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P R E FA C E

I graduated cum laude in 2019 in Mechanical Engineering at the University of
Ferrara discussing the thesis entitled "Implementation of a numerical model
for shape memory alloy wires" under the supervision of Prof. R. Rizzoni.
Immediately after, I joined with a postgraduate fellowship the research group
led by Prof. G. Dalpiaz at the same university. Then, after eight months I
started my Ph.D. in Engineering Science, again under the supervision of Prof.
G. Dalpiaz.

During the first year of my Ph.D., my research activity was focused on the
definition of a numerical finite-element procedure for the estimation of the
non-linear radial stiffness of rolling-element bearings. This quantity, in fact,
is a crucial input parameter that is inserted into dynamic models of com-
plex machinery and it greatly affects their outcome. As a consequence, the
load-displacement relationship of these components should be determined as
accurately as possible, e.g. through the finite-element method. Therefore, the
inquiry aimed at finding a procedure for the generation of computationally
efficient load-dependent meshes, i.e. providing an acceptable compromise be-
tween the accuracy of the results and the computational time. This study was
first published in 2021 in the journal Mathematical Problems in Engineering
[1]:

[1] A. Gabrielli, M. Battarra, and E. Mucchi. “A Critical Analysis of Finite-Element Model-
ing Procedures for Radial Bearing Stiffness Estimation.” In: Mathematical Problems in
Engineering 2021 (2021), p. 9955398. issn: 1024-123X. doi: 10.1155/2021/9955398.

Further results and additional considerations were later added and presented
the following year at the ISMA 2022 conference held in Leuven, Belgium [2]:
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[2] A. Gabrielli, M. Battarra, and E. Mucchi. “A numerical finite-element method for radial
bearing stiffness estimation based on load dependent meshing.” In: Proceedings of
ISMA 2022 - International Conference on Noise and Vibration Engineering and USD 2022 -
International Conference on Uncertainty in Structural Dynamics, pp. 1527–1541. Leuven,
Belgium, 2022.

During the second year, I tackled the problem of the lumped parameter
modelling of defective rolling-element bearings. In this regard, it was observed
that the estimation of several quantities that are inserted in these models is
commonly characterized by a high degree of uncertainty. Hence, effort was
dedicated to the development of a robust procedure capable of determining
the values of these unknown parameters. This goal was achieved by proposing
a multi-objective optimization procedure, in which the objective functions to
be minimized were global indicators that took into account the discrepancy
between signal features estimated numerically and experimentally. The former
were obtained by means of a lumped parameter model of a defective bearing.
The latter were obtained through an extensive experimental study realised on
a dedicated test bench which was set-up at the Engineering Department of the
University of Ferrara. The described investigation led to a publication, in 2023,
in the journal Mechanical Systems and Signal Processing [3]:

[3] A. Gabrielli, M. Battarra, E. Mucchi, and G. Dalpiaz. “A procedure for the assessment
of unknown parameters in modeling defective bearings through multi-objective op-
timization.” In: Mechanical Systems and Signal Processing 185 (2023), p. 109783. issn:
0888-3270. doi: https://doi.org/10.1016/j.ymssp.2022.109783.

Additionally, the experimental data were stored as a dataset in a online reposi-
tory hosted by Mendeley Data [4]:

[4] A. Gabrielli, M. Battarra, E. Mucchi, and G. Dalpiaz. Acceleration signals of rolling element
bearings with artificial defects. Mendeley Data, V1. 2022. doi: 10.17632/8wdzm5gwng.1.

The last part of my research, which was carried out during the third and
final year of my Ph.D., involved the investigation and the development of
physics-based models devoted to the prognostics of rolling-element bearings.
The previous effort on the dynamic modelling of faulty bearings was extended
and integrated into a novel technique for the estimation of a parameter related
to the evolution of bearing degradation over time, namely the equivalent dam-
aged volume. A procedure for the estimation of this quantity from real bearing
deterioration histories was introduced. Then, it was further employed to pro-
pose two psychics-based prognostic models, which were aimed at predicting
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the future health state of a bearing on the basis of actual data recorded during
its working life. To this end, the aforementioned bearing test bench at the Uni-
versity of Ferrara was utilized to perform a series of run-to-failure experiments,
i.e. tests in which the entire operative life of a bearing was monitored from the
very beginning until the eventual failure of the component.

Finally, in addition to my Ph.D. research topic, I also had the chance to perform
several experimental activities and conduct numerical analyses involving the
modelling of complex mechanical systems. These activities allowed me to solve
real industrial problems and enhance my problem-solving capabilities in the
NVH field. Among those, I worked on a numerical vibro-acoustic methodology
for the estimation of the vibratory and acoustic level of a gearbox employed on
agricultural equipment. The endeavour aimed at generating the NVH digital
twin of the real component, which was experimentally validated through
comparison with data acquired on a dedicated test bench. This work was
presented at the ISMA 2020 conference [5]:

[5] A. Gabrielli, F. Pizzolante, E. Soave, M. Battarra, C. Mazzeo, M. Tarabra, E. Fava, and E.
Mucchi. “A numerical model for NVH analysis of gearboxes employed on agricultural
equipment.” In: Proceedings of ISMA 2020 - International Conference on Noise and Vibration
Engineering and USD 2020 - International Conference on Uncertainty in Structural Dynamics,
pp. 3191 - 3203. Leuven, Belgium, 2020.

To conclude this brief summary of my Ph.D. experience, I would like to spend
a few words to acknowledge the people that worked me in the last three -
almost four - years. Firstly, Prof. G. Dalpiaz, that gave me the opportunity to
pursue this path under his supervision. Then, I want to express my heartfelt
gratitude to Prof. Emiliano Mucchi, Eng. Gianluca D’Elia and Eng. Mattia
Battarra for the precious help and the time they spent discussing with me the
arguments detailed in this thesis, plus many more related to the field of NVH
analysis. Finally, a special thanks goes to all people that shared this experience
with me, starting with my office mates, my co-workers in the research group
and, most importantly, the friends I have met along the way. Needless to say,
this work would have never seen the light of day without the support of all of
you. Sincerely, you have my deepest gratitude.

v





C O N T E N T S

1 Introduction 1

1.1 Introduction to rolling element bearings . . . . . . . . . . . . . . 1

1.2 State-of-the-art in bearing modelling . . . . . . . . . . . . . . . . 12

1.2.1 Stiffness estimation methods . . . . . . . . . . . . . . . . 13

1.2.2 Dynamic modelling of faulty bearings . . . . . . . . . . . 17

1.2.3 Prognostic models . . . . . . . . . . . . . . . . . . . . . . 23

1.2.3.1 Physics-based models . . . . . . . . . . . . . . . 24

1.2.3.2 Data-driven models . . . . . . . . . . . . . . . . 28

1.2.3.3 Hybrid models . . . . . . . . . . . . . . . . . . . 32

1.3 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . 35

2 Description of the bearing test bench at the Engineering Department
of the University of Ferrara 37

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Test bench description . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Performed tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.1 Stationary tests for bearings with artificial defects . . . . 41

2.3.2 Run-to-failure tests . . . . . . . . . . . . . . . . . . . . . . 47

3 Non-linear radial bearing stiffness estimation based on load depen-
dent meshing 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Problem generalities . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Reference bearings geometry . . . . . . . . . . . . . . . . 53

3.2.2 Application of the Hertz theory for contacts in REBs . . 54

3.2.3 Solver choice and contact algorithm . . . . . . . . . . . . 58

3.2.4 Modelling hypotheses . . . . . . . . . . . . . . . . . . . . 59

3.3 Mesh size assessment and element choice . . . . . . . . . . . . . 60

3.3.1 Description of the procedure employed for mesh perfor-
mance assessment . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2 Roller-races contact . . . . . . . . . . . . . . . . . . . . . . 63

vii



contents

3.3.3 Ball-races contact . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Estimation of the bearing radial stiffness . . . . . . . . . . . . . 73

3.4.1 Analytical procedure . . . . . . . . . . . . . . . . . . . . . 73

3.4.2 Reduction of the computational domain . . . . . . . . . . 74

3.4.3 Generation of the load-dependent meshes . . . . . . . . 77

3.4.4 Radial stiffness estimation: comparison between numeri-
cal and analytical results . . . . . . . . . . . . . . . . . . . 80

3.5 Additional effects influencing the radial stiffness . . . . . . . . . 82

3.5.1 Inclusion of the cage . . . . . . . . . . . . . . . . . . . . . 83

3.5.2 Influence of maximum load direction . . . . . . . . . . . 83

3.5.3 Clearance effect . . . . . . . . . . . . . . . . . . . . . . . . 85

3.6 Summarizing remarks . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Multi-objective optimization procedure for the estimation of unknown
parameters in lumped-parameter models of defective bearings 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1 Healthy bearing model . . . . . . . . . . . . . . . . . . . . 93

4.2.2 Faulty bearing model . . . . . . . . . . . . . . . . . . . . . 98

4.2.3 Procedure to determine model parameters . . . . . . . . 99

4.2.4 Definition of the constraints . . . . . . . . . . . . . . . . . 104

4.3 Results of the experimental tests . . . . . . . . . . . . . . . . . . 109

4.4 Application of the multi-objective optimization technique to
experimental signals . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4.1 Parameters of the model and definition of the constraints 116

4.4.2 Model parameters estimated through multi-objective op-
timization . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4.3 Numerical features . . . . . . . . . . . . . . . . . . . . . . 129

4.4.4 Time and frequency analysis . . . . . . . . . . . . . . . . 133

4.4.5 Effect of slippage . . . . . . . . . . . . . . . . . . . . . . . 136

4.5 Summarizing remarks . . . . . . . . . . . . . . . . . . . . . . . . 140

5 Development of bearing prognostic techniques based on equivalent
damaged volume estimation 143

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Description of the proposed procedure . . . . . . . . . . . . . . 145

5.2.1 Faulty bearing model for extended defects . . . . . . . . 145

5.2.2 Equivalent damaged volume (EDV) method . . . . . . . 148

viii



contents

5.2.3 Possible applications of the EDV algorithm to REB prog-
nostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2.3.1 The first PBM: prevision of the degradation his-
tory under different operative conditions . . . . 157

5.2.3.2 The second PBM: time-to-threshold assessment
by estimation of the future values of the equiv-
alent damaged volume . . . . . . . . . . . . . . 158

5.3 Results of the run-to-failure tests . . . . . . . . . . . . . . . . . . 159

5.4 REB prognostics based on EDV estimation . . . . . . . . . . . . 162

5.4.1 EDV assessment from test bench data . . . . . . . . . . . 164

5.4.2 Application of the first PBM: prediction of degradation
histories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.4.3 Application of the second PBM: TT assessment on actual
vibration data . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.5 Summarizing remarks . . . . . . . . . . . . . . . . . . . . . . . . 176

6 Final Remarks 181

a Appendix: A numerical model for NVH analysis of gearboxes em-
ployed on agricultural equipment 187

a.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

a.2 Digital twin of the gearbox . . . . . . . . . . . . . . . . . . . . . 188

a.2.1 Description of the system . . . . . . . . . . . . . . . . . . 189

a.2.2 Lumped parameter model . . . . . . . . . . . . . . . . . . 189

a.2.3 Structural finite-element model . . . . . . . . . . . . . . . 191

a.2.4 Acoustical finite-element model . . . . . . . . . . . . . . 193

a.3 Validation of the digital twin . . . . . . . . . . . . . . . . . . . . 195

a.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 195

a.3.2 LP model results . . . . . . . . . . . . . . . . . . . . . . . 198

a.3.3 SFE model results . . . . . . . . . . . . . . . . . . . . . . . 199

a.3.4 AFE model results . . . . . . . . . . . . . . . . . . . . . . 205

a.4 Summarizing remarks . . . . . . . . . . . . . . . . . . . . . . . . 206

Bibliography 209

ix



L I S T O F F I G U R E S

Figure 1 Exploded view of a double-row self-aligning ball bearing. 2

Figure 2 Typical stiffness characteristics of a rolling bearing for
a given position of rolling elements: (a) load - displace-
ment relationship; (b) stiffness - load relationship. . . . 5

Figure 3 Examples of acceleration signal produced by a REB: (a)
healthy bearing; (b) bearing with a localised defect on
the outer race. . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 4 RMS trends representing different degradation pro-
cesses of a REB: (a) two-stages life; (b) three-stages life. 11

Figure 5 Photos of bearing test benches, taken from the literature:
(a) IMS [30]; (b) FEMTO-ST [201]; (c) CWRU [202]; (d)
B. Wang et al. [128]; (e) Paderborn University [205]. . . 40

Figure 6 Bearing test bench at the Engineering Department of the
University of Ferrara. . . . . . . . . . . . . . . . . . . . . 42

Figure 7 Schematic depiction of the bearing test bench. . . . . . 42

Figure 8 Geometry of the self-aligning ball bearing 1205 ETN9
employed as test bearing on the test bench. . . . . . . . 43

Figure 9 Artificial defects seeded on the outer rings: (a) Defect
width D1; (b) Defect width D2; (c) Defect width D3. . . 44

Figure 10 Measured defect dimensions. In each plot, the x-axis
is aligned with the external border of the bearing. The
employed measuring machine has an accuracy equal
to (0.48 + l) µm, where l is the measuring distance
expressed in meters. (a) Fault size D1; (b) Fault size D2;
(c) Fault size D3. . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 11 Expected life of the bearing 1205 ETN9 under different
combinations of radial load and shaft speed values: (a)
Load range 1-6 kN; (b) Load range 3-6 kN. . . . . . . . 48

x



list of figures

Figure 12 Photos of the bearing outer rings at the end of the run-
to-failure tests: (a) E1 (4 kN); (b) E2 (4 kN); (c) E3 (4 kN);
(d) E4 (3 kN); (e) E5 (4.7 kN); (f) E6 (5 kN). . . . . . . . 50

Figure 13 Geometry of the roller bearing taken as reference for the
investigation: (a) cylindrical roller bearing NU 202 ECP;
(b) deep-groove ball bearing model 6210. . . . . . . . . 54

Figure 14 Shape of the contact areas: (a) roller-race contact; (b)
ball-race contact. . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 15 Sub-models and meshes employed for convergence anal-
ysis: (a) roller - race contact, tetrahedral elements; (b)
roller-race contact, hexahedral elements; (c) ball-race
contact, tetrahedral elements. . . . . . . . . . . . . . . . 62

Figure 16 Mesh performance evaluation for tetrahedral elements,
roller-races contact: (a) contact stiffness at Q1; (b) con-
tact stiffness at Q2; (c) computational time at Q1; (d)
computational time at Q2. . . . . . . . . . . . . . . . . . 67

Figure 17 Mesh performance evaluation for hexahedral elements,
roller-races contact: (a) contact stiffness at Q1; (b) con-
tact stiffness at Q2; (c) computational time at Q1; (d)
computational time at Q2. . . . . . . . . . . . . . . . . . 69

Figure 18 Mesh performance evaluation for tetrahedral elements,
ball-races contact: (a) contact stiffness at Q1; (b) con-
tact stiffness at Q2; (c) computational time at Q1; (d)
computational time at Q2. . . . . . . . . . . . . . . . . . 71

Figure 19 Scheme of the bearing employed for analytical stiffness
estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 20 Reduced bearing geometries with different meshes: (a)
roller bearing, tetrahedral elements; (b) roller bearing,
hexahedral elements; (c) ball bearing, tetrahedral ele-
ments; (d) roller bearing with cage. . . . . . . . . . . . . 76

Figure 21 Sinusoidal load distribution acting on a 180° angular
sector of the inner surface of the inner ring. . . . . . . . 77

Figure 22 Load distribution on rollers evaluated for two different
radial load values: (a) Fr1 = 0.1 kN; (b) Fr2 = 10 kN. . . 80

Figure 23 Roller bearing stiffness: (a) load-stiffness curve; (b) com-
putational time. . . . . . . . . . . . . . . . . . . . . . . . 81

xi



list of figures

Figure 24 Ball bearing stiffness: (a) load-stiffness curve; (b) com-
putational time. . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 25 Effect of cage presence on roller bearing stiffness: (a)
load-stiffness curve; (b) computational time. . . . . . . . 84

Figure 26 Different directions of the maximum load on rollers: (a)
position 1; (b) position 2. . . . . . . . . . . . . . . . . . . 84

Figure 27 Influence of maximum load direction on roller bearing
stiffness: (a) load-stiffness curve; (b) computational time. 85

Figure 28 Effect of a radial clearance h = 0.02 mm on roller bearing
stiffness: (a) load-stiffness curve; (b) computational time. 87

Figure 29 Scheme of the LP model. . . . . . . . . . . . . . . . . . . 94

Figure 30 Defect geometry and additional displacement due to
outer ring fault. The gray circle indicates the theoretical
ball position in absence of the defect, while the black
circle accounts for its presence. Two views are shown:
(a) Oyz plane, derived from the global reference frame
Oxyz; (b) O’x’y’ plane, obtained by rotating reference
frame Oxyz by an angle α around its x-axis so generate
a rotated frame O’x’y’z’. . . . . . . . . . . . . . . . . . . 100

Figure 31 Experimental time signals for different combinations of
defect dimension and load w: (a) D1, w = 1000 N; (b)
D1, w = 2000 N; (c) D2, w = 1000 N; (d) D2, w = 2000

N; (e) D3, w = 1000 N; (f) D3, w = 2000 N. . . . . . . . 111

Figure 32 Experimental frequency spectrum for defect D2 under
an applied load of 2000 N and a rotation speed of 30

Hz: (a) Spectrum over the frequency range 0 - 9500 Hz;
(b) Spectrum in the "low" frequency range 0 - 2000 Hz;
(c) Spectrum in the "high" frequency range 6000 - 9000 Hz.113

Figure 33 Signal features compared against the rotation frequency.
For each rotation frequency, the three cross markers
represent a different test run on another bearing with
the same defect size. The square marker denotes the
average value of the three tests. (a) RMS for defect D1;
(b) A∗ for defect D1; (c) RMS for defect D2; (d) A∗ for
defect D2; (e) RMS for defect D3; (f) A∗ for defect D3. . 114

xii



list of figures

Figure 34 Signal features compared against the defect width. For
each defect dimension, the three cross markers represent
a different test run on another bearing with same defect
size. The square marker denotes the average value of
the three tests. (a) RMS at 20 Hz; (b) A∗ at 20 Hz; (c)
RMS at 30 Hz; (d) A∗ at 30 Hz; (e) RMS at 40 Hz; (f) A∗

at 40 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 35 FE model of the shaft. . . . . . . . . . . . . . . . . . . . . 117

Figure 36 Bearing stiffness terms of an healthy bearing as a func-
tion of load and balls position: (a) kxx; (b) kyy; (c) kxy. . 119

Figure 37 Bearing stiffness terms of a faulty bearing with defect
dimensions D3 as a function of load and balls position:
(a) kxx; (b) kyy; (c) kxy. . . . . . . . . . . . . . . . . . . . 120

Figure 38 Effect of the values of mr and kr on the natural fre-
quency of the high resonant mass for an healthy bear-
ing at the applied static load of 2000 N: (a) Three-
dimensional surface plot; (b) Relationship between mr

and kr for different natural frequencies. The grey hatched
area designates the mass and stiffness combinations that
produce a resonance frequency comprised between 4500

Hz and 9500 Hz. . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 39 Effect of the values of mr and kr on the first four natural
frequencies of the healthy bearing. The directions refer
to the global reference frame Oxyz. (a) Mode 1; (b) Mode
2; (c) Mode 3; (d) Mode 4. . . . . . . . . . . . . . . . . . 122

Figure 40 Admissible values of the coefficients related to the con-
tact damping: (a) ζ1 and ζ2; (b) αc and βc. . . . . . . . . 123

Figure 41 Values of the objective functions of vector θ which form
the estimated weak Pareto optimal. Each point corre-
sponds to a different set of parameters γ which solves
the optimization problem by providing nondominated
points in the feasible objectives space. . . . . . . . . . . 125

xiii



list of figures

Figure 42 Representation of the unknown parameters estimated
through the multi-objective optimization process. Each
point represents a different value of the vector θ as a
function of ∆RMS. Each plot shows one of the parame-
ters: (a) ζi; (b) ζr; (c) ζ1; (d) ζ2; (e) mr; (f) kr. . . . . . . . 126

Figure 43 Estimated natural frequencies for each combination of
mr and kr of each vector γ. . . . . . . . . . . . . . . . . . 127

Figure 44 Pareto fronts obtained by performing the optimization
procedure on one defect at a time. . . . . . . . . . . . . 129

Figure 45 Comparison between numerical and experimental fea-
tures as a function of rotation frequency: (a) RMS for
defect D1; (b) A∗ for defect D1; (c) RMS for defect D2;
(d) A∗ for defect D2; (e) RMS for defect D3; (f) A∗ for
defect D3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Figure 46 Comparison between numerical and experimental fea-
tures as a function of defect width: (a) RMS at 20 Hz;
(b) A∗ at 20 Hz; (c) RMS at 30 Hz; (d) A∗ at 30 Hz; (e)
RMS at 40 Hz; (f) A∗ at 40 Hz. . . . . . . . . . . . . . . . 132

Figure 47 Numerical time signals for different combinations of
defect dimension and load w. The limits on the y-axis
of each plot are the same as in Figure 31 to allow a
comparison between corresponding graphs. (a) D1, y =

1000 N; (b) D1, w = 2000 N; (c) D2, w = 1000 N; (d) D2,
w = 2000 N; (e) D3, w = 1000 N; (f) D3, w = 2000 N. . 134

Figure 48 Numerical frequency spectrum for defect D2 under and
applied load of 2000 N and a rotation speed of 30 Hz:
(a) Spectrum over the frequency range 0 - 9500 Hz; (b)
Spectrum in the ”low” frequency range 0 - 2000 Hz; (c)
Spectrum in the ”high” frequency range 6000 - 9000 Hz. 135

Figure 49 Frequency spectra for the test condition associated with
defect width D2, rotation frequency 30 Hz and applied
radial load 2000 N for different values of the slippage
angle ϕslip: (a) 0.005 rad; (b) 0.01 rad; (c) 0.02 rad. . . . 137

xiv



list of figures

Figure 50 Time signals for the test condition associated with defect
width D2, rotation frequency 30 Hz and applied radial
load 2000 N for different values of the slippage angle
ϕslip: (a) 0.005 rad; (b) 0.01 rad; (c) 0.02 rad. . . . . . . . 138

Figure 51 Signal features compared against the rotation frequency
for three different slippage conditions and under two
applied loads equal to 1000 N and 2000 N: (a) RMS for
defect D1; (b) A∗ for defect D1; (c) RMS for defect D2;
(d) A∗ for defect D2; (e) RMS for defect D3; (f) A∗ for
defect D3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Figure 52 Geometric definition of angular position φb,in. The same
scheme may be replicated for φb,out at the exit of the
defect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Figure 53 Examples of trajectories followed by the ball inside a
defect: (a) localised defect with ∆φd = 2° and sufficient
depth to avoid contact with the bottom surface; (b) ex-
tended defect with ∆φd = 20°, hd = 20 µm and R = 10

µm. The solid and dash-dot lines represent the paths on
the rough and smooth surfaces, respectively. . . . . . . 149

Figure 54 Final stage of bearing life. . . . . . . . . . . . . . . . . . 150

Figure 55 Steps of the EDV algorithm: (a) Consider the experimen-
tal RMS value X(i) at time t(i); (b) Find all points in the
RMS map that satisfy the condition Xnum = Xexp(i); (c)
Determine the pair (∆φd,hd) that minimizes the equiva-
lent damaged volume Veq; (d) Remove all points with
lower angular extent and depth from the RMS map
for the next iteration; (e) Repeat the procedure at time
t(i+ 1), until an end criterion described by Figure 56 is
achieved; (f) RMS map at time t(i+ 1), in which the area
removed in Figure (d) is highlighted by a grey hatching. 154

Figure 56 Flowchart of the EDV algorithm. . . . . . . . . . . . . . 155

Figure 57 Experimental RMS trends for the entire test length: (a)
E1 (4 kN); (b) E2 (4 kN); (c) E3 (4 kN); (d) E4 (3 kN); (e)
E5 (4.7 kN); (f) E6 (5 kN). . . . . . . . . . . . . . . . . . . 160

xv



list of figures

Figure 58 Experimental values of indicator Hor: (a) E1 (4 kN); (b)
E2 (4 kN); (c) E3 (4 kN); (d) E4 (3 kN); (e) E5 (4.7 kN);
(f) E6 (5 kN). . . . . . . . . . . . . . . . . . . . . . . . . . 163

Figure 59 Example of envelope spectra taken from test E3: (a)
Normal operation; (b) Final stage. . . . . . . . . . . . . . 164

Figure 60 RMS in the final stage: (a) Tests E1, E2 and E3; (b) Tests
E4, E5 and E6. . . . . . . . . . . . . . . . . . . . . . . . . 165

Figure 61 RMS maps for a constant rotation speed equal to 40 Hz
and different values of applied load: (a) 3000 N; (b) 4000

N; (c) 4700 N; (d) 5000 N. . . . . . . . . . . . . . . . . . . 167

Figure 62 Equivalent damaged volume estimated through the EDV
algorithm: (a) Tests E1, E2 and E3; (b) Tests E4, E5 and E6.168

Figure 63 Comparison between numerically generated and exper-
imental degradation histories, for different load values:
(a) 3000 N; (b) 4700 N; (c) 5000 N. . . . . . . . . . . . . . 170

Figure 64 Values of Veq below the threshold Vth = 0.05 mm3/mm:
(a) Tests E1, E2 and E3; (b) Tests E4, E5 and E6. . . . . . 172

Figure 65 Veq values below threshold fitted with a quadratic poly-
nomial: (a) E1 (4 kN); (b) E2 (4 kN); (c) E3 (4 kN); (d) E4

(3 kN); (e) E5 (4.7 kN); (f) E6 (5 kN). . . . . . . . . . . . 173

Figure 66 TT computed through the proposed method: (a) E1 (4
kN); (b) E2 (4 kN); (c) E3 (4 kN); (d) E4 (3 kN); (e) E5

(4.7 kN); (f) E6 (5 kN). . . . . . . . . . . . . . . . . . . . . 176

Figure 67 TT computed for test E6 for various threshold values:
(a) Vth = 0.03 mm3/mm; (b) Vth = 0.08 mm3/mm; (c)
Vth = 0.1 mm3/mm. . . . . . . . . . . . . . . . . . . . . . 177

Figure 68 Schematic depiction of the gearbox. . . . . . . . . . . . . 190

Figure 69 Scheme of the geartrain LP model. . . . . . . . . . . . . 192

Figure 70 Gearbox mesh: (a) whole case; (b) rigid elements con-
necting a concentrated mass to the case; (c) constrained
nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Figure 71 Acoustic mesh and microphone points. . . . . . . . . . 195

Figure 72 Experimental setup. . . . . . . . . . . . . . . . . . . . . . 196

Figure 73 Acoustic levels sensed by the microphones: (a) Mic1; (b)
Mic2. Reference pressure is pref = 2 · 10−5 Pa. (Values
on y-axis not shown for confidentiality reasons). . . . . 198

xvi



list of figures

Figure 74 Reaction forces on bearings as a function of the gear
pitch: (a) Gear 1, x direction; (b) Gear 1, y direction; (c)
Gear 3, x direction; (d) Gear 3, y direction; (e) Gear 5, x
direction; (f) Gear 5, y direction. (Values on y-axis not
shown for confidentiality reasons). . . . . . . . . . . . . 200

Figure 75 Comparison between the first two mode shapes obtained
experimentally (EMA) and numerically (Natran SOL
103): (a) Mode 1; (b) Mode 2. . . . . . . . . . . . . . . . . 202

Figure 76 Location of the nodes corresponding to the two ac-
celerometers: (a) Acc1; (b) Acc2. . . . . . . . . . . . . . . 203

Figure 77 Experimental and numerical acceleration levels in 1/3

octave band spectrum, x component, for both teeth pro-
files: (a) Acc1, experimental; (b) Acc2, experimental; (c)
Acc1, numerical; (d) Acc2, numerical. (Values on y-axis
not shown for confidentiality reasons). . . . . . . . . . . 204

Figure 78 Experimental and numerical A-weighted acoustic pres-
sure levels in 1/3 octave band spectrum, for both teeth
profiles: (a) Mic1, experimental; (b) Mic2, experimen-
tal; (c) Mic1, numerical; (d) Mic2, numerical. (Values on
y-axis not shown for confidentiality reasons). . . . . . . 206

xvii



L I S T O F TA B L E S

Table 1 Design parameters of the self-aligning ball bearing model
1205 ETN9. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 2 Dimensions of the defects seeded on each bearing. The
width values measured on each bearing have an uncer-
tainty equal to 2 µm. . . . . . . . . . . . . . . . . . . . . 45

Table 3 Operative conditions, expected life and test length for
the six tested bearings. . . . . . . . . . . . . . . . . . . . 49

Table 4 Design parameters of the cylindrical roller bearing model
NU 202 ECP and the deep-groove ball bearing model 6210. 53

Table 5 Statistics of tetrahedral meshes employed to assess ele-
ment performance in roller-race contact. . . . . . . . . 65

Table 6 Statistics of hexahedral meshes employed to assess ele-
ment performance in roller-race contact. . . . . . . . . 65

Table 7 Tested combinations of w and l for CTETRA10 elements,
roller-races contact. . . . . . . . . . . . . . . . . . . . . . 68

Table 8 Tested combinations of w and l for CHEXA20 elements,
roller-races contact. . . . . . . . . . . . . . . . . . . . . . 70

Table 9 Statistics of tetrahedral meshes employed to assess ele-
ment performance in ball-race contact. . . . . . . . . . 70

Table 10 Tested combinations of wa, wb and l for CTETRA10

elements, ball-races contact. . . . . . . . . . . . . . . . . 72

Table 11 Contact areas dimensions for the roller and ball bearings
under different loads. . . . . . . . . . . . . . . . . . . . 79

Table 12 Clearance effect on contact area, load zone and number
of loaded rollers. The number of loaded rollers refers to
a bearing in position 1 as in Figure 26.a, for which the
maximum number of loaded rollers for h = 0 is equal
to three. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xviii



list of tables

Table 13 Test combinations of operative conditions. Each combi-
nation of load and speed is tested for each defect width
D1, D2 and D3 and for each replica of every fault. BPFO
values refer to the theoretical defect frequency on the
outer ring. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Table 14 Model parameters. . . . . . . . . . . . . . . . . . . . . . . 117

Table 15 Shaft stiffness estimated through FE analysis. . . . . . . 117

Table 16 Minimum and maximum allowable values for each un-
known parameter. . . . . . . . . . . . . . . . . . . . . . . 118

Table 17 Healthy bearing stiffness matrix terms at 1000 N and
2000 N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Table 18 Combination of parameters that minimizes the value of
∆RMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Table 19 Combination of parameters obtained by considering one
defect dimension at a time. The chosen sets are the ones
which produce the points that minimize the distance
from the axes origin in Figure 44. . . . . . . . . . . . . . 129

Table 20 tfs, tEOL and length of the final stage for each test. . . . 164

Table 21 RMS values at the end of each test as estimated experi-
mentally and through the numerical model. . . . . . . . 171

Table 22 Values of coefficients a, b and c of the polynomial ax2+
bx+ c and goodness-of-fit parameter R2 for each test. . 174

Table 23 Tested working condition. . . . . . . . . . . . . . . . . . 197

Table 24 Values assigned to the components of the LP model. . 199

Table 25 Comparison between the first two natural frequencies
obtained experimentally (EMA) and numerically (Nas-
tran SOL 103). . . . . . . . . . . . . . . . . . . . . . . . . 201

Table 26 Modal damping values estimated by the EMA . . . . . . 203

Table 27 Reduction of the overall acceleration levels, x compo-
nent, computed in the highest acoustic emission fre-
quency range (562 - 2818 Hz). Reference acceleration is
aref = 1 g. . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Table 28 Reduction of the overall acoustic pressure levels, A-
weighted, computed in the highest acoustic emission
frequency range (562 - 2818 Hz). Reference pressure is
pref = 2·10

-5 Pa. . . . . . . . . . . . . . . . . . . . . . . . 205

xix



A C R O N Y M S

AFE Acoustical Finite-Element
AI Artificial Intelligence
ANN Artificial Neural Network
AR Autoregressive
ATV Acoustic Transfer Vector
BPFO Ball Passing Frequency Outer ring
CAD Computer-Aided Design
CBM Condition-Based Maintenance
CNN Convolutional Neural Network
CWRU Case Western Reserve University
DDM Data-Driven Model
DOF Degree Of Freedom
EOL End Of Life
EDV Equivalent Damaged Volume
EDM Electrical Discharge Machining
EHL Elastohydrodynamic Lubrication
EMA Experimental Modal Analysis
FE Finite-Element
FFNN Feed-Forward Neural Network
FPT First Predicting Time
GGHMM Generalized Gaussian Hidden Markov Model
GPR Gaussian Process Regression
HMM Hidden Markov Model
HS Health State

xx



acronyms

IG Inverse Gaussian
IMS Intelligent Maintenance Systems
ISO International Organization for Standardization
LP Lumped Parameter
MAC Modal Assurance Criterion
MFPT Machinery Failure Prevention Technology
NF Neuro-Fuzzy
NVH Noise, Vibration and Harshness
OA Operative Analysis
PBM Physics-Based Model
PDF Performance Degradation Dictionary
PDF Probability Density Function
PE Paris-Erdogan model
PH Proportional Hazard
PHM Prognostics and Health Management
PML Perfectly Matched Layer
REB Rolling Element Bearing
RMS Root Mean Square
RUL Remaining Useful Life
RVM Relevance Vector Machine
SFE Structural Finite-Element
SVM Support Vector Machine
SVR Support Vector Regression
TT Time-to-Threshold
VC Varying Compliance

xxi



N O M E N C L AT U R E

Latin symbols - scalars
A∗ Quadratic sum of the first five BPFO harmonics
ABPFO Amplitude of the BPFO
ABPFOe Amplitude of the BPFO in the envelope spectrum
a Contact area semi-width for roller-race contact; ellipse

major semi-axis for ball-race contact
aref Reference acceleration for dB computation
B Ring width
BPFO Characteristic frequency for an outer ring defect
b Ellipse minor semi-axis for ball-race contact
C0 Basic static load rating
Cr Basic dynamic load rating
c Damping coefficient
d Ball trajectory inside a localised defect
db Ball trajectory inside an extended defect
dα Ball trajectory inside a localised defect, aligned with

contact angle direction
dα,b Ball trajectory inside an extended defect, aligned with

contact angle direction
E Young’s modulus
Eeq Equivalent Young’s modulus
env() Signal envelope
F Force
Fr Radial load

xxii



nomenclature

fc Contact force exchanged between rolling elements and
races

fc Quasi-static contact force exchanged between rolling
elements and races

fd Contact damping force
fl Low-pass frequency
fm Meshing frequency
fn Natural frequency
frot Frequency of rotation
fs Sampling frequency
g Global mesh size
Hor Sum of the first five BPFO harmonics in the envelope

spectrum
H() Hilbert transform operator
h Radial clearance
hd Defect depth, smooth surface
hr Defect depth deviation due to rough surface
I Identity matrix
i Vector index
J Moment of inertia
Jr Radial load integral
j Imaginary unit
k Stiffness
kb Bearing stiffness term
kc Contact stiffness
kc,b Contact stiffness of a ball in contact with a single race
kc,r Contact stiffness of a cylinder in contact with a single

race
kcl Linearised contact stiffness
km,B Average meshing stiffness of tooth profile Baseline
km,M Average meshing stiffness of tooth profile Mod1

xxiii



nomenclature

L10h Bearing rating life, expressed in hours
l Local mesh size
leff Roller effective length
MAC MAC value
m Mass
mb Ball mass
N Signal length
n Load-deflection exponent
nb Number of rolling elements on one row
nr Number of rows
nrep Number of test repetitions
nsubs Number of subdivisions along shaft axis for meshes

with hexahedral elements
ntests Number of tested operative conditions
P Dynamic bearing load
p Acoustic pressure
pref Reference acoustic pressure for dB computation
Q Load on rolling element
Qmax Maximum load on rolling element
R Surface roughness scale factor
R2 Coefficient of determination
RMS RMS value
r Radius
rb Ball radius
rc Cylinder radius
req,b Equivalent radius of contact in case of ball-race contact
req,c Equivalent radius of contact in case of roller-race con-

tact
rg Ring groove radius
ri Inner ring race radius
ro Outer ring race radius

xxiv



nomenclature

rp Pitch radius
s Bearing life exponent
TT Time-to-threshold value
t Time
tc Current time
tfs Time in which the final stage of bearing life starts
tEOL Time at bearing end of life
tth Instant in time in which the equivalent damaged vol-

ume threshold is crossed
V Signal feature
V Average value of a signal feature
Veq Equivalent damaged volume
Vth Threshold value for the equivalent damaged volume
v Unknown parameter
vs Speed of sound
X RMS value computed by the EDV algorithm
x Displacement in x direction
xb Gear backlash
xd Dynamic transmission error
xr Radial displacement
y Displacement in y direction
W Input power
w External load
wa Semi-width of the FE contact area for roller-race con-

tact; length of the major semi-axis in the FE model for
ball-race contact

wb Length of the minor semi-axis in the FE model for
ball-race contact

Z Signal
Za Analytic signal

xxv



nomenclature

Latin symbols - vectors and matrices
ATM Acoustic transfer matrix
atv Acoustic transfer vector
C Damping matrix
fc Contact force vector
fd Contact damping force vector
hd Vector of defect depths
K Stiffness matrix
Kb Linearised bearing stiffness matrix
Kl Linearised stiffness matrix
km Meshing stiffness vector
M Mass matrix
p Acoustic pressure vector
vn Normal velocity vector
x Displacement vector
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1
I N T R O D U C T I O N

1.1 introduction to rolling element bearings

Rolling-element bearings (REBs) are one of the most frequently employed
components in rotating machinery [6]. They are load carrying components
which permit to eliminate the sliding friction between two machine elements
by introducing rolling elements in between them. As a consequence, they
allow for smooth operation while reducing the production of heat, energy
consumption and wear [7]. Their ease of mounting and dismounting allows
for an efficient exchange of the components. Besides, they are available in
a number of shapes and dimensions, and their cost is usually limited. The
combination of all these factors explain their wide employment in the field of
mechanics.

