f2 and f3 is associated to a variation
of σ along the x and y axes, respectively7:

f2 ± fDL ( f̄ )

f1
� x ± σ ,

f3 ± fDL ( f̄ )

f1
� y ± σ. (20)

Fixing for definiteness f1 �C4, we have that σ spans the range fDL ( f̄ )/ f1 ≈ (3 − 6)/261.63 � (0.0115 − 0.0229) when f̄ goes
from C4 up to C6. In the following, we take for definiteness σ � 0.02, which corresponds to a DL of 5.25 Hz. The distance between
the point P � (x , y) and the point Pi � (xi , yi ) (with i � 1, ..., k) is given by d(P , Pi ) � ((x − xi )2 + (y − yi )2)1/2. We can
define the continuum consonance indicator CC

X (x , y) as the maximum consonance value resulting from smoothing with a Gaussian
the consonance peaks placed at positions (xi , yi ), that is

CC
X (x , y) � Maxi Ĩ

C
X (xi , yi ) e

− (x−xi )2+(y−yi )2

2 σ2 , where i is such that d(P , Pi ) < 2 σ. (21)

The constraint on the distance between P and Pi allows to speed up the numerical calculation: One could indeed include all k points
Pi in the calculation of the maximum, but this is not necessary as only points within a circle with radius of a couple of standard
deviations significantly contribute. The result is a continuous surface function, with smoothed peaks such that, within (beyond)
about 3 (6) Hz from a peak, the consonance function does not (does) change significantly.8

Figure 4 shows the extension to continuum, taking σ � 0.02, for the compactness models CP
1 , CP

3 , and CH
GP . It turns out that CP

1
is symmetric with respect to the diagonal axis from the top left to the bottom right of the figure; while the other two display more
consonance in the region below such axis. Indeed, notice that with CP

3 and CH
GP , the major third and many other relevant triads get

a higher score with respect to CP
1 .

6 Our choice of a Gaussian is reasonable but, of course, it is not the unique possibility.
7 In principle, one might consider an elliptical Gaussian with different standard deviations along x and y axes: σi � fDL ( fi )/ f1, with i � 2, 3. In practice,
this is not necessary as here we focus on triads within one octave.
8 For dyads, we performed a psychoacoustic test to check that this is indeed the case: For example, focussing on the peak of the P5, within 3 Hz from the
peak, we found, according to our judgement, that the quality of the perceived consonance is not much affected despite the appearance of some roughness,
while beyond about 6 Hz, we assessed that the perception turns into dissonance [1].
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Fig. 4 Top left, top right, and bottom: continuum consonance indicators CP
1 , CP

3 , and CH
GP

This can be better seen by zooming on the region around major and minor triads, as done in Fig. 5. We can clearly see the high
consonance peaks associated to the major triads. Notice, however, that also dim (r) has a quite high consonance peak, even at the
same level as maj (r) forCH

GP . On the contrary, notice the low consonance value of min (r) and the fact that there is no peak associated
with it: min (r) actually is in the tail of the peak of a more consonant close triad, which is associated to frequency ratios (7/6, 3/2),
that is a septimal minor third with a fifth. It is reasonable to expect that these not fully satisfactory features would disappear by
including the effect of roughness.

These plots are also useful to comment on the major and minor triads of the equal temperament, whose location is shown in Fig. 5
by using dark dots. As well known, equal temperament triads have a lower consonance with respect to just intonation ones: Indeed,
being not too far from the peak of the just maj (r), the equally tempered maj (r) gets a quite high consonance value. On the contrary,
it would be unreasonable to find the tempered maj (r) down in the dissonance valley around the just maj (r). Similar considerations
apply for the other major and minor triads. Notice that min (r) in the equal temperament gets closer to the peak of the triad with the
septimal minor third.
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Fig. 5 Top left, top right, and bottom: zoom on the region around major and minor triads for the continuum consonance indicators CP
1 , CP

3 , and CH
GP

As these considerations depend on the value of σ adopted in the procedure of the extension to continuum, it would be interesting
to further explore the effect of varying σ on the various models. We leave this for future work.

