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Abstract

In this work, we present a family of time and space high order finite volume schemes for the solution of the full
Boltzmann equation. The velocity space is approximated by using a discrete ordinate approach while the collisional
integral is solved by spectral methods. The space reconstruction is realized by integrating the distribution function,
describing the state of the system, over arbitrary shaped and closed control volumes using a Central Weighted ENO
(CWENO) technique. Compared to other reconstruction methods, this approach permits to keep compact stencil sizes
which is a remarkable property in the context of kinetic equations due to the considerable demand of computational
resources. The full discretization is then obtained by combining the previous phase-space approximation with high
order Implicit-Explicit (IMEX) Runge Kutta schemes. These methods guarantee stability, accuracy and preservation
of the asymptotic state. Comparisons of the Boltzmann model with simpler relaxation type kinetic models (like BGK)
is proposed showing the capability of the Boltzmann equation to capture different physical solutions. The theoretical
order of convergence is numerically measured in different regimes and the methods are tested on several standard
two-dimensional benchmark problems in comparison with Direct Simulation Monte Carlo results. The article ends
with a prototype engineering problem consisting of a subsonic and a supersonic flow around a NACA 0012 airfoil. All
test cases are run with MPI parallelization on several threads, thus making the proposed methods suitable for parallel
distributed memory supercomputers.
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1. Introduction

Kinetic models permit to describe a very large set of physical phenomena involving fluid and gases [13]. This
description relies on a different point of view compared to standard fluid models such as compressible Euler or
Navier-Stokes equations. In fact, the state of the system is determined through the time evolution of a distribution
function giving the probability for a particle of the gas to be at a given position, with a given velocity, at a fixed
instant of time. Consequently, the full problem depends, in general, on seven independent variables: three for the
space, three for the velocity plus the time. This gives a very large spectrum of possibilities regarding the modeling:
typically rarefied gases and high speed flows can be described only through these approaches while fluid models fail.
The counterpart is however the requirement of very expensive simulations and very large variable storages compared
to the compressible fluid dynamic case [25].

In realistic simulations, the problem of the excessive computational cost is traditionally bypassed using Direct
Simulation Monte Carlo methods [11, 46] which are both versatile and very efficient at least for describing steady
problems. However, the simulation of unsteady flows remains a real challenge for probabilistic methods due to the
large statistical error introduced in the computation. Concerning deterministic methods, along with finite volume
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approaches [54, 55, 56], a recent strategy, based on a Lagrangian technique, has been shown to be able to deal
efficiently with multidimensional kinetic equations [18, 19, 20]. This method has been also employed to compute the
solution of a full six dimensional Boltzmann model [21]. Nevertheless, even if very efficient, this approach is only
first order in time and space and it is based on a regular Cartesian mesh.

In this work, we instead deal with high order accurate space-time finite volume methods and unstructured meshes.
The methods here discussed are clearly more demanding in terms of computational resources compared to [18] but,
on the other hand, more accurate and versatile. In particular, the results presented in this work follows the approach
recently forwarded in [9], where a simple kinetic model of relaxation type is considered. Here, we deal with the much
more challenging and physically realistic Boltzmann kinetic model [13]. We remark that on this subject, up to our
knowledge, the number of articles dealing with multidimensional high order in space and time numerical methods for
the full Boltzmann equation is extremely limited, in particular for high order methods on unstructured meshes we are
aware of only few examples [38, 39, 53] that are all concerned with discontinuous Galerkin methods and explicit time
discretizations or instead low order implicit ones. In this work we focus also on high order in time implicit methods
which are of paramount importance in kinetic equations [25].

To deal with the Boltzmann equation, we introduce four different level of discretization: two different type of
discretization for the velocity space, discretization of the physical space and time discretization. For the velocity space,
we first introduce a traditional discrete velocity model (DVM) [6] which replaces the continuous kinetic equation
with a finite set of fixed velocities. This idea is then integrated by relying on a spectral approach for efficiently
approximate the Boltzmann integral [30, 59, 31] as detailed later. The transport part of the DVM model is solved
by a finite volume strategy, i.e. we evolve the cell averages of the distribution function. High order space accuracy
requires a reconstruction that produces high order piecewise polynomials from the neighboring cell averages. Many
reconstruction strategies do exist [51], and we concentrate on a Central WENO reconstruction (CWENO) because
of its compactness property. These have been originally introduced in the context of conservation laws in the one-
dimensional case [42] and also used in our recent work [9]. In particular, we develop these techniques on arbitrary
polygonal meshes in the physical space. The CWENO reconstruction procedure has also been successfully used in a
context of moving mesh schemes with grid regeneration [32] and embedded in a quadrature-free finite volume scheme
for solving all Mach compressible flows [10].

The fourth type of discretization, i.e. the time one, is handled by using Implicit-Explicit (IMEX) Runge-Kutta
(RK) methods [24]. As detailed in [25], kinetic equations are particularly difficult to solve due to their multiscale
nature in which collision and transport scales coexist. Close to the fluid limit, the collision rate grows exponentially,
while the fluid dynamic time scale conserves a much lower pace [13]. Several authors have tackled the above problem
in the recent decades [40, 41, 29, 3, 15, 16, 17, 23, 22, 26, 43, 36, 37, 49] by developing and studying the class of
methods known as Asymptotic Preserving (AP). These techniques allow the full problem to be solved for time steps
independent of the collisional fast scale identified by the Knudsen number. Moreover, they are stable and consistent
with the limit model provided by the compressible Euler equation in the limit in which the collisional scale grows to
infinity.

A last difficulty is present when the full Boltzmann model is considered. One has to deal with the discretization
of a five fold integral (for the three-dimensional case, or a three fold integral for the two-dimensional one) for each
fixed value of the physical mesh. This is known to be a very challenging and computationally expensive problem
when treated by deterministic techniques and it is one of the main reason why particles methods are often preferred in
practice [25]. Here, this problem is overcome by Fourier techniques [45, 30] which can be shown to have a complexity
of the order of O(Ndv log(Ndv )) where N is the number of modes taken for the velocity space in one direction and dv

the dimension of the velocity space. We recall that the research field in this direction is very active and many recent
contributions are present in the literature (see [60, 34] and the references therein).

Summarizing, in this paper we extend the high order CWENO-IMEX Runge-Kutta Asymptotic Preserving meth-
ods on arbitrary shaped unstructured grids developed in [9] to the Boltzmann case. These methods are successively
tested on benchmark multidimensional rarefied gas dynamic problems comparing relaxation type kinetic equations
(like the simple BGK model) with the Boltzmann model. Comparisons of the proposed method with Direct Simula-
tion Monte Carlo simulations applied to the solution of the Boltzmann model are also proposed showing an excellent
agreement between the two different techniques. The theoretical accuracy is also numerically verified for different
regimes. Finally, a more realistic test case involving a flow around a NACA 0012 airfoil for different values of the
Knudsen number is performed in the subsonic and in the supersonic regime. A MPI parallelization is realized dis-
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tributing the space variable on different threads and the computational cost related to the Boltzmann collision operator
is discussed.

The article is organized as follows. In Section 2, we introduce the Boltzmann and the BGK models, their prop-
erties and their fluid dynamic limit. In Section 3, we present the four type of discretization, namely the discrete
ordinate discretization, the Fourier approximation of the Boltzmann operator, the CWENO reconstruction and the
IMEX Runge-Kutta schemes applied to the phase-space discretization of the kinetic equations. The Section 4 is de-
voted to present several numerical examples of the schemes. In particular, up to third order accuracy in space and
time is proved, the performances of the method are measured and its capability to deal with such equations is shown.
Conclusions and future investigations are discussed in a final section.

2. The Boltzmann and the BGK equations

We consider kinetic equations belonging to the following class

∂ f
∂t

+ v · ∇x f = Q( f ). (1)

This equation supplemented by the initial condition f (x, v, t = 0) = f0(x, v) furnishes the time evolution of a non-
negative function f = f (x, v, t) which gives the distribution of particles with velocity v ∈ Rdv in the space x ∈ Ω ⊂ Rdx

at time t > 0. In the following, for simplicity, we will fix dx = dv = d, i.e. we consider the same dimension for
both the physical and the velocity space. Moreover all numerical simulations are performed in the dx = dv = 2 case
which means in a four-dimensional space. The operator Q( f ) describes the effects of particle interactions and its
form depends on the details of the microscopic dynamics. In particular, we focus on two models. The first one is a
relaxation type model

∂t f + v · ∇x f =
ν

ε
(M f − f ), (2)

which is known as the BGK equation [4]. In this model, the complex interactions between particles are substituted by
a relaxation towards the local thermodynamical equilibrium defined by the Maxwellian distribution function M f

M f = M f [ρ, u,T ](v) =
ρ

(2πθ)d/2 exp
(
−|u − v|2

2θ

)
, (3)

where ρ ∈ R, ρ > 0 and u ∈ Rd are respectively the density and mean velocity, while θ = RT with T the temperature
of the gas and R the gas constant fixed to R = 1 in the rest of the paper. These quantities are related to the distribution
function through the following relations

ρ =

∫
Rd

f dv, u =
1
ρ

∫
Rd

v f dv, θ =
1
ρd

∫
Rd
|v − u|2 f dv. (4)

Additionally, the parameter ν > 0 in (2) is the relaxation frequency which is taken in this work as ν = ρ. Let observe
that this is a simplified version of a more general frequency law of the type ν = ρT 1−β (see [14] for a discussion).

