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Figure 1. Wernicke's model of speech processing 1874. For speech perception, sounds 

are sent via the auditory system to the Broadmann area 41, i.e. the primary auditory 

cortex. This area is then connected to the Wernicke’s area, where the words 

meaning is extracted. For speech production, the words’ meaning is sent from the 

Wernicke’s area to the Broca’s area, where morphemes are assembled, and a words 

representation is retained. Finally, the speech motor instructions are sent from the 

Broca’s area to the face related motor cortex and from here to facial motor neurons, 

in the brainstem, connected to the muscles to activate. ................................................. 18 

Figure 2. The dual stream model and its anatomical regions (Hickok & Poeppel, 2000, 

2004, 2007). Blue regions are the dorsal stream, strongly left dominant, it involves 

Broca’s area in the frontal lobe, a dorsal premotor site and a region at the parieto-

temporal boundary (area Spt) thought to be a sensorimotor interface. The pink 

shaded areas represent the ventral stream. It is bilaterally organized with the more 

posterior region representing a lexical interface, which links phonological and 

semantic information. Yellow region is involved in phonological-level processes, and 

it is directly connected to a region from where both ventral and dorsal streams are 

originated (green- shaded area). This area is located bilaterally on the dorsal surface 

of the superior temporal gyrus and is proposed to be active in the early stages of 

speech processing, in particular in some form of spectro-temporal analysis. The 

figure is authored by Hickok and Poeppel (2007)............................................................ 20 

Figure 3. Schematization of  areas involved in speech processing with their correspondent 

Broadmann’s classication. The Broca’s area corresponds to Broadmann’s area 44 

and 45. The figure is authored by Friederici (2011). ....................................................... 26 

Figure 4. µECoG arrays layout and position over the cortex of subject1 (top) and subject2 

(bottom). The top-left panel shows pictures of the Epi and the MuSA µECoG array. 

The top right panel shows and horizontal and coronal section of the patient’s MRI 

scan. The center of each array (red dot in the left panel) was positioned over the 

speech arrest area (red dot in the right panel). The bottom-left panel shows a picture 

of the EpiBig µECoG array. The red dot localizes upper-right corner of the array 

superimposed to the MRI scan of the patient (horizontal plane and coronal plane). 

For both subjects, the speech production tasks are reported on the rightmost side 

of the panels. ........................................................................................................................ 43 
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Figure 5. Graphical representation of the feature extraction and labelling procedure. Each 

consecutive and non-overlapping window (w) of the z-score Mean Power Profile 

(MPP, (blue line) was considered as an observation. Observations were labelled as 

preparation within 500 ms before the speech onset (vertical red line) were labelled as 

preparation (class 0, in green). Observations belonging to the vocalization interval 

and the following silence were labelled as non-preparation (class 1, in red). ............ 46 

Figure 6. Training procedure of our classifier. (Top) Within-subject validation. (Step 1) 

Each recording session was segmented into N intervals, where N represents the 

number of vocalizations. Data where then split into train and validation set. (Step 2) 

Random down-sampling of the more represented class (i.e. “non-preparation”) to 

train our classifier with balanced classes. (Step 3) Training of the classifier with all 

intervals except one. The left-out intervals was used for validation. To test the 

robustness against the random down-sampling, this procedure was iterated 10 times 

and performances were then averaged. This procedure yielded the optimal 

hyperparameter for our model. (Step 6) The classifier with the optimal 

hyperparameters ws trained using the whole daset ans (Steps 7-8) tested using a 

cross-subject approach. ....................................................................................................... 48 

Figure 7. Characterization of the signal redundancy across electrodes performed on the Epi 

dataset. (a–c) Mean correlation maps of signals in the beta (15-30 Hz, panel (a)), 

low-gamma (30-60 Hz, panel (b)), and high-gamma (70-150 Hz, panel (c)) frequency 

bands obtained averaging across trials. Each square of the plot represents the 

correlation coefficients computed for the electrode in that position against all others. 

(d) Correlation profiles (mean ± SE) obtained averaging the correlation coefficients of 

electrodes sharing the same distance for all the tested frequency bands (light blue for 

beta, grey for low-gamma, and dark blue for high-gamma). ....................................... 51 

Figure 8. Mean spectrogram maps for the Epi (a) and the MuSA (b) arrays. Data are 

filtered in the high- gamma band (70–150 Hz) and averaged over trials. (c) Relative 

orientation on the cortex of the MuSA (light brown) and the Epi (red) devices. Blue 

rectangles refer to the electrodes highlighted on the spectrogram’s plots (dashed 

line, Epi array; solid line, MuSA array). ........................................................................... 53 

Figure 9. Mean spectrogram maps of the Epi array in the beta (15-30 Hz, panel (a)) and 

low-gamma (30-60 Hz, panel (b)) frequency bands. Data are averaged over trials 

aligned to the speech onset (vertical red line).................................................................. 54 

Figure 10. Prediction of speech onset. (a) On the left, the mean of 10 run F-score maps, 

obtained with the optimal window length tested for high-gamma MPP features of the 

Epi dataset (subject 1, naming task). On the right, the mean F-score of the best 
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channel (red bar) with its standard deviation, is compared to the empirical chance 

level (grey bar). The non-random model resulted significantly higher (two sided t-test, 

P < 0.0001) than the random one. (b) Predicted (light green bars) and ground-truth 

(red segments) speech preparation profiles are shown aligned with the voice of the 

subject (black signal). The reported predicted preparation intervals belong to the best 

channel of the Epi dataset. (c) The mean F-score maps, for the Epi dataset (subject 

1, naming task), obtained from the cross-dataset model testing; from left to right 

respectively the model were trained on the EpiBig (subject 2, phoneme task) and 

MuSA (Subject 1, naming task) datasets. For the best channel, numeric values 

indicating the average F-score and the corresponding empirical chance level (italic) 

are reported. Interestingly, the device area where the models achieved the highest 

performances overlapped with the one resulting from with-dataset validation, 

highlighting the robustness of the neural correlates decoded by the different models.

 ................................................................................................................................................. 56 

Figure 11. (a) Average F-score maps obtained during cross-dataset model testing of each 

pairwise combination. Each training was performed considering for each dataset the 

best channel (cho) and window (wo) obtained during the hyperparameters 

optimization. Empirical chance level of the best channel is reported in italic. (b) 

Average F-scores of the best channels compared to the empirical chance level (gray 

bars). All the within-dataset models were significantly better than the ran- domized 

ones (diagonal terms, two-sided t-test, P < 0.001). All cross-dataset tests show 

significantly higher performances than the randomization test (off-diagonal terms, 

two-sided t-test, P < 0.001). Data are reported as mean ±  SD. .................................... 57 

Figure 12. Kinematic principal components. A. Schematic of the positions of the 

electromagnetic sensors: upper lip (UL), lower lip (LL), upper jaw (UJ), lower jaw 

(LJ), tongue tip (TT), tongue middle (TM), tongue back (TB). B. Cumulative variance 

(%) of kinematic data that is explained by the first four principal components (PC1, 2, 

3, 4). C. Bar plots represent the weights (absolute values) of each kinematic variable 

(x-, y- and z-axis for each sensor) for the PC1, 2, 3, 4. Dot size in the three vocal 

tract schematics show the relative contribution of each sensor across the movement 

axis (x, y and z respectively in red, blue and green). ...................................................... 80 

Figure 13. Acoustic and kinematic stimulus features. A. Example time series of the raw 

speech signal (blue), its envelope (black) and the kinematic PCs corresponding to 

the same stimulus. B. Normalized power spectra for all features (envelope, PC1, 

PC2, PC3 and PC4). ............................................................................................................ 82 
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Figure 14. MI results. Topographical distribution of across-subjects average information 

values computed via Gaussian Copula Mutual Information performed on the broad-

band filtered data (0.5-10Hz). Black dots highlight significant channels (after FDR-

correction for multiple comparisons). ................................................................................. 84 

Figure 15. PID results. Topographical distribution of across-subjects average information 

values obtained by PID analyses performed on the broad-band filtered data (0.5-

10Hz). Black dots highlight significant channels (after FDR-correction for multiple 
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Figure 16. Single subject results. Statistical tests run on individual subjects are shown for 

each PID component. White squares indicate subjects where at least one significant 

channel was obtained (after FDR-correction for multiple comparisons). ..................... 89 
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1  General Introduction 

1.1 The human speech 

Speech is the way humans communicate using spoken language. Through speech 

we express our thoughts, and this is possible via a series of complex movements 

of the speech articulators that modify the basic tone of the voice into 

comprehensible sounds. 

In particular, muscles in the mouth, face, neck, chest, and abdomen have to be 

coordinated by the brain in order to handle one of the most sophisticated form of 

movement control. 

 The energy needed to produce the speech is provided, in the form of an 

airstream, by a bellows-like respiratory activator; the energy is then transformed in 

the larynx by a phonating sound generator and subsequently voice pattern is 

shaped in the pharynx; finally speech is formed by the articulators in the mouth.  

The evolutionary origins of speech are unknown and subject to much debate 

and speculation. A variety of animals are able to communicate using vocalizations 

and trained apes can also use simple sign language. However, humans are the 

only specie capable to articulate phonemically and syntactically to constitute 

speech.   

1.2 Verbal communication: a joint task 

Humans are the only animals in the animal kingdom using an articulated language 

as a communicative tool. Indeed, speech is the main communicative mean that 

enables interactions in social contexts and it is used for different purposes ranging 

from basic needs to more complex concepts.  
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Communication can be defined as an intentional joint action that has a shared goal 

between speakers. It is considered successful when two speakers come to the 

same understanding of different relevant aspects of the world, in other words they 

align their representation of the situation under discussion (Brown-Schmidt & 

Tanenhaus, 2008). This is typically achieved as people start off at a very good 

point by communicating with other people who are largely similar to themselves, 

both because they process language in similar ways and because they share 

much relevant background knowledge. This means that they can, in principle, use 

knowledge about themselves to understand and, in particular, predict their 

interlocutor. 

Dialog as a joint action should be seen as both intentional (conveying meaning) 

and unintentional (automatic), even though interlocutors might have a shared goal. 

For example, underlying communication is the automatic process of imitation 

(Pickering & Garrod, 2004) that takes place both at the level of vocabulary choices 

or grammatical structures. It has been argued that this effect arises from common 

coding between interlocutors across production and comprehension, without 

extensive negotiation between interlocutors or modelling of each other’s mental 

states. The same aspect applies to other modalities, such as posture and gestures 

(Shockley, Santana, & Fowler, 2003), but also to the tendency of laughing and 

yawning together (Hatfield, Cacioppo, & Rapson, 1994). This clearly means that 

interlocutors construct aligned non-linguistic representations.  

In social interactions,  indeed, people coordinate their actions in order to 

incrementally and interactively reach their communicative goals. This is made by 

repetition of communicative behaviour (body postures, eye gaze, words, gestures) 

in order for interlocutors to tune with each other. This mechanism is named 

“alignment” or “convergence”. How alignment happens is still under investigation. 

Natural communication ranges from gestures to speech, creating a multimodal 

way of communicating. For example, co-speech gestures are meaningful 

movements of the hand or arm that accompany speech and support joint problem-

solving and coordination ( Holler & Wilkin, 2011; Pickering & Garrod, 2004). This is 

a starting point to investigate alignment, however the interdisciplinary nature of 

such phenomenon makes it difficult to build a comprehensive framework.  
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1.2.1 The alignment theoretic framework: Priming and grounding  

Theoretical approaches to alignment are divided into two categories giving rise to 

the priming and grounding dichotomy. Priming accounts define alignment as a 

individual-level mechanism (Pickering & Garrod, 2004, 2006). Grounding theories 

instead support the idea that alignment arises from interaction and coordination 

during joint meaning-making (Brennan & Clark, 1996; Holler & Wilkin, 2011).  

Both priming and grounding approaches aimed at disentangling the complex 

phenomenon of alignment and they are concerned with alignment of behaviour as 

well as higher level mental representations. However, they diverge in defining the 

involvement of different levels of linguistic processing. On one hand, priming 

theorizes that speakers non only align their speaking behaviour but also their 

linguistic knowledge (Pickering & Garrod, 2006). Moreover, the priming 

mechanism is believed to happen at multiple linguistic levels ranging from 

phonetics to semantics. On the other hand, grounding accounts believe that 

alignment of linguistic representation is not a requisite for alignment at other levels 

of representation. Thus, grounding framework provides a more flexible relationship 

between behavioural alignment in various modalities and alignment of conceptual 

representations, whereas priming accounts see them as causally linked.  

1.2.2 The alignment theoretic framework: how does alignment work? 

Four main theories have been proposed to explain the mechanism underlying  the 

alignment: (1) the Episodic Theory (ET) (Goldinger,1998) of speech perception 

and production; (2) the motor theory (MT) of speech perception (Liberman & 

Whalen, 2000); (3) Communication Accommodation Theory (CAT; Giles & 

Coupland, 1991); (4) Simulation Theory (ST) (Gambi & Pickering, 2013). Firstly, 

ET theory posits that anything perceived by the individual leaves a trace in 

memory that contains detailed phonetic information, such as the speaker’s voice 

characteristics. This echo of the perceptual experience that is left in memory can 

be shaped by more recent perceptual events, and this affects production of the 

same word. 
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Secondly, the Motor Theory of perception argues that perceptual units of speech 

processing are not defined by speech’s acoustic characteristics, but rather by 

articulatory gestures (Liberman & Whalen, 2000). Galantucci and colleagues 

(2006) proposed that imitation should be facilitated over non-imitative responses 

so that, when the same speech unit has been already perceived, speakers 

produce it faster. This phenomenon seems to be true across different modalities 

such as vision and audition (Fowler et al., 2003; Galantucci et al., 2009; Jarick & 

Jones, 2008; Kerzel & Bekkering, 2000;). 

Thirdly, the CAT poses that speech convergence arises from the speaker’s 

motivation to make the conversation more likeable to the conversational partner 

(Giles & Coupland, 1991). In this context,  socially-relevant variables like 

personality traits (Natale, 1975), in-group and out-group differences (Giles, 1973), 

communicative intentions and affective goals (Giles & Coupland, 1991), social 

approval (Natale, 1975)  are of crucial importance. 

 Finally, the Simulation Theory aims at summing up all the previously proposed 

theories in a more integrated framework of speech perception. It additionally 

argues that forward models of the motor commands map as well sensory 

consequences of executing such motor commands by making predictions.  

According to pioneering work by Wolpert and colleagues (Wolpert & Flanagan, 

2001; Wolpert et al., 2003), forward models allow for online control of one’s own 

actions. Researchers in the speech field propose that a similar mechanism might 

be put into place during speech articulatory control (Guenther et al., 2006; Hickok, 

2012; Tian & Poeppel, 2010). 

Simulation of other people’s speech might be enabled by a forward model running 

in one’s own production system. Pickering and Garrod (2013) proposed that a 

combination of inverse and forward models might drive speech comprehension. 

Indeed, once a speech input is received, this input is inversely mapped from its 

perceptual representation to a production command that is the same command the 

individual who is listening would use to produce the speech himself. 

Once this production command is derived, the listener has to pick the production 

motor command that is more similar to the motor command recovered via the 
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inverse model. This leads to a cascade effect that switches on the forward 

production model and forward comprehension model which together predict the 

upcoming input. These models depend on the characteristics of the listener’s 

speech production architecture, with the forward speech production model 

computing predictions about articulatory movements, and the forward 

comprehension model dealing with acoustic features that would produce that 

specific combination of articulatory movements. This goes hand in hand with the 

definition of speech as joint action. Indeed, one of the fundamental aspects of joint 

actions is that they not only require understanding between partners but also 

prediction of those actions.  

The evidence that mouth articulations, such as lips and tongue, involved in speech 

comprehension, activate while listening to speech but not during non-speech 

(Fadiga et al., 2002; Watkins, Strafella, & Paus, 2003) corroborates this 

hypothesis. Hence, it seems that  during speech perception listeners use the 

production system as part of an emulator that operates in real time.  

1.2.3 Acoustic Convergence: tuning two voices towards a common 

acoustic point 

Research in the speech interaction field focused on different aspects of speech 

accommodation during interaction naming them mainly convergence or alignment. 

However, a distinction has to be made: one type of accommodation relies on 

cognitive, physiological, functional, and social constraints (Littlejohn & Foss, 

2010), the second one on linguistic and paralinguistic factors (Heldner & Edlund, 

2010). 

The latter applies to synchronization between two speakers’ acoustic features, and 

takes the form of a synchronized variation of speakers’ voices.  An example of this 

phenomenon is the instantaneous diminution of one speaker’s voice amplitude 

that often happens as a consequence of the same volume diminution in the 

partner’s voice. 
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In the other hand, convergence rests on the first definition of accommodation, and 

in contrast with synchrony is a long term mechanism arising during the 

conversation by means of the tuning of two speakers’ speech towards a common 

acoustic point.  

A pitfall of convergence research lays upon the fact that it has been always 

defined as a linear process where convergence is higher as the time passes. 

However, two speakers do not engage with the same involvement throughout the 

conversation, but convergence is instead time-varying (De Looze et al., 2014; 

Levitan & Hirschberg, 2011; Vaughan, 2011). This defines convergence as a more 

complex and dynamic phenomenon compared to what previous researchers 

believed, thus laying the bases for further research in the field.  

During my research work I approached the problem of measuring the acoustic 

speech convergence. Due to the mentioned complexity of this time-varying 

mechanism obtaining a unified quantitative measure remains an unresolved 

problem. 

To deal with the criticalities of the scientific question, i.e. with the lack of a 

quantitative mathematical definition and the convergence non-linear temporal 

dynamics, I decided to face the problem using an innovative deep learning 

approach, based on Siamese neural networks. The Siamese networks are a 

specific kind of deep learning models particularly well suited for dealing with time-

varying data sequences and capable to learn measures of similarity. With this 

powerful tool, I built a mathematical model that given a couple of speakers is fully 

capable to compute the “distance” between the speaker’s speech independently of 

the words pronounced. In future the model could be improved in order to be fully 

speaker independent and used to track and the raise and diminution of every 

couple of voices interacting in a verbal conversation. 
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1.3 The neural basis of speech processing: two 

streams and the Wernicke’s model 

The speech functional anatomy has been a research topic for more than one 

century. Nonetheless, the neural organization of speech perception and production 

remains an open field, and the characterization of the anatomic speech areas has 

been difficult to describe even in gross terms. 

The first important speech related brain areas, known as Broca’s and Wernicke’s 

areas, have been discovered by studying people who developed speech disorders 

after severe injuries. Such discoveries were crucial in speech and writing 

understanding. However, studying speech in healthy subjects were complicated 

and animal models did not provide useful insights to disentangle this extraordinary 

complex process. 

