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Abstract

The Bodmer-Witten hypothesis suggests that strange quark matter is the true
ground state of matter. This hypothesis has significant implications for astrophysics
and cosmology. In cosmology, lumps of absolutely stable strange quark matter can
constitute dark matter. In astrophysics, it implies the existence of strange stars in
coexistence with hadronic stars in the so-called two-families scenario.

First, we propose a way to test this scenario through the observation of the
kilonovae produced in mergers between compact stars and black holes. We study
the impact of the nuclear matter equation of state on the ejected material in those
events, and therefore, on the possible observed kilonova signals. In particular, we
predict the statistical suppression of those events in the two-families scenario as
compared with the standard scenario.

In a second investigation, we explore the cosmological implications of strangelets
as dark matter candidates. This involves assessing the size and mass distribution of
strangelets, ensuring their agreement with the existing constraints on macroscopic
dark matter.

Therefore, we examine the astrophysical consequences of this cosmological sce-
nario, particularly focusing on how the presence of strangelets might affect the stellar
evolution. We focus on two cases: we investigate how strangelets, when captured
by white dwarfs, impact the stability of these stars which become strange dwarfs;
we suggest that the presence of strangelets in the core of stars which undergoes
electron-capture supernova can result in the formation of subsolar mass strange
stars, which might have been already observed, as in the case of HESS J1731-347
and SAX J1808.4-3658.
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Introduction

A Neutron Star (NS), is the remnant of massive stars after a Supernova (SN) explo-
sion. NSs are among the most extreme objects known to physics. The study of their
properties serves in probing the fundamental laws governing extreme dense matter
and energy in the universe.

Formed through the gravitational collapse of massive stars, NSs represent the
endpoint of stellar evolution. The core collapse process is a culmination of a delicate
interplay between the tremendous gravitational forces and the opposing pressures
exerted by neutron degeneracy, the strong nuclear force, and the repulsive force of
nucleon interactions.

One of the defining features of NSs is their remarkable size-to-mass ratio. With
typical masses around 1.4 M⊙ and radii on the order of 10-15 km. NSs are incredi-
bly dense, and their core can reach density greater than 1015 g/cm3. The equation
of state, which describes the relationship between pressure, density, and energy in
such extreme environments, remains a central focus in NS research. Recent advance-
ments in theoretical models and observations have provided crucial constraints on
the equation of state, offering insights into the nature of ultra-dense matter. Nev-
ertheless, certain tensions have emerged between data and theoretical predictions,
particularly in light of recent observations involving Gravitational Wave (GW)s and
precise radius measurements by instruments like NICER [4, 26, 3].

General relativistic corrections significantly influence their properties, affecting
the observed pulsar signals, space-time curvature, and gravitational redshift. GWs
astronomy has emerged as a powerful tool for probing these relativistic effects, pro-
viding a window into the behavior of matter under the most extreme conditions.

NSs are also known for their intense magnetic fields. Magnetars, a subset of
NSs with incredibly strong magnetic fields (∼ 1015 G), have been observed emit-
ting intense bursts of X-rays and gamma-rays [27]. The origin of these magnetic
fields remains an active area of research, with potential connections to processes like
magnetic field amplification during the star’s formation or subsequent evolution.

Advancements in numerical simulations and computational capabilities have al-
lowed to delve into the complexities of NS mergers. Such mergers are the progenitors
of Kilonovae (KNe), intense bursts of electromagnetic radiation that accompany the
coalescence of two NSs or eventually a NS and a Black Hole (BH). These events are
of particular interest due to their potential role in heavy element nucleosynthesis
and their connection to the observed short gamma-ray bursts [28, 29, 30].
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Nevertheless, this is not all the story. Our understanding of NSs, as mentioned
before, is far from being complete. While we can make educated predictions about
the composition of these stars up to a certain density, our knowledge becomes less
certain at densities greater than that of atomic nuclei. In the central regions of NSs,
new particles, including hyperons and delta resonances, can form just because they
become energetically favorable.

The presence of these particles affects the NS’s properties. They cause the star
to be more compressible, leading to potentially smaller sizes and lower maximum
masses. However, this idea is in conflict with some observations of NS compactness.
As a result, the behavior and composition of NSs at ultra-high densities remain
areas of active research and discussion.

From here, the necessity of considering new astrophysical scenario for compact
star arises. In this thesis, we will adopt the two-families scenario proposed by Drago
et al. [31]. This approach envisions the coexistence of two distinct branches of
compact stars: the hadronic star branch and the Strange Quark Star (SQS) branch.

The hadronic star branch comprises NSs which are quite compact, primarily
due to a soft equation of state. This softness arises from the emergence of delta
resonances and hyperons. On the other hand, the SQS branch includes stars that
are less compact (beyond a certain central energy density) but showcase unique
behaviors linked from the physics of deconfined Strange Quark Matter (SQM). This
type of matter can exhibit exotic features, including color superconductivity.

In this work, we’ll explore methods to study the two-families scenario using
current advances in multi-messenger astronomy. KNe play an important role in
helping us understand the equation of state for nuclear matter. To this end, we’ve
looked at mergers of BHs and NSs. Our goal is to highlight the differences between
the two-families scenario and a model where only one type of compact star exists.

Most importantly, the existence of SQSs is intrinsically linked to the Bodmer-
Witten hypothesis. These stars are self-bound, and some might have ties to the
early universe. Expanding on Witten [32] paper, if SQM indeed represents the true
ground state of matter, it might partially or entirely constitute dark matter, as
originally proposed by Witten.

Within this thesis, we will further explore the potential astrophysical implications
of this cosmological perspective. The presence of SQM nuggets (or strangelets) in
the universe can deeply affect the evolutionary path of ordinary star that in principle
don’t contain strange particles.

We will investigate the stability of white dwarfs that have accumulated a core
of SQM over the course of their existence through the accretion of strangelets. Our
objective is to provide a deeper understanding of how their evolutionary path may
diverge from the conventional one, especially when these white dwarfs, now strange
dwarfs, are part of a binary system. The key question we aim to address is whether
the acquisition of a sufficient number of strangelets can significantly alter their
dynamic stability, ultimately leading to a distinct evolutionary outcome.

Our study brings us to consider the interplay between the presence of strangelets
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and some extreme astrophysical phenomena such as some kind of SNe and to ex-
plain the possible presence of subsolar mass km-sized objects, namely compact stars
with less than one solar mass that currently have no other theories explaining the
astrophysical path that could lead to their formation.

Thesis Structure

This thesis is structured in 4 chapters:

• Chapter 1 reviews the existing literature to trace the historical development
of strange quark matter. The objective is to provide the reader with a compre-
hensive understanding of the origins and theoretical underpinnings of strange
quark matter research.

• Chapter 2 is based on the papers Di Clemente et al. [33] and the forthcoming
Mathias et al. [11]. This chapter explores the kilonova signals within the
context of the two-families scenario. It aims to elucidate the observational
signatures and theoretical interpretations of kilonovae in light of this scenario.

• Chapter 3 addresses ongoing research into strangelets, with a specific focus
on observational constraints and their possible size and mass distributions.
It aims to present the current state of study in this field, including a pro-
posed phenomenological model that describes the primordial evaporation of
strangelets, considered as a form of dark matter, into hadrons.

• Chapter 4 is about the findings presented in Di Clemente et al. [34]. This
part focuses on the stability of White Dwarfs that possess a core composed
of strange quark matter. It delves into the implications of having such a core
and on the conditions that could lead to a different evolutionary path with
respect to a common White Dwarf.
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Chapter 1

Strange matter - history and
astrophysics

1.1 Theorizing Strange Quark Matter

In our day-to-day lives, the matter we see is made up of electrons, protons, and
neutrons. This is typical because there is no strange quark in regular matter. But
in high-energy lab experiments, we create something called hypernuclei, containing
the strange quark [35]. These eventually break down into regular particles. When
we look at places with extreme pressure and density, like inside compact stars, the
situation is different. Here, due to the high energy, strange quarks can form and
remain stable.

In 1971 Bodmer [36] discussed for the first time the possibility that ordinary
matter is just a metastable state of matter and that for a sufficiently large baryon
number A there exists a ”collapsed nucleus” which would be more stable and more
compact than the normal nucleus. This would be ten times denser than regular
matter. If this exists, it could be the true ground state of matter. Bodmer used
qualitative arguments to explain why we might only see regular matter, even if this
denser form exists, as long as the regular matter is sufficiently long-lived.

Among the models discussed by Bodmer, two of them were considering states
composed by ordinary and hyperonic matter having an exceptionally large binding
energy. However, the approach to these models was largely qualitative. This makes
sense when considering that the MIT bag model would only be introduced three
years after Bodmer’s discussions.

In 1979, Chin and Kerman [37] looked into the idea of quark-nuclei that could
last for a long time. They pointed out the necessity of the presence of s quarks
to keep these special nuclei stable enough. Indeed they showed the stability with
respect to strong interactions of those uds quark-nuclei. On the other hand, in
contrast with the hypothesis of the absolutely stable QM, these quark droplets were
considered metastable and eventually they would have converted in ordinary nuclei
via weak leptonic processes.
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Then, in 1984, the seminal paper bt Witten [32] on SQM was published. He
proposed a cosmological scenario in which stable uds quark nuggets (strangelets),
formed in the early Universe during the hadronization (roughly 10−6 s after the Big
Bang), would be a component of the dark matter in today’s Universe.

The Witten’s conjecture states that while two-flavors QM has an higher energy
per baryon with respect to iron ((E/A)56Fe = 930 MeV), three-flavor QM has a lower
one. For small values of A this statement is false. Indeed, for A = 1 (Λ0 baryon)
the mass is ∼ 1115MeV [38, 39]. Therefore, the reason why for heavier nuclei,
ordinary hadronic matter does not decay into SQM is because one must transform
simultaneously u or d quark into s quark. This process is clearly and Ath order weak
one and because of this regular nuclei can last a long time (exceeding the age of the
Universe) without turning into SQM.

Witten [32] postulates that during the cosmic phase transition, bubbles of low-
temperature phase grew within a high-temperature phase. These bubbles could form
lumps of hot SQM, potentially stable under zero temperature and pressure. Contrary
to traditional views, which hold that nuclei are most stable, Witten suggests that
SQM might be energetically favorable, leading to the formation of quark lumps that
could survive to the present day. These lumps would be essentially invisible to
normal baryonic processes and might be a significant component of dark matter.
Indeed, the paper’s strength lies in its novel approach to the dark matter problem,
providing a plausible explanation based on Quantum Chromodynamics (QCD).

After Witten also Farhi and Jaffe [40] published a paper in which they delved
into the properties of SQM using the MIT Bag Model. They showed that there
exists a region in the parameter space of the model in which SQM would be the
real ground state of matter. They classify their discussions into bulk matter and
strangelets (to distinguish SQM with relatively low baryon number).

They use a Fermi-gas model with corrections for surface tension and Coulomb
forces to assess the problem of the stability of the strangelet. They consider the
energy per baryon E/A and the baryon number A, accounting on how surface effects
may cause strangelets to fission or remain stable.

For bulk SQM, the energy per baryon approaches a limit from below due to sym-
metry energy, driven by the constraint that the charge-to-baryon ratio Z/A tends
to zero. Surface effects, both intrinsic and dynamical, play a significant role in the
stability. The intrinsic surface tension (σI) could be related to the phase boundary
separating true vacuum from the perturbative vacuum inside hadrons, while dynam-
ical surface tension (σD) arises from corrections to the Fermi gas approximation.

Furthermore, the authors discuss the potential for SQM to be charged (positively
or negatively) and the implications of its interaction with ordinary matter.

Notably, Farhi and Jaffe [40] discuss the potential stability of SQM over a wide
range of baryon numbers and the associated phenomenological implications. The
authors propose that if SQM is stable in bulk, it may be stable down to a certain
minimum baryon number Amin, which varies based on different model parameters.
The authors define a practical lower limit of stability based on the separation energy
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required to remove a baryon from a strangelet. Below this limit, strangelets would
decay through a series of emissions, driven out of flavor equilibrium until weak
interactions reestablish it, a process similar to radioactive decay in heavy nuclei.

For bulk matter, the interaction with ordinary matter and the potential for
absorption of nucleons through exothermic reactions is considered. The authors
highlight the role of Coulomb barriers in preventing the absorption of nuclei and
rendering SQM inert in contact with ordinary matter. They also consider the sce-
nario where bulk SQM has a negative hadronic electric charge, which could have
drastic consequences if it comes into contact with ordinary matter.

The authors also discuss potential signatures of SQM, such as its low charge-to-
baryon-number ratio, which could manifest as new superheavy elements. The paper
concludes with the authors noting the importance of understanding if stable SQM
exists or can be created, as it could have implications for energy production and
other practical concerns.

The values of the bag constant B are crucial in considering the stability of SQM.
Farhi and Jaffe reference values of B obtained from fits to the spectra of light hadrons
within the bag model framework (section A.6), which are critical in the examination
of SQM’s bulk properties.

1.2 Strangeness in heavy ion collisions

Later in the ’80s Greiner et al. [41, 42] started considering the possible produc-
tion of stable SQM in Heavy-Ion Collisions (HIC). The enhancement in strangeness
production in HIC was alreadt theorized by Rafelski and Muller [43]. The paper
is a foundational work in high-energy nuclear physics. It calculates the rates of
strangeness production processes in a highly excited Quark-Gluon Plasma (QGP).
The paper finds that for temperatures above approximately 160 MeV, the abun-
dance of strangeness in the plasma saturates within its lifetime, which is relevant
for plasmas created in high-energy nuclear collisions.

The study uses the MIT bag model to assume values for the strange quark mass
and the effective QCD coupling constant. The paper illustrates that the chemical
equilibration time for gluons and light quarks is less than 10−23 s, suggesting that
the QGP reaches chemical equilibrium rapidly during its lifetime. The numerical
results show that strangeness production by gluons is the dominant process and that
the strangeness abundance will be chemically saturated at temperatures above 160
MeV. Therefore, enhanced abundances of strange hadrons, such as the Λ particle,
can be utilized as indicators for the formation of QGP in nuclear collisions.

In Greiner et al. [41] the strangelets instead were thought to be the transient
signature for the existence of the QGP. The authors describe two potential out-
comes for the state of matter after a heavy-ion collision. One outcome involves
the formation of a strangelet, seen as a metastable droplet of SQM. The other in-
volves the creation of multistrange hadrons during the last stage of the transition.
These strangelets, if formed, may serve as evidence for the transient existence of a
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quark-gluon plasma.
During the phase coexistence, the quark phase becomes charged with strangeness

due to the emission of mesons like kaons, which carry away entropy, and antis-
trangeness from the system. This leads to an increase in the strangeness abundance
in the quark phase. The hadron phase, on the other hand, becomes diluted and
absorbs the remaining entropy.

A key point is that as the system cools, the resulting strangelets are hypothesized
to have a distinct charge-to-mass ratio, which could provide a unique signature of
their existence. The cooling process of the QGP following a heavy-ion collision is
crucial to the potential formation of strangelets. As the QGP, an extremely hot and
dense state of matter, expands, it begins to cool down and transition into hadronic
matter—a state consisting of particles such as protons, neutrons, and mesons.

This cooling is not merely a reduction in temperature due to expansion. It is sig-
nificantly influenced by thermal evaporation, where particles with sufficient kinetic
energy, particularly mesons like pions and kaons, escape from the plasma’s surface.
These particles carry away not only energy but also entropy and antistrangeness.
The emission of kaons is especially critical as it involves strange quarks, leading to
an increase in the strangeness within the remaining quark phase.

The process of meson radiation thus serves a dual purpose. It cools the system
by removing high-energy particles and alters the composition of the quark phase, en-
riching it in strangeness. This enrichment is essential as it may lead to the formation
of strangelets once the system has cooled sufficiently.

Moreover, the cooling of the QGP also occurs through isentropic expansion,
where the plasma expands, its volume increases, and its temperature decreases while
maintaining constant entropy. However, the addition of meson radiation introduces
a non-isentropic dimension to the cooling, as entropy is actively reduced by the
escaping mesons, signifying a move toward a more ordered state.

As the QGP cools and loses entropy, it is hypothesized that the quark phase could
become super-saturated with strange quarks, possibly leading to the formation of
strangelets. These strangelets, if formed, could be stable or metastable at the lower
temperatures achieved after the plasma has cooled. They are of particular interest
because their detection would provide a unique signature of the prior existence of
the QGP and contribute to our understanding of the strong force and the behavior
of matter under extreme conditions.

In a similar fashion, in the second paper [42] they show that in heavy-ion colli-
sions (the initial net strangeness of the QGP is zero) during the phase transition,
there can be a significant accumulation of antistrangeness in the hadronic mat-
ter and a corresponding enrichment of net strangeness in the quark-gluon plasma.
A first-order deconfinement phase transition is assumed, with conditions of Gibbs
phase equilibrium dictating that temperature and chemical potentials are continuous
across the phase boundary while the corresponding densities are not.

It concludes by emphasizing the potential for the proposed strangeness separa-
tion mechanism to lead to a tremendous enrichment of strange quarks in the QGP
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during the late stage of the phase transition. This could result in the formation
of strangelets, which authors claim to be metastable only for small value of A and
stable for A > 10 . Moreover, the authors study the impact of the bag choice in the
original MIT bag model and they found that B1/4 < 160 MeV, similar to Farhi and
Jaffe [40].

1.3 Modelling SQM: confinement models VS chi-

ral models

In the ’90s people start talking about confinement [44] and mass dependence on
density [45]. Moreover they start to study multi-strange objects in HIC, namely
production and possible stability of hyperonic matter and strange clusters [46, 47].

The Witten’s hypothesis remains a significant question in nuclear and particle
physics, with profound implications in astrophysics and possibly cosmology. In the
context of confinement models, such as the MIT bag model [48], there is consider-
able flexibility in parameter choices that can accommodate the existence of stable
SQM. The hypothesis is particularly satisfied when considering smaller values of the
strange quark current mass [49].

Chiral models, however, seem to present challenges for the Bodmer-Witten hy-
pothesis. For instance, models like the Nambu-Jona-Lasinio (NJL) model [50], which
emphasizes chiral symmetry, appear to not satisfy this hypothesis [51, 52]. A crucial
factor in these models is the density dependence of the strange quark mass, which
is determined by quark-meson couplings. The hypothesis could be fulfilled if there
is a significant interplay between confinement and spontaneous chiral symmetry
breaking.

The Chiral Chromo-Dielectric Model (CCDM) [53, 54, 55], which incorporates
elements of both chiral models and confinement, is noteworthy. This model is an
extension of the Chromo-Dielectric Model (CDM) model, which simulates quark
confinement through the action of the color dielectric field, effectively making quark
masses diverge in vacuum.

The CDM lagrangian reads [53, 56]:

L = ψ̄iγµ∂µψ − g

χ
ψ̄ψ +

1

2
(∂µχ)2 − U(χ) (1.1)

In this formulation, U(χ) represents a potential with a definite minimum when
χ = 0. Some variants of the model also feature a local minimum for χ = χv ̸= 0.
Crucially, the scalar field χ correlates with quark density, tending towards zero as
the chiral condensate ψ̄ψ approaches zero. This results in the quark mass mq = g/χ
becoming infinite at low quark densities. This divergence in quark mass at lower
densities effectively confines quarks within areas of finite density, preventing their
spread into regions of zero density. While it successfully models confinement in a
manner consistent with a potential between quark pairs that linearly increases with
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their separation at greater distances, neither lattice QCD calculations nor analytical
studies of QCD in the infrared regime suggest a diverging quark mass. Thus, this be-
havior within the model should be considered more as a phenomenological approach
to describe confinement rather than a direct derivation from QCD principles.

Alberico et al. [57] studied indeed the case in which the potential U(χ) has
a double minimum, checking how different it behaves with respect to the MIT bag
model. The study compares the energy per baryon with the masses of hyperons hav-
ing equivalent strangeness fractions, also incorporating the perturbative exchange
of gluons. The MIT bag model and the double minimum version of the CDM sup-
port the possibility of strangelets, as these models propose a two-phase picture of
hadrons with a false vacuum. They indicate that the minimum energy per baryon
number versus the strangeness fraction Rs is lower than the hyperon masses with the
same Rs, suggesting the metastability of strangelets with a potential mass gap up
to 300 MeV. On the other hand, the single minimum version of the CDM does not
support the existence of strangelets, except potentially at Rs = 2

3
, taking into ac-

count surface energy contributions. Alberico et al. [57] emphasizes that the stability
of strangelets, potentially formed from the quark-gluon plasma phase in relativis-
tic heavy ion collisions, is significantly influenced by the model employed, with the
CDM supporting the stability of strangelets only in its double minimum version,
thereby posing challenges to their detection as a signature of the QGP phase.

On the other hand CCDM, with its ability to dynamically confine quarks while
being chiral invariant, provides a framework where the Bodmer-Witten hypothesis
can be realized, blending the features of chiral symmetry and confinement.

The chiral version of the model has been studied in Broniowski et al. [58], Barone
et al. [59] and Drago et al. [55]. The lagrangian in this case incorporates more
elements and reads:

L = iψ̄γµ∂µψ +
g

χ
ψ̄ (σ + iγ5τ⃗ · π⃗)ψ

+
1

2
(∂µχ)2 − U(χ) +

1

2
(∂µσ)2 +

1

2
(∂µπ⃗)2 − U(σ, π⃗).

(1.2)

In particular Drago et al. [55] found that the deconfinement phase transition and
the restoration of chiral symmetry are observed to occur at substantially different
densities. Additionally, QM when the potential has only one minimum version
becomes unstable at low densities, in according with Alberico et al. [57]. This
instability is evidenced both through the study of compressibility and the analysis
of collective states at zero energy transfer, with both methods identifying the same
critical density (chiral restoration).
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1.4 Color superconductivity in the Equation of

State

The idea of color superconductivity in QM comes from the Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity in solid state physics.

When we consider superconductivity in metals, we associate the BCS mechanism
with the creation of Cooper pairs of electrons, resulting from an attractive interaction
among fermions at a Fermi surface (mediated by quasi-particles named phonons).
Analogously, quarks at high densities and relatively low temperatures form Cooper
pairs, which condense to create a color superconducting phase. When we delve into
QCD we have to consider that the Cooper pairs’ formation is even more robust than
in metals. This is attributed to the strength of color interaction between quarks,
since the attractive interaction is mediated by gluons. The Cooper pairs behave
like bosonic particles, settling in the state with the lowest energy. Given that the
BCS mechanism is a collective process, and its strength increases with the number
of participating fermions, it becomes particularly relevant in compact stars where
dense QM can be present.

Formally, we take into account the appearance of color superconductivity by
introducing in the lagrangian diquark terms in NJL-like models, namely quark-quark
interactions. The diquark interaction lagrangian reads:

Lqq =
∑
D

GD(ψ̄Γ̂(D)Cψ̄T )(ψTCΓ̂(D)ψ) (1.3)

where C is the charge conjugation operator defined as C = iγ2γ0, D are the
various diquark channels, GD the coupling constant and Γ̂D the diquark operator.