The second model we consider, which we focus our entire study on, is represented by the more challenging case
of the full Boltzmann equation

∂t f + v · ∇x f =
1
ε

∫
Rdv

∫
Sdv−1

B(|v − v∗|, ω)
(
f (v′) f (v′∗) − f (v) f (v∗)

)
dv∗dω. (5)

In this model, ω is a vector of the unitary sphere Sdv−1 ⊂ Rdv , whereas (v′, v′∗) are given by the relations

v′ =
1
2

(v + v∗ + |q|ω), v′∗ =
1
2

(v + v∗ − |q|ω), (6)

where q = v − v∗ is the relative velocity and represents the post-collisional velocities. The kernel B characterizes the
details of the binary interactions. Here we concentrate on the case of the so-called Maxwell pseudo-molecules model
[13], i.e.

B(v, v∗, ω) = b0(cos θ), (7)
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which implies that the collision rate is independent with respect to the relative velocities between the particles in the
gas.

One of the key property of the collision operator which permits to establish the connection between kinetic and
fluid models is that it guarantees the conservation of density, momentum and energy. This fact can be resumed by
writing ∫

Rdv

Q( f )φ(v) dv = 0, (8)

where φ(v) = (1, v, |v|2). Let observe that the energy is related to the other macroscopic quantities through

1
2

dvρT = E −
1
2
ρ|u|2. (9)

The parameter ε appearing in both models (2) and (5) is the so-called Knudsen number which is used to rescale the
equation in time and space to ease the transition from the different time scales which characterize a kinetic model.
Since the Boltzmann operator satisfies

Q( f ) = 0 ⇐⇒ f = M f , (10)

one can get in the limit ε→ 0 from (5) or equivalently from (2) the compressible Euler equations by replacing f with
M f and integrating in velocity space

∂ρ

∂t
+ ∇x · (ρu) = 0,

∂ρu
∂t

+ ∇x · (ρu ⊗ u + pI) = 0,

∂E
∂t

+ ∇x · ((E + p)u) = 0,

p = ρθ, E =
d
2
ρθ +

1
2
ρ|u|2,

(11)

where p is the gas pressure. Using the expansion f =
∑∞

n=0 ε
n fn according to [13], the Navier-Stokes equations can be

derived as well. We stress that the schemes used in this work permits to recover the same property here observed for the
continuous case: in the discrete case if ε→ 0 the numerical schemes derived in this work become automatically high
order space-time discretizations of (11). In addition, these schemes enjoy the property of being stable independently
of the size of the Knudsen number ε (see [25, 23, 22] for details).

We need finally to define suitable boundary conditions in physical space in order to determine the solutions to
kinetic equations of type (1). In this context, the only conditions that need to be discussed are the ones required when
the fluid meets an object (the surface of a wing for instance) or equivalently hits a wall and particles interact with the
atoms of the surface before being reflected backward. For v · n ≥ 0 and x ∈ ∂Ω, where n denotes the unit normal
pointing inside the domain Ω, such boundary conditions are modelled by

|v · n| f (x, v, t) =

∫
v∗·n<0

|v∗ · n(x)|K(v∗ → v, x, t) f (x, v∗, t) dv∗. (12)

The above expression means that the ingoing flux is defined in terms of the outgoing flux modified by a given boundary
kernel K. The only condition imposed is that positivity and mass conservation at the boundaries are guaranteed. A
general condition gives for the ingoing velocities the following relation

f (x, v, t) = (1 − α)R f (x, v, t) + αM f (x, v, t), (13)

in which x ∈ ∂Ω, v · n(x) ≥ 0. Therefore a fraction 1 − α of the outgoing molecules are reflected while the ones
belonging to the remaining part α are thermalized. The coefficient α, with 0 ≤ α ≤ 1, is called the accommodation
coefficient and it holds

R f (x, v, t) = f (x, v − 2n(n · v), t), M f (x, v, t) = µ(x, t)Mw(v), (14)
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where Mw(v) is a Maxwellian distribution with unit mass, fixed temperature and mean velocity corresponding to the
speed of the object or of the wall. The value of µ is instead determined by mass conservation

µ(x, t)
∫

v·n≥0
Mw(v)|v · n|dv =

∫
v·n<0

f (x, v, t)|v · n|dv. (15)

In the numerical test involving boundaries, we will consider specifically the case α = 1 corresponding to full accom-
modation in which the re-emitted molecules have completely lost memory of the incoming molecules.

3. The numerical method

This section is divided into four parts. The first one is about discrete velocity models, the second one is about
the finite volume method, the third one discusses the spectral method for the the Boltzmann operator. The last one is
about the time integration techniques.

3.1. The Discrete Velocity Models (DVM)
The unbounded velocity space is truncated and the tails of the distribution function are then not considered. The

consequence is that the exact conservation of macroscopic quantities is impossible, because in general the support of
the distribution function is non-compact as for instance for the Maxwellian equilibrium distribution M f . The same
holds true for the Boltzmann collision integral defined on the entire space Rd. Different strategies can be adopted to
overcome the lack of conservation [33, 44]. Let observe that however if the truncation is performed with sufficiently
large bounds, the loss of conservation is typically negligible, in fact distribution functions tend to zero exponentially
fast. This is the direction pursued in this work. However, the rest of the scheme can be easily adapted to different
choices.

This new bounded space is discretized with a finite number of points. These are called the discrete velocities, the
only velocities the particles can assume. Taking inspiration from [44], we introduce a Cartesian gridV

V =
{
vk = k∆v + a, k = k(i), i = 1, .., d, a = (a1, .., ad)

}
, (16)

where a is an arbitrary vector, ∆v is a constant mesh size in velocity and where the components of the index k have
some given bounds K(i), i = 1, .., d. In this setting, the continuous distribution function f is replaced by the vector
fK (x, t) of size N. Each component of this vector is assumed to be an approximation of the distribution function f at
location vk:

fK (x, t) = ( fk(x, t))k, fk(x, t) ≈ f (x, vk, t). (17)

The discrete ordinate kinetic model consists then of the following system of equations to be solved

∂t fk + vk · ∇x fk = Qk( f ), k = 1, ..,N. (18)

For the two cases here considered we have either Qk( f ) = Qk,BGK( fk) ν
ε
(Ek[U] − fk) for the BGK model, or Qk( f ) =

Qk,B( f ) for the Boltzmann model. In this case QB( fk) corresponds to the solution given by the spectral approximation
of the collision integral (5) projected over the discrete space. Finally, the function Ek[U] represents a suitable ap-
proximation of M f , e.g. Ek[U] = M f (x, vk, t), and U = (ρ, ρu, E)T is the vector of the macroscopic quantities. These
quantities are recovered from the knowledge of the distribution function fK (x, t) thanks to discrete summations on the
discrete velocity space.

3.2. Space discretization
We discuss now the space discretization of the discrete system of equations (18). This is based on a finite volume

framework and on a Central WENO (CWENO) reconstruction [27, 9]. We start from the definition of the grid on
domains Ω which are considered two-dimensional and arbitrarily shaped. In particular, we realize a centroid based
Voronoi-type tessellation made of NP non overlapping polygons Pi, i = 1, . . .NP. The mesh is constructed by firstly
fixing the position xci , i = 1, . . . ,NP of the generator points and successively by introducing a Delaunay triangulation
having these generators xci as vertexes of the triangles. Then each generator point xci is associated to a Voronoi
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element Pi by connecting the centers of mass of all the Delaunay triangles having this generator point as a vertex. It
is interesting to notice that, in this construction, the barycenter xbi of the obtained Voronoi polygon Pi

xbi =
1
|Pi|

∫
Pi

x dx, (19)

usually differs with the position of the generator point, see Figure 1 for a visual explanation. Let

D(Pi) = {di1 , . . . , di j , . . . , diNVi
}, (20)

denote the set of NVi vertexes of polygon Pi. Once the grid is set, we connect the barycenters xbi with each vertex of
D(Pi) and we subdivide the Voronoi polygon Pi in NVi triangles. This sub-triangulation is the one used in practice to
numerically integrate the unknowns. Figure 1 shows an example of such mesh.

x

y

1 0.5 0 0.5 1
1

0.5

0

0.5

1

Figure 1: Left: example of the construction of the Voronoi tessellation (black dotted line) starting from the Delaunay triangulation (red solid line).
The generator point xc,i is marked with a blue cross, the barycenter xbi of the Voronoi control volume is represented by a green circle. Right:
example of an arbitrarily polygonal unstructured mesh.