In 1870’s the first hypothesis on how the brain perceives and produces the speech 

has been formulated, the Wernicke’s model was born. The idea that characterizes 

this first model was intuitive and straightforward: the auditory cortex supports the 

speech perception, and from there two different speech processing pathway 

depart (Wernicke, Cohen & Wartofsky, 1874).  

The Wernicke’s model is now considered obsolete, but it had the intuition to lay 

the foundation for modern dual streams speech modelling, introducing the speech 

perception and the speech production pathways. 
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Figure 1. Wernicke's model of speech processing 1874. For speech perception, sounds 

are sent via the auditory system to the Broadmann area 41, i.e. the primary auditory 

cortex. This area is then connected to the Wernicke’s area, where the words meaning is 

extracted. For speech production, the words’ meaning is sent from the Wernicke’s area to 

the Broca’s area, where morphemes are assembled, and a words representation is 

retained. Finally, the speech motor instructions are sent from the Broca’s area to the face 

related motor cortex and from here to facial motor neurons, in the brainstem, connected to 

the muscles to activate. 

1.4 The speech Perception 

The modern dual-stream model of speech processing (Hickok & Poeppel, 2000, 

2004, 2007) lays its foundations in older models, such as the classic model of 

Wernicke. According to this model, speech information is processed alongside two 

different routes in the brain: the ventral stream and the dorsal stream (see Figure 2 

for details of anatomical locations). 
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The dorsal stream is in charge of translating acoustic speech signals into 

articulatory-based representations for speech production. On the other hand, the 

auditory-conceptual ventral stream comprises the superior and middle portions of 

the temporal lobe and governs the processing speech signals for comprehension. 

It is bilaterally organised but computationally asymmetric (Abrams et al., 2008; 

Boemio et al., 2005; Giraud et al., 2007; Hickok & Poeppel, 2007; Zatorre et al., 

2002). Indeed, left and right hemispheres seems to differ in their preferred 

“sampling rate” of acoustic stimuli. The left hemisphere is mainly involved in the 

processing of rapid acoustic changes (faster rate, 25-50 Hz), whereas the right 

hemisphere prefers lower sampling rates around 4-8 Hz (Poeppel, 2003; Zatorre 

et al., 2002), thus having a bias in processing spectral frequency information. 

 In general, the ventral stream governs not only phonological processing, but also 

lexical-semantic access via the temporal lobe that functions as a computational 

interface that stores correspondences between phonologic information and 

conceptual information. (Hickok & Poeppel, 2000, 2004, 2007; Lau et al., 2008). 
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Figure 2. The dual stream model and its anatomical regions (Hickok & Poeppel, 2000, 

2004, 2007). Blue regions are the dorsal stream, strongly left dominant, it involves Broca’s 

area in the frontal lobe, a dorsal premotor site and a region at the parieto-temporal 

boundary (area Spt) thought to be a sensorimotor interface. The pink shaded areas 

represent the ventral stream. It is bilaterally organized with the more posterior region 

representing a lexical interface, which links phonological and semantic information. Yellow 

region is involved in phonological-level processes, and it is directly connected to a region 

from where both ventral and dorsal streams are originated (green- shaded area). This 

area is located bilaterally on the dorsal surface of the superior temporal gyrus and is 

proposed to be active in the early stages of speech processing, in particular in some form 

of spectro-temporal analysis. The figure is authored by Hickok and Poeppel (2007). 

1.4.1 Neural entrainment and the importance of the rhythmic speech 

features for perception 

The quasi-rhythmic structure of the input is crucial for the listening brain, indeed, 

speech comprehension is possible by speech envelope tracking, via a mechanism 

called neural entrainment (Ahissar et al., 2001; Ding & Simon, 2014; Luo & 

Poeppel, 2007; Obleser & Kayser 2019; Peelle & Davis, 2012; Peelle, Gross & 

Davis, 2013). 

 The neural entrainment to the speech is characterized by the synchronization of 

the neural oscillatory activity over the auditory areas to the rhythmicity in the 

incoming speech signal.  The involved cortical regions use the rhythmic properties 

of the speech to allow the listener to discretise the continuous input into 

segmented units that undergo the decoding process (Peelle & Davis, 2012). 



21 
 
 

Research has found neural entrainment to the speech envelope in the delta (1-4 

Hz) and theta (4-8 Hz) band (Brohl & Kayser, 2021), reflecting different speech 

components such as the occurrence of phonemes, words and even slower 

features such as phrases and the speech prosody (Bourguignon et al., 2013; Ding 

et al., 2017). 

 The importance of the speech entrainment to speech comprehension has been 

demonstrated by several studies that observed the correlation between the 

entrainment strength and the comprehension performances (Ahissar et al., 2001; 

Luo & Poeppel, 2007; Peelle et. al. 2013).  In general the neural speech 

entrainment is lower when speech intelligibility is lower as well, as happens in a 

noisy environment (Ding & Simon 2014; Ghitza, 2012; Kayser et al., 2015; Peelle 

et. al. 2013; Riecke et al., 2018). 

In this context entrainment to non-acoustic rhythmic stimuli, still related to the 

verbal message, increase its strength: this is the case of the entrainment to the 

movement of mouth articulators, such as the speaker’s lips (Park et al., 2016; 

Peelle & Sommers, 2015). Entrainment is indeed a phenomenon not only involving 

the audio signal rather to every signal containing rhythmic properties.  

The finding that the auditory cortex and the input rhythmically synchronise, and 

that this synchronisation correlates with intelligibility and comprehension of the 

auditory input, has led scientists to implement a neural oscillator model of the 

auditory cortex (Doelling et al. 2019). It is argued that there is a population of 

neurons that oscillates at a specific frequency, and that this frequency shifts in 

order to synchronise with the frequency of the external stimulation only when 

within the specific range of the oscillator.  

In my research work I went through the analysis of the neural entrainment to the 

speech and in addition I investigated the neural entrainment to non-acoustic 

speech related signals, i.e. the movements of the speech articulators (tongue, lips 

and jaw). In particular, the aim of my research in the speech perception field is to 

investigate the presence of entrainment to speech-related kinematics even if not 

provided to the listener. The presence of such a neural entrainment would indeed 

be a fundamental hint of the presence a motor-driven simulation process going on 

during speech perception. With this aim, I settled down an experiment where 
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subjects were listening for audio sentences but did not have visual or kinematic 

speech related information. 

Nonetheless, due to the fact that the speech is produced by the movement of the 

mouth articulators, the possibility that the eventually observed brain to kinematics 

entrainment is a redundant phenomenon rather than unique was cleared.  

1.5 The speech Production 

The production of the speech is a mechanism that is composed by multiple 

unconscious computational steps, starting from the abstract idea to the 

vocalization of the words. Firstly, the words to pronounce are selected with the 

correct lexicon and morphology, then organized trough the syntax. Subsequently 

the phonetic representation of the words is retrieved and the sentence is 

articulated through the articulations associated with those phonetic properties. 

(Levelt, 1999). 

From a neural point of view, all these computational steps were for the first time 

formalized in the classic Wernicke’s model. Here the speech production was 

managed by the dorsal stream, and precisely was articulated as follow: the 

meaning of the words are sent from the Wernicke’s area to the Broca’s area where 

morphemes are assembled, and a representation of the words is stored. Words to 

pronounce are subsequently sent to the facial motor cortex and finally to the 

motor-neurons into the brainstem that produce the movement commands. 

After this classic model of speech production, several models have been 

described. However, these models considered the central nervous system still in a 

pure feedforward view, i.e. as a simple generator of the mouth articulators motor 

trajectories  (Ostry et al., 1991; Perrier et al., 1996; Payan and Perrier, 1997; 

Sanguineti et al., 1997, 1998). 

 In general, the main problems faced by these models were the short latency of 

the speech adjustment commands and the fact that some adjustments are task 

dependent. Latencies are indeed too long to represent a pure local feedback loop 
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(Kandel et al., 2000) as well as task dependent adjustments result to be hardly 

explained by the same low-level mechanics (Kelso et al., 1984; Saltzman & 

Munhall, 1989). 

Nowadays, speech production models are overcoming the idea that the central 

nervous system only produces the feedforward motor commands. Central 

feedback components are indeed increasingly integrated. 

Several experiments indeed demonstrates the importance of the sensory feedback 

for speech production. For instance, perturbations in the amplitude of the feedback 

(the listened self-produced speech) or in the noise level lead to automatic 

compensation of the speech loudness (Lane & Tranel, 1971); mechanical 

perturbations of the speech articulators are also automatically compensated by the 

brain in order to reach the correct speech outcome (Abbs and Gracco, 1984; 

Saltzman et al., 1998; Shaiman & Gracco, 2002).  

Additionally, a variety of studies have observed important component of the dorsal 

stream, i.e the posterior superior temporal gyrus (Zheng, Munhall & Johnsrude, 

2009) and the superior parietal temporal area (Buchsbaum et al., 2001; Hickok et 

al., 2003) implicated in feedback processing specifically related to speech 

production.  

All these evidences led to redefine the idea of the dorsal stream described in the 

classic dual streams model. In modern models, indeed,  the dorsal stream serves 

for feedback processing related to the speech production (Hickok & Poeppel, 

2007; Rauschecker & Scott, 2009; Hickok et al., 2011). 

Consequently, the speech production process has been fitted on the idea that the 

brain uses attended auditory information, comparing the incoming feedback with a 

prediction derived from efference copies of the motor output, with the resulting 

prediction error used to track the state of the vocal tract. This modelling of the 

speech production is called State Feedback Control (Houde & Nagarajan, 2011; 

Bernstein, 1967) and it states that the auditory information is not only used for 

speech comprehension but also for speech production. 
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1.5.1 The Broca’s area  

It is widely recognized that the Broca’s area is an important region for speech 

processing. Nonetheless, although several studies and more than one century of 

research, its function is still not completely cleared, and it remains one of the most 

debated language related area. The French neurologist Paul Broca was the first 

that described it, observing a patient with a lesion in the posterior part of the frontal 

convolution of the left hemisphere (Broca, 1861). Precisely, the Broca’s area 

corresponds to Brodmann’s areas (BA) 44 and 45 on the Broadmann’s 

classification of cortical areas(see Figure 3, Friederici, 2011) of the left 

hemisphere. Although classically associated with language, the specific functions 

of Broca’s area and exact functional connection to other brain regions are open 

research questions. (Friederici, 2011). 

Nowadays, the crucial relevance of the Broca’s area for speech production can be 

practically assessed by Direct Electrical Stimulation (DES). When applied over this 

eloquent region, indeed, the so called speech arrest can be induced. This 

phenomenon consists in the complete interruption of the ongoing speech, by the 

interruption of orofacial movements and sounds emission (Ferpozzi et al., 2018). It 

is a reversible phenomenon and allows the exact identification of the Broca’s area 

(Chang et al., 2017). This procedure is very important for research purposes as 

well as for clinical ones. It is indeed used when a brain surgery has to be 

performed but language related areas have to be identified and preserved 

(Mandonnet, Sarubbo, & Duffau, 2017).  

1.5.2 The anticipatory speech related High-Gamma activity over 

Broca’s region 

High gamma activity (70-150 Hz) has been observed to be engaged when the 

speech is both perceived and produced (Crone, Boatman, Gordon & Hao, 2001; 

Crone et al., 2001; Towle et al., 2008). 

Recently, the ElectroCorticography (ECoG), has been used to investigate the 

functional role of Broca’s area, as well as of the motor cortex and Superior 
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Temporal Gyrus (STG), during word production (Flinker et al., 2015). The 

advantage of using ECoG respect to standard non-invasive techniques is the 

possibility to exploit an higher spatial resolution and higher frequency components, 

such as the high gamma band, inaccessible to non-invasive neural recordings. 

In their study Flinker and colleagues (2015) found power activity in the high-

gamma band immediately before the speech onset over the Broca’s area 

electrodes. After the speech onset, the activity observed over this region vanished 

and subsequently arose in the motor cortex area.  

During my work I investigated the importance of the high gamma activity arising 

before the speech onset for the speech production, and the possibility to exploit it 

to build a brain-machine interface capable to decode the patient’s intention to 

speak. The study that I conducted could be an important step to reach 

translational application for speech impaired patients and to deeper understand 

the role of the preparatory high gamma activity over the Broca’s area. 
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Figure 3. Schematization of  areas involved in speech processing with their correspondent 

Broadmann’s classication. The Broca’s area corresponds to Broadmann’s area 44 and 45. 

The figure is authored by Friederici (2011). 
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2  Research Project: 

Speech Production 

2.1 Personal contribution  

The text and figures in the following paragraphs are retrieved directly from 

the scientific paper “Prediction of Speech Onset by Micro-

Electrocorticography of the Human Brain” 

https://doi.org/10.1142/S0129065721500258 of which I am co-first author together 

with my colleague Emanuela Delfino, Ph.D. . The data recording in humans was 

conducted by Dr. Tamara Ius. I designed the machine learning model and 

paradigm to address the scientific question of detecting the patients’ speech onset. 

The analyses were conceptualized by myself and Emanuela Delfino as well as the 

implementation of the Matlab code (in which Emanuela Delfino made a major 

contribution). 

2.2 Abstract 

Recent technological advances show the feasibility of offline decoding speech 

from neuronal signals, paving the way to the development of chronically implanted 

speech brain computer interfaces (sBCI). Two key steps that still need to be 

addressed for the online deployment of sBCI are, on the one hand, the definition 

of relevant design parameters of the recording arrays, on the other hand, the 

identification of robust physiological markers of the patient’s intention to speak, 

which can be used to online trigger the decoding process. To address these 

issues, we acutely recorded speech-related signals from the frontal cortex of two 

https://doi.org/10.1142/S0129065721500258
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human patients undergoing awake neurosurgery for brain tumours using three 

different micro-electrocorticographic (µECoG) devices. First, we observed that, at 

the smallest investigated pitch (600 µm), neighbouring channels are highly 

correlated, suggesting that more closely spaced would provide some redundant 

information. Second, we trained a classifier to recognize speech-related motor 

preparation from high-gamma oscillations (70-150 Hz), demonstrating that these 

neuronal signals can be used to reliably predict speech onset. Notably, our model 

generalized both across subjects and recording devices showing the robustness of 

its performance. These findings provide crucial information for the design of future 

online sBCI. 

2.3 Introduction 

Recent advances in neuroprosthetics demonstrated that intelligible speech can be 

offline synthesized from cortical activity ( Anumanchipalli, Chartier & Chang, 2019; 

Angrick et al. 2019). While this represents an important stepping stone, it still 

leaves open crucial problems that need to be solved to develop speech brain 

computer interfaces (sBCI) which can be effectively implanted in patients and work 

continuously online. ( Anumanchipalli, Chartier & Chang, 2019; Angrick et al. 2019; 

Ortiz-Rosario  &  Adeli, 2013; Rabbani, Milsap & Cron, 2019; Martin et al. 2019; 

Hill et al. 2012). Here, we addressed two of them. 

The first problem is the need of developing devices that   can chronically record 

brain signals in a reliable manner. Several techniques have been presented in the 

literature, which differ in their degree of invasiveness and spatiotemporal 

resolution. Starting from one of the least invasive methodologies, 

electroencephalography (EEG) probes electrical potential variations by using scalp 

electrodes. Neural oscillations are collected from large regions of the brain, 

making it an appropriate method for investigating communication within the brain 

during speech-related tasks (Zhu, Liu, Ristaniemi & F. Cong, 2020) and a powerful 

clinical tool to recognize, among several others, speech and auditory 

deficits(Mozaffari Legha & Adeli, 2019). Nevertheless, when dealing with sBCI 

applications, electrocorticography (ECoG) — performed by placing grids of 
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electrodes directly above the cortical surface — can be considered an excel- lent 

trade-off between several requirements. Indeed, this technique offers the 

advantage of recording neural activity from distributed brain areas with a 

spatiotemporal resolution inaccessible to non-invasive methodologies (e.g. EEG) 

and reduced invasiveness when compared to intracortical devices(Rabbani, 

Milsap & Cron, 2019; Hong & Lieber, 2019; Szostak, Grand  & Constandi-nou, 

2017;  Chen, Canales & Anikeeva, 2017; Buzsaki, Anastassiou & Koch, 2012). In 

the case of chronic recordings, as is the case for BCIs, the use of ultra-flexible 

micro-ECoG (µECoG) arrays, rather than traditional ECoG grids, has the further 

advantage of lowering the foreign body reaction, and thus improving long-term 

performances, as largely demonstrated in animal models(Vomero et al., 2020; 

Bockhorst et al., 2018, Luan et al. 2017; Weltman, Yoo & Meng, 2016; Minev et al. 

2015; Viventi et al. 2011; Kim et al. 2010; Biran, Martin & Tresco, 2005). Indeed, 

thin µECoG do conformably adhere to the brain surface with a curvature of a 

human brain without adding pressure to it (Vomero et al., 2020). Therefore, good 

signal-to-noise ratio of recorded signals occur. Not only low frequencies can be 

detected but even spike-like activity can be recorded with these arrays and 

electrode site diameters in the hundreds of micrometer range (Bockhorst et al., 

2018). Nonetheless, while µECoG arrays represent a promising strategy, several 

of their design parameters still need to be determined, of which, a crucial one, is 

the pitch distance between electrodes. Indeed, signal redundancy between 

neighboring electrodes increases as the electrode pitch decreases(Rogers et al. 

2019; Muller et al. 2016). Thus, below a given threshold distance, signals would 

become highly correlated and the negligible additional information that they 

provide would not justify their additional design and manufacturing costs. Such 

threshold is presently unknown, and it needs to be estimated from experimental 

data, also considering the purpose of the BCI (Muller et al. 2016).  

The second problem we addressed   here   is that presently available speech-

decoding devices are designed for an offline use. That is, they synthesize words 

and sentences from brain signals that are known to be collected during speech-

related task(Anumanchipalli, Chartier & Chang, 2019; Angrick et al. 2019). On the 

contrary, in a prospective real-life online scenario, BCIs would be constantly 

exposed to the flow of neuronal activations with no additional information as to 
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whether these signals are related to speech production or not, similarly to inner 

speech settings (Sereshkeh et al., 2017;  Martin et al., 2014, 2016, 2018). Under 

these circumstances, the device would continuously attempt to convert patterns of 

neuronal activity into words, with conceivably high computational cost 

(Anumanchipalli, Chartier & Chang, 2019; Angrick et al. 2019).  

In recent years, substantial efforts went into developing new strategies to both 

get closer to a natural speech scenario and optimize the decoding 

process(Sereshkeh et al., 2017;  Martin et al., 2014, 2016, 2018; Kanas et al., 

2014, 2014; Dash et al., 2020; Moses et al., 2019; Guenther et al., 2009). Among 

the explored options, one includes the identification of speech-preparatory neural 

signals to reliably detect the speech onset. Previous studies reported that the 

most accurate speech onset/offset neuronal signals are typically   found in the 

temporal cortex (Kanas et al. 2014, 2014) raising the issue that they might be 

related to the auditory feedback of the subject’s own voice. Unfortunately, such 

signals, while indeed highly correlated with speech onset/offset (Kanas et al. 