7 Overview and conclusions

In this work, we studied in detail the viability of compactness models in explaining C and D perceptual data for triads. Compactness
models can be divided in the two sub-categories of periodicity and harmonicity, according to the fact that one chooses to relate
consonance to a compact period of the waveform signal or rather to a compact structure of harmonics. In both cases, the role of the
fundamental bass turns out to be outstanding in order to identify consonance indicators.

Compactness models for dyads were studied extensively in Ref. [1], where it was shown that the two compactness requirements
mentioned above (i.e. periodicity and harmonicity) are practically equivalent. Here, we showed that this turns out to be the case also
for triads, see Fig. 3.

We found that compactness models are quite satisfactory in reproducing perceptual data. In particular, here, we calculated the
reduced Chi-square of our compactness indicators by using the perceptual data of Bowling et al. [22], obtained by testing all 66
triads that can be formed using the chromatic just scale within one octave. We found that, for all the compactness indicators proposed,

123



Eur. Phys. J. Plus         (2023) 138:606 Page 13 of 14   606 

the reduced Chi-square is of order one, see Table 3. In particular, the best performing model turned out to be the Gill and Purves
harmonicity indicator [20], followed by the periodicity indicator inspired to Galilei’s arguments [4].

One of the most serious criticisms formulated against this category of C and D models is the fact that they are naturally associated
to indicators which are discontinuous [5]. This represents a problem, especially in order to assess the predictions of these models
for the various temperaments proposed in the history of music. In Ref. [1], a procedure to obtain continuum indicators for dyads
was suggested, based on smoothing the just intonation consonance peaks by means of a Gaussian with a standard deviation σ taken
to be equal to the discrimination limen. Here, we extended this procedure to compactness models for triads, obtaining continuum
consonance indicators describing a surface in the plane f2/ f1 and f3/ f1, see Fig. 4. This allows for an effective comparison of the
just scale predictions with those of various temperaments. In particular, we discussed here the case of the equal temperament, see
Fig. 5.

Our general result is that compactness indicators provide a quite effective, but not fully satisfactory, description of C and D
for triads. It would be interesting to consider also roughness models for triads and explore the effect of combining them with
compactness models, as done for dyads in [1]. The extension to tetrads would be also worth to explore. This is postponed to future
work, together with a more refined study of various temperaments and the effect of varying the parameter σ . From the point of view
of the perceptual data, it would be worth to carry out a test with sounds not having the piano timbre (as done in [22]) and to consider
triads and tetrads beyond one octave. The above findings and considerations show that justifying on a physical basis the auditory
perception of C and D for triads is a subject open to further research improvements.
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A Euler’s indicator

A mathematical proposal, not based on physical grounds, was proposed by Euler [6]. Despite its name, the Euler’s gradus suavitatis
[6], dE , is a dissonance indicator, as it increases with the dissonance. We discussed it for dyads in the appendix of [1] and discuss
it now for triads.

For triads associated to frequency ratios f2/ f1 � f2/ f0 × f0/ f1 � m/n and f3/ f1 � f3/ f0 × f0/ f1 � �/n, the frequencies
have proportions f1 : f2 : f3 � n : m : �. As n, m, � might have prime factors in common (e.g. for maj (r), they are 4:5:6, one has
to consider the “exponent”, namely the least common multiple of the product nm�: EE � LCM(nm�). Focusing on its factorization,
EE � pe1

1 pe2
2 ...pekk , where p1, p2,... are the prime factors, and ei are integers and nonzero, the Euler’s dissonance indicator is

defined as

dE � 1 +
∑

i�1,...,k

ei (pi − 1). (22)

For the frequency ratios of the 66 triads inside one octave, dE ranges from 5 to 20; one can define a normalized consonance indicator
CE , with values in the range [0, 1], as CE � 1 − (dE − 5)/15. The associated reduced Chi-square is 1.43: It is even not so bad (but
worse than the compactness models studied previously), because the results of the test by Bowling et al. [22] have large error bars.
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