REBs are commonly composed by four parts, i.e. inner ring, outer ring, rolling
elements and cage. An example of bearing assembly is shown in Figure 1.
The two rings, which are mounted on the components to be uncoupled, are
separated by a number of rolling elements. The rings are designed so that the
rolling elements are able to move on paths called raceways or races. A bearing
may have one or more raceways on each ring to increase the total number of
rolling elements. These three components are made of steel, which is usually
hardened on the surfaces in contact. In addition, a cage must be inserted to
ensure proper operation. In fact, this component permits to maintain a fixed
distance between the rolling elements and keep them evenly spaced. Compared
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Outer ring

Assembled
bearing

Inner ring

Cage

Rolling elements

Figure 1: Exploded view of a double-row self-aligning ball bearing.

to the other parts, the cage is made of softer materials, e.g. aluminium or
polymers such as polyamide and polytetrafluoroethylene. Nonetheless, steel
cages are available for certain applications, for instance in high-temperature
environments. In the majority of cases, the inner ring rotates, while the outer
ring remains stationary. In this context, the structure that supports the outer
ring is usually referred to as housing. However, there are scenarios in which
the opposite situation takes place, or where both rings are able to rotate, e.g.
in inter-shafts bearings [8]. Finally, REBs are lubricated by either oil or grease
to further decrease the friction and dissipate heat.

Rolling bearings may be roughly subdivided in two major categories. i.e.
ball and roller bearings, depending on the type of rolling element that is
employed. Balls provides low rolling friction, thus allowing to accommodate
high shaft speeds. However, because of this characteristic they should not be
employed for applications involving heavy loads. On the other hand, rollers
are characterized by an higher friction, making them more suitable to carry
heavy loads, but they are indicated for slower speeds. Moreover, bearings may
be further classified on the basis of the supported load in radial and thrust
bearings. Radial bearings are able to carry loads which act perpendicularly to
the shaft. On the contrary, thrust bearings may accommodate axial loads only.
Some radial bearings are also capable of supporting a combination of axial
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loads in one or two axial directions. Similarly, some thrust bearings may carry
radial loads. Metric bearing dimensions are standardized according to ISO
(International Organization for Standardization) standards. They are denoted
by their boundary dimensions, i.e. bore diameter, outside diameter, width or
height and chamfer dimensions. The standardization of these widely employed
components is essential to guarantee their interchangeability.

Among ball bearings, the most popular are single-row deep-groove ball bear-
ings. They are characterized by raceway grooves which have a curvature radius
in the order of 51.5 to 53 % of the ball diameter. They are designed to carry
radial loads, but they may work also under of combinations of radial and axial
loads. Moreover, they are able to maintain good performance even at high
speeds. Double-row ball bearings are similar but have two raceways instead of
one. They have a greater load capacity compared to their single-row counter-
part. Other common types of REBs are the angular-contact ball bearings, which
are specifically designed to accommodate combinations of trust and radial
loads. They are also indicated to support heavy thrust loads, and their groove
radius is in the order of 52 to 53 % of the ball diameter. They are also available
in a single or double-row fashion. The two-rows design allows to carry thrust
loads in either directions, even combined with a radial load. Furthermore,
self-aligning ball bearings are special types of double-row ball bearings in
which the outer raceway is a portion of a sphere. As a consequence, they are
internally self-aligning but, due to the low conformity of the outer raceway,
they have a reduced low-carrying capacity. Despite this, they are commonly
employed in applications that may involve a certain degree of misalignment.
Finally, thrust ball bearings are employed to carry axial load and are suitable
for high speed operations.

Concerning roller bearings, they provide a larger load carrying capacity com-
pared to ball bearings of the same size. In this regard, they are also charac-
terized by an increased fatigue life and an higher stiffness. Cylindrical roller
bearings are the most common type of bearing in this category. They are are
able to support high radial loads and may operate at high speeds. As the name
suggests, the rollers are characterized by a cylindrical shape. They might be
partially or fully crowned to reduce the stress at the edges and offer a slight
protection against misalignment. Even for these type of bearings, double-row
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variants are available. Needle roller bearings, instead, have a similar design
but rollers are designed to have a remarkably higher length compared to their
diameter. They are ideal for applications in which the available space is low. In
fact, they are sometimes inserted directly on hardened shafts without inserting
the two rings. Differently, tapered roller bearings are able to accommodate
combinations of radial and axial loads. They are not suitable to run at high
speeds due to friction at the guide flanges of the rings, but they guarantee an
high load capacity. Furthermore, these components are separable: therefore,
they must be always mounted in pairs. It is also worth mentioning the peculiar
design of spherical roller bearings, in which the outer raceway is a portion of
a sphere. Therefore, these REBs are internally self-aligning. They are able to
perform well under very high loads but are not suited for high-speed opera-
tions. Finally, roller thrust bearings may be found in a number of variants, i.e.
with cylindrical, spherical or tapered rollers. These types of bearing, however,
are not indicated for high shaft speeds. They may be replaced by needle roller
bearings if the available space is limited, but at the expense of a lighter load
capacity.

REBs cover a major role in the dynamic behaviour of the systems in which
they are mounted [9]. As a consequence, it is crucial to be able to properly
characterize their fundamental properties. Indeed, in the context of bearing
modelling, one of the most important properties is the bearing stiffness. In
the most general case, a bearing is denoted by 6 degrees of freedom (DOFs).
Thus, REB stiffness is completely defined by a 6x6 matrix [10]. However, in
the majority of cases it is usually sufficient to be able to characterize either
the radial or axial stiffness of these components, as these are the quantities
needed for employment in further models. Bearing stiffness values, in fact,
may be utilized for several purposes. For instance, they might be provided
as input values to model bearings in finite-element models of a mechanical
system. Similarly, these values may be inserted in a lumped parameter model
of complex machinery [11]. In this context, components might be connected
to the ground or among them through springs which idealize the bearings
behaviour. Despite the importance of REBs stiffness, its value is not provided
by any bearing constructor. As a result, stiffness must be "manually" evaluated
by the analyst when this parameter is needed. However, the estimation of the
bearing stiffness is a non-trivial process which involves the modelling of a
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Figure 2: Typical stiffness characteristics of a rolling bearing for a given position of
rolling elements: (a) load - displacement relationship; (b) stiffness - load
relationship.

number of contacts among complex geometries. Furthermore, this quantity
is non-linear, i.e. the displacement does not vary linearly with the load, as it
may be appreciated in Figure 2.a. In particular, Figure 2.b shows that stiffness
presents a steep trend for lower loads and assumes a more linear trend for
higher loads. As a result, stiffness needs to be evaluated at different loads
in order to determine the non-linear load-displacement relationship within
the load range of interest. In addition, stiffness is also time-dependent, as the
load-deflection relationship depends on the position of the rolling elements
with respect to the load direction. In fact, if the load is stationary, the stiffness
varies over time during the bearing service life since the position of the rolling
elements with respect to the direction of the load constantly changes. This
variation is periodic if the rotation speed is constant, and it is equal to the
the spacing between two consecutive rolling elements. This phenomenon is
usually referred to as Varying Compliance (VC) effect in the literature [12].
It is particularly relevant in the dynamic behaviour of machinery, since the
periodic stiffness variation induces vibrations on the system even when the
bearing does not present any type of fault.

REBs stiffness characteristics is also influenced by the amount of radial clear-
ance, as it modifies the angular extent of the load zone [6]. This translates
to a variation of the number of loaded rolling elements and the maximum
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load on the most loaded one. In particular, a positive clearance reduces the
stiffness due to an increase in the load zone extent, while a negative clearance
leads to an increase in stiffness caused by a diminished angular span of the
load zone. Furthermore, stiffness also depends on the magnitude of the rota-
tion speed, but only for high velocities, for which inertial effects may not be
neglected [13]. This dependency, in fact, is negligible for low and moderate
speed values [10, 14]. Finally, REBs stiffness is influenced by temperature [15]
and further depends on axial and radial preloads [16]. Concerning this latter
aspect, axial preload is commonly applied in angular-contact ball bearings in
order to reduce their non-linear characteristic [6]. Radial preload, on the other
hand, is employed to obtain a greater number of loaded rolling elements and
consequently reduce the maximum load applied on the most loaded one. In
conclusion, the value of this peculiar parameter is influenced by several factors.
Therefore, authors have developed numerous methods to evaluate REBs stiff-
ness, including experimental techniques, analytical and finite-element models
[17]. However, its estimation is indeed challenging and it is characterized by a
high degree of uncertainty.

Moreover, despite all the advantages introduced by the employment of REBs,
these components are subjected to one important limitation. In fact, two of the
most prominent bearing analysts, i.e. T.A. Harris and M.N. Kotzalas, state, in
their famous effort "Rolling Bearing Analysis - Essential Concepts of Bearing
Analysis" [6], that:

"[...] even if rolling bearings are properly lubricated, properly mounted, properly
protected from dirt and moisture, and otherwise properly operated, they will eventually
fail because of fatigue of the surfaces in rolling contact."

In other words, they declare that bearing failure is an unavoidable phenomenon
that must be always taken into account, as this event takes place independently
from the application: a bearing will inevitably fail after a certain number of
working cycles due to rolling contact fatigue. The local stress in the contact
zones, in fact, is remarkably higher compared to other structural components
[18]. By neglecting lubrication effects, it possible to assume that its magnitude
and distribution are governed by the Hertz contact theory [19]. Therefore, since
the bearing components are cyclically loaded, a subsurface crack eventually
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generates inside one of them and progressively propagates to the surface
producing a pit or a spall. Then, bearing defects are classified on the basis
of their location as outer, inner, rolling element and cage faults [20]. Further-
more, they may subdivided in localised, extended and distributed defects [21].
Localised defects include spalls, cracks, pits, debris and lubricant impurities.
Extended defects are generated from localised defects to due to wear of the
fault edges caused by the cyclic passage of the rolling elements in the defect
area. Finally, distributed defects comprise surface roughness and waviness,
misaligned raceways and off-sized rolling elements [22].

A damaged bearing induces vibrations on the system that may possibly lead to
the failure of the entire machinery. As a matter of fact, the wide employment
of REBs translates to the fact that they are one the most frequent reasons for
machine breakdown [23]. Consequently, throughout the years these compo-
nents have been extensively studied by a number of researchers, in order to
thoroughly understand their properties and their dynamic behaviour. Within
this framework, particular effort has been devoted to the development of dy-
namic models aimed at describing the dynamics of both healthy and faulty
REBs. These models allow to determine the vibratory signature produced by
an healthy or defective bearing. In this latter case, the model should be able
to assess the vibration signal for a variety of defect shapes and operative con-
ditions, i.e. shaft speeds and loads. Typical experimental acceleration signals
of healthy and damaged bearings are depicted in Figure 3.a and Figure 3.b,
respectively. The defect, in this case, is a stationary outer ring fault. These
plots highlight the different vibratory response of the system when a localised
defect appears in the bearing. In particular, Figure 3.b. shows that the presence
of the fault introduces distinct pulses which are caused by the impact of the
rolling elements with the defect edges. To model these phenomena, LP models
are employed by the vast majority of researchers [20]. Indeed, these type of
dynamic models proved to be extremely effective in taking into account the
complexity of the contact phenomenon and the time-varying characteristics of
bearings. In this regard, several models have been proposed in the last decades.
However, this modelling approach still provides challenges to be overcome for
the interested scholars. For instance, it is often difficult to reliably estimate all
parameters needed as input in these kind of models. This is due to the fact that
there are quantities which are intrinsically difficult to measure, e.g. damping
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Figure 3: Examples of acceleration signal produced by a REB: (a) healthy bearing; (b)
bearing with a localised defect on the outer race.

values, or associated with physical quantities that are not directly measurable,
e.g. stiffness of artificial high-frequency resonators introduced for modelling
purposes [24].

Dynamic models are extremely important for the development of diagnostic
schemes and prognostic procedures [25]. Diagnostic techniques involve the
detection and identification of a defect during the operative life of the compo-
nent, while prognostic models aim at estimating the Remaining Useful Life
(RUL) of the system [26]. These two aspects are integrated within the so-called
Prognostics and Health Management (PHM) of mechanical systems, which is
a topic that has gained increasing attention from the industrial world in recent
years [27]. In particular, it has led to the rise in popularity of Condition Based
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Maintenance (CBM) approaches for the maintenance of industrial plants and
mechanical components. CBM is a maintenance strategy which consists in the
real-time monitoring of the health condition of the system in order to plan
the maintenance based on its actual health state [28]. This approach differs
sensibly from traditional maintenance methods, i.e. preventive and reactive
maintenance. The former consists in relying on historical data and life estima-
tion computations to replace the components at scheduled intervals. In this
case, however, the risk is to substitute the monitored components way before
they show signs of damage, leading to a waste of resources and excessive
machine downtime. The latter approach suggests to intervene only when the
failure occurs. This approach is particularly dangerous since it may lead to the
catastrophic failure of the whole system if machinery is not promptly stopped.
On the contrary, a CBM approach greatly increases the efficiency of the main-
tenance strategy compared to traditional methods. As a matter of fact, CBM
allows to sensibly reduce machine downtime and consequently decrease the
costs associated with maintenance procedures [27]. Although CBM introduces
further costs due to the implementation of the required technology, in the
long-term the benefits remarkably overcome the starting additional expense.
Additionally, CBM permits to increase the overall security of the mechanical
system due to the reduction of unexpected failures and diminish the mean
maintenance time due to the possibility to localize the fault from the recorded
data [29].

CBM may applied to REBs, provided that suitable prognostic models are
available. In this regard, the life of a REB may be subdivided in different
Health States (HSs) on the basis of the time-varying trend of a selected health
indicator. A common and simple indicator to detect the change in HS is the
RMS value of the signal, as the progression of fault severity leads to an increase
of this parameter. By observing the RMS evolution over time, bearing operative
life may be divided in two or more different HSs depending on the degradation
history of the bearing [28]. In order to illustrate these different behaviours,
two degradation histories extracted from the well-known IMS dataset [30] are
depicted in Figure 4. Specifically, Figure 4.a shows an example of degradation
trend with two HS, i.e. healthy stage and unhealthy stage. In the first part,
only random fluctuations occur in the RMS since no fault is present in the
system. In the second HS, the RMS starts to increase as soon as the bearing
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begins to deteriorate. Therefore, RUL should be calculated when the bearing
enters in the second stage, as there are no sufficient information to compute
its value in the first HS. The initial time from which RUL may be computed
is referred to as first predicting time (FPT), which also marks the moment
when bearing enters in the unhealthy stage. Differently, Figure 4.b shows a
RMS history subdivided in three stages, i.e. an healthy stage, a degradation
stage and a critical stage. While the first stage is the same as in the previous
case, the two subsequent ones are not. In the degradation stage, the RMS trend
is characterized by an "increase-decrease-increase" trend. This phenomenon
was studied by T. Williams et al. [31], which defined it as a "healing" process
of the REB. In this stage, the defect is initially generated as small spalls and
cracks which are subsequently smoothed by the repeated passage of the rolling
elements. Eventually, as the damage expands to a broader area, the bearing
shifts to the third and last stage, i.e. the critical stage, which is characterized
by a rapid increase of the RMS.

In light of the presented discussion, this thesis aims at covering several aspects
within the context of bearing modelling. The effort is carried out in order to
improve the available methods and to propose novel approaches to tackle REB
modelling both in case of static and dynamic simulations. In particular, this
work deals with three different topics and their associated challenges:

• It investigates bearing stiffness estimation techniques through the aid of
finite-element software. Therefore, effort is placed on providing numerical
instruments to determine this crucial quantity which greatly affects the
dynamic behaviour of mechanical systems. To this end, a technique for the
generation of computationally efficient load-dependent meshes is developed.

• It inquires the dynamic modelling of bearings with faults. In particular,
it proposes a robust procedure devoted to the assessment of unknown
parameters in REBs lumped parameter models in presence of localised
defects. Major effort is placed on the discussion of dynamic modelling of
REBs by means of dedicated LP models.

• Lastly, it examines potential numerical methods for bearing prognostics.
In this regard, a parameter related to the evolution of the defect during
bearing life is introduced, namely the Equivalent Damaged Volume (EDV).
An algorithm capable of estimating its value from real bearing degradation
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Figure 4: RMS trends representing different degradation processes of a REB: (a) two-
stages life; (b) three-stages life.

histories is detailed. Notably, the developed method involves the integration
and expansion of the LP model for localised defects in order to also con-
sider extended defects. Finally, two prognostic models based on the EDV
algorithm are proposed.

To support the findings of the research, this thesis also provides experimental
results for a number of tests which were carried out on a dedicated bearing
test rig. Specifically, two types of tests have been performed: stationary tests
on faulty bearings with artificial defects and run-to-failure tests on initially
healthy bearings. The former are employed to validate the procedure for the
estimation of the parameters of the LP model with localised defects, while the
latter are exploited to evaluate the efficiency of the EDV algorithm and the
associated prognostic models.
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Before proceeding with the discussion related to the three aforementioned
subjects, this introductory chapter provides a thorough review of the state-of-
the-art for these topics. Then, research objectives are outlined along with the
structure of the thesis.

1.2 state-of-the-art in bearing modelling

REBs are one of the most frequently employed components in rotating machin-
ery. As such, they have been extensively studied by a number of researchers
throughout the years, and a vast literature regarding their characteristics is
currently available. The necessity to deeply understand these components
arises from the fact that the noise, vibration and harshness (NVH) behaviour
of mechanical systems is greatly affected by REBs dynamics. In fact, it is well
known that these components cover a major role in transmitting vibrations
through the system in which they are inserted [9]. As a consequence, it is
crucial to accurately estimate parameters related to REBs, especially if they
are needed to be employed in dynamic models of complex machinery [32].
Within this framework, one the most important quantities to be determined is
the bearing stiffness, whose estimation has been tackled by means of several
techniques. Moreover, scholars devoted a considerable effort in the dynamic
modelling of REBs, especially to describe the characteristics of faulty bearings.
This allowed to develop accurate REB models that were employed for both
diagnostics and prognostics purposes. Concerning this last matter, the field of
REBs prognosis gained remarkable traction in the last decades thanks to the
potential application of these models in industrial contexts.

Therefore, an extensive literature review on bearing modelling is proposed in
this section. In particular, the survey is divided in three parts, which corre-
spond to the topics covered in the thesis. First, the subject of bearing stiffness
estimation is covered, mainly focusing on FE methods. Then, attention is
placed on bearing dynamic modelling for either healthy and faulty REBs. In
this regard, particular effort is dedicated to the description of LP models. To
conclude, the final part is devoted to REBs prognostics. This closing section
reports examples of PBMs, DDMs and hybrid models.
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1.2.1 Stiffness estimation methods

Radial stiffness is one of the main parameters that needs to be evaluated in
a REB. In fact, it is an important quantity that greatly affects the outcome of
dynamic models. For instance, bearing stiffness values are needed for geartrain
models, in which connection between gears and frame is realized through REBs
[11]. Despite the amount of literature on the topic, the inherent complexity of
these components still provides challenges to overcome for researchers and
designers when determining stiffness values. As a result, over the years the
estimation of the non-linear stiffness-load relationship has been faced by a vast
number of experimental, analytical and numerical approaches.

Experimental techniques are commonly divided into direct and indirect meth-
ods, depending on the employed procedure. The former requires the direct
measurement of the displacement [33], while the latter necessitates other tech-
niques, e.g. modal analysis [34]. Concerning the first approach, R. Madoliat
and M. F. Ghanati [35] used a general purpose tensile testing machine to apply
the load on the bearing. An ad-hoc housing was constructed to accommodate
the bearing inside the loading device and a shaft was fitted in the bearing
bore. Tests were first performed without the bearing to determine the fixture
stiffness. Then, when the REB was mounted, bearing stiffness was determined
by subtraction. Example of application of the second approach may be found
in the work of N.J. Ali and J.M. García [36]. The authors developed a test rig
in which the load was applied radially and axially through two pneumatic
pumps. The system was then excited by an impact hammer, and the frequency
response of the structure was employed to extract the stiffness. Moreover,
W. Jacobs et al. [37, 38] presented a test rig aimed at determining bearing
characteristics through modal analysis. The test bench design was optimized
to measure bearing stiffness under highly varying loads both in static and
operative conditions.

Concerning the analytical approaches, formulae are either based on a rigorous
mathematical procedure, typically based on the Hertz contact theory [6, 39,
40], or derived from experimental measurements [41, 42]. In this context, it is
noteworthy the double-effort of T.C. Lim and R. Singh [43, 44]. In the first part,
they provided multiple methods to analytically determine bearing stiffness
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and complemented the work with parametric studies to assess the influence
of several parameters on the results. Besides, in the second part, the previous
formulation was integrated with a discrete system model which included LP
and FE techniques. They further expanded the theory in subsequent works to
study the dynamic behaviour of a geared rotor system [45] and to estimate
the coupling loss factor between shaft and casing by means of statistical en-
ergy analysis [46]. Afterwards, A. Gunduz and S. Rajendra [47] introduced
an approach based on the Hertzian theory aimed at the estimation of the
stiffness matrix for double row angular contact ball bearings. In particular, they
provided results for the back-to-back, face-to-face, and tandem arrangements.
An enhanced version which is also employable for duplex bearings was subse-
quently presented by T. Xu et al. [48]. Moreover, D. Petersen et al. [49] further
included a localised defect in their modelling. Their approach was exploited
for defect size estimation in operative conditions by analysing the excitation
produced by the change in stiffness caused by the fault. Based on their work,
H. Cheng et al. [50] extensively studied the time-varying stiffness introduced
by the presence of a defect. Additionally, they further investigated the VC
phenomenon to examine its coupling with the local fault. B. Fang et al. [51]
inspected the stiffness characteristic under speed-varying conditions. For this
purpose, they employed an analytical model derived from the formulation of
T.J. Royston and I. Basdogan [52]. Later, the same authors [53] investigated the
influence of the off-diagonal terms in the stiffness matrix. In order to perform
such a task, they proposed a model for ball bearings which took into account
the influence of rotating speed and loads. Then, they analysed the influence of
stiffness terms on the coupled rotor system dynamics. Furthermore, Q. Niu et
al. [54] proposed a 5 DOFs analytical model for stiffness matrix computation
and employed it to assess the effect of different operative conditions and the
variations of bearing parameters.

Finally, among the numerical techniques, the most common approach involves
the employment of in-house or commercial FE software to model the bearing
under exam. Within the context of REB modelling, FE simulations are usually
exploited to determine rings displacement and contact stresses. A common
issue in this kind of modelling, however, lies in the complexity of the contact
phenomenon. In fact, the need for a sufficiently fine mesh in the proximity of
the contact area has a significant impact on simulation time and the excessive
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number of required mesh elements might lead to an excessive computational
burden [55]. Therefore, researchers strived to simplify the problem by using
a variety of approaches. The most straightforward solution to this concern
consists in reducing the original 3D model to a planar 2D problem. To this
end, H. Zhao [56] described a contact algorithm to model roller bearing con-
tacts in 2D simulations and evaluated the influence of various parameters on
load distribution. N. Demirhan and B. Kanber [57] investigated stress and
displacement distribution on a roller bearing by introducing a 2D mesh with
plane strain option to simplify the model. Model validation was carried out
by comparison against theoretical and experimental data. X. Hao et al. [15]
proposed a 2D FE model that considered temperature effects and clearance
change to examine their influence on displacement, stress and bearing stiffness.
The relative displacement between inner and outer ring obtained on a test rig
was employed for validation. Good agreement was found between FE and
experimental results, while analytical formulae departed from them. Although
2D approaches allow to obtain good stiffness estimate, this kind of meshing
is not applicable to every bearing type. For instance, the computational do-
main of deep-groove ball bearings, self-aligning ball bearings and tapered
roller bearings may not be reduced to a bi-dimensional plane. Therefore, 3D
approaches are more suitable to tackle the problem of REBs modelling as a
whole without losing generality in the procedure.

Concerning 3D simulations, several methodologies were established. In partic-
ular, a number of scholars focused their effort in proposing methods to reduce
the number of contacts in REBs models. Within this framework, L. Kania [58]
employed truss elements to replace rollers in slewing bearings. This technique
allowed to greatly reduce simulation time at the expense of additional effort
in the pre-processing phase. A similar approach was proposed by A. Daidié
et al. [59]. They analysed load distribution by employing non-linear traction
springs instead of truss elements. The efficiency of this method encouraged
other researchers [60, 61, 62, 63] to exploit it for slewing bearings modelling.
Techniques devoted to removing contacts in lower size bearings were also
studied by L. Molnar et al. [64]. In particular, they proposed two methods to
avoid modelling contacts between rollers and rings in needle bearings. The
first one was similar to the one developed by A. Daidié et al. [59], as rollers
were replaced by springs. The second one consisted in substituting the entire
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volume between rings with a fictitious equivalent material replicating the
same behaviour of the row of rollers. Obtained radial displacements were com-
pared with the full model involving contacts, demonstrating their capability to
considerably reduce the computational time.

Despite these techniques being successful in speeding-up the solution pro-
cess, other researchers followed different strategies to model the phenomena
occurring within the contact area. Y. Guo and R.G. Parker [10] developed a
procedure involving a combined surface integral and finite element method to
solve the contact problem in rolling and ball bearings. They computed radial,
axial and tilting stiffness to obtain a fully populated 6x6 matrix including
cross-coupling terms. Results were compared against data available from the
literature. F. Massi et al. [65] set-up 2D and 3D simulations of ball bearings to
compute the contact stress due to specific boundary conditions and relate them
with bearing degradation. They reduced the size of the problem by modelling
a portion of the bearing, with only one roller in contact with the two races.
The authors noticed that the relative error between 3D and 2D simulations
was relevant due to conforming contact between ball and races. R. Lostado et
al. [17] studied the contact stress in tapered roller bearings. They developed
a procedure to adjust the original mesh by generating subsequent non-linear
sub-models with increasingly smaller mesh densities. Relative displacement
between raceways was also analysed and compared to experimental data,
showing good agreement. The procedure was utilized by R. Martinez et al. [66]
in combination with machine learning techniques to determine the optimal
working conditions of the device. S. Murer et al. [67] presented a FE model of
their experimental set-up to assess the relevancy of using capacitive probes for
in-situ measurements of bearing deflection. S. Li [68] developed a software to
compute the contact stress in ball and roller bearings by exploiting a novel con-
tact algorithm. Stress distribution on contact areas were found to be different
from results reported in previous studies [10] and analytical formulae.

As it may be observed from the proposed literature review, there is a tendency
to reduce the size of the computational domain of the problem whenever
REB modelling is involved. Typical strategies include taking advantage of
symmetry planes [17, 56, 58, 59, 60, 63, 64, 66], removing unloaded rollers
[56] and replacing contacts with equivalent elements [58, 59, 60, 61, 62, 63].
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Unloaded rollers are kept by most researchers but removed by others, e.g. H.
Zhao [56] and S. Murer et al. [67]. Cage is commonly neglected, but e.g. Murer
et al. [67] accounted for its effect by employing rigid connectors between rollers.
Load is applied on the center of the shaft [15, 56, 57, 64], on rings [59, 63, 65]
or on a central node rigidly connected to the nodes on the surface of the inner
ring [60, 61, 62]. Problems are solved by employing 2D and 3D approaches,
usually exploiting quadrilateral or hexahedral elements, respectively. Meshing
with tetrahedral elements is rare, and differences between linear and parabolic
elements are not addressed. Convergence check are regularly performed, but
some researchers as N. Demirhan and B. Kanber [57] only tested it for one load
value, albeit convergence rate depends on applied load, especially at low force
values. Concerning the post-process, radial bearing stiffness may be computed
considering the approach of bearing rings [15, 17, 57] or the displacement of
the shaft axis [64].

In conclusion, the reviewed methods proved to be successful in different
aspects of bearing analysis and in particular to estimate REB stiffness. How-
ever, the proposed survey highlighted the large number of different available
methodologies and the consequent lack of uniformity in the employed ap-
proaches.

1.2.2 Dynamic modelling of faulty bearings

As underlined in the introductory section of this chapter, REBs are prone
to the development of defects after a certain number of working cycles. In
fact, faults eventually generate in one of the bearing components because of
rolling fatigue generated by cyclic passage of the rolling elements in the loaded
zone of the bearing. This phenomenon leads to the onset of subsurface cracks
that gradually propagates to the surface, therefore producing spalls or pits. A
local fault greatly affects the vibration of the system and might remarkably
alter its behaviour or possibly lead to its failure. Hence, throughout the years
a number of researchers have tackled the problem of developing dynamic
models capable of determining the vibratory response of systems comprising
bearings subjected to this peculiar condition.
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P. McFadden and J. Smith [69] were amongst the first to work on the topic by
proposing an analytical model of the phenomenon. They studied the effect
of point defects and modelled the response of the system by convolving the
exponential decay response function with a series of impulses at the passing
frequency of the rolling elements. As a result, this kind of modelling approach
is commonly referred to as impulse train model. They later extended the
formulation to multiple point defects [70]. Subsequently, N. Tandon and A.
Choudhury [71] considered pulses of finite width whose shape were assumed
to be rectangular, triangular of half-sinusoidal. Y.F. Wang and P.J. Kootsookos
[72] also exploited an impulse train model to model bearing presence in
machinery and estimate the bearing induced vibrations on an industrial com-
ponent. D. Brie [73] improved the method by introducing a slight period
variation between the impulses which allowed to better represent experimen-
tal observations. Therefore, this modified model was named quasi-periodic
impulse train model, as it included minor random slip between impulses. R.B.
Randall et al. [74] took advantage of this approach and analysed the results by
means of cyclostationary techniques. The periodic and quasi-periodic impulse
train models allowed to correctly predict the spectral components associated
with the localised fault. However, a major drawback of both models is that
they not take into account the VC effect of the bearing assembly.

Based on these investigations, the majority of subsequent works dealt with
the development of LP models capable of describing the response of systems
comprising faulty bearings. In these models, the influence of the defect was
inserted by either adding a constant displacement to the balls rolling over the
fault or by defining the contact forces generated by the balls when striking
the edges or the bottom of the defective area. Within this context, S. Sassi et
al. [75] employed a 3 DOFs model to assess vibration due to point defects by
considering the shock behaviour of the fault. They also introduced a noisy
response resulting from sliding friction and other possible disturbances. A.
Rafsanjani et al. [76] analysed the effect of local defects on the stability of
a rotor-bearing system. They modelled the faults as a series of impulses
separated by their characteristic frequency. Their amplitude was related to the
angular velocity and the loading condition at the point of contact. The model
was employed by the authors to present the conditions for stable and unstable
response to subdivide the main routes to chaotic motion. Differently, M. Behzad
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et al. [77] dealt with the problem by considering the stochastic excitation
generated by the surface roughness in the healthy and defective contact areas
between rolling element and races. H. Cao et al. [78] focused on the behaviour
of high-speed ball bearings by exploiting Gupta’s model [79], thus associating
6 DOFs to each moving element. In addition, they also discussed the influence
of single, multiple and compound defects on a cylindrical roller bearing in a
subsequent paper [80]. Besides, G. Kogan et al. [81] proposed a 3D dynamic
model to simulate faulty duplex bearing whilst underlining the differences in
the response of corresponding single bearings. S. Khanam et al. [82] discussed
a technique to generate the forcing function induced by the motion of rolling
elements inside an inner race defect. The entry and exit events were formulated
differently in order to take into account the impulsive nature of the latter. Based
on the work of C. Sunnersjö [12], R. Yang. et al. [83] exploited the harmonic
balance method to determine the vibration of a rotor-ball bearing system
and discussed the presence of super-harmonics of the defect frequency in the
resulting spectrum. Y. Qin et al. [84] developed a model for a high-speed faulty
angular contact ball bearing where the defect influence was inserted through
a B-spline fitting displacement excitation. They indicated that the duration
of one impulse increased with larger fault extension and decreasing rotation
speed. Moreover, acceleration amplitude was found to be more sensible to
defect size compared to shaft rotation frequency. T. Gao and S. Cao [85]
studied the paroxysmal impulse waveform generated by faulty inter-shaft
bearing and demonstrated their dependence from certain speed ratios. R.
Yang et al. [86] studied the influence of the resonance characteristics and
rotor eccentric excitations during transients due to raceway faults. Despite the
noteworthy contribution of the mentioned papers, a common characteristic of
these modelling approaches is the arbitrary choice of damping values. In fact,
they are commonly set in order to match some experimental data related to a
few test conditions or on the basis of values employed in previous researches.