2014, 2014; Dash et al. 2020), would not be available for a real- life sBCI 

deployment which implies the decoding of speech from patients that can no 

longer produce it. Aiming to complement previous attempts in the field, one 

should investigate neuronal markers with two crucial characteristics: (1) ability of 

predicting the speech onset, and thus being able to provide sufficient time to 

trigger the decoding process, and (2) high correlation with speech preparation 

processes, and thus being available irrespective of the actual emission of speech. 

Similar to how a vocal cue is employed to start commonly used virtual assistants 

(e.g. Google Assistant, Alexa or Siri), such “neuronal cue” would serve the 

purpose of precisely identifying speech intentions and consequently trigger the 

initiation of the decoding process in time. 

One suitable candidate region of the human cortex where to find physiological 

signals related to speech preparation is the speech arrest in Broca’s area. Indeed, 

experimental evidence shows that direct electrical stimulation(Chang et al., 2017; 

Mandonnet et al., 2017; Tate et al., 2014) during speech production induces the 

so-called speech arrest phenomenon, i.e. the complete interruption of ongoing 

speech (Ferpozzi et al., 2018) in absence of orofacial movements and 

vocalizations(Gomez-Vilda et al., 2019). This reversible functional arrest identifies 
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Broca’s area, which is known to be active prior to articulation rather than during 

spoken responses(Flinker et al., 2015). Specifically, results showed an increase of 

the high-gamma activity immediately before the speech onset or the peak of 

verbal response(Flinker et al., 2015; Pei et al., 2011).  

In this study, we recorded neural activity from Broca’s area using innovative dense 

µECoG grids (pitch distances = 600, 750 and 2500 µm) acutely implanted in two 

patients performing speech production tasks. We used signals recorded from the 

speech arrest area to provide a quantitative estimate of the correlation between 

electrodes, as a function of their distance. If there would be high correlations 

between adjacent electrodes this would be a sign for redundancy. If not, signals 

are independent and only one electrode was selected. This estimate, together with 

our time-frequency analysis, allowed us to identify the most appropriate frequency 

band in terms of spatial confinement and strict anticipatory nature with the respect 

to the speech onset, and thus to select the most robust physiological marker of 

speech preparation periods. 

2.4 Materials  and  Methods 

2.4.1 Subjects 

Data were collected from two patients undergoing awake neurosurgery for tumor 

resection (low-grade glioma). The patients gave their informed consent, and the 

protocol was approved by the Ethics Committee of Azienda Ospedaliera 

Universitaria Santa Maria della Misericordia (Udine, Italy) after verification of the 

Italian Ministry of Health. 

2.4.2 Recordings 

Device specifications and recording setup were described in previous 

publications(Vomero et al., 2020; Rembado et al. 2016; Castagnola et al., 2013, 

2014). Briefly, three different epicortical arrays were used for the recordings ( 
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Figure 4): the first array (hereinafter Epi) consisted of 64 channels arranged in an 

8 8 square grid layout, with a pitch of 600 m between contacts and a contact 

diameter of 140 m; the second array (Multi Species Array; hereinafter MuSA) 

consisted of 16 channels arranged in a 4 4 square grid layout, with a pitch of 750 

µm between contacts and a contact diameter of 100 µm; the third array 

(hereinafter EpiBig) consisted of 64 channels arranged in a rectangular grid, with a 

pitch of 2500 µm between contacts and a contact diameter of 200 µm. As required 

by the surgical procedures, the devices were sterilized before use. The reference 

electrodes on the arrays were disconnected. Recordings were performed in a 

single ended configuration by shorting the reference and ground contact and 

connecting them to the dura mater. 

The position of the µECoG arrays on the cortex was determined based on pre-

surgical analyses and intra-operative procedures. Pre-surgical analyses included a 

functional Magnetic Resonance Imaging (fMRI) session while performing different 

speech production tasks. Intraoperative procedures consisted in identifying the 

position of the speech arrest area by means of electrical stimulation (IES). Briefly, 

using a neuronavigation system (Brainlab) and an IES probe, it was possible to 

map eloquent areas of the brain and visualize them superimposed to the fMRI 

scan of the patient. This procedure is typically conducted to identify the exact 

position of specific regions, such as the speech arrest, and evaluate their relative 

distance from the tumor. We used the same approach to collect the coordinates of 

the speech arrest area and of the position of the array once in place, which 

allowed us to align the MuSA and the Epi devices. 

Neural signals were collected before the surgical procedure at a sampling 

frequency of 3051.8 Hz, while the voices were recorded at 24 kHz. The voice the 

neural signals were recorded using the same data acquisition equipment; thus, 

they were automatically synchronized. Delays were therefore constant and 

identical in all trials with respect to the technical equipment. The onset for each 

trial was identified manually from the spectrogram of the audio signals computed 

with the free software Audacity. 
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Figure 4. µECoG arrays layout and position over the cortex of subject1 (top) and subject2 

(bottom). The top-left panel shows pictures of the Epi and the MuSA µECoG array. The 

top right panel shows and horizontal and coronal section of the patient’s MRI scan. The 

center of each array (red dot in the left panel) was positioned over the speech arrest area 

(red dot in the right panel). The bottom-left panel shows a picture of the EpiBig µECoG 

array. The red dot localizes upper-right corner of the array superimposed to the MRI scan 

of the patient (horizontal plane and coronal plane). For both subjects, the speech 

production tasks are reported on the rightmost side of the panels. 
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2.4.3 Tasks 

The first subject (53-year-old male, Italian native speaker, hereinafter subject1) 

performed two sessions of a naming task, the same conducted during the 

presurgical fMRI to identify eloquent areas. The task consisted in naming different 

images shown on a screen. Each session consisted of three blocks which 10 

pictures representing Italian nouns were presented. The order of the stimuli is 

shown in Figure 4 and was not randomized across blocks because of limitations of 

the equipment available in the surgery room. During the first session, neuronal 

signals were recorded using the Epi array (Epi dataset, 30 trials) and during the 

second session data were collected using the MuSA array (MuSA dataset, 30 

trials). 

The second subject (41-year-old female, Italian native speaker, hereinafter 

referred as subject2) performed a phoneme production task (see Figure 4). The 

task consisted in listening to different phonemes and in repeating them. In this 

task, differently from the naming one, the stimuli were randomized across blocks 

and neuronal signals were recorded with the EpiBig device (EpiBig dataset, 84 

trials). 

2.4.4 Characterization of the signal redundancy across electrodes 

Data were analyzed in Matlab (version 9.5, Math- works, Inc., Natick, MA) with the 

aim of characterizing the spatiotemporal dynamic of neural activity related to 

speech preparation. Ground-truth speech onset times were determined based on 

the sub- jects’ voices recorded during the experiment. We focused our analysis on 

three frequency bands: beta (15-30 Hz), low-gamma (30-60 Hz), and high-gamma 

(70-150 Hz) (Muller et al., 2016). Signals were filtered in these three bands, by 

applying the Matlab function filtfilt to minimize phase distortion (8th order 

Butterworth). We also removed line noise by applying a notch filter at 50 Hz and its 

harmonics up to 200 Hz. Finally, the filtered data were segmented into trials, 

spanning from 500 ms before to 500 ms after speech onset, and analysed as 

follows. 
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2.4.4.1 Spatial Correlation Analysis 

We used a correlation analysis to quantify signal redundancy across electrodes. 

To this end, we computed the correlation coefficient of the filtered and segmented 

signals for each pairwise combination of electrodes and averaged it across trials. 

Then, we averaged the results across electrodes sharing the same distance. The 

correlation decay was computed from data recorded with the Epi matrix, as this 

probe possesses the smallest distance between electrodes (600 µm) and thus the 

highest spatial resolution. 

2.4.4.2 Spectrograms 

Spectrograms were computed using the Matlab function spectrogram setting a 

temporal window of 100 ms for low and high-gamma, and 150 ms for the beta 

band. The overlap between windows was set to 90%. The frequency resolution 

was set to 1 Hz for low and high gamma bands, and to 0.5 Hz for the beta band. 

Power spectra were then averaged across trials. 

2.4.5 Prediction of speech onset 

To identify speech-preparation activities, we first segmented each recording 

session into N non- overlapping intervals, where N represents the number of 

words or phonemes (hereinafter vocalization), according to the task performed. 

Each interval ranged from 500 ms before an instance of speech onset to 500 ms 

before the subsequent one. It thus contained only one vocalization. For each 

interval, we extracted vectors of features from neuronal signals and labelled them 

either as preparation or non- preparation. Specifically, we labelled as “preparation” 

features extracted in the 500 ms preceding a speech onset event and “non-

preparation” features extracted in all other time intervals (Figure 5). For each 

channel, we then trained a support vector machine (SVM) to classify feature 

vectors based on their assigned labels. Figure 6 reports a diagram of the 

prediction procedure. 
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Figure 5. Graphical representation of the feature extraction and labelling procedure. Each 

consecutive and non-overlapping window (w) of the z-score Mean Power Profile (MPP, 

(blue line) was considered as an observation. Observations were labelled as preparation 

within 500 ms before the speech onset (vertical red line) were labelled as preparation 

(class 0, in green). Observations belonging to the vocalization interval and the following 

silence were labelled as non-preparation (class 1, in red). 

2.4.5.1 Feature extraction 

Features for the SVM were extracted from the high- gamma range spectrograms. 

To this end, we first averaged spectrograms across frequency thus obtaining a 

single time-varying profile of the power spectral density (hereinafter Mean Power 

Profile, MPP) for each channel. Since the MPP is the average of the power 

spectrum values for each bin computed, the time resolution of the MPP is the 

same of the high-gamma spectrograms. Then, we segmented the data into 

intervals containing only one vocalization. Z-score normalization was applied to 

compare data recorded from different devices and subjects. Each feature vector 

consisted of w consecutive samples of the z-score MPP, with no overlap between 

consecutive vectors (see Figure 5). Thus, w is the parameter that determines 

how many features are included in each observation. We tested for each dataset 

and channel independently different window lengths (w), specifically: 36, 60, 84, 

108, 132, 156 milliseconds. 



47 
 
 

2.4.5.2 Classification approach 

Considering each channel separately, we used a support-vector machine (SVM), 

which is a super- vised learning method typically used for the classification of 

observations that cannot be linearly separable in their space. SVMs have been 

widely used in biomedical research to decode speech or its related features 

directly from neural signals(Martin et al., 2016; Kanas et al., 2014; Moses et al., 

2019). Here, we trained a set of SVM models to classify observations as 

preparation or not-preparation using the Matlab function fitcsvm for a two-class 

(binary) problem. This function supports mapping the predictor data using kernel 

functions. 

We used a Gaussian kernel (or Radial Basis Function, RBF), already employed for 

speech detection from ECoG signals(Kanas et al., 2014, 2014), with a fine kernel 

scale. The software divides all elements of the predictor matrix by the value of 

Kernel Scale and applies a Box Constraint that controls the maximum penalty 

imposed on margin-violating observations, which helps to pre- vent overfitting 

(regularization). Both values were set to 1 as default value. 

In our experiments, speech periods were separated by longer intervals in which 

the patients remained silent. Our dataset contained thus a significantly greater 

number of “non-preparation” than “preparation” feature vectors. To reduce the 

skew- ness in our data and properly train our classifiers we randomly down-

sampled them in order to get balanced classes (Figure 6, Steps 2–5). Then we 

used a Leave-One interval-Out validation to select the optimal combination of 

window length w and most informative channel. Our classifier was trained using 

feature vectors belonging to all the intervals except one (Figure 6, Step 3) and 

tested using all feature vectors belonging to the left-out interval. Since the non- 

preparation class was randomly down-sampled for the training, this procedure was 

repeated ten times for each left-out interval. Validation performances were 

obtained by averaging across the 10 randomizations (Figure 6, Step 4). 
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2.4.5.3  

 

2.4.5.4 Performance evaluation 

To find the optimal value of the window length w, we assessed the performance of 

each model by means of F-score index. This index is defined as the harmonic 

mean of Precision and Recall and is specifically designed to deal with 

imbalanced datasets in which one label (i.e. non-preparation) is significantly more 

represented than the other (i.e. preparation) (Sung, Wong & Kamel, 2009; Saito & 

Figure 6. Training procedure of our classifier. (Top) Within-subject validation. (Step 1) Each 

recording session was segmented into N intervals, where N represents the number of 

vocalizations. Data where then split into train and validation set. (Step 2) Random down-

sampling of the more represented class (i.e. “non-preparation”) to train our classifier with 

balanced classes. (Step 3) Training of the classifier with all intervals except one. The left-

out intervals was used for validation. To test the robustness against the random down-

sampling, this procedure was iterated 10 times and performances were then averaged. 

This procedure yielded the optimal hyperparameter for our model. (Step 6) The classifier 

with the optimal hyperparameters ws trained using the whole daset ans (Steps 7-8) tested 

using a cross-subject approach. 
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Rehmsmeier, 2015). To estimate an empirical chance level for the F-score, we 

used a Monte Carlo approach in which we trained our classifier on a data set with 

shuffled feature labels. The empirical chance level was defined as the average F-

score across 10 shuffling (Figure 6, Steps 4–9). For each dataset, we identified the 

best combination of window length wo and channel number cho as that yielding the 

highest and above chance F-score. 

2.4.5.5 Cross-dataset model testing 

For the purpose of cross-dataset model testing, we first trained a new model on 

channel cho using window length wo (Figure 6, Step 6). We then tested this model 

on all channels of the other datasets. This procedure was repeated for all pairwise 

combinations of datasets (Figure 6, Steps 7–8). The number of observations 

divided by class, for each dataset, before and after the down-sampling of the 

majority class (“non- preparation”) are reported in Table 1. 

 

 Epi EpiBig MuSA 

Preparation 150 320 441 

Non-Preparation BDs 613 2494 1884 

Non-Preparation ADs 150 320 441 

Training set 

dimension 

300 640 882 

 

Table 1. Number of observations divided by class, for each dataset, before (BDs) and 

after (ADs) down-sampling 

 

 

 



50 
 
 

2.5 Results 

2.5.1 Characterization of the signal redundancy across electrodes 

As a first step, we studied the degree of signal redundancy between electrodes. 

Figure 7(a,c) shows  the mean correlation coefficients computed from the signals 

recorded from the Epi array for the three frequency bands (beta: 15-30 Hz; low-

gamma; 30-60 Hz; high-gamma; 70-150 Hz). We selected this probe as it has the 

narrowest pitch (0.6 mm). As expected, there was a clear trend in the spatial 

extent of the correlations. Specifically, the high- gamma band (Figure 7(c)) 

exhibited correlations at a narrower spatial scale than the low-gamma band 

(Figure 7(b)), whose spatial correlations were narrower than those in the beta band 

(Figure 7(a)). To quantitatively study this trend, we computed the average 

correlation coefficients as a function of the distance between electrodes. Results in 

Figure 7(d) show that (1) the correlation coefficient decreases with the increasing 

distance between electrodes and (2) higher frequencies consistently yield lower 

correlation coefficients. Notably, at the smallest considered pitch distance of 0.6 

mm, signals were highly correlated, and thus redundant, in all three considered 

frequency bands (correlation coefficient > 0.8). This result suggests a lower bound 

for the pitch distance, as it shows that values smaller than 0.6 mm would provide 

low gain in the amount of information provided by nearby recorded signals. 
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Figure 7. Characterization of the signal redundancy across electrodes performed on the Epi 

dataset. (a–c) Mean correlation maps of signals in the beta (15-30 Hz, panel (a)), low-

gamma (30-60 Hz, panel (b)), and high-gamma (70-150 Hz, panel (c)) frequency bands 

obtained averaging across trials. Each square of the plot represents the correlation 

coefficients computed for the electrode in that position against all others. (d) Correlation 

profiles (mean ± SE) obtained averaging the correlation coefficients of electrodes sharing 

the same distance for all the tested frequency bands (light blue for beta, grey for low-

gamma, and dark blue for high-gamma). 
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2.5.2 Prediction of speech onset 

We next performed a time-frequency analysis of the recorded signals. Figure 

8(a,b) shows the average across trials of the high-gamma spectrograms, aligned 

to the speech onset event. Results were computed from signals recorded from the 

Epi and MuSA probes implanted in the same patient (Subject 1). Panels A and B 

show a clear, time- localized increase in power few hundreds of milliseconds 

before the speech onset event in a subset of neighbouring electrodes (channels 

enclosed in the rectangular frame). Interestingly, the spatial locations of electrodes 

in the Epi and MuSA arrays exhibiting such anticipatory activity were overlapping 

(Figure 8(c)). The increase in power observed in the low-gamma and beta bands 

was not as equally precise in both time and space (Figure 9). 

In this context, time-frequency and correlation analysis have been used to inform 

the feature selection process. Indeed, spectrograms were used to visualize the 

time alignment of the band-power increase, while the correlation maps provided a 

quantitative estimate of the spatial confinement of the signals in the different 

frequency bands. Results in Figures 7– 8 show that the high-gamma modulations 

were the only ones temporally confined prior to the speech onset and with high 

spatial specificity. Consequently, we sought to investigate whether such increase 

in power was a reliable predictor of speech onset on a trial-by-trial basis. To this 

end, we trained a support vector machine (SVM) to classify a given time bin as 

belonging to a “preparation” or “non-preparation” interval based on the spectral 

features of the signals. Model’s hyperparameters were set by a leave-one-out 

approach and the classifier’s performance was assessed by means of an F-score 

index (see Figures 10-11, and Sec. 2.5 for further details). To provide a 

quantitative comparison for our model’s performance, we used a shuffling 

procedure to computationally estimate the chance level F-score (henceforth 

empirical chance level). The spatial distribution of the F-scores obtained when we 

trained and tested our classifier on the Epi dataset (Figure 10(a)-left). Consistently 

with the results of Figure 8(a), channels exhibiting a clear anticipatory increase in 

power in the high-gamma band also yielded classification performance 

significantly higher than the empirical chance level. This means that spectral 

features in the high-gamma band can reliably predict speech onset on a trial-by-
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trial basis as further demonstrated by the temporal prediction profile shown in 

Figure 10(b). Here, the voice is aligned to segments detected as preparation by 

the best-channel classifier (in light green), as well as the ground-truth (in red). 

 

 

 

Figure 8. Mean spectrogram maps for the Epi (a) and the MuSA (b) arrays. Data are 

filtered in the high- gamma band (70–150 Hz) and averaged over trials. (c) Relative 

orientation on the cortex of the MuSA (light brown) and the Epi (red) devices. Blue 

rectangles refer to the electrodes highlighted on the spectrogram’s plots (dashed line, Epi 

array; solid line, MuSA array). 
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Figure 9. Mean spectrogram maps of the Epi array in the beta (15-30 Hz, panel (a)) and 

low-gamma (30-60 Hz, panel (b)) frequency bands. Data are averaged over trials aligned 

to the speech onset (vertical red line). 
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Neuronal responses can be recorded with a variety of probes and in different 

subjects. Are the identified spectral features robust with respect to these factors? 