Let us describe the data interpolation on this mesh. The cell averages of each component of the vector representing
the distribution function at time tn is obtained by

f̄ n
k,i =

1
|Pi|

∫
Pi

fk(x, tn)dx, ∀k ∈ K , x ∈ Pi, i ∈ [1,Np], (21)

with |Pi| the volume of cell Pi. We want now to construct a high order non-oscillatory polynomial representation of
the distribution function f (x, vk, t). This will be called f w

k,i(x, tn). We first introduce the (eventually) oscillating optimal
polynomial function of arbitrary degree M: popt,k,i(x). This hasM(M) = 1

2 (M + 1)(M + 2) degree of freedom. We
consider then a central stencil S̃i composed of ne = 2 · M(M) cells containing the cell Pi where the solution needs to
be computed and its closest (ne − 1) neighbors (see Figure 2 for a visual explanation). As suggested in [2], on general
unstructured grids it is better to consider a total number of stencil elements ne larger than the exact number of degrees
of freedomM(M) for avoiding ill posed interpolation problems which may arise due to the unstructured nature of the
mesh. The polynomial popt,k,i(x) relative to the stencil S̃i, is then defined by solving

popt,k,i(x) = argmin
p∈Pi

∑
P j∈S̃i

 f̄ n
k, j −

1
|P j|

∫
P j

p(x)dx
2

, (22)
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where Pi is the set of all polynomials PM of degree at most M, satisfying

Pi =

{
p ∈ PM : f̄ n

k,i =
1
|Pi|

∫
Pi

p(x)dx
}
⊂ PM . (23)

This means that the function popt,k,i(x) is, among all the possible polynomials of degree M, the only one that shares
the same cell average of the distribution function in the cell Pi, i.e. f̄ n

k,i, while being close in the least-square sense to
the other cell averages in the stencil S̃i. In order to complete the reconstruction, one needs now a set of polynomials
of degree one which permit to eliminate spurious oscillations when present. These are obtained defining a new set of
stencils, all including the central cell Pi, and other two cells. An example of such sets is reported in Figure 2. For each

Figure 2: Reconstruction stencils for second order degree optimal polynomials. The total number of neighbors is ne = 12. The central P2 stencil is
highlighted in gray, while several one-sided P1 reconstruction stencils are shown with different colours.

stencil S L
i , we indicate by pL

k,i(x) this linear polynomial. It remains to define one last central polynomial p0
k,i(x). This

is computed by difference between the polynomial popt,k,i(x) and the linear combination of the polynomial functions
pL

k,i(x) of lower degree, that is

p0
k,i(x) =

1
λ0

popt,k,i(x) −
NVi∑
L=1

λL,k,i pL
k,i(x)

 ∈ PM , (24)

where λ0,k,i, . . . , λNVi ,k,i are positive coefficients such that
∑NVi ,k,i

s=0 λs,k,i = 1. Thus, the final polynomial f w
k (x, tn) is

obtained by a hybridization among all stencils s ∈ [0,NVi ] as

f w
k (x, tn) =

NVi ,k,i∑
s=0

ωs,k,i ps
k,i(x), (25)

where the nonlinear weights ωs,k,i are given by the standard expressions

ωs,k,i =
ω̃s,k,i

NVi∑
s=0

ω̃sk,k,i

, with ω̃s,k,i =
λs,k,i(

σs,k,i + ε
)r . (26)
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where ε = 10−14 and r = 4 are chosen according to [28] and σs,k,i are standard oscillation indicators.
The polynomials p(x) are expressed through the following conservative expansion

p(x) =

M∑
`=1

ϕ`(x) p̂l,i, (27)

with p̂l,i representing the unknown expansion coefficients. The basis functions ϕ` are defined using a Taylor series in
the space variables x of components (x1, x2) of degree M and 1 for the central and the lateral stencils, respectively.
This expansion is directly defined on the physical element Pi, expanded about its center of mass xbi and normalized
by the characteristic length hi of the element (the radius of the circumcircle of Pi)

ϕ`(x1, x2)|Pi =
(x1 − xbi,1)p

hp
i

(x2 − xbi,2)q

hq
i

−

∫
Pi

(x1 − xbi,1)p

hp
i

(x2 − xbi,2)q

hq
i

dx, (28)

` = 0, . . . ,M, (p, q) = 0, . . . ,M, p + q ≤ M,

In the above construction and in the reconstruction equations (22) and (23), the integrals are computed in each Voronoi
polygon Pi by summing the contribution of each sub-triangle T ∈ T (Pi) with Gauss quadrature rule of suitable
accuracy ([52]).

Once the reconstruction procedure has been carried out, a finite volume method is used to solve the governing
equations. Equation (18) is integrated on each control volume Pi obtaining

∂t

∫
Pi

fk dx +

∫
Pi

vk · ∇x fk dx =

∫
Pi

Qk( f ) dx, k = 1, ..,N, i = 1, ..,Np, (29)

where Q( fk) represents or the BGK operator (2) or the Boltzmann one (5). Using the divergence theorem, we get

∂t

∫
Pi

fk dx = −

NVi∑
j=1

∫
∂Pi j

L( fk) · ni j dS +

∫
Pi

Qk( f ) dx, k = 1, ..,N, i = 1, ..,Np, (30)

with ni representing the unit outward normal to the element Pi, ∂Pi j denoting the face shared between element Pi and
its neighbor P j and L( fk) being the flux function (vk fk). Finally, by introducing a first order in time explicit Euler
discretization and using the finite volume interpretation, we get

f̄ n+1
k,i = f̄ n

k,i −
∆t
|Pi|

NVi∑
j=1

∫
∂Pi j

L( f̄ n
k,i) · ni j dS +

∆t
|Pi|

∫
Pi

Qk( f̄ n
i ) dx, k = 1, ..,N, i = 1, ..,Np, (31)

where the boundary fluxes are evaluated relying on the Rusanov numerical flux function [50]. Now, in order to obtain
a high order in space scheme, we employ the CWENO reconstruction presented in the previous paragraph. This
implies that f̄ n

k,i is replaced by f n,w
k,i for the computation of the flux functions and that Qk( f̄ n

k ) is replaced by Qw
k ( f̄ n

k )
for the computation of the high order space approximation of the collision term. This last reconstruction needs the
knowledge of the cell averages Qk( f̄ n

k ). These will be obtained from the approximation of the collision integral through
the spectral methods described in the next part. The high order in space finite volume scheme reads then

f̄ n+1
k,i = f̄ n

k,i −
∆t
|Pi|

NVi∑
j=1

∫
∂Pi j

L( f w,n
k,i (x)) · ni j dS +

∆t
|Pi|

∫
Pi

Qw
k ( f n

i )(x) dx, k = 1, ..,N, i = 1, ..,Np. (32)

The above scheme, apart from being only first order in time, suffers from the stiffness of the equation when the
Knudsen number is small. Next, we discuss high order time discretizations and a remedy to the stiffness of the kinetic
equations.
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3.3. Spectral discretization of the Boltzmann operator
When the Boltzmann model (5) is employed, a fast spectral method is used to evaluate the collision term Q( f̄ n

i ),
and subsequently this result is projected over the discrete ordinate space giving Qk( f̄ n

i ) employed in (31) and then in
the high order space discretization (32). We proceed as follows.

• We compute an approximation of the Boltzmann operator in the center of the control volume for each cell Pi.

• Then, as for the distribution f n
k,i, for each k = 1, ..,N, we reconstruct its value in space through the procedure of

Section 3.2. This gives Qw
k ( f n

k )(x).

Since collisions act only at a local level, we restrict ourselves in this section on a given cell Pi and we omit the
dependence of the distribution function f over space and time. The same computation is repeated for all volumes
Pi, i = 1, ..,N and times tn, n = 0, ..,Nt. Only the dependency on the velocity variable v is considered for the
distribution function f , i.e. f = f (v). In addition, since we deal with two dimensions in velocity space we also restrict
to this situation in the description of the method.