Within the context of LP modelling of REBs, many researchers focused their
efforts on the definition of an analytical expression to account for the path
travelled by the rolling elements inside a fault. Contrarily to other models, in
which the fault was modelled by means of an additional constant displacement,
some authors strived in defining an analytical expression capable of simulating
the trajectory of the ball inside the defect. In this regard, N. Sawalhi and R.
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Randall [24] improved the 2 DOFs model of S. Fukata et al. [87] and proposed
a LP model of a gearbox with a defective self-aligning ball bearing. They
described the modelling of inner, outer and rolling element defects. This
demonstrated the effectiveness of LP models for the further integration with
other components schematized in a similar fashion, e.g. geartrains [11]. Their
formulation included the effective path travelled by the balls in the defective
area. Other than the masses of inner and outer rings, they also added a
fictitious additional mass to model a high resonant mode of the system. Its
mass and stiffness were tuned on the basis of a resonance frequency observed
on an experimental signal. However, no further indications on the selection
of their values and on the influence on the system response were provided.
Later, D. Petersen et al. [88] enhanced N. Sawalhi and R.B. Randall’s model
and discussed the effect of the rapid stiffness changes induced by defects with
sharp edges on the system response. Their work was also further studied by
L. Cui et al. [89] which investigated the relationship between the defect size
and vibration response, therefore assessing the fault severity on the basis of
the time between impacts. Moreover, F. Larizza et al. [90] employed the model
developed by D. Petersen et al. to analyse the static and dynamic stiffness
of the system. They reported that stiffness values rapidly changed for load
values above a certain threshold dependent on defect shape and load value.
The authors also examined the influence of entry and exit defect slopes in large
outer ring defects by computing the contact forces through Love’s equation
[91]. M. Patil et al. [92] described the defect as half-sinusoidal and employed
their model to numerically assess the effects of different defect size. J. Liu
et al. [93], instead, exploited a piecewise function whose shape depended
on the ratio between ball diameter and the characteristic dimension of the
defect, i.e. its length and width. By employing a different approach, A. Moazen
Ahmadi et al. [94] avoided making any assumption on the ball trajectory
inside the defect. Instead, they considered the finite size of the rolling element,
i.e. each ball had its associated DOF and its own dimension. This allowed
to better describe the events taking place as the balls roll over the defect. A
different formulation was proposed by J. Liu et al. [95], which exploited the
quarter-space method to calculate the contact stiffness near the defect edges.
The authors also advanced the definition for spalls with a shoulder, which
were described as the combination of a sinusoidal and exponential function
[96]. Moreover, they added the effect of a deformable interface between the
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outer ring and the housing in a consequent work [97]. A further technique was
exploited by F. Kong et. al [98], who utilized the estimated Hertzian contact
area between rolling elements and races in the proximity of the contact area
to determine the actual deflection of the contacting bodies. This approach
denoted a change in the contact force before the entry in the defective area.
More recently, Y. Jiang et al. [22] thoroughly discussed the modelization of 3D
rectangular-like defects. Their inquiry led to establish the larger influence of
the circumferential extent of the defect compared to its axial width. Latterly, S.
Gao et al. [99] proposed a novel formulation for an asymmetric defect on an
angular contact ball bearing by taking into account different defect dimensions
and positions with respect to the path followed on a healthy bearing. They
suggested that it is possible to mitigate the vibration response by reducing
the circumferential extension of the defect or by diminishing the radial-axial
load ratio. The cited researchers provided remarkable contributions on the
analytical definition of the ball trajectory inside the defective area. However,
even in these works the choice of damping values was based upon arbitrary
selection.

In other works, the introduction of elastohydrodynamic lubrication (EHL)
allowed for a different definition of the forces arising due to the presence
of an intermediary fluid film between the balls and the raceways. Within
this framework, Y.H. Wijnant et al. [100] were among the first to introduce
this aspect in bearing modelling by means of a non-linear spring-damper
model. Afterwards, J. Sopanen and A. Mikkola [101, 102] introduced a 6 DOFs
model which included the elastohydrodynamic fluid film and a number of
non-idealities, i.e. rings waviness, shaft misalignment and localised defects. D.
S. Shah an V. Patel [103] discussed the influence of lubrication on their localised
defect model. P. Yan et al. [104] included the effect of EHL and reported the
impact of load and shaft speed on the lubricating film and consequently on
the system stiffness. The effect of the EHL condition on stiffness and damping
was also investigated by M. Luo et al. [105]. Furthermore, S. Mufazzal et al.
[106] introduced the lubrication theory on a 2 DOFs model with a circular
defect to analyse the amplitude of the first four harmonics of the defect
characteristic frequency due to different defect size. Differently, V. Parmar et
al. [107] included EHL along with race waviness to understand the influence
of the number of waves. In addition, V. Parmar et al. [108] also examined,
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in a ensuing paper, the response of spherical rolling-element bearings with
localised defects under misalignment. It was observed that the rolling element
could follow either an offset or an inclined trajectory while passing over the
defect. In addition, they reported the effect of load and misalignment angle.

LP techniques were not the only methods utilized for the modelling of faulty
REBs. For instance, a few authors exploited dynamic FE techniques to produce
models of defective bearings. The efficiency of the FE method in bearing
simulations, in fact, was previously underlined in Section 1.2.1. In particular,
Z. Kiral and H. Karagülle [109, 110] described a bearing-housing FE model
discretized by 3D tetrahedral elements. In this model, the loading condition
was assumed to be generated by shaft unbalance. Consequently, the radial load
distribution continuously changed around the outer ring circumference. The
FE model was employed to estimate vibrations induced by both healthy and
faulty bearings. Y. Shao et al. [111] proposed a similar model which included
inner ring, outer ring and rolling element localised faults. They determined
that, for the same defect dimension, the outer ring defect produced the highest
vibration while the rolling element fault induced the lowest. Afterwards, A.
Utpat [112] constructed a 3D FE model of a deep-groove ball bearing and
inserted a localized defect either in the inner or the outer ring. The author
reported the acceleration response on a node located on the outer surface of
the outer ring caused by different defect sizes. S. Singh et al. [113] successfully
implemented a FE technique to investigate the entry and exit events taking
place when a rolling element interacts with the defect edges. Finally, a mixed
formulation was employed by M. Tadina et al. [114], which modelled the inner
ring as a 2 DOFs lumped mass while the outer ring was discretized by planar
FEs. Therefore, differently from other LP models, the outer ring was made
deformable. They employed this peculiar modelling approach to determine
the effect of various faults under different shaft speeds.

Some researchers also investigated the problem of extended defects modelling.
However, this matter received less attention compared to localised defect, and
a fewer number of publications on the subject may be found in the literature.
Within this context, N. Sawalhi and R.B. Randall [115] extended their previous
work [24] in order to also take into account this type of fault. To perform
such a task, they proposed a procedure for the generation of a rough surface
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within the angular span separating the entry and exit edges of the defect. In
fact, in their modified model the rolling elements are allowed to touch the
bottom of the defect, which is modelled as an area characterized by a non-zero
roughness. Later, their work was further extended by D. Petersen et al. [88].
They employed the model to assess the different bearing stiffness values due
to the presence of localised and extended defects. Notably, they showed that
an extended defect induces a slow variation of the stiffness terms compared to
a narrow localised defect.

To conclude, this review exhibited various approaches commonly applied to
model the dynamic behaviour of REBs with localised and extended defects.
Although the majority of the detailed approaches produced remarkable re-
sults, a common issue found during this research was the lack of sufficient
explanation for the choice of several parameters involved in the construction of
the models. In particular, the selection of damping values and the inertial and
stiffness properties of the resonant masses were found to not be thoroughly
illustrated in most of the reviewed works.

1.2.3 Prognostic models

Prognostics tackles the problem of estimating the RUL of machinery, which
is defined as the time length which separates the current time and the end
of the useful life of a component [116]. The useful life is usually considered
to have reached its end when the monitored health indicator crosses a fixed
failure threshold [117]. This threshold may be either considered a constant line
or a probability distribution. Although the second approach is generally more
accurate, since it takes into account the system uncertainties, it also introduces
an higher degree of complexity. As a result, the first approach is employed in
most publications [28].

RUL prediction methods may subdivided in three major categories [27]:
physics-based models (PBMs), data-driven models (DDMs) and hybrid models.
PBMs describe the degradation process and the failure modes through mathe-
matical modelling of the system physics. The development of these models
demands a thorough understanding of the system properties, its degradation
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mechanisms and its possible failure modes [118]. On the other hand, DDMs
exploit statistical and machine learning techniques to assess the current and
future HS of the system. Differently from PBMs, they do not rely on the
knowledge of the system physics but only on the history of data acquired
on the system. This category may be subdivided in two further groups, i.e.
statistical model-based approaches and Artificial Intelligence (AI) approaches,
depending on the chosen prediction technique [28]. Finally, hybrid models
refers to approaches that combine both PBMs and DDMs in order to take
advantage of the benefits of both methodologies. In some cases, however, some
hybrid models are the combinations of different models that represent the same
phenomenon, so to increase the robustness of the health assessment. These
peculiar models are usually referred to as ensemble models [119]. This section
reviews a number of works which concern these three types of prognostics
models.

1.2.3.1 Physics-based models

Prognostic PBMs assess the future HS of the system by building a mathematical
model based on the physics of the system. The parameters of the physics model
are usually correlated to the stress on the component and the properties of
the material [27]. PBMs are able to perform RUL prediction by tracking the
degradation process of the system. Therefore, a complete understanding of
both the degradation mechanisms and the failure modes of the components
under exam must be acquired before constructing a PBM. In this regard, it is
worth clarifying that degradation mechanisms are processes which lead to the
failure of the mechanical system, while failure modes explain why and how a
function of the system may be no longer fulfilled [120]. Besides, degradation
models require as input information about the current severity of the system
deterioration. These data are acquired by means of sensors mounted on the
monitored machinery.

The Paris-Erdogan (PE) model is one of the most widely employed physics
models in the RUL prediction of machinery. It was first proposed by P. Paris
and F. Erdogan [121] in order to represent the development of crack growth.
Cracks, in fact, are a typical consequence of fatigue damage that ultimately
brings the system to its failure. According to T. Tinga [120], the process of
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crack growth may be subdivided in three regions. In the first one, the crack
grows slowly and its length is not considered to be significant. In the second
region, the crack dimensions become significant and its size steadily increases.
Lastly, in the third phase the crack becomes unstable and rapidly propagates
until failure. Within this context, the PE model describes the second region of
crack growth. Its validation is based on a number of experimental observations
that allowed the two researchers to relate the number of cycles and the crack
length through the combination of material parameters and the stress range
undergone by the component. Although the PE model does not take into
account the instability of the crack and its initial length, its implementation
has been proved successful in PBMs. In fact, throughout the years their model
was extended and refined, and a number of researchers applied it to the field
of machinery and REBs prognostics.

In this regard, Y. Li et al. [122] proposed a model similar to PE. In their
formulation, the number of cycles was related to the defect area instead of the
crack length. They developed an adaptive algorithm to fine tune the parameters
through on-line comparison with measured defect size. They subsequently
refined the model in a consequent effort [123] by introducing a stochastic term
in the form of a lognormal random variable. A similar approach was adopted
by M.R. Hoeprich [124] which introduced an equation similar to PE in order
to represent the growth of defect areas in REBs. Their model was extended
by M.N. Kotzalas and T.A Harris [125] to include thermal effects and later
validated by an experimental campaign carried out by S. Li et al. [126]. Y.
Lei et al. [127] and J. Wang et al. [128] modified the PE formulation into an
empirical model for RUL assessment. The former presented a method based
on particle filter that integrated measurements and physics model into a state-
space framework to accurately consider the nonlinearity and the uncertainty of
the degradation process. The latter described a procedure to integrate multiple
features and correlate them with the degradation history. Similarly, L. Liao et al.
[129] proposed a combination of features in order to define a global one which
was able to describe the deterioration process. For this purpose, they exploited
a genetic algorithm to extract a feature with the optimal monotonicity. J. Sun
et al. [130] enhanced the PE model to a state-space model and proposed the
optimal degradation state estimation through the employment of a Bayesian
framework. D. Xu et al. [131] developed two modified versions of the PE
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model for application in rolling bearings. M. Corbetta et al. [132] described
an approach to estimate the crack progression by combining a PBM with
a particle filter for parameters estimation. In a subsequent work [133], the
authors integrated the PE model into a probabilistic method which exploited
a sequential Monte Carlo sampling combined with the probability density
function of the model parameters. Similar approaches where also presented by
F. Cadini et al. [134] and E. Zio and G. Peloni [135]. More recently, Y. Lu et al.
[136] proposed a PBM for REBs, which employed the realized volatility of the
signal as an indicator for the system HS. L. Saidi et al. [137] integrated the PE
law along with a Kalman smoother to perform prognosis of high-speed REBs
mounted on wind turbines.

Despite the popularity of the PE model, several other models based on other
approaches have been proposed. J. Qiu et al. [138] developed a stiffness-based
prognostic model which related the natural frequencies and the vibration
amplitude to the failure lifetime of a REB. They described the damage accu-
mulation by either a linear damage rule, damage curve approach and a double
linear damage rule. Differently, F. Sadeghi et al. [18] proposed a model for
the evaluation of rolling contact fatigue in REBs. In a similar fashion, some
authors employed contact stress analysis to describe the wear phenomenon
on bearing components. For instance, C.D. Begg et al. [139] and D. Chelidze
and J.P. Cudumano [140] based their models on system dynamics, while S.
Marble and B.P. Morton [141] took advantage of contact stress analysis. P.K.
Gupta and E.V. Zaretsky [142] proposed stress-based life models for REBs and
were able to develop a formulation which related bearing life to the maximum
subsurface shear stress and the amount of stressed volume. A completely dif-
ferent technique was utilized by T. Slack and F. Sadeghi [143] who developed
a 2D explicit FE model to model the crack subsurface initiation and its propa-
gation to the surface. In order to perform such a task, the pressure distribution
was continuously moved across the domain so to replicate the complete time
history of the subsurface stress. Although applied for other components, FE
analysis was also employed in combination with a modified PE law by M.J.
Pais and N.H. Kim [144] to predict the fatigue crack growth in aerospace
panels. On the other hand, an original methodology was proposed by L. Cui
et al. [145]. In fact, they built a so-called performance degradation dictionary
by performing a large number of numerical run-to-failure simulations through
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the employment of a REB dynamic model based on the work of N. Sawalhi and
R.B. Randall [24]. In each simulation, different fault parameters were employed
to generate diverse degradation histories. RUL assessment was then performed
by taking advantage of the similarity theory [146] which allowed to consider
the uncertainty of the RUL estimation through comparison with experimental
data. T. Wang et al. [147] presented a probabilistic framework in which fault
presence was detected by means of spectral comparison between modelled
and experimental signals. Then, RUL was computed through a least-square
method and Bayesian inference was used to determine its distribution. Their
unsupervised approach allowed to avoid manual parameter setting and their
consequent fine-tuning. B. Yan [148] introduced a two-stage physics-based
Wiener process. It took into account the fatigue crack mechanism and its
growth, the component structure, assembly accuracy and the conditions of the
working environment. Interestingly, the first region of crack growth was also
considered in their model. Finally, it is worth citing that other crack growth
formulations have been employed to model this phenomenon in other types
of mechanical components. For instance, C.H. Oppenheimer and K.A. Loparo
[149] utilized the Forman crack growth law ([150]) to estimate the RUL for
rotor shafts prognostics.

Despite the demonstrated efficiency of PBMs in tackling PHM problems,
they present some limitations. Most notably, their performance depends on the
degree of understanding of the failure mechanisms and the estimation of model
parameters. In fact, several degradation mechanisms present high difficulties in
their modelling, making this approach unsuitable for complex machinery for
which it may be challenging to fully understand the physics of damage [28]. As
a result, although PBMs have been proven to be successful in REBs prognosis,
they are not suitable in every PHM application. Furthermore, in contrast with
DDM approaches, PBMs are non scalable between different systems. However,
differently from DDMs, they do not rely on having large amount of previously
acquired data on the system being monitored. In addition, PBMs permit to
model the physics of the degradation mechanism and consequently allow for
an adequate modelling of the system under exam, which may be employed for
other purposes other than prognosis, e.g. certification of machinery [27].
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1.2.3.2 Data-driven models

DDM prognostic model are based on data historically collected on the system
[20]. Scholars have developed a large number of techniques, which may be
broadly subdivided in two major categories: statistical approaches and AI
approaches. Statistical approaches, often referenced as empirical model-based
approaches [28], aim at estimating the RUL by constructing statistical models
on the basis of experimental observations and empirical experience. Their
typical outcome is a conditional probability density function (PDF) of the
RUL based on experimental data [116]. Differently, AI approaches employ AI
techniques to foresee the future degradation of the system. These methods
work as "black-boxes" where data is fed to the AI and prognostic information is
obtained as output. [151]. Therefore, the main characteristic that differentiates
these methodologies from PBMs is that both approaches do not rely on the
knowledge of the system physics. As a result, they are scalable between
different systems, but they require large training data to attain reliable results
as opposed to PBMs. Popular statistical DDMs include autoregressive (AR)
models, random coefficient models, Markov models, Wiener process models,
Inverse Gaussian (IG) models, gamma process models and Proportional Hazard
(PH) models. Concerning AI approaches, often employed methods encompass
Artificial Neural Network (ANN), Convolutional Neural Network (CNN),
Neuro-Fuzzy (NF) systems, Support Vector Machine (SVM), Relevance Vector
Machine (RVM) and Gaussian Process Regression (GPR).

statistical approaches Among the statistical approaches, AR models
are widely employed for PHM purposes. Their underlying assumption is
that the future state of the system may be seen as a combination of a linear
function of past observations and random error terms [26]. This approach was
utilized in bearing prognosis by W. Caesarendra et al. [152], who introduced
the AR moving average model to improve the accuracy of the estimate. For
the same purpose, Y. Qian et al. [153] extracted input data for the AR model
by employing a Kalman filter. Later, Y. Qian and R. Yan (2015) [154] refined
the previous effort by combining a multi-order AR model with a particle
filter algorithm. Differently, L. Cui et al. [155] employed Kalman filtering to
automatically match different degradation phases. The functions at the base of
the procedure were linear in the normal deterioration phase and non linear
in the final stage of the component life. The proposed algorithm was able to
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autonomously switch between the two functions. In a subsequent effort, the
same authors [156] further expanded the available techniques by introducing
a time-varying particle filter algorithm constructed by a combination of an
adaptive selection rule and a sliding window. Through this procedure they
were able to estimate bearings RUL. The main strength of AR models is their
easiness of implementation. However, their performance is highly dependent
on the quality of available data.

Another common type of models are random coefficient models, which de-
scribe the randomness of the deterioration process by introducing normally
distributed random coefficients. In this regard, N. Gebraeel and J. Pan [157]
developed an exponential model which comprised random errors. Model pa-
rameters were determined by means of a Bayesian approach. Their model was
later enhanced by Y. Wang et al. [158] to further ameliorate the parameter
estimation process. X. Jin et al. [159] tackled bearing prognostics by proposing
a model built as the sum of two exponential functions. First, an AR filter was
employed to eliminate spectral components unrelated to faults. Subsequently,
statistically unhealthy signals were analysed to determine the RUL of the
component. Although these models consent to determine the PDF of the RUL,
the base assumption of Gaussian randomness restricts their applicability.

Markov models are extensively employed in PHM thanks to their capability to
provide an efficient compromise between computational time and accuracy of
RUL estimation [160]. They are based on the hypothesis that the degradation
process of machinery may be described by a finite number of transitions
between different states that follow the principle of the Markov chain [161].
However, the vast majority of these techniques fall in the category of the
so-called Hidden Markov Models (HMMs). In fact, in contrast with traditional
Markov models, HHMs describe the evolution process of "hidden", non-directly
observable states which are typical of machinery in working conditions. To
overcome this restriction, the relationship between physical observations and
the actual degradation is defined by means of a stochastic approach. Examples
of applications of HMMs are described in the works of R.B. Chinnam and P.
Baruah [162] and E. Ramasso and T. Denoeux [163]. Recently, E. Soave et al.
[164] improved the HHM technique by introducing a Generalized Gaussian
Hidden Markov Model (GGHMM). To this end, they considered possible
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distribution variations among different states by defining the probabilistic
function as a mixture of generalized Gaussian distributions. The GGHMM
method was successfully employed for the assessment of bearing degradation
histories. Variants in the form of hidden semi-Markov models were also
proposed to improve the flexibility of HMMs, as shown by K. Medjaher et
al. [165] for bearing prognosis and by Q. Liu et al. [166] for predicting future
HSs of hydraulic pumps. Although their demonstrated effectiveness for RUL
estimation, HMMs rely on the assumption of Markov property, i.e. the future
state does not depend on previous observations but only on the current state.
Therefore, their employment is somewhat limited in real applicative scenarios.

Furthermore, Wiener process models are built by combining a drift term
plus a diffusion term which follows Browning motion [28]. First proof of
their application in PHM may be found in the work of K.A. Doksum and A.
Hóyland [167]. Then, examples of employment in REB prognosis may be found
in the works of N. Li et al. [168] and Y. Wang et al. [169]. Moreover, J. Wen et
al. [170] employed a nonlinear Wiener process model to assess bearing RUL
and quantify the associated uncertainties. Similarly to HMMs, the application
of Wiener process models is limited by the need to assume Markov property,
which is an hypothesis that is not always applicable in industrial applications.
Despite this issue, they allow for an efficient description of the temporal
variability of the deterioration history.

Similar to the previous models, IG models are based on the assumption that
the degradation history is characterized by independent increments. However,
in this case, it is hypothesized that they follow an IG distribution instead. In
this regard, it is worth mentioning the works of N. Chen et al. [171] and W.
Peng et al. [172]. Likewise, gamma process models are based on a assumption
similar to IG models but increments rather follow a gamma distribution. Both
approaches are based on the Markov hypothesis and are therefore limited in
their use. Furthermore, they may only describe monotonic processes. Despite
these limitations, they accurately take into account the time variability of the
degradation and are able to simultaneously take into account various random
effects.
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Finally, PH models were introduced by D.R. Cox [173] by assuming that it was
possible to subdivide the hazard rate of a system, i.e. the rate of fault for a
system at a certain operating time, into two multiplicative factors, namely a
base hazard function and a covariate function. In other words, the hazard rate
was hypothesized as the product of a deterministic and a stochastic component.
His method was applied by D. Banjevic and A.K.S. Jardine [174] to determine
the RUL through a Weibull PH model. Later, L. Wang et al. [175] proposed a
PH model to forecast bearing RUL. First, they extracted suitable features from
on-line measurement and then fed them to a neural network which allowed
to predict their future values. Eventually, a PH model was constructed to
assess the survival function. In general, PH models allow to obtain accurate
predictions but at the expense of a remarkable computational burden.

ai approaches In the field of PHM, ANNs are one of the most popular
AI approaches. They are constructed as several nodes linked in a complex
structure aimed at reproducing the working process of the human brain.
Within this context, the most popular ANN is the feed-forward neural network
(FFNN), whose potential has been demonstrated by the works of C. Lu et
al. [176] and L. Xiao et al. [177]. The latter authors successfully employed an
ANN for the estimation of bearing HSs. Notably, their procedure allowed to
predict the future degradation without the need to rely on prior histories of
failures nor suspensions. Moreover, C. Sbarufatti et al. [178] added sequential
Monte Carlo sampling to determine the RUL of fatigue cracks. M. Behzad et
al. [77] also took advantage of a FFNN and utilized a feature based on the
high-frequency vibration of a ball bearing for REBs prognosis. In recent years,
authors began to employ a ANN variant called Convolutional Neural Network
(CNN). Among those, Y. Shang et al. [179] presented a CNN to learn spatial
features from the monitored data of a REB and, after further manipulations,
were able to extract the degradation trends. Besides, W. Li et al. [180] exploited
a CNN to tackle the problem of bearing prognosis under variable operative
conditions. ANNs are well-suited to learn complex non-linear relationships
and are therefore indicated for complicated systems. However, they require a
large number of training data to ensure reliable estimates.

On the other hand, a NF approach may be described as fuzzy-logic system in
which membership functions are optimized by ANNs [181]. This methodology
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was implemented in the field of prognostics by J.S.R. Jang et al. [182] and
was later employed by a number of authors, including C.Chen et al. [183] and
D. Zurita et al. [184]. Similarly to ANNs, these techniques require a massive
amount of training data.

A different approach is employed by SVM, which is a method based on the
statistical theory developed by V.N. Vapnik [185]. They consist in learning
algorithms employable for classification and regression analysis. In the context
of REBs prognosis, they have been exploited for degradation prediction by
S. Dong and T. Luo [186] and F. Sloukia et al. [187]. Nevertheless, the most
frequent application in PHM is found in the form of support vector regression
(SVR), as demonstrated in the works of E. Fumeo et al. [188], T.H. Loutas et
al. [189] and M. Zhao et al. [190]. The aforementioned authors utilized SVR
to estimate bearings RUL. However, SVM approaches have one limitation,
i.e. they provide point prediction instead of a PDF. To overcome this issue,
RVM were introduced [191]. They are based on the same concepts of SVM,
but they are able to provide a probabilistic prediction instead. Both SVM and
RVM are advisable for problems denoted by a small numbers of training data.
Per contra, the major downside of these techniques is associated with the
estimation of model parameters and the choice of kernel functions.

Eventually, GPR is a supervised machine learning framework that may be
exploited for data regression [192]. Among GPR models for REBs prognosis,
it is worth mentioning the efforts of S. Hong et al. [193] and S.A. Aye and
P.S. Heyns [194]. These kind of models are characterized by a remarkable
computational burden but permit to obtain satisfactory results for both small
and large training sets.

1.2.3.3 Hybrid models

Hybrid models combine two or more different models in order to take ad-
vantage of the capabilities of diverse approaches. These kind of models are
considerably rarer in the literature compared to PBMs and DDMs [28], mainly
because of the inevitable increase in complexity introduced by the imple-
mentation of different models. On this subject, this paragraph reports some
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hybrid-models worth of mention. Among those, F. Di Maio et al. [195] inte-
grated a RVM with a random coefficient model to perform an exponential
regression that allowed to calculate and continuously update the residual life
estimation for bearing prognosis. A. Soualhi et al. [196], instead, detailed a pro-
cedure for REB prognosis based on a combination of a HMM and a NF system.
While the former detected the imminence of the subsequent degradation stage,
the latter predicted the intervening period before the next HS. A different
approach was employed by J. Yu [197], who combined a stochastic model
to construct the degradation history and employed particle filtering for RUL
estimation. Furthermore, Y. Qian et al. [198] proposed a multi-scale approach
in which a modified PE model was integrated with a phase space warping
technique for bearing prognostics. While the PE model, i.e. the PBM, described
the crack propagation on a slow-time scale, the phase space warping, i.e. the
DDM, characterized the dynamical behaviour of the component on a fast-time
scale. The combined procedure involved the construction of a tracking metric
which related measurements on the fast-time scale to the degradation process
on the slow-time scale. To conclude, an extensive literature survey concerning
multi-model approaches in PHM may be found in the work of J.J. Montero
Jimenez et al. [199].

The aforementioned discussion on prognostic models showed a large variety
of approaches that are typically employed for RUL estimation. For each kind
of method, advantages and disadvantages have been reported.

1.3 research objectives

The proposed literature review highlighted the broad number of available
publications in the field of bearing modelling. Despite only covering a por-
tion of the massive amount of papers that deal with this topic, the survey
demonstrated the remarkable advance in bearing modelling and the complex
techniques developed by researchers in the last decades. However, it also
underlined possible improvements in some modelling aspects, which are con-
sequently taken as motivation to carry out the research detailed in this thesis.
Specifically, this work aims at answering the following three questions:
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• Is it possible to develop a robust and efficient procedure for the finite-
element simulation of rolling-element bearings? Can the proposed procedure
allow for an accurate estimation of REB stiffness terms?

• What is an effective way to determine the model parameters that, in LP
models of defective bearings, are hardly measurable or denoted by an high
degree of uncertainty?

• Are there means to perform bearing life prognosis by utilizing a PBM
developed on the basis of parameters extracted from a dedicated LP dynamic
model?

These questions are answered one by one in a different chapter of this thesis.
In particular, the following original solutions are offered in the dissertation:

• The finite-element simulation of REBs is tackled by proposing a procedure
for the generation of load-dependent meshes of the component under exam.
The method is developed with the primary goal of determining the stiffness
of different types of REBs. The main contribution to the subject is the defini-
tion of mesh element dimensions on the basis of analytical formulae and
in the subsequently proposed methodology for the estimation of stiffness
terms.

• The unknown parameters in LP models of defective bearing are determined
through a dedicated multi-objective optimization technique in which the
objective functions are features calculated from bearing acceleration signals.
The technique involves the comparison of experimentally computed values
with numerical features evaluated by means of a LP model. The proposed
technique aims at determining the best set of parameters that are able to
characterize the system vibration under a variety of operative conditions
and defect dimensions. Therefore, the novelty of the procedure lies in the
proposed technique and its peculiar implementation in the context of bearing
LP models.

• Bearing prognostics is tackled by proposing two PBMs based on a novel
degradation-related parameter, namely the Equivalent Damaged Volume
(EDV). This quantity is determined through comparison of experimental
features with numerically generated maps of the same feature. In this work,
the numerical maps are supplied by computing the RMS values associated

34



1.4 organization of the thesis

to different combinations of angular extent and depth of the defect. This
process gives as output the EDV values, which may be further taken as
input for further prognostics models. As a result, the original aspect of the
proposed endeavour is the development of PBMs on the basis of a peculiar
parameter which has been specifically introduced in this work.

1.4 organization of the thesis

The thesis is subdivided as follows. Firstly, Chapter 2 describes the bearing test
bench that was set-up at Engineering Department of the University of Ferrara.
This chapter also details the two types of performed tests, i.e. stationary tests
with localised defects and run-to-failure tests. The results of these tests are
employed for the subsequent validation of the proposed numerical methods.
Chapter 3 tackles the problem of bearing FE modelling and stiffness estima-
tion. Specifically, it reports the proposed advanced meshing procedure for the
generation of load-dependent grids. First, application of the Hertzian theory
to REBs is explained. Then, the chapter details the types of elements to be em-
ployed for meshing, their optimal size, exploitable modelling hypotheses and
computational domain reduction strategies. Demonstration of the capabilities
of the proposed modelling procedure are provided by computing the stiff-
ness curves for two different reference bearings. Results are compared against
analytical models, whose formulations are also reported. Finally, the chapter
closes by evaluating the influence of additional factors on the computations, i.e.
inclusion of the cage, load direction and magnitude of the radial clearance. The
subsequent Chapter 4 presents a methodology for the assessment of unknown
parameters in the context of LP modelling of faulty bearings. A theoretical
LP formulation is provided to test the proposed procedure. The LP model is
integrated with the proposed technique in order to determine its efficiency. To
this end, the results of the stationary tests detailed in Chapter 2 are employed.
An extensive description of the proposed procedure and the obtained model
parameters is given. Moreover, Chapter 5 tackles the topic of REBs prognostics.
In particular, it details two approaches to generate PBM models based on a
peculiar degradation-related parameter named equivalent damaged volume.
The full algorithm that allows to extract this parameter from real bearing
degradation histories is described. For this purpose, data obtained from the
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run-to-failure experiments introduced in Chapter 2 are utilized to demonstrate
the capabilities of the proposed models. Discussion about the employability
of the proposed methodology and its potential use in REB prognostics are
thoroughly detailed. Eventually, Chapter 6 summarizes the detailed work and
provides some final remarks, also including possible further developments.

As an addition, Appendix A reports a supplementary work that is not strictly
related to the field of bearing modelling. However, it is included in this
thesis as it is a contribution that was presented by the author at the ISMA
2020 conference in Leuven, Belgium [5]. Moreover, it is somewhat related to
the numerical models described in the previous chapters, as it describes the
generation process of the digital twin of a gearbox employed on agricultural
equipment through the combination of LP and FE models.
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2
D E S C R I P T I O N O F T H E B E A R I N G T E S T B E N C H AT T H E
E N G I N E E R I N G D E PA RT M E N T O F T H E U N I V E R S I T Y O F
F E R R A R A

2.1 introduction

Experimental validation is the typical approach employed to determine the
effectiveness of analytical and numerical models. In an ideal situation, data
should be acquired on the effective system where the modelled component
is mounted. This methodology would allow to test the part under exam in a
condition where the effective load and constraints are applied. However, this
operation is not always possible, especially in an industrial scenario, mainly
due to the inevitable machine downtime that would follow. A dedicated
experimental campaign, in fact, would require to stop the machinery in order
to mount the sensors and proceed with the testing. As a consequence, test
benches that replicate the effective operative conditions are usually employed
both in the academic and industrial field.

Within this context, vibratory signals of REBs have been included by researchers
in a number of datasets acquired on different test benches. Among them, the
data collected on the test rig of the Intelligent Maintenance Systems (IMS)
of the University of Cincinnati (Ohio) is one of the most employed in the
literature [30, 200]. The test bench consisted in four double row spherical roller
bearings installed on a shaft, which was connected to an AC motor by rub
belts. The rotation speed was kept constant at 2000 RPM. A radial load equal to
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27.7 kN was applied on the shaft by means of a spring mechanism. Vibration
signals of all bearing were captured through an accelerometers mounted on
each casing. This experimental setup was employed to perform three run-to-
failure tests. For each one, 1 second of signal was acquired every 20 minutes
with a sampling rate equal to 20 kHz. Another famous dataset is related
to the PRONOSTIA test rig owned by the FEMTO-ST Institute of Besançon,
France [201]. This test bench has been employed to perform accelerated run-
to-failure experiments on a deep-groove ball bearing. In their test rig, the
motor transmitted the rotary motion through a gearbox which delivered the
motion to a secondary shaft. The load was applied via a pneumatic jack.
The dataset consists of a total of seventeen sets of data for three different
combinations of shaft speed and applied load values, i.e. 1800 RPM and 4000

N, 1650 RPM and 4200 N and 1500 RPM and 5000 N. Vibration of the test
bearing was monitored through two accelerometers mounted perpendicularly
to each other on the outer race. Signals were acquired at a sampling frequency
of 25.6 kHz. However, only 2560 samples were recorded every 10 seconds.
Moreover, the dataset of the Case Western Reserve University, also known
as CWRU dataset [202], is widely employed for the validation of diagnostic
models. The test bench consisted in a electric motor that drove a shaft in which
a torque transducer and encoder were mounted. Torque was applied to the
shaft through an electronically controlled dynamometer. Two deep-groove ball
bearings were selected as test bearings. They were mounted on the fan-end and
the drive-end of the motor. In these tests, defects were not naturally developed.
Rather, they were artificially seeded on their inner and outer rings. The faults
were generated via electrical-discharge machining (EDM) and their diameter
ranged from 0.18 mm to 0.71 mm. Test were run at an approximate constant
speed ranging from 1720 to 1797 RPM. No radial load was applied: therefore,
the only radial load acting on the system was the static gravitational load
[203]. Vibration signals were measured in several locations in the proximity
and far-off from the motor bearings. Sampling frequency was set either to
12 kHz or 48 kHz. Recently, B. Wang et al. made available vibration signals
collected on their bearing test rig [128, 204]. The experimental platform allowed
to conduct accelerated degradation tests under different operating conditions.
The system included an AC motor connected to a shaft, which was mounted on
two heavy duty roller bearings. The bearing under test was a deep-groove ball
bearing. A total of fifteen bearings were tested under three different operative
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conditions. Radial load, which was applied on the test bearing housing, was
generated through an hydraulic loading system. Shaft speed, imparted by the
motor, was kept constant during the tests. The combinations of loads and
speeds were the following: 2100 RPM and 12 kN, 2250 RPM and 11 kN and
2400 RPM and 10 kN. Vibration signals were acquired via two accelerometers
mounted orthogonally to each other on the housing of the bearing under test.
Finally, 1.28 s were recorded at intervals of 1 min with a sampling frequency
of 25.6 kHz. Another dataset is provided by KAT datacenter of the German
University of Paderborn [205, 206]. The test rig included a drive motor, a torque
measurement shaft and a load motor [207]. This test bench was employed to
test both healthy and artificially damaged grooved ball bearings. Tests were
run under four different combinations of rotational speed, applied torque
and radial force values. For each one, two possible values were chosen, i.e.
900 and 1500 RPM, 0.1 and 0.7 Nm and 400 and 1000 N. A total of thirty-
two tests were conducted: six were on healthy bearings, twelve on artificially
damaged REBs and fourteen on bearings damaged through accelerated life
testing. For each test, 20 measurements of 4 seconds each were performed.
Finally, a dataset for diagnosis and fault detection was also provided by the
Society for Machinery Failure Prevention Technology (Illinois), also known as
MFPT dataset [208]. They employed roller bearings, which were tested under
different initial health conditions, i.e. healthy bearing, artificial inner and outer
race faults and naturally developed defects. Load conditions ranged from 0 to
1334 N, while shaft speed was kept constant at 25 Hz [209]. This brief review
showed just some of the publicly available datasets and the employed test
rigs. Many more test benches and design have been proposed by researchers,
but only few of them uploaded the acquired dataset on on-line repositories.
Therefore, the reported survey attempted to cover some of the most famous
ones.