When we study the thermodynamic potential, we transform the interactions into
a bilinear form of quark fields using mean-field approximation. Following the ideas
of BCS theory, we expect that a color superconductor’s ground state would possess
a nonzero expectation value, namely a diquark condensate.

When we account for color superconductivity in our models, we have additional
contributions in our Equation of State (EoS) that are functions of the color supercon-
ductive gap ∆. What has been done for many years is to write phenomenological
models which are similar to the MIT bag model but that include parameters to
account QCD perturbative corrections.

The form of the most generic phenomenological thermodynamic potential reads
[60]:

Ω = − 3

4π2
a4µ

4 +
3

4π2
a2µ

2 +Beff . (1.4)

In the simpler version of the equation a4, a2 and Beff do not depend on the
quark chemical potential µ, usually taken as and averaged chemical potential when,
for example, considering Color-Flavor-Locked (CFL) matter (in general Beff is not
a constant as in section A.6).
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The quartic coefficient a4 ≡ 1 − c accounts for QCD corrections to the pressure
of the free-quark Fermi sea. When c = 0, then a4 = 1, it corresponds to consider
non interacting free quarks. In general QCD corrections are not negligible and
the contribution of a4 is of the order of 0.3. The quadratic coefficient a2 appears
when accounting for strange quark mass ms or for color superconductivity. For
CFL matter a2 = m2

s − 4∆2 from which it is clear the effect of the strange mass in
increasing the free energy and the effect of gaps formation in reducing it. This is
not the only way to consider an EoS for color superconductive QM. The potential
in Eq. 1.4 is inspired to MIT bag model but one can derive the thermodynamic
potential also from the Lagrangian of the 3 flavours NJL model as Eq. A.20, adding
the diquark condensate term (Eq. 1.3). Even though the calculation is possible, the
EoS obtained by doing this will not respect the Bodmer-Witten hypothesis on the
absolute stability of SQM [51, 52].

Diquark Condensation Patterns

Since the color superconductivity in strange quark matte descends from a breaking
of the SU(3) group, several condensation patterns are possible because of the 8 gen-
erators of the group itself. Therefore, different phases of dense QM are characterized
by distinct diquark condensation patterns. Below are the condensation patterns for
some of the most studied phases:

1. Two-Flavor Color Superconductor: The Two-flavor Superconductor (2SC)
phase is one of the first color superconductive condensation pattern ever stud-
ied. In the 2SC phase, two out of three color charges are involved in the
Cooper pairing, leaving one color unpaired, conventionally the blue one. The
diquark condensate ∆ is defined as:

−GD⟨ψTCiγ5σ2λ2ψ⟩ (1.5)

where the Pauli matrices σ2 and λ2 specify the up-down flavor pairing and
red-green color pairing, respectively.

In 2SC thermal conductivity can be significantly affected by the presence of
the superconductive gap. The unpaired quarks, which do not have a gap,
can contribute more effectively to thermal transport, while the paired quarks
will have suppressed contributions [61]. Moreover, the 2SC phase can exhibit
gapless modes when decreasing the density of the system. For example when
in the ds sector the ratio between the squared constituent mass of the strange
quark and the chemical potential becomes

M2
s

µ
= 2∆ds ,

where ∆ds is the d and s quarks pairing gap, Cooper pairs start to ”unpair”
and gapless modes appear [62]. The problem of the gapless phase is that is
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magnetically unstable: gluons acquire an imaginary Meissner mass, therefore
one has to think about other possible phases at low densities [63, 64].

2. Crystalline Color Superconducting Phase: The Crystalline Color Super-
conductor (CCS) phase seems to emerge at intermediate densities, lower indeed
than 2SC. This phase arises due to non-uniform pairing of quarks, specifically
when there is a mismatch between the Fermi surfaces of the quarks involved
in the pairing, often resulting from differing quark chemical potentials or in
the presence of an external magnetic field.

In a conventional color superconductor like 2SC or CFL, quarks pair uniformly
across the Fermi surface. However, when there’s a significant mismatch be-
tween Fermi surfaces, uniform pairing becomes energetically unfavorable. To
minimize the free energy in such situations, the system can adopt a non-
uniform pairing pattern, forming a spatially modulated diquark condensate.
This is analogous to the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase in
condensed matter systems.

The diquark condensate in the CCS phase can be represented as:

⟨ψai Cγ5ψbj⟩ ∝ ∆(r) cos(q · r) (1.6)

where ∆(r) is the position-dependent diquark condensate, and q characterizes
the modulation wave vector. The spatial modulation leads to a crystalline
structure in the condensate, hence the name.

This phase is intriguing not only from a theoretical perspective but also be-
cause it can have implications for the physics of compact stars. Distinct
crystalline patterns could result in different transport properties and specific
heat capacities, potentially influencing the observational signatures of compact
stars. Moreover, it has been argued that CCS phase could be the ground state
of SQM, even more energetically favourable than the unpaired one [63].

3. Color-Flavor Locked: For three flavors of QM at high density (asymp-
totically high), the most prominent color superconducting phase is the CFL
phase, which could be the absolute ground state of matter at very large den-
sities [65]. In this phase, quarks of different colors and flavors form Cooper
pairs, resulting in the simultaneous breaking of chiral and color symmetries.
The pairing occurs in such a way that the color and flavor indices of the quarks
are locked together, leading to the name ”Color-Flavor Locked”. This lock-
ing ensures that all nine combinations of color and flavor for the quarks have
similar Fermi surfaces, promoting an equal participation of all quarks in the
pairing.

For this phase, the diquark condensate reads:

−GD⟨ψTCiγ5τkλkψ⟩ (1.7)
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where τ and λ are Gell-Mann matrices that specify the flavor and color pairing,
respectively. The index k can only assume values 2, 5, 7. The condensate
completely breaks the color symmetry, causing all gluons to gain a Meissner
mass. The disruption of flavor symmetries introduces eight Goldstone bosons,
with the only massless Goldstone boson being linked to the breaking of U(1)B.

The CFL phase is characterized by several intriguing properties. It exhibits
an exact chiral symmetry restoration, which means that the quark masses ef-
fectively vanish in this phase. Furthermore, the presence of a superconductive
gap for all quark quasiparticles implies that many typical scattering processes
are suppressed, leading to potentially high thermal conductivities. The locked
nature of color and flavor in this phase also means that conventional weak
interaction processes, which would typically scatter quarks, are strongly sup-
pressed. As a result, neutrino emission rates might be significantly modified
in the CFL phase, directly influencing the cooling of compact stars.

As as been said in the previous section, even though chiral models like NJL allow
us to consider phase transitions in a very formal way, we cannot satisfy Witten’s
hypothesis because of the lack of a confinement mechanism.

Nevertheless, pedagogically, it is actually possible to build an EoS within the
NJL framework respecting Witten by totally neglecting the quark masses. This
procedure is followed in Paulucci et al. [66] and Ferrer et al. [17]. Here, the authors,
willing to study the asymptotic CFL state, set all the quark masses equal to zero.
This is a strong assumption for the range of chemical potential of SQSs since in the
NJL model the strange quark mass is far from being null. Nevertheless, what they
obtain is a potential that reads:

ΩCFL = − 1
4π2

∫∞
0
dp p2e−p

2/Λ2
(16|ε| + 16|ε̄|)

− 1
4π2

∫∞
0
dp p2e−p

2/Λ2
(2|ε′| + 2|ε̄′|) + 3∆2

G
(1.8)

where ε, ε̄, ε′, ε̄′ are the dispersion relations of the quasiparticles which, as as-
sumed, don’t depend on the quark masses but only on the CFL superconductive gap
∆, on the momentum p and on the chemical potential µ. Of course, the advantage of
the NJL framework is the possibility of calculating a dynamical gap that is density
dependent since we can rely on the gap equation

∂ΩCFL

∂∆
= 0 . (1.9)

Dynamical quantities are crucial when studying phase transitions and to de-
termine which phase of QM is the ground state at a fixed chemical potential and
temperature.

It is important to notice that even though the NJL model does not permit to
obtain absolute stability of SQM, then it should not be used to model the EoS of
SQSs, it can indeed be used to describe the core of a Hybrid Star (HyS), namely
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stars having deconfined quarks sitting at their center, stabilized by the large pressure
given by the rest of the nuclear matter composing the star.

1.5 Impact in astrophysics

Over the past decade, the topic of color superconductivity and dense QM in the
astrophysics of compact objects has been extensively studied [51]. However, we
are yet to fully grasp it. QM in a color superconducting phase is characterized
by the formation of a diquark condensate. Thanks to the color, flavor, and spin
attributes of quarks, various color superconducting phases are possible. At extremely
high densities, as mentioned before, QCD predictions suggest that the CFL is the
most likely. On the other hand, for lower densities, standard methods don’t work,
requiring us to rely on effective models. These models must align with experimental
findings.

Indeed, at intermediate densities, like the ones which are most relevant in com-
pact stars, perturbation theory isn’t applicable. Anyway various researchers tried
to explore how color superconducting matter can affect a compact star, trying to
hypothesize the existence of a whole star made by just one phase of QM.

Since it is hypothesized that CFL might be intrinsically stable, it has been pro-
posed that SQS entirely made by CFL matter can possibly exist. However, its super-
fluid characteristics could restrict its rotation speeds due to inefficient damping of
r-modes oscillations. These r-modes oscillations, non-radial star oscillations which,
when linked with gravitational radiation, result in the star’s spin-down, ensure that
CFL stars can’t rotate at speeds exceeding 1 Hz [67].

In reality, the structure of SQSs can be more complex. Given that low energy
calculations rely on effective theories, it is plausible to immagine stars where CFL
matter is present only at their very core, without influencing the star rotation speed
as if it was entirely composed of this phase of SQM. Indeed, condensation pattern
at lower densities are expected to be, for example: 2SC, CCS, CFL-K0, CFL-K+,
CFL-π0 etc. [1, 63]. Moreover, a SQS can be bare or non-bare, namely it could have
a thin nuclear crust on its surface or not. A bare SQS is fundamentally different
from a NS in terms of its surface density and thickness. The surface density of a
NS range from about 0.1 to 1 g/cm3, whereas the thickness of the SQS surface is
just around 1 fm, which is the length scale of the strong interaction. Even though
the crust is this thin, it can strongly affect the cooling of the star leading to an
interesting phenomenology [68].

1.5.1 Observable - glitches

It is important to investigate SQS’s possible structure since it can be connected to a
series of astrophysical phenomena having great importance such as glitches. Glitches
are sudden increase of the rotational speed of pulsars, namely highly magnetized,
rotating NSs that emit beams of electromagnetic radiation. When these beams are
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aligned with the Earth, they can be detected, making these rotating stars similar to
cosmic lighthouses.

A large number of pulsars we have identified exhibit these glitches, or sudden
increases in their spin rate. Such an event is quantified by the relative change in
spin frequency (∆Ω/Ω where Ω is the rotational frequency) that occurs during the
glitch itself.

Although the exact cause behind glitches remains a topic of debate and investiga-
tion, one of the prominent explanations is the starquake model. Proposed by Baym
et al. [69], this model draws an analogy with earthquakes. Just as energy is stored
and suddenly released in tectonic plates, causing earthquakes, energy accumulated
in the crust of the pulsar can be suddenly released, leading to these starquakes or
glitches.

According to the starquake model, the magnitude or size of the glitch is directly
related to the amount of energy released. In simpler terms, a smaller release of
energy would result in a minor glitch, while a more substantial energy release would
produce a more pronounced glitch. This theory thus offers a quantitative framework
to understand the relationship between the energy dynamics within a pulsar and the
observable glitches we detect.

When considering the architecture of a SQS one can conceptualize a multi-layered
structure of SQM due to the occurrence of phase transitions between color super-
conducting states.

In a very naive picture we can imagine, following the idea of Mannarelli et al.
[70], two main layers constituting the SQS:

• The outermost layer that can be imagined as a crust of the star with a great
rigidity. This outer crust, if it exists in the color superconductive crystalline
phase (already mentioned as CCS), could play a crucial role in some of the
observable glitches in the cosmos.

• An inner layer that is less rigid that can be for example CFL or even unpaired
SQM.

But what makes this crust so special in the context of glitches? Its pronounced
rigidity allows it to store immense amounts of energy. When the crust reaches a cer-
tain threshold, it can release this quantity of energy rapidly, resulting in substantial
and sudden changes in the star’s spin rate, or glitches. Of course, other possible
explanation of the glitches phenomenon have been proposed during the years. In-
deed, glitches can possibly have different origins, in the sense that multiple glitches
mechanisms can exist, depending on the compact star characteristics.
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Figure 1.1: Schematic structure of a NS and of a simplified SQS from Weber et al.
[1]

1.6 Compact Stars

1.6.1 Neutron stars

NSs are the remnants of massive stars that have undergone a SN explosion at the
end of their lives. The formation of these exotic and dense objects is a process that
involves the interplay of various physical phenomena.

The formation of a NS begins with the end of life cycle of a massive star, typically
having a mass between 8 M⊙ and 20 M⊙. These stars undergo nuclear fusion in
their cores, converting hydrogen into helium through a series of nuclear reactions.
The energy generated by these reactions counteracts the gravitational force trying
to collapse the star.

As the star exhausts the hydrogen, the core contracts, causing an increase in
temperature and pressure. This initiates the fusion of heavier elements like helium,
carbon, and oxygen. The star then undergoes a series of nuclear burning stages,
forming progressively heavier elements in its core.

Eventually, the nuclear burning stages lead to the formation of an iron core.
Since the iron cannot burn into heavier and more stable elements, the core cannot
generate enough energy to counteract the force of gravity, leading to the core’s
collapse.

The core implosion happens rapidly, with the inner core reaching a density of ap-
proximately 1014 g/cm3. The core’s collapse proceeds until the electron degeneracy
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pressure can no longer support it against further compression. Indeed, during the
collapse, electrons are forced to combine with protons through inverse beta decay:

e− + p+ → n+ νe. (1.10)

This process converts protons into neutrons, releasing electron neutrinos (νe). As a
result, the core is transformed into a dense soup of neutrons and a small fraction of
protons and electrons.

As the core reaches densities akin to those in atomic nuclei, it experiences a
powerful rebound in the form of a SN explosion. This explosion releases an enormous
amount of energy. The expelled outer layers of the star disperse into space, enriching
the surrounding cosmic environment with heavy elements produced within the star.

After the big explosion of a SN, what’s left becomes a NS. These objects have
radii of the order of 10-15 km and a typical weight of about 1.4.

1.6.2 Observations and constraints

The study of NSs is an intriguing pursuit that blends astrophysical observations
with theoretical predictions, revealing the complex nature of these astrophysical ob-
jects. NSs serve as cosmic laboratories, providing a unique window into fundamental
physics, such as the EoS for dense matter, and the extreme dynamics dictated by
gravity.

NSs are brought to light through various phenomena, including pulsars, X-ray
binaries, and GW signals. Pulsars, rapidly rotating NSs emitting beams of radiation,
provide exquisitely accurate timing signals that facilitate measurements of crucial
stellar properties, such as mass and radius. X-ray binaries, binary star systems with
a NS accreting matter from a companion star, offer vital insights into NS accretion
processes. The spectral features and variability of X-ray emissions help determine
the mass and radius of the NS.

Recent advancements include the NICER mission [71, 4, 72], which enhances our
understanding of NS compactness. By analyzing X-ray emissions from NSs, NICER
offers precise measurements of NS radii, providing direct insights into their structure
and EoS.

GW signals measured from the Ligo-Virgo collaboration, such as those emitted
during NS mergers, furnish invaluable information about the compactness of NSs.
The chirp mass and tidal deformability inferred from these signals offer essential
data for understanding the EoS under extreme densities.

On the theoretical front, predictions and constraints contribute complementary
insights. The EoS, capturing the intricate interplay between pressure and density
in NS matter, takes center stage. Constraints on it come from nuclear physics
experiments, laboratory measurements, and astrophysical observations.

The precise measurements of mass and radius obtained from pulsars, coupled
with theoretical EoS models, effectively pinpoint the nature of dense matter. Ob-
servations of massive NSs challenge certain softer EoS models, prompting the need
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for more stiff equations of state. In turn, theoretical models furnish predictions that
guide interpretations of observations, offering detailed expectations for NS structure
and behavior under extreme conditions.

1.6.3 Hyperon Puzzle

As NSs evolve, they reach a point where matter density surpasses that of atomic
nuclei. At these densities, it is postulated that hyperons could become energetically
favorable and appear as constituents of the dense matter within NSs [73]. The pres-
ence of hyperons softens the EoS by contributing additional pressure to counteract
gravity, leading to tension between hyperonic EoSs and recent radii measurements.

One possible resolution to the hyperon puzzle involves the presence of more
complicated physic. For example, hyperons might form exotic condensed phases,
such as hyperon-nucleon clusters or QM, which alter the cooling dynamics [74].

Another avenue of exploration invokes repulsive hyperon-hyperon interactions
[75, 76, 77], which could mitigate the presence of hyperons in the dense core of
NSs. Such interactions could effectively halt the appearance of hyperons, reconciling
theoretical predictions with observational data. Nevertheless, spectroscopic and
lattice studies [78, 79] suggest that the channel of interaction is attractive, thus
falsifying such theoretical predictions. Moreover, the speed of sound of nucleonic
EoSs often violates the causal limit.

1.6.4 Hybrid Stars

The quest to unravel the hyperon puzzle has led to the exploration of HyS, a proposal
that holds the potential to address the conflicting aspects of NS cooling rates while
exploiting the unique properties of both hadronic and QM.

In the context of HyS, the core of a NS is envisaged as transitioning from tradi-
tional hadronic matter to (ud or uds) QM. As density rises, quarks might deconfine
forming a ”quark core” within the star’s interior. This transition can enhance the
stiffness of the EoS, counteracting the softening introduced by hyperons.

Moreover, an ingenious addition to this model is the incorporation of vectorial
repulsion within QM. This repulsion, arising from vector interactions among quarks,
effectively stiffens the EoS. By tuning the strength of this repulsion, the EoS can be
adjusted to match both the constraints set by hyperons and the demands of cooling
rate observations.

The interplay between deconfined QM and vectorial repulsion offers a promising
resolution to the hyperon puzzle. The transition to QM not only provides a stiffer
EoS but also introduces a diverse spectrum of possible states, including QM in CFL
phase. These phases confer additional stability and robustness to the equation of
state.

By incorporating deconfined QM and leveraging the effects of vectorial repulsion,
this model bridges the gap between theoretical predictions and observed cooling
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rates, shedding light on the complex interplay between hadronic and quark phases
within NSs.

Several HyS model have been proposed in the last years but recently it has
been suggested in Ivanytskyi et al. [80] that an early deconfinement is need in order
to satisfy the most recent observational constraints. In the latest paper QM is
treated with a chiral model which includes confinement in a similar fashion to CCDM
(section 1.3).

1.6.5 Strange Stars and the two-families scenario

A fascinating astrophysical scenario for compact stars, based on the Bodmer-Witen
hypothesis, the one taken into account in this thesis, is the so-called two-families
scenario, described in Drago et al. [81]. The two-families scenario is a theoretical
framework that suggests the coexistence of two types of compact stars: HSs and
SQSs. HSs are composed of nuclear matter, including delta resonances and hyperons,
while SQSs are made up of QM. This scenario allows for the possibility of different
types of compact stars to exist in the universe. Moreover, it represents a natural
solution to the hyperon puzzle (subsection 1.6.3).

The EoS for hadronic matter is softer, because of the presence of hyperons and
delta resonances at densities more than about twice the nuclear saturation density.
This allows for HSs with smaller radii and masses not exceeding ∼ 1.6 M⊙. In
contrast, the EoS for QM can be stiff, leading to the SQS branch being populated
by large and heavy compact stars, with possible masses up to 2.6 M⊙, as noted in
Bombaci et al. [2].

One of the key implications of the two-families scenario is its impact on the
merger of compact stars. Numerical simulations have shown that in the case of the
merger of two HSs, there can be a rapid collapse to a BH, even for masses smaller
than those associated with the GW170817 event. Additionally, the post-merger rem-
nant in the two-families scenario exhibits oscillations at higher frequencies compared
to the one-family scenario, namely the scenario where only one branch of compact
stars exists. The merger also results in a larger mass dynamically ejected and a
smaller mass of the disk surrounding the post-merger object, particularly for low
total mass binaries.

This scenario suggests that the merger of a HS and a SQS is very likely, and
GW170817 has a possible interpretation within this category of mergers.

Observations and estimates of various properties of compact stars, such as masses,
radii, tidal deformabilities, and moments of inertia, are consistent with the predic-
tions of the two-families scenario. In particular, objects with large radii in the
universe can be interpreted as potential candidates for SQSs within this framework.

Population synthesis analysis suggests that the merger of a HS and a SQS is
highly likely, especially for unequal mass systems and intermediate values of the
total mass. On the other hand, mergers between two SQSs are strongly suppressed.

Moreover, this scenario has important implications also for what concerns the
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merger between a BH and a NS. In the case of the two-families scenario no KN
signal (or a very weak one) is expected. This is in direct contrast with the one-
family scenario in which the expected KN signal can be rather strong, depending
on the EoS: the stiffer the EoS, the stronger the KN signal.

It should be noticed that not all compact stars are SQSs, mainly because we
have observed events compatible with the existence of NSs (SN1987a).

Combustion of an HS to SQS

If the Bodmer-Witten hypothesis holds, it should be possible to convert an HS into
a SQS. This can possibly happen when the strange content of the HS is enough
to trigger the nucleation of QM. Within this hypothesis hadronic matter becomes
metastable and can ”decay” into SQM under specific conditions. These conditions
are primarily determined by the strangeness content present in hadronic matter
[82, 81].

The transformation of a NS into a SQS is an intricate process that has been
extensively examined in the field of astrophysics. Several studies have delved into
the potential methods and mechanisms underlying this transformation.

One study conducted by Olesen and Madsen [83] explored various possibilities for
the conversion of NSs into SQSs. These included scenarios like pressure-induced con-
version and collisions with energetic neutrinos or smaller clumps of SQM. However,
this study did not offer a specific conversion rate, leaving open questions regarding
how common or rare such conversions might be.

Another investigation led by Tokareva and Nusser [84] demonstrated the feasi-
bility of neutron-to-SQM conversion within NSs through a combustion process with
a well-defined front. This study discussed the conditions for different combustion
modes, such as deflagration, detonation, or fast combustion, based on the equations
of state governing neutron and SQM.

Weber et al. [85] explored the potential formation of QM in the cores of NSs.
They pointed out that the cores could reach densities significantly higher than the
nuclear saturation density, allowing for the disintegration of neutrons and protons
into their quark constituents. Furthermore, they suggested that if QM does exist
within these cores, it would likely consist of the three lightest quark flavors.