We investigated this issue by means of a cross-training approach in which we 

trained and tested our model on all pairwise combinations of datasets, 

respectively. Figure 10(c) shows the results obtained when our classifier was 

tested on the Epi dataset and trained on the EpiBig (left panel) and Musa (right 

panel) datasets (see Figure 11 for all other combinations). Comparison of Figures 

10(a) and 10(c) shows that, irrespective of the training dataset, our model yielded 

higher than the empirical chance level classification performance on electrodes at 

the same locations of the Epi probe (see Figures10(a,c). This result is 

particularly notable as the EpiBig and MuSA datasets used for training were 

recorded from two subjects and with two different types of probes. Taken together, 

the results of Figure 10 show that activity in the high-gamma band is a reliable 

marker of speech onset that is robust across subjects and recording devices. 
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Figure 10. Prediction of speech onset. (a) On the left, the mean of 10 run F-score maps, 

obtained with the optimal window length tested for high-gamma MPP features of the Epi 

dataset (subject 1, naming task). On the right, the mean F-score of the best channel (red 

bar) with its standard deviation, is compared to the empirical chance level (grey bar). The 

non-random model resulted significantly higher (two sided t-test, P < 0.0001) than the 

random one. (b) Predicted (light green bars) and ground-truth (red segments) speech 

preparation profiles are shown aligned with the voice of the subject (black signal). The 

reported predicted preparation intervals belong to the best channel of the Epi dataset. (c) 

The mean F-score maps, for the Epi dataset (subject 1, naming task), obtained from the 

cross-dataset model testing; from left to right respectively the model were trained on the 

EpiBig (subject 2, phoneme task) and MuSA (Subject 1, naming task) datasets. For the 

best channel, numeric values indicating the average F-score and the corresponding 

empirical chance level (italic) are reported. Interestingly, the device area where the 

models achieved the highest performances overlapped with the one resulting from with-

dataset validation, highlighting the robustness of the neural correlates decoded by the 

different models. 
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Figure 11. (a) Average F-score maps obtained during cross-dataset model testing of each 

pairwise combination. Each training was performed considering for each dataset the best 

channel (cho) and window (wo) obtained during the hyperparameters optimization. 

Empirical chance level of the best channel is reported in italic. (b) Average F-scores of the 

best channels compared to the empirical chance level (gray bars). All the within-dataset 

models were significantly better than the ran- domized ones (diagonal terms, two-sided t-

test, P < 0.001). All cross-dataset tests show significantly higher performances than the 
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randomization test (off-diagonal terms, two-sided t-test, P < 0.001). Data are reported as 

mean ±  SD. 

2.6 Discussion 

In this study, we used dense µECoG arrays to record the epicortical signals from 

awake patients undergoing brain surgery. We first investigated the spatiotemporal 

specificity of the neural activity during speech production. Results in Figure 7 

show that, with an electrode pitch of 600 µm, the correlation between neighbouring 

electrodes is greater than 0.8 in all investigated frequency bands. We next used 

a machine-learning based approach to show that high-gamma frequency signals 

(70-150 Hz) recorded from the speech arrest area are a reliable predictor of 

speech onset. These results are important in view of transitioning from offline to 

online speech brain computer interfaces (BCIs). A previous study reported the 

correlation profiles in epicortical recordings between electrode pairs with a pitch 

of 4  mm. The correlation trends showed increases with decreasing distance and 

that, at the minimum investigated electrode pitch, signals in the low-gamma and 

high-gamma bands are still largely uncorrelated, although differences and 

similarities might be affected by local anatomy, electrodes impedance, as well as 

the physical properties of the measured electric field (Muller et al., 2016). These 

results suggested that arrays with electrode pitch smaller than 4 mm were 

promising solutions for increasing signal resolution at high frequencies. While 

valuable, this study provided how- ever no lower bound for the electrode pitch. 

 Here, we leveraged recent advances in array design (Vomero et al., 2020; 

Rembado et al., 2016; Castagnola et al., 2013; Castagnola et al., 2014)  to 

experimentally assess, for the first time, the redundancy between the activities of 

submillimeter spaced electrodes in the beta, low-gamma, and high-gamma 

frequency bands. Results in Figure 7 show that at a pitch distance of 600 µm the 

correlation coefficient between neighbouring electrodes is greater than 0.8 in all 

investigated frequency bands. This result is of fundamental relevance for the 

design of future probes. Indeed, it suggests that this distance should be 

considered a lower bound for the pitch between electrodes as more densely 
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spaced electrodes would accrue low additional information at the cost, how- ever, 

of higher design, manufacturing and computational costs. In addition to being 

spatially confined, high-gamma neural modulations in Broca’s area are known to 

be specifically elicited by language production(Ferpozzi et al., 2018; Pei et al., 

2011).  

Results in Figure 8 show that these modulations have a clear anticipatory 

nature, as they consistently increase few hundreds of milliseconds before speech 

onset. To deploy an effective online speech BCI, the detection of the speech 

onset is of crucial importance. Indeed, without such knowledge, an online 

speech BCI would constantly attempt to convert neuronal activations into words, 

even during periods of silence, with consequently higher error rates than in a 

controlled task that would render the BCI practically useless. A reliable detector of 

speech preparation would allow instead to trigger the decoding procedure in 

advance, and only when neuronal signals are effectively related to speech 

encoding, and bypassing the auditory feedback.(Kanas et al., 2014, 2014; Dash et 

al., 2020) Indeed, our findings provide neuronal markers that are predictive of 

speech onset, and highly correlated with speech preparation processes, thus 

present irrespective of the actual emission of speech. This predictive biomarker 

could play a key role in view of a real-time sBCI since it would allow to trigger the 

decoding process. Recent studies confirmed that speech can be offline 

synthesized starting from ECoG signals(Anumanchipalli, Chartier & Chang, 2019; 

Angrick et al. 2019) but the deployment of analogous online models in clinical 

application has not been achieved yet. 

Here, aiming to support the transition from offline to online speech BCIs, we 

trained a support- vector machine classifier to recognize speech-related motor 

preparation on a per-channel basis. The performances obtained during validation 

confirmed that the high-gamma activity was indeed well-suited (Figures 10 and11). 

More importantly, especially for translational applications, the spatial maps of the 

averaged F-scores were highly consistent when the classifier was tested on data 

recorded from different patients with different devices, executing different 

experimental tasks (Figures 10 and11). Indeed, the best-performing channels 

obtained during cross- dataset model testing were spatially coherent with those 

found during the within-dataset validation. This result demonstrates that the model 
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was able to generalize both across different probes and patients. This is of critical 

relevance if we imagine that in real-life settings, patients would be using a 

chronically implanted BCI when they already have lost speech production abilities 

(i.e. no labeled training data would be available(Martin et al., 2018)).  

In this study, we aimed to demonstrate the feasibility of speech onset detection in 

a clinical con- text. That is in a condition where few trials are typically available, 

preventing thus the use of complex models. Nevertheless, improvement and better 

tuning of the decoding algorithms are crucial points that should be continuously 

pursued. While significantly higher-than-chance performances have been already 

obtained with our per-channel paradigm, in the future it would be worth exploring 

the possibility of pooling single channel classifiers by means of “mixture of 

experts” approach. Indeed, although our correlation analysis indicates that most of 

the information is shared between neighbouring channels (correlation coefficient is 

higher than 0.8 for the high-gamma band), a multi-channel paradigm could 

significantly improve the decoding performances. Future studies will also have to 

include more subjects and optimize the algorithm selection, potentially exploring 

more powerful machine learning approaches(Ahmadlou & Adeli, 2010; Rafiei & 

Adeli, 2017; Pereira et al., 2020; Rokibul Alam, Siddique & Adeli, 2020; 

Hirschauer, Adeli & Buford, 2015) and methods which are able to better deal with 

imbalanced datasets(Manohar, 2021).  

2.7 Conclusion 

To the best of our knowledge, this study is the first one using acutely implanted 

µECoG grids to investigate speech onset in Broca’s area. 

Some methodological advancements allowed us to find two novel and, in our view, 

important results. First, electrodes separated by shorter distances than 600 µm 

would likely provide, at least when data is  analysed in the frequency domain, a lot 

of redundant information so as not to justify their design and manufacturing costs. 

To establish whether 600 µm represents a lower bound for the electrode pitch or 

whether a multi-electrode approach would lead to better results, further 
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investigations are necessary. Second, high-gamma oscillations represent a 

reliable signature of speech onset that is robust across both recording devices and 

subjects. These results provide critical information for the design of future real-time 

speech BCI that are suitable for chronic long-term implant. 
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3 Research Project: 

Speech Perception 

3.1 Personal contribution  

The text and figures in the following paragraphs represent a draft of a 

scientific article that will be submitted shortly, of which I will be the only first 

author. The data recording was conducted by myself together with Dr. Elisa 

Dolfini and Alice Tomassini Ph.D. I implemented the experiment, performed all the 

analyses and wrote the correspondent Matlab and Python software. My colleague 

Alice Tomassini Ph.D. helped and guided me through the analyses with her 

precious and deep knowledge about EEG analysis.  

3.2 Abstract 

Speech processing entails a complex interplay between bottom-up entrainment to 

the quasi-rhythmic properties of speech acoustics and top-down modulations 

guiding attention in time and aiding selection of the most relevant input subspaces. 

Top-down signals are believed to originate primarily from motor regions, yet similar 

activities have been shown to tune attentional cycles also for simpler, non-speech 

stimuli. Here we examined whether neural signals encode detailed articulatory 

information, pointing to the involvement of a domain-specific mechanism during 

speech listening. We measured electroencephalographic (EEG) data while 

participants listened to sentences for which articulatory kinematics of the lips, jaws 

and tongue were also available (via Electro-Magnetic Articulography, EMA). We 

captured the patterns of articulatory coordination through Principal Component 

Analysis (PCA) and used Partial Information Decomposition (PID) to identify 
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whether the speech envelope and each of the kinematic components provided 

unique, synergistic and/or redundant information regarding the EEG signals. 

Interestingly, tongue movements contain both unique as well as synergistic 

information with the envelope, that are encoded in brain signals. This demonstrates 

that during speech listening the brain retrieves highly specific and uniquely motor 

information that is never accessible through vision, thus leveraging on audio-motor 

maps arising from the acquisition of speech production during development. 

3.3 Introduction  

Verbal interaction is an essential part of human behavior and our brains are tuned 

to decode speech. Neural oscillations in the delta and theta range play a key role in 

shaping speech perception (Giraud & Poeppel, 2012; Meyer, 2018). Indeed, 

coupling of brain oscillatory activity to the quasi-rhythmic properties of speech, or 

speech neural entrainment (Obleser & Kayser, 2019), positively scales with speech 

intelligibility (Ghitza, 2012; Peelle et. al., 2013; Ding & Simon 2014; Kayser et al., 

2015; Riecke et al., 2018) and is tightly related to speech comprehension 

performance (Ahissar et al., 2001; Luo & Poeppel, 2007; Peelle et. al., 2013; Gross 

et al., 2013; Ding & Simon, 2014). Importantly, brain stimulation producing 

entrainment of oscillatory activity causally modulates speech comprehension 

performance (Zoefel et al., 2018; Riecke et al., 2018; Kösem et al., 2020). 

Brain entrainment to speech in the delta and theta band most likely increases 

comprehension via a facilitation of task-relevant information (Obleser & Kayser, 

2019). The cocktail party effect (Cherry, 1953; Ding & Simon, 2012) is a perfect 

example in this respect, showing that selective attention translates into increased 

neural entrainment to the attended acoustic stream (Golumbic et al., 2012; Kerlin 

et al., 2010; Golumbic et al., 2013a; O’Sullivan et al., 2015; Vander Ghinst et al., 

2016). Furthermore, if other speech-related cues are available, neural activity can 

also entrain to these signals. For instance, when acoustic intelligibility is 

compromised, oscillatory occipital activity couples to the periodicity of lips or face 

movements (Giordano et al., 2017; O’Sullivan et al., 2021; Park et al., 2016; Peelle 

& Sommers, 2015; Giordano et al., 2017). Unsurprisingly, speech comprehension 
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mostly benefits from visual cues in suboptimal listening conditions (Sumby & 

Pollack, 1954; Schroeder et al., 2008; Golumbic et al., 2013b).  

Neural entrainment to speech thus reflects top-down influences (Kösem et al., 

2018; Di Liberto et al., 2018; Cope et al., 2017) which are driven by prior 

knowledge and/or context to predict the temporal structure of the stimuli 

(Calderone et al., 2014; Poeppel, 2003; Keitel, Gross & Kayser, 2018; Poeppel  & 

Assaneo, 2020). One source of top-down modulations originates from the frontal 

lobe, specifically oscillatory activity in the left inferior frontal cortex (between 1 and 

3 Hz) and motor cortex (between 4 and 8 Hz) modulates the phase of low-

frequency activity in auditory areas (Park et al., 2015). This modulation may reflect 

a domain-general mechanism extending beyond speech processing with the motor 

system orchestrating sensory processing in time (Morillon & Baillet, 2017). 

Whether the motor system provides domain-general temporal predictions or richer 

domain-specific information about articulatory features, is however still unclear. 

Indeed, top-down motor influences may exploit action circuits to implement an 

internal ‘simulation’ of movements (Morillon et al., 2019; Arnal & Giraud 2012; 

Schubotz 2007). 

To investigate this fundamental question, we designed an EEG experiment where 

participants listened to auditorily presented sentences. The sentences were 

obtained from a publicly available dataset (Canevari, Badino, & Fadiga, 2015) in 

which acoustic data is synchronized with articulatory data recorded via 

electromagnetic articulography (EMA). EMA uses miniaturized sensor coils placed 

on articulators (lips, jaws, tongue) to measure accurate position data with a high 

sampling frequency during speech production. Of key relevance to the current 

research question is that the EMA provides the accurate description of speech 

articulators that is essential to uncover whether motor information contribute to the 

representation of speech in the listener’s brain. To this end, we used the Partial 

Information Decomposition (PID) method (Williams & Beer 2010; Ince, 2017), that 

is designed to separate unique, redundant (shared), or synergistic 

(complementary) information provided by two source signals (here speech 

envelope and kinematic data) about a third target signal (here brain activity). We 

thus tested whether articulatory kinematics is encoded during listening and 

conveys information about speech that cannot be obtained from the speech 
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envelope alone, i.e. unique neural information about kinematics or synergistic 

neural representation of speech envelope and kinematics (a better prediction of the 

neural response from both modalities simultaneously). Our hypothesis was that, if 

speech neural entrainment entails also a domain-specific motor process, 

entrainment to speech kinematics will be observed. 

3.4 Methods 

3.4.1 Partecipants 

A total of 23 healthy naive volunteers were recruited for this study and were paid 

30€ for their participation. All participants were native speakers of Italian, right-

handed (by self-report) and had a normal or corrected-to-normal vision. One 

participant was excluded because of technical problems during data acquisition. 

Analysis was performed on data from the remaining 22 participants (9 males and 

13 females). Participants were informed about the experimental procedure and 

gave their written consent before participation. The experiment was approved by 

the local ethical committee “Comitato Etico Unico della Provincia di Ferrara” 

(approval N. 170592). 

3.4.2 Stimuli 

The stimuli were selected from the Multi-SPeaKing-style Articulatory corpus 

(MSPKA; Canevari, Badino, & Fadiga, 2015) which comprises simultaneous 

recordings of audio and articulatory (lips, jaws and tongue) data of three mother-

tongue speakers pronouncing sentences in Italian. Audio was recorded at a 

sampling rate of 22.05 kHz. Articulators were tracked at a sampling frequency of 

400 Hz by means of an electromagnetic articulography system (EMA; NDI Wave, 

Northern Digital Instruments, Canada; Berry, 2011). In the present study, we used 

data corresponding to x, y, and z positions of 7 sensor coils glued on the upper lip 

(UL), lower lip (LL), upper jaw (UJ), lower jaw (LJ), tongue tip (TT), tongue middle 
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(TM) and tongue back (TB) (see Figure 12(a) for a schematic illustration). The 

EMA data provides a very accurate characterization of mouth kinematics and it is 

commonly used in speech technology research (Savariaux et al., 2017).  

For this study, we used 50 sentences (duration ranging from 6.2 to 9.4 s) 

pronounced by the same female speaker (referred to as “lls” within the dataset). 

The acoustic stimuli were manually checked and processed to remove any silent 

and/or noisy part at the beginning and end of the sentences. All acoustic stimuli 

were then normalized to the same average intensity (71 dB). Data corresponding 

to one sentence (out of 50) were discarded from the analysis because the 

corresponding EMA data turned out to be corrupted. During the experiment, 

participants were provided only with the acoustic stimuli. The corresponding EMA 

data were only used for data analysis (see below). 

3.4.3 Experimental setup and procedure 

Participants sat at a ~80-cm distance in front of an LCD monitor (VIEWPixx/EEG; 

24", 120 Hz) with their right hand resting on a button-box (Cedrus RB-840 

response Box). On each trial, participants were presented with a black fixation 

cross at the center of a uniformly gray screen; after a variable time (ranging 

between 0.1 and 1.1 s), a randomly selected sentence was presented acoustically 

via two loudspeakers placed at ~20 cm from both sides of the screen. The fixation 

cross was removed after a variable time (between 0.1 and 1.1 s) from the end of 

the acoustic stimulus, and one word appeared at the center of the screen. The 

presented word rhymed 50% of the times with one of the words contained in the 

previously heard sentence (excluding the first and last words in the sentence and 

all monosyllabic words). Participants had to indicate whether the word rhymed or 

not by pressing one of two buttons, located few centimeters apart, using always the 

same finger (the right index). The rhyming task was included to encourage 

participants to listen attentively to the whole sentences. To avoid possible biases in 

the participants’ responses, we ensured that rhyming and non-rhyming words were 

matched for number of syllables and their frequency of use in the Italian language 

by means of an online software tool 

(http://linguistica.sns.it/esploracolfis/home.htm). Different words were presented for 
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each repetition of the same sentence (amounting to 8 words for each sentence, 

200 words in total).  

Every trial ended when participants provided their response in the rhyming task; 

trials were automatically ended if no response was provided within 10 s. 

Participants were asked to reduce blinks as much as possible and maintain their 

eyes on the fixation cross for the whole duration of the sentence.  