Due to the need to validate bearing models, a dedicated bearing test bench has
been set-up in the laboratory of the Engineering Department of the University
of Ferrara. Its design allows to replicate real conditions that are applied on the
bearing during its operational life. The test rig is tailored with the objective
to perform two different types of tests, i.e. stationary tests on faulty bearings
and run-to-failure experiments. The former allows to determine the vibratory
signal generated by a bearing with some kind of artificial defect inserted on
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(a)

(c)

(e)

(b)

(d)

Figure 5: Photos of bearing test benches, taken from the literature: (a) IMS [30]; (b)
FEMTO-ST [201]; (c) CWRU [202]; (d) B. Wang et al. [128]; (e) Paderborn
University [205].

one of its components, i.e. rings, rolling elements or cage. These tests may be
run for a variety of applied loads and shaft rotation frequencies. The acquired
data may be employed to validate dynamic models of REBs with faults. The
latter permit to acquire the vibratory signal of a REB during its entire operative
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life. In this case, no artificial defects are introduced on the bearing under test.
In fact, the goal is obtain natural defects that may appear during the real
operational life of the component. The acquired signals may be utilized for the
validation of diagnostic and prognostic models. In light of these considerations,
this section describes the proposed test bench design and the two types of
conducted tests.

2.2 test bench description

The test rig is displayed in Figure 6 and schematized in Figure 7. The bearing
under test is a self-aligning ball bearing, model 1205 ETN9, as shown in
Figure 8. Its dimensions are reported in Table 1. The REB is mounted on a
shaft, which is connected through a flexible coupling to an electric motor. The
rotation frequency of its output shaft is controlled by an inverter. The shaft is
supported by two spherical roller bearings, model 22207 EKS, connected to
the frame. The test bearing is enclosed in a casing, and the load is applied by
means of a lever system, oriented so that the resulting force is vertical and
acts radially on the bearing. A load is exerted at the end of the longer arm
by varying the preload of an extension spring which connects the lever to the
ground. The lever system amplifies the magnitude of the applied force to the
other side, which is connected to the bearing casing through a steel truss. A
load cell is inserted in this component in order to measure the effective value
of the resulting force, which is labelled as w in Figure 7. During the tests, the
acceleration signal is acquired through a piezoelectric accelerometer model
PCB 356B21 mounted on top of the casing. Moreover, during the run-to-failure
experiments, two further accelerometers are mounted on the support bearings
for monitoring purposes.

2.3 performed tests

2.3.1 Stationary tests for bearings with artificial defects

For the stationary tests, artificial defects were generated on a number of test
bearings. In particular, nine bearings of this type were considered, and an outer
race defect was seeded on each one. These defects are rectangular in shape
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Figure 6: Bearing test bench at the Engineering Department of the University of
Ferrara.
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Figure 7: Schematic depiction of the bearing test bench.

and have been generated through EDM. Therefore, they are characterized by
three main dimensions, i.e. their depth, circumferential length and axial width.
The depth is the same for all defects and, due to the curvature of the outer
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A

A SECTION A-A

Figure 8: Geometry of the self-aligning ball bearing 1205 ETN9 employed as test
bearing on the test bench.

Table 1: Design parameters of the self-aligning ball bearing model 1205 ETN9.

Description Symbol Value

Inner ring groove radius rgi 3.66 mm
Inner ring race radius ri 16.64 mm

Outer ring radius ro 22.91 mm
Ball radius rb 3.56 mm

Contact angle α 10.2°
Number of balls on each row nb 12

raceway, its minimum value is 0.06 mm towards the center of the ring while
its maximum amounts at 1.6 mm at the other extremity. The width is also
constant for every bearing and it is equal to 6 mm.

The chosen depth and width prevent the rolling elements to contact either the
bottom or the side edges of the defect. In fact, during the modelling stage this
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(a) (b) (c)

Figure 9: Artificial defects seeded on the outer rings: (a) Defect width D1; (b) Defect
width D2; (c) Defect width D3.

defect depth allows to focus on the modelling of the trajectory of the balls and
their free flight from the leading to the trailing edge of the defect. Such kind of
artificial defects are commonly employed in the literature for model validation
[24, 82, 89, 103, 105, 106, 210]. The importance of this type of defect shape
is further demonstrated by L. Cui et al. [145], which employed this defect
geometry to simulate the initial stages of defect propagation on a prognostic
model.

On the other hand, the circumferential length is different for each bearing.
Three nominal dimensions, i.e. 0.9 mm, 1.6 mm and 2.5 mm are assumed and
labelled as D1, D2 and D3, respectively. The same dimension is replicated three
times on three different bearings. Consequently, each bearing is labelled with
a letter a, b or c to differentiate among them, as depicted in Figure 9. These
defect extensions are similar to dimensions typically found in the literature.
In fact, N. Sawalhi and R. Randall [24] used one defect with width 0.8 mm. S.
Khanam et al. [82] employed several dimensions ranging from 0.35 mm to 2.02

mm. L. Cui et al. [89] included defects with widths up to 5 mm. D. S. Shah and
V. Patel [103] considered defects as wide as 1.5 mm. A. Chen and T. R. Kurfess
[210] considered three fault dimensions with widths 0.794 mm, 1.135 mm and
1.530 mm, respectively. M. Luo et al. [105] also proposed three different defects
dimensions, i.e., 1 mm, 1.45 mm and 2 mm. S. Mufazzal et al. [106] generated
artificial defects ranging from 0.5 mm to 2 mm, although characterized by a
circular shape.
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Table 2: Dimensions of the defects seeded on each bearing. The width values measured
on each bearing have an uncertainty equal to 2 µm.

Values for each bearing Average values

ID Width [mm] Angular extent [°] ID Width [mm] Angular extent [°]

D1.a 0.932 2.372

D1 0.928 2.362D1.b 0.907 2.308

D1.c 0.945 2.405

D2.a 1.671 4.253

D2 1.664 4.236D2.b 1.664 4.236

D2.c 1.658 4.218

D3.a 2.507 6.382

D3 2.501 6.366D3.b 2.513 6.397

D3.c 2.483 6.320

Finally, the defects are located so that only the balls of one row are able to
roll inside the defect. This scenario is a well consolidated strategy for testing
defective self-aligning ball bearings [24, 88, 108]. Some authors tackled the
problem of multiple and compound faults [80, 211, 212], but that case is not
considered in the performed experimental campaign.

The effective length and width of the artificial faults were measured through a
coordinate-measuring machine to determine the effective shapes and dimen-
sions of the defects. The results are depicted in Figure 10. They are represented
by considering the projection of each coordinate point on a plane parallel to the
original rectangular shape, which resides on a circular surface. The effective
width of each one has been measured by considering the distance between the
opposite edges at the theoretical line of contact between the rolling elements
and the raceway. The average values in terms of defect widths and angular
extent are reported in Table 2. It is worth noting that the average values are
very close to the nominal values. Furthermore, the scatter around each average
value is considerably low for all defects, since all measurements deviate from
the average by less than 2.3 %.
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Figure 10: Measured defect dimensions. In each plot, the x-axis is aligned with the
external border of the bearing. The employed measuring machine has an
accuracy equal to (0.48 + l) µm, where l is the measuring distance expressed
in meters. (a) Fault size D1; (b) Fault size D2; (c) Fault size D3.

The faulty bearings were tested for different combinations of applied load
values and shaft rotation frequencies. In particular, two static load values
equal to 1000 N and 2000 N and three rotation speed values equal to 20

Hz, 30 Hz and 40 Hz were selected, leading to six tested conditions for each
bearing under test. Moreover, each defect width was replicated three times
on three different bearings, thus leading to eighteen tests on the same defect
dimension. Finally, three different defect widths were generated. As a results,
a total of fifty-four tests were run. Each signal was acquired for 15 seconds
at a sampling frequency of 51.2 kHz. The signals were then low-passed at
9.5 kHz for the subsequent analyses described in Chapter 4. The vibration
signals were acquired through a LMS SCADAS Mobile M06 equipped with 56

analog channels, a 24 bit AC/DC converter and an anti-aliasing filter. The raw
acceleration signals are publicly available: in fact, they have been uploaded in
a online data repository hosted by Mendeley Data [4].
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2.3.2 Run-to-failure tests

Run-to-failure tests involve the acquisition of the vibratory signal through
the entire operative life of the bearing under test. In this way, it is possible
to understand the effective vibration of the component in both healthy and
unhealthy conditions. Moreover, run-to-failure tests induce the generation of
natural defects in the bearing, which are the ones that are effectively produced
during real operations. Therefore, the resulting signals also contain information
about the damage progression and may consistently differ from stationary
tests with artificial defects with controlled dimensions.

The main issue related to run-to-failure tests is the extensive time duration of
this kind of tests. In fact, bearing life may be roughly estimated according to
the well-known L10h value [6]:

L10h =
alπ

1800ωs

(︃
Cr

P

)︃s

· 106 (1)

which allows to determine the fatigue life, expressed in hours, that 90 % of
the bearing population will endure. In Eq. 1, ωs is the shaft rotation speed, Cr

is the basic dynamic load rating of the bearing, P is the equivalent dynamic
bearing load and s is an exponent which is equal to 3 for ball bearings and
10/9 for roller bearings. Within this context, Cr is the load that, if applied
to the bearing, would lead to a rating life equal to 10

6 revolutions. For the
bearing reported in Table 1, Cr = 12.2 kN. Moreover, for a radial bearing, P
is equal to the applied radial load if the REB is not subjected to any axial
load. Additionally, Eq. 1 presents a further term al, which is a coefficient
that allows to take into account other life influencing factors. Its value is
provided by international standards, e.g. ISO 281 [7]. This equation leads
to two important considerations. Firstly, that bearing failure is a statistically
distributed phenomenon. Therefore, the effective length of run-to-failure test
may vary even under identical operative conditions. As a consequence, for the
purpose of run-to-failure tests, the estimated L10h allows to perform rough
estimation on the expected test length under given conditions. Secondly, L10h
value depends on the applied load and the rotation speed of the shaft. In
particular, it greatly depends on the magnitude of the applied load. To better
underline this concept, Figure 11 shows the values of L10h, expressed in days,
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Figure 11: Expected life of the bearing 1205 ETN9 under different combinations of
radial load and shaft speed values: (a) Load range 1-6 kN; (b) Load range
3-6 kN.

for the bearing under test as computed for different combinations of loads and
speeds. Specifically, Figure 11.a reports the bearing rating life between 1 and
6.6 kN. The plot demonstrates that bearing life decreases exponentially with
increasing load, as highlighted by Eq. 1. In particular, the expected life ranges
from more than 500 days for 1 kN of load to less than 5 days for 6 kN. In the
vast majority of applications, bearings are chosen to work in the left part of
the graph, so to have the highest possible expected life and minimize their
required maintenance.

However, working at low loads and shaft speeds is not suitable for testing
on a bearing test rig. In particular, low loads would lead to excessive test
times, in the order of hundreds of days of continuous operation. In order to
overcome this issue, accelerated tests are performed. In this kind tests, a large
load is applied in order to induce a fast degradation of the component. This
is a standard kind of testing procedure employed by researchers to generate
faulty bearing datasets, as reported in Section 2.1. This aspect is emphasized
by Figure 11.b, which depicts L10h values between 3 and 6 kN. Within this
range, the bearing life ranges approximately from 20 to 2.5 days at a shaft
speed equal to 40 Hz. Therefore, tests performed inside this range of loads
allow to attain an acceptable testing time and permit to carry out multiple
tests in a relatively short amount of time. Finally, it is worth underlining that,
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Table 3: Operative conditions, expected life and test length for the six tested bearings.

ID Load [kN] Shaft speed [Hz] L10h [days] Test time [days]

E1 4 40 8.2 17

E2 4 40 8.2 6.9
E3 4 40 8.2 8.3
E4 3 40 19.5 20.9
E5 4.7 40 5.1 6

E6 5 40 4.2 1.8

for the bearing under exam, most of the values in this load range are higher
than the basic static load rating C0 of the bearing, which is equal to 3.3 kN.
C0 is defined as the load that generates a permanent deformation of raceways
and rolling elements equal to approximately 1/10000 of the rolling element
diameter. This is another common characteristic of these kind of tests [201, 204,
213].

In light of these considerations, six run-to-failure tests have been performed, as
reported in Table 3. All tests have been carried out at the same shaft speed of
40 Hz. Three tests, namely E1, E2 and E3, were performed under the same load
equal to 4 kN. In the other three cases, i.e. E4, E5 and E6, applied loads were
equal to 3 kN, 4.7 kN and 5 kN, respectively. Table 3 also reports the expected
life and the total test time. Concerning the latter, tests were stopped when the
maximum peak in the acceleration signal reached 20 g. This is a common test
end criterion previously employed by several researchers for run-to-failure
tests [201, 204, 213]. At the end of the tests, all bearings were characterized by
an extended defect on the outer raceway, as shown in Figure 12.

During the tests, vibration signals were continuously acquired through a NI
cRio controller, equipped with a 9234 module provided with 4 analog channels.
Sampling frequency was set to 25.6 kHz, and 5 seconds of signal were acquired
every 5 minutes. As a consequence, 12 signals were stored for each hour of
test. Differently from stationary tests, two further accelerometers were also
mounted on the support bearings in order to monitor their health state. In
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Figure 12: Photos of the bearing outer rings at the end of the run-to-failure tests: (a)
E1 (4 kN); (b) E2 (4 kN); (c) E3 (4 kN); (d) E4 (3 kN); (e) E5 (4.7 kN); (f) E6

(5 kN).

fact, although they are characterized by a way higher C0 compared to the test
bearing, i.e. 86.5 kN, it is crucial to control their behaviour during these long
tests in order to avoid unexpected failures. Therefore, the signals of these two
accelerometers were also acquired for monitoring purposes.
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3.1 introduction

As detailed by the literature review in Section 1.2.1, several methods have been
developed to provide numerical estimates of the bearing stiffness. However, the
investigation showed the lack of uniformity in the employed approaches and
the possible improvements that could be carried out, especially in the context
of FE simulations. Therefore, this chapter discusses a numerical FE procedure
to determine the radial stiffness of REBs by means of load-dependent meshes.
The proposed methodology involves the generation of a dedicated mesh for
each load condition, so that the element size is determined based on the
estimated contact area dimensions obtained by means of the Hertz contact
theory. Through this approach, a fast and efficient method for generating
REBs meshes employable for FE simulations is obtained. In fact, the detailed
technique allows to estimate a reasonable dimension for the elements in the
contact area, in order to capture the contact phenomenon while balancing the
computational time and the accuracy of the results. The influence of element
types and mesh size on the solution is thoroughly discussed. Hypotheses that
allow to reduce the computational domain are detailed, i.e. the employment
of symmetry planes, the removal of unloaded rollers and the load application
method. Stiffness influencing factors, such as cage modelling, load direction
and clearance are numerically examined. The robustness of the method is
tested on two representative bearings, i.e. a cylindrical roller bearing and a
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deep-groove ball bearing. In this way, the efficiency of the proposed approach
in tackling different types of contacts is demonstrated without losing generality.
It is worth noting, in fact, that the proposed methodology is still applicable
for other bearings types. However, attention must be paid when analysing
different geometries, as there could be only one symmetry plane available
and not two as in the reference bearings, e.g. in tapered roller bearings and
self-aligning double-row ball bearings. On the other hand, concerning element
type, mesh size, unloaded roller removal and load application method, the
proposed procedure may be adapted to all bearing types. Finally, it is worth
mentioning that the proposed methodology also aids the bearing analyst by
providing guidelines for the selection of several aspects involved in the FE
simulation, which include choice of the elements, definition of the mesh size,
which symmetries to exploit, how to define the load and which location to
prefer to evaluate the displacement.

The chapter is subdivided as follows. Firstly, Section 3.2 describes the reference
bearing geometries and hypotheses exploited in the numerical analyses. Infor-
mation on the solver and the contact algorithm are also provided. Moreover,
the application of the Hertz contact theory in REBs modelling is discussed.
Section 3.3 deals with the procedure employed to determine the mesh size
in the contact area and compares the results obtained with different element
types for two reference bearings, i.e. in case of ball-races and roller-races con-
tact. These indications are exploited to compute the radial stiffness in Section
3.4. After an initial discussion on the analytical methods for bearing stiffness
estimation, the procedure to generate the load-dependent meshes is described.
Additional methods to reduce the computational effort are also outlined. Fur-
thermore, Section 3.5 examines the influence of load direction, cage modelling
and clearance on the estimated radial stiffness. Finally, 3.6 sums up the chapter
by providing some concluding remarks.

3.2 problem generalities

This section opens with the description the bearing geometries taken as ref-
erence for this work. Then, an overview on the Hertz contact theory and its
application within the context of REBs modelling is provided. Subsequently,
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Table 4: Design parameters of the cylindrical roller bearing model NU 202 ECP and
the deep-groove ball bearing model 6210.

Description Symbol Roller bearing Ball bearing
NU 202 ECP 6210

Number of rolling elements nb 11 10

Effective roller length leff 5.6 mm -
Rolling element radius rc, rb 2.75 mm 6.35 mm
Inner ring race radius ri 9.65 mm 28.7 mm
Outer ring race radius ro 15.15 mm 41.35 mm

Inner and outer ring groove radii rg - 6.55 mm
Ring width B 11 mm 20 mm

focus is placed on aspects involving the numerical simulations. At first, in-
formation regarding solver choice and contact algorithm are reported. Next,
the section closes by detailing the modelling hypotheses at the basis of the
investigation.

3.2.1 Reference bearings geometry

In this study, two different rolling element bearings are considered. Figure
13 shows the 3D geometry of both mechanical components. The associated
geometrical data, which refer to nominal dimensions, are reported in Table 4.
The first bearing, which is shown in Figure 13.a, is a cylindrical roller bearing,
model NU 202 ECP. Rollers have a straight profile and are 6 mm wide. Since
edges are rounded with a 0.2 mm radius, their effective length reduces to 5.6
mm, which is the length of the ideal contact line between roller and races. A
0.1 mm axial clearance between rollers and flanges is also considered. The
other bearing is a deep-groove ball bearing, model 6210, which is depicted in
Figure 13.b. It is assumed that all components of both bearings are made of
steel, with Young’s modulus E = 210 GPa and Poisson’s ratio ν = 0.3. These
properties are considered as constant values in all simulations.
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Figure 13: Geometry of the roller bearing taken as reference for the investigation: (a)
cylindrical roller bearing NU 202 ECP; (b) deep-groove ball bearing model
6210.

3.2.2 Application of the Hertz theory for contacts in REBs

According to the Hertz contact theory, the size of the contact area between two
bodies in contact depends on their curvature radii, on their materials and on
the magnitude of the applied load [19].
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In the case of a cylindrical roller bearing with straight roller profile, the surfaces
in contact are cylinders. The shape of the contact area is a rectangle with length
equal to leff and semi-width a, as depicted in Figure 14.a. The latter may be
analytically evaluated at each load by introducing an equivalent radius of
contact, namely req,c, and an equivalent Young’s modulus, namely Eeq. These
quantities allow to consider the different geometry and materials of the two
bodies. The equivalent radius is evaluated as:

req,c =

(︃
1

rI
+

1

rII

)︃−1

(2)

where rI and rII are the radii of curvature of the contacting surfaces. They
may assume positive or negative values if the surfaces are convex or concave,
respectively. On the other hand, the equivalent modulus is:

Eeq =

(︄
1− ν2

I

EI
+

1− ν2
II

EII

)︄−1

(3)

where EI and νI are the material properties of the first body and EII and νII

are the material properties of the second body. By knowing req and Eeq, it is
then possible to calculate the semi-width a for an applied load F as:

a =

√︄
4req,cF

πleffEeq
(4)

Therefore, a is a function req,c, Eeq and F. On the contrary, the width of the
rectangle is equal at all load values to the effective length of contact of the
rollers, i.e. leff. Since the two rings in contact with a roller have different radii,
two different contact areas are defined for each rolling element. They are named
ai and ao for the inner and outer ring contacts, respectively. Besides, for a roller
bearing, ao is always greater than ai at all load values. Within this framework,
however, it is important to observe that the Hertz theory does not account for
the edge effects caused by the finite length of the components [62]. Despite
this issue, this theory is employed anyway as it provides straightforward
formulae that may be used for a rough estimation of the contact area. Finally,
it must be considered that a rectangular contact area is produced only if the
roller profile is straight. For fully or partially crowned profiles, a different
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Figure 14: Shape of the contact areas: (a) roller-race contact; (b) ball-race contact.

formulation should be employed to estimate the contact area. However, the
meshing procedure and the described methodology remain unaltered.

In the case of a deep-groove ball bearing, the surfaces in contact have different
principal relative radii of curvature in orthogonal planes. Consequently, the
shape of the contact area becomes an ellipse defined by semi-major axis a

and semi-minor axis b, as picture in as depicted in Figure 14.b. Even these
quantities are functions of geometry, materials and applied load. However, in
this case the equivalent radius, namely req,b, depends on the radii on the two
orthogonal directions x and y, i.e.:

req,b =

(︃
1

rx
+

1

ry

)︃−1

(5)
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where

rx =

(︃
1

rxI
−

1

rxII

)︃−1

(6)

and

ry =

(︃
1

ryI
−

1

ryII

)︃−1

(7)

Concerning Eqs. 6 and 7, it is important to note that directions x and y must be
assigned so that ry > rx. Moreover, to estimate a and b for this type of contact,
additional quantities must be introduced, namely the simplified elliptical
integrals ϵ and ξ:

ϵ = 1.0003+
0.5968rx

ry
(8)

ξ = 1.5277+ 0.6023 ln
(︃
ry

rx

)︃
(9)

and the ellipticity parameter κ:

κ = 1.0339
(︃
ry

rx

)︃0.636

(10)

Finally, a and b are calculated as:

a =

(︃
6κ2ϵreqF

πEeq

)︃1/3

(11)

b =

(︃
6ϵreqF

πκEeq

)︃1/3

(12)

Similarly to roller contact, two different contact areas are defined for each ball.
The semi-axes are named ai and bi for the inner ring and ao and bo for the
outer ring, respectively. Even for a deep-groove ball bearing, the size of the
contact area on the outer ring is greater than its inner ring counterpart at all
loads. In this case, the effective area of contact may deviate from the Hertz
estimate because of the conformity of the races with the balls. However, as in
the case of the roller-race contact, the simplicity of the formulae allow for an
efficient estimation of the contact parameters.
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According to Eqs. 4, 11 and 12, the size of the contact area decreases as the
load reduces. As a consequence, in a FE analysis involving contacts, the local
mesh in the neighbourhood of the contact areas must be sufficiently small in
order to accurately take into account the contact phenomenon. In the meshing
procedure described in this chapter, the size of the contact area for each contact
pair in the FE model is defined at each load on the basis of analytical estimates.
The outcome is an analytical relationship between the dimension of the contact
area, i.e. a for the roller-race contact and a and b for the ball-races contact,
and the size of the contact area in the FE model, namely wa and wb. The
size of the contact area in the FE model, in fact, may be larger than the Hertz
estimate, as depicted in Figure 14. This observation arises from the fact that
employing a larger area may permit to use greater elements, therefore allowing
to reduce the number of mesh nodes. Furthermore, the Hertz theory gives only
a rough estimate of the effective contact area, as the edge effects and the high
conformity of races may lead to deviation in the effective dimensions. Finally,
the local mesh size, namely l, will also be defined as proportional to either a

or b. To sum up, the main goal of the inquiry is to find coefficients that relate
FE model properties and analytical estimates so that wa ∝ a or b, wb ∝ a or b
and l ∝ a or b.

3.2.3 Solver choice and contact algorithm

All simulations described in this chapter are carried out by using Simcenter 3D
as pre/post processor and Simcenter Nastran as solver [214]. Nastran is chosen
as solver as it is one of the most employed software in the field of FE analysis
[215]. Moreover, it is the main solver associated with the pre/post processor
exploited in this work, i.e. Simcenter 3D. In fact, Nastran does not have any
functionality that allows to graphically observe the model in both the pre and
post phases, as the the input and output files are only given as text files. To
read these files, additional software is commonly utilised, such as Simcenter
3D, MSC Marc [216] and Autodesk Inventor [217]. Well-known alternatives to
Nastran include Ansys [218] and Abaqus [219]. The FE techniques described
in this thesis may be also implemented in solution processes involving these
solvers, as they allow to consider the contact phenomenon. However, the
discussion is centred only on results obtained through the Nastran solver,
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without any loss of generality. In particular, Nastran static solution SOL 101 is
used to solve the models since it allows to consider the non-linear behaviour
given by the contact algorithm and concurrently reduce the computational
burden by assuming a linear elastic material and small displacements.

Concerning the contact algorithm, two methods are available, namely segment-
to-segment method and node-to-segment method. Previous work by N. El-
Abbasi and K.J. Bathe [220] indicated that, while both methods provided stable
results, the latter did not pass the patch test [221], leading to discretization
errors that did not decrease with mesh refinement. In addition, proof of
the successful employment of the segment-to-segment method in bearing
simulation may be found in [17] and [222]. These results support the choice
of the first approach for REBs simulation. Besides, bilinear Coulomb friction
model is chosen to take into account friction-related contributions. Friction
coefficient is set equal to 0.05, which indicatively corresponds to a greased
contact condition [223]. This value is chosen for the sake of simplicity to
represent a common value encountered when grease is employed for bearing
lubrication. Approaches based on the bilinear Coulomb friction were utilised in
previous studies, as reported by N. Demirhan and B. Kanber [57], R. Lostado-
Lorza et al. [17] and R. Fernandez Martinez et al. [66]. In addition, according
to Y. Guo and R.G. Parker [10], lubrication has a mild effect on bearing
stiffness especially in case of thin fluid film and moderate rolling speed. As
a consequence, the effect of friction is not considered to be significant in the
analysis, and a simple approach as the one exploited in this work may used to
determine the bearing stiffness characteristics. However, in case of particular
lubricating conditions, more accurate methods may be utilized to determine
the coefficient of friction and the resultant friction force, e.g. by exploiting the
methods reported in [224].

3.2.4 Modelling hypotheses

The proposed investigation exclusively takes into account the major phenom-
ena concurring to the determination of bearing radial stiffness. Based on this
approach, the hypotheses at the basis of the present study are hereinafter
detailed. The first aspect concerns possible plasticization of the material in the
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neighbourhood of the contact areas. Bearing races, in fact, permanently deform
at sufficiently high loads, affecting the wear and degradation process of the
races [65, 223]. Therefore, only deformations in the elastic range are considered
by employing a linear elastic material with undefined yield stress. Concerning
boundary conditions, the external outer race of the bearing is assumed to
be connected to a rigid frame. As a matter of fact, the adopted hypothesis
represents a common scenario where the frame is sufficiently rigid to not inter-
fere with the bearing properties and the applied loads stay within the elastic
deformation range. For the sake of completeness, it has to be clarified that
actual applications might involve either the installation on compliant frames
or the application of an excessive load that may lead to a large deformation
of the outer race [6, 17, 225]. In such cases, shaft misalignment may appear
[226, 227], causing a significant moment load on the bearing and the loss
of one symmetry plane from the system. These peculiar conditions requires
dedicated analyses involving different solution schemes and therefore they do
not fall within the purpose of the present study. Furthermore, thermal effects
and preloading are not considered. As a consequence, simulations are run
considering constant properties at room temperature and by applying a simple
radial load only. In fact, as described in Section 1.2.1, temperature may affect
stress distribution and stiffness [15], while preload is commonly applied in
order to modify bearing stiffness characteristics [16]. Finally, it should be noted
that static methods such as the one described in this work are employable at
low and moderate speed values only [10, 14], since inertia effects cannot be
neglected at higher velocities [13].

3.3 mesh size assessment and element choice

This section deals with the analysis of the contact stiffness through the FE
method. The inquiry is focused on typical types of contact taking place in
REBs. First, the procedure employed to address mesh performance is outlined.
Then, it is applied to two different cases, i.e. roller-race and ball-race contacts.
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3.3.1 Description of the procedure employed for mesh performance assessment

The performance of various elements types and mesh dimensions is evaluated
in order to determine their most convenient combination to tackle the contact
problem in rolling-element bearings. The objective of the investigation is to
determine an analytical relationship between the size of the contact area and
the local mesh size in a roller-race and in a ball-race contact. In order to
perform such a task, contact stiffness is evaluated for different mesh sizes to
determine a reasonable dimension that permits to obtain a good estimation of
the radial bearing stiffness while maintaining a relatively low computational
time. The procedure detailed in the following is applied with a few differences
to both bearing types considered in this work.

Firstly, a representative subsystem is extracted from each bearing CAD model.
The geometry is first reduced to an angular sector centred on one of the rolling
elements, characterized by an angular span equal to the spacing between two
consecutive ones. Then, the geometry is further cut by taking advantage of the
two available symmetry planes. As a consequence, the considered geometry
reduces to a quarter of the rolling element in contact with a portion of both
races. Example of the reduced geometries may be observed in Figure 15. In
particular, Figure 15.a and Figure 15.b show the representative subsystem of the
roller bearing meshed with tetrahedral and hexahedral elements, respectively.
Besides, Figure 15.c illustrates the reduced portion of the ball bearing meshed
with tetrahedral elements.

Based on the representative subsystems, a number of grids with decreasing
mesh size is generated for each element type. The inquiry allows to deter-
mine the contact stiffness values attainable with the proposed FE analysis.
The investigation regards tetrahedral and hexahedral elements in both their
linear and parabolic formulations. In Nastran, tetrahedral elements are named
CTETRA4 and CTETRA10. The former are 4-nodes linear elements, while the
latter are 10-nodes parabolic elements. Similarly, hexahedral elements are des-
ignated as CHEXA8 and CHEXA20 in their linear and parabolic formulations,
respectively. Both element types are employed for the roller bearing, while
only tetrahedral elements are considered for the ball bearing. For each element
type, five meshes are generated. Each one is characterized by different values
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(a) (b) (c)

Figure 15: Sub-models and meshes employed for convergence analysis: (a) roller - race
contact, tetrahedral elements; (b) roller-race contact, hexahedral elements;
(c) ball-race contact, tetrahedral elements.

of local and global mesh size, namely l and g, respectively. The value of l is
related to g through a coefficient of proportionality η so that l = ηg. Local
mesh size is assigned only on the contact areas generated on rolling elements
and races.

Each mesh is tested under the maximum load on a roller produced by two
radial loads Fr1 and Fr2. These are chosen as "low" and "high" load values
that might act on the bearing. While the magnitude of the former is based
on practical assumptions, the latter may be assumed on the basis of the static
load rating of the bearing. In absence of clearance, the load acting on the most
loaded rolling element may be calculated with the following formula [6]:

Q =
Fr

nbJr
(13)

where Q is the maximum load on the roller, Fr is the applied load, nb is the
number of rolling elements and Jr is a parameter whose value is equal to
0.2453 for a roller bearing and to 0.2288 for a ball bearing. In this preliminary
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analysis, a conservative value is assumed for w, wa and wb by considering
a contact area larger than the one estimated for Q2, i.e. the maximum load
produced by Fr2.

The generated grids allow to compute the contact stiffness due to the applied
load Q as

kc =
Q

δn
(14)

where δ is the average radial displacement of the nodes on the inner surface
of the inner ring which lie on the plane of maximum load. Besides, exponent
n in Eq. 14 is equal to 10/9 for roller bearings and 1.5 for ball bearings.
This procedure allows to compare the contact stiffness obtained for meshes
characterized by different number of nodes and to assess the values which
may be attained with the considered geometry and element types.

Finally, the investigation aims at finding a relationship between the local mesh
dimensions and the size of the contact area determined by the Hertz theory.
For this purpose, various combinations of contact area and local mesh size
are tested. The latter is considered to be proportional to the dimensions a and
b evaluated by means of the Hertz theory at loads Q1 and Q2. This strategy
permits to determine the most convenient combination of element type, mesh
size and contact area dimensions in terms of accuracy of the results and
computational time. For the roller bearing, the goal is to find a relationship
between w, l and a. For the ball bearing, wa, wb and l are related to b. Semi-
minor axis b is chosen in place of a since it has the lowest value between
the two. It is also worth underlining that the contact area dimensions differ
for the contacts between the rolling elements and the two rings, as described
in Section 3.2.2. The quantities referring to the contact area between rolling
elements and inner race are denoted with subscript i, while for the outer race
subscript o is employed.

3.3.2 Roller-races contact

To study the roller-races contact, the geometry of the reference roller bearing
is reduced to an angular sector with extension 16.36°, i.e. 360°/nb, where
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nb is the number of rolling elements reported in Table 4. The representative
subsystem is depicted in Figure 15.a and Figure 15.b. The flanges of the bearing
are also removed to consider a case closer to the theoretical one. Then, a set
of five meshes with decreasing mesh size is generated for each element type.
This means that a total of 20 meshes are generated by employing CTETRA4,
CTETRA10, CHEXA8 and CHEXA20 elements, respectively. Figure 15.a shows
one of the tetrahedral meshes, while Figure 15.b depicts one of the hexahedral
meshes.

Two radial loads Fr1 = 100 N and Fr2 = 10000 N are chosen for the analysis.
Each radial load generates a different value of the force acting on the most
loaded roller. According to Eq. 13, if the radial clearance is equal to zero then
their magnitudes are Q1 = 37 N and Q2 = 3706 N, respectively. Therefore,
Q1 and Q2 are the loads employed for mesh performance assessment of
the roller-race contact. The load is applied by providing a sinusoidal load
distribution on the inner ring, which resembles the force exchanged with
the shaft. The dimensions of the contact area for these two force values are
estimated via the Hertz contact theory. These are ai = 0.0127 mm and ao

= 0.0159 mm at load Q1, and ai = 0.127 mm and ao = 0.159 mm at load
Q2. Because of the geometry, ao is always greater than ai. As a result, a
conservative value wi = wo = 0.25 mm is employed on both rings to generate
the rectangular contact area in the preliminary analysis of the meshes. Table 5

reports the local mesh size, the global mesh size and the number of nodes for
the meshes generated with tetrahedral elements. Similarly, Table 6 details the
characteristics of hexahedral meshes. The global mesh size is also defined by
assuming η = 0.14 for tetrahedral elements and η = 0.50 for hexahedral elements
in order to provide a smooth transition between different element dimensions.
Additionally, only for the hexahedral mesh, the number of elements along
shaft axis direction, namely nsubs, is set equal to 4, as it may be observed in
Figure 15.b. Such a value is chosen as a compromise between the number of
nodes along the contact line and the local mesh size. It should be noted, in
fact, that if obtaining a certain number of grid points is required, as nsubs

increases l decreases accordingly. In addition, for two grids with same value
of parameter l, computational time will depend on nsubs as it affects the
total number of nodes and contacting elements. Thus, it is crucial to find a
compromise between accuracy and computational time.
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Table 5: Statistics of tetrahedral meshes employed to assess element performance in
roller-race contact.

CTETRA4 CTETRA10

Mesh l [mm] g [mm] Number of nodes l [mm] g [mm] Number of nodes

1 0.05 0.357 9024 0.15 1.071 12826

2 0.025 0.179 32406 0.1 0.714 22306

3 0.02 0.143 49428 0.05 0.357 58767

4 0.01 0.071 213309 0.025 0.179 220487

5 0.0075 0.054 393876 0.02 0.143 341098

Table 6: Statistics of hexahedral meshes employed to assess element performance in
roller-race contact.