In De Pietri et al. [86], it was estimated that the nucleation of the quark phase,
leading to the production of SQM, becomes feasible only when the hyperon fraction
exceeds approximately 0.1. This transition typically occurs at densities a few times
greater than the nuclear saturation density. As a result, HSs characterized by a
central density below this critical threshold are considered stable. On the other
hand, only HSs with higher central densities have the potential to convert into
SQSs. In this scenario, HSs and SQSs coexist, representing distinct branches of
compact stars.

One distinctive aspect of the two-families scenario is the possibility of forming
a SQS with a larger radius compared to an HS of the same baryonic mass (see
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Fig. 1.2). The underlying dynamics and conditions governing this phenomenon have
been extensively explored in various studies, including Drago and Pagliara [87].
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Figure 1.2: Possible MR diagram in the two-families scenario taken from Bom-
baci et al. [2], showing the compatibility of SQSs of the scenario with the event
GW190814.

The implications of converting HSs into SQSs has been studied in several works
[2, 88]. The most important feature of the conversion is that the newborn SQS has
a lower gravitational mass than the original HS despite having the same baryonic
content. This is a direct consequence of the Bodmer-Witten hypothesis.

In light of this scenario, it is important to take a fresh look at GW events and
reinterpret them within the context of these insights. For instance, let us consider
the event GW190814, where the less massive celestial object involved was not a NS,
as commonly assumed, but rather a SQS.

QSs have a unique characteristic that sets them apart: they can attain masses
that are comparable to those indicated by GW190814 without necessitating sound
velocities violating the conformal limit (cs = 1

3
in c units) [2]. This property can

be attributed to the large adiabatic index value. This means that SQSs can achieve
significant mass without undergoing extreme physical conditions.

However, it is important to consider that the hypothesis of all compact stars
being SQSs is unlikely. There are several reasons to support this. For instance,
magnetar oscillations, as extensively studied, present challenges to the concept of
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SQSs [89]. Additionally, the analysis of the energy released during the SN1987A
supernova event suggests a binding energy that aligns well with that of a NS rather
than a SQS [90].
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Chapter 2

BHNS in the two-families scenario

2.1 Introduction

Mergers between BHs and NSs are very interesting astrophysical events. They pro-
duce GW emissions and can also manifest as strong electromagnetic (EM) coun-
terparts, specifically, short Gamma-Ray burst (sGRB) and KN emission [91]. The
disintegration of the NS results in the dynamic expulsion of material and the cre-
ation of a heated disc around the BH. These processes potentially contribute to the
generation of sGRB and KN radiations. KNe are energetic events that can be a
thousand times brighter than a SN, characterized by the emission of large amounts
of heavy elements, created through rapid neutron capture (the r-process). The abil-
ity to generate these EM signals depends mainly on the BH mass: a very massive
BH prevents the possibility of forming an accretion disc and expelling material be-
cause tidal forces that drive NS disruption are greater for smaller BHs. For BHs
with masses ≲ 10 M⊙, if the dimensionless spin parameter of the system (χ) is high
enough and the EoS for the compact star is not too soft, a mass around 0.01 M⊙
can be expelled. Moreover, a larger mass, close to 0.1 M⊙, might form an accretion
disk, which could later be reduced by neutrinos, leading to more mass being ejected.

Indeed, during a merger, the ejection of matter is related to the tidal disruption
of the NS. This disruption begins when the separation between the binary compo-
nents (dtidal) reaches a critical point where tidal forces exert enough influence to
disintegrate the star. Precisely, tidal disruption occurs when dtidal is greater than
the innermost stable circular orbit of the BH (RISCO), expressed as dtidal > RISCO.
The approximation for dtidal is given by the formula:

dtidal ≊ RNS

(
3MBH

MNS

)1/3

(2.1)

Here, MNS denotes the NS mass, MBH stands for BH mass, RNS represents
the NS radius, while RISCO is exclusively a function of the spin of the black hole
(χBH)[92] as it will be defined below.

In situations where this critical condition is satisfied, the ejection of material
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stemming from BH-NS binary mergers can be broadly classified into two compo-
nents: dynamical ejecta and matter expelled from the bound disk [93]. The subse-
quent calculation of crucial properties associated with these components lead to the
correct calculation of the luminosity of the resulting KN, and we delve into these
calculations in the following sections.

Data from NICER’s study of PSR J0740+6620 indicate that the EoS for NS
matter is quite rigid, especially for the heaviest compact stars [26, 3, 94]. If there
is only one type of compact star, we therefore might expect a strong KN signal for
many BH-NS mergers.

On the other hand, in the two-family scenario, the dynamics of BH-NS mergers
show a different behavior. As described in subsection 1.6.5, in this scenario HSs and
SQS s coexist. The concept of the two-families scenario was developed to address
the potential existence of extremely compact stars, characterized by a radius of
approximately less than 11.5 km when having a mass of around 1.4 to 1.5 M⊙.

Given the inherent challenges associated with directly measuring star radii, which
are susceptible to substantial systematic errors, it becomes fundamental to explore
alternative methods for verifying the existence of those very compact stars charac-
terized by exceedingly small radii. The work presented in Di Clemente et al. [33]
underscores that stars featuring those radii would exhibit a very suppressed KN sig-
nal when in a BH-NS merger, offering a distinctive signature for their identification.

2.2 The ejecta mass

To obtain an approximation of the ejected mass, we employ semi-analytical models
developed by Foucart et al. [95] and Kawaguchi et al. [9]. These models are con-
structed based on data obtained from simulations of BH-NS mergers and offer a
fitting approach to estimate two crucial quantities: the mass of the accretion disk
(Mdisk) and the mass of dynamically ejected material (Mdyn). These estimates rely
on five key parameters: the mass, compactness, and tidal deformability of the NS
denoted as (MNS, CNS, and ΛNS), as well as the mass and the parallel spin com-
ponent of the black hole (MBH and χBH,||). Once we have estimates for Mdisk and
Mdyn, it becomes possible to predict the intensity of the KN signal [96].

The mass of the matter that doesn’t get promptly accreted by the BH, denoted
as Mout, comprises two distinct components. Firstly, there is Mdisk, which signifies
the material that remains gravitationally bound to the BH. Secondly, there is Mdyn,
representing the portion of matter that becomes unbound. The determination of
Mout is based on an interpolation formula, as described by Foucart et al. [95]:

Mout = Mb
NS

[
max

(
α

1 − 2ρ

η1/3
− βR̃ISCO(χBH,||)

ρ

η
+ γ, 0

)]δ
(2.2)

where α, β, γ, δ are fitting parameters. The parameter χBH,|| corresponds to the par-
allel component of the BH spin, which depends on the dimensionless spin parameter
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χBH and the angle ιtilt representing the inclination between the BH spin axis and
the total angular momentum axis. In the analyses conducted by Foucart et al. [95],
they employ a crucial parameter known as the symmetric mass ratio. This choice
ensures that their parametrization maintains the fit stability even when dealing with
BH and NS masses that are of a comparable magnitude. It is worth highlighting
that in our analyses we utilize mass ratios that are within the established range of
applicability outlined in Foucart et al. [95].

In the aforementioned formula, ρ = (15ΛNS)−1/5 denotes a function associated
with the tidal deformability parameter ΛNS. This parameter reflects the NS’s re-
sponse to tidal forces. Furthermore, η assumes the role of the symmetric mass ratio,
and it is mathematically defined as:

η = q/(1 + q)2 , (2.3)

In the given equation, the parameter q is expressed as the mass ratio, specifi-
cally defined as the ratio of the NS mass (MNS) to that of the BH (MBH). R̃ISCO

corresponds to the dimensionless ISCO, which is RISCO rescaled by c2/GMBH. The
concept of ISCO is originally defined by Bardeen et al. [97] and plays a crucial role
in the dynamics of compact object binary systems.

R̃ISCO(χ) = 3 + Z2(χ)+

− sgn(χ)
√

(3 − Z1(χ))(3 + Z1(χ) + 2Z2(χ))
(2.4)

where
Z1(χ) = 1 + (1 − χ2)1/3[(1 + χ)1/3 + (1 − χ)1/3] (2.5)

and
Z2(χ) = (3χ2 + Z1(χ)2)1/2 . (2.6)

In Eq. 2.2, it is important to note that the parameters are constants which do not
exhibit any dependence on the NS mass. This characteristic is due to the fact that
the impact of the NS mass is encoded within the variables ρ and η. Additionally, the
term RISCO is the BH ISCO, as the original derivation for the behavior of unbound
material is done assuming the limit MBH/MNS → ∞.

The estimation for the dynamical ejecta mass is provided as follows [9]:

Mdyn = Mb
NS

{
max

[
a1q

−n1(1 − 2CNS)/CNS +

− a2q
−n2R̃ISCO(χBH,||)+

+ a3(1 −MNS/M
b
NS) + a4, 0

] } (2.7)

where a1, a2, a3, a4, n1, n2 are the fitting parameters. It is worth noting that in
order to maximize the value of Mdyn, the orbit should be in a prograde direction
with respect to the BH spin. Consequently, in our calculations, we consider prograde
orbits for this scenario and the ones that follow, i.e. χBH,|| ≥ 0.
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We can proceed to estimate the mass of the accretion disk as follows:

Mdisk = max [Mout −Mdyn, 0] (2.8)

i.e. the bound material refers to the entirety of material located outside the BH,
excluding the portion that is gravitationally unbound (ejecta).

Following Barbieri et al. [96] we set the limit for the dynamical ejecta mass as

Mdyn,max = f Mout , (2.9)

where f is the maximum ratio between the dynamical ejecta mass and the total
mass outside the BH. We set f = 0.3 following their estimates. It is worth to be
noticed that this ratio must be f ≤ 0.5.

Therefore, once a specific EoS for NS matter has been chosen, it becomes pos-
sible to calculate both Mdisk and Mdyn as mathematical functions that depend on
parameters such as MNS, MBH, and χeff . These parameters allow us to determine
the properties of the accretion disk and the dynamical ejecta, offering an estimate
of the possible KN signal.

2.3 EoSs

The recent findings from NICER have provided insights into the radii of NSs in the
mass range of approximately 1.4,M⊙ up to ∼ 2,M⊙. In the left panel of Fig. 2.1,
several recent constraints on NS masses and radii are displayed, including data from
NICER. Notably, EoSs which are moderately soft like SFHo are only marginally
consistent with this data. Instead, the observations suggest the presence of either a
stiffer nucleonic EoS or a pure quark matter EoS [18].

In our analysis we employ, referring to the scenario in which only one family
of compact stars exists: DD2 [98], AP3 [99] and MPA1 [100]. Additionally, two
EoSs, namely 2B and SFHo+H∆, are presented in Fig. 2.1, both of which are not
in agreement with the observations. SFHo+H∆ represents a hadronic EoS that
incorporates ∆-resonances and hyperons, characterizing the hadronic branch of the
two-families scenario.

Compact objects associated with this branch exhibit small radii, consistent with
what some authors suggest [101, 102]. On the other hand, 2B is a piece-wise poly-
tropic EoS [103], which has been used by Barbieri et al. [96] as a reference to show
that a soft EoS does not yield a strong KN signal. Notably, 2B is only slightly softer
than SFHo+H∆. Indeed in our analysis we employ just SFHo+H∆.
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Figure 2.1: MR relation from a selected EoSs. Observational constraints at 68%
confidence level (dot-dashed) for PSR J0740+6620 [3], PSR J0030+0451 (analysis
a) [4], PSR J0030+0451 (analysis b) [5], HESS J1731-347 [6], GW170817 [7], 4U
1702-429 [8].

In Fig. 2.1, the constraints obtained by M. C. Miller et al. [71] are compared with
results from three purely nucleonic EoSs, which represent a range of radii values
consistent with observations, assuming the existence of only one family of compact
stars. These EoSs include MPA1 and DD2, previously discussed in Barbieri et al.
[96], as well as AP3, which is close to the lower limit indicated by M. C. Miller et al.
[71].

It is worth noting that when considering a single family of compact stars, there
exists a precise linear relation between the radius and tidal deformability of NSs with
masses around 1.5M⊙ [104]. Consequently, the limits on radii directly translate into
limits on the tidal deformability.

2.3.1 Ejecta and disk estimate

A strong KN signal can be generated when the EoS is stiff [91, 96]. Here we show
values for both Mdisk and Mdyn in the case in which only one family of compact stars
exists. In this case the EoS that must adhere to constraints discussed in M. C. Miller
et al. [71].

Furthermore, we compare these values with those obtained in the two-families
scenario. This comparison allows us to explore the impact of different EoSs and
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scenarios on the KN signal generated during such mergers. In particular, we notice
that the expected ejecta in the one-family case is larger, in the majority of the cases,
with respect to the two-families one.
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Figure 2.2: Tidal deformabilities for the EoSs considered in our analyses.

As previously discussed, the amount of ejected material during a NS- BH merger
is intrinsically connected to the tidal deformability of the system. In essence, a more
deformable NS is prone to disruption as it coalesces with a BH. To quantify this,
we turn our attention to the tidal deformability values associated with the different
EoS under consideration, which are depicted in Fig. 2.2.

The tidal deformability serves as a crucial parameter in understanding the fate of
NSs in the context of BH-NS mergers. The varying degrees of deformability directly
impact the potential for NS disruption during these events.

Moreover, as observed in the previous section, the dynamical ejecta exhibits a
direct proportionality with the BH spin parameter, while it is inversely proportional
to both the NS mass and the BH mass. The significant differences between the
two scenarios, involving HSs are quite evident in the plots in Fig. 2.3, Fig. 2.4 and
Fig. 2.5.

It is important to highlight that SQS s are not considered in our analysis for
several crucial reasons:

• The fitting formulas used in our calculations are grounded in simulations in-
volving HSs and BHs. Therefore, they are not applicable to SQS s, and their
reliability in such scenarios is questionable.

• SQS s possess significantly higher binding energies than HSs, making them
inherently more ”sticky.” This stickiness implies a reduced likelihood of ejecta,
which would consequently lead to a suppression of the KN signal.
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• A simulation indicated a suppression of KN in the case of a SQS - BH merger
[105]. However, it is important to note that this simulation was performed
under the Schwarzschild metric. Since the spin of the BH is a crucial factor
in enhancing ejecta, future simulations will need to be conducted, accounting
for the effects of BH spin in SQS - BH mergers.
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Figure 2.3: Dynamical ejecta for BH of 5 and 7 M⊙ and for values of χBH,|| of 0,
0.2 and 0.5. The ejecta are shown for the four considered hadronic EoSs and for a
range of NS masses.
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Figure 2.4: Plots of the dynamical ejecta. Left figure top is relative to DD2, right
figure top to MPA1, bottom figure left to AP3, bottom figure right to SFHo+H∆.
The considered mass of the star is in all the plots ∼ 1.4M⊙. Values for tidal
deformability for SFHo+H∆, AP3, MPA1 and DD2 are respectively ,ΛNS ≃ 142,
ΛNS ≃ 401, ΛNS ≃ 462 and ΛNS ≃ 571. Plots are function of the BH mass (MBH)
and of the parallel component adimensional spin parameter χBH,||.
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Figure 2.5: Plots of the mass of the disk. Left figure top is relative to DD2, right
figure top to MPA1, bottom figure left to AP3, bottom figure right to SFHo+H∆.
The considered mass of the star is in all the plots ∼ 1.4M⊙. Plots are function
of the BH mass (MBH) and of the parallel component adimensional spin parameter
χBH,||.

The insights derived from Fig. 2.3 are quite illuminating. It becomes evident
that when employing the one family EoSs, a notably broad range of values for MNS

leads to substantial values of Mdyn, resulting in a possibly strong KN signal. In
sharp contrast, when utilizing SFHO+H∆ for the same set of parameter there could
be also no mass ejection.

Furthermore, as evident from Fig. 2.4 and Fig. 2.5, where the specific case of
MNS ∼ 1.4M⊙ is examined, it becomes apparent that there is a broad range of the
parameter space for which the signal associated with the two-families scenario is
effectively suppressed. In contrast, in the one-family scenario the expected signal
can be quite strong.
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2.4 The kilonova model

In our first analysis, we employed a phenomenological KN model by Kawaguchi et al.
[9]. This model characterizes the geometry of the ejecta through a representation
illustrated in Fig. 2.6. Within this framework, the authors adopt an assumption of
homologous expansion, implying that each shell with the same radius possesses a
velocity given by v = r/t, where t is the time elapsed since the merger event.

After geometric considerations, the model furnishes an expression delineating
the mass of the region from which photons escape as a function of time. This
relationship is expressed as:

Mobs(t) = Mdyn

−
∫ φdyn

0

dφ

∫ θobs(t)

−θobs(t)
sinθdθ

∫ vmax

vmin

dvv2t3ρ

= Mdyn
t

tc
(t < tc) , (2.10)

where tc, namely the time at which the ejecta becomes visible, is

tc =

[
θdynκMdyn

2φej(vmax − vmin)c

]1/2
. (2.11)

The average velocity, and consequently vmin and vmax, is set by an interpolation
formula provided together with the ejecta mass fit and it reads:

vave =
(
0.01533 q−1 + 0.1907

)
c. (2.12)
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Figure 2.6: Morphology of the ejecta from Kawaguchi et al. [9].

When we consider the heating rate ϵ̇(t) ≈ ϵ̇0 (t/day)−α, as in Wanajo et al. [106],
we can derive the bolometric luminosity which reads:
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L(t) = (1 + θdyn) ϵthϵ̇0Mdyn

×


t

tc

(
t

day

)−α

t ≤ tc,(
t

day

)−α

t > tc.

(2.13)

where ϵth represents an efficiency factor associated with the thermalization pro-
cess, introduced in Metzger et al. [107].

Given that the analytical calculation of bolometric corrections to determine the
precise spectra of KNe is infeasible, the approach adopted in Kawaguchi et al. [9]
remains fundamentally phenomenological. During the time interval in which the
luminosity is primarily governed by photospheric emission, the temperature is the
predominant parameter. The temperature of the photosphere can be simply esti-
mated employing the Stefan-Boltzmann law:

Teff =

(
L(t)

σS(t)

)1/4

. (2.14)

To determine the visibility of an event with respect to the sensitivity of a tele-
scope in a specific color band, it is necessary to compute the monochromatic mag-
nitude. This magnitude, known as AB magnitude, is derived from the effective
temperature (Teff) employed in the Boltzmann equation. The effective temperature
represents the temperature that a blackbody, radiating with a particular luminosity,
would exhibit on a surface denoted as S. This surface, as discussed in Kawaguchi
et al. [9] and Barbieri et al. [96], explicitly depends on time.

To compute the AB magnitude, one must calculate the flux density, which is
obtained from the Boltzmann equation:

Φ =
S (2hν3)

c2d2
(

exp
(

hν
kBTeff

)
− 1
) . (2.15)

Then the AB magnitude in cgs units reads:

mAB = −2.5 log10 (Φ) − 48.6 . (2.16)

While the bolometric magnitude can be directly derived from the bolometric
luminosity, the AB magnitude, which is monochromatic, is derived from the energy
density flux, assuming that a blackbody emits a certain bolometric luminosity, thus
choosing a frequency within the chosen color band.
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Figure 2.7: Limiting magnitude as a function of the effective wavelength for several
telescopes, including LSST mentioned in the text, from Chase et al. [10]. It is worth
to be noticed that even though Roman is more sensitive in all the wavelength its
field of view is just 0.28 deg 2.

Once the bolometric magnitude has been computed, it is possible to compare
the expected KN signal in a given band with the sensitivity of a chosen telescope.
In particular for the next future, LSST (Vera Rubin Observatory)1 will be a game-
changer in multi-messenger astrophysics. With its limiting magnitude (Fig. 2.7) and
its field of view (9.6 deg2) it will be crucial in observing KNe.

2.5 Simulate the observations

When observing a GW event, it is important to acknowledge that the parameters
such as the masses and spins of the merging objects are susceptible to errors. These
errors can arise from a variety of factors, including the distance at which the event
occurs and the number of observatory interferometers in use. Therefore, there is a
need for a robust method to account for these uncertainties.

GW observational data obtained from the LIGO-Virgo (LV) collaboration offer a
relatively precise measurement of the chirp mass; however, the determination of indi-
vidual masses and spins of the merging components is notably less accurate. During
the process of data analysis, these parameters exhibit strong correlations, compli-
cating their precise determination. To emulate this correlation, we have adopted
a simplified model, as detailed in Ng et al. [108], to generate synthetic posterior
distributions that mimic the outcome of actual data analysis.

1https://www.lsst.org/scientists/keynumbers
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This model serves to illustrate how the application of Gaussian and uncorrelated
likelihoods to the symmetric mass ratio and the 1.5PN phase term (referred to as ψ
below) can lead to a skewed posterior distribution for the effective spin parameter
of the binary system similar to the one obtained from LV. The resulting likelihood
for the masses and the effective spin parameter can be expressed as follows:

L(MNS,MBH, χeff) = N (ψ(MNS,MBH, χeff);ψ0, σψ)×
N (η(MNS,MBH); η0, ση)

(2.17)

where the effective inspiral spin parameter is

χeff =

(
MNS

MNS +MBH

χ⃗NS +
MBH

MNS +MBH

χ⃗BH

)
· L̂ (2.18)

L̂ corresponds to the unit vector aligned with the orbital angular momentum, while
χ⃗NS and χ⃗BH denote the dimensionless spin vectors of the NS and BH respectively.

Eq. 2.17 features the term N (x; x0, σx), which represents a Gaussian distribution
in the variable x centered at x0 with a standard deviation of σx. The variable ψ is
explicitly defined as follows:

ψ = η−3/5

[
(113 − 76η)χeff + 76 δ η χa

128
− 3π

8

]
. (2.19)

In the formula above δ = (MBH −MNS)/(MBH + MNS) and χa = (χBH,|| − χNS,||)/2
where χBH,|| and χNS,|| are the parallel component of the spins. The spin of the less
massive body is neglected by setting χNS,|| = 0, so that

χeff = χBH,||/(1 + q) (2.20)

and
χa = (1 + q)χeff/2 . (2.21)

In our analysis, we have incorporated the observational constraint concerning
the chirp mass. This incorporation is achieved by introducing an additional multi-
plicative factor into Eq. 2.17, which can be expressed as follows:

Ltotal(MNS,MBH, χeff) = L(MNS,MBH, χeff)×
N (Mchirp(MNS,MBH);Mchirp,0, σMchirp

) .
(2.22)

We distinguish each event by selecting specific central values for parameters like
MNS,0, MBH,0, and χeff,0. This choice allows us to precisely determine the corre-
sponding values of ψ0, η0, and Mchirp,0. To reproduce the observed correlations
documented in LV analyses, as illustrated in Fig. 4 and 8 of Abbott et al. [109],
we set the standard deviations σψ, ση, and σMchirp

to values which reproduce those
behaviors.
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In Fig. 2.8, we present the marginalized distribution functions. These distribu-
tions are obtained through a systematic Markov chain Monte Carlo approach that
samples the likelihood Eq. 2.22.
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Figure 2.8: Top: example of correlations obtained with the toy-model for an event
characterized by the following values: MNS,0 = 1.3 M⊙, MBH,0 = 5 M⊙, χeff,0 = 0,
σψ = 0.01, ση = 0.03 and σMchirp

= 0.05. Bottom: correlations obtained with the
toy-model for the same event, with halved uncertainties. Left: correlation between
MNS and MBH. Right: correlation between MNS and χeff .