The experiment consisted of four separate blocks of 50 trials each (200 trials in 

total), with short in-between breaks. The whole experiment lasted about 2hrs, 

including the EEG cap mounting and preparation. Stimulus presentation and 

button-press acquisition were controlled via Matlab (The Math Works, Inc.; 

https://www.mathworks.com; RRID:SCR_001622) and the PsychToolbox-3 

extensions (http://psychtoolbox.org; RRID:SCR_002881). All relevant events in the 

trial (e.g., trial start, stimulus onset, button press) were converted in a TTL by the 

VIEWPixx/EEG system to accurately synchronize them with the EEG data. 

3.4.4 EEG recording and analyses 

EEG data were recorded continuously during the experiment with a 64-channel 

active electrode system (BrainAmp MR Plus, Brain Products GmbH, Gilching, 

Germany). Electrooculograms (EOGs) were recorded using 4 electrodes from the 

cap (FT9, FT10, PO9, and PO10) that were removed from their original scalp sites 

and placed at the bilateral outer canthi and below and above the right eye to record 

horizontal and vertical eye movements, respectively. All electrodes were online 

referenced to the left mastoid. The impedance of the electrodes was kept below 10 

k. EEG signals were acquired at 1000 Hz. 

Analyses were performed within the Matlab and Python computing environments, 

using open-source toolboxes and libraries such as Fieldtrip 

(http://www.fieldtriptoolbox.org; RRID:SCR_004849) (Oostenveld et al., 2011), 

MNE (Gramfort et al., 2013) and PID library (https://github.com/robince/partial-info-

decomp) as well as custom-made code. Analyses were performed only on trials in 

which participants gave correct responses in the rhyming task (76.3±7.5%; 

MEAN±SD). 

https://github.com/robince/partial-info-decomp
https://github.com/robince/partial-info-decomp
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3.4.5 Speech Envelope Extraction 

The amplitude envelope of the acoustic speech signals was calculated by adapting 

a previously described method (Smith et. al., 2002, Park et al., 2018). As in the 

Chimera toolbox (Smith et al., 2002), we defined 6 frequency bands in the range 

80-8820 Hz that are equally spaced on the cochlear map. The speech signal was 

first filtered within those six frequency bands (MNE filter_data function, two-pass 

Butterworth filter, 4th order). Then, we computed the absolute value of the Hilbert 

transform for each bandpass-filtered signal. Finally, the speech envelope was 

obtained by summing up the result across all the frequency bands. The envelope 

was down sampled to 400 Hz to match the sampling frequency of the EMA data. 

3.4.6 Kinematic features extraction 

To capture meaningful speech coordination patterns in the high-dimensional EMA 

data (i.e., 7 sensors X 3 dimensions = 21 time series of position data) we used a 

dimensionality reduction technique. We applied Principal Component Analysis 

(PCA) as implemented in the Fieldtrip Toolbox (function: ft_componentanalysis; 

method: pca). PCA outputs feature activations over time (principal components 

[PCs], see Figure 13(a)) that explain part of the variance in the EMA 

measurements and are orthogonal to each other. Furthermore, PCA provides 

information about the relative contribution of each kinematic feature (PC weights, 

see Figure 12(c)) to the reconstruction of the EMA recordings in single trials. By 

visually inspecting (the absolute values of) the PC weights it is thus possible to 

assess the physiological validity of the articulatory coordination pattern identified by 

each PC.  

3.4.7 EEG pre-processing 

The continuous EEG data were band-pass filtered between 0.5 and 100 Hz (two-

pass Butterworth filter, 4th order), and down-sampled to 400 Hz to match the 

sampling frequency of the EMA data. Data were then re-referenced to the common 
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average and time-aligned to the acoustic stimulus onset (from -1 s to the duration 

of the longest sentence plus one second). Data were visually inspected, and noisy 

trials were removed. Independent component analysis (ICA) was then applied to 

identify and remove artifacts related to eye movements and heartbeat. Noisy 

channels (T8 for one subject) were excluded from the ICA analysis and substituted 

by linear interpolation of neighboring channels (after ICA-based artifact rejection). 

The total amount of trials retained for further analysis was 142 ± 21.7 (MEAN±SD). 

3.4.8 Neural coupling to speech envelope and kinematic features 

To quantify neural coupling to speech production, we used mutual information (MI), 

a measure of statistical dependence that captures any type of relationship (even 

non-linear and non-monotonic) between two signals (Shannon, 1948). Our aim 

here was to uncover the neural representations of the different kinematic 

components in the brain of the listener and quantify the contribution of these 

representations to the neural encoding of speech. To this end, we computed the MI 

between each recorded EEG signal and a) the speech envelope I(EEG;SE) and b) 

each one of the i=1,…,4 extracted PCs (kinematic components) I(EEG;PCi). 

Before computing MI, we first removed 1.5 s after sound onset for each trial to 

exclude stimulus-locked evoked potentials and then shifted the EEG signals 

forward in time by 0.2 s relative to the SE and PCs; The time-shifting was based on 

the assumption that stimulus encoding necessarily follows stimulus presentation. 

An extensive literature has indeed consistently showed that speech-brain coupling 

(entrainment) is maximal at about 0.2-s lag (i.e., for brain activities following 

auditory/visual speech by 0.2s; Keitel et al., 2017). More specifically, we cut the SE 

and PCs signals from +1.5 s relative to stimulus onset up to stimulus offset 

(variable length depending on stimulus duration) and the EEG signals from +1.7 s 

relative to stimulus onset up to +0.2 s after stimulus offset. Finally, all signals 

(EEG, SE, PCs) were padded (mirror padding) and then band-pass filtered 

between 0.5 and 10 Hz (two pass Butterworth, 2nd order). This relatively broad 

frequency range was set based on prior inspection of the power spectra of both the 

acoustic (SE) and kinematic (PCs) signals, as it encompasses virtually all of their 

spectral content (see Figure 14 and Figure 13(b)). The choice of the high cut-off 
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frequency (10 Hz) is also consistent with evidence that coupling between brain 

activities and speech envelope is mostly confined to frequencies below the alpha 

range (Bröhl & Kayser, 2021). MI was then calculated using a recent 

implementation of the Gaussian Copula Mutual Information method which provides 

a lower bound of the actual MI and is robust to high-dimensional signals (Ince et 

al., 2017). 

3.4.9 Partial Information Decomposition (PID) 

We then focused on a) the contribution of each kinematic component and b) the 

interactions between speech and kinematic components to the neural encoding of 

speech. We thus employed Partial Information Decomposition (PID), a recent 

multivariate mathematical framework, originally proposed in Williams and Beer 

(2010), to quantify and characterize representational interactions in the human 

brain.  

PID decomposes the mutual information between a target variable and a 

multivariate set of predictor variables, called sources (Timme et al. 2014). Indeed, 

if the sources are not statistically independent from the target, they will provide 

non-zero joint mutual information about the target which, in other terms, indexes 

the degree of dependence. PID allows then to disentangle this information, 

parcelling it out into information that is uniquely carried by each of the sources 

(‘unique’), information that is shared by the sources (‘redundant’) and information 

that is accessible only when considering the two sources together ('synergistic’). 

Here, we considered the EEG measurement at each channel as the target signal. 

We run 4 different PIDs, every time including as sources: 1) the speech envelope 

(SE; derived directly from the acoustic stimuli), and 2) one of the 4 kinematic 

features (PC1, 2, 3, 4; obtained from the EMA data through PCA; see above). The 

decomposition yielded 4 outcome terms: 

• USE (EEG; SE): The unique information that the speech envelope carries about 

the EEG signal and cannot be obtained from the kinematic PCi. 
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• UPCi (EEG; PCi): The unique information that the kinematic PCi carries about the 

EEG signal and cannot be obtained from the speech envelope. 

• SYNi (EEG; SE, PCi): The information that the joint observation of the two 

predictors {SE; PCi} provides about the EEG signal that cannot be obtained by 

observing each predictor separately.  

• REDi (EEG; SE, PCi): The information about EEG that is shared by the two 

sources, SE and PCi, thus reflecting a common neural representation of speech 

and kinematic component. 

If the interaction between SE and PCi is redundant (REDi), the information (about 

the EEG) that is carried by PCi can be obtained also from SE and vice versa. In 

other words, there will be no information loss if either the SE or the PCi is not 

available. In contrast, if the interaction is synergistic (SYNi), neural information is 

encoded by the relationship between SE and PCi. In other words, we would obtain 

a better estimate of the EEG signal by considering SE and PCi together rather than 

independently. Finally, unique information (U) is carried by only one of the two 

predictors. For example, a significant UPCi would suggest that the corresponding 

brain response can only be predicted by that specific kinematic signal (PCi) and 

not by the speech envelope. 

PID was performed using a recent modification of the original algorithms which is 

based on common change in surprisal (Ince, 2017). In a first PID analysis, all the 

signals were pre-processed in the same way as described above for MI (i.e., 

epoching, relative time-shifting of EEG data), including band-pass filtering between 

0.5 and 10 Hz. After these preprocessing steps, signals for all trials were 

concatenated and copula normalized (Ince et al., 2017). 

To further evaluate whether the acoustic and kinematic features carry information 

at different spectral ranges, we also performed a frequency-resolved PID analysis. 

To this end, all signals were band-pass filtered by applying a sliding window along 

the frequency axis in the range between 0.5 and 10 Hz in steps of 0.5 Hz and with 

a frequency window length of 1 Hz. A separate PID was then applied for each 

band-pass filtered set of signals.  
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3.4.10 Statistical analysis 

The output values obtained both in the MI and PID analysis were statistically 

evaluated against surrogate data. The original relationship between the two 

signals (for the MI) or between the target (the EEG activity) and the sources (the 

SE and the PCi) (for the PID) was destroyed without affecting the statistical 

properties of each signal, including its autocorrelation structure (Montemurro et al. 

2007). More specifically, the EEG activity at each electrode and for each trial 

(epoched and bandpass filtered as for the original analysis) was circularly shifted 

by a number of samples that was randomly selected between N/4 and N-N/4, 

where N represent the number of samples of the shortest trial (i.e., 1892 samples). 

The time-shifted data were then submitted to the same processing steps as 

described above for the original data (i.e., trial concatenation, copula 

normalization) before applying the MI/PID algorithms. As for the original analysis 

(see above), MI was computed between the EEG and each SE/PC feature 

(I(EEG;SE) and I(EEG;PCi) with i=1,…,4). The same applies for the PID analysis 

whereby 4 separate PIDs were run by including as sources the SE and one of the 

4 kinematic PCs. This procedure was iterated 1000 times yielding a surrogate 

distribution for each participant and each information component (ISE, IPCi; USE, 

UPCi, SYNSE-PCi, REDSE-PCi). We performed group-level statistics by applying one-

tail paired-samples t-tests on the original information values (at each electrode) 

against the mean of the surrogate distribution. We corrected for multiple 

comparisons across electrodes by controlling the False Discovery Rate (FDR; as 

described in Benjamini & Yekutieli, 2001). PID results were also statistically 

evaluated at the single-subject level by computing (separately for each subject and 

each electrode) the probability that the original information values exceeded the 

95% of the surrogate distribution. Again, resulting p-values were corrected for 

multiple comparisons across electrodes with FDR.   
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3.5 Results 

Neural entrainment to the speech envelope (Meyer, 2018; Giraud & Poeppel 2012; 

Keitel, Gross, & Kayser, 2018) – as well as the lips motion (Park et al., 2016; 

Giordano et al. 2017; Ozker, Yoshor & Beauchamp, 2018) – are very well-

documented phenomena. However, only a fraction of speech articulation is 

available to vision while most speech-relevant information is in principle contained 

in hidden articulators (e.g. tongue movement). We here set out to investigate 

whether articulatory kinematics that is not directly available to the listener still 

conveys information about the produced speech that goes above and beyond that 

contained in the speech envelope. We recorded the electroencephalographic 

(EEG) brain-wide activity while native-language participants were listening to 

acoustic speech stimuli taken from the Multi-SPeaKing-style Articulatory corpus 

(MSPKA; Canevari, Badino, & Fadiga, 2015). This corpus contains simultaneous 

recordings of audio and kinematic data of the articulatory tract (measured via 

electromagnetic articulography; see methods) while speakers were pronouncing 

Italian sentences. The dimensionality of the articulatory data was reduced by 

means of PCA and the first 4 PCs accounting for most of the variance were 

selected for further analyses to examine the relationship between the kinematics 

associated to speech production (in the speaker) and the listener’s ongoing brain 

activity. 

3.5.1 Kinematic principal components 

The first 4 components derived from PCA explained most of the total variance of 

the kinematic data (85%; Figure 12(b) ). Inspection of the PC weights indicates that 

the first 2 components (PC1 and PC2) represented almost entirely movements of 

the tongue on the antero-posterior (x-) and vertical (z-) axis, respectively (Figure 

12(c) ). Two of the movements that contribute significantly to articulation (Perrier et 

al., 2007), such as that of the tongue towards (and away from) the lips (PC1) or the 

palate (PC2), were thus automatically identified by PCA. Lower lip and jaw (again 

along the antero-posterior as well as vertical axes) as well as the tongue mainly 
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contributed to PC3 which, despite explaining a smaller amount of variance (10%) 

compared to the tongue movements (PC1: 52%; PC2: 17%), appeared to capture 

another meaningful articulatory component, reflecting most likely mouth 

opening/closing, lip protrusion and lip-tongue coordination. Finally, a more 

composite mixture of articulators moving along multiple directions contribute to 

PC4 (6%), possibly reflecting complex tongue-lip movement synergies. The 

remaining components explained negligible amounts of variance (<5% each) and 

their articulatory interpretation was less straightforward; these components were 

thus excluded from further analysis. 
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Figure 12. Kinematic principal components. A. Schematic of the positions of the 

electromagnetic sensors: upper lip (UL), lower lip (LL), upper jaw (UJ), lower jaw (LJ), 

tongue tip (TT), tongue middle (TM), tongue back (TB). B. Cumulative variance (%) of 

kinematic data that is explained by the first four principal components (PC1, 2, 3, 4). C. 

Bar plots represent the weights (absolute values) of each kinematic variable (x-, y- and z-

axis for each sensor) for the PC1, 2, 3, 4. Dot size in the three vocal tract schematics 
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show the relative contribution of each sensor across the movement axis (x, y and z 

respectively in red, blue and green). 

 

Examples of the reconstructed time series for the 4 retained kinematic components 

along with the corresponding speech envelope are shown in Figure 13(a). Analysis 

of their spectral content reveals that all the kinematic components show spectral 

concentration over a low frequency range between 1 and 4 Hz (delta band); the 

speech envelope instead, in line with previous evidence (Bröhl & Kayser 2021; 

Doellin et al., 2014; Gross et al., 2013; Luo & Poeppel, 2007; Peelle & Davis, 2012; 

Bosker & Ghitza 2018), is marked by relatively higher frequencies, with a broad 

spectral peak between 4 and 8 Hz (theta band). 
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Figure 13. Acoustic and kinematic stimulus features. A. Example time series of the raw 

speech signal (blue), its envelope (black) and the kinematic PCs corresponding to the 

same stimulus. B. Normalized power spectra for all features (envelope, PC1, PC2, PC3 

and PC4). 
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3.5.2 Neural entrainment to speech envelope and tongue kinematics 

Firstly, we evaluated whether the brain encodes the information contained in the 

speech envelope as well as in the hidden speech kinematics by computing the 

mutual information (MI; Shannon, 1948, Ince et al., 2017) between the respective 

signal pairs (i.e., I(EEG;SE); I(EEG;PCi) with i=1,…,4). As expected, MI for the 

speech envelope was significant and maximal in two distinct foci, one overlaying 

the central electrodes and the other distributed more laterally over the right 

temporo-parietal electrodes (see Figure 14; paired-samples one-tail t-tests against 

surrogate data with FDR-correction for multiple comparisons across channels; see 

Methods for details). Such a topography is indeed very similar to what reported in 

previous works when quantifying neural speech entrainment with linear (Molinaro & 

Lizarazu 2018; Boucher, Gilbert & Jemel 2019) as well as non-linear (Kayser et al., 

2015) coupling metrics. Remarkably, we found significant MI also for one of the 

analyzed kinematic features, i.e., PC1, which mainly relates to the antero-posterior 

movement of the tongue (see Figure 14 and Figure 12(c) ). MI for PC1 largely 

increases over central electrodes – similar to what obtained for the speech 

envelope – but also symmetrically over right- and left-sided temporo-parietal 

electrodes (see Figure 14).  
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Figure 14. MI results. Topographical distribution of across-subjects average information 

values computed via Gaussian Copula Mutual Information performed on the broad-band 

filtered data (0.5-10Hz). Black dots highlight significant channels (after FDR-correction for 

multiple comparisons). 
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3.5.3 Partial Information Decomposition 

The speech envelope and the tongue movements (PC1) could, however, provide 

(brain-relevant) information that is either exclusive to each feature, fundamentally 

shared, or complementary between the two features. To disentangle among these 

different possibilities, we employed a computational approach known as Partial 

Information Decomposition (PID) (Williams & Beer, 2010) that decomposes the 

total information which the sources – here the speech envelope (SE) and the 

kinematic features (PCi) – carry about the target – here the EEG activity – into four 

distinct terms that we denote as follows: 1) USE, the Unique information provided by 

SE; 2) UPCi, the Unique information provided by the kinematic feature (PCi); 3) 

SYNi, the synergistic information which can only be obtained when SE and PCi are 

considered together; 4) REDi, the redundant information which is common to SE 

and PCi. 

Not surprisingly, the speech envelope carries unique information in the 4 different 

PID models (Figure 15, first column; paired-samples one-tail t-tests against 

surrogate data with FDR-correction for multiple comparisons across channels; see 

Methods for details). The topographic distribution of such activity is very similar 

across all PID models and closely resembles that already observed for the MI. 

Most remarkably, passive listening also entails neural encoding of kinematic 

information that is not accounted for by the speech amplitude fluctuations, i.e., the 

SE. Specifically, the PC1 provides unique information (not carried by the SE; UPC1) 

that are consistently represented in the listener’s brain (see Figure 15, first row). 

PC1 not only carries unique informational content but also interacts significantly 

with the acoustic information in a synergistic fashion; in other words, its 

combination with the SE leads to a net increase in information encoded in the 

listener’s brain (SYNSE-PC1; Figure 15, third column). Although far less strongly and 

with a sparser spatial distribution, we also observe significant synergic information 

between the SE and PC3 (mainly representing the coordination between mouth 

opening/closing and tongue motion). Indeed, PID enables to uncover 

representational interactions in the listener's brain that cannot be directly 

observable in pairwise measures of dependence, such as MI here. No redundancy 
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is instead observed between the PC1 (as well as any of the analyzed kinematic 

features) and the acoustic speech envelope, suggesting that the listener’s brain 

mainly exploits them as independent sources of information and/or integrates them 

in a super-additive way. 
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Figure 15. PID results. Topographical distribution of across-subjects average information 

values obtained by PID analyses performed on the broad-band filtered data (0.5-10Hz). 