CHEXA8 CHEXA20

Mesh l [mm] g [mm] Number of nodes l [mm] g [mm] Number of nodes

1 0.05 0.100 16405 0.1 0.200 16783

2 0.025 0.050 61975 0.05 0.100 61509

3 0.015 0.030 167465 0.035 0.070 122120

4 0.0125 0.025 242310 0.025 0.050 233825

5 0.01 0.020 373235 0.02 0.040 364085

Figure 16 shows the estimated stiffness values and the computational time
obtained with linear and parabolic tetrahedral elements. The plots also show
the analytical value of the contact stiffness kc, which for the roller bearing
under exam is a constant value equal to 172549 N/mm10/9. According to [6],
in fact, the contact stiffness of a single steel roller in contact with a steel ring,
namely kc,r, is equal to:

kc,r = 8.06 · 104l8/9eff (15)
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As a consequence, the total contact stiffness taking into account both contacting
sides is:

kc =

[︃
2

(kc,rl)(1/n)

]︃−n

(16)

since the values for inner and outer ring contacts have the same magnitude.
Figure 16.a reveals that, at load Q1, parabolic elements shows a more stable
trend compared to their linear counterpart. The computational time, depicted
in Figure 16.c, is similar for both element types. Moreover, Figure 16.b and
Figure 16.d demonstrate that they also have comparable performances both in
terms of computed stiffness and simulation time. Parabolic elements, however,
reach a constant trend in the estimated stiffness for a lower number of nodes.

In light of this, CTETRA10 elements are employed to determine a relationship
between the local mesh size and the size of the contact area determined by
the Hertz theory. For this purpose, five different combinations of w and l

have been tested. For each mesh, these parameters are set as proportional
to the semi-width of the contact area a, as reported in Table 7. This implies
that the mesh used at load Q1 has different element dimensions compared
to the mesh employed at load Q2. Furthermore, since ao > ai, then lo > li.
Coefficient η is set equal to 0.06 at Q1 and 0.22 at Q2. The table reports the
percent difference between the numerical and the theoretical stiffness estimates,
namely ∆. The results of the inquiry shows that a good compromise between
the accuracy of the computed stiffness and the simulation time is obtained
for the third mesh, which is denoted by w = 1.25a and l = 1.25a. The results
obtained with this load-dependent improved mesh are reported in Figure 16.
At applied load Q1 = 37 N, maximum percentage difference with respect to
the finest generated CTETRA10 grid is 0.1%, while the computational time
reduces by 82.6%. At applied load Q1 = 3706 N, instead, stiffness deviates
by 1.8% and time decreases by two orders of magnitude. As a result, it is
possible to conclude that the chosen mesh dimensions allow to greatly reduce
the simulation time, especially at lower loads.

The same comparison is replicated for linear and parabolic hexahedral ele-
ments, as reported in Figure 17. Similarly to tetrahedral elements, hexahedral
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Figure 16: Mesh performance evaluation for tetrahedral elements, roller-races contact:
(a) contact stiffness at Q1; (b) contact stiffness at Q2; (c) computational time
at Q1; (d) computational time at Q2.

parabolic elements provide stiffness estimates closer to the value at conver-
gence for a lower number of nodes at load Q1. At load Q2, on the other hand,
both elements provide a stable trend even for a low number of nodes. The
computational time, depicted in Figure 17.c and Figure 17.d, appears to be
higher for parabolic elements. However, the difference between element types
is negligible for coarser grids with a low number of nodes. In conclusion,
parabolic elements are employed to generate the improved mesh even for
hexahedral elements.

Table 8 reports the tested combinations of w and l employed to seek a rela-
tionship between the dimension of CHEXA20 elements and the size of the
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Table 7: Tested combinations of w and l for CTETRA10 elements, roller-races contact.

Q1 = 37 N Q2 = 3706 N

Mesh w [mm] l [mm] ∆ [%] t [s] ∆ [%] t [s]

1 a a 11.6 65 13.0 4

2 1.5a 0.75a 10.9 129 12.1 10

3 1.25a 1.25a 11.8 64 13.2 3

4 1.5a 1.5a 12.6 59 14.3 2

5 2a 2a 14.5 59 17.6 2

contact area. In this case, coefficient η is set as equal to 0.06 at Q1 and 0.50 at
Q2. The results shows that the third mesh, characterized by w = 1.5a and l =
1.5a, provides a good compromise between computational time and accuracy
of the results. The stiffness estimate obtained through the load-dependent
improved mesh are reported in Figure 17. With respect to the finest CHEXA20

grid, the stiffness deviates by 0.5% for both loads. Computational time, on
the other hand, appears to be reduced by one to two orders of magnitude.
Therefore, even in this case, the improved mesh permits to greatly reduce the
computational time while maintaining a sufficient accuracy of the results.

It is also noteworthy to compare the performance of hexahedral and tetrahedral
improved meshes. At load Q2, the computational time differs by a small margin.
At load Q1, however, the simulation time with tetrahedral elements is almost
three times higher than the one associated with hexahedral elements. This
means that for lower mesh dimensions the hexahedral elements provide a
sensible improvement in computational time compared to tetrahedral elements.
On the contrary, the difference is negligible at higher loads.

3.3.3 Ball-races contact

For the reference ball bearing, the geometry is reduced to an angular sector
equal to 18°. Moreover, the model is further cut by exploiting the two available
symmetry planes. As a consequence, the initial geometry reduces to a quarter
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Figure 17: Mesh performance evaluation for hexahedral elements, roller-races contact:
(a) contact stiffness at Q1; (b) contact stiffness at Q2; (c) computational time
at Q1; (d) computational time at Q2.

of the original ball in contact with a portion of both races, as depicted in Figure
15.c. By considering two extreme radial load values acting on the bearing equal
to 0.5 kN and 23 kN, the two load values employed for mesh evaluation are
equal to Q1 = 219 N and Q2 = 10052 N. The dimensions of the contact areas
for these force values are ai = 0.986 mm, bi = 0.122 mm, ao = 0.994 mm and
bo = 0.116 mm at load Q1 and ai = 3.529 mm, bi = 0.435 mm, ao = 3.558 mm
and bo = 0.416 mm at load Q2. Conservative values wa = 4 mm and wb = 0.7
mm are employed to generate the elliptical contact area for mesh performance
evaluation.

69



non-linear radial bearing stiffness estimation based on load

dependent meshing

Table 8: Tested combinations of w and l for CHEXA20 elements, roller-races contact.

Q1 = 37 N Q2 = 3706 N

Mesh w [mm] l [mm] ∆ [%] t [s] ∆ [%] t [s]

1 a 0.5a 11.0 51 12.6 21

2 a a 10.2 31 13.3 4

3 1.5a 1.5a 9.7 22 12.1 4

4 1.75a 1.75a 10.8 16 14.9 3

5 2a 2a 12.2 15 14.8 2

Table 9: Statistics of tetrahedral meshes employed to assess element performance in
ball-race contact.

CTETRA4 CTETRA10

Mesh l [mm] g [mm] Number of nodes l [mm] g [mm] Number of nodes

1 0.08 0.571 16879 0.2 1.429 27327

2 0.06 0.429 29400 0.15 1.071 36535

3 0.04 0.286 68857 0.1 0.714 73546

4 0.03 0.214 131552 0.07 0.500 146656

5 0.02 0.143 326626 0.05 0.357 302163

Only tetrahedral elements are investigated for ball-races contact. A set of five
meshes with decreasing mesh size is generated for each element type, for a
total of 10 meshes among linear and parabolic elements. Figure 15.c shows one
of the employed tetrahedral meshes. Coefficient η is set equal to 0.14. Local
mesh size, global mesh size and number of nodes for all meshes are detailed
in Table 9.

Mesh performance is evaluated for all meshes with Eq. 14. The results are
reported in Figure 18. Figure 18.a and Figure 18.b show the estimated contact
stiffness at load Q1 and Q2, respectively, while Figure 18.c and Figure 18.d
depict the associated computational time. In addition, the plots also report the
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Figure 18: Mesh performance evaluation for tetrahedral elements, ball-races contact:
(a) contact stiffness at Q1; (b) contact stiffness at Q2; (c) computational time
at Q1; (d) computational time at Q2.

analytical value of the contact stiffness, namely kc,b. According to [19], this
quantity may be estimated separately for the inner and outer ring contacts
through the following equation:

kc,bk = ξ

[︄(︃
4.5

ϵkreq,k

)︃(︃
1

πκkEeq,k

)︃2
]︄−1/2

(17)

where k stands for i or o depending on the considered race in contact. The
total stiffness may be subsequently calculated as:

kc =

[︃
1

(kc,bi)(1/n)
+

1

(kc,bo)(1/n)

]︃−n

(18)
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Table 10: Tested combinations of wa, wb and l for CTETRA10 elements, ball-races
contact.

Q1 = 219 N Q2 = 10052 N

Mesh wa wb l ∆ [%] t [s] ∆ [%] t [s]

1 2a 2b 0.5b -0.3 42 -0.7 9

2 1.5a 1.5b 0.5b -0.9 31 -0.6 8

3 1.5a 1.5b b -0.7 12 -0.6 3

4 1.25a 1.25b 1.25b 3.7 11 -1.1 2

5 1.5a 1.5b 1.5b 5.7 5 5.5 2

Therefore, for the ball bearing under investigation, the resulting stiffness is
kc,b = 426124 N/mm1.5. It may be observed that both element types provide
a good estimate of the contact stiffness compared to analytical results. The
computational times are also similar, although they are slightly higher for
linear elements at the lowest load. However, parabolic elements provide results
closer to converged ones for a lower number of nodes especially at the highest
load. Therefore, CTETRA10 elements are chosen to generate the improved
mesh. Table 10 reports the tested combinations of wa, wb and l for both loads.
In this case, since the contact area is defined by two dimensions, l is defined as
proportional to the length of the semi-minor axis b. Furthermore, coefficient
η is set as equal to 0.06 at Q1 and 0.14 at Q2. The proposed investigation
shows that by employing the third mesh, which is defined by wa = 1.5a, wb =
1.5b and l = b, it is possible to obtain a good compromise between estimated
contact stiffness and computational time. Stiffness and computational time
values obtained with the two improved meshes may be seen in Figure 18.
The deviation from the finest grids are 0.8% and 0.1% at loads Q1 and Q2,
respectively. In addition, in both cases the computational time decreases by
two orders of magnitude. In conclusion, these mesh dimensions allow to
considerably reduce the computational effort.
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3.4 estimation of the bearing radial stiffness

This section is dedicated to the description of the procedure adopted to model
the reference bearings and to estimate their radial stiffness. The methodology
is employed to generate the bearing meshes by exploiting the meshing pro-
cedure introduced in Section 3.3. First, the analytical procedure reported by
D. Petersen et al. [88] is described. This formulation is utilized as reference to
validate the results of the proposed approach. Then, techniques that allow to
reduce the computational domain are described. The reduced geometries of
both bearings are employed to generate the load-dependent meshes. Finally,
the numerically estimated stiffness values are compared against the results of
the analytical model.

3.4.1 Analytical procedure

The radial stiffness may be analytically computed through a variety of methods.
Within the context of this work, the analytical estimate is employed to validate
the results of the proposed numerical procedure. The method described in this
section was developed by D. Petersen et al. [88] on the basis of the work of N.
Sawalhi and R.B. Randall [24].

A single row-ball bearing is schematically depicted in Figure 19. The problem
is reduced to a 2D xy plane, in which the only considered components are the
two rings and nb rolling elements, which may be either balls or rollers. Within
this framework, load w represents the total load whose maximum value is
aligned with the direction of the vector itself. To estimate the radial stiffness of
this component, which is subjected to a load in the y direction, it is necessary
to evaluate the stiffness component kyy. According to [88], for a fixed position
of the rolling elements with respect to the reference system Oxy, its value may
be calculated as:

kyy = nkc

nb∑︂
j=1

δ
n−1
j γj cos2ϕj (19)

In Eq. 19, δj is the quasi-static relative displacement of the j-th rolling element
at the angular position ϕj and it is equal to:

δj = δx cosϕj + δy sinϕj − h. (20)
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where h is the radial clearance, whilst δx and δy are the quasi-static relative
displacements of the inner ring with respect the the outer ring in the x and y
directions, i.e.:

δx = xi − xo (21)

δy = yi − yo (22)

The relative displacements depend on the magnitude of the applied load w.
Their values may be evaluated by iteratively solving the equilibrium equation
of the system. In fact, by considering that the quasi-static force exchanged by
the j-th rolling element with the rings, namely fc,j, is equal to:

fc,j = kcδ
n
j γj (23)

then, the static equilibrium of the system may be written as:

kc

nb∑︂
j=1

δ
n
j γj

[︄
cosϕj

sinϕj

]︄
=

[︄
0

w

]︄
(24)

where γj, which is also present in Eqs. 19 and 23, is a term that takes into
account the fact that forces are exchanged only when the rolling elements are
under compression, viz.:

γj =

⎧⎨⎩1 if δj ⩾ 0

0 if δj < 0
(25)

Therefore, Eq. 24 may be solved iteratively, e.g. by means of the Newton-
Raphson method [228], in order to find the values of δx and δy for a given load
value w. Once they are known, it is possible to compute kyy and consequently
determine the load-stiffness relationship within the required range of loads.

3.4.2 Reduction of the computational domain

For both reference bearings, the geometry is reduced in order to decrease
the computational burden of the simulations. To achieve this goal, a series of
modelling strategies are introduced. The first one consists in exploiting the
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Figure 19: Scheme of the bearing employed for analytical stiffness estimation.

two symmetry planes available for both reference bearings. The first plane is
the one passing through the shaft axis on the plane of maximum load. The
second plane is the one normal to the shaft axis by halving the bearing width.
The latter may be assumed only in absence of misalignment and only for a
pure radial load.

In fact, the number of rollers carrying the load from one ring to the other
depends on the extent of the load zone, namely ϕl, which is equal to [6]:

φl = 2 cos−1

(︃
h

δr

)︃
(26)

where δr is the radial displacement. When h = 0, the angular extent of the
load zone is 180° as long as δr ̸= 0. As a result, the number of rolling elements
in both reference bearings is reduced to 3, one of which is also cut in half by a
symmetry plane. This consideration allows to greatly reduce the computational
burden. It is also worth noting that, when h > 0, φl reduces, while it increases
when h < 0. In these cases, attention must be paid on how many rollers are
effectively loaded to avoid erroneously removing load-carrying rollers.
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(a)

(c) (d)

(b)

Figure 20: Reduced bearing geometries with different meshes: (a) roller bearing, tetra-
hedral elements; (b) roller bearing, hexahedral elements; (c) ball bearing,
tetrahedral elements; (d) roller bearing with cage.

Due to the above hypotheses, the unloaded portions of the inner and outer ring
are also removed. This is done by assuming that they do not give a significant
contribution to the radial displacement in the plane of maximum load, i.e.
the monitored displacement for subsequent stiffness assessment. All these
practical assumptions allow to greatly reduce the number of nodes needed to
generate the mesh of the mechanical component. Examples of the resulting FE
models are reported in Figure 20.

Concerning the boundary conditions, it is assumed that the outer ring is
mounted on an infinitely rigid frame, i.e. all DOFs on the outer surface of
the inner ring are restrained. Besides, symmetry conditions are applied on
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QmaxQ(φ)

Figure 21: Sinusoidal load distribution acting on a 180° angular sector of the inner
surface of the inner ring.

the nodes lying on the symmetry planes. For these nodes, the displacements
normal to the planes are constrained.

Finally, attention is devoted to alternative methods to apply the radial load.
As seen in Section 1.2.1, researchers have employed various methods to apply
the radial load, e.g. on the center of the shaft, on rings or on a central node
connected with rigid links to the inner ring. In order to decrease the number
of grid nodes, it is suggested to model the shaft contribution by means of
an analytical sinusoidal distribution which replicates the load applied by a
radially loaded shaft on the inner ring. Such load also depends on the radial
clearance h of the bearing. In absence of clearance, however, the load insists
on a 180° angular sector as depicted in Figure 21. This permits to remove one
contacting body while still taking into account its effect. The efficiency of this
assumption is verified in the next section, after the definition of the bearing
mesh.

3.4.3 Generation of the load-dependent meshes

In a REB, the load-displacement relationship is non-linear. As a consequence,
the radial stiffness depends on the magnitude of the applied load. This means
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that this parameter must be evaluated at different loads to obtain the stiffness
curve over a load range. This procedure is implemented in a FE software
by choosing an arbitrary number of loads. For each load, an appropriate
mesh is generated. The local and global element dimensions are tuned to be
proportional to the dimensions of the contact area as described in Section
3.3.2 and Section 3.3.3 for roller-races and ball-races contact, respectively. The
chosen radial loads for both reference bearings are reported in Table 11 along
with the corresponding dimensions of the contact areas for the inner and
outer ring contacts. For the roller bearing, computational contact area and
mesh dimensions depend on the element type. For tetrahedral elements, wa

= 1.25a and l = 1.25a, while for hexahedral elements wa = 1.5a and l = 1.5a.
Furthermore, for the meshes generated with CHEXA20 elements, the number
of elements along the shaft axis is set equal to 4 in the rollers and equal to 8

in the rings. In both cases, the length of the rectangular contact area is equal
to leff for every load value. On the other hand, only tetrahedral elements are
considered for the ball bearing. In this case, wa = 1.5a, wb = 1.5b and l = b. In
all cases, a and b are different for inner and outer ring contacts. Finally, the
values of η are adapted to the local mesh size at all loads.

Six radial load values have been chosen for both bearings. Figure 20.a and
Figure 20.b show an example of tetrahedral and hexahedral meshes applied
to the roller bearing, while Figure 20.c depicts a tetrahedral mesh of the ball
bearing. Despite the longer setup time needed to generate such a number of
grids, the mesh-generation procedure may be automatized in a FE software
to consistently reduce the required time. Moreover, the main benefit of the
proposed procedure lies in the diminished simulation time due to the tuning
of the mesh size according to the applied load value.

Before estimating the radial stiffness, it is worth verifying the load application
method. To this end, the efficiency of the technique is demonstrated by evalu-
ating the load distribution on rollers. Hexahedral grids are chosen to compute
the numerical estimate, for which a sinusoidal distribution is employed. Ob-
tained results are then compared to distributions computed with other two
methods. The first one is the analytical formulation reported in [6]. The load F

as a function of the angular coordinate φ, for h = 0, is equal to:

Q(φ) = Qmax[cos(φ)]10/9 (27)
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Table 11: Contact areas dimensions for the roller and ball bearings under different
loads.

Roller Bearing Ball Bearing

Fr [N] ai [mm] ao [mm] Fr [N] ai [mm] bi [mm] ao [mm] bo [mm]

100 0.013 0.016 500 0.986 0.122 0.994 0.116

500 0.028 0.036 2500 1.684 0.208 1.698 0.199

1000 0.040 0.050 5000 2.122 0.262 2.139 0.250

2500 0.064 0.079 10000 2.674 0.330 2.695 0.315

5000 0.090 0.112 15000 3.061 0.377 3.085 0.361

10000 0.127 0.159 23000 3.529 0.435 3.558 0.416

where Qmax is calculated through Eq. 13. The second method consists in
modeling the shaft and applying the total load in its central node. Size of the
elements in the shaft mesh is the same as in the inner ring. Since the radial
clearance is not considered, shaft and inner ring touch on the entirety of the
available contact surface. Two radial loads Fr1 = 0.1 kN and Fr2 = 10 kN are
applied. For the two FE methods, load distribution is calculated for each roller
as the sum of the contact forces in the corresponding contact areas. Results
are shown in Figure 22, where the roller at angle 0° is the one whose centre
is aligned with the direction of maximum load. The sinusoidal load allows to
obtain a load distribution which deviates by up to 3% from analytical results.
The loaded shaft, on the other hand, shows a similar difference for the rollers
at 0° and 32.7° while it deviates by 8.3% at maximum for the roller at 62.4°.
Besides, the addition of the shaft causes the computational time to increase
by 28.7% for Fr1 and by 56.8% for Fr2. These results show that it is possible to
remove the shaft and substitute it with a sinusoidal load in order to eliminate
one contacting body and lead to a consistent reduction in computational time.
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Figure 22: Load distribution on rollers evaluated for two different radial load values:
(a) Fr1 = 0.1 kN; (b) Fr2 = 10 kN.

3.4.4 Radial stiffness estimation: comparison between numerical and analytical
results

According to Y. Guo and R.G. Parker [10], stiffness k at a given load Fr may be
computed as:

k =
∂Fr

∂δr
, (28)

where δr is the radial displacement generated by the applied load. Conse-
quently, in order to compute the derivatives via FE analysis, it is necessary to
evaluate two radial displacement for each value of Fr. By introducing a small
disturbance δF, it is possible to rewrite Eq. 28 as:

k =
F+r − F −

r

δr(F
+
r ) − δr(F

−
r )

, (29)

where F+r = Fr + δF, F −
r = Fr - δF, and δF is arbitrarily assumed to be 0.01% of Fr

at each loading condition. This means that two displacement evaluations are
required at each load value. Radial displacement δr is evaluated as the average
displacement of the nodes on the plane of maximum load on the inner surface
of the inner ring.

Concerning the reference roller bearing NU 202 ECP, Figure 23.a depicts the
load-stiffness curve, determined through the FE method, with either tetrahedral
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Figure 23: Roller bearing stiffness: (a) load-stiffness curve; (b) computational time.

or hexahedral elements. The results obtained with the two element types are
very close, since the maximum percent difference between them is 3.3% at Fr
= 100 N. However, Figure 23.b demonstrates that the computational time is
remarkably higher for tetrahedral elements when the applied load reduces
below 1000 N. For higher loads, on the contrary, the simulation time is similar.
Consequently, hexahedral elements are more suitable at lower load values,
while at higher loads both element types may be employed without excessively
increasing the simulation burden. Furthermore, the results in Figure 23.a are
compared against the analytical formulation described in Section 3.4.1 to assess
the goodness of the estimated stiffness values. It is possible to observe that
the numerical results are higher than the analytical ones at all load values.
Nonetheless, the difference with the numerical results is lower than 10% in
all cases. Therefore, the proposed procedure is able to efficiently evaluate the
bearing radial stiffness of roller bearings.

Similarly, Figure 24.a shows the stiffness curve for the reference ball bearing,
which has been modelled with tetrahedral elements only. The results agree
well with the analytical formulation, although the results are close at lower
loads compared to higher loads. In fact, the differ by 4.6% at 500 N and by
12.3% at 23000 N. Besides, Figure 24.b shows that the computational time
increases with lower loads. However, the computational effort is considerably
lower compared to the roller bearing meshed with the same element type
and is comparable to the simulation times obtained with hexahedral elements.
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Figure 24: Ball bearing stiffness: (a) load-stiffness curve; (b) computational time.

In conclusion, the proposed procedure also allows to accurately estimate the
radial stiffness of ball bearings.

Finally, is worth underlining that the employed approach requires a longer
set-up time compared to traditional models as a different grid has to be gen-
erated for each load. However, this additional time is compensated by the
decreased computational time needed to solve the problem and the lower time
required to perform convergence checks, as the element dimension is analyti-
cally determined. Moreover, the setup process may be further accelerated by
automatizing the procedure in a FE software. Despite the increased number of
generated grids, then, the computational time may be lessened compared to
traditional approaches.

3.5 additional effects influencing the radial stiffness

This section discusses additional effects that may influence the radial stiffness.
Only the roller bearing is considered in this investigation, but the same inquiry
may be repeated for the ball bearing. Additional simulations in which the cage
is inserted into the model are run in order to determine if it is reasonable
to neglect this component in REBs modelling. Influence of roller position is
assessed by varying their location with respect to the direction of maximum
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load. Lastly, the model is further improved to take into account the radial
clearance.

3.5.1 Inclusion of the cage

Cage is commonly removed in bearing simulation to lighten the mesh and
reduce the number of contacts. Some researchers took it into account by
adding rigid connectors between the rolling elements [67]. However, it is worth
investigating how much this component might affect the radial stiffness. To this
end, a steel cage is modelled and inserted into the model. Parabolic tetrahedral
elements are used for all components, as it may be observed in Figure 20.d,
since they allow to model the complex cage geometry. The cage is modelled
so that each pocket contacts the corresponding roller on the circumferential
direction. A 0.1 mm axial clearance is also considered between each rolling
element and its cage slot. The mesh is characterized by an average dimension
proportional to a at each load through a coefficient of proportion 2η. The
results for the models with and without cage are depicted in Figure 25. Figure
25.a shows that the stiffness deviates by 3.7% at the highest load, while for
all other loading conditions the difference is lower than 1.4%. On the other
hand, Figure 25.b displays that the computational time greatly rises at lower
loads if the cage is modelled. Besides, the simulation time is from 2 to 4 times
higher at all loads. To sum up, the proposed procedure allows to model the
cage. However, its insertion in the model is not suggested as it considerably
increases the computational effort without providing a significant change in
the computed stiffness.

3.5.2 Influence of maximum load direction

The results reported in Section 3.4.4 have been obtained by assuming that
the direction of maximum load passes through the middle of one roller. This
situation is depicted in Figure 26.a and it is named position 1. However,
the position of the rolling elements changes during operation, leading to a
subsequent change of the bearing stiffness over time. The influence of load
direction is assessed by considering a case in which the plane of maximum
load passes through two consecutive rollers. Such a condition, namely position
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Figure 25: Effect of cage presence on roller bearing stiffness: (a) load-stiffness curve;
(b) computational time.

(a) (b)

Qmax Qmax

Figure 26: Different directions of the maximum load on rollers: (a) position 1; (b)
position 2.

2, is shown in Figure 26.b. The radial stiffness in positions 1 and 2 is evaluated
by employing an hexahedral mesh. The simulation results are depicted in
Figure 27. The stiffness curve in Figure 27.a shows that there is a slight change
in the computed stiffness, up to 7.5% for a radial load equal to 500 N. Besides,
the computational time is higher at all loads since there are no sectioned rollers
in position 2. Therefore, the presented method allows to take into account
different load directions. For the reference bearing, however, the estimated
stiffness is not considerably affected.
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Figure 27: Influence of maximum load direction on roller bearing stiffness: (a) load-
stiffness curve; (b) computational time.

3.5.3 Clearance effect

Radial clearance, namely h, is an additional factor that affects radial bearing
stiffness. Indeed, Eq. 26 shows that for values of h greater than 0 the extent
of the load zone reduces, leading to a redistribution of the load among the
rollers. In particular, in presence of clearance, the maximum load on roller is
different from the one estimated through Eq. 13. In fact, for non-zero values of
clearance it is ruled by the following equation [6]:

Qmax = kc (δr − h)n (30)

where kc is the contact stiffness for either the roller-races or ball-races case.
Furthermore, the number of loaded rollers may decrease, depending on the
applied load and the angular span between two consecutive rollers. In fact,
if the number of rollers decreases, the radial displacement δr increases, thus
diminishing the radial bearing stiffness. The value of Qmax is needed to
compute the contact area at each load in order to define the element size
for the associated mesh, but Eq. 30 cannot be directly solved since the radial
displacement is not initially known as it is equal to

δr = h+

(︃
Q

nbkcJr(h, δr)

)︃1/n

(31)

where Jr is a radial integral depending on h and δr. Since Jr depends on the
radial displacement, Eq. 31 may be solved by means of an iterative procedure.
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Table 12: Clearance effect on contact area, load zone and number of loaded rollers.
The number of loaded rollers refers to a bearing in position 1 as in Figure
26.a, for which the maximum number of loaded rollers for h = 0 is equal to
three.

Fr [N] ai [mm] ao [mm] φl [°] Loaded Rollers

100 0.020 0.025 38.0 1

500 0.041 0.051 67.6 2

1000 0.053 0.067 82.4 2

2500 0.076 0.095 104.2 2

5000 0.101 0.127 121.6 2

10000 0.137 0.172 138.2 3

Once δr is known for each each radial load, Qmax is calculated by employing
Eq. 30. Finally, contact area semi-width is computed through Eq. 4 while the
loaded angular sector is calculated via Eq. 26.

The proposed meshing method is employed to determine REB stiffness in
presence of a positive radial clearance h = 0.02 mm. Load dependent meshes
to be employed for FE simulation are generated according to the methods
shown in Section 3.4.3. The extent of the load zone, namely φl, decreases with
lower loads, as reported in Table 12. As a consequence, the number of loaded
rollers may reduce if the load is sufficiently low. In fact, as it may observed in
Table 12, the number of loaded rollers remains equal to 3 only for Fr = 10000

N. Therefore, the unloaded rollers may be removed from the FE model as they
no longer affect the radial stiffness. In addition, the load zone extent reduction
generates an higher force on the plane of maximum load. Consequently, the
dimensions of the contact area also increase in both the inner and outer race,
as detailed in Table 12. Moreover, the analytical sinusoidal load is not applied
on a 180° angular sector as in the simulations performed for h = 0 but the
angular span is changed at each load according to φl values reported in Table
12.
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Figure 28: Effect of a radial clearance h = 0.02 mm on roller bearing stiffness: (a)
load-stiffness curve; (b) computational time.

Figure 28.a shows the estimated radial stiffness along with the analytical results
computed through the method described in [88]. The numerical results agree
well with the analytical ones at all loads, with a maximum deviation equal to
7.5% at 2500 N. Besides, Figure 28.b details the computational time. Compared
to Figure 27.b, the computational effort at lower loads decreases thanks to the
removal of unloaded rollers. Moreover, the simulation time also diminishes at
higher loads since the contact areas are larger. The investigation suggests that
the proposed method may be employed to quantify bearing radial stiffness
when h > 0. In this case, however, analytical computations must be carried out
to determine Qmax and φl, leading to more calculations and a longer setup
compared to the case in which h = 0.

3.6 summarizing remarks

This chapter discussed a procedure to evaluate the radial bearing stiffness
through the FE method by means of load-dependent meshes. The proposed
methodology consists in generating load-dependent grids, so that the mesh
size in the contact area is properly tuned according to the dimensions of the
analytically estimated contact zone between rolling elements and raceways.
This strategy allows to obtain proper element dimensions to capture the
contact phenomenon for a wide range of loads, while limiting the number of
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grid points and curbing the computational time. Therefore, the main aspect
of originality in the described work arises form to this peculiar approach
employed in the mesh generation process.

The method was applied to a cylindrical roller bearing and a deep-groove ball
bearing. Their meshes were generated by employing either parabolic tetra-
hedral or parabolic hexahedral elements. For the former, it was found that
the most efficient local element dimensions were l = 1.25a and l = 1.5a for
tetrahedral and hexahedral elements, respectively. The width of the contact
area, w, was equal to l in both cases. For the latter, it was shown that ap-
propriate dimensions were wa = 1.5a, wb = 1.5b and l = b. Concerning the
size of the computational domain, it was reduced for both bearings by taking
advantage of the available symmetry planes, by removing unloaded rollers
and by replacing the shaft with an equivalent sinusoidal load distribution.
The estimated stiffness results showed that both considered element types
provided similar radial stiffness estimates, although hexahedral elements ex-
hibited considerably higher computational times at low loads. Good agreement
was attained between the stiffness estimated with the proposed method and
the analytical formulation described in [88], thus denoting the quality of the
proposed methodology.

The technique was also successfully employed to determine the effect of cage
modelling, load direction and clearance on the numerically evaluated stiffness.
These influencing factors were considered by taking as reference the roller
bearing. Concerning the effect of the direction of maximum load, the analysis
showed a deviation on the computed stiffness by up to 6.7%, which indicates
that the inclusion of this effect within the analysis might become mandatory
depending on the required degree of accuracy. It must be noted, however, that
the total computational time increases if multiple roller positions are simulated.
Adding the cage as a meshed body inside the FE model led to a slight change
in stiffness, whereas the computational time consistently increased. Therefore,
modeling the cage is not suggested if the goal is to attain a low computational
time. Finally, clearance effect was assessed by physically inserting it between
the components and by changing the sinusoidal load distribution in order
to apply the load in a reduced angular sector. Unloaded rollers were also
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removed when the load angular span was sufficiently small. Numerical results
were in good agreement with analytical formulations.

The meshing procedure described in this chapter permits to obtain the ra-
dial stiffness with a relatively low computational effort. Therefore, it may be
employed to estimate this parameter for different load conditions, with or
without clearance and for any position of the rolling elements. The proposed
methodology was tested on a cylindrical roller bearing and a deep-groove
ball bearing, but it may also be employed to model other bearing types. In
these cases, however, attention should be paid for possible differences in the
required modelling. For instance, while the symmetry plane passing through
the shaft axis is usually present, the second symmetry plane may not be always
available, e.g. for tapered roller bearing and self-aligning double-row ball bear-
ings. Consequently, the symmetry conditions should be always checked before
meshing the model as they are not the same for every bearing. Nevertheless,
the other assumptions concerning load application, unloaded rollers removal,
element type and mesh size are still applicable for all rolling-element bearings
subjected to a radial load. The main drawback of the proposed method is the
necessity to generate a different mesh for each load condition, thus leading
to an increase in the time needed to set-up the problem. However, this is
compensated by the efficiency of the method in defining an adequate mesh
size by employing element dimensions determined by analytical formulae.
In this way, convergence checks at all loads are not required, leading to a
consistent reduction in the time needed to obtain a reasonable mesh size.
Furthermore, the proposed method is based on a systematic approach that
may be straightforwardly applied to different bearing geometries and even
automatized in a FE software. In conclusion, although the number of generated
grids increases, the total time needed to perform the simulations reduces.
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4
M U LT I - O B J E C T I V E O P T I M I Z AT I O N P R O C E D U R E F O R T H E
E S T I M AT I O N O F U N K N O W N PA R A M E T E R S I N
L U M P E D - PA R A M E T E R M O D E L S O F D E F E C T I V E B E A R I N G S

4.1 introduction

Section 1.2.2 exhaustively examined the available methods to simulate the
dynamic behaviour of faulty bearings. The proposed survey highlighted that,
despite the notable amount of works regarding the dynamic simulations of
defective bearings and the remarkable quality of the obtained results, it is
commonly observed that the procedures associated with the definition of the
value of some model parameters are not always thoroughly described. Most
notably, the choice of damping values is often based on prior assumptions and
on the subsequent validation with experimental results under one or a few test
conditions. Similarly, the approaches involving the additional resonant mass
introduced by N. Sawalhi and R. Randall [24] propose to select an associated
mass and stiffness in order to reproduce a real natural frequency of the system.
However, no further guidelines on the choice of such quantities are provided.
These considerations could be extended in general for all the parameters that
are hardly measurable or that might have uncertain definitions. Therefore, the
objective at the basis of the proposed investigation is to detail a procedure for
the robust estimation of the unknown parameters in LP models of defective
rolling-element bearings. The proposed method takes advantage of a multi-
objective optimization technique, in which the employed objective functions are
global indicators that take into account the difference between numerical and
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experimental results. The optimization variables, i.e. the unknown parameters,
are constrained to only assume values within imposed limits that depend
on their physical properties. Moreover, additional analytical relationships
based on the physics of the problem are introduced to take into account the
dependencies among the parameters.

To demonstrate the efficiency of the technique, a detailed discussion of its
application for the validation of a numerical model of a self-aligning ball
bearing is provided. The employed numerical model is based on the LP
dynamic model introduced by D. Petersen et al. [88]. The defect, however, is
modelled by taking advantage of the method proposed by Y. Jiang [22] for deep
groove ball bearings and by S. Gao et al. [99] for angular contact ball bearings.
Differently from the previous authors, it is extended in order to adapt the
defect formulation to self-aligning ball bearings. The model is constituted by
six degrees of freedom, two of them referring to the displacement of a fictitious
high resonant mass that replicates an high frequency response of the system.
The mass and stiffness of this additional component, which are unknown,
constitute two of the investigated variable parameters. Additionally, further
effort is placed upon the estimation of damping values. In fact, in contrast
with the classical approach adopted in bearing dynamics, contact damping
is herein defined by means of proportional damping in order to control its
influence over the frequency components across the whole spectrum. The
optimization technique is employed to determine the most suitable values for
the damping for the case under exam, since the definition of this parameter is a
common source of uncertainties. Concerning the experimental results, they are
obtained through an extensive campaign carried out on a dedicate test bench
for various defective self-aligning ball bearings subjected to different values
of radial load, rotation frequency and defect size. The results of the inquiry
demonstrate the capability of the method to fit a large number of test conditions.
Nonetheless, because of the global nature of the chosen indicators, some
differences remain for a number of cases. Numerical and experimental results
for eighteen different combinations of defect dimension, rotation frequency
and applied load values are exhaustively discussed in this chapter.