2.6 Results

To assess the compatibility of an EoS with the potential detection of a KN signal,
we followed a stepwise procedure:
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• 1. For each hypothetical GW, we generated an ensemble of data points by em-
ploying Eq. 2.22. These data points encapsulated the uncertainties associated
with the event’s parameters.

• 2. Within this ensemble, we computed the mass of dynamical ejecta, denoted
as Mdyn. This calculation was performed using Eq. 2.7 and Eq. 2.9), which
take into account the intricate physics involved.

• 3. With the calculated values for Mdyn, we determine the bolometric lumi-
nosities, bolometric magnitudes, and bolometric corrections. Specifically, our
focus was on a single band filter, namely the g-band filter (the filter in which
LSST is more sensitive).

• 4. Finally, our comprehensive analysis allowed us to compute the fraction of
our data ensemble that yielded a visible magnitude lower than the limiting
magnitude sensitivity of the LSST . The results of these calculations were
systematically compiled and presented as probabilities in Table 2.1.

By rigorously following these sequential steps, we were able to evaluate the like-
lihood of various EoSs in the context of potential KN signals.

From the probabilities of detecting a KN signal, summarized in Table 2.1, it
becomes evident that the likelihood of observing a KN signal diminishes significantly
when the BH spin parameter χBH approaches a value of approximately 0.

To illustrate this point, consider the event labeled as 13ns7bh0c 1s, which shares
similarities with the GW200115 event. Our analysis aligns with the findings of
other researchers [110, 109], indicating a very low probability of detecting a KN
signal associated with this event. This outcome persists even when assuming a stiff
EoS for the NS.

However, it is important to note an exception: when the BH mass is exceptionally
small (typically χBH ≲ 5M⊙) and the EoS characterizing the NS is notably stiff, there
remains a possibility of observing a KN signal, even in cases involving non-rotating
BHs.

To account for the anticipated enhancement in the sensitivity of future LV de-
tectors, we factored into our analyses the possibility that the current average error,
responsible for the observed correlation between estimated masses and spin, might
be halved. As outlined in the table, the increased precision marginally facilitates
the discrimination among various EoSs, although the overall improvement remains
modest.

The principal outcome of our analysis, however, underscores a crucial obser-
vation: if BH spins are not consistently null, it becomes feasible to differentiate
between distinct EoSs and, with even greater clarity, between the one-family and
two-families scenarios.

As detailed in the table (and considering the dependency of Mdyn on the NS
mass, illustrated in Fig. 2.3, a rather robust KN signal is expected within the one-
family scenario, particularly when MNS ∼ (1.2 − 1.3) M⊙ and MBH ≲ 5 M⊙, given
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SFHO+HD AP3 MPA1 DD2

13ns5bh0c 1s 0.01 0.13 0.26 0.48
13ns5bh0c 05s 0.00 0.04 0.18 0.52

13ns7bh0c 1s 0.00 0.00 0.00 0.05
13ns7bh0c 05s 0.00 0.00 0.00 0.00

13ns5bh2c 1s 0.10 0.53 0.67 0.83
13ns5bh2c 05s 0.02 0.55 0.79 0.96

13ns7bh2c 1s 0.00 0.08 0.19 0.36
13ns7bh2c 05s 0.00 0.02 0.07 0.36

13ns5bh5c 1s 0.64 0.95 0.97 0.99
13ns5bh5c 05s 0.82 1.00 1.00 1.00

13ns7bh5c 1s 0.23 0.63 0.72 0.81
13ns7bh5c 05s 0.15 0.84 0.97 1.00

Table 2.1: Probability of observing a KN signal in the g-band by LSST after 1 day
from the merger event, for four EoSs at a distance of 200 Mpc. The g-band limiting
magnitude (AB) has been set at 24.7 with a λeff = 4830 Å following Chase et al.
[24]. Labels of the event are in the format (NS mass×10 )ns(BH mass)bh(effective
spin×10 ) c Xs where if X is 1 we use the standard deviations inferred from LV
analysis, if it is 05 they are halved.

a BH spin parameter χBH ≳ 0.2. Furthermore, for instances where MBH ≲ 4 M⊙, a
substantial KN signal is anticipated in the one-family scenario, even when the BH
is non-rotating.

In contrast, the two-families scenario and most of the analyzed cases exhibit
minimal mass ejection from the BH. It is important to note that the hadronic EoS
employed in our analysis is not the softest possible. Previous research (e.g., Drago
et al. [81]) has explored even softer EoSs, capable of accommodating HSs with even
smaller radii, similar to those suggested in Özel and Freire [101]. Consequently, a
weaker KN signal may be justified within the two-families scenario.

2.7 KN simulations

We later employed a simulation [11] instead of the phenomenological KN model in
order to verify our results. The calculated properties of the ejected material, includ-
ing Mdyn (dynamical ejecta mass), Mwind (wind ejecta mass), and vdyn (dynamical
ejecta velocity), served as critical input parameters for the subsequent phase of the
analysis, which involved the utilization of the 3D radiative transfer (RT) code known
as POSSIS (POlarization Spectral Synthesis In Supernovae, [111, 112]).

POSSIS models the electromagnetic radiation through space. It simulates the
interactions with matter via mechanisms such as absorption and scattering. In the
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context of this study, POSSIS has been used to predict the light curves of KNe arising
from BH-NHs mergers instead of using the model of Kawaguchi et al. [9].

The most recent version of POSSIS, as described in Bulla [112], has been em-
ployed in this analysis. It operates based on a Monte Carlo approach, employing a
106 individual Monte Carlo quanta, with each quanta representing a discrete pho-
ton packet. These quanta are guided through space, mirroring the EM radiation
generated within the ejecta following a BH-NS merger.

To simulate the aftermath of a BH-NS merger accurately, a grid was metic-
ulously constructed to offer a comprehensive description of the composition and
structural properties of the ejecta material. In this grid, a 3D Cartesian framework
was adopted, featuring a high resolution of 100 cells per dimension. This resulted
in a total grid size of 100× 100× 100 = 106 individual cells. The morphology of the
ejecta was built based on the BH-NS grid derived from Kawaguchi et al. [113]. An
example of the obtained spectra is visible in Fig. 2.9

Figure 2.9: Example of the time evolution of the KN spectrum obtained with POSSIS

for MNS = 1.4 M⊙ and MBH ≲ 4 M⊙, varying the BH spin parameter. The plots are
taken from Mathias et al. [11]

The comprehensive analysis performed with the POSSIS code confirms and ex-
tends the findings of the previous study, Di Clemente et al. [33]. The earlier work
had certain limitations, particularly concerning the estimates of the ejected mass
and the modeling of the KNe. The latter have been effectively addressed through
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the use of this code. Due to the computational demands of the simulation, it is not
feasible to run a Monte Carlo simulation that includes a large number of KN events.
However, it is noteworthy that the results pertaining to individual events are con-
sistent and align with the previous findings. This underscores the robustness and
reliability of the conclusions drawn from the previous work concerning the difference
between one-family and two-families scenario.
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Chapter 3

Dark Matter Made of Strange
Quark Matter

3.1 The beginning of a strange story

Witten [32] explores the potential occurrence of a first-order QCD phase transition
in the early universe. This paper’s central thesis is that such a transition in the
early universe could have implications in the context of dark matter and the uni-
verse’s thermal history. Witten proposes that as the universe cooled to temperatures
around ΛQCD ≈ 150 MeV, these particles transitioned into a confined state, forming
hadrons. This process, known as hadronization, was governed by the principle of
color confinement. This transition marked a critical shift in the universe’s evolution,
setting the stage for the formation of atoms and larger cosmic structures.

As one can imagine, a crucial role is played by the QCD transition temperature.
Its value varies based on different approaches, with lattice QCD calculations provid-
ing a range from about 154 MeV for three-flavour QCD [114] to 271 MeV for pure
gauge theory [115]. The determination of this value influences the timeline of the
universe’s cooling and subsequent formation of matter structures.

A second parameter which is fundamental is the Hubble time, namely the age
that the universe would have had if the expansion had been linear, at the QCD
transition. This is approximately 10−5 s, which is significantly longer than the
strong interaction timescale (∼ 10−23 s). This discrepancy indicates that the QCD
transition occurred much more slowly than the time scale of strong interactions,
suggesting that the transition was close to an equilibrium process [116].

A third important parameter at the time of the QCD transition is the Hubble
radius, which is the scale of the observable universe, that was about 10 km. This
scale is the crucial as it sets a limit on the size of causally connected regions. The
Hubble radius determines the maximum distance over which processes can influence
each other at a given time, playing a key role in the formation and distribution of
matter during the transition.

The scales associated with the Hubble radius during the QCD transition corre-
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spond to about 1 parsec or 3 light-years in today’s universe [116]. The equilibrium
nature of the QCD transition and its corresponding Hubble scale have implications
for the Cosmic Microwave Background (CMB). Variations in the CMB can be traced
back to physical processes occurring at the QCD transition, providing insights into
the universe’s thermal history.

This transition is hypothesized from Witten [32] to be of the first order, charac-
terized by a discontinuous change in the state of matter at a specific temperature,
approximately between 100-200 MeV as previously stated. Since the QCD tran-
sition influenced the formation and distribution of matter, including dark matter,
in the early universe, it might have indeed led to the formation of quark nuggets
(strangelets), baryon fluctuations, cosmic magnetic fields, and GWs. The transition
could have affected the amplification of inhomogeneities, leading to dark matter
clumps and modifying primordial GWs.

These nuggets, if they were to be stable over cosmic timescales, could account for
a significant portion of the universe’s dark matter. For this hypothesis to hold, the
energy per baryon in quark matter must be less than the one of the iron, a crucial
condition for the stability and formation of the strangelets.

3.1.1 GW from the QCD Epoch

Witten [32] proposed the idea that GWs might have originated from the QGP phase
transition during the early universe’s QCD epoch.

This transition likely occurred around 10 microseconds after the Big Bang as
the universe cooled down to roughly Tc ≈ 150 MeV. This cooling phase facilitated
the transformation of quarks and gluons into hadrons. Under specific conditions,
this transformation might have been a first-order phase transition, leading to the
creation of bubbles within the QGP. The collision of these bubbles is hypothesized
to have generated GWs.

Presently, these GWs are thought to have stretched into extremely long wave-
lengths, posing a challenge for direct detection. Yet, indirect detection methods,
like Pulsar Timing Array (PTA), present a feasible alternative. PTAs meticulously
monitor pulsar signal timings, which GWs could influence.

Given a weak GW passing by, the distance separating the earth from the pulsar
depends on time and reads:

L̃(t) = L+

∫ L

0

dz cos[kzz − ω(t− z)] (3.1)

Here, L denotes the unperturbed distance of the earth from the pulsar along the z
axis, kz the wave number, and ω the angular frequency of the GW.

Witten noticed that since an experiment observing GWs for a period τ would be
sensitive only to GWs having ω ≲ 2π/τ , and the smallest detectable amplitude h is
h ∼ ∆t/τ , one can measure smaller h increasing the observation time τ . Another
critical aspect is the energy density of these gravitational plane waves, represented
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by:

ρ =
π

2G

h2

P 2
(3.2)

In this equation, G is the gravitational constant and P its period. This equation
underlines the direct correlation between a wave’s energy density and its amplitude,
which is crucial for detection and analysis.

Advancements in astronomical observation methods and a deeper grasp of early
universe theories are essential for this pursuit. Future developments in PTAs and
other GW detectors could unveil new facets of the early universe, enriching our
understanding of fundamental physics and cosmology.

As now, NANOGrav collaboration [117, 118, 119] have successfully detected a
GWs background studying PTAs. In the work of Agazie [118] the authors present
evidence for a Stochastic Gravitational-Wave Background (SGWB) signal, corre-
lated among 67 pulsars. This signal, detected by the North American Nanohertz
Observatory for GWs is indicative of a sGWB. Frequentist statistical methods yield
a significance of approximately 3.5σ to 4σ for the presence of this SGWB. The au-
thors claim that the amplitude and spectrum of the inferred SGWB are consistent
with astrophysical models of supermassive BH binaries, although other cosmological
or astrophysical sources cannot be ruled out.

The paper of Gouttenoire [120], focuses on analyzing pulsar timing residuals from
the same dataset as in Agazie [118]. It proposes that the detected SGWB aligns
with a SGWB produced by bubble dynamics during a cosmological first-order phase
transition.

In general, GWs resulting from an electroweak first-order phase transition stand
as a viable candidate for detection by next-generation detectors like LISA (Laser
Interferometer Space Antenna).

3.2 Observational constraints

Observations across various scales suggest our universe is largely composed of dark
matter, which cannot be explained by ordinary baryonic matter or accounted for by
the Standard Model of particle physics. The current understanding, supported by
general relativity, posits that the energy density of the universe is dominated by a
cosmological constant Λ ≈ 0.7 and a non-relativistic matter component Ωm ≈ 0.3,
with baryons contributing only about 0.05 to Ωm.

The nature of dark matter can be hypothesized in two ways [13]: intrinsically
weakly interacting, or effectively weakly interacting due to large mass and conse-
quently lower number density. The primary candidates for dark matter have been
for a long time Weakly-Interacting Massive Particle (WIMP), but the lack of con-
clusive evidence from collider experiments and direct detection efforts has left their
existence uncertain. Strangelets belong to the second category of dark matter.

In general, interaction rates of dark matter with baryons are a function of the
dark matter’s number density nX , interaction cross-section σX , and a characteristic
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velocity v, leading to the concept of the reduced cross-section σX/MX (σX indicates
the cross section, MX the mass). If we consider that local dark matter density is
approximately 7 × 10−25 g cm−3 and if we hypothesize objects with mass on the
order of 1018 g would impact Earth roughly once every billion years, hence the low
expected flux of macros.

Therefore, the analysis of macro dark matter involves evaluating the expected
impact rates of macros on various astronomical bodies like neutron stars, white
dwarfs, the Sun, the Earth, and the Moon. This is crucial to impose constraints
based on current observations.

Firstly, we want to set a constraint on the maximum size of macro dark matter:
the maximum mass of macros formed by post-inflationary causal processes which is
constrained by the dark matter within the causal horizon at the time of formation
MHdark

, given by

MHdark
=

4π

3
ρX(T )L3

H ∼ 1035 g(
T

109 K

)3 (3.3)

where T is the formation temperature.
Given an isotropic flux of macros on a convex target, the impact rate Γ reads

[13]:

Γ =
1

4
nXvXATfG (3.4)

where AT is the target area, vX is the average macros velocity, and fG =(
1 + v2esc

v2X

)
, is the gravitational focusing factor (vesc is the escape velocity). The

total impact rate, accounting both for geometrical and gravitational factor, is then
calculated as

Γ = 2.7 × 105 s−1

(
1g

MX

)( vX
250 km s−1

)(RT

R⊙

)2

×
(

1 + 6.2
R⊙

RT

(
250 km s−1

vX

)2
MT

M⊙

)
fρ , (3.5)

where MT and RT are the mass and radius of the target, fρ si a density enhancement
factor that is equal to unity in the solar neighborhood. This formula provides a way
to estimate the frequency of macros impacts on various celestial bodies, taking into
account their size, mass, and the gravitational focusing effect.

3.2.1 Ancient Mica

In examining the potential impact of macros on ancient mica, the study of Jacobs
et al. [13] utilizes existing constraints and the physical properties of mica to assess
the possibility of detecting some traces. It emphasizes that the energy loss rate in
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the mica must have exceeded a certain threshold for a macro of mass MX to leave
a detectable track.

The constraints obtained based on the absence of traces left on the samples of
Price and Salamon [121] (having 500 Myr) read:

σX
MX

> 3.6 × 10−6 cm2 g−1

MX > 55 g.

These values set a lower limit on the interaction strength of macros, therefore
excluding very low mass macros.

3.2.2 Gravitational lensing

Femtolensing, a phenomenon where the gravitational field of a compact object causes
detectable interference in the light from a distant gamma-ray burst, provides strin-
gent limits on the mass of compact objects [12]. Using Fermi satellite data, Barnacka
et al. [122] have set a limit of contribution to dark matter mass of 8%, for compact
object having masses in the range of 5 × 1017 < MX < 2 × 1020 g.

In Singh Sidhu and Starkman [14] those limits are taking into account the anal-
ysis of Katz et al. [123] which revised femtolensing, states that there is no such a
limit. It is worth to notice that in the latter cases the macros are assumed to be
monochromatic while strangelets in our model are not.

The analysis on microlensing also rules out macros in the range of mass 5×1022 <
MX < 4 × 1024 g as the dominant component of dark matter. Moreover, macros
having MX ≥ 1024 g are ruled out too [13].

Moreover, experiments such as EROS and MACHO have notably constrained
the mass range of macros. They have effectively ruled out objects with most masses
below 10−7M⊙ and in the range 4 × 1026 < MX < 4 × 1033 g as the dominant
component of galactic dark matter [12].

3.2.3 Seismic events

The impact of massive objects like strangelets on Earth and other planetary bod-
ies, can potentially result in unique phenomena like anomalous meteors or seismic
signals. Therefore, there are several constraints on the masses and compositions of
these objects [12].

The seismic detection method is based on the hypothesis that when a macroscopic
object traverses through a planet, it induces seismic waves due to its interaction with
the planet’s interior. Theoretical models predict these interactions, and the resulting
seismic signatures are used to identify the passing of such objects.

The unique characteristics of the seismic signals produced by these objects, such
as their amplitude and frequency spectrum, are key to differentiating them from
conventional seismic events. The signal’s amplitude is directly related to the mass
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of the object, while the frequency spectrum is influenced by its velocity and angle
of entry.

Referring to events on the Earth, one can exclude that the dominant component
of macroscopic dark matter has mass in the range 105 < MX < 3×108 g. Moreover,
from the measurements of the total amount of the seismic energy obtained using the
seismic station on the Moon implanted during the Apollo missions, one can states
that less than 10% of dark matter density is in the mass range 5 × 104 < M < 106

g [12, 124].

3.2.4 Proto-neutron stars

The idea that all the compact stars could be SQSs faces several empirical challenges.
One such challenge is presented by the characteristics of magnetar oscillations. Mag-
netars, a type of neutron star with extremely strong magnetic fields, exhibit oscil-
lation modes that are not readily reconcilable with the expected behavior of SQSs.
These oscillations, or quasiperiodic oscillations, observed in magnetars during giant
flares, provide insights into the internal structure of these stars, posing challenges
to the existence of SQSs [89].

Further evidence against the universality of SQSs comes from the analysis of
supernova SN1987a. The study of the energy released during this supernova, based
on the analysis of neutrino emissions and the inferred mass-energy budget of the
supernova remnant, suggests compatibility with a neutron star rather than a SQS
[90].

Given these considerations, it becomes evident that not all proto-neutron stars
could be converted into SQSs. To support this view, the hypothetical flux of
strangelets, which could potentially induce such a conversion, must be constrained
within certain limits [125].

Madsen [126] investigated the potential impact of strangelets on stellar evolution.
In particular, the author posed the question: if the flux of strangelets is sufficiently
large, can one be captured by a star, and if so, how would this affect the star’s
evolutionary path? This question is especially interesting in the context of proto-
neutron stars.

Proto-neutron stars represent an early stage in the life of a neutron star, typically
characterized by a time span τmelt, which corresponds to the first few months post-
formation. During this period, a solid crust has not yet developed, thus providing
a window wherein a strangelet could potentially penetrate the star [125]. Such
penetration is crucial as, without a solid crust, the strangelets are not impeded by a
low-density layer and can thus reach the denser regions of the star. Upon reaching
these regions, a strangelet could trigger the deconfinement of the neutron star into
a SQS.

For such an event to occur, certain conditions must be met. Notably, only
strangelets with a mass number A > 1012 can evade being trapped by the expanding
supernova shell [127]. Additionally, the flux of strangelets F12 (having A > 1012)
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during τmelt must satisfy the relation F12 × τmelt ≪ 1. This condition ensures that
not every proto-neutron star is converted into a SQS, an outcome that would be
inconsistent with astronomical observations.

3.3 Evaporation of Strange Matter

The evaporation of SQM, as discussed by Alcock and Farhi [128], is a phenomenon
critical to understand the behavior of matter in the early universe. This process
is particularly relevant when considering the temperature transitions the universe
underwent, specifically the cooling from approximately 100 MeV to 1 MeV. During
this phase, the evaporation of SQM played a significant role in determining the
survival and stability of strangelets.

The stability of these strangelets is highly dependent on their baryon number.
A baryon number less than a critical threshold is likely to evaporate away in the
early universe. This threshold is crucial for determining the size and existence of
strangelets that could contribute to the universe’s matter content.

The mechanism of evaporation primarily involves the emission of nucleons from
the strangelet. This process can be described quantitatively by considering the
balance of energy and the number of particles involved. The energy of a strangelet,
encompassing the mass and binding energies of its constituent quarks, plays a pivotal
role in this balance. The evaporation rate is influenced by the temperature of the
surrounding environment and the internal properties of the strangelet, including
its baryon number and the energy states of its constituent quarks. The detailed
calculation of the evaporation rate of a cosmological strangelet, as outlined in Alcock
and Farhi [128], involves several critical factors:

• The primary consideration is the energy balance, which includes the cooling
effects due to evaporation and neutrino emission, and the reheating effects
from incoming neutrinos. The probability of neutrino absorption is contingent
on the neutrino’s mean free path, the strangelet’s size, rs, and the ambient
temperature, T . The absorption probability can be expressed as:

p (rs, T ) =

{
1, rs >

3
4
l(T )

4rs
3l(T )

, rs ≤ 3
4
l(T )

(3.6)

If the size of the lump exceeds the mean free path of a neutrino, it becomes
opaque to neutrinos and will emit them with a thermal spectrum. The energy
emission rate of strangelets, determined by its surface temperature Ts is given
by

Lth = 4πr2s(7π
2/160)T 4

s (3.7)

indicating that the lump radiates according to its temperature Ts. On the
other hand the absorption rate reads:
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Labs = 4πr2s(7π
2/160)T 4

u (3.8)

For a strangelet smaller than the neutrino mean free path, the emission and the
absorption rate should be adjusted by incorporating an emission probability
factor p (rs, T ). This leads to the following total rate expression:

L = 4πr2s

(
7π2

160

)[
T 4
up (rs, Tu) − T 4

s p (rs, Ts)
]

(3.9)

• Nucleons diffusion in the dense environment surrounding the strangelets is
another critical factor. By integrating the chemical potential equilibration
with the binding energy and considering relevant equations, one obtains the
neutrons emission rate

rn =
mnT

2
s

2π2
e−I/Tsfnσ0A

2/3 (3.10)

where fn is the neutron absorption efficiency and I is the binding energy. The
the proton emission rate reads:

rp =
mnT

2
s

2π2
e−I/Tsfpσ0A

2/3 (3.11)

In the latter, fp denotes the proton absorption efficiency factor which makes
the only difference with respect to Eq. 3.10.