We suppose, as done for the discrete ordinate method, the distribution function f to have compact support on the
ball B0(R) of radius R centered in the origin. Then, to avoid the aliasing phenomena, at least in a single time iteration,
we restrict f (v) on [−T,T ]2 with T = (3 +

√
2)R/2 and we assume f (v) = 0 outside the ball B0(R). We also extend

f (v) to a periodic function on the set [−T,T ]2. Let observe that supp (Q( f )(v)) ⊂ B0(
√

2R) and thus this choice is
enough to avoid aliasing in one time step. However, the support of f increases with time and thus aliasing can only
be minimized by this approach. To simplify notation, let us now take T = π. This gives R = λπ with λ = 2/(3 +

√
2).

Using one index to denote the 2-dimensional sums, we have that the approximate function fN can be represented as
the truncated Fourier series by

fN(v) =

N/2∑
k=−N/2

f̂keik·v, (33)

f̂k =
1

(2π)2

∫
[−π,π]dv

f (v)e−ik·v dv. (34)

We then obtain a spectral quadrature of our collision operator by projecting the truncated Boltzmann operator onto
the space of trigonometric polynomials of degree less or equal to N, i.e.

Q̂k =

∫
[−π,π]2

Qb( fN)e−ik·v dv, k = −N/2, . . . ,N/2. (35)

By substituting expression (33) in (35) one gets

Q̂k =

N/2∑
l,m=−N/2

l+m=k

f̂l f̂mβ̂(l,m), k = −N, . . . ,N, (36)

where β̂(l,m) = B̂(l,m) − B̂(m,m) are given by

B̂(l,m) =

∫
B0(2λπ)

∫
S1
|q|σ(|q|, cos θ)e−i(l·q++m·q−) dω dq. (37)

with
q+ =

1
2

(q + |q|ω), q− =
1
2

(q − |q|ω). (38)

The usage of (36) as approximation of the collision operator requires O(N4) operations. In order to reduce the number
of operations, one can express the Boltzmann operator adopting another representation [12]. Omitting the details, this
second representation reads

Qb( f ) =

∫
R2

∫
R2

B̃(x, y)δ(x · y)
[
f (v + y) f (v + x) − f (v + x + y) f (v)

]
dx dy, (39)
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with

B̃(|x|, |y|) = 2σ

√|x|2 + |y|2,
|x|√
|x|2 + |y|2

 . (40)

This transformation yields the following new spectral quadrature formula

Q̂k =

N/2∑
l,m=−N/2

l+m=k

β̂F(l,m) f̂l f̂m, k = −N, ...,N (41)

where β̂F(l,m) = B̂F(l,m) − B̂F(m,m) are now given by

B̂F(l,m) =

∫
B0(R)

∫
B0(R)

B̃(x, y) δ(x · y) ei(l·x+m·y) dx dy. (42)

Now, (41) can be evaluated with a convolution structure by approximating each β̂F(l,m) by a sum

β̂F(l,m) '
A∑

p=1

αp(l)α′p(m),

where A represents the number of finite possible directions of collisions. This gives a sum of A discrete convolutions
and, consequently, the algorithm can be computed in O(A N2 log2 N2) operations by means of standard FFT technique
(see [30] for details).

3.4. Time Discretization
We discuss how to improve the time discretization and to get a fully high order space and time discretization. This

is done through the use of a particular class of Implicit-Explicit (IMEX) methods [1, 24]. These methods are needed
to handle the different scales induced by the collision and the transport operators. In particular, in kinetic theory one
is interested in having a method which is able to handle with the same time step ∆t and the same accuracy different
regimes (dense or rarefied) identified by different values of the Knudsen number ε. Our aim is precisely to be capable
of capturing the fluid-limit (11) without time step limitations due to the fast scale dynamics induced by collisions.
This request is equivalent to the notion of asymptotic-preserving (AP) schemes [25, 16, 17, 41] and the schemes here
introduced belong to this special class. In particular, we consider the extension to the finite volume framework of the
schemes discussed from the theoretical point of view in [23] and [24]. The general formulation of such a method is

F̄(l)
k,i = f̄ n

k,i − ∆t
l−1∑
m=1

ãlm〈L(Fw,(m)
k,i )〉x + ∆t

ι∑
m=1

alm〈Qw
k (F(m)

i )〉x (43)

f̄ n+1
k,i = f̄ n

k,i − ∆t
ν∑

m=1

ω̃m〈L(Fw,(m)
k,i )〉x + ∆t

ι∑
m=1

ωm〈Qw
k (F(m)

i )〉x. (44)

In the above formula, the coefficients ãlm, alm characterize the explicit respectively the implicit Runge-Kutta method
together with the vectors w̃ = (ω̃1, .., w̃ι)T , ω = (w1, ..,wι)T . We refer to [1, 47] for more details on such methods in a
general framework (order conditions and properties). The functions F̄(l)

k,i given by (43) are the so-called stage values
of the Runge-Kutta method which identify the cell averages of the solution at different time levels between [tn, tn+1].
Using these values it is possible to determine the quantities

〈L(Fw,(l)
k,i )〉x =

1
|Pi|

NVi∑
j=1

∫
∂Pi j

L(Fw,(l)
k,i (x)) · ni jdS , (45)

and
〈Qw

k (F(l)
i )〉x =

1
|Pi|

∫
Pi

Qw
k (F(l)

i )(x) dx, (46)
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where the integrals are obtained by a suitable Gauss quadrature formula. From (46), it is clear that the direct applica-
tion of such method is very difficult in practice. This, in fact, would need the inversion of a nonlinear system involving
the operator 〈Qw

k (F(l)
i )〉x at each stage of the Runge-Kutta time stepping. In order to find remedy to this situation, we

now distinguish the case of the BGK and the case of the Boltzmann operator.
For the case of the BGK operator, we observe that this high order integration can be conveniently written as

〈Qw
k (F(l)

i )〉x =
1
|Pi|

∫
Pi

Qw
k (F(l)

i )(x) dx = 〈Qk(F̄(l)
i )〉x + O(∆x2), (47)

where ∆x is the typical mesh size and F̄(l)
i are the cell average quantities at the stage l. This means that the high order

integral of the collision operator can be expressed by the integral of the cell centered operator plus a second order
space error. Thanks to this observation, then the time integrator can be recast as

F̄(l)
k,i = f̄ n

k,i − ∆t
l−1∑
m=1

ãlm

(
〈L(Fw,(m)

k,i )〉x + ∆Qk(F(m)
i )

)
+ ∆t

ι∑
m=1

alm〈Qk(F̄(m)
k )〉x (48)

f̄ n+1
k,i = f̄ n

k,i − ∆t
ν∑

m=1

ω̃m

〈
L(Fw,(m)

k,i )〉x + ∆Qk(F(m)
i )

)
+ ∆t

ι∑
m=1

ωm〈Qk(F̄(m)
i )〉x. (49)

where the quantities ∆Qk(F(m)
i ) are given by

∆Qk(F(m)
i ) = 〈Qw

k (F(m)
i )〉x −

1
|Pi|

∫
Pi

Qk(F̄(m)
i ) dx,= 〈Qw

k (F(m)
i )〉x − 〈Qk(F̄(m)

i )〉x, (50)

i.e. they represent the difference between the high order evaluation of the source term and the respective cell average.
This permits a direct evaluation of the implicit terms without resorting to the approximate solution of nonlinear
systems. To better understand this, let us remark that the stage evaluation of the cell average of the distribution
function (48) can be rewritten as

F̄(l)
k,i = f̄ n

k,i − ∆t
l−1∑
m=1

ãlm

(
〈L(F̄w,(m)

k,i )〉x + ∆Qk(F(m)
i )

)
+ ∆t

l−1∑
m=1

alm〈Qk(F̄(m)
i )〉x +

∆t
|Pi|

∫
Pi

ν

ε

(
Ek[Ū(l)

i ] − F̄(l)
k,i

)
dx, (51)

where the only implicit term is now diagonal factor ν
ε

(
Ek[Ū(l)

i ] − F̄(l)
k,i

)
since the implicit methods which are considered

in this work are all diagonally implicit. Let us notice now that F̄(l)
k,i can easily be moved to the left hand side of

equation (51), while Ek[Ū(l)
i ] depends only on the first three moments of the distribution function Ū(l)

i and these
are easily obtained by integrating in velocity space the cell centered values of the distribution function again from
(51). Thus, to have a completely determined method one needs only to compute the moments Ū(l)

i . This is done by
integrating equation (51) in velocity space which is explicitly obtained, since collision terms disappear as a result of
the integration, from formula

Ū(l)
i = Ūn

i − ∆t
l−1∑
m=1

ãlmLw
U(Ūn

i ), (52)

where Lw
U(Ūn

i ) is a high order evaluation of the macroscopic fluxes for respectively density, momentum and energy. As
a consequence, Ū(l)

i and thus Ek[Ū(l)
i ] can be explicitly evaluated and then the scheme (48)-(49) is explicitly solvable.