The chapter is subdivided as follows. Section 4.2 details the numerical model
and the proposed optimization procedure. To this end, the analytical con-
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straints relating the physical quantities in the model are assessed. Then, Section
4.3 reports the results of the experiments described in Section 2.3.1. Moreover,
Section 4.4 details the results of the investigation. First, the results of the
optimization technique are illustrated. Subsequently, various analyses on the
estimated features and on time and frequency signals are performed. The effect
of slippage on the numerical results is also investigated. Finally, the chapter
closes with some summarizing remarks in Section 4.5.

4.2 numerical model

This section discusses the lumped parameter model of a double-row self-
aligning ball bearing. Firstly, the formulation for an healthy bearing is detailed.
Then, the effect of a localized fault on the outer ring is added to generate
the faulty bearing model. This set of equations is later employed in the pro-
posed multi-objective optimization procedure. The section also outlines the
optimization technique along with the analytical constraints to be imposed on
the unknown parameters.

4.2.1 Healthy bearing model

The defective bearing model employed in this work is based on the LP model
developed by D. Petersen et al. [88]. On the other hand, the defect shape
definition is adapted and extended to the case under exam from the work of Y.
Jiang et al. [22]. A similar formulation is also applied by S. Gao et al. [99] for
an asymmetric defect in an angular contact ball bearing.

The model is schematically depicted in Figure 29. It consists of six degrees of
freedom, i.e. the planar displacements in the x and y direction of the three
masses representing the system components. The first one is denoted with
mi and represents the mass of the inner ring and the shaft. The second mass,
namely mo, takes into account the outer ring and the casing. Lastly, mass mr

corresponds to an additional mass connected with mo which allows to model
a typical response of the system in a high frequency range of the spectrum
[24]. This mass considerably affects the system characteristics, as it will be
demonstrated in Section 4.4.1. Two planar displacements are associated with
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Figure 29: Scheme of the LP model.

each mass, namely xi and yi for mi, xo and yo for mo and xr and yr for mr.
The inner ring is connected to the ground through a spring-dashpot system
represented by the stiffness ki and the damping ci. Similarly, mr is connected
to mo through a spring with stiffness kr and damping cr. In both cases stiffness
and damping are assumed to be equal in both x and y direction.

Moreover, each ball is replaced by a nonlinear spring and damper. The force
exchanged by a ball with the raceways depends on its position with respect to
the loaded area, the relative displacement of the races and the defect position.
It is assumed that the cage is infinitely rigid, so that the rolling elements are
kinematically constrained to maintain the same distance among them as they
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roll. Therefore, the position of the j-th ball on the k-th row may be described
as

φjk(t) = φ0 +
2π(j− 1)

nb
+

π(k− 1)

nb
+ωct (32)

in which φ0 is the cage initial angular position, while ωc is the cage speed that
is computed as

ωc =
ωs

2

(︃
1−

rb
rp

cosα
)︃

(33)

where ωs is the shaft rotation speed, rp is the pitch diameter and α is the
contact angle. The rolling element in the angular position φjk(t) exerts a force
only when under compression. Therefore, the variable δjk(t) is introduced to
assess the contact deformation of each ball over time. It is defined as:

δjk(t) = (xi − xo) cosφjk(t) + (yi − yo) sinφjk(t) − h (34)

where (xi − xo) and (yi − yo) are the relative displacements of the inner ring
with respect to the outer ring in the horizontal and vertical direction, respec-
tively, while parameter h is the radial clearance. By employing the definition
of the contact deformation, the contact force may be written as:

fc,jk(t) =

⎧⎨⎩kcδ
n
jk(t) if δjk(t) ⩾ 0

0 if δjk(t) < 0
(35)

where kc is the contact stiffness and exponent n is equal to to 1.5 for a ball-
raceway contact [6]. Similarly, by introducing a contact damping coefficient c,
the associated damping force may be defined as:

fd,jk(t) =

⎧⎨⎩cδ̇jk(t) if δjk(t) ⩾ 0

0 if δjk(t) < 0
(36)

Coefficient c accounts for the the effect of the lubricant film between the rolling
elements and raceways [101]. Its value is commonly set proportional to the
linearised stiffness kcl,jk(t) [98], which is defined on the of basis of Eq. 35. In
fact, the equation for δjk(t) ⩾ 0 may be rewritten as

fc,jk(t) = kcδ
n
jk(t) = kcl,jk(t)δjk(t) (37)
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which means that

kcl,jk(t) = kcδ
n−1
jk (t) (38)

It has to be noted that kcl,jk(t) has the dimension of a stiffness, i.e. N/m,
as opposed to the contact stiffness which is measured in N/m1.5 for a ball-
raceway contact. Due to the above considerations, contact damping c(t) is set
proportional to kcl(t) through coefficient βc. To achieve an enhanced control
on this parameter, the contact damping is herein defined by means of Rayleigh
damping so that:

cjk(t) = αcmb +βckcl,jk(t) (39)

where mb is the ball mass. This formulation permits to obtain a nonlinear rela-
tionship between frequency and damping ratio. Moreover, the choice is further
justified by noticing that Eq. 39 is usually considered a good representation of
the viscous damping [229], as it is the case with the greased contact between
rolling elements and raceways.

Furthermore, for the system under exam, mass matrix M, damping matrix
C and stiffness matrix K are defined according to the disposition of the
components in Figure 29:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mi 0 0 0 0 0

0 mi 0 0 0 0

0 0 mo 0 0 0

0 0 0 mo 0 0

0 0 0 0 mr 0

0 0 0 0 0 mr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(40)

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ci 0 0 0 0 0

0 ci 0 0 0 0

0 0 cr 0 −cr 0

0 0 0 cr 0 −cr

0 0 −cr 0 cr 0

0 0 0 −cr 0 cr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(41)
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K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ki 0 0 0 0 0

0 ki 0 0 0 0

0 0 kr 0 −kr 0

0 0 0 kr 0 −kr

0 0 −kr 0 kr 0

0 0 0 −kr 0 kr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(42)

Subsequently, by grouping all the degrees of freedom into the vector x(t), so
that:

x(t) =
{︂
xi(t) yi(t) xo(t) yo(t) xr(t) yr(t)

}︂T
(43)

the equations describing the behaviour of the system may be written as

Mẍ(t) + Cẋ(t) + Kx(t) + fc(t) + fd(t) = w (44)

where fc(t) is the contact force vector, i.e.

fc(t) =

nr∑︂
k=1

nb∑︂
j=1

fc,jk(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosφjk(t)

sinφjk(t)

− cosφjk(t)

− sinφjk(t)

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(45)

fd(t) is the contact damping force vector,

fd(t) =

nr∑︂
k=1

nb∑︂
j=1

fd,jk(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosφjk(t)

sinφjk(t)

− cosφjk(t)

− sinφjk(t)

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(46)
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and w contains the external forces applied to the system, that is, in the case of
an externally applied load:

w =
{︂
0 0 wx wy 0 0

}︂T
(47)

where wx and wy are the magnitudes of the external loads in the x and y direc-
tions, respectively. The damping matrix terms in Eq. 41 are set proportional to
the respective stiffness terms by means of coefficients βi and βr, i.e. ci = βiki
and cr = βrkr. These cases would be equivalent to Eq. 39 if αc was set to 0. In
this scenario, the damping ratio varies linearly with the frequency. Differently
from the contact damping, in fact, these are both cases of structural damping,
which is well represented by a linear law.

4.2.2 Faulty bearing model

The influence of the defect is introduced by adding the term d(φjk(t)) in Eq.
34, which becomes:

δjk(t) = (xi − xo) cosφjk(t) + (yi − yo) sinφjk(t) − d(φjk(t)) − h (48)

This parameter is defined on the basis of the formulation provided by Y. Jiang
et al. [22] for a deep-groove ball bearing and exploited by S. Gao et al. [99] for
an angular contact ball bearing. In this work, their geometrical definition is
applied to a self-aligning ball bearing. In this regard, the outer ring of these
components consists in a spherical raceway. Therefore, the race has the same
curvature radius ro in both the circumferential and in the axial direction.

The schematic representation of a rectangular defect centred at an angular
location φd on one row is depicted in Figure 30. The entry and exit edges,
namely φd,in and φd,out, respectively, are located at the following angular
positions:

φd,in = φd −
∆φd

2
(49)

φd,out = φd +
∆φd

2
(50)
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where ∆φd is the angular width of the defect. The additional radial displace-
ment due to fault presence of the j-th ball on the k-th row, namely d(φjk(t)),
may be observed on plane Oyz, as shown in Figure 30.a. However, because
the defect is shaped so that the ball only contacts the entry and exit edges, the
relationship between the travelled path and the bearing geometry is evaluated
on another plane, denoted in Figure 30.b as O’x’y’. Reference frame O’x’y’z’ is
obtained by rotating Oxyz around its x-axis by an angle equal to the contact
angle α. Its value, which actually depends on the applied load [52], is assumed
to remain unaltered, i.e. its variation over time is hypothesized to be negligible.
Therefore, the axes x and x’ are coincident, whilst y and y’ are not. The ball
displacement on plane O’x’y’ is defined by dα(φjk(t)) and it is equal to:

dα(φjk(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

rb + ro cos (φjk(t) −φd,in) − ro+

−
√︂

r2b − (ro sin (φjk(t) −φd,in))2
if φd,in ⩽ φjk(t) ⩽ φd

rb + ro cos (φd,out −φjk(t)) − ro+

−
√︂

r2b − (ro sin (φd,out −φjk(t)))2
if φd < φjk(t) ⩽ φd,out

0 otherwise
(51)

This formula allows to define the displacement on a radial plane as

d(φjk(t)) = dα(φjk(t)) cosα (52)

This additional deflection permits to take into account the effective compression
of the rolling elements in the fault area.

4.2.3 Procedure to determine model parameters

The numerical model described in 4.2.1 and 4.2.2 requires the estimation of
a remarkable number of parameters. The majority of them may be measured
with sufficient accuracy, such as the geometrical data and the mass of the com-
ponents. Nevertheless, a number of parameters are intrinsically uncertain and
their accurate estimation is extremely challenging. This observation commonly
leads authors to tune these parameters on the basis of their experience or on
practical considerations. In light of this observation, the methods detailed in
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Figure 30: Defect geometry and additional displacement due to outer ring fault. The
gray circle indicates the theoretical ball position in absence of the defect,
while the black circle accounts for its presence. Two views are shown: (a)
Oyz plane, derived from the global reference frame Oxyz; (b) O’x’y’ plane,
obtained by rotating reference frame Oxyz by an angle α around its x-axis
so generate a rotated frame O’x’y’z’.

this chapter aims at describing a procedure devoted to reduce the degree of
uncertainty of these parameters. Albeit the precise estimation of such quanti-
ties may remain arduous, it is possible to provide guidelines for their choice in
absence of specific references. In fact, reasonable limits may be imposed on
each parameter on the basis of analytical relationships related to the physics
of the problem.
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The proposed technique consists in minimizing a multi-objective function in
the form

θ = f(γ) (53)

where θ is a vector containing the objective functions to minimize. These are
global indicators that describe the discrepancy between numerical and experi-
mental results for a number of test conditions. Vector γ, instead, comprises the
unknown parameters of the model, which are constrained to assume a value
comprised within reasonable limits based on the nature of each parameter.
The solution of the multi-objective optimization problem consists in a number
of points in the objective space so that further decreasing the value of one
objective function does not decrease the others, i.e. it is not possible to further
improve all objectives at the same time. These points should converge to the
Pareto front of the problem [230].

The definition of a global indicator is described by considering a generic signal
feature V . The associated numerical and experimental features are indicated
as Vnum and Vexp, respectively. Since the value of V depends on the test
conditions, in an experimental study these features may be evaluated ntests

times, where ntests is the number of test conditions. Additionally, each one
may be repeated nrep times, where nrep is the number of times that a single
test condition is replicated. Therefore, the average experimental value of the
feature Vexp for the k-th test condition, i.e. Vexp,k, is:

Vexp,k =

nrep∑︂
p=1

Vexp,kp (54)

where subscript p refers to the p-th repetition of the test. Consequently, the
percentage difference between the numerical and experimental feature for the
k-th condition is:

∆Vk(γ) =

⃓⃓⃓⃓
⃓Vnum,k(γ) − Vexp,k

Vexp,k

⃓⃓⃓⃓
⃓ · 100 (55)
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where the k-th numerical feature Vnum,k depends on the unknowns vector
γ. Finally, the global indicator ∆V(γ) is the average value which takes into
account all test conditions:

∆V(γ) =
1

ntests

ntests∑︂
k=1

∆Vk(γ), (56)

This definition implies that ntests simulations must be run for each set of γ in
order to compute ∆V(γ). The value of ntests is influenced by the number of
test conditions and the number of test repetitions, i.e. nrep. Attention should
be paid to the choice of both quantities. Concerning the number of operative
conditions, performing more tests translates to a higher number of conditions
to be matched by the optimization algorithm. This may extend the applicability
of the results but also leads to a higher computational effort. On the other
hand, nrep depends on the number of defective bearings with the same defect
widths. The generation of these test samples is usually performed through
EDM. Therefore, the time and costs associated with this operation must also be
taken into account. Finally, each defect should be measured, since the nominal
dimension generated through EDM may be not accurate enough, especially for
lower defect dimensions. This further step leads to additional complexities in
the process. Due to these observations, a total of 18 operative conditions and
three repetitions of each test have been selected in this manuscript to provide
an example of application of the proposed procedure. The experimental test
setup has been thoroughly discussed in Chapter 2.

In general, any number of function objectives and unknown parameters may
be chosen, depending on the requirements of the specific problem. Within
the context of rolling element bearings, it is possible to define two objective
functions which represent, in different ways, the energy content of the signal.
The first feature is the quadratic sum of the first five defect harmonics, namely
A∗, and it is defined as:

A∗ =

⌜⃓⃓⎷ 5∑︂
i=1

A2
BPFO,k (57)

where ABPFO,k is the amplitude of the k-th harmonic of the BPFO for a given
value of the rotation frequency. This feature represents the energy content
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of the low frequency deterministic phenomena related to the rotation of the
components. The other feature is the RMS value of the signal, which is defined
by employing the classical definition:

RMS =

⌜⃓⃓⎷ 1

N

N−1∑︂
k=0

Z(k)2 (58)

where N is the length of the signal and Z(k) is the k-th element of signal Z.
This feature accounts for the energy content of the entire signal. Eq. 57 and
Eq. 58 are employed to determine the global indicators for all test conditions
as detailed in Eq. 56. In the following, they are referred to as ∆A∗ and ∆RMS,
respectively.

Concerning the unknown parameters, it is possible to define a subset of
model parameters whose estimation is characterized by a high degree of
uncertainty. Among those, mass mr and stiffness kr of the additional resonant
mass connected to mo depend on the properties of the system under exam.
Although their values should be tuned in order to model a high natural
frequency of the system, no further information on their choice is usually
provided in the literature. Nonetheless, it is crucial to properly set their values,
as they strongly concur in defining the dynamic response of the system.
Uncertainties are also associated with the estimation of the values of αc and βc,
which are needed to define the contact damping. This parameter is typically
inserted as a constant value on the basis of the experience of the authors.
Therefore, it may be challenging to estimate the most suitable value for the the
case under study in absence of further information. Likewise, the coefficients of
the damping matrix ci and cr are also set on the basis of practical considerations
and are subjected to similar uncertainties. Finally, the nominal value of the
radial clearance h is also not known a priori, since it might assume a range
of different values even for nominally identical bearings. On the other hand,
the estimation of the geometrical data and the mass of the components is
generally attainable with sufficient accuracy. Consequently, they are considered
as constant values in the proposed procedure. For each unknown parameter,
it is possible to define a range of admissible values based on the physical
properties of each one. The parameter values that minimize f(γ), then, have to
be sought within these intervals. The estimation of the values which delimit
these ranges is exhaustively discussed in the next section.
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4.2.4 Definition of the constraints

Constraining equations must be supplied for each parameter value inserted
into the optimization procedure. Each parameter, in fact, may not take an
arbitrary value but it may only assume a value comprised between reasonable
limits which depend on the nature of each one. This means that the generic
parameter v must uphold the condition vmin ⩽ v ⩽ vmax, where vmin and vmax

are the extreme values of the chosen interval. In the problem described in
Section 4.2.3, the parameters mr, kr, αc, βc, ci, cr and h must all respect this
condition. Apart from this basic requirement, the interesting aspect is given by
the choice to include additional laws linking the unknown parameters. Such
relationships may be defined on the basis of the physical model and they allow
to drive the optimization avoiding unrealistic computations of the parameters.

Concerning mr and kr, their value should be set to model a resonance taking
place in a high frequency range of the spectrum. This frequency range is not
known a priori, since it depends on the characteristics of the system under
examination. Therefore, it should be investigated by analysing the spectrum
obtained via experimental testing. In the employed model, the stiffness kr is
assumed to be equal in both the x and y directions. As a result, there are two
resonance frequencies of the mass mr which depend on the bearing stiffness in
these two directions. As a first approximation, in fact, the natural frequencies
of the model may be estimated by solving an eigenvalue problem [229]:(︂

M−1Kl − λI
)︂
ψ = 0 (59)

where Kl is the linearised stiffness matrix, I is the identity matrix and ψ is
the mode shape vector. The linearised stiffness matrix around a given load is
defined by [88]:

Kl =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kxx + ki 0 −kxx 0 0 0

0 kyy + ki 0 −kyy 0 0

−kxx 0 kxx + kr 0 −kr 0

0 −kyy 0 kyy + kr 0 −kr

0 0 −kr 0 kr 0

0 0 0 −kr 0 kr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(60)
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where the terms kxx and kyy are bearing stiffness terms evaluated at a given
static load. By introducing the cross coupling terms kxy and kyx, the linearised
bearing stiffness matrix Kb containing these terms is equal to:

Kb =

[︄
kxx kxy

kyx kyy

]︄
= nkc

nr∑︂
k=1

nb∑︂
j=1

δn−1
jk (t)

[︄
cos2φjk cosφjk sinφjk

cosφjk sinφjk sin2φjk

]︄
(61)

It is important to note that the bearing stiffness depends on the applied load
and on the cage angular position φ0. However, the numerical analysis is
simplified by considering an average value of the stiffness over one period.
In fact, it has been shown in Chapter 3 that the stiffness variation introduced
by considering different cage positions is smaller than the average value of
the stiffness over the ball passing period by at least one order of magnitude.
Lastly, the problem is further simplified by neglecting the cross-coupling terms,
which are usually two to three order of magnitudes lower than the terms on
the matrix diagonal [88].

The solution of the eigenvalue problem allows to determine the natural fre-
quencies and the mode shapes. In this case, however, the goal is to find a
relationship relating mr, kr and the associated natural frequencies. This allows
to express the values of kr which, for different values of mr, would produce the
requested natural frequency. Such a relationship may be obtained by expanding
Eq. 59. The resulting relationship, then, may be expressed as:

kr(mr) =
ξ(mr)

χ(mr)
(62)

where ξ(mr) and χ(mr) are two terms which linearly depend on mr:

ξ(mr) = λmr

[︂
λ2mimo − λ(kimo + kbmo) + kikb

]︂
(63)

χ(mr) = λmr(λmi − ki − kb) +Λ (64)

where kb may be equal either to kxx or to kyy. As previously mentioned,
in fact, two resonance frequencies are associated with mass mr. The two
different possible values of kb allows to take into account both scenarios.
Lastly, coefficient Λ is constant for a given eigenvalue λ:

Λ = λ2mimo − λ(kimo + kbmi + kbmo) + kbki. (65)
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Eq. 62 allows to define the constraining equations for parameters kr and mr.
In fact, it is possible to assume that they should produce an high resonance
frequency comprised between two extreme values fr,min and fr,max so that:

fr,min ⩽ fr ⩽ fr,max (66)

The limit values depend on the resonance frequencies that are observed exper-
imentally. If mr and kr are also constrained, i.e.:

mr,min ⩽ mr ⩽ mr,max (67)
kr,min ⩽ kr ⩽ kr,max (68)

then the limiting frequencies fr,min and fr,max are also variable. Consequently,
the admissible values of mr and kr are further related by the following formula:

ξmin(mr)

χmin(mr)
⩽ kr(mr) ⩽

ξmax(mr)

χmax(mr)
(69)

in which ξmin, χmin, ξmax, χmax are computed via Eq. 62 by imposing a natural
frequency equal to fr,min for ξmin and χmin and equal to fr,max for ξmax and
χmax. In other words, Eq. 69 imposes the same constraint reported in Eq. 66.
This relationship must hold for both values of kb, i.e. kxx and kyy.

Concerning the contact damping, this parameter is controlled by means of a
proportional damping approach as stated in Eq. 39. Therefore, its value varies
with the linearised contact stiffness kcl,jk(t) and depends on the constant coef-
ficients αc and βc, which are unknown. The proportional damping approach
allows to define the damping ratio over the whole frequency range under exam
by defining two damping ratios at two different frequencies. The damping
ratio ζn at the natural frequency fn may be defined as:

ζn =
1

2

(︃
αc

ωn
+βcωn

)︃
(70)

in which ωn = 2πfn. According to this definition, the values of αc and βc

may be determined by imposing two values ζ1 and ζ2 at two frequencies fn1
and fn2. These natural frequencies may be chosen by selecting two resonance
frequencies observable in the experimental spectrum. This means that, for two
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assigned frequency values, αc and βc are completely defined by the choice of
ζ1 and ζ2. Therefore, the damping ratios are employed in place of αc and βc as
unknown parameters in the optimization procedure. This choice is due to the
increased physical sensitivity associated with the definition of ζ that allows
to provide more reasonable estimate for the admissible intervals compared
to αc and βc. The values of the damping ratios must be limited in two given
intervals:

ζ1,min ⩽ ζ1 ⩽ ζ1,max (71)
ζ2,min ⩽ ζ2 ⩽ ζ2,max (72)

In addition, to prevent solutions with αc lower than zero, the damping ratio
values must respect the following condition:

ζ1
ω1

−
ζ2
ω2

> 0 (73)

Moreover, according to the literature [101], the coefficient βc should be set so
that is upholds the condition βc,min ⩽ βc ⩽ βc,max, which might be expressed
as:

βc,min ⩽
2 (ω2ζ2 −ω1ζ1)

ω2
2 −ω2

1

⩽ βc,max (74)

The inequalities in Eq. 73 and Eq. 74 are used in conjunction with Eq. 71 and
Eq. 72 to define the complete set of constraints for the contact damping.

The damping coefficients of the damping matrix, namely ci and cr, are also
defined by exploiting the damping ratios. However, differently from the contact
damping, the coefficient which multiplies the mass is set to zero. Consequently,
by defining ci = βiki and cr = βrkr the associated damping ratios ζi and ζr
become:

ζi =
βiωi

2
(75)

ζr =
βrωr

2
(76)

where ωi and ωr are natural frequencies selected on the basis of experimental
observations. In particular, the former should represent a resonance of the
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masses attached to the inner ring, while the latter is associated with an high
frequency response of the system. Differently from the other parameters, it is
sufficient to define the extreme values of these parameters as:

ζi,min ⩽ ζi ⩽ ζi,max (77)
ζr,min ⩽ ζr ⩽ ζr,max (78)

without the need to provide additional relationships by means of further
constraints.

Finally, radial clearance h is another major source of uncertainties. Usually,
the manufacturers provide typical intervals within which the nominal values
should lie in an unloaded condition. Therefore, it might be assumed that h
should be comprised between hmin and hmax, so that:

hmin ⩽ h ⩽ hmax (79)

In conclusion, the system of constraining inequalities that has to be supplied
in the optimization procedure is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mr,min ⩽ mr ⩽ mr,max

kr,min ⩽ kr ⩽ kr,max

ξmin(mr)
χmin(mr)

⩽ kr(mr) ⩽
ξmax(mr)
χmax(mr)

ζ1,min ⩽ ζ1 ⩽ ζ1,max

ζ2,min ⩽ ζ2 ⩽ ζ2,max

ζ1
ω1

− ζ2
ω2

> 0

βc,min ⩽ 2(ω2ζ2−ω1ζ1)

ω2
2−ω2

1

⩽ βc,max

ζi,min ⩽ ζi ⩽ ζi,max

ζr,min ⩽ ζi ⩽ ζr,max

hmin ⩽ h ⩽ hmax

(80)

The constraints in Eq. 80 may be also applied to bearing models involving
a different number of DOFs. In fact, their number has no influence on the
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constraints on the damping ratio. What may change, however, is the number
of inequalities to be added. In fact, in the present work it has been assumed
that stiffness ki and kr have the same values in both x and y direction. This
assumption is not mandatory, and for other systems different values in the
two directions may be imposed. On the other hand, the number of DOFs
has an effect on the constraint regarding the resonance frequency defined
by Eq. 69, especially for models that also include the z direction. In such a
case, an additional term kzz is added to the bearing stiffness matrix. Therefore,
the relationship imposed by Eq. 69 must be also respected for this term in
addition to kxx and kyy. In fact, Eq. 62 is still applicable for problems with
higher number of DOFs under the hypothesis that the cross-coupling terms
in the bearing stiffness matrix may be neglected. Finally, the optimization
procedure may be also applied to models which assign five or six DOFs to
the components, as the ones derived from the work of Gupta [79], e.g. [78, 80,
231], or based on other formulations [99, 232, 233]. However, these models
also include rotational degrees of freedom. As a result, the solution of Eq. 69

may increase in complexity, as it is the number of inequalities needed for the
damping ratios. In particular, the solution of Eq. 69 remains the same only if
the cross-coupling terms among linear and rotational DOFs are still negligible.
Self-aligning ball bearings are not allowed to carry any moment load. As a
consequence, since a bearing of this kind is employed for the experimental tests
decribed in Chapter 2, the study of rotational degrees of freedom is neglected
in this study. Nonetheless, the proposed procedure does not lose generality
and may be also applied to other bearing types as well as for models including
a higher number of DOFs, provided that they are adapted accordingly.

4.3 results of the experimental tests

The experimental test rig employed to acquire the data needed for the valida-
tion of the optimization procedure has been exhaustively detailed in Section
2.2. Furthermore, Section 2.3.1 described the shape of the defects seeded on the
outer races and all test conditions for the stationary tests. Defect dimensions
are reported in Table 2. Test parameters, on the other hand, are detailed in
Table 13. For each defect width, six combinations of load and shaft speed
values are tested. For each one, the characteristic frequency of the defect on
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Table 13: Test combinations of operative conditions. Each combination of load and
speed is tested for each defect width D1, D2 and D3 and for each replica
of every fault. BPFO values refer to the theoretical defect frequency on the
outer ring.

Load [N] Rotation frequency [Hz] BPFO [Hz]

1000 20 97.8
1000 30 146.7
1000 40 195.6
2000 20 97.8
2000 30 146.7
2000 40 195.6

the outer race, known as ball pass frequency of the outer ring (BPFO), assumes
a value which depends on the shaft speed, viz. [234]:

BPFO =
nbωs

4π

(︃
1−

rb
rp

cosα
)︃

(81)

where rp is the bearing pitch diameter. The BPFO values associated with each
condition are also reported in Table 13.

Figure 31 shows the time signals for different combinations of values of radial
load, shaft rotation frequency and defect width. As a consequence of the
considerable amount of runs, only the time signals for a single damage sample
are reported. Each signal is represented in a time window corresponding
to one cage rotation. The influence of the defect may be clearly observed in
each signal, albeit the waveform is greatly influenced by the test parameters.
For instance, it is noteworthy to qualitatively compare the time signals for
a rotation frequency equal to 40 Hz. In this case, it is possible to observe a
drastic change of the waveform when increasing the applied load from 1000 N
to 2000 N, especially for the defect dimensions D2 and D3.

In addition to the time signals, a representative spectrum is shown in Figure
32.a. The plot refers to a test conducted for a load value equal to 2000 N
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Figure 31: Experimental time signals for different combinations of defect dimension
and load w: (a) D1, w = 1000 N; (b) D1, w = 2000 N; (c) D2, w = 1000 N;
(d) D2, w = 2000 N; (e) D3, w = 1000 N; (f) D3, w = 2000 N.

111



multi-objective optimization procedure for the estimation of

unknown parameters in lumped-parameter models of defective

bearings

and a rotation frequency value equal to 30 Hz for defect sample D2. The
analysis of the frequency spectrum shows the presence of the BPFO and its
harmonics, that is, 146.7 Hz and its integer multiples. In particular, the zoom
in the low-frequency zone of the plot highlights the presence of the first two
BPFO harmonics. Alongside them, Figure 32.a also permits to observe the
harmonics of the shaft rotation frequency frot, which may be appreciated
only below 300 Hz. On the other hand, BPFO harmonics are particularly
noticeable in two frequency zones, i.e. around 400 Hz and 1500 Hz, as depicted
in Figure 32.b. These are the two zones showing the highest acceleration
magnitudes and might therefore be generated by possible resonances of the
system. Notably, Figure 32.b shows that the resonances amplify the response
up to the eleventh BPFO harmonic. In addition, Figure 32.c depicts another
resonance phenomenon in the frequency interval comprised between 7000 and
9000 Hz. This peculiar behaviour is typically observed in this kind of systems
[24, 88, 94].

Moreover, it is worth discussing the trends of the experimental features A∗ and
RMS introduced in Eq. 57 and Eq. 58, respectively. Figure 33.a, Figure 33.c and
Figure 33.e report the RMS values for all the considered test conditions as a
function of the rotation frequency. The result of each test has been represented
by a cross marker, while their average value is illustrated by a square marker.
From the RMS trends shown in Figure 33, it may be seen that increasing
the applied static load value produces an increment of the RMS value for all
conditions. In addition, increasing the rotation frequency produces the same
effect, although with different trends among the defect dimensions. In fact, for
the defect characterized by the largest width, i.e. D3, the RMS values are close
to each other at 20 Hz and 30 Hz for both loads but they considerably increase
at 40 Hz. Figure 33.b, Figures 33.d and Figure 33.f, instead, show the trends of
A∗, for which similar conclusions may be drawn. However, the data appear to
be more scattered around their average value, especially at a frequency value
equal to 40 Hz. Nevertheless, the trends show that A∗ consistently rises at 40

Hz compared to the other rotation frequency values. Moreover, its value lowers
from 20 Hz to 30 Hz for both loads for defects D1 and D2, thus denoting a
different behaviour from the RMS. The peculiar trends of this parameter may
be due to the fact that the BPFO changes with the rotation speed. Therefore, the
response at the BPFO and its first five harmonics may be influenced by different
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Figure 32: Experimental frequency spectrum for defect D2 under an applied load of
2000 N and a rotation speed of 30 Hz: (a) Spectrum over the frequency
range 0 - 9500 Hz; (b) Spectrum in the "low" frequency range 0 - 2000 Hz;
(c) Spectrum in the "high" frequency range 6000 - 9000 Hz.

resonances in correspondence of different values of the rotation frequency. As
a result, A∗ may not necessarily increase with the rotation speed of the shaft.

Additionally, Figure 34 depicts the same results but as a function of the defect
width, as some additional considerations may be drawn from these graphs.
Concerning the RMS, Figures 34.a, 34.c and 34.e show that increasing defect
widths lead to larger RMS values. Besides, the trends of A∗ in Figures 34.b,
34.d and 34.f indicate that this parameter decreases at 20 Hz for larger widths
while it slightly increases at 30 Hz. The behaviour of this parameter changes
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Figure 33: Signal features compared against the rotation frequency. For each rotation
frequency, the three cross markers represent a different test run on another
bearing with the same defect size. The square marker denotes the average
value of the three tests. (a) RMS for defect D1; (b) A∗ for defect D1; (c) RMS

for defect D2; (d) A∗ for defect D2; (e) RMS for defect D3; (f) A∗ for defect
D3.

drastically at 40 Hz, although the same considerations on data scattering cited
for the previous plots may be also applied here.
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Figure 34: Signal features compared against the defect width. For each defect dimen-
sion, the three cross markers represent a different test run on another
bearing with same defect size. The square marker denotes the average value
of the three tests. (a) RMS at 20 Hz; (b) A∗ at 20 Hz; (c) RMS at 30 Hz; (d)
A∗ at 30 Hz; (e) RMS at 40 Hz; (f) A∗ at 40 Hz.

4.4 application of the multi-objective optimization technique

to experimental signals

The multi-objective optimization procedure described in Section 4.2.3 is applied
in order to determine the unknown parameters in the described numerical
model. Firstly, the analytical constraints introduced in Section 4.2.4 are detailed
for the case under exam. Then, the results of the multi-objective optimization
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are discussed. Time signals, frequency spectra and numerical features are
reported to provide a comparison with the experimental results.

4.4.1 Parameters of the model and definition of the constraints

The known model parameters are reported in Table 14. The value of stiffness
ki is estimated by means of a FE model of the shaft in which the inner
ring is mounted. In this case, in fact, classic beam theory should be avoided
since the shaft is short and the support bearings occupy a large part of the
shaft itself. The FE model consists of the shaft, meshed with 3D tetrahedral
elements, and nonlinear springs replacing the support bearings, as depicted in
Figure 35. Both bearing seats on the shaft are connected to a central node by
rigid connectors. These nodes are connected to the ground through nonlinear
springs whose stiffness is analytically computed via the method described in
3.4. The computational domain is halved by exploiting the system symmetry.
Load is applied at the test bearing end by applying a sinuosoidal distribution
which replicates the load distribution on the bearing. Nastran static nonlinear
solution SOL 401 is employed to solve the model. Then, stiffness is evaluated
for different loads by considering the ratio between the magnitude of the
applied load and the average displacement of the nodes on the shaft end.
The considered nonlinear load-deflection relationship means, however, that
the stiffness of the shaft varies with the applied load. As a consequence, by
introducing a nonlinear term for the shaft stiffness the complexity of the LP
model would substantially increase. Despite this consideration, it is observed
that the support bearings are considerably stiffer than the shaft, and the
variation of stiffness in the operative range is not excessive. In fact, Table
15 reports that the stiffness has a very low dependence from the load, i.e.
lower than 3% for a load ranging from 500 N to 3000 N. Thus, the resulting
stiffness may be considered, with a good approximation, a constant value
independent from the applied load. The value of the contact stiffness kc,
instead, is analytically computed by exploiting the Hertzian contact theory
for the general case of two bodies with different principal relative radii of
curvature in orthogonal planes [19], which has been discussed in Section 3.2.2.
This value is independent from the applied load and only depends on the
materials and the curvature radii of the bodies in contact.
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Table 14: Model parameters.

Description Symbol Value

Inner ring and shaft mass mi 3.48 kg
Outer ring, casing and pedestal mass mo 5.79 kg

Ball mass mb 1.47 x 10
-3 kg

Shaft stiffness in the x and y directions ki 75 MN/m
Contact stiffness kc 5927 MN/m1.5

Applied load

Central nodes
Displacement is evaluated for the 

nodes on this line

Rigid connectors

Motor sideTest bearing side

y

z

Figure 35: FE model of the shaft.

Table 15: Shaft stiffness estimated through FE analysis.

Load [N] Shaft stiffness [MN/m]

500 73.72

1000 74.61

2000 75.45

3000 75.93

In order to proceed with the multi-objective optimization, it is first necessary
to provide the intervals in which the unknown parameters are allowed to vary.
The extreme values of these ranges are reported in Table 16 and they have been
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Table 16: Minimum and maximum allowable values for each unknown parameter.

Parameter Minimum value Maximum value

mr [kg] 0.1 5

kr [GN/m] 0.1 10

ζ1 [%] 0.1 15

ζ2 [%] 0.1 15

ζi [%] 0.1 15

ζr [%] 0.1 15

chosen on the basis of practical considerations. The values of the damping
ratios are all assumed to be variable between 0.1 % and 15 %. The values of
mr and kr have both wide ranges in order to take into a account a variety of
possible outcomes. Radial clearance h, on the other hand, has been assumed
to be equal to zero in order to reduce the already remarkable computational
burden.