• It’s necessary to consider that nucleons close to the surface of strangelets might
be reabsorbed. The rates at which neutrons and protons are reabsorbed are,
respectively:

rabsn = fnNnσ0A
2/3(Ts/2πmn)1/2 (3.12)

and
rabsp = fpNpσ0A

2/3(Ts/2πmn)1/2 (3.13)

where Nn and Np are the neutron and proton densities.

• The screening of incoming neutrinos by the baryons surrounding the strangelets
is also significant. Assuming pressure equilibrium among electrons, positrons,
photons, and nucleons (neutrons and protons), the following relation hold:

(Nn +Np)T +
11π2

180
− T 4 =

11π2

180
Tu

4 (3.14)

This equation modifies to include neutrino pressure, accounting for the opti-
cally thick nature of the surrounding material to neutrinos, as:

(Nn +Np)T +
43π2

360
T 4 =

43π2

360
T 4
u (3.15)
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Finally, integrating all emission and absorption terms, the net evaporation rate
of a cosmological strangelet can be formulated as:

L =
dA

dt
(I + 2Ts) (3.16)

dA

dt
=

[
mnT

2
s

2π2
e−I/Ts − 43π2

720Ts

(
T 4
u − T 4

s

) [ Ts
2πmn

]1/2]
× σ0A

2/3 (fn + fp)

(3.17)

This formula incorporates the interplay of the several physical processes influencing
the evaporation rate of strangelets in a cosmological context.

3.3.1 Astrophysical Strangelets

Bucciantini et al. [125] explore the phenomena surrounding the formation and evap-
oration of strangelets during the merger of two SQSs. The research primarily ad-
dresses the fragmentation of SQS into strangelets and their subsequent fate, es-
pecially focusing on their potential evaporation into nucleons. This study holds
significance in the context of understanding the density of strangelets of astrophys-
ical origin in the galaxy, the probability of their detection, and the implications for
the strange quark matter hypothesis.

A crucial finding is that only a small amount of large-sized strangelets, ejected
from the spiral arms during the post-merger phase, survive total evaporation into
nucleons. It is shown that only large-size strangelets with masses above a certain
threshold survive evaporation. The survival probability of strangelets is influenced
by the ambient temperature and their initial mass. The evaporation time-scale τA
is shown to be proportional to logA, indicating a logarithmic dependence on the
baryon number.

This leads to the conclusion that the density of astrophysical strangelets in the
galaxy is insufficient to trigger the conversion of all neutron stars into SQSs, allowing
for the co-existence of both types of compact objects. Furthermore, the probability
of directly detecting a strangelet is found to be negligible, aligning with the current
lack of experimental detection and supporting the strange quark matter hypothesis.

The study also highlights that the majority of the matter ejected during SQS-SQS
mergers evaporates into nucleons, which can potentially generate KN-like signals,
like those observed in neutron star mergers. This phenomenon is attributed to the
process occurring close to the central region of the merger. Additionally, the authors
make considerations on SQS-NS mergers, concluding that the majority of the ejected
matter in such events originates from the neutron star, leading to a similar outcome
regarding strangelet production and evaporation as in SQS-SQS mergers.

A key difference from studies of cosmological strangelets lies in the consideration
of the fragmentation process, which is a critical phenomenon in SQS mergers but
is hypothesized to be non-existent in the primordial universe. This distinction is
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crucial, as fragmentation significantly influences the size distribution, and eventual
evaporation of strangelets during these stellar mergers. In contrast, the cosmological
investigations of strangelets typically do not account for fragmentation, leading to
differing implications for strangelets distribution.

3.4 Dark matter distribution

To accurately model the current distribution of dark matter in the galaxy as strange-
lets, one must consider various factors, including the strangelets sizes distribution.
Initially, we hypothesize a log-normal distribution of sizes and then subject it to an
evaporation process. This evaporation, occurring in a range of temperature from
120 MeV to 1 MeV (section 3.3), results in a transformed distribution that must
agree with the constraints specified in section 3.2.

3.4.1 Mathematical framework

It is crucial to establish a mathematical framework for handling the size distributions
of the strangelets. Given an initial distribution P (A′), representing the number of
strangelets with a baryon number A′, the distribution after evaporation, denoted
Q(A), is given by:

Q(A) =

∫
dA′P (A′)δ(A− f(A′)) (3.18)

Here, f(A′) is the function that maps the pre-evaporation baryon number A′

to the post-evaporation baryon number A. This formulation is self-consistent: if
f(A′) = A′, it implies conservation of volume in the size space, and thus P (A) ≡
Q(A). Consequently, for each value of A, the initial distribution P is transformed
into the final distribution Q. It follows that if f(A′) = 0, then Q(A) becomes zero:

if f(A′) = 0 =⇒ Q(A) =

∫
dA′P (A′)δ(A) = 0 .

The delta function property,

δ(g(x)) =
δ(x− x0)

|g′(x0)|
, (3.19)

where x0 is a root of g, is crucial here. Applying it to the integral formula, if
g(x) = A− f(x), then x0 = f−1(A), assuming g′(x) is non-zero at x0. This gives us
the post-evaporation distribution:

Q(A) =

∫
dA′P (A′)

δ(A′ − f−1(A))

|f ′(f−1(A))| = P (f−1(A))
1

|f ′(f−1(A))| (3.20)
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This framework allows us to map the initial distribution of strangelet sizes to
the distribution after evaporation, taking into account the change in baryon number
and ensuring consistency with observational constraints.

3.4.2 Evaporation formula

Given the relationship that connects the age of the universe τU to its temperature
Tu [128]:

τU =

(
45

172π3G

)1/2
1

T 2
u

, (3.21)

it is possible to rewrite equations Eq. 3.9, Eq. 3.16, and Eq. 3.17 as functions of the
temperature Tu alone:

A′ (Tu) =

(
β k1 n

−2/3
0 A (Tu)

2/3 [T 4
up (Tu, A (Tu)) − T 4

s p (Ts, A (Tu))]
)

(2Ts + I)T 3
u

, (3.22)

k2 n
−2/3
0 [T 4

up (Tu, A (Tu)) − T 4
s p (Ts, A (Tu))]

(2Ts + I) (fn + fp)
= −k3 (T 4

u − T 4
s )√

Ts
+
mnT

2
s e

− I
Ts

2π2
,

(3.23)

the temperature of the strangelet Ts is a function of the universe temperature Tu
and the baryon number A, which itself depends on Tu, Ts = Ts (Tu, A(Tu)). Here, k1,
k2, and k3 are constants that incorporate various physical constants into the model.
Additionally, we introduce a phenomenological factor β to account for corrections,
which can be of several orders of magnitude in reducing the evaporation rate, due to
the strange quark mass, the running coupling constant, and finite temperature effects
on the mass [127]. By solving this set of equations, one can effectively determine the
dynamics of strangelet evaporation in the early universe during the cooling phase
that follows hadronization. A fundamental condition to account is to limit the size
of a strangelets to the size of the causal connected universe at Tu (Eq. 3.3).

3.4.3 Exploration of the phenomenological parameter space

In the quest to understand the distribution and characteristics of dark matter within
the Milky Way, we consider a hypothetical scenario where the initial distribution
of strangelets at the time of hadronization follows a log-normal distribution. The
probability density function of a log-normal distribution for a variable x is given by:

f(x;µ, σ) =
1

xσ
√

2π
exp

(
−(ln x− µ)2

2σ2

)
, x > 0 (3.24)

where µ and σ are the mean and standard deviation of the variable’s logarithm,
not of the variable x itself. We can choose the maximum value of our distribution,
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or the mean value of the distribution of the logarithm of the independent variable,
by using the logarithm of the mode ln(M) = µ − σ2, therefore introducing a new
variable which corresponds to it. We rewrite µ as a function of µin = ln(M):

µ(µin, σ) = µin + σ2. (3.25)
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Figure 3.1: Illustration of the initial distribution P (A) characterized by parameters
µin = 35, σ = 2, and log10β = −4.7, which evolves into a final distribution Q(A)
as universe cools down to 1 MeV, with a central value of 32.35. The functions are
normalized to the area under P (A).

The initial distribution function, denoted as P (x), is parameterized by its mode
µin (expressed in log10 scale) and the standard deviation σ. In the context of a
log-normal distribution, the parameter σ represents the width of the gaussian in log-
linear scale in terms of orders of magnitude. For instance, a σ value of 2 corresponds
to a width spanning 2 orders of magnitude. We model the evolution of this initial
distribution into a final distribution Q(x), a process that necessitates defining the
parameter β in the evaporation model described by Eq. 3.22 and Eq. 3.23.

To evaluate the viability of this model, several constraints must be considered.
These include ensuring that the final distribution aligns with the observed ratio
of dark matter in the Milky Way, which is approximately 90% of the total matter
content [129]. Additionally, the model must agree with observational constraints as
outlined in section 3.2. Through a systematic exploration of the parameter space,
we correlate the initial distribution parameters with those of the final distribution.
This approach enables us to control and predict key characteristics of the strangelet
population, including the final maximum value in size and in mass (for the distribu-
tion of masses AQ(A)), the final the number of strangelets N , and their contribution
to the overall dark matter fraction within the Milky Way.

The results of the exploration of the parameter space are presented in Ap-
pendix C. In order to generate the plots Fig. C.1, Fig. C.2, Fig. C.3, Fig. C.4, and
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Fig. C.5, we employed a detailed evaporation routine. This routine was executed
over a range of parameters: the initial central value of the distribution µin ∈ [30, 38],
the standard deviation σ ∈ [1, 2], and log10β ∈ [−5,−6].

The selection of these parameter ranges was informed by preliminary investiga-
tions, which explored a broader parameter space. However, simulations conducted
outside those ranges failed to satisfy all the constraints delineated in section 3.2.
Consequently, to ensure the agreement with respect to those constraints, our anal-
ysis was restricted to these specific ranges.

By implementing the evaporation model on the initial distributions P (x), and
ensuring the agreement with the constraints, we have been able to calculate a range
of possible size and mass distributions for strangelets.

Q(A) A Q(A)
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Figure 3.2: This figure showcases distributions with varying number densities and
mass densities of strangelets. The represented curves, in red, green, yellow, grey,
purple, and blue, correspond to distributions containing approximately 1034, 1033,
1032, 1031, 1030, and 1029 strangelets, respectively. Notably, each curve, despite hav-
ing different peak densities, has the same total mass. Furthermore, each distribution
agrees with the considered observational constraints [12, 13, 14]. The distributions
are normalized to the estimated dark matter mass in the Milky Way [15].

These distributions are plotted in Fig. 3.2 and they are plausible representations
of the strangelets population in the universe. The diverse range of size densities
and mass densities across these distributions underscores the versatility of the phe-
nomenological evaporation model and of the accessible parameter space.
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3.5 Strangelets distributions

Understanding the astrophysical implications of dark matter, particularly if a por-
tion of it is composed of strangelets, necessitates an estimation of the strangelet
flux which can interact with celestial bodies. For this purpose, we utilize a model
for the dark matter density profile, such as the Navarro-Frenk-White (NFW) profile
[130]. The NFW profile is a well-established model in astrophysics, widely used for
describing the density distribution of dark matter in galaxies. As described in Nesti
and Salucci [15], the NFW profile is given by:

ρNFW = ρH
1

x(1 + x)2
, (3.26)

where ρH represents the characteristic density scale of the profile. The dimensionless
variable x is defined as x = r/RH , with RH being a scale radius. The profile’s slope
at RH is characterized by: [

d log ρNFW
d log r

]
r=RH

= −2 . (3.27)
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Figure 3.3: The plot illustrate the expected flux of strangelets, with the number of
strangelets ranging from 1029 to 1034, as a function of distance from the Galactic
center.

Utilizing the parameters estimated by Nesti and Salucci [15], we can calculate
the expected flux of strangelets as a function of distance from the center of the
Milky Way. This calculation is crucial in understanding the spatial distribution and
potential impact of strangelets. The results are illustrated in Fig. 3.3.
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The flux profile derived from the NFW model is crucial in assessing the likelihood
of detecting strangelets and understanding their distribution within the galaxy. It is
important to notice that even though the NFW profile is a widely utilized model for
describing dark matter density distributions in cosmic structures, yet it is not the
exclusive option. Several alternative profiles exist, each with its own implications
and applicability depending on the observed galactic or cluster-scale structures [131].

3.6 Astrophysical Implications

We can study the impact of the possible existence of strangelets by estimating the
capture rate onto astrophysical objects as main sequence stars. Madsen [126] have
already discussed the conditions to have interaction or capture of a strangelets by
a stars. It is expected that a strangelets would pass through a star like the sun
without being captured, given their velocity and cross section.

In order to estimate the capture rate from a main sequence star we use Eq. 3.5
opportunely modified to take into account for the strangelets number and distribu-
tion:

F =2.7 × 1029 ρNFW(r)

ρDM

N

MV

M

M⊙
v250

(
Rc

R⊙

)2

×
(

1 + 6.2

(
R⊙

Rt

)
v−2
250

(
Mt

M⊙

))
. (3.28)

where N is the total number of strangelets in the galaxy, MV is the virial mass
of the Milky Way in units of the proton mass, v250 is the velocity of the DM in units
of 250 km/s, M is the mass of the star, Rc is the radius of the star core (which is
the part of the star capable of stopping strangelets [126]). Indeed, we have extended
the formula originally proposed by Jacobs et al. [13] to account for the fact that
only strangelets colliding with the dense central region of a star, characterized by a
radius Rc, can be halted, while others may pass through.

To estimate the capture on a star, we have to consider a star which has already
formed a core dense enough to stop a strangelet. Indeed, we choose the silicon forma-
tion because the mass density would be enough to start stopping some strangelets.
Therefore, in order to estimate capture probability, Eq. 3.28 has to be multiplied by
τ(M), which is the time interval between the silicon formation in the core of a star
having mass M and its collapse.

3.6.1 HESS J1731-347

The study of the central compact object within the supernova remnant HESS J1731-
347, as detailed in Doroshenko et al. [6], reveals intriguing properties. Notably,
the object possesses a relatively small radius and, perhaps more importantly, a
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Figure 3.4: Mass-radius relation of SQSs from [16] (solid red), [17] (solid blue) and
[18] (solid black) with observational constraints at 68% of confidence level (dotted)
and at 90% (dashed). Blue: analysis of PSR J0740+6620 from NICER and XMM-
Newton data from [19]. Magenta: analysis of 4U 1702-429 from [20]. Red: analysis
of PSR J0030+0451 from [4]. Green: latest analysis of HESS J1731-347 from [6].
Orange error bars: analysis of 3XMM J185246.6+003317 from [21].

mass that is equal to or less than one solar mass (see Fig. 3.4). This finding is
particularly significant as it challenges our current understanding of stellar evolution
and the remnants of supernova explosions. Traditional analyses of various types of
SN explosions suggest that the formation of a neutron star with a mass less than
approximately 1.17M⊙ is highly unlikely [132].

In response to this conundrum, we propose a scenario wherein masses on the
order of or smaller than one solar mass could be accounted for by considering the
possibility of SQS. These objects, characterized by their large binding energy, offer a
viable explanation for the observed properties of the object within HESS J1731-347.
A model based on SQSs not only explains the mass and radius of this particular
object but also accounts for its slow cooling rate, as has been suggested in various
studies [133, 134].

Furthermore, our analysis extends beyond the single case of HESS J1731-347.
We argue that the framework of SQSs is capable of satisfying the constraints on
masses and radii of other astrophysical objects, as discussed in Doroshenko et al.
[6]. This model also provides a plausible explanation for the existence of objects
with masses on the order of or larger than 2.5M⊙. Such high-mass objects have
been inferred from the analysis of gravitational wave events, notably GW190814, as
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highlighted in studies by Abbott et al. [135] and Bombaci et al. [16].
SQS can possibly form with a mass of the order of or smaller than one solar mass.

This is due to their large Binding Energy (BE), which comprises both gravitational
and nuclear components. The gravitational binding energy contributes positively
(binding) to both NSs and SQSs. However, the nuclear binding energy, which is sig-
nificantly influenced by the microphysics of interactions, exhibits opposite behavior
in NSs and SQSs, as showed in Bombaci and Datta [136]. While in NSs, the nuclear
binding energy is large and negative (anti-binding), in SQSs, it can be small and
negative or even positive [87]. This divergence results in the total BE of SQSs being
markedly larger than that of NSs.

This difference in binding energies has important implications for the formation
and evolution of compact objects. The collapse mechanism as detailed in Chapter 4,
does not apply to HESS J1731-347, given that the central object is surrounded by
a dust shell of approximately 2M⊙, ejected during the supernova explosion. Never-
theless, the large binding energy is a general property of SQSs which can always be
applied.

Mb MNS
g MQS

g,A MQS
g,B MQS

g,C

1.28 1.17 0.99 1.00 0.95 − 1.05
1.32 1.20 1.01 1.03 0.98 − 1.08

Table 3.1: Comparison of the minimum allowed mass (expressed in solar mass units,
M⊙) for NSs and SQSs across three distinct models. Model A is based on the EoS
presented in Bombaci et al. [16], depicted as a solid red line in Fig. 3.4. Model B
utilizes an EoS derived in Ferrer et al. [17], represented by a solid blue line. Model
C, illustrated as a solid black line, is derived from a Bayesian analysis described
in Traversi et al. [18]. This analysis, however, does not incorporate the latest data
on massive stars. The range corresponds to an energy per baryon of strange quark
matter at zero pressure, (E/A)p=0, between 765 and 850 MeV. This range aligns
with the discussions in Weber [25].

In Table 3.1, we present examples of the total BEs for SQSs and NSs, highlighting
these differences. Specifically, for NSs, we employ the empirical relation proposed by
Lattimer and Prakash [137]: BE/M⊙ = 0.084(Mg/M⊙)2. This formula accurately
describes the BE for a broad spectrum of hadronic equations of state, underscoring
the different properties of NSs compared to SQSs.

In the study by Suwa et al. [132], it was established that the minimum baryonic
mass (Mb) for the core of a SN progenitor lies within the range of (1.32 − 1.28)M⊙.
Applying the previously mentioned parameterization of the total BE for NSs, this
baryonic mass range translates into a gravitational mass (Mg) in the range of (1.20−
1.17)M⊙.

As shown in Table 3.1, a SQS with a baryonic mass within the aforementioned
range can have a gravitational mass approximately equal to or even slightly less than
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one solar mass. This characteristic of SQSs, exhibiting lower gravitational masses
for comparable baryonic masses relative to NSs, offers a compelling explanation for
the small mass of the compact object reported in Doroshenko et al. [6]. The ability
of SQSs to have a smaller Mg for a given Mb, as compared to NSs, aligns with
observations of compact objects with unusually low masses, as seen in the case of
the central object in HESS J1731-347 or also SAX J1808.4-3658 [138].
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Figure 3.5: Strangelets capture probability for a core of a star with a mass of 10
M⊙ in its life-span. The results for a 25M⊙ progenitor are nearly identical to the 10
M⊙ case because the increased capture rate due to larger mass is compensated by
a decrease in τ(M). The boundary curves correspond to the two extremal shown in
Fig. 3.2. The vertical dashed blue line indicates the position of the Earth, while the
horizontal one indicates the unitary probability. The solid and dashed black lines
refer to different number of strangelets as in Fig. 3.2

.

To explain the formation of the central object in HESS J1731-347, considering
the work of Suwa et al. [132], we focused on evolved stars with masses in the range
of (8− 10)M⊙, which possess carbon-oxygen cores, as potential progenitors for low-
mass NSs. Extending this concept, we aim to elucidate the specific conditions that
favor the formation of a SQS rather than a NS.

The processes discussed in Suwa et al. [132] are associated with explosion, in
which the resultant densities and temperatures are relatively moderate [139]. In
scenarios where the central region’s density is less than about twice the nuclear
matter saturation density and the entropy (S/kB) is less than or around 2, the
formation of hyperons is minimal, and the nucleation of quarks is unlikely to start
[140]. Consequently, without a pre-existing quark matter core in the progenitor, the
spontaneous formation of a SQS appears implausible. However, if a small amount
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of quark matter is already present, it could potentially initiate the deconfinement of
the entire NS into a SQS.

We focused then on the capture rate by moderately dense cores of evolved stars,
especially those with a zero-age-main-sequence (ZAMS) mass of about (8–10)M⊙.
These cores resemble white dwarfs, with masses around (1.3 − 1.4)M⊙ and radii
approximately 10−2R⊙. It is also possible for a SQS to form via the capture of a
strangelet by an already existing NS, though this process is feasible only before the
NS develops a crust, within a timespan of roughly one month [126].

Regarding HESS J1731-347, it is positioned in the direction of the galactic center,
approximately 2.5 kpc from the Sun [6]. The dark matter density in this region could
be up to five times greater than that at the Sun’s location [141]. Fig. 3.5 presents
the estimated number of strangelets that could be captured by a 10 M⊙ progenitor
star. This suggests a wide array of possible strangelet distributions, implying that
only proto-NSs closer to the galactic center are likely to transform into SQSs, rather
than all NSs in the galaxy. Therefore, we speculate that if the progenitor of the
central object in HESS J1731-347 has captured a strangelet before exploding in a
supernova, it has formed a SQS instead of a NS.
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Chapter 4

Strange Dwarfs

4.1 Introduction

White Dwarfs (WDs) are celestial objects that originate from the remnants of stars
whose initial mass was below approximately 9M⊙ [142]. These stars, after under-
going their entire lifecycle and depleting their nuclear fuel reserves, enter a phase
where their core contracts while their outer layers expand. This collapse is halted
only when the electrons within the star core become degenerate, providing the nec-
essary pressure to counteract further gravitational collapse.

The diverse outcomes of this process depend on the mass of the progenitor star.
The nuclear fusion reactions that occur during the star’s evolution can lead to the
production of different types of nuclei, ultimately influencing the nature of the re-
sulting WDs. These include helium (He) WDs, carbon-oxygen (C-O) WDs, and
oxygen-neon-magnesium (O-Ne-Mg) WDs. It’s essential to note that the maximum
mass that a WD can attain, referred to as the Chandrasekhar mass and calculated
to be approximately 1.4M⊙ [143], varies depending on the composition of the WD.
In practice, the majority of observed WDs are of the C-O type.