This concludes the presentation of the scheme for the BGK case.
In the case of the Boltzmann operator (5), one cannot employ directly an equivalent strategy to the one above

described for the BGK case. In fact, even if equation (47) still holds true, it is not possible to invert the cell centred
integral of Q( f ), 〈Qk(F̄(l)

i )〉x, in this case. Consequently, the scheme (48)-(49) is not explicitly solvable and another
solution has to be found. This problem can be circumvented relying on a penalization strategy where the penalization
term is the cell centred BGK operator. In fact, in stiff regimes the solution f is close to the Maxwellian equilibrium
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M f and then the Boltzmann and the BGK models furnish closer and closer solutions as the fluid regime is approached.
Thus, one can rewrite equation (1) as

∂t f + v · ∇x f =
1
ε

GP( f ) +
1
ε

QBGK( f ), (53)

where QBGK is the BGK operator and Gp( f ) = Qb − QBGK with Qb the Boltzmann collision operator. Now, the idea
is to use a time discretization in which QBGK is implicit while Gp( f ) is explicit. The modified IMEX Runge-Kutta
schemes become then

F̄(l)
k,i = f̄ n

k,i − ∆t
l−1∑
m=1

ãlm

(
1
ε

Gk,p(F(m)
i ) + 〈L(F̄w,(m)

k,i )〉x

)
+ ∆t

ι∑
m=1

alm〈Qk,BGK(F̄(m)
i )〉x (54)

f̄ n+1
k,i = f̄ n

k,i − ∆t
ν∑

m=1

ω̃m

(
1
ε

Gk,p(F(m)
i ) + 〈L(F̄w,(m)

k,i )〉x

)
+ ∆t

ι∑
m=1

ωm〈Qk,BGK(F̄(m)
i )〉x, (55)

where
Gk,P(F(m)

i ) = 〈Qw
k,b(F(m)

i )〉x − 〈Qk,BGK(F̄(m)
i )〉x. (56)

As for the case of the BGK operator the only implicit term is ν
ε

(
Ek[Ū(l)

i ] − F̄(l)
k,i

)
which can be computed following the

schemes (48)-(49). This concludes the presentation of the time integration methods.
Finally, thanks to the choice done about the numerical time integration, in all the numerical simulation discussed

in the next section, the time step is fixed according to

∆t =
1
2

(
∆x

maxK (|vk |)

)
, (57)

which means it is limited only by the hyperbolic transport term. In practice, we consider in the next section three time
integration schemes. The first one is the standard first order implicit-explicit Euler scheme for which we do not report
the Butcher tableau. The second one is the second order ARS(2,2,2) [1] scheme

0 0 0 0
γ γ 0 0
1 δ 1 − δ 0

δ 1 − δ 0

0 0 0 0
γ 0 γ 0
1 0 1 − γ γ

0 1 − γ γ

with γ = 1 − 1/
√

2 and δ = 1 − 1/(2γ), while the third one is the third order BPR(3,4,3) [7]

0 0 0 0 0 0
1 1 0 0 0 0

2/3 4/9 2/9 0 0 0
1 1/4 0 3/4 0 0
1 1/4 0 3/4 0 0

1/4 0 3/4 0 0

0 0 0 0 0 0
1 1/2 1/2 0 0 0

2/3 5/18 −1/9 1/2 0 0
1 1/2 0 0 1/2 0
1 1/4 0 3/4 −1/2 1/2

1/4 0 3/4 −1/2 1/2

The stability properties of these schemes, the capability of describing different collisional regimes and the consistency
with the underlying compressible Euler model have been discussed in [24] in the case of finite difference method for
the Boltzmann and the BGK equations while in the case of finite volume methods for the sole BGK model in [9].

4. Numerical results

In this section, we measure the capability of the presented method to describe fluid flows under different regimes.
Our analysis starts by a set of numerical convergence tests in velocity, in space, in time and in space-time. These
convergence studies are carried out in different regimes identified by the value of the Knudsen number. In addition,
we also report the computational efforts involved in the resolution of the Boltzmann and the BGK models. The
second part is devoted to some standard benchmark studies in rarefied gas dynamics. The last part is dedicated to
applications: we study the flow around a NACA 0012 airfoil. This study is possible only thanks to the arbitrarily
shaped finite volume approach used, which permits to describe the generic geometry considered. For all computations
the gas polytropic index is set to γ = 2.
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4.1. Numerical convergence studies

This part is dedicated to the convergence tests. The first test validates the correct implementation of the spectral
method for the discretization of the Boltzmann operator. Here we resolve the Boltzmann homogeneous equation in
the 2D velocity space. The following analytical solution [5]

f (v, t) =
exp (−v2/2S )

2πS 2

[
2S − 1 +

1 − S
2S

v2
]

with S = 1 −
exp (−t/8)

2
, (58)

is approached by the spectral scheme. We adopt a domainV = [−12; 12]× [−12; 12], for which we consider different
values velocity points Nv corresponding also to the number of modes of the Fourier expansion. The different configu-
rations for the velocity grid are reported in Table 1. The errors in the L1 and L2 norms are obtained with the following
formula

Lp(∆v, t) =

(∑Nv
k=1 | f∆v(vk, t) − fre f (vk, t)|p∑Nv

k=1 | fre f (vk, t)|p

)1/p

, (59)

with ∆v representing the characteristic mesh size in the velocity space. The quantities f∆v and fre f represent the
numerical and reference solutions of the distribution function computed on the velocity points, respectively. The L∞
norm is also computed, for which we simply measure the maximum distance between exact and computed solutions.
Table 1 shows the results of such analysis at the final time t f = 0.1. As expected, the convergence rate grows very fast
and thus errors become closer to machine precision. Figure 3 reports the L1 errors over time up to t f = 10.

Table 1: Numerical convergence results for the homogeneous Boltzmann equation using the Spectral method presented in 3.3 on a sequence of
refined Cartesian meshes of size ∆v in the velocity space. The error is measured for the distribution function in the L1, L2 and L∞ norms using the
definition (59) at time t f = 0.1.

Nv ∆v fL1 O( fL1 ) fL2 O( fL2 ) fL∞ fL∞

16 1.60E-00 2.392E-02 - 1.516E-02 - 1.660E-03 -
32 7.74E-01 1.183E-03 4.1 5.235E-04 4.6 4.252E-05 5.0
64 3.81E-01 5.493E-09 17.3 1.702E-09 17.8 1.159E-10 18.1
128 1.89E-01 1.425E-13 15.1 8.916E-14 14.1 1.096E-14 13.2

For the second part of convergence studies, we consider as test case an isentropic vortex in physical space [35].
The velocity space is now fixed to V = [−10; 10] × [−10; 10] and it is paved with a Cartesian grid of 900 equal
elements. Periodic boundary conditions are imposed on each side of the box. The initial condition is given by

U = (ρ, ux, uy,T ) = (1 + δρ, 1 + δux, 1 + δuy, δT ), (60)

where the perturbations for temperature δT , density δρ and velocity (δux, δuy) are

δT = −
(γ − 1)β2

8γπ2 e1−r2
, δρ = (1 + δT )

1
γ−1 − 1,

(
δux

δuy

)
=

β

2π
e

1−r2
2

(
−(y − 5)

(x − 5)

)
,

with β = 5. Figure 4 shows the initial density distribution of this smooth isentropic vortex on a triangular and on a
polygonal unstructured mesh. The space corresponds to the box Ω = [0; 10] × [0; 10] discretized with a sequence of
refined unstructured meshes of characteristic size h(Ω) =

(∑NP
i=1 hi

)
/NP with hi =

√
|Pi|. The errors are measured in

the L1 and L2 norms for respectively the density and the temperature as follows:

L1 =

∫
Ω

∣∣∣Ure f (x, t f ) −Uh(x, t f )
∣∣∣ dx dy, (61)

L2 =

√√∫
Ω

(
Ure f (x, t f ) −Uh(x, t f )

)2
dx dy. (62)
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Figure 3: Time evolution of the L1 error in velocity space computed according to (59) up to t = 10.