To evaluate the further constraint on mr and kr, it is crucial to determine
the bearing stiffness matrix terms kxx and kyy for the bearing under exam,
which may be computed by employing Eq. 61. Bearing stiffness could also be
determined by employing the FE procedure detailed in Chapter 3. However,
for the purpose of this work, the stiffness must be evaluated for several angular
positions of the cage. Therefore, the analytical formulation is utilized in place
of the FE method in order to obtain a faster estimate. Figure 36 shows the
variation of the stiffness terms for a healthy bearing over the ball pass period for
two different applied radial loads. The stiffness change due to cage movement
is well-known in the literature as varying compliance (VC) effect [12]. The VC
effect leads to a variation of stiffness of the bearing depending on the position
of the rolling elements even in a healthy condition. The periodicity is equal
to the angular spacing between the balls on opposite rows, i.e. 360°/nr ·nb =
15° in the case under exam. The load values, which correspond to the ones
applied on the experiments, increase the stiffness in all cases. Besides, in the
considered scenario in which there is only a constant vertical load, the term
kyy remains mostly unaltered, as its deviation from its mean value is lower
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Figure 36: Bearing stiffness terms of an healthy bearing as a function of load and balls
position: (a) kxx; (b) kyy; (c) kxy.

than 0.02 %. On the other hand, kxx shows a clear variation over a period, since
its minimum and maximum values differ by 7.5 %. The low variation on kyy
term is due to the high number of balls which carry the load. These results
agree with the stiffness estimates reported in [49, 88]. In addition, Figure 36.c
shows one of the cross-coupling terms, kxy. The other term, kyx, is not shown
since it assumes the same values. The plot denotes that, in agreement with
the hypothesis in Section 4.2.4, the cross-coupling terms are several orders of
magnitude lower than the terms on the main diagonal. Therefore, it is possible
to neglect them to evaluate the linearised stiffness matrix. Moreover, Figure 37

depicts the stiffness coefficients but for a faulty bearing. Defect dimension D3

has been chosen to better visualize the introduced stiffness variation, but the
same behavior may be observed for the D1 and D2 dimensions alike. When
one ball enters the defect area, stiffness kyy reduces while kxx increases. For
both loads the latter diminishes by 12.5 %.

For the purpose of estimating the natural frequencies of the system, the healthy
bearing stiffness is considered. Therefore, the stiffness variations due to a fault
are neglected in the study of the resonances. Besides, since kxx is variable,
a mean value over the ball pass period is selected in order to simplify the
computations. Finally, since the value of kxy is considerably smaller compared
to the other terms, it will be neglected in further analyses. The stiffness matrix
terms computed in this manner are reported in Table 17.

119



multi-objective optimization procedure for the estimation of

unknown parameters in lumped-parameter models of defective

bearings

0 10 20 30
0

50

100

150

200

St
iff

ne
ss

 [M
N

/m
]

kxx

 1000 N
 2000 N

W [N]

0 10 20 30
0

50

100

150

200

St
iff

ne
ss

 [M
N

/m
]

kyy

0 10 20 30
-1

-0.5

0

0.5

1

St
iff

ne
ss

 [M
N

/m
]

kxy(a) (b) (c)

Cage position  [deg]φ0 φ0 φ0Cage position  [deg] Cage position  [deg]

Figure 37: Bearing stiffness terms of a faulty bearing with defect dimensions D3 as a
function of load and balls position: (a) kxx; (b) kyy; (c) kxy.

Table 17: Healthy bearing stiffness matrix terms at 1000 N and 2000 N.

Load [N] 1000 2000

kxx [MN/m] 102.3 128.8
kyy [MN/m] 152.3 192.2

By solving the eigenvalue problem in Eq. 59 it is possible to estimate the effect
of the variation of mr and kr on all the natural frequencies of the system within
the limits reported in Table 16. Since the problem has 6 DOFs, there are six
natural frequencies. Each one depends on the variable values of mr and kr and
also on the load. As a result, two of them will pertain to the high frequency
resonances of mr. The numerical results show that the resonance values in
the x and y directions are almost identical and that the influence of load on
these natural frequencies is negligible. Therefore, the results are depicted in
Figure 38 by only plotting one surface corresponding to a radial load value
equal to 2000 N. The figure shows that the value of the frequency non-linearly
depends on both mr and kr. Moreover, the frequency greatly increases when
mr diminishes, in particular for the highest stiffness values.

In addition, Figure 39 depicts the possible values of the other frequencies in
the same ranges of mass and stiffness. It may be appreciated how different
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Figure 38: Effect of the values of mr and kr on the natural frequency of the high
resonant mass for an healthy bearing at the applied static load of 2000 N:
(a) Three-dimensional surface plot; (b) Relationship between mr and kr for
different natural frequencies. The grey hatched area designates the mass
and stiffness combinations that produce a resonance frequency comprised
between 4500 Hz and 9500 Hz.

values of mr influence the resonance frequencies, in particular for the first
two modes, while modifying kr does not produce noticeable differences. It
is also worth comparing the results for the second and fourth mode to the
experimental spectrum that is shown in Figure 32.b. the comparison that there
are two resonance zones around 400 Hz and 1500 Hz, in agreement with the
experimental observation.

Concerning ζ1 and ζ2, the additional constraints in Eq. 73 and Eq. 74 are com-
puted by choosing two frequency values corresponding to the two damping
ratios. Based on the experimental observations, the two frequencies fn1 and fn2
are set equal to 400 Hz and 1500 Hz, respectively. Moreover, the limit values
of βc are defined as βc,min = 0.25 x 10

-5 s and βc,max = 2.5 x 10
-5 s [98]. These

conditions are plotted in Figure 40. The area denoted with the gray hatching
in Figure 40.a represents the set of admissible solutions for Eq. 73 and Eq.
74. In fact, the solid straight lines represent the combinations of ζ1 and ζ2
that generate βc values equal to βc,min and βc,max, while the dash-dot line
describes the values which produce αc = 0. Likewise, Figure 40.b presents
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Figure 39: Effect of the values of mr and kr on the first four natural frequencies of the
healthy bearing. The directions refer to the global reference frame Oxyz. (a)
Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4.

the same conditions but on a αc - βc plane. This plot shows that, within the
assumed limits of ζ, the admissible values of αc increase in case that βc de-
creases. Finally, the damping ratio ζi is associated with the natural frequency
fi = 400 Hz, whilst ζr refers to the natural frequency fr = 8000 Hz.
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4.4.2 Model parameters estimated through multi-objective optimization

The problem described in Section 4.2.3 is solved by employing an optimization
procedure devoted to the minimization of the vector θ introduced in Eq. 4.2.4.
According to the experimental campaign described in Section 2.3.1, 18 different
test conditions have been included in the problem. These correspond to two
different radial load values, i.e. 1000 N and 2000 N, three rotation speed values,
namely 20 Hz, 30 Hz and 40 Hz and three defect widths corresponding to
dimensions D1, D2 and D3. Therefore, the numerical model is solved for each
combination of these conditions during each iteration of the optimization
procedure. The load value is applied on the y direction and is labelled as w in
accordance with Figure 7. Therefore, the coefficients in Eq. 47 are wy = w and
wx = 0. The set of equations in Eq. 44 is solved in MATLAB environment [235]
through the ordinary differential equation solver ode45, which is based on an
explicit fourth order Runge-Kutta formula. A time step ∆t = 1.9531 x 10

-5 s is
chosen for the numerical integration. For each parameter combination, 1 s of
signal is simulated. Solution is obtained in the time domain. The employed
time length allows to obtain a regime solution that permits to compute the
RMS of the stationary signal after removing the initial transitory. Then, feature
A∗ is calculated after transforming the signal in the frequency domain. By
knowing RMS and A∗, it is possible to compute the objective functions ∆RMS
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and ∆A∗ for each operative condition by exploiting Eq. 56. Simulations were
run on a desktop workstation with 32 GB RAM and an I7 processor. Each
condition took about 2.3 s of simulation. As a consequence, it took about 42 s
to compute the features for all the operative conditions and defect dimensions.
The algorithm needed 152 hours to find the set of optimal parameters.

Figure 41 represents the values of the objective functions of vector θ which
lies on the estimated Pareto front. Each point corresponds to a different
combination of parameters of the vector γ which complies to the constraints
defined in Section 4.2.4. The main consideration that may be done on the results
regards the different order of magnitude for the variation of the objectives.
In fact, while ∆A∗ varies approximately between 35.83 % and 35.9 %, ∆RMS

ranges between 17.9 % and 21.3 %. From the graph it is possible to notice
that the sets of unknown parameters found by the algorithm greatly affects
the RMS value but are unable to further reduce the value of ∆A∗ below
35.83 %. The values of ∆A∗ constitute a consequence of the high number of
operative conditions considered in the experimental campaign, since the global
accuracy of the model tends to decrease as the range of working conditions
is increased. It is worth noting, in fact, that to the best of author knowledge
such a kind of validation across several different operative conditions and
defect dimensions is not available in the literature. Closest examples may be
found in the works of J. Liu [97] and S. Mufazzal et al. [106]. In the former, the
author showed numerical RMS trends depending on fault length for different
combinations of load and speed values , but experiments were performed
on a single operative condition and for one defect dimension only. In the
latter, the authors reported acceleration peaks for different defect dimensions
against experimental data, but for only one operative condition. Therefore,
within this context, the procedure described in this paper provides the basic
framework to allow determining the unknown parameters in situations in
which multiple operative conditions must be validated. The points on this
peculiar type of front are known as weak Pareto optimals [236]. Differently
from the general definition of Pareto optimal, which states that there are no
points that simultaneously improve both objective functions, in a cluster of
weak Pareto optimals there might exist points which improve one function
while not changing the others. Since the variation of ∆RMS is considerably
larger than the fluctuation of ∆A∗, it is reasonable to assume a situation similar
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Figure 41: Values of the objective functions of vector θ which form the estimated weak
Pareto optimal. Each point corresponds to a different set of parameters γ
which solves the optimization problem by providing nondominated points
in the feasible objectives space.

to the latter. This type of results, however, should not come as unexpected as
this kind of problem is known to possibly produce weak Pareto optimal points
[237].

In light of the above considerations, Figure 42 reports the values assumed by
each unknown parameter of γ for each point on the Pareto front as a function
of the only objective function ∆RMS. It might be reasonably assumed, in fact,
that ∆A∗ remains approximately constant for all these combinations of param-
eters. Therefore, in the sebsequent analyses the optimal set of parameters will
be defined as the one producing the lowest value of ∆RMS. The associated
parameter values are reported in Table 18 along with the associated derived
parameters, i.e. the damping terms ci and cr, the proportional damping co-
efficients αc and βc and the natural frequency of the high resonant mass fr.

The plotted trends allow to draw some conclusions concerning the values of
the unknown parameters. Figures 42.a and 42.b shows that ζi and ζr have a
low variability, as the former remains slightly below 15 % for all points while
the latter is limited between 0.11 % and 0.51 %. Figure 42.c and Figure 42.d
reports the possible values of ζ1 and ζ2. Based on them, the corresponding
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Figure 42: Representation of the unknown parameters estimated through the multi-
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the vector θ as a function of ∆RMS. Each plot shows one of the parameters:
(a) ζi; (b) ζr; (c) ζ1; (d) ζ2; (e) mr; (f) kr.

values of αc and βc may be computed through Eq. 70. Interestingly, every
combination of ζ1 and ζ2 produce a value βc = 2.5 x 10

-5, which is the upper
limit defined for this quantity as defined in Section 4.2.4. Coefficient αc, on the
other hand, assumes an appropriate value corresponding to the combination
of the two damping ratios. Eventually, Figures 42.e and 42.f depict the values
of mr and kr, respectively. The former varies between restricted limits, i.e.
between 3.0 and 3.09 kg, while the latter assumes a constant value equal to
4.25 x 10

9. These combinations of values generate a number of possible natural
frequencies, which are shown in Figure 43. Remarkably, all the estimated
natural frequencies assume values approximately between 7.32 kHz and 7.4
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Table 18: Combination of parameters that minimizes the value of ∆RMS.

Parameter Value Derived parameters Value

ζi [%] 14.95 ci [Ns/m] 2834.1
ζr [%] 0.13 cr [Ns/m] 186.0
ζ1 [%] 6.22 αc [s-1] 154.9
ζ2 [%] 12.6 βc [s] 2.5 x 10

-5

mr [kg] 3.01 fr [Hz] 7388

kr [N/m] 4.25 x 10
9
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Figure 43: Estimated natural frequencies for each combination of mr and kr of each
vector γ.

kHz, which are values very close to the resonance zone observed in the
experimental tests. In conclusion, the value of ∆RMS is considerably influenced
by ζr, ζ1, ζ2 and mr. The value ∆A∗, on the contrary, is almost not affected for
these combinations of parameter values.

As an additional observation, it is worth underlining that the results described
in this section have been obtained by considering all defect dimensions and
operative conditions at once. However, it is also possible to perform the
optimization procedure by excluding some conditions. In such a case, a more
accurate estimation for the case under exam would be obtained, but at the cost
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of neglecting the other defect dimensions, leading to a reduction of the accuracy
for the other cases. Furthermore, the computational time also decreases, as less
conditions need to be matched by the algorithm. For instance, Figure 44 shows
the Pareto fronts obtained by considering only a single defect dimension under
the six available combinations of operative conditions. In this scenario, the
values of ∆A∗ and ∆RMS are computed only on those simulated conditions
and not on all defect dimensions. From the plot, it is possible to observe the
difference in the values of these quantities that may be obtained by considering
only one defect at a time. This kind of analysis also leads to different estimates
of the unknown parameters, as shown in Table 19. Interestingly, the value of
∆A∗ is still considerably high for all defect dimensions, especially for defect
D3. This result may be due to the extent of the largest fault considered in this
work. In fact, S. Mufazzal. et al [106] noticed that the deviation between the
numerical and experimental magnitude of the spectral peaks increases with
increasing defect dimensions. Therefore, it is possible that the dimension of
defect D3 is too large to produce comparable spectral components between
numerical and experimental results, which are the quantities required for the
estimation of A∗. Defect dimensions D1 and D2, on the other hand, generate
comparable values of ∆A∗. Within this context, it is also interesting to note that
Khanam et al. [82] reported that higher variation in the results for larger defect
dimensions may be produced by other excitation mechanisms not considered
in the model. These observations may justify the high values of ∆A∗ that are
obtained for defect D3 even when the optimization procedure is applied only
on that defect dimension. Finally, it is also worth mentioning that, despite the
differences observed on parameter ∆A∗, the value of ∆RMS are comparable in
all three cases. To conclude, this example demonstrates that the optimization
procedure may be applied on any number of combinations of conditions, but
the resulting parameters will differ accordingly. In this work, the optimization
procedure has been applied to all available combinations of test conditions
and defect widths to show the potential of the procedure to be applied to a
variety of operative conditions and defect dimensions at once.
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Figure 44: Pareto fronts obtained by performing the optimization procedure on one
defect at a time.

Table 19: Combination of parameters obtained by considering one defect dimension at
a time. The chosen sets are the ones which produce the points that minimize
the distance from the axes origin in Figure 44.

Considered defect ζi [%] ζr [%] ζ1 [%] ζ2 [%] mr [kg] kr [N/m]

D1 13.79 15.00 6.22 12.60 2.73 3.97 x 10
9

D2 13.85 0.27 11.62 11.34 2.96 4.25 x 10
9

D3 12.08 0.10 15.00 11.19 3.23 3.97 x 10
9

4.4.3 Numerical features

The estimated parameters reported in Table 18 are employed to evaluate the
numerical features in order to propose a comparison with the experimental
features reported in Section 4.3.

Figure 45 shows the RMS and A∗ values computed for all test conditions, both
for the numerical and experimental acceleration signals, with respect to the
rotation frequency. Concerning the experimental ones, only the average value
for the three repetitions of each test is considered. Figure 45.a, Figure 45.c and
Figure 45.e report the RMS trends. For defect D1, the RMS values are well
captured for all loads and rotation frequencies. This consideration agrees with
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Figure 45: Comparison between numerical and experimental features as a function of
rotation frequency: (a) RMS for defect D1; (b) A∗ for defect D1; (c) RMS for
defect D2; (d) A∗ for defect D2; (e) RMS for defect D3; (f) A∗ for defect D3.

the observations made on the time signals. For defect width D2, the results
agree well at 20 Hz but they show some deviations at the other frequencies.
On the contrary, for defect dimension D3 the numerical trends are very similar
to the experimental ones, although they assume lower values at all rotation
frequency values.

Additional considerations may be provided on A∗, which is depicted in Figure
45.b, Figure 45.d and Figure 45.f. For defect D1, the trends are very similar for
a load value equal to 1000 N. Besides, defect width D2 presents trends which
are remarkably close for the majority of test conditions. Lastly, the numerical
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trends for defect width D3 show a good agreement at a rotation frequency
value equal to 30 Hz. It is worth noticing that the optimal parameters found
through the multi-objective optimization allows to obtain a lower value of
∆RMS, therefore it is expected that the numerical trends of A∗ are more distant
from the experimental compared to RMS. The condition that mostly affects
these results are the A∗ values calculated for defect D1 at a load equal to 2000

N. This deviation is the one that influences the most the value of ∆A∗. The
optimization procedure, in fact, allows to obtain a closer match for the other
combinations of operative conditions and defect dimensions.

Figure 46 depicts the same features but as a function of the defect width,
allowing for additional considerations. For the RMS trends in Figure 46.a,
Figure 46.c and Figure 46.e, the experimental and numerical results agree
well for all conditions at the rotation frequency of 20 Hz. At 30 Hz, the trends
exhibit a deviation for the defect width D2 which alters the trend shape, but the
results are similar for the other two defect dimensions. On the other hand, some
deviations in the expected trends may be observed for a rotation frequency
equal to 40 Hz, for which the best agreement is found for the smallest defect
width. Besides, a different behaviour may be noticed for the A∗ values shown
in Figure 46.b, Figure 46.d and Figure 46.f. For this feature, there is a good
correspondence for all cases for a load value equal to 1000 N. For the other
load value, the experimental trend of the feature is captured although the
magnitude is always lower than expected.

In conclusion, the multi-objective optimization procedure permits to obtain
results close to the experimental investigation for different combinations of
test conditions. The best results, in terms of agreement between experimental
and numerical observations, are obtained when the rotation frequency is equal
to 20 Hz or when a defect width D1, i.e. equal to 0.928 mm, is considered.
In the first case, results are consistently close to the experimental values for
all defect widths. In the second scenario, good agreement is achieved at all
rotation frequencies. This kind of behaviour agrees with the observations of
previous authors that higher differences with experimental results are usually
noticed for increasing defect widths [82, 106]. This discussion underlines the
difficulty associated with the definition of model parameters that could take
into account multiple test conditions in terms of defect widths, applied loads
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Figure 46: Comparison between numerical and experimental features as a function of
defect width: (a) RMS at 20 Hz; (b) A∗ at 20 Hz; (c) RMS at 30 Hz; (d) A∗

at 30 Hz; (e) RMS at 40 Hz; (f) A∗ at 40 Hz.

and shaft rotation frequencies. The proposed technique, which is based on the
minimization of global indicator involving all test conditions, it is by definition
not capable to simultaneously optimize every test condition as the indicators
are average values considering each one of their combinations. However, it
enables to propose an estimation for the model parameters that are a priori
unknown. Additionally, the study of the time signals and the features trends
allows to understand which conditions are better represented by employing
the chosen set of parameters.
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4.4.4 Time and frequency analysis

The numerical model is exploited to evaluate the time signals for all test
conditions by employing the set of parameters in Table 18. The time signals
are graphed in Figure 47. The limits on the x and y axes are the same as in
Figure 31 to permit qualitative comparison between the respective numerical
and experimental accelerations. The results show that the numerical model
is able to capture a number of test conditions. For defect width D1, the
numerical waveform is the most similar to its respective experimental signal
for a load value equal to 1000 N at all frequencies. At W = 2000 N, the
magnitude of the peaks is mostly captured. For these combinations of defect
size, load and frequency values the presence of the defect may be clearly
appreciated in the numerical accelerations. For the defects D2 and D3, which
are depicted in Figure 47.c, Figure 47.d, Figure 47.e and Figure 47.f, the
numerical waveforms at a load value equal to 1000 N denote some deviations
from the respective experimental waveforms. In particular, although observable,
the defect impulses are more masked in the numerical signals, while they are
clearly visible in the experimental accelerations. Nonetheless, for a load value
equal to 2000 N the signals are more similar in terms of shape and peak
amplitude, especially for the defect width D2. In conclusion, by employing
the parameters in Table 14, the best agreement between experimental and
numerical results is found for the smallest defect width D1, in accordance with
the results in Section 4.4.3.

Additionally, a representative spectrum is reported in Figure 48. The chosen
condition is the same as in Figure 32, i.e. the defect dimension D2 = 1.664

mm for a radial load value equal to 2000 N and a rotation frequency of 30 Hz.
The frequency content is concentrated at the harmonics of the BPFO, which is
equal to 146.7 at frot = 30 Hz. In the experiments, instead, these components
are smeared over the whole spectrum due to the stochastic nature of the
real phenomenon [23]. It is worth noting, however, that resonances may be
observed approximately around 357.1 Hz, 1543.8 Hz and 7392.6 Hz. In fact, the
estimated values of mr and kr allow to obtain resonance zones in the frequency
spectrum which are remarkably close to the ones observed in the experimental
study.
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Figure 47: Numerical time signals for different combinations of defect dimension and
load w. The limits on the y-axis of each plot are the same as in Figure 31 to
allow a comparison between corresponding graphs. (a) D1, y = 1000 N; (b)
D1, w = 2000 N; (c) D2, w = 1000 N; (d) D2, w = 2000 N; (e) D3, w = 1000

N; (f) D3, w = 2000 N.
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Figure 48: Numerical frequency spectrum for defect D2 under and applied load of
2000 N and a rotation speed of 30 Hz: (a) Spectrum over the frequency
range 0 - 9500 Hz; (b) Spectrum in the ”low” frequency range 0 - 2000 Hz;
(c) Spectrum in the ”high” frequency range 6000 - 9000 Hz.
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4.4.5 Effect of slippage

The effect of slippage may be accounted for into the model by adding an
additional term σ(t) in Eq. 32, so that:

φjk(t) = φjk(t) + σ(t) (82)

σ(t) is assumed to be a uniformly distributed variable between two extreme
values −ϕslip and ϕslip, i.e. σ = rand(−ϕslip,ϕslip). The value of ϕslip is
usually in the order of 0.01 rad and 0.02 rad [24]. To determine the effect on
the numerical results, three different value of this parameter are chosen: 0.005

rad, 0.01 rad and 0.02 rad. Simulations are performed by adapting the model
to include Eq. 82. Frequency spectra, time signals and the features RMS and
A∗ are evaluated to compare the effect of this additional influencing factor.

Figure 49.a, Figure 49.b and Figure 49.c depict the frequency spectra obtained
by considering the three different slippage angles. In accordance with the pre-
vious analyses, the considered test condition corresponds to defect dimension
D2, rotation frequency 30 Hz and radial load 2000 N. By comparing these
graphs to Figure 48.a, in fact, it is possible to qualitatively assess the effect
of ϕslip on the frequency components. As expected, the introduction of this
random component produces a smearing of the frequency components [23],
which makes the spectra more resemblant to the experimental ones. More in
detail, the effect is particularly evident for the high resonance zone. In that fre-
quency interval the frequency components are not distinctly separated as in the
case of no slippage, but are merged around the resonance frequency. Besides,
an higher value of ϕslip leads to an higher peak component. However, the
magnitude of the frequency in this zone is still higher than the one observed
in the experiments as shown in Figure 32. Concerning the mid resonance zone,
the effect of the slippage is not particularly evident for the lowest angle, but
its influence noticeably increases for higher values. In particular, for ϕslip =
0.02 the BPFO harmonics greatly decrease, leading to a greater resemblance
with the the experimental spectrum reported in Figure 32. Finally, the effect on
the low resonance zone is still observable but substantially less significant.

The differences in the waveforms are observable in the time signals reported
in Figure 50. As the value of ϕslip increases, the impulses are less distinguish-
able since they appear more blended in the noise introduced by the random
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Figure 49: Frequency spectra for the test condition associated with defect width D2,
rotation frequency 30 Hz and applied radial load 2000 N for different values
of the slippage angle ϕslip: (a) 0.005 rad; (b) 0.01 rad; (c) 0.02 rad.

variation of the slippage angle. Moreover, because of the random nature of the
phenomenon, the signal is no longer periodic as in the case of no slippage. The
variability increases by assuming a larger value of ϕslip.

Eventually, it is questioned whether the slippage angle sensibly affects the
global signal features or not. This aspect is inquired in Figure 51.a, Figure
51.c and Figure 51.e for RMS and Figure 51.b, Figure 51.d and Figure 51.f for
A∗, respectively. Differently from the frequency and time analysis, only the
lowest slip value of 0.005 rad and the highest value of 0.02 rad are reported
along with the case of no slippage to enhance the clarity of the figure. By
analysing Figure 51.a, it might be noticed that increasing the slip term leads
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Figure 50: Time signals for the test condition associated with defect width D2, rotation
frequency 30 Hz and applied radial load 2000 N for different values of the
slippage angle ϕslip: (a) 0.005 rad; (b) 0.01 rad; (c) 0.02 rad.

to a lower RMS for every test condition. This effect substantially intensifies
for a maximum slip angle of 0.02 rad compared to 0.005 rad. Interestingly,
the trend shape is preserved in all cases except for the smallest defect, i.e. D1,
when ϕslip is set to 0.02 rad. Therefore, it appears that lowering the defect size
magnifies the effect of slippage. This may be due to the fact that for smaller
widths the variation of the ball position becomes comparable to the dimension
of the defect. In fact, by setting ϕslip = 0.02 rad the ratio between the slippage
angle and the fault extent for defect D1 is equal to 49 %, meaning that at
each instant the ball position may vary up to approximately half of the defect
width. On the contrary, the indicator A∗ is remarkably less affected by ϕslip.
Indeed, increasing values of this coefficient lead to a modest reduction of the
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Figure 51: Signal features compared against the rotation frequency for three different
slippage conditions and under two applied loads equal to 1000 N and 2000

N: (a) RMS for defect D1; (b) A∗ for defect D1; (c) RMS for defect D2; (d)
A∗ for defect D2; (e) RMS for defect D3; (f) A∗ for defect D3.

parameter for all conditions compared to RMS. Since this indicator accounts
for the amplitude of the first five BPFO harmonics, this result agrees with the
analysis of the frequency spectra illustrated in Figure 49.
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4.5 summarizing remarks

The present chapter aimed at the definition of a multi-objective optimization
procedure focused on the estimation of unknown model parameters. The
technique is applied within the context of simulations of self-aligning ball
bearing in presence of defects. The assessment was based on the comparison be-
tween global indicators computed on experimental and numerical acceleration
signals.

A numerical model of a defective self-aligning ball bearing was set-up based
on the model of D. Petersen et al. [88]. The defect definition was adapted to a
self-aligning ball bearing by extending the theory proposed by Y. Jiang et al.
[22] and S. Gao et al. [99]. Notably, the model is constituted by six degrees of
freedom, two of which refer to the displacement of a fictitious high resonant
mass that replicates an high frequency response of the system. Differently from
previous works, however, the contact damping has been defined by means of
Rayleigh damping to achieve a better control over the whole frequency range.

The described multi-objective optimization technique aimed at minimizing
two indicators, namely ∆RMS and ∆A∗. The former accounts for the energy
of the whole signal, while the latter considers only the first five harmonics of
the defect characteristic frequency and represents the energy content of the
deterministic phenomena related to the rotation of the components. A set of
unknown parameters was chosen among the quantities needed to define the
model. Their choice fell on the parameters whose estimation is characterized
by an higher degree of uncertainty. Their values were constrained within fixed
limits dictated by their physical properties and they were linked by additional
analytical relationships based on the physics of the problem. The experimental
results, which were needed for the assessment of the indicators, were obtained
through an experimental study on a number of defective self-aligning ball
bearings. Each one was tested under several test conditions in terms of different
values of radial load and rotation frequency.

The outcome of the multi-objective optimization resulted in a number of weak
Pareto optimals characterized by a small deviation of ∆A∗ and a higher variabil-
ity of ∆RMS. The chosen parameters set was designated as the one providing
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the lowest value of the second indicator. The experimental test results were then
compared with the numerical ones by inserting the estimated set of unknown
parameters in the numerical model. A good accordance with the experimental
results was obtained for all test conditions. In particular, the best agreement
was found for all conditions associated with the smallest defect width, i.e. D1 =
0.928 mm, and for all conditions associated with the lowest rotation frequency
value, i.e. 20 Hz. These results are in agreement with the limits of this kind
of models, which tend to lose accuracy for increasing defect widths [82, 106].
Finally, the frequency analysis of a representative spectrum showed that the
frequency content is mainly concentrated at the BPFO harmonics. This effect,
which is not present in the experimental observations, is considerably altered
by the slippage of rolling elements, namely ϕslip. Depending on the magnitude
of the hypothesized value of ϕslip, the indicators become consistently lower
for increasing values of slippage. The influence of this parameter appears to be
more marked for smaller defects as its amplitude becomes comparable to the
extent of the defect. Nonetheless, the estimated parameters allowed to capture
the resonance phenomena of the real system even neglecting this term in the
analysis.

The conducted study highlights the difficulties regarding the choice of the
best parameters to be employed in the numerical modelling of REBs. However,
within this context it provides guidelines and a robust procedure that allows
to estimate the unknown parameters that would otherwise be manually tuned
on the basis of the experience of the author or on practical considerations. It
is also worth underlining that, although the investigation was performed on
a double-row ball bearing, the proposed procedure may be applied for other
bearing types, provided that the bearing model is adapted accordingly. In
conclusion, the inquiry carried out in the chapter should be considered as a
basic framework to deal with problems in which multiple operative conditions
must be validated.
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5
D E V E L O P M E N T O F B E A R I N G P R O G N O S T I C T E C H N I Q U E S
B A S E D O N E Q U I VA L E N T D A M A G E D V O L U M E
E S T I M AT I O N

5.1 introduction

The survey in Section 1.2.3 illustrated the variety of approaches that are com-
monly employed to deal with the problem of bearing prognostics. Among
those, PBMs attracted the attention of researchers thanks to their capability of
describing the degradation process of a REB by means of a dedicated mathe-
matical modelling of its physics. Therefore, their main advantage compared
to DDM techniques is their potential capability of assessing the future dete-
rioration of the system under exam for different sets of operative conditions,
whereas DDMs would need further training data for each considered one. Be-
sides, Section 1.2.3.1 showed that the majority of PBMs rely on the PE equation
to infer the crack growth over time. Surprisingly, very few works dealt with
the prognosis of bearing life by utilizing dynamic LP models. To this end, a
recent work of L. Cui et al. [145] employed a LP model of a defective bearing
in order to establish a prognostic model based on the similarity theory [146].
Their effort is noteworthy, but other approaches may be developed on the basis
of models analogous to the one described Chapter in 4.

Within this framework, this chapter provides an original take on the prob-
lem of REB prognostics by introducing a novel parameter related to bearing
degradation, namely the Equivalent Damaged Volume (EDV). This quantity
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represents the equivalent defect dimensions per unit of width that, if inserted
in the LP model of the defective bearing, would produce the same RMS value
as the real feature computed on the experimentally acquired signal. The EDV
values are computed through a specifically-designed algorithm. At each time,
the experimental RMS value is used to determine the corresponding defect
dimensions in the LP model. The algorithm is constructed so it always gen-
erates increasing defect volumes over time, except when no suitable values
that satisfy this condition are found among the possible fault dimensions.
Moreover, the formulation of the LP model described in Chapter 4 is expanded
to also take into account the defect depth. In fact, Section 2.3.2 highlighted that
faults which were generated in the performed run-to-failure tests are extended
rather than localised. Therefore, they need to be modelled by also considering
their depth. Then, a first approach to tackle bearing prognostics through the
employment of the EDV algorithm is detailed. For this purpose, two PBMs are
described. The first one aims at predicting the REB vibration under different
operative conditions with respect to a given reference deterioration history. On
the other hand, the objective of the second PBM is to predict the time until a
certain threshold on the equivalent damaged volume is crossed, regardless of
the applied load and the shaft rotation speed. The efficiency of the proposed
models is tested by means of the experimental data acquired on the test bench
during the run-to-failure tests.

The chapter is subdivided as follows. Section 5.2 introduces the faulty bearing
model by extending the LP model previously established for localised defects.
On the basis of this model, a procedure for determining the equivalent dam-
aged volume during REB operation is detailed, and two possible physics-based
model based on this parameter are developed. Then, Section 5.3 reports the
results of the run-to-failure tests described in Section 2.3.2. Thanks to these
results, Section 5.4.1 details the estimation process of the equivalent damaged
volume from the experimental signals and subsequently provides the outcome
of the two PBMs. Finally, Section 5.5 closes the discussion with some final
thoughts on the proposed work and its potential further developments.
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5.2 description of the proposed procedure

This section provides a modification to the LP model introduced in Section
4.2.2 in order to also consider extended defects. The improved LP model
is then employed to define a novel parameter named Equivalent Damaged
Volume (EDV) that is utilized to track the damage progression over time. An
algorithm is proposed to compute this peculiar quantity at each instant. Then,
the procedure is implemented in a prognostic framework by proposing two
different approaches to the problem.

5.2.1 Faulty bearing model for extended defects

In the previous chapter, Section 4.2.2 described a LP model of a faulty bearing
in which the trajectory of the rolling element inside the defect was determined
based on the assumption that the ball was not able to touch the bottom of the
defect. This assumption holds true for the analyses proposed in Chapter 4,
since the dimensions of the seeded artificial defects were determined ad hoc to
avoid the contact of the balls with the bottom surface of the defects themselves.
However, this hypothesis cannot be introduced in run-to-failure tests. In fact,
this type of damage may exist only at the beginning of the unhealthy stage
of the bearing life. Subsequent passage of the rolling elements in the defect
area further propagates the defective area, increasing its angular extension
and modifying its topology from a localised to an extended defect. This is
particularly evident from the photos of the damaged bearing shown in Figure
12. In fact, at the end of the tests all outer rings presented an extended defect
whose angular span was about 40 to 50 degrees. As a result, it is not possible
to model the vibratory response of the system without taking into account
the possible contact between the bottom surface of the fault and the rolling
elements. Consequently, this section extends the numerical model provided in
Sections 4.2.1 and 4.2.2 to further consider the possible contact with the bottom
surface of the defect. This is done by changing the ball trajectory described by
Eq. 51. The presented method takes inspiration from the work of Y. Jiang et al.
[22], who modelled the ball trajectory for an extended defect in the case of a
cubic-like defect. However, this shape is different from the ones experimentally
observed in the run-to-failure campaign. Therefore, their work is modified
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to extended defect with a more realistic shape, i.e. denoted by a curvature
comparable to the outer ring radius. Additionally, the proposed model also
considers the roughness of the damaged surface. To this end, the procedure
described by N. Sawalhi and R.B. Randall [115] is further implemented in the
proposed extended defect formulation.

Firstly, the ball trajectory without the rough surface is described. The extended
defect is schematically depicted in Figure 52. In the plane O’x’y’, which is
defined in the same manner as in Section 4.2.2, the bottom surface follows a
circular path with an offset hd from the undamaged bearing surface. Therefore,
parameter hd is the depth of the extended defect. As a result, it possible to
rewrite Eq. 51 in order to take into account this additional parameter and
consequently find the new trajectory dα,b:

dα,b(φjk(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rb + ro cos (φjk(t) −φd,in) − ro+

−
√︂

r2b − (ro sin (φjk(t) −φd,in))2
if φd,in ⩽ φjk(t) < φb,in

hd if φb,in ⩽ φjk(t) ⩽ φb,out

rb + ro cos (φd,out −φjk(t)) − ro+

−
√︂

r2b − (ro sin (φd,out −φjk(t)))2
if φb,out < φjk(t) ⩽ φd,out

0 otherwise
(83)

where φb,in and φb,out are the angular positions in which the ball begins
and finishes being in contact with the bottom surface. Their values may be
calculated by equating the defect trajectory equation at the beginning and at
the end of the path with the depth hd of the extended defect. The associated
problem, then, consists in solving two non-linear equations in the unknowns
φb,in and φb,out, viz.:

rb + ro cos (φb,in −φd,in) − ro+

−
√︂
r2b − (ro sin (φb,in −φd,in))2 − hd = 0 (84)

rb + ro cos (φd,out −φb,out) − ro+

−
√︂

r2b − (ro sin (φd,out −φb,out))2 − hd = 0 (85)
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hd

Figure 52: Geometric definition of angular position φb,in. The same scheme may be
replicated for φb,out at the exit of the defect.