In the year 1995 was proposed that WDs could possess an inner core composed
of absolutely stable SQM. This notion aligns with the Bodmer-Witten hypothesis
[36, 32]. What makes this concept even more intriguing is the idea that the presence
of this stable SQM core has the potential to make those compact objects stable,
which would otherwise be unstable. This proposal was put forth by researchers in
Glendenning et al. [144, 145].

These objects, named Strange Dwarfs (SDs), exhibit characteristics distinct from
those of conventional WDs. Specifically, SDs can possess different radii, masses, and
astrophysical evolution pathways that differentiate them from their more conven-
tional counterparts. It was conjectured that SDs could form either by accumulating
normal nuclear matter on the surface of a SQS or through WDs gathering clusters of
SQM, commonly referred to as ”strangelets,” that might already exist in our Milky
Way galaxy.

Glendenning et al. [144] delved into the radial stability of SDs, suggesting that
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these objects can remain stable even under nuclear matter envelope densities that
far surpass the maximum densities observed in typical WDs.

The question concerning the stability of SDs underwent a thorough reexamina-
tion in the work of Alford et al. [22]. Their investigation revealed a critical insight:
the eigenvalue associated with the fundamental radial mode of these objects was
found to be negative, strongly indicating that SDs, in fact, exhibit instability.

Interestingly, in the same study by Alford et al. [22], a noteworthy observation
emerged. It was suggested that the previous works by Glendenning et al. [144, 145]
may have inadvertently misinterpreted their findings by confusing the second-lowest
eigenmode with the lowest one. However, upon closer examination and analysis, it
became evident that these two sets of research were built upon different underlying
hypotheses.

Contrary to the initial belief that the two studies were grounded in the same
assumptions, it became clear later that they actually operated within slightly dis-
tinct theoretical frameworks, each with its own validity. This realization effectively
resolved the apparent contradiction between the results obtained by the two works.

In our work [34], we embarked on a crucial reevaluation of the stability of SDs
by delving into aspects that have been neglected in prior studies. Specifically, our
focus is on the boundary conditions at the interface where nuclear matter meets the
quark core within SDs.

Our analysis is based on part of the formalism established in previous works, in
particular Pereira et al. [146] and Di Clemente et al. [147]. These studies provide
insights into the boundary conditions that can be applied in the context of rapid
(and slow) conversions between nuclear matter and SQM. Crucially, that the specific
boundary conditions employed can exert a substantial influence on the eigenvalues
governing radial oscillations, and, by extension, they can have a profound impact
on the overall stability of the star.

In addition, our study also addresses the applicability of the traditional stability
criterion based on the counts of extrema in the MR plane [148, 149]. However, in
this specific case, we introduce a crucial refinement to this criterion. We emphasize
the need for explicit specification regarding whether the quark content of the star
remains constant or undergoes changes during the radial oscillations.

4.2 Equation of state

One of the important considerations in assessing the stability of SDs lies in the
nature of their EoS. Historically, when examining this aspect in previous works
[144, 145, 22], the EoS was characterized by a the following formulation:

ε(P ) =

{
εtov(P ) if P ≤ Pt

εquark(P ) if P > Pt

(4.1)

In this expression, εtov represents the Baym-Pethick-Sutherland (BPS) EoS [69],
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while εquark denotes an equation of state characterizing SQM. An example of such
an EoS could be one of the MIT bag model (as the one having the thermodynamic
potential in Eq. 1.4). The critical parameter in this formulation is the transition
pressure, denoted as Pt, which is defined as the pressure at the radius correspond-
ing to the interface between quarks and nuclear matter. This interface marks the
boundary where the EoS shifts from εtov to εquark.

The behavior of nuclear matter is indeed given by the BPS EoS which is used to
represent ideal ”limit” WDs, having a Chandrasekhar mass of approximately 1M⊙,
a lower value than typical Chandrasekhar mass for C-O WDs or O-Mg-Ne WDs
(1.4M⊙ and 1.2M⊙).

It has been pointed out in Benvenuto and Althaus [150] that the use of BPS EoS
is not realistic for WDs. Nevertheless, as clarified in subsection 4.5.1, it represents
a limit in compactness for WDs and it is sufficient to our goals.

Usually, when dealing with EoS, one interpolates a table of parameter to con-
sequently solve the TOV equations. In our work we used instead a fit of the EoS
equation in order to avoid artifacts due to the numerical derivation of a piecewise
interpolation. The form of the EoS equation fit reads:

ε(P ) = ef(ln(P ))

where the function f is

f(x) = − 1496.7952111882255 + 1109.8179718329682 x1/3

− 171.06847907037277 x4/3 + 95.47548413371702 x5/3

− 19.652076548674618 x2 + 1.4412357260222872 x7/3

− 3.995517504571193 × 10−14x8.

The fit ranges in energy density from ∼ 7g/cm3 to ∼ 4 × 1011g/cm3 and it is
visible in Fig. 4.1

When dealing with SDs, it is important to understand that one can use any value
for εt as long as it is less than εdrip ≈ 4 × 1011 g/cm3.

Unlike regular WDs, where one typically only needs to specify the central pres-
sure P0 to define a star’s configuration when solving the TOV equation [151], SDs
require two parameters. As clear from Eq. 4.1, the first parameter is the transi-
tion pressure Pt, which represents the pressure at the interface where the quark
core meets the outer nuclear matter envelope, the second one is indeed the central
pressure as in the normal case P0.

The concept allowing the formation of SDs is the existence of the Coulomb barrier
that separates the outer nuclear matter from the inner core of SQM. This separation
occurs under the condition that the maximum density of nuclear matter remains
lower than the density known as neutron drip density. Beyond this density, free
neutrons start to appear. Importantly, since they are not subject to the constraints
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Figure 4.1: EoS equation fit in red, tabulated points in black

of the Coulomb barrier, they can readily penetrate the core of SQM. Upon entering
the core, they are absorbed, leading to the deconfinement of their constituent quarks.

Given that the solutions of the TOV equation for SDs depend on two parameters,
a question arises about the suitability of choosing the pair of parameters (P0, Pt) for
characterizing these configurations. Choosing a value of Pt does not account for the
fact that below the neutron drip density the baryonic content of the core remains
constant, despite changing the central pressure P0. The studies by Vartanyan et al.
[152] and Vartanyan et al. [153] discuss the case in which nuclear matter cannot
transition into SQM, allowing for the definition of sequences of configurations that
have the same quark baryon number in the core, that we define as Bcore. Conse-
quently, one can solve the TOV equation with alternative parameter pair, namely
(P0, Bcore).

The quark baryon number, represented as Bcore, can be expressed as follows:

Bcore(P0, Pt) =

∫ Rcore

0

4πr2
ρ(r)√

1 − 2m(r)/r
, dr. (4.2)

Here, ρ is the baryon density within the quark core. It’s important to note that
these two parameter choices are not interchangeable. If one opts to keep Pt constant
while varying P0, this leads to changes in Bcore, implicitely indicating a scenario in
which hadrons can deconfine into quarks, because the change in the core is encoded
in the fact that the central pressure is changing by fixing the external pressure of the
core Pt. Conversely, when Bcore is maintained at a constant value, one necessitates
to increase in Pt with higher values of P0, illustrating a situation in which hadrons
accumulate on the surface of the strange core without undergoing transformation
into quarks.
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In order to correctly consider a SD EoS at its equilibrium, we want to chose the
parameter pair (P0, Bcore). Bcore is a function of P0 and Pt, therefore, we need to
find the inverse relationship that given a choice of Bcore, gives back the value of the
transition pressure.

In our analysis, we begin by considering Eq. B.4 in natural units (G = c = 1)
and by using the energy density. Since the core of the system is relatively small, we
can reasonably approximate the behavior using Newtonian physics in a first-order
approximation.

For the EoS governing a small quantity of SQM within the core, we utilize a
parametric expression:

P = (ε− εW)a, (4.3)

Here, the variable a serves as a multiplicative parameter that encompasses var-
ious factors, including the bag constant. The term εW corresponds to the Witten
density, defined as εW = ε(P = 0). Substituting n Eq. 4.3 into Eq. B.4 and separat-
ing the variables, we obtain:

a
dε

ε2
= −4π

3
r dr. (4.4)

Upon integrating both sides and consolidating all constants into a single param-
eter, denoted as K, we obtain the following relationship:∫ εW

ε0

dε

ε2
= −K

∫ Rcore

0

dr r, (4.5)

In this equation, Rcore represents the radius of the core and ε0 the energy density
at the center of the system. The solution to both sides of this equation leads us to
the following expression:

ε0 =
εW

1 −KεWR2
core

(4.6)

This equation encapsulates the relationship between the central energy density
and the Witten density εW, considering the parameter K and the core radius Rcore.

We can modify Eq. 4.6 to replace the core radius Rcore with its baryon content,
denoted as Bcore, since R2

core ∝ B
2/3
core. Additionally, considering that our core experi-

ences slight compression due to the surrounding nuclear matter, we can replace εW
with the effective surface energy density specific to the quark core, denoted as εQt .
This transition density at the boundary of the quark core satisfies εQt ≥ εW. The
new form of the equation reads:

ε0(Bcore) =
εQt

1 −KεQt B
2/3
core

. (4.7)

Now, it is reasonable to incorporate some higher-order corrections into Eq. 4.7
to account for general relativistic effects:
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ε0(Bcore) =
εQt

1 − k1ε
Q
t B

2/3
core − k2ε

Q
t B

4/3
core

, (4.8)

In this modified equation, we introduce two numerical parameters, k1 and k2, to
account for these higher-order relativistic effects. These parameters are determined
numerically.

For the SQM, we utilize the thermodynamic potential from Eq. 1.4, in the fol-
lowing form:

Ω(µ) = − 3

4π2
a4, µ

4 +
3

4π2
(m2

s − 4∆2
0)µ

2 +B (4.9)

Here a4 = 0.7, the gap parameter ∆0 = 80 MeV, the strange quark mass ms=120
MeV, and the bag constant B = 1354 MeV4, as in Bombaci et al. [16].

It is important to note that the parameters k1 and k2 are primarily influenced
by the bag constant, and any reasonable adjustments made to the other parameters
in Eq. 4.9 have negligible impacts on these parameters.

4.2.1 Mass-radius relationship

The relationship between mass and radius, obtained by solving Eq. B.29 and Eq. B.27,
exhibits notable differences depending on whether we consider the parameter pairs
(P0, Pt) or (P0, Bcore). When constructing a MR diagram, it is essential to vary one
parameter, typically the central pressure (or central energy density), while keeping
the other parameters constant.

If we opt to fix the transition pressure Pt, we are essentially exploring configu-
rations where SQM consistently appears at the same energy density threshold. We
begin with a configuration where P0 = Pt, denoted as point b (or variations like b′

and b′′ depending on the transition energy density), as illustrated in Fig. 4.3. Then,
we progress along the bottom branch in a clockwise direction, increasing the central
pressure.

In Fig. 4.3, also it becomes clear how the extreme point corresponding to the
BPS EoS, joins with the curve established by fixing εt = εdrip. Indeed, the curves
built by choosing the transition pressure join the WD curve exactly at the point in
which the WD central pressure P0 = Pt (or ε0 = εt). When the transition density
is relatively low, the point where the curves join falls before reaching the WDs
maximum mass on the MR diagram. This is evident in Fig. 4.2, where a low energy
transition density (εt = 107 g/cm3) is represented by the dashed black curve, which
intersects with the BPS EoS curve at approximately 0.5 M⊙.
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Figure 4.2: Mass-radius relationship for EoSs having fixed transition densities, in-
dicated in the legend in units of g/cm3. In dashed red is shown also the curve for a
bare SQS, which indeed does not have a transition density to nuclear matter.
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Figure 4.3: Magnification of the MR sequence close to the Chandrasekhar limit.
The notation the same as in Fig. 4.2. The WD configuration (not shown in Fig. 4.2)
is also displayed.
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Figure 4.4: Detail of the Fig. 4.2. Here it is visible the SQSs branch, where EoSs
having a constant εt are analogous to non-bare SQSs, namely SQSs with a nuclear
crust.
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Figure 4.5: Magnification of the maxima in Fig. 4.4. The higher is the transition
density of the nuclear matter and the more compact is the star. Indeed, the wider
the range between the constant εt and the star’s surface, the greater the compression
exerted by the surrounding nuclear matter on the strange core.

On the other hand, the MR relationship for SDs tends to converge with that of a
SQS when considering small radii. In particular, if the value of εt(Pt) is significantly
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smaller than the neutron drip density, it implies that there is not sufficient matter
above the quark core (which now constitutes the majority of the star) to exert
significant compression on it. For the maximum values of εt(Pt), specifically the
neutron drip density, the radii of SDs are slightly smaller compared to those of a
SQS. This occurs because there is a broader range of pressure levels that nuclear
matter must cover in these cases. This behavior is evident in the Fig. 4.4.
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Figure 4.6: A closer look at the low-mass stars in Fig. 4.4. It is evident that when
εt is low, the deviation from the radius of a SQS is less pronounced.

When we fix εt(Pt), we implicitly let Bcore vary. Conversely, when we choose to
fix the baryon content of the core (Bcore), it is the transition density that changes.

When we establish a fixed value for Bcore, the corresponding configuration con-
tains a specific quantity of quarks in its core. If we start from a point at which
εt(Pt) = 0 there is no nuclear matter situated above core to exert compression. In
other words, it corresponds to the extreme point on the left side of Fig. 4.2 (red
dashed curve) and satisfies Eq. 4.6.

As we increase the central energy density (which means adding matter on top
of the quark core), we move in a counter-clockwise direction on the MR diagram.
During this progression, we intersect curves in Fig. 4.2 that correspond to increasing
values of εt(Pt). This means that a curve representing a constant Bcore is comprised
of configurations with varying εt(Pt). The initial point on this curve has εt = 0 (or
equivalently εQt = εW), while the final point corresponds to εt = εdrip.
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Figure 4.7: MR sequences. Dashed lines show configurations in which Pt is constant.
By increasing P0 (and therefore also Bcore) the curves are followed clockwise. The
legend indicates εt values in g/cm3. Solid lines show configurations in which Bcore

is constant. Here, by increasing P0 (and therefore also Pt) the curves are followed
anti-clockwise. The legend indicates the value of Bcore.

In Fig. 4.7, we can observe a specific behavior where, if the value of Bcore is too
large, the condition εt = εdrip is achieved at relatively small radii. These points align
precisely with the curve representing the highest density of nuclear matter within
the star, which corresponds to the neutron drip density.

4.3 Radial oscillations

To assess the stability of a star, radial oscillations are a valuable analytical tool.
The equation for radial oscillations is derived by perturbing both the fluid variables
and the spacetime metric that characterizes the interior of the star ( Eq. B.9).

Using this metric, the differential equation governing radial oscillations can be
expressed as:

(Hξ′)′ = −(ω2W +Q)ξ, (4.10)

Here, ξ(r) represents the radial Lagrangian displacement, scaled by r2 and mul-
tiplied by e−ϕ, while ω is the characteristic frequency of the oscillation mode. The
functions in Eq. 4.10 are defined as:
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H = r−2(ε+ P )eλ+3ϕc2s

Q = r−2(ε+ P )eλ+3ϕ(ϕ′2 + 4r−1ϕ′ − 8πe2λP )

W = r−2(ε+ P )e3λ+ϕ , (4.11)

Here, c2s represents the speed of sound. It is essential to note that when dealing
with multiple layers or phase transitions within the star, it becomes necessary to es-
tablish clear boundary conditions at the interfaces between these layers. This aspect
is thoroughly discussed in works like Pereira et al. [146] and Di Clemente et al. [147].
In particular, one must specify whether, within the timescale of the oscillation, the
two components of the fluid can transition into one another. This consideration
hinges on the presence of phase transitions and their associated timescales. There-
fore, we categorize these transitions as either ”slow transitions” or ”fast transitions”
to distinguish between their characteristics.

4.3.1 Slow transition

The scenario of a slow phase transition holds when the timescale for the conversion
from one phase to another is significantly longer than the timescale of the perturba-
tion itself. In this scenario, the two phases do not intermix during the oscillations,
and the volume element near the surface that separates the phases moves along with
the interface, expanding and contracting. This particular situation is applicable to
SDs where εt < εdrip, which essentially means that the two phases never fully mix.
In other words, we are considering the stability of star configurations on the MR
diagram where Bcore remains constant, as it cannot increase. In a practical sense,
each star configuration can be associated with either a curve characterized by Bcore

or one defined by Pt but only one of them is physically acceptable. Consequently,
the choice of boundary conditions for radial oscillations must align with this physical
interpretation.

For the slow conversion, the interface conditions involve maintaining the conti-
nuity of the radial displacement at the boundary radius rt:

[ξ]+− ≡ ξ(r+t ) − ξ(r−t ) = 0 , (4.12)

Additionally, it requires ensuring the continuity of the Lagrangian perturbation
of pressure:

[∆P ]+− =

[
−eϕ r−2 γ(r)P

∂ξ

∂r

]+
−

= 0 , (4.13)

Here, γ(r) represents the relativistic adiabatic index, given by γ(r) = (∂P/∂ε)(ε+
P )P−1. By solving Eq. 4.10 with these conditions, we obtain that ω2 > 0, and it
vanishes at the maximum mass in the MR plane along the curve defined by the con-
stancy of Bcore, as proposed by the criterion of Zel’dovich [148] and Bardeen et al.
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Figure 4.8: Fundamental eigenfunction of radial modes in the slow scenario in which
hadrons do not deconfine into quarks during the oscillation timescale. The star
considered here and in Fig. 4.9 has M≃ 0.02 M⊙, Bcore ≃ 2.69 × 1055 and εt = εdrip
and is located to the right of the minimum of the dashed blue curve in Fig. 4.7.
Here, the mode is stable: ω2 = 0.788275 Hz2. In the inset plot, the region around
r = rt is magnified: there the eigenfunction has a kink.

[149]. The eigenfunctions exhibit continuity with a kink at rt (as shown in Fig. 4.8),
and the same behavior is reflected in ∆P (r) [147].

4.3.2 Rapid transition

When the timescale for the conversion between two phases is shorter than the
timescale of the perturbation, the exchange of mass between these phases becomes
possible. The boundary between these phases is in thermodynamic equilibrium,
given the rapid conversion rates, therefore, Eq. 4.13 remains applicable in this sce-
nario.

The main difference compared to the slow transition case lies in the interface
condition from Eq. 4.12. In this scenario, it transforms into:[

ξ +
γPξ′

P ′

]+
−

= 0 , (4.14)

This modification results in an eigenfunction that exhibits a discontinuity at the
interface, distinguishing it from the behavior seen in slow transitions, as visible in
Fig. 4.9.

The reason behind the apparent inconsistency between the findings of Glen-
denning et al. [144, 145] and those of Alford et al. [22] is now evident. In the
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Figure 4.9: The fundamental eigenfunction in the context of rapid transitions, simi-
lar to the scenario discussed in Alford et al. [22], but characterized by a discontinuity
instead of an extremely abrupt jump (a discontinuity can be seen implies an instan-
taneous jump). In this case, the mode is unstable, with ω2 = −1.62785/,Hz2, and
the eigenfunction displays a discontinuity.

work of Alford et al. [22], they employed an EoS similar to the one discussed in
Eq. 4.1. However, they introduced a smoothing mechanism that eliminated the
sharp discontinuity between the two phases, and notably, allowed for an instanta-
neous transformation from one phase to the other for whatever oscillation timescale.
The smoothed EoS used in Alford et al. [22] can be described as:

ε(P ) = [1 − tanh ((P − Pcrit)/δP ) εtov(P )] /2

+ [1 + tanh ((P − Pcrit)/δP ) εquark(P )] /2 (4.15)

Here, δP represents the transition width. This approach is analogous to the
rapid transition case discussed here since they are implicitly allowing for a mixed
phase. While in Alford et al. [22], the eigenfunction doesn’t exhibit a discontinuity
at the interface, it experiences a very rapid increase in its value. The magnitude of
this increase is entirely equivalent to the magnitude of the discontinuity we obtain,
which is illustrated as example in Fig. 4.9.

In contrast, Glendenning et al. [144, 145] did not provide a detailed discussion
on the boundary conditions at the interface. However, it is likely that in their work,
the eigenfunction was assumed to be continuous, corresponding to the situation
described in our ”slow” transition scenario.

The distinction between slow and rapid transitions, first introduced in the 1960s
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Figure 4.10: Eigenvalues of the fundamental mode in the slow case (dashed) and
masses of SDs having Bcore = 1055, close to the maximum, Mmax ∼ 0.996M⊙ (solid),
plotted as functions of the central energy density, ϵ0. The zero of ω2 coincides with
the maximum mass, and it turns negative at higher densities. Since ϵ0 remains
almost constant in the range displayed in the figure, we show its tiny change with
respect to the central density, ϵ0 bare, of a pure QS that has the same Bcore.

(e.g., Thorne [154]), is based on the observation that the consistency between sta-
bility analyses, based on solutions of the TOV equation (static analysis), and those
relying on the radial oscillation equation (dynamic analysis), is connected to the use
of an adiabatic index derived from the EoS employed in the static analysis. They
actually coincide in the case of rapid transitions. In contrast, in slow transitions, it
is generally challenging to calculate the adiabatic index, primarily due to the need
to account for imbalances introduced by perturbations in the computation of the
slow adiabatic index [155, 156].

Our case presents a unique advantage since the conversion between hadrons and
quarks is confined to a two-dimensional surface, rather than an extended volume.
This simplifies the modification of both the adiabatic index since it corresponds to
adapting the interface conditions (Pereira et al. [146]), and the EoS. In the context of
the slow case, this means keeping the quark content in a frozen state (Vartanyan et al.
[152, 153]). This dual modification allows us to establish a correspondence between
static and dynamic analyses in the slow case, a relationship shown in Fig. 4.10. It is
worth noting that the correspondence was already established by Alford et al. [22]
in the context of the rapid transition case and we reproduced the behavior near the
minimum in Fig. 4.11.
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Figure 4.11: Eigenvalues of the fundamental mode in the fast case (dashed) and
masses of SDs having εt = εdrip, close to the minimum (solid), plotted as functions
of the difference between the central energy density, ϵ0 and the Witten one ϵW. The
zero of ω2 coincides with the minimum mass. This result is consistent with Alford
et al. [22]

4.4 SD collapse

In a binary system where a WD orbits a main sequence star, mass transfer occurs
as the WD accretes material from its companion. This typical scenario culminates
in a type Ia SN event. However, some research has delved into the possibility of a
different outcome known as Accretion-Induced Collapse (AIC) within such systems.
It is important to note that while the concept of AIC has been explored, actual
observations of such events are notably absent. This absence can be attributed to
the substantial difference in timescales between the collapse process and the nuclear
reactions responsible for igniting the WD’s deflagration.