Black dots highlight significant channels (after FDR-correction for multiple comparisons). 
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Overall, the same pattern of results is observed also when statistical evaluation is 

performed at the single-subject level, with a large proportion of participants 

showing significant USE and UPC1. All PID systems resulted in 14 subjects having at 

least one significant channel for the SE unique information (USE) while PC1 unique 

information (UPC1) was significant in 11 participants (Figure 16).  UPCi was 

significant for 0, 1, 3 subjects for PC2, PC3 and PC4, respectively. Synergistic 

information between SE and PC1 was significant in 14 subjects while far less for 

the other components (8, 4 and 1 subjects for PC2, PC3 and PC4, respectively). A 

non-negligible number of participants also report significant redundant information 

between SE and the first three PCs (8, 7, 6 subjects, respectively), suggesting that 

substantial inter-individual variability in the spatial distribution of these effects may 

have negatively impacted corresponding group-level statistics. Single subjects 

results are summarised in Table 2. 
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Figure 166. Single subject results. Statistical tests run on individual subjects are shown for 

each PID component. White squares indicate subjects where at least one significant 

channel was obtained (after FDR-correction for multiple comparisons). 
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 Unique SE Unique PCi Synergy SE+PCi Redundancy SE+PCi 

PC1 14 11 14 8 

PC2 14 0 8 7 

PC3 14 1 4 6 

PC4 14 3 1 0 

 

Table 2. Single subject results. Statistical tests run on individual subjects are shown for 

each PID component. The amount of subjects showing at least one significant channel is 

reported (after FDR-correction for multiple comparisons). 

3.5.4 The kinematic information encoded in the brain 

The above-reported results indicate that the brain encodes at least a certain 

amount of information carried by articulatory kinematics, in particular that captured 

by the PC1, that cannot be equivalently extracted from the speech envelope. To 

gain insight into whether information conveyed by the kinematic and acoustic 

signals is band-limited and possibly concentrated within distinct frequency ranges, 

we repeated the PID analysis in a frequency-resolved way. Figure 17 shows the 

outcome of PID as a function of frequency for those components of information for 

which we obtained significant results in the previous (broadband) analysis (see 

above). The information that is uniquely carried by the SE is clearly spectrally 

selective with maximal values being observed at ~5-6 Hz, i.e., in the theta band. A 

very similar spectral selectivity characterizes also the information that is conveyed 

by the synergistic interaction between SE and PC1 or PC3. A different spectral 

fingerprint, however, marks the information that is uniquely contained in the 

kinematics (PC1) which is enhanced within a lower frequency range between 1 and 

4 Hz, i.e., in the delta band. 
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Figure 17. Frequency-resolved PID analyses. Results as a function of frequency for the 

significant information obtained on broad-band filtered data (see Figure 15): Unique 

information (Envelope, PC1) and Synergistic information (Envelope-PC1 and Envelope-

PC3). Topographies are shown for the frequency where information is maximal. 
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3.6 Discussion 

Neural entrainment to speech originates from the integration of bottom-up 

processing and top-down projections from higher-order functional nodes in the 

brain to select and isolate particular signals of interest (Rimmele et al., 2018). Top-

down projections, based on context and prior learning, bias bottom-up sensory 

sampling via predictive models operating at multiple levels (e.g. Meyer, 2018; 

Keitel, Gross & Kayser, 2018). For instance, the neural computations run in the 

motor system may provide key top-down signals to isolate segmental or 

suprasegmental cues (Giraud & Poeppel, 2012). In fact, the sensory ambiguity 

characterizing the acoustic stream may partially be solved by unambiguous (or less 

ambiguous) endogenous signals (Meyer, Sun & Martin, 2020) arising from the 

inherent rhythmicity in speech articulation (Poeppel & Assaneo, 2020). Yet, for 

such a claim to be tenable one should be able to find traces of articulatory signals 

in brain activities of speech-listening participants. Most importantly, neural activities 

should encode articulatory information in a way that is not trivially explained by the 

encoding of other tightly coupled speech acoustic features (i.e. mouth opening and 

speech envelope; Chandrasekaran et al., 2009). Here we show that vocal tract 

configurations are encoded in the EEG signal and that they contain information that 

goes above and beyond that carried by the speech envelope. 

This result was obtained through the combination of a series of targeted novel 

approaches. First and foremost, participants listened to a set of acoustic speech 

stimuli for which synchronized articulatory data was available (Canevari, Badino & 

Fadiga, 2015). EMA data is characterized by a spatial and temporal resolution 

(Rebernik et al. 2021) that is not otherwise achievable through other technologies 

for speech kinematic analysis (i.e. Ultrasound or MRI). Moreover, as it is customary 

in the field of motor control (Ting, 2007), we reduced the dimensionality of the data 

(i.e. PCA) to derive a tractable number of signals explaining most of the variance 

(Lambert-Shirzad & Van del Loos, 2017). Yet, this choice has also key theoretical 

implications since data reduction techniques capture physiologically meaningful 

data-driven patterns of coordination across articulators (i.e. vocal tract synergies), 

which have far greater functional relevance than the raw time-varying spatial 
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positions of isolated articulators (Story, 2005; Sorensen et al., 2019). Secondly, we 

used a mathematical framework (Partial Information Decomposition – PID; 

Williams & Beer 2010; Ince 2017) that captures complex nonlinear relations 

between variables and decompose these relations into atoms of information 

between the target (i.e. EEG data) and the sources (i.e. speech envelope and 

speech kinematics principal components). The PID can indeed extract unique, 

synergistic or redundant information contained in the sources (Park et al., 2018; 

Daube et al., 2019; Delis et al., 2022). 

As expected from the abundant literature on neural entrainment to speech, the PID 

analysis highlights that the speech envelope contains unique information encoded 

in the EEG data. The topographical distribution of this effect matches the one 

normally observed with other analytical methods, with the involvements of central 

and right temporo-parietal electrodes (Ding et al., 2017). At the same time, we 

found that the first kinematic principal component, reflecting the antero-posterior 

movement of the tongue, also carries unique information about the neural signals. 

The topography of this effect is confined to central and bilateral temporal 

electrodes. Interestingly, the synergistic interaction between the speech envelope 

and the first or third kinematic components (PC3 describes the coordination 

between lips, jaw and tongue movements) convey additional information about the 

EEG data. In both cases, the topographies show a distribution covering both 

central and right temporo-parietal electrodes. 

Importantly, the PID analyses reported no redundancy between any of the 

kinematic components and speech envelope. This result is further supported by the 

frequency dissociation emerged in the subsequent frequency resolved PID 

analysis. Lower frequencies (from ~0.5 to 4 Hz) appear relevant for kinematics-

specific information (unique information provided by the PC1), in agreement with 

prior evidence that entrainment in the delta-range originates from higher-level 

processes in frontal (Molinaro et al., 2016) and motor cortices in particular (Park et 

al., 2015; Morillon et al., 2019; Biau et al., 2022). Instead, higher frequencies 

(between 4 and 8 Hz) contain unique information carried by the speech envelope 

and, most importantly, by the synergistic interaction between kinematics (PC1 or 

PC3) and speech envelope. Such a delta/theta dissociation is compatible with the 

idea that neural entrainment in the theta-band is associated to the phonetic 
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features that are critical for speech recognition, while the delta range entrainment 

is more closely related to the perceived acoustic rhythm of speech (Ding & Simon, 

2014; Meyer, Sun & Martin, 2020). All in all, our results offer new insight regarding 

the functional origin of the delta/theta dissociation observed in speech neural 

entrainment, especially regarding the contribution provided by domain-specific 

motor processes.  

In fact, the goal of our study was to investigate if speech listening does entail 

neural coupling to highly granular speech kinematic information that is not readily 

available to the participants. In our study, participants listened to auditory speech 

signals and were never – explicitly nor implicitly – exposed to the articulatory side 

of speech production. Recent studies showed that brain signals encode missing 

information such as acoustic features when only silent lip-reading is allowed 

(Hauswald et al., 2018; Bourguignon et al., 2020). In this case, the tight audio-

visual contingencies experienced during early childhood (as well as throughout life; 

Chandrasekaran et al., 2009) offer a solid ground to explain these phenomena 

according to a Bayesian perspective and as the result of multimodal associative 

learning (van Wassenhove, 2013). In our case, kinematic data contain information 

that is not available during the experiment nor visually accessible throughout life 

(i.e. tongue kinematics). It follows that neural coupling to unavailable information 

cannot be explained by the life-long learning of audio-visual associations (i.e. as is 

the case for lip motion). 

Neural coupling to tongue kinematics would still require that (at least part of the) 

articulatory information is retrieved from speech acoustics. Yet, the mapping 

between acoustic speech targets and articulatory configurations is tremendously 

complex (Atal et al., 1978). Known as the “one to many” mapping problem, it forces 

the brain to solve an ill-posed inverse problem. An answer to this conundrum is 

that, during development, the brain approximates a solution for this inverse 

problem - mapping intended acoustic targets back to vocal tract articulatory 

parameters to allow intelligible speech productions (Guenther, 1995; Tourville & 

Guenther, 2011). Indeed, infants explore how sounds are produced by 

experimenting the full range of their vocal tract configurations (Bruderer et al., 

2015; Kuhl et al., 2014). In support of this idea, automatic speech recognition 

models trained with both acoustic and articulatory data achieve better classification 
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performance with far fewer examples than acoustic-only training regimes (King et 

al., 2007; Gosh & Narayanan, 2011). These models recapitulate some key 

properties of speech production development (Canevari et al., 2013; Badino et al., 

2014) and demonstrate that learning auditory-motor mappings grants more 

compact and efficient representations of speech acoustics (Badino et al., 2016). As 

a consequence of learning audio-motor contingencies, speech auditory processing 

should in principle be tuned to capture those cues that allow triggering of 

endogenously guided reconstruction of missing articulatory signals (Meyer, Sun & 

Martin, 2020). To date, however, there was no evidence that speech neural 

entrainment encodes motor signals whose relevance is functionally dependent on 

the acquisition of speech production - and thus reflecting an intrinsically domain 

specific process. 

Yet, the idea of the motor system involved in speech perception is not a new 

concept (Pulvermuller &Fadiga, 2010; Fadiga et al., 2002; Watkins et al., 2003, 

Wilson et al., 2004, Pulvermüller et al., 2006) and transcranial magnetic stimulation 

of the motor cortex has been shown to produce specific (Meister et al., 2007; 

Möttönen et al., 2009; Sato et al., 2009) and somatotopic effects on speech 

discrimination performance (D’Ausilio et al., 2009; Bartoli et al., 2015). A recent 

series of studies proposed a more detailed oscillation-based mechanism through 

which the motor system could impact on speech perception. Assaneo and Poeppel 

(2018) found synchronized brain activity between motor and auditory areas during 

a syllable listening task and successfully modelled the speech motor cortex as an 

oscillator coupled to the auditory system. According to this model, neuronal 

oscillations observed in auditory and motor cortices indeed synchronize in a 

frequency range corresponding to the mean syllable rate across languages (~4.5 

Hz). Endogenous signals from the motor system would phase-reset neuronal 

oscillations in the auditory cortex to align the most excitable states to the 

occurrence of an expected event (Rimmele et al., 2018) with benefits on perceptual 

performance (Assaneo et al., 2021). 

Concerning the functional relevance of entraining auditory cortices to endogenous 

motor rhythms, the most likely explanation is that perception is an inherently noisy 

process that, in order to cope with speech-intrinsic (talker-specific) and speech-

extrinsic (environment-specific) noise (Ru, Chi & Shamma, 2003), integrates and 
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weighs multiple sources of information depending on their reliability (Golumbic et 

al., 2013b; Schroeder et al., 2008). In this regard, when the acoustic signal is 

corrupted the increased importance of visual cues is evident in stronger 

entrainment to lip movements (Giordano et al., 2017; O’Sullivan et al., 2021; Park 

et al., 2016; Peelle & Sommers, 2015; Park et al., 2018). Here, we provide a 

demonstration that neural speech processing can draw inferences based on highly 

granular endogenous domain-specific motor signals whose relevance for 

perception necessarily derives from the acquisition of speech production. 
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4  Research Project: 

Speech Interaction 

4.1 Personal contribution  

The text and figures in the following paragraphs are the summary of my 

work and results on measuring acoustic speech convergence. The project 

is still ongoing because few criticalities have to be addressed. I designed 

the model architecture from scratch and the deep learning paradigm, from 

datasets selection and processing to model training, validation and testing.  

4.2 Introduction 

Measuring acoustic speech convergence is a very complex problem as proved by 

a long history of debates on how to define it. Recently, researchers used machine 

learning (ML) models to estimate convergence (Mukherjee, 2017; Ostrand & 

Chodroff, 2021). If properly selected and trained, indeed, ML models can, in 

theory, learn every kind of relation between variables, predicting very complex 

phenomena.  

The paradigm that we followed to address the problem of measuring acoustic 

convergence consisted in creating an effective speaker verification model. The 

speaker verification is a system that, given two phrases or words is capable to 

discriminate if the two acoustic signals are pronounced by the same speaker or 

not, producing a similarity score between them.  

The similarity score is basically a continuous value ranging between two extrema, 

usually 0 and 1, representing how far the two voices are. Thresholding the 
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similarity allows to obtain a binary label, representing the decision of the model 

about considering or not the two voices belonging to same speaker. 

Nonetheless, the similarity score is a continuous value as mentioned. Hence, the 

idea behind the use of a speaker verification system consisted in using the output 

of the model to track the variation of similarity between the speakers’ acoustic 

signatures.  

In principle, the distance between the voices of two specific subjects that have 

never interacted could be hypothesized to be fixed under steady conditions. In 

contrast, after (or during) a verbal interaction, the acoustic features of each of the 

two speakers could be influenced by the partner, shifting towards a common point 

or diverging. Hence, in this situation the similarity output should consequently 

increase or decrease.  

4.2.1 Obtaining a measure of voices similarity 

Nowadays, the speaker verification is a relatively old and well addressed problem. 

A recent work (Mukherjee et al., 2017) tried to measure the acoustic convergence 

using this kind of speech technology. The proposed model was based on 

Gaussian Mixture Model-Universal Background Model, considered a default model 

in the field of speaker verification during the past decades (Saeidi, Sadegh 

Mohammadi & Khalaj-Amirhosseini, 2005; Reynolds, Quatieri & Dunn, 2004).  In 

practice, after having trained a global model (UBM), fitted on all the subjects in the 

dataset, an adaptation is performed onto a specific subject.  

This characteristic represents a crucial weakness. This model can indeed only 

discriminate if the analysed speech belongs to the subject used for the model 

adaptation. This peculiarity implies that the model must be readapted every time 

the speaker verification has to be performed onto the voice of a different speaker. 

The aim of our work is hence to create an algorithm, capable to output a distance 

metric independently of who is speaking, hence, a measure of similarity between 

each couple of voices. 
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4.3 Materials and methods 

4.3.1 The model architecture: Siamese neural networks 

With the aim of obtaining a distance informing how similar two voices are, we 

designed a speaker verification model based on Siamese neural network 

architecture (Chicco, 2021). Siamese neural network are a Deep Learning model 

particularly suited for learning similarity measures (Mueller & Thyagarajan, 2016; 

Neculoiu,  2016). Practically, a Siamese neural network consists in two twin deep 

models, that process simultaneously and in the same way two streams of data. 

The final output of the model is a similarity index between the two inputs.  

4.3.2 Recurrent Neural networks to deal with sentence data 

As introduced in the previous paragraph, the model we designed is based on the 

Siamese Neural Network architecture. This specific architecture is capable to deal 

contemporary with two inputs extrapolating an index of similarity. However, the 

model has to successfully deal with a very complex, high dimensional, time 

varying data, such as the temporal features extracted frame-by-frame from the raw 

speech. Hence, considering the time-varying nature of the inputs, we selected as 

the basic blocks of the full model architecture the famous Recurrent Neural 

Networks (RNNs) (Sherstinsky, 2020; Graves, 2013; Tealab, 2018; Rumelhart, 

Hinton, & Williams 1986). RNNs are a particular kind of network specifically 

designed to deal with time series. The name of this neural networks comes from 

the fact that they operate in a recurrent way. This means that the same operation 

is performed for every element of a sequence, with the current output depending 

both on the current input and on the previous operations (see Figure 18 for a 

schematic). 

Usually in neural networks all the inputs are independent of each other. In RNN 

instead, all the inputs are related to each other. For instance, in the situation where 
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the next word in a given sentence has to be predicted, RNNs exploit the relation 

among all the previous words to better predict the final output (i.e. the word.  

This is achieved by looping the output of the network at time t with the input of the 

network at time t+1. These loops allow persistence of information from one time 

step to the next one. 

 

 

Figure 18. Schematic of the Recurrent Neural Network (RNN). On left is showed the 

compact representation, on the right the unroll equivalent. The output of the recurrent net 

at current time Ht depends on the correspondent input Xt as well as the output of the cell 

itself at the previous time Ht-1. Through this mechanism the information extracted by input 

at previous time persists in the network over time. 

RNNs are mainly characterized by the operation performed on the inputs by the 

base cell. Different kind of RNNs can be listed (Simple Recurrent Units, Gated 

Recurrent Units, Long Short-Term memory units and others) in respect to this 

computation. 

We performed several experiment using different RNN units, such as the LSTM. In 

the end, in order to reduce the model complexity the Simple Recurrent Unit has 

been selected (LSTMs for instance are way more complex than SRUs and usually 

require an enormously big dataset to be trained properly). 

Finally, RNNs can process the inputs both forward and backward over time. This 

means that in one case (forward) the data sequence is passed to the model 

starting from the first and ending with the last temporal point, in the other case 

(backward)  instead the computation starts from the end of the sequence and ends 
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with its first temporal point. This property of the RNNs makes them even more 

efficient in extracting temporal relations between samples. 

4.3.3 Technical description of the Model 

After having introduced RNNs and the Siamese architecture in previous 

paragraphs, I now describe the precise model design and parameters. The 

Siamese model was built using Tensorflow v2.4.2 library (TensorFlow Developers, 

2021). 

Each of the two twin networks consists in multiple layers. The first layer is a 

masking layer, implemented using the object Masking contained into the 

keras.layers library 

(https://www.tensorflow.org/api_docs/python/tf/keras/layers/Masking). This layer is 

very important because allows the algorithm to not consider the padded values in 

the input sequence. 

After the masking layer, data are passed to the core of the model. i.e. the recurrent 

neural networks. The RNN consists of a simple RNN cell processing the features 

bidirectionally. Specifically, the recurrent neural network has 1 bidirectional layer 

with 50 hidden neurons included into the  recurrent cell. The hyperbolic tangent is 

used as activation function in order to guarantee a smooth training and force the 

features to range between -1 to +1. Additionally, on this layer a Lasso 

regularization (Tibshirani, 1996) is applied to let the network select the most 

relevant features. 