Figure 4: Initial density distribution of the smooth isentropic vortex on an unstructured triangular mesh (left) and on a Voronoi tessellation (right)
with characteristic mesh size h = 0.25.
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Here, Uh(x, t f ) represents the high order reconstructed solution for the macroscopic quantities obtained with our
scheme, whileUre f (x, t f ) is a prescribed reference solution. We perform several convergence measures: convergence
of the time discretization and convergence of the space-time discretization. More in details:

• In the limit ε → 0, since the analytical solution is known, we consider a space-time error: Ure f (x, t) = U(x −
t, 0).

• If ε , 0, the reference solution is instead the one computed on the same phase-space mesh using a very small
time step ∆te � ∆t, i.e. Ure f (x, t f ) = Uht (x, t f ). In this case, a time convergence is proposed.

The validation of the CWENO reconstruction procedure has been already presented up fourth order in the previous
work [9] and we omit it here. The results of this test are shown in Table 2 for ε = 0 while in Table 3 for ε = 10−3, in
Table 4 for ε = 10−2 and finally in Table 5 for ε = 1. The numerical results confirm that the CWENO-IMEX schemes
applied to the Boltzmann model achieve the theoretical order of accuracy in velocity, in space and in time.

Table 2: Numerical convergence results for the Boltzmann model at time t f = 0.1 with ε = 0 on a sequence of refined polygonal meshes of size
h(Ω). The errors are measured in L1 and L2 norm and refer to the variables ρ (density) and T (temperature).

CWENO-IMEX O2 Kn = 0
h(Ω) ρL1 O(ρL1 ) ρL2 O(ρL2 )

3.84E-01 4.523E-02 - 1.585E-02 -
1.96E-01 8.759E-03 2.5 2.996E-03 2.5
1.32E-01 3.793E-03 2.1 1.218E-03 2.3
9.90E-02 2.078E-03 2.1 6.853E-04 2.0

h(Ω) TL1 O(TL1 ) TL2 O(TL2 )
3.84E-01 1.589E-01 - 6.601E-02 -
1.96E-01 2.770E-01 2.6 3.779E-02 2.5
1.32E-01 1.075E-02 2.4 1.907E-02 2.4
9.90E-02 5.707E-03 2.2 1.136E-02 2.2

CWENO-IMEX O3 Kn = 0
h(Ω) ρL1 O(ρL1 ) ρL2 O(ρL2 )

3.84E-01 4.971E-02 - 1.717E-02 -
1.96E-01 6.951E-03 2.9 2.425E-03 2.9
1.32E-01 2.044E-03 3.1 6.989E-04 3.1
9.90E-02 9.111E-04 2.8 3.102E-04 2.8

h(Ω) TL1 O(TL1 ) TL2 O(TL2 )
3.84E-01 1.753E-01 - 5.725E-02 -
1.96E-01 2.601E-02 2.8 8.721E-03 2.8
1.32E-01 7.632E-03 3.1 2.564E-03 3.1
9.90E-02 3.315E-03 2.9 1.136E-03 2.8

We conclude this part by reporting in Table 6 the computational times needed to run the simulations detailed in
the rest of the section. In particular, we aim at comparing the costs involved in the computation of respectively the
Boltzmann and the BGK models. The results show that, in the case of two-dimensional velocity and physical space
simulations, the two models are almost equivalently expensive. Thus, the main part of the computation is devoted to
the determination of the numerical fluxes in the hyperbolic part. We can conclude that in the tested cases the spectral
method is indeed so fast that it does not engrave on the global simulation time.

4.2. Lax problem

We consider now a classical Lax shock tube Riemann problem. The essential feature one can observe in rarefied
flows with respect to dense fluids is the presence of a physical diffusion which mitigates the waves making the solution
smoother. From the numerical side, another important aspect consists in analysing the capability of the methods

15



Table 3: Numerical convergence results for the Boltzmann model at time t f = 9 · 10−3 with ε = 10−3 on a triangular mesh with characteristic mesh
size h(Ω) = 1/3. The errors are measured in L1 and L2 norm and refer to the variables ρ (density) and T (temperature).

CWENO-IMEX O2 ε = 10−3

∆t ρL1 O(ρL1 ) ρL2 O(ρL2 )
1.80E-03 - - - -
9.00E-04 1.423E-06 - 6.693E-07 -
4.50E-04 3.794E-07 1.9 1.784E-07 1.9
2.25E-04 9.803E-08 2.0 4.610E-08 2.0

h(Ω) TL1 O(TL1 ) TL2 O(TL2 )
1.80E-03 - - - -
9.00E-04 5.647E-06 - 2.249E-06 -
4.50E-04 1.511E-06 1.9 6.003E-06 1.9
2.25E-04 3.911E-07 1.9 1.552E-07 2.0

CWENO-IMEX O3 ε = 10−3

h(Ω) ρL1 O(ρL1 ) ρL2 O(ρL2 )
2.25E-04 - - - -
1.12E-05 7.033E-09 - 3.641E-09 -
5.62E-05 1.051E-09 2.7 5.422E-10 2.7
2.81E-05 1.566E-10 2.8 8.013E-11 2.8

h(Ω) TL1 O(TL1 ) TL2 O(TL2 )
2.25E-04 - - - -
1.12E-05 2.631E-08 - 1.182E-08 -
5.62E-05 3.908E-09 2.8 1.734E-09 2.8
2.81E-05 5.782E-10 2.8 2.544E-10 2.8

Table 4: Numerical convergence results for the Boltzmann model at time t f = 9 · 10−3 with ε = 10−2 on a triangular mesh with characteristic mesh
size h(Ω) = 1/3. The errors are measured in L1 and L2 norm and refer to the variables ρ (density) and T (temperature).

CWENO-IMEX O2 ε = 10−2

∆t ρL1 O(ρL1 ) ρL2 O(ρL2 )
1.80E-03 - - - -
9.00E-04 2.609E-06 - 7.473E-07 -
4.50E-04 6.438E-07 2.0 1.861E-07 2.0
2.25E-04 1.600E-07 2.0 4.650E-08 2.0

∆t TL1 O(TL1 ) TL2 O(TL2 )
1.80E-03 - - - -
9.00E-04 1.422E-05 - 4.180E-06 -
4.50E-04 3.537E-06 2.0 1.039E-06 2.0
2.25E-04 8.831E-07 2.0 2.593E-07 2.0

CWENO-IMEX O3 ε = 10−2

∆t ρL1 O(ρL1 ) ρL2 O(ρL2 )
1.80E-03 - - - -
9.00E-04 5.084E-08 - 1.957E-08 -
4.50E-04 6.799E-09 2.9 2.665E-09 2.9
2.25E-04 8.825E-10 2.9 3.491E-10 2.9

∆t TL1 O(TL1 ) TL2 O(TL2 )
1.80E-03 - - - -
9.00E-04 2.994E-07 - 9.614E-08 -
4.50E-04 3.874E-08 3.0 1.256E-08 2.9
2.25E-04 4.930E-09 3.0 1.608E-09 3.0
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Table 5: Numerical convergence results for the Boltzmann model at time t f = 9 · 10−3 with ε = 100 on a triangular mesh with characteristic mesh
size h(Ω) = 1/3. The errors are measured in L1 and L2 norm and refer to the variables ρ (density) and T (temperature).

CWENO-IMEX O2 ε = 100

h(Ω) ρL1 O(ρL1 ) ρL2 O(ρL2 )
1.80E-03 - - - -
9.00E-04 2.231E-06 - 6.224E-07 -
4.50E-04 5.407E-07 2.0 1.508E-07 2.0
2.25E-04 1.331E-07 2.0 3.711E-08 2.0

h(Ω) TL1 O(TL1 ) TL2 O(TL2 )
1.80E-03 - - - -
9.00E-04 1.245E-05 - 3.762E-06 -
4.50E-04 3.007E-06 2.0 9.076E-07 2.1
2.25E-04 7.389E-07 2.0 2.229E-07 2.0

CWENO-IMEX O3 ε = 100

h(Ω) ρL1 O(ρL1 ) ρL2 O(ρL2 )
1.80E-03 - - - -
9.00E-04 2.258E-08 - 7.657E-09 -
4.50E-04 2.737E-09 3.0 9.307E-10 3.0
2.25E-04 3.369E-10 3.0 1.148E-10 3.0

h(Ω) TL1 O(TL1 ) TL2 O(TL2 )
1.80E-03 - - - -
9.00E-04 1.415E-07 - 4.930E-08 -
4.50E-04 1.708E-08 3.1 5.963E-09 3.0
2.25E-04 2.098E-09 3.0 7.334E-10 3.0

Table 6: Computational time for some test cases for Boltzmann and BGK model with different Knudsen numbers. Absolute time of each simulation
measured in seconds [s] and percentage of the computational time needed to perform the evaluation of the Boltzmann collision operator w.r.t. to the
BGK computational time τcoll =

( TBoltz−TBGK
TBGK

· 100
)

(Lax = Lax problem, EP2D = Explosion problem, DMR = Double Mach Reflection problem).