The presence of a core composed of SQM in SDs plays an important role when
the object undergoes significant perturbations, such as the initial stages of a type
Ia SN event. In particular, if the SQM core is large enough, it can potentially
facilitate the collapse of the object instead of following the typical path leading to a
deflagration. The challenge in inducing an AIC within a WD arises from the fact the
nuclear reactions occur when the star is near the Chandrasekhar limit. This phase,
characterized by marginal mechanical stability (ω2 ≃ 0, then a very long timescale
of collapse), leads to the star’s disruption before AIC can take place [157].

The mechanical stability of SDs is strictly related to the rapid conversion of
hadrons into quarks. This process provides a crucial mechanism that allows the star
to undergo a collapse. The presence of a SQM core within SDs introduces a unique
dynamic that enables them to deviate from the traditional SN path and experience
an AIC event.
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Figure 4.12: Illustration of the AIC mechanism for a system SD-main sequence star.

As long as εt ≪ εdrip, the object remains mechanically stable. However, if a
fluctuation leads to the generation of matter at densities greater than εdrip, the
system becomes susceptible to instability. To gauge this instability, we calculate
the fundamental eigenvalue of a star at the Chandrasekhar limit along a trajectory
where Bcore remains constant. In the case of a slow transition, ω2 equals zero.
Conversely, in the case of a rapid transition, for the same point, ω2 is significantly
negative. It is important to remark that each point at constant Bcore corresponds to
a point at constant εt, therefore one can go from a situation in which the transition
is physically slow to a situation in which the star internal boundary is in a rapid
transition regime and the baryon content of the core is not constant anymore. In any
case, it is illogical to apply a slow transition scenario when εt remains constant, or to
employ a fast transition scenario when Bcore is held constant. However, exceptions
may arise when the star is in close proximity to the Chandrasekhar mass. In such
situations, perturbations could potentially drive a small region of the star, located
near the strange core, to exceed the neutron drip density. This, in turn, could trigger
the phase transition.

Fig. 4.13 displays the e-folding time, defined as 2π/|ω|. It is evident that there
exist a threshold that separates typical SN from AIC. For Bcore ≳ 1046, the typical
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Figure 4.13: Properties of maximum mass stars as a function of their quark content.
The solid black line shows the timescale of the mechanical instability as a function
of Bcore. The dashed red line shows the transition density.

growth time of the instability falls well below 1 second. This implies that the collapse
can transpire more rapidly than the development of a deflagration [158]. It can be
argued that the amount of SQM that triggers the collapse depends on the EoS.
Therefore, we also computed the e-folding time for a different set of parameters
for the quark EoS, as presented in Bombaci et al. [16] and the results remained
consistent.

In the same figure, it is represented εt, the maximum density reached by the
nuclear matter component at the boundary. From the behavior of εt it is possible
to determine when the structure of a 1 M⊙ SD remains similar to the one of a WD.
When Bcore ≳ 1052 the static structure of the star changes and the boundary density
εt deviates from ∼ 109 g/cm3, which is the typical central density of a WD at the
Chandrasekhar mass. This suggests that the presence of the quark core does not
influence the static properties of the star unless the value of Bcore is large enough to
exert a noticeable gravitational pull.

An essential query regarding SDs pertains to the mechanism by which they
accumulate the SQM located at their core. The most straightforward explanation
lies in the idea that WDs gradually accumulate strangelets over their lifespan. This
phenomenon and the strangelets’ genesis is explored in detail in the chapter of this
thesis dedicated to the subject of strangelets. Thanks to the AIC mechanism, a SD
can convert in a SQS. Since this phenomenon is very energetic and the collapsed
object is more bound than a NS, the final object can be a subsolar mass km-sized
compact star.
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4.5 Other signatures

It has been suggested in Perot et al. [159] that a viable way to observe SDs is via
GWs. The paper explores a novel approach to differentiate SDs from WDs, a task
that can be challenging through electromagnetic observations alone. It delves into
the potential of utilizing gravitational-wave observations to achieve this distinction,
specifically by measuring the tidal deformability.

When comparing SDs to WDs, a notable feature is the significant reduction in the
tidal deformability coefficient. The distinctiveness in tidal parameters between SDs
and WDs holds the potential for detection by upcoming space-based gravitational-
wave detectors such as the Laser Interferometer Space Antenna (LISA). The reduc-
tion in tidal parameters for SDs can reach up to 50% for an SD with a mass of 0.6
M⊙.

In this investigation, the authors opted not to employ the EoS EoS for describing
WD structures. Instead, they utilized a more refined EoS that accounts for the
precise atomic species and their correct balance within the WDs. The study of SDs
involved varying the transition pressure from Pt = Pβ (representing the onset of
electron capture) to Pt = Pdrip.

Additionally, the authors considered the influence of pycnonuclear reactions,
which start at a density of 1010 g/cm3 for the carbon layer. Their analysis indi-
cated that the impact of these reactions is minimal on the SD structure. However,
they also addressed the issue of crystallized layers in WDs, which proves to be cru-
cial. Crystallization of layers occurs when the WD spans billions of years, rendering
the measurement of tidal deformability more challenging.

In Perot and Chamel [160] they delve into the effect of crystalline color supercon-
ductor as the phase for the SQM core. The authors observed that the large rigidity
of the elastic core has a nearly complete cancellation effect on the tidal deformability,
because of the presence of the surrounding hadronic layers. Even though its shear
modulus it is 2-3 times larger than the one of the hadronic envelope, the screening
effect is almost perfect.

Nevertheless, the study’s conclusion emphasizes that the deviation in tidal de-
formability is larger than the expected precision of future measurements by LISA,
suggesting that SDs potentially hidden among WDs binaries could be unmasked
through GW observations.

4.5.1 Possible SD observations

It is worth noting that in a study by Kurban et al. [23], seven potential SD candidates
were identified. These candidates exhibit a mass range of approximately 0.02 to 0.12
M⊙ and have relatively consistent radii, falling within the approximate range of 9000
to 15000 km. To illustrate the incompatibility with WDs models of those candidates,
the paper presents MR relationships for WDs using EoSs of pure magnesium (Mg)
and helium (He) stars, in addition to the EoS EoS. By employing an EoS for SDs
similar to that in Alford et al. [22], it is shown how these objects, due to their
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Figure 4.14: Mass-radius relation for constant Bcore SDs with data from Kurban
et al. [23] analysis.

compactness, can be good SD candidates. Moreover, this claim is supported from
the fact that the EoS EoS serves as an upper limit for compactness in WDs.

To identify potential SD candidates, the authors analyzed WDs listed in the
Montreal WD Database1. They employed analyses based on spectroscopic data and
Gaia observations [161]. The data points with their error bars corresponding to the
objects identified as SD candidates are visible in Fig. 4.14.

1http://www.montrealwhitedwarfdatabase.org/tables-and-charts.html
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Conclusions

This thesis explores three topics connected with the Bodmer-Witten hypothesis.
These topics span astrophysical implications on celestial bodies and cosmological
implications on the nature of dark matter, offering insights and proposing future
research directions.

1. Testing the two-Families Scenario in Astrophysics The first topic ad-
dresses one of the astrophysical implications of the Bodmer-Witten hypothesis,
particularly the two-families scenario, which posits the coexistence of HSs and
SQSs. We proposed a way to test this scenario through BH-NS mergers. For
this investigation we used both analytical models and simulations to predict
the kilonova signal in such mergers. This is done on the basis of semi-analytical
models to estimate the ejected mass. A key finding is the significant suppres-
sion of the KN signal in the two-families scenario compared to the one-family
scenario. This outcome can be tested with upcoming observations combin-
ing GW detections and next-generation telescopes in the optical and infrared
bands. Future improvements could involve simulating the BH-NS merger pro-
cess itself, in order to compute the mass of the ejected material more precisely.
Moreover, one could simulate the SQS-BH merger including the effects of a
rotating black hole.

2. Strangelets as Dark Matter The second and third topics delve into the
implications of the Bodmer-Witten hypothesis as formulated by Witten [32]
to explain the possible origin of dark matter in the form of strangelets. A sim-
ple phenomenological model was developed to examine how the distribution of
sizes and masses of strangelets could align with current macroscopic dark mat-
ter observational constraints. Additionally, the potential formation of subsolar
mass compact stars as an astrophysical consequence of this hypothesis was ex-
plored. This study, while providing a proof-of-concept, highlights the need for
a deeper understanding of the clusterization mechanism in the early universe.
Also the process of evaporation into hadrons needs to be reconsidered in a
more precise way, including current QCD knowledge.

3. Strange Dwarfs and Stability Analysis The final part of the thesis con-
centrates on SDs, namely WDs with a core of SQM. The stability of SDs as
they approach the Chandrasekhar limit and accrete matter, was studied. This
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work highlights how the presence of a SQM core can lead to significantly dif-
ferent evolutionary paths for SDs compared to typical WDs, depending on the
core size. Future studies could involve simulating the specific mechanisms of
mass ejection during an AIC event, particularly in relation to the critical size
of the SQM core.

Overall, while the thesis provides substantial contributions to the understanding
of the Bodmer-Witten hypothesis and its astrophysical implications, it also under-
scores the potential for further research in these areas, particularly through en-
hanced simulations and the integration of up-to-date theoretical developments in
astrophysics and cosmology.
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Appendix A

Quantum Chromodynamics

This chapter provides a concise overview of Quantum Chromodynamics (QCD) and
effective models for quark matter, with a particular emphasis on strange quark
matter. After establishing these fundamental concepts, we delve into the subject
of strange matter and its significance in astrophysical contexts. We subsequently
explore the characteristics of NSs and strange stars, as well as the equations to deter-
mine the static structure of spherically symmetric stars, addressing both Newtonian
and general relativistic frameworks. This appendix chapter is based mainly on the
works of Buballa [51] and Schwartz [162].

A.1 Quarks and Gluons

QCD is a Quantum Field Theory (QFT) stands as a pillar of the Standard Model
of particle physics, delineating the rules and dynamics governing the strong nuclear
force. This force is paramount in holding protons, neutrons, and other hadronic
particles together. Quarks are elementary particles and a fundamental component
of matter. Every hadron, whether it’s a proton, neutron, or any other particle
from this family, is made up of quarks. There are six distinct types (or ”flavors”)
of quarks: up, down, strange, charm, bottom and top. The most common ones,
up and down quarks, form protons and neutrons, the building blocks of atomic
nuclei. Quarks have a unique property called ”color charge”, which is not to be
confused with actual colors but is a way to describe the type of charge involved in
the strong force. Strong interaction is actually mediated by another particle: the
gluon. Gluons, as their name might suggest, are the glue holding quarks together
inside hadrons. They are the massless particles responsible for mediating the strong
force. Unlike photons in electromagnetism, gluons themselves carry a color charge
so they are not neutral in charge. This leads to an intriguing property where gluons
can interact not only with quarks but also with other gluons.

In QCD, the concept of ”color” charge plays a vital role, analogous to electric
charge in electromagnetism. However, unlike electric charge, color charge in QCD
has three types, named red, green, and blue. It’s essential to note that these names
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are purely symbolic and have no relation to actual colors. Quarks always combine
in ways to form ”white” or color-neutral combinations, leading to the observed
confinement of quarks in nature.

A.1.1 Yang-Mills Theory and QCD Interactions

While Quantum Electrodynamics (QED) exemplifies an abelian (or commutative)
gauge theory, characterized by a symmetry group U(1), QCD stands as a non-abelian
gauge theory with the symmetry group SU(3). Due to its abelian nature, the gauge
symmetry of QED is straightforward. In this context, the photon is associated with
the gauge field transformation Aµ(x) → Aµ(x) + 1

e
∂µα(x), where e is the electric

charge. It is possible to describe the photon interaction with matter because of the
the interaction itself preserve the gauge invariance. The interaction term expressed
within QED takes the form ψ̄γµDµψ, where the covariant derivative Dµ encapsulates
the underlying physics of the interaction: Dµψ = (∂µ−ieAµ)ψ. In these expressions,
ψ represents the fermions field, and ψ̄ is its conjugate.

The covariant derivative Dµ incorporates both the spacetime derivative ∂µ and
the interaction with the electromagnetic force through the gauge field Aµ.

The framework of Yang-Mills theories provides a way to extend the principles of
QED to a broader context. This extension allows for the inclusion of self-interactions
among massless particles with spin 1, such as gluons. These self-interactions are
renormalizable, which means that the theory can be consistently treated in a way
that avoids infinite or non-physical results arising from certain calculations.

Therefore, the QCD interaction term encompasses the strong force’s interaction
between quarks through the gluon-mediated exchange of color charge. This approach
finds its foundation in Yang-Mills theories which enable the study of renormalizable
self-interactions among massless particles with spin 1.

Yang-Mills Foundations

Yang and Mills generalized the concept of gauge invariance, known from electro-
magnetism, to non-abelian groups. The Lagrangian for a Yang-Mills field Aaµ with
a general gauge group is:

LYM = −1

4
F a
µνF

µνa (A.1)

where F a
µν is the field strength tensor, typically involving commutators of gauge

fields, reflecting the non-abelian nature. It is given by:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν (A.2)

with fabc being the structure constants of SU(3). These constants arise from the
commutation relations:

[T a, T b] = ifabcT c (A.3)
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where T a are the generators (matrices) of the SU(3) group. The generators are
usually written in the standard form T a = 1

2
λa, where λa are the Gell-Mann matrices:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 ,

λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 ,

λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

Gluons, denoted by Aaµ where a = 1, ..., 8, carry a color charge. This leads to
unique self-interactions:

Lint = gfabc(∂µA
a
ν − ∂νA

a
µ)AµbAνc (A.4)

showing direct three-gluon interactions, a consequence of the non-abelian nature of
SU(3).

Quarks possess a color charge and are represented by Dirac spinors q with sup-
pressed indices. Their dynamics is described by:

Lq = q̄(iγµDµ −m)q (A.5)

where now the covariant derivative reads

Dµ = ∂µ − igT aAaµ (A.6)

which ensures gauge invariance. Quark interactions conserve color charge, de-
picted by vertices in Feynman diagrams where quarks change color upon emitting
or absorbing a gluon.

Implications of Non-abelian Nature

The interactions in QCD are non-linear due to the terms involving commutators
of gauge fields. This leads to phenomena like confinement and asymptotic free-
dom. In addition to quark-quark-gluon vertices, there exist gluon-gluon-gluon and
gluon-gluon-gluon-gluon vertices, a direct consequence of the non-abelian structure
(Fig. A.1).
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Figure A.1: 3-gluons vertex and 4-gluons vertex

A.1.2 Confinement

Confinement is a quintessential aspect of QCD because despite our understanding of
quarks and gluons as the fundamental building blocks of hadrons, we never observe
these particles in isolation. Instead, they are always confined within larger composite
particles like protons, neutrons, and mesons.

Given the substantial evidence for the existence of quarks, ranging from deep
inelastic scattering experiments to the observed patterns of particle resonances, it’s
perplexing that we never directly observe free quarks. When we attempt to iso-
late individual quarks by pulling them apart, the energy required to achieve this
separation seems to increase without bound. This phenomenon is known as the
”confinement” of quarks. The energy stored in the color field that binds quarks
together increases as they are pulled apart, eventually reaching a point where it’s
more favorable to create new quark-antiquark pairs from the vacuum, forming new
hadrons rather than allowing the isolation of individual quarks.

Furthermore, the concept of the running coupling constant is intimately linked to
confinement in QCD. The coupling constant is a measure of the strength of the inter-
action between quarks and gluons. A QFT formulated using a Lagrangian approach
inherently adopts a perturbative method for its solutions. This perturbative method
is indeed applicable when the interaction coupling is small. When determining scat-
tering cross sections within QFT, the renormalization procedure, following loops
resummation, results in defining a coupling constant g that is energy-dependent.
Specifically, g varies with the scale µ due to the renormalization of the theory, sym-
bolized as g 7→ g(µ). The main quantity derived from perturbative QCD is the
beta-function (β-function). The latter is related to the running coupling constant
by the differential equation
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β(g) = µ
∂g

∂µ
(A.7)

The β-function in at one-loop level, reads:

β(g) =
11Nc − 2Nf

48π2
g3. (A.8)

By solving Eq. A.7 and Eq. A.8 one obtain the running coupling constant ex-
pression:

g2(µ) =
g2∗

1 + 2bg2∗log
µ
µ∗

(A.9)

where µ∗ indicates the reference energy scale at which g∗ = g(µ∗). At short
distances, quarks and gluons behave nearly like free particles, and the coupling con-
stant is relatively small. At larger distances where confinement becomes significant,
the coupling constant increases, rendering perturbative methods ineffective. This
phenomenon, known as asymptotic freedom, explains why QCD interactions be-
come weaker at high energies, a counterintuitive behavior compared to other forces.
Indeed this feature is shared by non-abelian gauge theories.

A.2 Structure of the Vacuum in QCD

The vacuum in QCD is far from being an empty and inert entity. Instead, it is a
complex medium characterized by non-perturbative effects and is associated with
numerous condensates, revealing the rich and intricate structure of the QCD ground
state.

The chiral condensate is one of the most fundamental vacuum expectation values
in QCD and is intimately linked to the spontaneous breaking of chiral symmetry. In
the world of QCD, where quarks are massless or nearly so, there exists a chiral sym-
metry. However, this symmetry is not realized in nature, meaning it is spontaneously
broken. This breaking is signaled by a non-zero value of the chiral condensate:

⟨q̄q⟩ ̸= 0

where q represents the quark field. The non-zero value indicates that the QCD
vacuum acts as a medium in which quark-antiquark pairs are constantly being cre-
ated and annihilated, leading to the observed broken symmetry. This spontaneous
breaking of chiral symmetry, and its associated condensate, is crucial as it gives rise
to the mass of hadrons.
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A.2.1 Quark Current Mass and Constituent Mass

Understanding the origin of the mass of nucleons, such as neutrons and protons, is
central to particle physics. The initial assumption might be that the Higgs mech-
anism is the primary source of all particle masses, but there’s more depth to this
story.

In the Standard Model (SM) of particle physics, the Higgs mechanism is funda-
mental for endowing the gauge bosons with mass, except for the photon and gluon.
This is realized via a symmetry-breaking process. Specifically:

SU(3)c ⊗ (SU(2)L ⊗ U(1)Y ) → SU(3)c ⊗ U(1)Q (A.10)

The left-hand side of the equation represents the combined symmetries before break-
ing. Post breaking, three generators of SU(2)L are disrupted, producing three Gold-
stone bosons. These bosons, being massless, are ”eaten up” by gauge bosons, giving
them mass. This process is essential as directly assigning mass to these gauge bosons
would violate the principle of gauge invariance.

For SM fermions, the way of acquiring mass is distinct. Instead of the mechanism
used by gauge bosons, fermions interact directly with the Higgs field via the Yukawa
coupling. In the Lagrangian, this reads as:

LFermions(ϕ,A, q) = ψγµDµψ +Gψψϕψ (A.11)

In this equation, ϕ denotes the Higgs field, while q refers to the fermion fields.
Quarks, for instance, have been experimentally determined to possess masses around
5 MeV for the up and down varieties. An interesting point arises: why does a
nucleon, constituted of quarks, exhibit a mass approximately 200 times greater than
an individual quark? The answer revolves around chiral symmetry breaking.

Chiral symmetry breaking illuminates why entities like neutrons and protons
exhibit such significant mass compared to the elementary quarks that constitute
them. In a scenario where the masses of specific quarks tend towards zero, the
QCD lagrangian showcases invariance under a chiral transformation. This symmetry
breaking is characterized by the chiral condensate’s non-zero vacuum expectation
value, represented as:

⟨q̄aRqbL⟩ = vδab (A.12)

When particles are conceptualized using a two-quark model, a symmetry is observed:

SU(2)L ⊗ SU(2)R ⊗ U(1)V ⊗ U(1)A (A.13)

However, because of strong interaction, this chiral symmetry is reduced to:

SU(2)L ⊗ SU(2)R → SU(2)V (A.14)

Here, the resultant framework yields three Goldstone bosons, known as pions. Though
these pions are visualized as rotations about an equilibrium state and should ideally
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be devoid of mass, they indeed possess some mass. This is attributed to the explicit
symmetry breaking instigated by non-zero quark masses. Extending this perspective
to a three-quark model elucidates the masses of various mesons, inclusive of protons
and neutrons, as they are influenced by the QCD vacuum condensate. Therefore,
chiral symmetry is a fundamental symmetry of the QCD Lagrangian when quarks
are massless. The chiral condensate in Eq. A.12 is a measure of quark-antiquark
pairs in the vacuum. A non-zero value for this condensate indicates that chiral sym-
metry is spontaneously broken in the QCD vacuum. This spontaneous breaking is
closely related to quarks acquiring a constituent mass:

Mq ≈ −⟨q̄q⟩
f 2
π

(A.15)

where Mq is the constituent quark mass and fπ is the pion decay constant.
To sum it up, the very presence of a non-zero current quark mass in the La-

grangian (however small it might be for light quarks) leads to an explicit breaking
of chiral symmetry. The pion, a meson consisting of a quark and an antiquark,
serves as an example. While the current masses of its constituent quarks are mini-
mal, the mass of the pion itself isn’t zero. This mass arises from both spontaneous
and explicit chiral symmetry breaking.

In essence, the constituent mass of quarks emerges from their interactions within
the QCD medium, profoundly influenced by the interplay of chiral symmetry and
its breaking mechanisms.

A.3 Models for high Density QCD

High-energy QCD can be studied in terrestrial laboratories using particle accelera-
tors. The behavior of the QCD coupling constant allows for predictions of experi-
mental results through perturbation theory. However, at low energies, it becomes
unfeasible to perturbatively analyze the QCD Lagrangian. In such scenarios, effec-
tive theories become crucial for our understanding.

Beyond the high-energy regime, there exists another extreme regime that re-
mains elusive to terrestrial laboratory studies: the high-density regime. Some stars,
at the end of their evolutionary cycle, achieve densities comparable to nucleons. In
such extreme environments, unique nuclear properties of matter emerge. Due to
our inability to replicate such immense densities in macroscopic scales on Earth, it
becomes essential to study NSs and other potential exotic objects to gain a compre-
hensive understanding of QCD.

Compact stars, despite their immense gravitational pull and density, are rela-
tively cold objects. Their low-temperature nature makes them distinct from other
high-energy phenomena. However, to glean insights into the intermediate-density
regime, which might bridge our understanding between various energy states, one
can use heavy-ion collision experiments.
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These controlled collisions offer a unique window into the behavior of dense
matter. In particular, they shed light on the conditions under which new degrees
of freedom, such as quark-gluon plasma, might manifest, especially as the system
approaches high temperatures. Such transitions and phenomena are crucial, as they
give hints about the underlying properties and phases of QCD at varying densities
and temperatures.