After being processed by the recurrent layer the features were normalized by 

means of batch normalization (Ioffe & Szegedy, 2015) through the 

BatchNormalization object of tensorflow 

(https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization). 

Subsequently, the output of the last time step of the recurrent layer is fed into a 

feedforward layer 

(https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense) composed by 

50 neurons with a sigmoid activation function that forces the output between 0 and 
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1. Lasso regularization was applied also to the neurons in this layer. At this stage, 

hence, each of the two twin models outputted a vector of 50 features ranging 

between 0 and 1. 

Finally, in the last layer a simple mathematical operation is computed: the cosine 

similarity. This function takes two vectors and returns a value equal to 

the cosine of the angle between them. The value is obtained computing the dot 

product of the same vectors  normalized to both have length equal to 1. Because 

of the normalization, cosine similarity does not take into account the magnitude of 

the values considered but only the angle between the two arrays.  Results of this 

operation vary between -1 and 1, with 1 indicating that the two vectors are 

identical, -1 that they are identical too but with different sign and 0 indicating 

orthogonality between the two of them. For our model the values of similarity 

range between 0 and 1. This is due to the fact that the process performed by the 

sigmoid activation function in the last layer forces the outputs to be positive.   

The result of this operation is the final output of the Siamese model and represents 

the similarity score between the couple of speech streams: the closer to 1 the 

output the more similar the two voices are. A schematic representation of the 

model is showed in Figure 19. 
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Figure 19. The Siamese Neural Network model. The figure shows a representation of the 

speaker verification model. It consists in two cascade of layers that equally process the 

MFCCs of two speech streams. In the last layer the cosine similarity function between the 

two features’ vectors is computed. The result of this final computation represents the 

measure of distance between the inputted voices. 

4.3.4 The VCTK dataset 

Performances of deep learning models are known to be highly dependent on the 

amount of data available for the training. In general, the more the model is 

complex the more data are needed for a reasonably good training. Additionally, 

the scientific question that has to be addressed, i.e. learning a similarity measure 

between voices independently of the sentences pronounced (text-independence) 
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and of the couple of speaker considered (speaker independence), is an extremely 

hard to solve problem. The intrinsic variability between the characteristics of the 

voices, the length of the sentences pronounced and accents is, indeed, brutally 

high.  

For the above mentioned reasons, the dataset used to train the Siamese model 

required to be sufficiently large in terms of  number of sentences, subjects and to 

cover as many as possible of different accents. To train the model, hence we used 

an English multi-speaker freely available dataset that seemed the ideal candidate 

to fit the problem’s criticalities: the CSTR's VCTK Corpus (Centre for Speech 

Technology Voice Cloning Toolkit) (Yamagishi, Veaux & MacDonald, 2012). 

Here we report the precise description of the dataset offered by its authors: 

“CSTR's VCTK Corpus (Centre for Speech Technology Voice Cloning Toolkit) 

includes speech data uttered by 109 native speakers of English with various 

accents. Each speaker reads out about 400 sentences, most of which were 

selected from a newspaper plus the Rainbow Passage and an elicitation 

paragraph intended to identify the speaker's accent. The newspaper texts were 

taken from The Herald (Glasgow), with permission from Herald & Times Group. 

Each speaker reads a different set of the newspaper sentences, where each set 

was selected using a greedy algorithm designed to maximise the contextual and 

phonetic coverage.”  

4.3.5 Domino Task dataset 

The VCTK dataset is a big and acoustically rich dataset. It was used to let the 

model learn a general measure of distance between voices of speakers. The use 

of the VCTK dataset, indeed, was motivated by its high phonetic and acoustic 

coverage that allows to include in the Siamese model a wide knowledge about 

different voices signatures. However, this dataset does not include any verbal 

interaction between subjects. 

For this reason, a second dataset, previously recorded by colleagues at the Italian 

Institute of Technology and Università degli Studi di Ferrara, was subsequently 

used. It was recorded in a simplified verbal interaction setting, specifically 
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designed to force acoustic convergence to be more easily measurable. A total of 8 

couples of speakers were involved in a linguistic game called Domino Task, where 

they had to read aloud words both alone and with a speaking partner. The dataser 

therefore included two main different situations, one in which subjects interacted 

with a partner and one where they were reading words without being influenced by 

the voice of another person. 

Here we report the complete description of the dataset reported by authors in their 

work (Mukherjee et al., 2017): “ For this experiment we recruited 16 native Italian 

speakers (8 males and 8 females, age: mean ± std; 26 years ± 2.3 years). Before 

the experiment, subjects were asked to self-rate their English knowledge on a 1-10 

scale, including speaking fluency (7.19±1.17), reading (7.87±1.08), writing 

(7.31±0.95) and understanding (7.56±1.03). We grouped the subjects in 8 dyads 

(dyad 1 to 8), 4 female-female and 4 male-male. Before the start of the experiment 

subjects did not know each other and they did not interact with each other. 

A verbal domino chain (Bailly & Amélie, 2014) was constructed with English 

words. To do this, we used the WebCelex (http://celex.mpi.nl/) English lexical 

database. Disyllabic words were first extracted from the database and then 

rearranged depending on spoken frequency (Collins Birmingham University 

International Language Database - COBUILD). A custom algorithm using R 

(https://github.com/sankar-mukherjee/SPIC-dommino) was then used to build the 

dominos. The algorithm starts from the highest lexical frequency word and then 

looks for the next highest frequency word, fulfilling the rhyming criteria and no 

repetitions. From the list generated, 200 unique bi-syllabic words were selected for 

the Verbal Domino task. 

The whole experiment was divided into three parts: Pre, Duet and Post. The verbal 

domino task was played on the Duet portion. 40 words were randomly selected 

from the 200-word chain. In Pre and Post, subjects had to read these 40 selected 

words individually. The Pre and Post parts were before and after the Duet 

respectively, and were used as baselines. During the Pre and Post parts, subjects 

had to read aloud the 40 words presented on a screen one at a time. Between 

word switching was controlled by a voice trigger. While one subject was 

performing this task, the other subject waited nearby. Each subject read 40 words 
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in Pre and 40 in Post sections, for an overall 16x80 = 1280 words. During the Duet 

part, the verbal domino task started with one word presented on the screen of one 

of the two subjects (say subject A) while the other partner (say subject B) was 

presented with a black screen. Then, when subject A read aloud that word, her/his 

screen immediately went black and subject B was presented with two words on 

her/his screen. When subject B read the word fulfilling the rhyming criteria, her/his 

screen went black and two words appeared on the screen of subject A, until the 

list ended.“ 

4.3.6 Data processing 

The words and phrases present into the datasets were processed using 

Tensorflow 2.42 library and librosa, a python package for audio and music 

processing (McFee et al., 2015, https://librosa.org/doc/latest/index.html,  ). 

No assumptions have been made about the characteristics of the features to use 

in order to measure the acoustic speech convergence. Hence, aiming to exploit 

the full richness of the acoustic spectrum we used Mel-frequency cepstral 

coefficients (MFCCs) ( Davis & Mermelstein, 1980; Aubanel & Nguyen, 2010). 

MFCCs are standard features used in speech and sound technologies that 

describe the power spectral envelope of each single frame of an acoustic signal.  

The MFCCs were extracted for each frame, with a time window of 25 ms and a 

time step of 10 ms. Subsequently, the first and second order derivative of the 

MFCCs were computed and added as features together with standard MFCCs. 

Computing the first and second order derivatives is also common procedure used 

to enhance the performances of the systems dealing with acoustic data (Zheng, 

Zhang & Song, 2001).  

As final processing step, data were padded to the length of the sentence with the 

maximum number of frames. This computation was needed due to the fact that all 

the phrases and words had different lengths (i.e. different number of frames). 

Finally, the padded MFCCs and their derivatives were feed into the Siamese 

neural network, representing the features exploited by the model to output the 

similarity score. 
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4.3.7 Adapting the VCTK dataset to the Siamese architecture 

As first step, we trained the Siamese neural network onto the above described 

VCTK dataset.  

The whole dataset were split into train and validation set, respectively containing 

15% and 85% of the sentences of each subject.  

Subsequently, within each of the two sets, the examples used to train the model 

were created matching two sentences, i.e. creating a couple. The couples were 

then labelled as 1 if they belonged to the same subject and 0 otherwise. This 

labelling procedure guided the model to output higher values of similarity (close to 

1) when  the couple considered contained sentences pronounced by the same 

speaker, lower values (close to 0) otherwise. 

Specifically, the examples for the class labelled as 1 were obtained by taking all 

the possible combinations between each sentence and all the other pronounced 

by the same speaker. In the same way examples labelled as 0 were obtained by 

taking the combinations between each sentence and all the other pronounced by 

every other speakers into the considered dataset. 

The combinations between the two classes were taken without repetition. For 

instance, considered the couple obtained combining the first and the second 

sentence of speaker 1 (S11 and S12), only the combination { S11, S12 } was 

included, thus the couple  { S12, S11 } resulted to be excluded. 

Due to the presence of an high number of speakers, the number of possible 

combinations increased exponentially for the class 0. Hence, the total number of 

examples labelled as 1 resulted to be lower than the 0 class. Hence, in order to 

avoid to train the model using an highly unbalanced dataset, likely to result in an 

inefficient training (Masko & Hensman, 2015; Mirus, Stewart & Conradt, 2020), the 

examples of the training set were down-sampled to be roughly 1.000.000 for each 

of the two classes.  
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4.3.8 Training the Siamese model onto the VCTK dataset 

After being processed, the VCTK dataset was ready to be used for training the 

Siamese model. Due to the high number of examples, and the consequent high 

memory space required to load the whole dataset, the training procedure was 

performed splitting it in batch of 2048 examples. The model was trained using the 

binary cross-entropy loss function 

(https://www.tensorflow.org/api_docs/python/tf/keras/losses/BinaryCrossentropy). 

This loss is commonly used when dealing with a binary classification problem. This 

is the case of scientific question where it is needed to determine if two speech 

streams belong to same speaker or not. The optimization of the training was 

managed by the Adam optimizer (Adam: A Method for Stochastic Optimization, 

Kingma & Ba, 2014, 

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam) together 

with the Tensorflow’s heuristic 

(https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit) capable to 

automatically determine the appropriate learning rate. 

The trained model was then tested onto the validation dataset, and the accuracy in 

correctly classifying the two classes was measured.  

Several runs were executed, to find optimal values for the Lasso regularization 

parameters of the recurrent layer and of the feed-forward layer. This operation 

required several months due to the high computational cost of each training with a 

dataset of the above-mentioned dimension. 

Finally the model that achieved the best performances was stored, representing 

the base model to subsequently adapt using the Domino Task dataset, with final 

aim of measuring the acoustic convergence.  
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4.3.9 Adapting the Domino dataset to the Siamese architecture  

The Domino dataset involves two main different experimental conditions: “duet”, 

i.e. when two speakers are interacting, pronouncing a word after having listened 

for the partner’s voice, and “solo”, i.e. when each subject is reading aloud without 

interacting with the other person.  

The “duet” condition was identified as the part of the Domino dataset to 

subsequently use to measure the variations of the similarity between speakers’ 

voices. It was therefore not used to train the Siamese model. Consequently, only 

the data contained in the “solo” part of the dataset were used for training. 

As for the VCTK dataset, the processed acoustic data of each subject, i.e. the 

extracted MFCCs, were divided in training and test. Respectively the 80% of the 

data were assigned to the training set and 20% to the validation set. After this data 

fractioning, the words inside the same set were paired and the resulting couples 

were labelled with 0 and 1 with same criteria adopted for the bigger dataset. 

Although the split and labelling performed onto the two datasets were the same, 

there was a main difference in the processing of  the two dataset.  

When creating the train and validation set for the Domino dataset, indeed, the 

words belonging to 1 of the 8 couples was completely excluded. The newly 

generated sets therefore contained the sentences of only 7 of the 8 couples. This 

procedure was then repeated 8 times, each time leaving a couple out of both the 

train and validation set. The examples of the left out couple were created as in the 

other cases. i.e. pairing the words pronounced by the same speaker for class 1 

and the ones pronounced by different speakers for class 0. 

 Finally, the obtained couples were considered an additional set of examples, 

named left out couple set (LOC set).  Repeating the splitting operation as many 

times as the number of couples produced therefore the same number of train, 

validation and LOC set. 

The rationale behind this particular splitting procedure was to have two possible 

levels of complexity to test the Siamese model. The first level is the sentence 

independence, achieved when the model performs well on new sentences 



120 
 
 

pronounced by couples of subjects already “known” by the model. The second 

level, and the hardest to achieve for a speech technology (Furui, 1997) is the 

speaker independence, achieved when the model performs well even if the inputs 

came from subjects whose voices were never included in the training data.     

4.3.10 Training the Siamese model onto the Domino dataset 

The best model trained using the VCTK dataset was now retrieved and retrained. 

The training at this stage was needed to adapt the parameters of the pre-trained 

model to the new data. The Domino dataset, indeed, involved different subjects 

(therefore different voices) and consisted in words rather than sentences 

(therefore smaller data lengths). 

 As previously explained, the pre-training with the VCTK dataset was important to 

provide the model with a basic knowledge about the distance between several 

different voices. This step was crucial because of the relatively small dimension of 

the Domino dataset. Indeed, training from scratch a deep learning model, as the 

Siamese network, using only a small amount of data, as the ones included in this 

latter dataset, could in principle be very difficult and ineffective.  

Each of the 8 training dataset obtained by the left one couple out splitting 

procedure was used to train a Siamese model. In this way, as many models as the 

number of couples were produced. The loss function, the optimizer and the 

heuristics to determine the learning rate were the same of that selected for pre-

training. 
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4.4 Results 

4.4.1 Performances 

Each of the 8 models was first tested using its correspondent validation set in 

order to assess the performance in predicting the voices’ similarity when dealing 

with unseen sentences. 

The average accuracy for this task resulted to be 81.4 +- 0.8%. Considering only 

the negative examples (i.e. the ones obtained matching words pronounced by 

different speakers) and positive examples (i.e. the ones obtained matching words 

pronounced by the same speaker) the average accuracies resulted in  84.8 +- 

1.8% and 81.4 +- 0.8%.  

Subsequently, each model was tested onto the correspondent LOC set to assess 

its performances when dealing with completely unseen subjects. The average 

accuracy for the speaker independence test resulted to be 61.1 +-2.2%. 

Considering only the negative and positive examples the average accuracies 

resulted  76.9.4 +- 4.2% and 45.4 +- 3.0%.  The accuracy for each of the 8 

validation and LOC set is reported in Table 3 for both positive and negative 

examples.  

The histograms of the distribution of the similarity values, computed over the 8 

possible dataset splits for both the 0 and 1 classes, are showed for the validation 

set in Figure 20  and for the LOC set in Figure 21. 
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 Couple1 Couple2 Couple3 Couple4 Couple5 Couple6 Couple7 Couple8 

Validation 

 

80.5 80.7 80.2 79.5 83.0 85.1 84.0 78.3 

Validation 

negative 

77.1 85.3 88.6 87.2 86.0 87.5 91.7 75.3 

Validation 

positive 

83.8 76.0 71.9 71.9 80.1 82.7 76.1 81.4 

LOC 

 

52.3 65.1 57.0 56.3 60.5 57.1 70.0 70.9 

LOC 

negative 
52.5 85.1 76.2 71.4 83.0 74.3 96.2 76.8 

LOC 

positive 
52.0 45.0 37.7 41.2 38.0 40.0 43.9 65.0 

 

Table 3. Classification performance achieved by the Siamese model on each of the eight 

couples of speakers. Results are showed for validation set and left-on- couple-out set, 

testing all the examples, or testing only the negative or positive examples. 
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4.4.2 Sentence independence 

From the histograms it is possible to appreciate the capability of the Siamese 

model to output optimal values of similarity, for both classes, when the validation 

set is considered. The model, hence, even in presence of “never heard” words,  

successfully learned how to assign correct values of similarity to the voices’ 

couples.  This result implies that the model reached the sentence independence, 

consisting in the first of the two goals to achieve before testing the model onto the 

“duet” dataset to measure the acoustic speech convergence.  
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Figure 20. Histograms of similarity values outputted by the Siamese network when testing 

it on validation set couples. The black histogram is for negative examples (i.e. couples of 

voices obtained from different speakers), the red histogram is for negative examples (i.e. 

couples of voices obtained from the same speaker). 
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4.4.3 Speaker independence 

As regard the left out couple set, it is possible to derive from the histograms (see 

Figure 21) and from the classification performances (see Table 3) that the model is 

capable to assign correct values of similarity and perform correct predictions when 

the words are pronounced by different speakers but not when the speaker is the 

same. In the latter case, indeed, we should have values close to one for most of 

words’ couples, implying a strongly “right-skewed” histogram. The behaviour 

instead is the opposite one with a pronounced left skew similar to the one of 

negative class. The model, therefore, is not fully capable to generalize to unseen 

speakers’ voices, especially when processing acoustic signals belonging to the 

same person.  
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Figure 21. Histograms of similarity values outputted by the Siamese network when testing 

it on LOC set couples. The black histogram is for negative examples (i.e. couples of 

voices obtained from different speakers), the red histogram is for negative examples (i.e. 

couples of voices obtained from the same speaker). 
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4.5 Conclusions and further steps 

We designed a Deep Learning model based on Siamese Neural Network 

architecture and Recurrent Neural Networks in order to address the scientific 

problem of measuring the acoustic speech convergence. The rationale behind was 

to merge the capability of the Siamese network to process couples of speech 

stream obtaining a measure of similarity and the computational power provided by 

the RNNs when dealing with time series.  

The final goal to achieve through the proposed model is to obtain a mathematical 

powerful tool capable to compute the similarity between speakers’ voices 

independently of the speakers that compose the interacting couple and of speech 

pronounced during the verbal interaction. These goals can be translated as 

speaker independence and sentence independence. The first one in particular is 

an  hard to solve  problem because of the tremendous amount of inter-speakers 

variability (Kenny et al., 2007). Nonetheless, it is fundamental that both of them 

are achieved before considering the model completely reliable in measuring the 

acoustic speech convergence in unknown speaker and unknown sentence 

scenario. 

The model that we designed was pre-trained using first a very large dataset, the 

VCTK’s Corpus, used to provide the model with knowledge about a wide variety of 

inter-speakers variability: it involves indeed more than one hundred English 

speakers with different accents. Subsequently the model was retrained on the 

Domino task dataset, a smaller dataset specifically designed to create a constraint 

verbal interaction where measuring the acoustic convergence is easier. This 

dataset contains words instead of sentence and Italian speakers speaking in 

English.  