Test Knudsen TBoltz [s] TBGK [s] τcoll [%]
Lax 5 · 10−3 5.0028E+05 4.8807E+05 2.502
Lax 5 · 10−4 5.1038E+05 4.9976E+05 2.126
Lax 5 · 10−5 5.1142E+05 5.0108E+05 2.064

EP2D 5 · 10−3 8.4881E+06 8.3637E+06 1.488
EP2D 5 · 10−4 8.4893E+06 8.3828E+06 1.270
EP2D 5 · 10−5 8.4900E+06 8.3968E+06 1.110
DMR 5 · 10−3 1.1573E+07 1.1566E+07 0.060
DMR 5 · 10−4 1.1146E+07 1.1070E+07 0.690
DMR 5 · 10−5 1.1134E+07 1.1046E+07 0.797
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working on unstructured meshes to keep the one dimensional structure of the solution even if the element edges are
not aligned with the fluid motion. The computational domain is the box Ω = [−1; 1] × [−0.05; 0.05] discretized with
[200 × 10] triangular control volumes with characteristic mesh size of h(Ω) = 0.01. Periodic boundary conditions are
set in y−direction, while Dirichlet boundaries are imposed in the x−direction. The velocity space V = [−15; 15] ×
[−15; 15] counts a total number of 322 = 1024 regular Cartesian control volumes. The initial condition is

UL = (0.445, 0.698, 0, 7.928) , UR = (0.5, 0, 0, 1.142) , (63)

with the two states separated at x = 0. Figure 5 shows a one dimensional cut along the x−axis for the density, the
horizontal velocity and the temperature profiles for the Boltzmann model with ε = 10−5 at the top and for ε = 10−4

and ε = 10−3 in the middle at the final time of the simulation t f = 0.1. The third order CWENO-IMEX method
is employed using 200 cells in space. The numerical results are compared against the exact solution of the Euler
equations of compressible gas dynamics, highlighting the correct behavior of our scheme as ε → 0. A comparison
between our approach and a Direct Simulation Monte Carlo method (DSMC) solving the Boltzmann equation (5)
is proposed in the case in which ε = 0.005 and ε = 5 · 10−4. This method works on a regular Cartesian mesh of
2502 elements and employs around 62 millions of particles. The details can be found in [48]. Also in this case, we
observe a good matching between our method and the DSMC solution. Finally, a three-dimensional view is shown at
the bottom for the density profile at different Knudsen numbers highlighting the capability of the method to keep the
one dimensional structure of the solution in presence of an unstructured mesh. Figure 6 instead shows a comparison
between the Boltzmann and the BGK models for different values of the Knudsen number. As expected [25] the BGK
model tends to over relax the solution towards the fluid limit. This is particularly clear when the Knudsen number is
quite large ε = 5 · 10−3 and it is in line with the theoretical observations which claim that the BGK model is adapted
for the description of rarefied flows only when the collisional rate is such that the fluid is close to equilibrium.

Finally, the third order results for the Boltzmann model are compared against the solution obtained by employing
a DSMC method in Figure 7. For the DSMC simulation a Cartesian grid of 2502 elements is used with around 62
millions of particles. An overall very good agreement can be appreciated between the solvers, which confirms what
already observed for the case of the fluid limit.

4.3. Explosion problem

The setup of the explosion problem involves a square computational domain of dimension Ω = [−1; 1] × [−1; 1],
which is discretized by NP ≈ 16′500 Voronoi elements. The initial condition is given in terms of two different states
(UL,UR), separated by a discontinuity at distance Rd = 0.5 from the origin:UL = (1, 0, 0, 1) r ≤ Rd,

UR = (0.125, 0, 0, 0.8) r > Rd,
(64)

with r =
√

x2 + y2 the radial position. Dirichlet boundary conditions are imposed everywhere and the final time of
the simulation is chosen to be t f = 0.07. The velocity space is composed of 322 = 1024 Cartesian cells ranging in the
interval [−20; 20]2. Figure 8 depicts the third order numerical results obtained with the CWENO-IMEX scheme with
Knudsen number ε = 5 · 10−5 which approaches the fluid limit. A comparison against the reference solution of the
Euler equations of compressible gas dynamics [8, 57] is proposed, showing an overall good agreement considering
the very low number of mesh elements employed. The same simulation is also run with a first order finite volume
scheme which exhibits much more numerical dissipation, as expected. Let us notice that such smoother profile could
even be wrongly interpreted as a different physical regime of the gas flow, mimicking the behavior of the fluid at
larger Knudsen numbers. This underlines the importance of the development of high order numerical discretizations,
in order to correctly capture and simulate the physical behavior of the observed phenomena. Finally, Figure 9 reports
the numerical distribution of density, horizontal velocity and temperature with Knudsen numbers ε = 5 · 10−4 and
ε = 5 · 10−3. For these regimes, a comparison with a DSMC method is proposed. This method works on a regular
Cartesian mesh of 2502 elements and employs around 62 millions of particles. As for the case of the fluid limit a good
agreement is observed between the two solvers.
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Figure 5: Lax shock tube problem at time t f = 0.1 with third order CWENO-IMEX scheme for the Boltzmann model. 1D cut along the x-axis
through the third order numerical results for density (left), horizontal velocity (middle) and temperature (right). Top: comparison between reference
solution with Euler equations and numerical solution with ε = 5 · 10−5. Middle: comparison between numerical solution with ε = 5 · 10−4 (blue
solid line) and ε = 5 · 10−3 (red solid line). Bottom: three-dimensional view of density profile for the Boltzmann model with ε = 5 · 10−5 (left),
ε = 5 · 10−4 (middle) and ε = 5 · 10−3 (right).
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Figure 6: Lax shock tube problem with ε = 5 · 10−4 (top row) and ε = 5 · 10−3 (bottom row) for Boltzmann (blue solid line) and BGK (red solid
line) model at time t f = 0.1. 1D cut along the x-axis through the third order numerical results for density (left), horizontal velocity (middle) and
temperature (right).
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Figure 7: Lax shock tube problem with ε = 5 · 10−4 (top row) and ε = 5 · 10−3 (bottom row) at time t f = 0.1. 1D cut along the x-axis for density
(left), horizontal velocity (middle) and temperature (right). The solid line represents the solution obtained with the third order CWENO-IMEX
schemes, while scatter plots represent the results computed with a DSMC simulation on a grid composed of 2502 Cartesian cells with approximately
62 · 106 particles.
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Figure 8: Explosion problem with ε = 5 · 10−5 at time t f = 0.07. Three dimensional view of density profile for Boltzmann model together with a
1D cut along the x-axis through the third order numerical results and comparison with exact solution of the Euler equations for density, horizontal
velocity and temperature.
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Figure 9: Explosion problem with ε = 5 · 10−4 (top row) and ε = 5 · 10−3 (middle row) at time t f = 0.07. 1D cut along the x-axis for density (left),
horizontal velocity (middle) and temperature (right). The solid line represents the solution obtained with the third order CWENO-IMEX schemes,
while scatter plots represent the results computed with a DSMC simulation on a grid composed of 2502 Cartesian cells with approximately 62 · 106

particles. Bottom: 3D view of the temperature distribution with 40 contour levels within the interval [3; 5.5] for the CWENO-IMEX (left) and
DSMC (right) solver.
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4.4. Double Mach reflection problem

In this test, we propose to run a slightly modified setting of the double Mach reflection problem originally proposed
in [58]. The setup involves a shock wave with a shock Mach number Ms = 2 which is moving along the x−direction of
the computational domain, where a ramp with angle α = π

6 is located. The strong shock wave that hits the ramp yields
the development of other two shock waves, one travelling towards the right and the other one propagating towards the
top boundary of the domain. The initial computational domain Ω is discretized with a total number of elements of
NP = 6714.The initial condition is given in terms of primitive variables and explicitly writesUL = (4, 1, 0, 1.25) x ≤ xd,