Given the wealth of data and observations from these experiments, some re-
searchers have proposed that they can be used as a foundation to extrapolate and
infer the behavior of cold NS matter. While there’s a temperature disparity be-
tween compact stars and heavy-ion collision experiments, the underlying physics,
especially pertaining to density and quantum interactions, might have shared char-
acteristics. Hence, by understanding one system, we might be better positioned to
make educated predictions about the other.

In order to describe hadrons and consequently high density QCD, namely bunch
of quarks together, several models have been considered during history. From the
simpler MIT bag model to the more complex Nambu-Jona-Lasinio (NJL) model.

A.4 Nambu–Jona-Lasinio (NJL) Model

A.4.1 Introduction

The Nambu-Jona-Lasinio (NJL) Model is a theoretical framework delved to unde-
stand some aspect of QCD. It was first formulated by Nambu and Jona-Lasinio
[163] in 1961 [164]. In the NJL model, quarks are treated as point-like particles,
and their interactions are described by a four-fermion interaction term. This local
interaction can be seen as an approximation to the effects of gluon exchanges. This
model has proven invaluable for probing processes such as chiral symmetry breaking
and hadron formation. Though the NJL model can capture some of the low-energy
characteristics of QCD, it doesn’t offer a comprehensive description of strong in-
teractions. Indeed, as a low-energy effective theory, the NJL model captures the
essential features of chiral symmetry breaking in QCD despite not incorporating
confinement, a key aspect to treat phase transitions in self bound objects such as
strange stars.

Even though it lacks gluonic degrees of freedom and does not provide a descrip-
tion of confinement, the NJL model has been successful in describing the dynamical
chiral symmetry breaking and the hadronic spectra, especially in the light quark
sector.

A.4.2 Two-Flavor Quark Matter in the NJL Model

For two-flavor quark matter, the NJL model focuses on up (u) and down (d) quarks.
The Lagrangian density, incorporating a local four-quark interaction, is given by:
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LNJL = ψ̄(iγµ∂µ −m0)ψ +G[(ψ̄ψ)2 + (ψ̄iγ5τ⃗ψ)2] (A.16)

Here, ψ represents the quark field doublet (u, d)T . The Dirac matrices are repre-
sented by γµ, and m0 is the current quark mass matrix, usually taken as a diagonal
matrix m0 = diag(mu,md). The parameter G denotes the coupling constant tied to
the strength of the four-quark interaction, and τ⃗ are the Pauli matrices that operate
in flavor space.

The dynamical breaking of chiral symmetry is attributed to the four-quark inter-
action term in the Lagrangian. Although the scalar and pseudoscalar interactions
are the primary components, the NJL model can also accommodate other interaction
channels such as vector and axial-vector.

To study the spontaneous breaking of chiral symmetry, we use a mean-field ap-
proximation. By considering the quark bilinear ψ̄ψ as approximating its vacuum
expectation value ⟨ψ̄ψ⟩, we can derive the gap equation. This is achieved by differ-
entiating the thermodynamic potential with respect to the quark bilinear, setting
the resulting expression to zero, thus obtaining the equation that determines the
dynamically generated quark mass.

Formally, the (mass) gap equation is given by:

Mi = mi − 2G⟨ψ̄iψi⟩ (A.17)

Here, Mi represents the dynamically generated (or constituent) mass for the quark
flavor i, and ⟨ψ̄iψi⟩ is the quark condensate for the flavour i. The quark condensate:

⟨ψ̄iψi⟩ = − 3

π2

∫ Λ

kF,i

p2
mi√
m2
i + p2

dp (A.18)

where Λ is the cutoff to regularize the integral and kF,i is the fermi momentum of
the i quark that is

kF,i = (π2ni)
1
3 (A.19)

Through this two-flavor NJL model, it becomes possible to determine various
physical observables. For instance, one can compute the pion decay constant and
the quark condensate, both vital for a deeper understanding of low-energy QCD
phenomena.

A.4.3 Three-Flavor Quark Matter in the NJL Model

For the case of three-flavor quark matter, the NJL model involves up (u), down (d),
and strange (s) quarks. Expanding the previous discussion, the Lagrangian density
for the three-flavor model is in its most common form is given by:

LNJL,3f = ψ̄(iγµ∂µ −m0)ψ + Lsym + L’t Hooft (A.20)

where Lsym and Ldet are two independent interaction terms. Their explicit form
reads
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Lsym = G[(ψ̄ψ)2 + (ψ̄iγ5λaψ)2] (A.21)

and
L’t Hooft = −K

[
detf (ψ̄(1 + γ5)ψ) + detf (ψ̄(1 − γ5)ψ)

]
(A.22)

In these equations ψ is now the quark field triplet: ψ = (u, d, s)T , the current
quark mass m0, extends to m0 = diag(mu,md,ms), λa are the Gell-Mann matrices
acting in flavor space, extending the role of the Pauli matrices from the two-flavor
case, while G and K are coupling constants representing interactions among the
quarks.

Lsym is a symmetric 4-point interaction U(Nf )L×U(Nf )R while L’t Hooft is the ’t
Hooft interaction and it is a determinant in the flavour space. The ’t Hooft term is
SU(Nf )L×SU(Nf )R symmetric but it is needed to account the UA(1) anomaly which
arises from the gluon sector. Moreover, this term is phenomenologically important
to get the correct η′ mass: in the chiral limit in which mu = md = ms = 0 the meson
η is massless while the meson η′ has a finite mass due to the L’t Hooft.

The extension to three flavors allows us to account for the strange quark and its
influence on chiral symmetry breaking. By applying the mean-field approximation
similarly as in the two-flavor case, we can treat quark bilinears like ψ̄ψ as their
vacuum expectation values, which results in a set of gap equations. Each equation
determines the dynamically generated mass for the respective quark flavor. Formally,
for each quark flavor i, the gap equation takes the form:

Mi = mi − 4G⟨ψ̄iψi⟩ + 2K⟨ψ̄jψj⟩⟨ψ̄kψk⟩ (A.23)

where i, j, and k are distinct and represent any of the u, d, or s quarks.
By solving these gap equations self-consistently, we can determine the constituent

quark masses, which are influenced by the chiral dynamics and interactions among
the three quarks.

The three-flavor NJL model provides a framework to study not only the chiral
dynamics and symmetry breaking patterns influenced by the strange quark but also
to calculate relevant physical observables like meson masses and decay constants.

A.5 Equations of state of quark matter

When we study strange quark star or agglomerate of strange quark matter in gen-
eral, such as quark nuggets, we have to rely on EoS. Whitin the framework of the
MIT bag model or the NJL model, we can define relations between pressure and
energy density of quarks, by calculating from the lagrangian formulation the ther-
modynamic potential and then deriving quantities such pressure and energy density.
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A.6 MIT bag model EoS

The MIT Bag Model [48], developed in the 1970s at the Massachusetts Institute
of Technology, offers a theoretical framework to understand the behavior of quarks
within hadrons. This model conceptualizes quarks as free-moving particles inside a
hypothetical spherical ”bag”. The bag serves as a confinement boundary, delineating
a region where quarks can exist freely. Beyond this boundary, the strong force
prevents quarks from existing as isolated entities. This confinement is captured
by a balance between the internal pressure of the quark-gluon gas and the external
vacuum pressure. In other words the bag constant is a measure of the energy density
difference between the perturbative and non-perturbative QCD vacuums.

Inside this bag, quarks are imagined to move as though they are non-interacting,
a simplifying approximation given that quarks actually do interact via the strong
force. To characterize the model further, a ”bag constant,” denoted as B, is in-
troduced. This constant represents the energy density difference between the true
vacuum outside and the perturbative vacuum inside the bag.

To ensure quarks remain inside this confinement boundary, the model requires
quark fields to vanish at the bag’s surface. While the MIT Bag Model has found
applications in predicting hadron properties and probing the behavior of dense quark
matter, it’s essential to recognize its limitations. As a simplified representation, it
doesn’t fully capture the intricate dynamics of QCD, especially over short distances.

Within the MIT bag model, we can express the total energy of a bulk of i
deconfined quark flavours as:

ε =
∑
i

εi +B (A.24)

where B is the bag constant.
The energy density of the single flavour i reads [165]:

εi (ρi) =
3mi

4

8π2

[
xi
(
2x2i + 1

)(√
1 + x2i

)
− arcsinh xi

]
−αs

mi
4

π3

[
x4i −

3

2

[
xi

(√
1 + x2i

)
− arcsinh xi

]2]
, (A.25)

The QCD coupling constant is denoted by αs, while the quantity xi is defined as

xi =
kF,i
mi

, (A.26)

where kfi is the Fermi momentum for flavor i defined in Eq. A.19
One notable form of the bag model which is useful when describing SQS is a

parametrization that aim to phenomenologically reproduce the quark matter be-
haviour accounting for some QCD corrections. The thermodynamic potential Ω
reads [60]:
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Ω = − 3

4π2
a4µ

4 +
3

4π2
a2µ

2 +Beff , (A.27)

where a4 ≡ 1−c represents the QCD corrections to the pressure of the free-quark
Fermi sea, and a2 accounts for effects related to quark pairing and the mass of strange
quarks. The term Beff is the effective bag constant, which may be density-dependent
and can depend on a4 and a2.

A.6.1 NJL model EoS

The NJL model does not have a proper bag as the MIT bag model. Using the
mean field approximation we have to stabilize the solution by artificially reducing
the energy density and pressure in the vacuum. This is done by defining a parameter
analogous to the bag constant in the MIT bag model [166, 51]

B =
∑
i=u,d,s

(
3

π2

∫ Λ

0

p2dp

(√
p2 +M2

i −
√
p2 +mi

2

)
− 2G ⟨q̄iqi⟩2

)
+ 4K ⟨ūu⟩

〈
d̄d
〉
⟨s̄s⟩ (A.28)

The equation of state for SQM in the NJL model can be derived as

P = −ε+
∑
i=u,d,s

ni

√
k2F,i +m2

i , (A.29)

with the energy density given by

ε =
∑
i=u,d,s

3

π2

∫ kF,i

0

p2dp
√
p2 +M2

i − (B − B0). (A.30)

Buballa and Oertel [166] justifies the bag pressure B as a quantity which dynam-
ically emerges from the mean field solution, contrasting with the MIT bag model
where it is introduced externally. In the NJL approach we obtain a dynamic mass at
non-zero baryon densities, differing from the MIT bag model, which maintains a con-
stant mass across densities. This results is a direct consequence of chiral symmetry
breaking.

The vacuum treatment between models is very different: the MIT bag model
assumes a particle-free vacuum with particle wave function flow confined, whereas
the NJL model lacks such confinement, since the vacuum consists of paired quasi-
quarks that lower particle energy density in comparison to the MIT model. For this
reason when we use EoS derived from NJL model, we add an effective bag constant

B0 = B|nu=nd=ns=0, (A.31)

Beff = B − B0. (A.32)
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Appendix B

Hydrostatic of a compact star

B.1 Stellar structure equations

B.1.1 Newtonian structure equations

After having introduced the EoS we have to describe what a compact star structure
looks like. To do so, we have to introduce equations that describe the hydrostatic
equilibrium. In particular, the overall structure of a star emerges as a consequence
of a delicate balance between dominant forces, notably the force of gravity and the
opposing effect of hydrostatic pressure. When considering the situation in which
the Newtonian framework is applicable and considering the spherically symmetrical
case, it becomes possible to address the issue using straightforward equations. In
the process of formulating the equations that describe the star’s structure, a key
requirement is to compute the tiny force resulting from the pressure acting on a
small spherical shell with a radius r,

dFP = dP 4πr2, (B.1)

together with the infinitesimal gravitational force to which the shell of radius r is
subjected and thickness dr, namely

dFg = −Gm(r)

r2
4πr2ϱdr. (B.2)

The hydrostatic equilibrium in a fluid is described by these two equations in the
form

∇P = −ϱ∇Φ , (B.3)

where ϱ is the density meanwhile Φ = −Gm(r)
r

represents the gravitational potential.
The spherical symmetric form of Eq. B.3 reads:

1

ϱ

dP (r)

dr
= −Gm(r)

r2
. (B.4)
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To proceed, we need to relate the enclosed mass m(r) to the density ϱ(r). This
is achieved through the conservation of mass equation for the spherical object:

dm = 4πr2ϱ(r)dr . (B.5)

This set of equations achieves closure upon the incorporation of the EoS. In the
context of the barotropic approximation, this equation is represented as:

P ≡ P (ϱ). (B.6)

Here, pressure is explicitly defined as a function of density, thereby rendering the
system of equations self-sufficient and self-consistent.

Actually, the EoS might explicitly exhibit dependence on temperature, necessi-
tating the incorporation of additional equations to achieve closure within the sys-
tem. The latter would make explicit the variation of temperature in terms of energy
transport mechanisms and the star’s energy balance.

Nevertheless in the simplest case here considered, the integration process neces-
sitates adherence to specific boundary conditions, which can be expressed in terms
of both mass and radius, where r(M) = R and m(R) = M . These conditions dictate
that the density at the stellar core assumes a finite value ϱcent:

ϱ(0) = ϱcent ,

Furthermore, the pressure must vanish at the surface of the star:

P (R) = 0 .

An additional condition can be established concerning the pressure’s derivative
at the core of the star. This arises due to the behavior of central mass for small
radii:

m(r) ≈ ϱcent
4π

3
r3 . (B.7)

By combining the aforementioned equation with Eq. B.4, the condition at the
center is expressed as:

dP

dr

∣∣∣∣
r=0

≈ −4π

3
Gϱcentr

∣∣∣∣
r=0

= 0. (B.8)

B.1.2 Tolman-Oppenheimer-Volkoff equation (TOV)

The Newtonian hydrostatic equations provide a useful framework for describing
the internal structure and equilibrium of conventional celestial objects like stars,
planets, and white dwarfs. These equations help us analyze the balance between
gravitational forces and pressure gradients within these bodies, shedding light on
their overall physical makeup and properties.
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However, when dealing with highly dense and compact stellar objects like NSs,
the simplifications of the Newtonian framework fall short. In such extreme condi-
tions, the effects of spacetime curvature, as outlined by Einstein’s general theory
of relativity, come into play. The intense gravitational fields generated by the high
mass densities cause significant warping of spacetime, resulting in phenomena where
the relativistic nature of gravity becomes significant.

As a result, a more sophisticated approach is required to accurately model NSs
and similar compact objects. General relativity offers a more comprehensive under-
standing of the gravitational interaction by considering the interrelation between
mass, energy, and spacetime geometry.

Therefore, TOV equation is the generalization of Newtonian hydrostatic equi-
librium, namely a fundamental result in theoretical astrophysics, describing the
equilibrium structure of spherically symmetric, self-gravitating objects. As in the
Newtonian case, this equation arises from the application of the hydrostatic equi-
librium condition, which balances the gravitational force inward with the pressure
force outward.

Indeed, in the case of a spherically symmetric, static and isotropic star, the most
general way to describe the spacetime’s structure using spherical coordinates is by
employing the following equation:

ds2 = −e2ϕ(r)dt2 + e2λ(r)dr2 + r2 + r2
(
dθ2 + sin2 θdϕ2

)
. (B.9)

By considering the relation between the line element and the metric tensor,

dτ 2 = gµνdx
µdxν , (B.10)

one finds the form of the metric tensor itself:

gµν =


−e2ν(r) 0 0 0

0 e2λ(r) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 .

Since we are interested in a spherical, isotropic, and static solution, we make
use of the Schwarzschild solution. This describes the gravitational field around a
spherically symmetric, non-rotating mass. It addresses the curvature of spacetime
caused by a central mass, while taking into account the spherical symmetry and
static nature of the system. The solution gives and explicit form to the two metric
functions: λ and ν, which capture the effects of gravity on the geometry of spacetime.
These functions depend on the radial coordinate r and the mass M of the central
object:

gµν =


−
(
1 − 2M

r

)
o o o

o
(
1 − 2M

r

)−1
o o

o o r2 o
o o o r2 sin2 θ

 . (B.11)
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The line element accordingly reads:

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdϕ2

)
. (B.12)

To obtain the equation of hydrostatic equilibrium in its general form, one con-
siders the tensor energy impulse T µν in general relativity, in approximation of non-
viscous fluid

T µν = (ε+ P )uµuν − Pgµν (B.13)

where ε is the energy density component. Since dτ 2 = gµνdx
µdxν and the four-

velocity is defined as

uµ ≡ dxµ

dτ
, (B.14)

then the latter satisfies

gµνu
µuν = 1 . (B.15)

The tensor in Eq. B.13 has a null covariant derivative (indicated with the sub-
script ; as opposed to the simple derivative indicated with ,):

T µν;ν = (ε+ P ),νu
µuν + (ε+ P )uµ;νu

ν + (ε+ P )uµuµ;ν − P,νg
µν = 0 (B.16)

and if projected along u let us obtain, also considering Eq. B.15 and that therefore
uµu

µ
;ν = 0, the equation

(ε+ P ),νu
ν + (ε+ P )uµu

µ
;νu

ν + (ε+ P )uν ;ν − uνP,ν =

(ε+ P ),νu
ν + (ε+ P )uν ;ν − uνP,ν =

ε,νu
ν + (ε+ P )uν ;ν = 0 . (B.17)

The general relativistic analog of the Newtonian continuity equation for a fluid
is obtained by replacing in the preceding one

ε,νu
ν =

∂ε

∂xν
dxν

dτ
=
dε

dτ
, (B.18)

obtaining

dε

dτ
+ (ε+ P )∇ · u = 0 . (B.19)

To obtain the relativistic analogue of the Euler equation for fluids, we start by
considering equation Eq. B.17. We multiply this equation by the four-velocity uµ
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and then subtract equation Eq. B.16. This manipulation is performed in order to
achieve the following result:

(ε+ P )uµ;νu
ν = P,ν (gµν − uµuν) . (B.20)

Considering the metric that defines the line element as provided by equation
Eq. B.12, which exhibits spherical symmetry and where only the time-like compo-
nent of the four-velocity uµ is zero, we are able to condense equation Eq. B.20 into
the subsequent expression:

(ε+ P )
dΦ

dr
= −dP

dr
. (B.21)

However, our goal is to express the potential Φ in terms of physical quantities
associated with the compact object, such as mass, radius, and pressure. To achieve
this, we make use of the Einstein equation [167]:

Gµν = 8πGTµν (B.22)

This equation characterizes the curvature of spacetime (Gµν) in response to a given
distribution of matter and energy density (Tµν). The tensor Gµν is referred to as
the Einstein tensor and is defined as follows:

Gµν = Rµν −
1

2
gµνR . (B.23)

Here Rµν is the Ricci tensor [168], which quantifies the measure of curvature:

Rµν = ∂εΓ
ε
µν − ∂νΓ

ε
εµ + Γε ελΓλνµ − Γε νλΓλεµ (B.24)

and R represents its trace and Γijk is the Christoffel symbol, which represents
a connection on a differentiable manifold. This symbol is defined, given a metric
tensor g, as:

Γijk =
1

2
gil
(
∂glj
∂xk

+
∂glk
∂xj

− ∂gjk
∂xl

)
=

1

2
gil (∂kglj + ∂jglk − ∂lgk)

and it depends on the coordinate system.
For the problems considered in this thesis, which pertains to non-rotating com-

pact objects exhibiting spherical symmetry and involving the corresponding metric,
the only non-trivial components of the Einstein tensor are Gtt and Grr. These
components are given by:

Gtt = 8πT tt (2rλ,r − 1) = (8πr2ε− 1)e2λ (B.25)

Grr = 8πT rr (2rΦ,r + 1) = (8πr2ε+ 1)e2λ (B.26)

From equation Eq. B.25, we obtain a familiar expression:

dm

dr
= 4πr2ε , (B.27)
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Instead, by referring to equation Eq. B.26, we can derive the expression for Φ:

dΦ

dr
=
m+ 4πr3P

r (r − 2m)
. (B.28)

Subsequently, by inserting equation Eq. B.28 into Eq. B.21, we arrive at the TOV
equation:

dP

dr
= (ε+ P )

m+ 4πPr3

2mr − r2
. (B.29)

In summary, equation Eq. B.28 is derived from Eq. B.26, and equation Eq. B.29
is obtained by substituting Eq. B.28 into Eq. B.21. As in the Newtonian case,
this system of equations becomes closed when taking into account the EoS. By
solving TOV equation one can obtain curves such as those shown in Fig. 2.1 in
Chapter 2 Stiffer EoS can be noticed because they produce larger radii and masses,
in opposition to softer ones.
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Appendix C

Strangelets evaporation
parameters

Here there are plots representing the explored parameter space in the context of
strangelets evaporations presented in Chapter 3.

In Fig. C.1 a linear correlation between the logarithmic maximum size of the
distribution, denoted as Q(A), and the logarithmic maximum mass (the maximum
of A ·Q(A)) is highlighted. This correlation is observed when the parameters σ (of
the pre-evaporation distribution P (A)) and β (from Eq. 3.22) are held constant.

A similar linear correlation exists, for fixed σ and β values, between the loga-
rithms of the maximum size and mass, and the total number of strangelets remaining
after evaporation (see Fig. C.2 and Fig. C.3).

A non-linear correlation is identified in Fig. C.4, varying now log10 β, concerning
the dark matter ratio (DMR) and the logarithm of the maximum mass. This rela-
tionship suggests that to achieve the correct DMR we have to ensure that log10 β is
not excessively low, which would overly suppress evaporation.

By fixing σ and β, we aimed to understand the range of DMR achievable by
varying the parameter µin from the initial distribution P (A). This aspect is explored
in Fig. C.5, providing insights into the influence of initial distribution characteristics
on the DMR.
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Figure C.1: Correlation between the maximum mass and the maximum size of the
final distribution, for different value of σ and for log10β varying from -5 to -6.
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Figure C.2: Correlation between the final number of strangelets and the maximum
size of the final distribution, for different value of σ and for log10β varying from -5
to -6.
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Figure C.3: Correlation between the number of strangelets and the maximum mass,
for different value of β and for σ varying from 1 to 2.
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Figure C.4: Correlation between µin and the dark matter ratio, highlighting points
with fixed β
. In yellow and light blue, the expected dark matter ratio for the Milky Way at one
and two standard deviations.
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Figure C.5: Correlation between the DRM and the central value µin of the initial
distribution, by fixing log10β = −5 and σ = 2.

Proof of strangelets existence

The proof of strangelets existence is left as an exercise to the reader:
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[100] H. Müther, M. Prakash, and T.L. Ainsworth. The nuclear symmetry energy
in relativistic brueckner-hartree-fock calculations. Physics Letters B, 199(4):
469–474, 1987. ISSN 0370-2693. doi: https://doi.org/10.1016/0370-2693(87)
91611-X. URL https://www.sciencedirect.com/science/article/pii/

037026938791611X.
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