The Siamese model pretty well performed in assigning similarity values to the 

couples of voices when tested in a sentence independent scenario. In the other 

hand, when facing with the speaker independence problem the model showed 

difficulties in correctly computing the distances between voices.  
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This difficulty of the model has to be fixed before testing it on the “duet” part of the 

domino task dataset. The final aim is indeed obtain values of similarity that are 

reliable in a verbal interaction that involve every generic couple of speakers 

pronouncing every generic set of sentences, thus characterizing the Siamese 

model as a fully deliverable mathematical tool. 

The problem faced by the model could be due to the fact that the speakers 

involved into the Domino dataset are native Italian speakers speaking in English, 

hence the pre-training with the VCTK Corpus did not provide the model with 

knowledge about this specific English accent. Additionally the different length of 

the time series processed by the model when moving from sentences (the VCTK 

corpus) to words (the Domino task dataset) could have represented an hard-to-

overcome obstacle. 

Finally, we plan to improve the performances of the Siamese model by adding the 

Italian accent speakers into the pre-training and randomly segment the long 

sentences, creating a mixed dataset composed of both sentences and words.  

After having tuned the model to deal with every couple of speakers and every 

couple of sentences we will test the dynamics of the acoustic the acoustic speech 

convergence during the verbal interaction contained in the Domino dataset to gain 

insights about the acoustic level of this complex multimodal phenomenon. 
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5  THESIS DISCUSSION 
Human speech is a tremendously sophisticated physiological phenomenon, 

through which we are capable of delivering complex contents in a very effective 

way. The neural basis of speech still remains not entirely explained. It consists of 

cascades of neural mechanisms which give rise to the articulation of words and 

phrases, as well as to the ability of perceiving and understanding the listened 

sounds with a final goal: communication. During my work I touched upon different 

speech research areas, in the attempt to shed light both on the neural processes 

upon which speech production and perception are grounded, and on the dynamics 

underlying verbal interaction.  

Firstly, I focused on the speech production research field. In this context,  the 

investigation was conducted exploiting a rare speech-related neurophysiological 

signal, by means of electrocorticography (ECoG) recorded from a salient speech 

region – known as speech arrest area – located in Broca’s area. 

Electrocorticographic recordings were obtained using dense micro (µ)ECoG arrays 

placed over the speech arrest area of patients undergoing awake brain surgery. 

Thanks to the functional relevance of the recording locus, neural signals 

synchronised with the patients’ voice were used to investigate speech production 

mechanisms. Interestingly, a burst of high-gamma power activity was present few 

milliseconds before patients’ speech onset. Being this anticipatory neural trigger 

highly consistent across trials, it was selected as input to train a Support Vector 

Machine (SVM) based machine learning model, in the attempt to predict speech 

initiation. 

The model was trained using the neural activity recorded from two patients, 

employing three very diverse recording matrices. This difference between devices, 

as well as patients, introduced a not negligible level of data variability. However, 

the high temporal and spatial reliability of this neural correlate was of fundamental 

importance, leading to a successful prediction of patients’ speech onset. 

Notably, speech onset prediction was possible even when the model ran in a 

cross-subjects and cross-devices modality, i.e. when it was tested on the neural 



132 
 
 

activity recorded with a specific device from a specific patient, different from the 

one used to train the model.  

Speech onset detection systems might represent an important building block in 

future speech neuro-prostheses (Martin et al. 2018) for patients with severe 

communications deficits, as happens for example in the Locked-in syndrome. In 

this clinical population, language areas are often intact (Smith & Delargy, 2005) 

but patients lose the capability to verbally communicate. Hence, in such a 

scenario, speech-related neural activity must be decoded by speech-brain 

computer interfaces (speech BCI) (Anumanchipalli, Chartier, & Chang, 2019; 

Angrick et al., Moses et al., 2016; Martin et al. 2014) in order to translate brain 

activity into words and phrases. 

For efficiency optimization, a speech decoding procedure should nonetheless start 

from an explicit language preparation cue. Here is exactly where speech onset 

detection systems come into play, by identifying a neural trigger whenever the 

patient intends to speak, thus initiating speech decoding. 

However, reported results were so far obtained by exploiting neural activity 

recorded during overt speech tasks. In contrast, a real life clinical situation implies 

the need of decoding covert – i.e. imagined – speech (Martin et al. 2016), because 

of the patients’ communication impairment.  This could potentially represent a 

high-impact limitation for the proposed algorithm: Indeed, this operation is not 

guaranteed for the model when facing such a different condition and, as a 

consequence, further investigation has to be performed. Nevertheless, the good 

performances achieved by the model when predicting speech onset in the cross-

patient modality suggests the possibility for the model correct functionality even in 

a very different situation, such as decoding covert speech onset.  

After performance assessment in real clinical scenarios, the proposed model could 

finally be included in a speech-BCI to detect patients’ intention to speak, restoring 

their connection towards the outside world. 

Nevertheless, the connection in the opposite direction is fully functional: patients 

can indeed continue to perceive the incoming speech as every other healthy 

subject does.  
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How the human brain perceives and understands speech, however, is still an 

extensively debated argument. Without the aid of very complex mechanisms to 

process and interpret it, words and meanings that people intend to communicate 

to other, , would in fact only be unintelligible sounds. 

It was long believed that only the auditory cortices – especially Wernicke’s area – 

participated in speech perception, excluding any involvement of the motor regions, 

whose role was relegated to sending motor commands to mouth articulators 

during speech production (Wernicke, Cohen & Wartofsky, 1874). 

Anyhow, the idea that the motor system plays an active role when perceiving 

speech gained increasing attention in the last decades, with several works 

providing new evidences in support of this hypothesis (Watkins, Strafella & Paus, 

2003; Wilson et al., 2004, Iacoboni, 2008, Pulvermüller et al., 2006, Fadiga L. 

2002, D’Ausilio et al., 2009 , Meister et al., 2007, Möttönen, Dutton & Watkins 

2013; Assaneo & Poeppel, 2018). On the other hand, the precise way in which the 

motor system could act in order to improve speech comprehension is unclear. 

In this context, a major perspective is that the motor system of a listening brain 

simulates the speaker’s mouth articulators kinematics (Morillon et al., 2019; Arnal 

& Giraud 2012; Schubotz, 2007), hence the movements needed to produce the 

listened words and sentences.  

During my research in the field of speech perception, I designed an experiment to 

investigate this hypothesis, in the attempt of providing new hints about the 

reconstructive nature of the mechanisms played by the motor system in speech 

perception. The idea consisted in providing listeners with acoustic information 

without any speech-related visual or kinematic cues, to subsequently address if 

kinematics was anyhow encoded in the listening brain.  

To this end, a public dataset (Canevari, Badino & Fadiga, 2015), containing 

speech sentences synchronized with the correspondent mouth kinematics, was 

selected. However, the only stimuli administered during the experiment were the 

acoustic ones. 23 healthy subjects listened to the sentences while their brain 

activity was recorded by means of electroencephalography (EEG).  
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The presence in the brain of a speech tracking mechanism during listening is well 

documented and known as speech neural entrainment. This phenomenon is 

traditionally described as a sort of phase alignment between the auditory cortices 

neural signals and the low frequency components of the attended speech stream. 

Entrainment is triggered by speech landmarks – such as phonemes, words and 

sentences – and has been proved to correlate with higher speech comprehension 

performances (Ahissar et al., 2001; Luo & Poeppel, 2007; Peelle et. al. 2013). 

This neural mechanism has been traditionally measured using phase coherence or 

correlation methods (Luo & Poeppel 2007; Morillon et al. 2010, Peelle, Gross, & 

Davis, 2013; Bourguignon et al., 2013 ), capable to reveal linear trends of phase 

alignment between time series. Nevertheless, in order to reveal more complex and 

non-linear relations between speech and brain recordings, mutual information (MI; 

Shannon, 1948) has recently increasingly replaced previous techniques (Gross et 

al. 2013, Kayser et al. 2015; Giordano et al. 2017). For what specifically concerns 

a listening scenario, MI between neural signals and the attended stimulus returns 

a measure of the amount of information encoded by the brain or, in the other way 

around, how more predictable neural signals become when knowing the 

administered input. 

When multiple stimuli are present, however, neither MI nor coherence methods 

can disentangle how different input modalities contribute to the observed 

entrainment phenomena. In this context, the ideal candidate is represented by the 

Partial Information Decomposition (PID; Williams & Beer 2010; Ince, 2017), a 

recent MI-based mathematical framework. Indeed, PID allows to deal with multiple 

inputs simultaneously and disentangle their informative contribute encoded by the 

brain in “atoms” of Unique, Redundant and Synergistic information.  

Hence, the use of this powerful mathematical tool together with the speaker’s 

mouth kinematics synchronized with the speech offered a great possibility to 

investigate the active listening theory. Indeed, finding brain encodings of the 

speaker’s speech articulators movements would suggest the presence of the 

neural tracking of the simulated mouth kinematics. Importantly, employing PID in 

this context could inform about the non-redundancy of these neural mechanisms 

with respect to entrainment to the acoustic input modality. 
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However, how the brain controls mouth articulators – i.e. which of them are moved 

together while speaking – is unknown. For this reason, Principal Component 

Analysis (PCA) was applied transforming the raw time-varying articulators 

positions in new physiologically meaningful time series. By means of this data-

driven approach, four main principal components were obtained. Specifically, the 

first two represented the antero-posterior and the vertical movement of the whole 

tongue, whereas the other two consisted in mouth articulators synergies. 

Finally, by coupling such principal components with the speech envelope, the 

Partial Information Decomposition was applied to find atoms of unique kinematic 

information encoded in the EEG signals. 

PID analysis revealed the presence of “unique” information about the tongue 

antero-posterior movement encoded in temporal and motor areas. This result is of 

crucial importance, because it reflects the fact that kinematic information is 

encoded in motor areas and that this phenomenon is completely different when 

compared to the speech envelope tracking.  

Evidence that the kinematics of the mouth articulators is tracked by the brain has 

already been observed (Giordano et al., 2017; O’Sullivan et al., 2021; Park et al., 

2016; Peelle & Sommers, 2015; Giordano et al., 2017), as well as the fact that 

motor areas are active during speech perception (Ding et al.,2017; Keitel , Gross & 

Kayser, 2018). To my knowledge, it is however the first time that motor areas are 

shown to perform neural tracking of a not readily available speech related signal. 

Indeed, the fact that subjects’ neural activity resulted to track kinematic stimuli 

even if not administered suggests the presence of an ongoing  simulation of the 

speaker’s mouth kinematics. 

Interestingly, PID analysis unveiled also a synergistic interaction between the 

speech envelope and two kinematic principal components: this suggests that 

kinematics signals not only are independently exploited by the listening brain, but 

could also be integrated with the acoustic information in a different processing 

stream. 

Notably, the two different kind of encoded kinematic information, i.e. unique and 

synergistic with the speech envelope, showed a frequency dissociation highlighted 
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by the subsequent frequency-resolved PID analysis. Indeed, unique information 

resulted to be maximally encoded over low frequencies (1-4 Hz, corresponding to 

the delta frequency band), in contrast to the synergistic modality showing a clear 

peak over higher frequency (4-8 Hz, i.e. in the theta band). Moreover, the maximal 

encoding range for the synergistic information matched that of the speech 

envelope unique information, by means of the neural entrainment to the pure 

acoustic input modality.  

The link between speech entrainment and comprehension performances is well 

documented. However only in a recent work (Keitel, Gross & Kayser, 2018) 

comprehension performances have been related to entrainment arising over motor 

areas. This represents a fundamental result, because it reveals the importance of 

the motor system for speech comprehension.  

In my research, I provided new evidence for the activation of motor areas during 

speech perception, highlighting the neural tracking of unavailable – and thus likely 

being simulated – speech-related kinematics. However, the relation between 

comprehension performances and the two (unique and synergistic) kinematic 

atoms of information described  has not been analysed.   

This investigation represents the natural prosecution of the findings previously 

described in the speech perception field. Indeed, comparing the strength of the 

observed phenomena would provide an important contribution to unveil the 

mechanisms underlying the activation of the motor system during listening, 

supporting, or eventually rejecting, the thesis that frames neural entrainment as a 

motor-driven top-down mechanism. 

To close the circle of my personal investigation concerning speech, I finally 

focused on the field that merges together speech production and perception, i.e. 

verbal interaction between speakers. This fundamental kind of human interaction 

is used to effectively communicate very complex contents. 

During a conversation, speakers share the goals of conveying and understanding 

concepts and ideas. Indeed, dialog is considered a joint action that exploits 

intentional and unintentional mechanisms arising at different levels (lexical, 

kinematic, acoustic). Such phenomenon is known as alignment or convergence, 



137 
 
 

and is implemented during a conversation in order to enhance the capability of 

conveying messages (Pickering & Garrod, 2004, 2006; Shockley, Santana, & 

Fowler, 2003; Hatfield, Cacioppo, & Rapson, 1993; Brennan & Clark, 1996; Holler 

& Wilkin, 2011).  

During my work I focused on the acoustic speech convergence, i.e. on the specific 

convergence level characterized by the modification of speakers’ speech features. 

During verbal interaction these features (such as speech rate, volume, pitch, etc.) 

are shifted towards a common acoustic point, making the conversation more 

effective.  

Nevertheless, acoustic convergence lacks of a precise mathematical quantification 

and is still widely discussed in several aspects, ranging from its origin to its 

temporal dynamics. Indeed, the previous idea that this mechanism was static 

during the conversation has been overcome by several studies capturing its time-

varying nature (De Looze et al., 2014; Levitan & Hirschberg, 2011; Vaughan, 

2011).  

Recently researchers started to address acoustic speech convergence 

measurement via machine learning models (Mukherjee et al., 2017; Ostrand & 

Chodroff, 2021), trying more comprehensive, data-driven approaches. 

Following this intuition, a deep learning-based speaker verification system is here 

proposed. The model was built combining recurrent neural networks (RNNs) with 

Siamese architecture. This specific design is thought to merge the RNNs high 

performances in processing time series (as the speech stream is) with the 

capability of Siamese architecture to learn a distance measure between couples of 

inputs (i.e. voices). A model producing such a measure would indeed represent a 

ready-to-use mathematical tool, capable to inform about the shift of characteristics 

in the speakers’ voice.  

The Siamese model was pre-trained using a very large dataset, the VCTK 

(Yamagishi Veaux & MacDonald, 2019), containing sentences pronounced by 

hundreds of speakers with different English accents. This step was implemented in 

order to provide the model with knowledge about very different voices, a key point 

for each speaker verification system.  
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The model was subsequently retrained on the “solo” block of the Domino task 

dataset (Mukherjee et al.,2017), with a leave-one(couple of speakers)-out 

approach. In this way, it was possible to measure the model performances in both 

a sentence- (using unseen couples of sentences pronounced by known-by-the-

model subjects) and a speaker- (testing the left out speakers) independent 

scenario. 

On the one hand, the Siamese model performed successfully when sentence 

independence was tested, correctly outputting similarity values when couples of 

voices of both different speakers as well as the same speaker were considered. 

On the other hand, the model did not reach the full speaker independence. 

Performances computed on unseen speakers were indeed reasonably good for 

couples of sentences pronounced by different speakers, but the model 

misclassified examples when sentences were pronounced by the same speaker. 

The issue faced by the model is likely dependent on the difference in both accents 

and speech lengths between the two datasets. The domino dataset, indeed, is 

composed of English words pronounced by non-native (Italian) speakers. 

However, this particular accent is not included in the variety of English accents 

contained in the VCTK dataset. Additionally, the latter dataset contains long 

sentences, as opposite to the simple words present in the domino one. Both these 

two differences in data characteristics likely compromised the model performances 

when dealing with the hardest situation, i.e. couples of voices of unseen speakers. 

Nonetheless, the domino dataset was selected for its very important feature of 

containing recording blocks of constrained verbal interaction between speakers. 

These recordings, indeed, represent a perfect context to measure acoustic speech 

convergence easily. On the other hand, the importance of the VCTK dataset 

consists in its huge dimensions and its variety of English accents. Hence, both 

datasets represent important blocks to build the entire sentence- and speaker-

independent model and subsequently use it to measure convergence in a verbal 

interaction. 

In order to solve the speaker independence problem faced by the Siamese model, 

two approaches can be followed. Either new speakers with Italian accent together 
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with shorter sentences (or even words) could be added during pre-training or, in 

the other way around, a different dataset substituting the domino one might be 

selected. The new dataset should include speakers with English accents similar to 

those present in the VCTK dataset, as well as speech streams representing 

sentences instead of words. 

Finally, the proposed Siamese model could be employed as a ready-to-use tool in 

several different verbal interaction contexts which require monitoring of the 

distance between voices, by means of acoustic speech convergence. Importantly, 

the possibility to exploit the model in a variety of situations pave the way for its 

application beyond research, i.e. for commercial purposes.  

To cite a practical model application, a second language learning scenario can be 

considered. Indeed, the acoustic convergence is documented in situations where a 

non-native speaker is learning a second language. In addition, it is reported that 

the strength of the phenomenon is higher in talented speaker (Lewandowski & 

Jilka, 2019). Hence, the system for measuring the speech convergence would 

represent an effective tool to constantly monitor students’ improvement and 

provide a reliable feedback to refine the learning process.  

Another practical scenario where measuring the acoustic convergence can be 

fundamental is represented by the patient-doctor interaction. Verbal 

communication skills are, indeed, of crucial importance in this context, and poor 

doctors’ communications capabilities could result in patients’ unhappiness and 

complaints (Kee et al., 2018) and even affect health outcomes (Lou et al. 2022). 

Therefore, disposing of such a tool for measuring the modification of the patient’s 

voice during a medical consult appears of high relevance for clinicians. The doctor 

could indeed obtain an on-line feedback, and in case adjust the communication 

approach with patients, in order to make them feel more comfortable, hence 

improving their mental and physical wellness. 

Beyond these few examples of concrete applications of the proposed system, the 

list of possibilities can however be enormously enlarged. In addition to its scientific 

relevance in the speech research field focused on unveiling mechanisms 

underlying verbal interaction, this gives to the model a significant commercial 

appeal. 
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As final remark on the complexity of a verbal interaction, it is worth noticing that 

even if we perceive it just as the simple, smooth concatenation of production and 

perception, the dynamics behind speech interaction are much more sophisticated.  

A proof of this complexity is represented by the rapid turn-taking during interactive 

talking. Indeed, the sum of production’s and comprehension’s lags is roughly 600 

ms, a very long time compared to the 200ms required by speakers at 

conversational turn-taking (Lenvinson & Torreira, 2015). Hence, predictive motor-

based phenomena are likely shaping verbal interactions in order to anticipate what 

the interlocutor is going to say, thus lowering the required time for mutual 

understanding. We indeed neither learn how to produce speech to speak by 

ourselves nor we learn to perceive it to simply listen. We rather learn how to 

produce and process human speech to mutually exchange information, thus 

communicate. 
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