UR = (2, 0, 0, 0.50) x > xd,
(65)

with the initial discontinuity located at xd = 0. Dirichlet boundary conditions are set on the left and rights sides, while
sliding wall boundary conditions have been imposed on the remaining sides. The velocity space is bounded in the
interval [−10; 10]2 and is discretized with 322 = 1024 Cartesian cells. The final time is t f = 0.7. The Figure 10 shows
the third order numerical solution for density and temperature with ε = 5 · 10−5 together with a comparison against
the solution obtained by solving the compressible Euler equations with the same order of accuracy. A qualitatively
agreement of the solution can be appreciated, with the physical variable contours approximated by 21 equidistant
levels for density and temperature in the interval [2; 5] and [0.5; 1.8], respectively. A comparison with the BGK
solution at Knudsen number ε = 5 ·10−3 is finally proposed in Figure 11, highlighting some differences in the behavior
of the two models. Specifically, the Boltzmann model exhibits a smoother solution for both density and temperature,
with less small-scale structures around the triple point, which corresponds to the intersection of the three shock waves.
Compared to the standard double Mach reflection test [58], here the incidence wave has quite a slower speed which
causes a simpler structure of the final solution. This choice is imposed by the impossibility to correctly describe the
velocity space involved in such a problem using a fixed and uniform in space discretization of the phase-space. In
fact, in order to perform such a study, it would be necessary to describe with the same velocity mesh, distribution
functions with low mean velocities and temperatures and distribution functions exhibiting very large mean velocities
and temperatures. This problem needs an approach with velocity grids able to adapt to the time evolution of the
solution both in time and space. This kind of approach is the scope of future investigations.

Figure 10: Double Mach reflection problem at final time t f = 0.7. Third order numerical solution for density (left) and temperature (right) for the
Euler equations (top row) and the Boltzmann model with ε = 5 · 10−5 (bottom row).
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Figure 11: Double Mach reflection problem at final time t f = 0.7 with ε = 5 ·10−3. Third order numerical solution for density (left) and temperature
(right) for the Boltzmann (top row) and the BGK (bottom row) model.

4.5. Fluid flow around NACA 0012 airfoil
The last test case concerns a more realistic application, namely the study of the flow around a NACA 0012 airfoil

profile for different rarefied regimes. A slightly modified geometry from the original definition is considered, so that
the airfoil closes at chord c = 1 with a sharp trailing edge. This altered two-dimensional geometrical configuration of
NACA 0012 airfoil is defined by

y = ±0.594689181
(
0.298222773

√
x − 0.127125232x − 0.357907906x2 + 0.291984971x3 − 0.105174606x4

)
, (66)

which corresponds to a perfect scaled copy of the NACA 0012 profile with x ∈ [0; 1.008930411365]. The airfoil
is embedded in a square computational domain Ω = [−5; 5]2 that is discretized with a total number of NP = 10336
polygonal control volumes. The profile of the airfoil to which is assigned a slip-wall boundary condition, is approx-
imated with 100 equidistant points in the x−direction both on the upper and the lower border. The characteristic
mesh size is then progressively increased linearly with the distance from the airfoil, thus ranging from h = 1/100 to
h = 1/10. Inflow boundary conditions are imposed on the left and the bottom face of the domain, while transmissive
conditions have been set elsewhere. The entire computational mesh and a zoom around the NACA profile is depicted
in Figure 12, together with the MPI partition of the domain within 64 CPUs. The velocity domain is discretized with
322 Cartesian cells ranging in the intervalV = [−10; 10] × [−10; 10].

With this numerical setting, we consider then two subsonic settings and one supersonic configuration. The second
order version of the novel CWENO-IMEX schemes is used to run all computations. The first subsonic initial condition
is given by considering an inflow Mach number of M = 0.5 and an angle of attack of α = 4◦. The free-stream
conditions are as follows:

(u, v)∞ = (0.5, 0), p∞ = 1, ρ∞ = 1,

thus the fluid pressure is set to p = p∞/γ. Figure 13 shows the numerical solution for the Mach number M =√
u/(γR T ) and the temperature at the final time t f = 5 for two different fluid regimes, namely ε = 5 · 10−5 and

ε = 5 · 10−3. The pressure coefficient Cp on the upper and the lower surface of the airfoil is also reported. It is
computed as

Cp =
p − p∞
1
2ρ∞u2

∞

. (67)

In the fluid limit the results are in excellent agreement with available references in the literature [61] while in the
rarefied setting, the pressure coefficients become lower as expected. The second subsonic setting involves an inlet
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Figure 12: Flow around NACA 0012 airfoil. Computational mesh with NP = 10336 polygonal cells (left), zoom around the airfoil profile discretized
with 200 points (middle) and MPI domains which splits the computational domain into a total number of 64 sub-domains.

Mach number of M = 0.8 and an angle of attack of α = 1.25◦, therefore a shock wave is generated both on the upper
and the lower surface, as correctly shown in Figure 14. This simulation is also run for two different fluid regimes and
the results are in qualitatively very good agreement with [61] for the case ε = 5 · 10−5. The presence of the shock
waves can be clearly identified also looking at the pressure coefficient distribution, while in the rarefied regime with
ε = 5 · 10−3 the shocks become milder and the pressure coefficients exhibit a much smoother profile. Finally, as a
last example, we consider a supersonic flow with Mach number M = 2 up to the final time t f = 2. The numerical
results are shown in Figure 15, where it is visible the generation of shock waves both in front of the airfoil but also
departing from the tail of the NACA 0012 profile. The pressure coefficients show that this simulation can be regarded
as a prototype of a supersonic vehicle reentry which is approaching the soil surface.

5. Conclusions

In this work, we have considered a high order in velocity, space and time finite volume method for solving the
Boltzmann equation. The proposed approach is based on a spectral discretization of the collision operator, on a Central
WENO polynomial reconstruction and on a high order implicit-explicit time discretization. The scheme is designed
to work on arbitrarily unstructured control volumes. Up to our knowledge, this is one of the first examples in which
the full Boltzmann model is solved using high order time-space methods on such unstructured meshes. In particular,
we are not aware of any result in the case in which, in the above described framework, high order implicit methods
which guarantee stability, accuracy and preservation of the asymptotic state are used in a multidimensional setting for
this model.

The numerical part consists of several measures of the theoretical convergence order for the different employed
discretizations (spectral, CWENO and Runge-Kutta) and for different regimes: from dense fluids to rarefied gases. An
additional measure of the computational costs involved is also reported. A second part consists in proving the capabil-
ity of the designed method to deal with standard benchmark problems in gas dynamics. Here, we compare our scheme
with the limit compressible Euler equations and with a Direct Simulation Monte Carlo method solving the Boltzmann
equation. Comparisons between the Boltzmann and the BGK model are also proposed showing the ineffectiveness of
the latter in describing far from equilibrium phenomena. Finally, a more realistic set of simulations on a NACA wing
profile under different regimes and angles of attack is presented. These tests run on a MPI parallelization version of
the code and provide evidence that the method can be applied to large scale simulations. A very good agreement with
the existing literature is observed for these last cases.

In the future, the methods here presented will be extended to the full six dimensional case. We also aim at
considering the Discontinuous Galerkin (DG) method for the space discretization and to increase the time precision
and lowering the computational effort to use linear multistep approaches in time. Finally, a way to better represent the
physical solutions would be to change the support of the distribution function and the nodes where it is defined as a
function of the solution itself. This is a challenging research direction that we would aim to follow in the next future.
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Figure 13: Flow around NACA 0012 airfoil with Mach number M = 0.5 and angle of attack α = 4◦ for ε = 5 · 10−5 (left column) and ε = 5 · 10−3

(right column) at t f = 5. Top row: 40 Mach number contours in the interval [0.45; 0.55]. Middle row: 40 Mach number contours in the interval
[0.04; 0.68]. Bottom row: pressure coefficient distribution on the upper and lower surfaces of the airfoil.
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Figure 14: Flow around NACA 0012 airfoil with Mach number M = 0.8 and angle of attack α = 1.25◦ for ε = 5 ·10−5 (left column) and ε = 5 ·10−3

(right column) at t f = 5. Top row: 40 Mach number contours in the interval [0.38; 0.65]. Middle row: 40 Mach number contours in the interval
[0.2; 1.2]. Bottom row: pressure coefficient distribution on the upper and lower surfaces of the airfoil.
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Figure 15: Flow around NACA 0012 airfoil with Mach number M = 2 and angle of attack α = 2◦ for ε = 5 · 10−5 (left column) and ε = 5 · 10−3

(right column) at t f = 2. Top row: 40 Mach number contours in the interval [0.42; 1.48]. Middle row: 40 Mach number contours in the interval
[0.15; 2.3]. Bottom row: pressure coefficient distribution on the upper and lower surfaces of the airfoil.
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