The proposed rolling element path dα,b(φjk(t)) describes the bottom of the
defect as a smooth surface with constant depth. However, experimental evi-
dence shows that the surface is characterized by a significant roughness. Thus,
the equation for dα,b between φb,in and φb,out is further modified to also take
into account this aspect. Surface roughness is introduced by applying the
procedure described in [115], but only between angles φb,in and φb,out. This
way, the ball is free to fall inside the defect according to the theoretical path,
and then its trajectory is modified by the rough bottom surface until the ball
starts to get out of the defect. The procedure to generate the rough surface is
subdivided in several steps. First, a random Gaussian noise is generated and
scaled according to the value of the surface roughness R. This random profile is
defined between the angular locations φb,in and φb,out and it is characterized
by a spatial sampling δφ which is equal to:

δφ =
ωc

fs
(86)
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where fs is the signal sampling frequency. Then, the random noise is low-pass
filtered in order to generate a plausible profile that may be touched by the
rolling elements. According to [115], this cut-off frequency fl is equal to:

fl =
1

π
√
4Rrb

(87)

Finally, the outcome of this procedure is the random profile hdr(φjk(t)), which
modifies Eq. 83 so that:

dα,b(φjk(t)) = hd + hdr(φjk(t)) if φb,in ⩽ φjk(t) ⩽ φb,out (88)

The final step consists in multiplying dα,b(φjk(t)) by the cosine of the contact
angle to determine the radial displacement, as in Eq. 52. Therefore, the resulting
ball displacement in the fault area is:

db(φjk(t)) = dα,b(φjk(t)) cosα (89)

Figure 53 reports examples of the ball path inside the defect. Figure 53.a shows
the trajectory followed by the ball in a localised defect characterized by an
angular extent ∆φd = 2° and sufficiently deep to avoid contact with its bottom.
On the other hand, Figure 53.b depicts the ball path in a extended defect with
∆φd = 20°, depth hd = 20 µm and roughness R = 10 µm. In Figure 53.b, the
dash-dot line represents the path with the smooth bottom, while the solid line
describes the path due to a rough surface. Figure 53.b also permits to assess
that the effective path has a deviation around hd lower than the imposed R

value. In fact, the profile generation procedure involves the low-passing of the
signal to fit the ball to the path it can practically reach. The efficiency of this
method was also successfully demonstrated in later works by D. Petersen et al.
[49, 88] to characterize extended defects and discuss their influence on bearing
vibrations.

5.2.2 Equivalent damaged volume (EDV) method

This section details a novel procedure for the estimation of a parameter, related
to the evolution of bearing life, which is able to assess the bearing health
deterioration over time, namely the equivalent damaged volume per unit of
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Figure 53: Examples of trajectories followed by the ball inside a defect: (a) localised
defect with ∆φd = 2° and sufficient depth to avoid contact with the bottom
surface; (b) extended defect with ∆φd = 20°, hd = 20 µm and R = 10 µm.
The solid and dash-dot lines represent the paths on the rough and smooth
surfaces, respectively.

width. Because of this, the proposed technique is named Equivalent Damaged
Volume (EDV) method. The algorithm tracks the bearing damage evolution by
determining the angular extent ∆φd and depth hd of the equivalent defect that,
if given as input to the LP model of the faulty bearing, would give the same
RMS as the experimentally measured one at each time step. As a consequence,
at the i-th time step t(i) the EDV method determines an equivalent volume
Veq(i) per unit width equal to:

Veq(i) = ro∆φd(i)hd(i) (90)

where ∆φd(i) and hd(i) are the defect dimensions at time t(i). If ro and hd are
expressed in mm and ∆φd(i) is expressed in radians, then Veq(i) assumes the
units mm3/mm. To reduce the complexity of the procedure, in fact, the axial
width of the defect is not considered in the model. Therefore, it is postulated
that the defect maintains a constant area along the bearing axial direction. This
assumption is based on the consideration that the axial extent of the defect has
a smaller influence on bearing vibrations compared to its other dimensions
[22]. Moreover, this procedure is intended to track an equivalent damaged
volume rather than the effective volume. Consequently, Veq is actually defined
as an equivalent volume per mm of width, which explains the peculiar unit
of measurement assigned to it. Furthermore, the algorithm is constructed to
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Figure 54: Final stage of bearing life.

provide increasing values of ∆φd and hd during REB degradation, which is a
realistic assumption considering that the defect should increase its dimensions
as the deterioration progresses.

The proposed algorithm considers only the final part of the bearing life. There-
fore, with reference to Figure 4, the bearing must be either in the unhealthy
stage or in the critical stage. For the purpose of this work, the working range
of the algorithm is named final stage. The time at the start of the final stage
is named tfs, whilst the time at the end of life (EOL) is referred to as tEOL.
The latter is found either by directly monitoring the RMS over time or by
utilizing some diagnostic indicator capable of detecting the incipient fault.
Several indicators and features may be exploited for this purpose [23]. On the
other hand, the former is evaluated by assigning a threshold on one signal
feature, and the test terminates once this threshold is crossed. To this end, a
commonly chosen parameter is the peak acceleration in the time signal. Figure
54 shows a simplified depiction of the final stage observable in the RMS trend.

The equivalent damaged volume is extracted from the experimental RMS
trend by comparison with a numerically generated RMS map, which gives
the values of numerical RMS for several combinations of defect depths and
circumferential extensions. The map is computed by employing the LP model
described in Section 4.2.1 and modified by introducing the defect path detailed
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in Section 5.2.1. Consequently, RMS values are calculated by defining two
vectors, i.e. hd and ∆φd, which both range from a minimum to a maximum
value, so that hd = [hd,min; hd,max] and ∆φd = [∆φd,min; ∆φd,max]. These
limiting values may be assigned on the basis of experimental observations. For
instance, the maximum angular extent ∆φd,max may be set according to typical
values of defect size observed at the end of bearing life. Then, for each pair
of values (hd, ∆φd), the associated numerical RMS is evaluated by employing
the LP model of the faulty bearing. The parameters of the dynamic model
are tuned according to the procedure described in Chapter 4. Although the
method has been validated for localised defects, the estimated parameters are
suitable for employment in further models such as the one proposed in this
section. In fact, the assessed parameters are characteristic properties of the
system under exam. Moreover, the external load and shaft rotation speed are
set to reflect the ones in the experiment. Therefore, the RMS map is different
for each working condition of the system. In addition, to simplify the problem,
the angular position of the centre of the defect, i.e. φd, is assumed to be aligned
with the direction of the radial load. This a reasonable assumption that allows
to reduce the number of unknowns in the problem. Finally, the RMS map is
generated by only considering outer race defects. This is in accordance with
the faults observed at the end of bearing life in the performed run-to-failure
tests, as seen in Figure 12. Nevertheless, the proposed procedure could be
implemented in the same manner for other types of defects, i.e located on
inner race, rolling elements or cage.

The main steps of the EDV algorithm are schematically depicted in Figure 55

and summarized in the flowchart reported in Figure 56. Initially, the algorithm
takes as input the numerical RMS map computed for the experimental working
condition and the experimental RMS history in the final stage of the bearing
life. The numerical values extracted from the map are named Xnum, while
experimental values are referred to as Xexp. At the end, it provides as output
the equivalent damaged volume Veq for mm of defect width. Moreover, it
supplies the associated values of defect depth hd and angular extent ∆φd at
each time step. In between, the procedure is subdivided as follows:

1. The index i is initialised with a value equal to 1.
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2. The i-th value of the experimental RMS, i.e. Xexp(i), is evaluated at time t(i),
as shown in Figure 55.a. Notably, when i = 1, t(1) = tfs.

3. The numerical RMS map must contain at least one value equal to Xexp(i) in
order to compute the associated Veq. Therefore, the algorithm may continue
only if min(Xnum) ⩽ Xexp(i) ⩽ max(Xnum). Otherwise, the procedure is
stopped and the damaged volume is only computed up to time t(i− 1). If
Xexp(1) does not uphold this condition, then no value of Veq is computed
and the algorithm is immediately stopped.

4. The algorithm searches on the RMS map all values of Xnum which are equal
to Xexp(i) and stores the associated values of ∆φd and hd for each one,
as depicted in Figure 55.b. The corresponding volume is also calculated
through Eq. 90.

5. For each Xexp(i) value, several pairs (∆φd, hd) may exist that satisfy the
condition Xnum = Xexp(i). Among all these, it is assumed that the value
Veq(i) at time t(i) is the one associated with the pair (∆φd(i), hd(i)) which
provides the lowest possible volume. This condition is represented in Figure
55.c and may be written as:

Veq(i) = arg min(Xnum : Xnum = Xexp(i)) (91)

The assumption ensures the minimum relative variation with respect to the
equivalent volume Veq(i− 1) at instant t(i− 1).

6. If t(i) = tEOL, the algorithm is stopped. Instead, if t(i) < tEOL, the procedure
continues.

7. To ensure the increment of damage progression over time, numerical RMS
values that are associated with values of ∆φd and hd lower than ∆φd(i)

and hd(i) are removed from the numerical RMS map. As a consequence, in
the subsequent time step the available pairs (∆φd, hd) are only the ones in
the right-most part of the plot, as shown in Figure 55.d. This assumption
also guarantees that Veq(i+ 1) ⩾ Veq(i), i.e. the damaged volume increases
over time. However, there might be cases where at least one suitable pair
(∆φd, hd) existed in the original RMS map, but it has been removed in
previous iterations. As a result, in this situation the algorithm is not able
to continue and it must be stopped. A similar condition is also reached if
one of the limiting values hd,max and ∆φd,max is reached. In this case, the
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next available pairs would be only the ones which correspond to hd,max or
∆φd,max. While these two criteria could be employed as end conditions for
the algorithm, another approach is chosen in this work. In particular, when
there are no pairs available, the search range is extended back to previously
removed values until one value that satisfies the condition is found. In
fact, it is reasonable to assume that the RMS value Xexp(i) that must be
interpolated in the numerical map is sufficiently close to the previous one.
Therefore, in order to find this pair, the search area is extended by one unit
in both coordinates ∆φd and hd until the first pair of damage dimensions
that ensures Xnum = Xexp(i) is detected. The downside of this method is that
it always generates an equivalent volume lower than the one in the previous
step, i.e. Veq(i) < Veq(i− 1). As a consequence, it must be employed with
caution to avoid unsatisfactory results. The goodness of this hypothesis is
examined in the section dedicated to the experimental validation of the
proposed procedure.

8. Index i is increased by one unit, that is, i = i+ 1, and the procedure is
repeated starting from step (2) until one of the stopping criteria is met.

Finally, Figure 55.e and Figure 55.f also show the selection process of Xexp(i+1)

and Xnum(i+ 1), respectively. In particular, the latter highlights with a grey
hatching the area removed in step (7).

5.2.3 Possible applications of the EDV algorithm to REB prognostics

The EDV algorithm provides the equivalent damage evolution over time in
the final stage of bearing life. This information may be employed to develop
bearing prognostics techniques, i.e. aimed at determining the RUL of the REB
during its operative life. The interesting aspect of models developed in such a
manner is that, by being based on the EDV algorithm, they fall in the category
of PBM models. As detailed in the literature review proposed in Section 1.2.3,
these types of models are usually based on the PE equation. In fact, despite
the large number of papers discussing dynamic LP models, very few authors
have employed them for bearing prognostics.
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Figure 55: Steps of the EDV algorithm: (a) Consider the experimental RMS value X(i)

at time t(i); (b) Find all points in the RMS map that satisfy the condition
Xnum = Xexp(i); (c) Determine the pair (∆φd,hd) that minimizes the
equivalent damaged volume Veq; (d) Remove all points with lower angular
extent and depth from the RMS map for the next iteration; (e) Repeat the
procedure at time t(i+ 1), until an end criterion described by Figure 56 is
achieved; (f) RMS map at time t(i+ 1), in which the area removed in Figure
(d) is highlighted by a grey hatching.
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Figure 56: Flowchart of the EDV algorithm.
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Within this context, L. Cui et al. [145] recently employed the similarity theory
[146] to predict bearing RUL by comparing a numerically generated Perfor-
mance Degradation Dictionary (PDD) with experimental RMS trends. In their
model, the authors subdivided the bearing life in several stages, i.e. steady
stage, defect initiation, defect propagation and damage stage. Then, they con-
structed bearing degradation histories by assigning different defect dimensions
and several values of propagation speed in each stage. Therefore, the PDD was
generated thanks to a faulty bearing LP model, which was exploited to perform
a massive amount of simulations each one characterized by different defects
dimensions and propagation velocities. Subsequently, RUL was predicted by
comparing the PDD with the experimental trends and evaluating the most
probable time that would lead to failure. This method is very interesting, since
it provides a different approach to bearing prognostics compared to previous
works. However, it presents some downsides. Firstly, the generation process of
the PDD is extremely long and is characterized by a remarkable computational
burden. Secondly, propagation speeds and defect dimensions between different
stages are arbitrarily assumed. More importantly, the defect propagation veloc-
ity is hypothesized to always have a constant value. This may not be true in
the real case, as the damage might propagate according to different laws other
than a linear one. As a result, the proposed approaches take inspiration from
the work in [145], in the sense that a dynamic LP model of a faulty bearing
is employed to deal with the problem of bearing life prognosis. However, the
proposed methodology is remarkably different, since it exploits a LP model
with a different definition of the path of the rolling element inside the defect
area. Moreover, it introduces a novel technique, namely the EDV algorithm, to
be further implemented in prognostic models.

To summarize, this work attempts to provide a first approach to the problem
of REB prognostics through the EDV method. Such a task is carried out in
the form of two possible approaches, that will be verified with the aid of the
results of the run-to-failure experiments described in Section 2.3.2. The first
one regards the prevision of the degradation history by applying a previously
known damage progression history to different working conditions. The second
one aims at predicting the time between the current time and the time in which
the value Veq crosses a given threshold. These two approaches are briefly
described hereinafter.
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5.2.3.1 The first PBM: prevision of the degradation history under different operative
conditions

The first PBM aims at predicting the vibration history of a REB under a certain
set of operative conditions on the basis of the EDV estimated under another
working condition. This idea is based on the hypothesis that the applied
load and the rotation speed value do not differ significantly from the values
referred to the RMS evolution from which the Veq trend over time has been
extracted. Therefore, the underlying assumption of this method is that the
damage progression under a different load or shaft speed follows the same
progression as the original one. This hypothesis, however, certainly does not
hold true for a single reference Veq history, because it would lead to failures
that all have the same tEOL. Therefore, several degradation histories under
one single working conditions are needed to perform a comparison with
available data under other conditions. As a result, within the context of this
work this simple approach is only exploited to compare the obtained RMS
trends under different conditions and understand its possible employment in
REB prognostics, without attempting to provide any formulae to compute the
RUL.

The proposed procedure is articulated as follows. The EDV method is applied
on the entire degradation history of a previously known RMS trend under a
certain working conditions in order to estimate associated values of ∆φd and
hd at each time. Then, a new degradation history is computed under different
load and/or rotation frequency. This is done by computing the new RMS value
by exploiting the LP model of the faulty bearing. To this end, at each instant
the corresponding values of defect dimensions are employed to determine
the system vibration. Eventually, the generated history is compared with the
observed RMS trend under the actual working condition, which is different
from the reference one. As previously mentioned, this procedure is still under
development and should be considered as a first attempt to tackle the problem.
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5.2.3.2 The second PBM: time-to-threshold assessment by estimation of the future
values of the equivalent damaged volume

The goal of the second PBM is to predict the propagation of the equivalent
defect that develops in the bearing during the final stage of its life. How-
ever, rather than computing the RUL, this approach is applied in order to
estimate the time between the current observation time and the instant in
which Veq crosses a certain threshold Vth. Thus, this parameter is named
Time-to-Threshold (TT) and it is defined as:

TT = tth − tc (92)

where tth is the instant in which Veq crosses the threshold value Vth and
tc represents the current instant in which the TT is computed. Thus, the
challenge it to be able to compute tth at a generic time tc during the final
stage of bearing life. This model is based on the assumption that the damage
propagation history between tfs and tth is governed by a propagation law in
the form:

Veq = Veq(t) if tfs ⩽ t ⩽ tth (93)

The function relating t to Veq is determined on the basis of Veq values estimated
from the experimental measurements. The experimental t-Veq curves are fitted
through polynomial of order two to determine the function that better fits
the data. If this relationship provides satisfactory results for different cases,
then this means that it may applied to other working conditions, under the
hypothesis that the damage propagation follows the same relationship under
every operative condition. Therefore, during operation tth may be estimated
by fitting the available data up to the current time with a polynomial of the
adequate order as observed from experiments under other conditions.

The proposed PBM is formulated according to the following steps. First, a
relationship relating time t and the equivalent damaged volume Veq below a
certain threshold Vth is sought by analysing the Veq values estimated from the
available experimental observations. In this work, data are fitted with poly-
nomials of order two, as it will be seen from the analysis of the experimental
results in Section 5.4.3. Furthermore, it is imposed that the polynomial must
pass through the first equivalent volume estimated at time tfs to ensure that
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the best-fitting curve passes through the first point of the degradation history.
However, other type of curves, e.g higher-order polynomials or exponentials,
could be employed if the polynomials do not provide an acceptable description
of the damage evolution in the case under exam. Then, the prevision model is
applied for the on-line prediction of the TT. During operation, the monitored
bearing will remain in the healthy state for the majority of its working life.
Once the bearing enters in the final stage, the EDV algorithm may be utilised
to determine the progression of the equivalent damaged volume up to the
current time. Then, tth may be predicted by fitting the available points up to
tc with the previously determined relationship between Veq and t. Finally, the
TT may be calculated through Eq. 92.

It is worth mentioning that the initial moment in which the bearing transitions
from the healthy to the final stage must be detected by means of additional
tools. For this purpose, diagnostic indicators may be employed to ensure an
accurate evaluation of tfs.

5.3 results of the run-to-failure tests

This section discusses the results of the experimental run-to-failure tests de-
scribed in Section 2.3.2, whose values of applied load, shaft speed and the total
time length have been reported in Table 3. The resulting RMS histories of the
six run-to-failure tests are shown in Figure 57. In particular, Figure 57.a, Figure
57.b and Figure 57.c represent the tests carried out under a radial load value
equal to 4 kN, namely tests E1, E2 and E3, respectively. Furthermore, Figure
57.d, Figure 57.e and Figure 57.f refer to the tests E4, E5 and E6 which are
characterised by applied loads equal to 3 kN, 4.7 kN and 5 kN, respectively. As
detailed in Section 2.3.2, the tests have been stopped when the peak amplitude
of the acceleration in the time signal reached 20 g. Therefore, the total time
tEOL of each test corresponds to the final point of each RMS history, as shown
in Figure 54.

On the other hand, tfs represents the moment in which the bearing transitions
to the final stage of its life. This HS shift may be seen by the steep rise of the
RMS values in the final part of each degradation history. This phenomenon is
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Figure 57: Experimental RMS trends for the entire test length: (a) E1 (4 kN); (b) E2 (4
kN); (c) E3 (4 kN); (d) E4 (3 kN); (e) E5 (4.7 kN); (f) E6 (5 kN).

particularly evident for tests E1, E2, E4 and E5. In fact, the RMS value remains
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approximately constant for the majority of the test, then it greatly increases in
a short period of time. After this rapid increment, tests E2, E4 and E5 show an
oscillating trend with several increases and decreases. This phenomenon may
be observed in Figure 54.b, Figure 54.d and Figure 54.e, respectively. Besides,
Figure 54.a highlights that, during test E1, the RMS trend briefly decreases
and then starts to increase again. Moreover, tests E3 and E6 show an even
different behaviour. Test E3, which is depicted in Figure 57.c, experiences a
slow rise of its RMS value even before the beginning of the final stage. Then,
the degradation consistently increases during the final stage, although with a
less steep increase compared to the other tests. Differently, Figure 57.f shows
that during test E6 a consistent increase in RMS values is detected at the
beginning of the final stage. However, the values descended after a few hours,
only to rapidly rise again and eventually bring an halt to the test.

Indeed, the value tfs for each test may be evaluated directly from the RMS
history. However, this task may be arduous, because a defect may induce
a slow increase of the RMS over time rather than a fast one. Moreover, the
RMS increase is not necessarily related to fault initiation. This is particularly
evident in test E3, which is shown in Figure 57.c. In fact, in this case the
RMS increment starts way before the beginning of the final stage, as it will be
demonstrated later in this section. Therefore, in a on-line monitoring scenario,
it is suggested to employ diagnostic indicators to efficiently detect the time
in which the bearing life transitions to the final stage. Since the discussion
of diagnostic indicators for REB monitoring goes beyond the scope of the
present dissertation, a simple but effective indicator has been employed in this
work. This indicator is named Hor and it is defined as the sum of the first five
harmonics in the envelope spectrum of the signal. To compute this quantity
for each acquired sample, the signal is first band-passed in the high frequency
resonance zone. This frequency interval has been characterized in the previous
experimental campaign regarding the stationary tests with artificial defects.
According to the findings reported in Section 4.3, this peculiar resonance zone
is found between 7 and 9 kHz. As a consequence, the signal is filtered in this
frequency interval. Then, the envelope of the resulting signal is computed
and transformed into the frequency domain. The envelope of the signal is
evaluated by first determining the analytic signal Za(t), i.e.:

Za(t) = Z(t) + jH (Z(t)) (94)
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where Z(t) is the filtered acceleration signal, j is the imaginary unit and
H (Z(t)) is the Hilbert transform of Z(t) [238]. Then, the envelope is the
modulus of Za(t), that is:

env (Z(t)) =
√︂

Z2(t) +H (Z(t)) (95)

Finally, Hor is computed as:

Hor =

5∑︂
k=1

ABPFOe,k (96)

where ABPFOe,k is the k-th harmonic of the BPFO in the envelope spectrum.
This quantity differs from parameter ABPFO introduced in Section 4.2.3 since
the latter is computed on the raw signal spectrum, while ABPFOe refers to
the envelope spectrum of the filtered signal. It is worth mentioning that
similar indicators could be also introduced for the other bearing characteristic
frequencies related to other fault types. However, only the described indicator
is introduced in order to demonstrate its capabilities in detecting the defects
which typically appear in the experimental test rig described in Chapter 2. The
experimental values of Hor are reported in Figure 58. Similarly to RMS, Hor

rapidly increases at the beginning of the final stage. Notably, this indicator is
able to assess the transition for test E3 in a more clear manner compared to the
RMS value. In this regard, Figure 59 shows the envelope spectra of two signals.
While Figure 59.a shows the envelope spectrum in the first part of bearing
life, Figure 59.b depicts the typical spectrum in the final stage. The difference
between the two is remarkable, since in Figure 59.b the BPFO harmonics may
be distinctly observed in the spectrum. As a result, the employed indicator
provides an efficient way to estimate tfs. To summarize the content of this
section, Table 20 lists the values of tfs, tEOL and the length of the final stage
for each test, i.e. the RUL from the start of the final stage:

RUL(tfs) = tEOL − tfs (97)

The final stage of each test is also depicted in Figure 60.

5.4 reb prognostics based on edv estimation

This section describes the application of the methods described in Section
5.2 through the employment of the experimental data reported in Section 5.3.
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Figure 58: Experimental values of indicator Hor: (a) E1 (4 kN); (b) E2 (4 kN); (c) E3 (4
kN); (d) E4 (3 kN); (e) E5 (4.7 kN); (f) E6 (5 kN).

Firstly, Veq values are determined by exploiting the EDV algorithm. Then, this
parameter is utilized as input for two prognostic models.
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Figure 59: Example of envelope spectra taken from test E3: (a) Normal operation; (b)
Final stage.

Table 20: tfs, tEOL and length of the final stage for each test.

ID tfs [h:min] tEOL [h:min] RUL(tfs) [min]

E1 404:15 409:40 325

E2 158:25 165:20 415

E3 186:20 198:30 730

E4 467:00 473:55 415

E5 137:00 143:05 365

E6 28:20 42:25 845

5.4.1 EDV assessment from test bench data

The EDV algorithm, which has been described in Section 5.2.2, is applied to
the acceleration data acquired during the run-to-failure tests. Thus, the goal
is to evaluate the equivalent damaged volume Veq from the final stage of the
six degradation histories shown in Figure 60.a and Figure 60.b. To evaluate
Veq values associated to each test, it is necessary to compute the RMS maps
associated to each operative condition listed in Table 3. Therefore, four maps are
generated. Each one is evaluated at the same rotation frequency of 40 Hz, but at
four different load values, i.e. 3000 N, 4000 N, 4700 N and 5000 N. This task is
performed by running several simulations with the numerical model detailed
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Figure 60: RMS in the final stage: (a) Tests E1, E2 and E3; (b) Tests E4, E5 and E6.

in Section 5.2.1. The parameters of the dynamic model are the ones obtained
through the multi-objective optimization technique described in Chapter 4.
As a consequence, the model parameters employed in the simulations are
the ones reported in Table 18. For a given applied load, the RMS value is
evaluated for several combinations of ∆φd and hd. The angular extent is
limited from 0 to 50 degrees, since this is approximately the maximum value
observed in the experiments at the end of bearing life. On the other hand,
the defect depth has been capped at 32 µm since prior simulations showed
that RMS values were mostly unaffected for larger depths. Finally, surface
roughness R is set to 10 µm, which is a common value employed to characterize
a rough surface [115]. The four resulting RMS maps are shown in Figure 61. In
particular, Figure 61.a, Figure 61.b, Figure 61.c and Figure 61.d represent the
combinations of RMS values at applied loads equal to 3000 N, 4000 N, 4700
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N and 5000 N. respectively. These plots highlight that, as expected, the RMS
values increase with higher loads. Furthermore, larger loads lead to a less
smooth distribution of RMS values in the associated map, as it may be notably
observed by comparing Figure 61.a and Figure 61.d. Besides, it is interesting to
note that the RMS does not necessarily increase with higher defect dimensions.
Rather, each combination provides a different RMS value, which may be lower
for increasing values of angular extent and/or defect depths compared to lower
fault dimensions. Nevertheless, the generally observed trend is the following.
The RMS remains quite stable, regardless of the defect extent, for low profile
depths. For deeper defects, the RMS values start to increase and its trend
becomes less predictable as each combination of defect parameters leads to
different RMS values on the basis of the interaction between ∆φd and hd. In all
cases, however, it is observed that the highest RMS values are always obtained
in the upper right-most part of the map, i.e. for ∆φd and hd pairs characterized
by the highest values. This is in accordance with the experimental evidence
that the system vibration greatly increases with large extended defects.

After computing the RMS maps, the EDV algorithm is applied to the acceler-
ation signals acquired on the bearing test rig during the run-to-failure tests.
First, the smoothness of the experimental RMS trends shown in Figure 60 is
enhanced by utilizing a moving average with a sliding window of length equal
to 6 data points. Then, the procedure detailed in Section 5.2.2 is applied to
extract the associated Veq values over time. These are reported in Figure 62.a
for tests E1, E2 a and E3 and in Figure 62.b for tests E4, E5, and E6, respectively.
The results show that in each test Veq maintains a "low" value, approximately
lower than about 0.05 to 0.01 mm3/mm, for the majority of the duration of
the final stage. Then, Veq rapidly increases at the very end of the bearing
life, when failure is imminent. This result is interesting for multiple reasons.
First, based on the experimental observations, this peculiar trend allows to
detect the end of bearing life. In fact, a rapid increase of this quantity warns
about the proximity of bearing failure. Therefore, this indicator may be also
employed for the diagnosis of fast-approaching failure during the final stage
of the bearing life. Moreover, all Veq histories seem to follow a common trend.
As a result, the possibility to fit the data to some kind of fitting functions
is investigated with the aim of developing prognostics procedures. It is also
worth noting that the volume does never decrease over time, with the only
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Figure 61: RMS maps for a constant rotation speed equal to 40 Hz and different values
of applied load: (a) 3000 N; (b) 4000 N; (c) 4700 N; (d) 5000 N.

exception of the final part of test E4. In fact, with reference to Figure 56, in the
EDV algorithm it was inserted the possibility, at each instant, to expand the
search range to points which were previously removed from the RMS map.
This hypothesis was added into the algorithm in order to ensure its capability
to always describe the entire experimental RMS trend, as detailed in Section
5.2.2. However, the results of the EDV algorithm show that this phenomenon
does not usually take place, except in one test, and only at the very end of
the test itself. Finally, the fact that Veq mostly shows an increasing trend is an
aspect of major interest. Indeed, Veq is denoted by an increasing trend, but
it is extracted by a non-increasing trend, i.e. the RMS, which in contrast may
increase or decrease over time, as seen in Figure 60. This is another impor-
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Figure 62: Equivalent damaged volume estimated through the EDV algorithm: (a)
Tests E1, E2 and E3; (b) Tests E4, E5 and E6.

tant matter that makes the equivalent damaged volume Veq a very promising
parameter for further employment in prognostic models.

5.4.2 Application of the first PBM: prediction of degradation histories

The first of the two proposed PBM is a preliminary attempt at providing
a prognostic model based on the EDV algorithm. The full procedure at the
foundation of this PBM has been described in Section 5.2.3.1. The outputs
of the model are the degradation histories at different operative conditions
with respect to the reference one. Within this context, the reference histories
are associated with the three tests carried out under a radial load equal to
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4000 N. Therefore, the pairs (∆φd, hd) related to each point in Figure 62

are used to generate degradation histories at the rotation speed of 40 Hz
but under radial load values equal to 3000 N, 4700 and 5000 N, respectively.
Consequently, three numerical histories are generated for each load. At each
time, the RMS is evaluated by performing a simulation in which defect depth
and angular extent are based on the pair (∆φd, hd) computed through the
EDV algorithm. The resulting deterioration histories are reported in Figure 63.
Specifically, Figure 63.a depicts the numerical and experimental trends at 3000

N, while Figure 63.b and Figure 63.c represent the trends at 4700 N and 5000 N,
respectively. As it may be observed from the plots, the numerically generated
degradation histories have the same trends as the original experimental ones
from which they are derived, but they are scaled on the basis of the new load
value. However, as expected, this approach may not be directly utilized for
prognostics, as the trends generated in this way will always have the same
tEOL. Regardless, it is possible to compare the numerical histories with the real
experimental trends. As of now, only three tests at different loads are available.
A complete discussion for this model should be performed on the basis of an
high number of tests, in order to provide an insightful comparison between
numerical and experimental data. For instance, consider Figure 63.c, which
compares the RMS trends at 5000 N. The experimental trend is very similar to
the numerical trend produced by the degradation history E2 until about 250

minutes from the beginning of the final stage. Therefore, the model developed
in this way is not able to capture the different trends over time due to the
limited amount of tests. Nevertheless, some useful information may still be
obtained by employing this first proposed model. Interestingly, in fact, the
RMS value at tEOL is very similar between the experiments and the numerical
results. While this information may not be employed for prognostics, since
information about the time of failure is missing, it allows to determine which
acceleration value is expected to be reached at the end of the test. The RMS
values at life end are reported in Table 21. At the lowest load of 3000 N, the
final RMS is lower for all numerical trends. At 4700 N, the values are closer,
especially for the history generated from the experimental test E2. Finally,
results are more dissimilar at 5000 N, as the model underestimates the ending
RMS value in all instances.
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Figure 63: Comparison between numerically generated and experimental degradation
histories, for different load values: (a) 3000 N; (b) 4700 N; (c) 5000 N.

5.4.3 Application of the second PBM: TT assessment on actual vibration data

The second model based on the EDV method involves the prediction of the TT
between the actual time and a pre-determined threshold Vth. While this is not

170



5.4 reb prognostics based on edv estimation

Table 21: RMS values at the end of each test as estimated experimentally and through
the numerical model.

Load value
Test ID 3000 N 4700 N 5000 N

Numerical, E1 [g] 3.4 5.2 5.5
Numerical, E2 [g] 3.2 4.8 5.1
Numerical, E3 [g] 2.8 4.1 4.4
Experimental [g] 3.7 4.8 6.6

a direct measure of the RUL, Figure 62 shows that the last part of bearing life is
always characterized by a steep increase in the value of Veq. Hence, by setting
an adequate value of Vth, it should be possible to determine the remaining
time before the equivalent damaged volume crosses a "critical" threshold that,
in terms of time, is very close to the end of life of the component. As a result,
the procedure described in Section 5.2.3.2 is applied to Veq values retrieved
from the experimental measurements. The efficiency of the proposed method
is then evaluated by computing the TT over time for all tests depicted in Figure
62.

Firstly, Veq trends are truncated at a threshold Vth. For the purpose of this
study, a value Vth = 0.05 mm3/mm is chosen on the basis of the trends observed
in Figure 62. However, this choice is arbitrary. As a consequence, different
threshold values might be employed in further investigations. The resulting
Veq histories are reported in Figure 66.a for tests E1, E2 and E3 and in Figure
66.b for tests E4, E5 and E6, respectively. In each degradation trend, the final
point on the threshold is obtained by linear interpolation between the points
immediately before and after Vth.

Subsequently, the curves in Figure 66 are fitted with a polynomial of order
two. The fitted curves for each test are shown in Figure 65. From this figures, it
is possible to observe that the fitting curves are able to provide a good fitting
of the data. This is evaluated by computing the coefficient of determination,
namely R2, for each curve. This parameter, in fact, permits to evaluate the
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Figure 64: Values of Veq below the threshold Vth = 0.05 mm3/mm: (a) Tests E1, E2

and E3; (b) Tests E4, E5 and E6.

goodness-of-fit of the data [239]. The values of R2 are reported in Table 22

alongside the coefficients a, b and c of the corresponding polynomial ax2 +
bx+ c. The R2 values are always higher than 0.92 for each curve, thus denoting
a good fitting of the data in all cases. The main downside of this approach
is that the fitting curve may overestimate the TT if the values of Veq begin to
rapidly increase before the damaged volume reaches the chosen value of Vth.
This is particularly evident in test E4, which is shown in Figure 65.d. In fact,
the gradient of the degradation trend consistently increases even below 0.04

mm3/mm. However, the polynomial fitting behaves sufficiently well for the
other cases considered in this study. Therefore, a polynomial of order two is
employed for the TT prediction in the next step of the proposed procedure.
Even in this case, it is worth underlining that further inquiry on the best-fitting
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Figure 65: Veq values below threshold fitted with a quadratic polynomial: (a) E1 (4
kN); (b) E2 (4 kN); (c) E3 (4 kN); (d) E4 (3 kN); (e) E5 (4.7 kN); (f) E6 (5 kN).

options and the choice of threshold values for TT assessment may be proposed
in future investigations to improve the efficiency of the developed methodology.

Finally, the TT estimation method described in Section 5.2.3.2 is applied to
the examined experimental tests. The technique is applied as follows. For
each test, TT is predicted at each instant by fitting the estimated Veq up to the
considered time with a quadratic polynomial. Subsequently, TT is computed by
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Table 22: Values of coefficients a, b and c of the polynomial ax2+bx+ c and goodness-
of-fit parameter R2 for each test.

Test ID a (x 10
-7) b (x 10

-5) c (x 10
-3) R2

E1 3.42 6.53 1.35 0.979

E2 6.22 1.28 1.68 0.921

E3 1.49 0.25 3.48 0.986

E4 3.41 2.99 1.18 0.941

E5 6.62 2.24 0.63 0.987

E6 0.55 3.05 1.14 0.989

evaluating the time tth in which the fitted curve crosses the volume threshold
Vth. This leads to a different TT estimation at each instant, since more data
points are available for fitting as the test time progresses. TT values estimated
through this procedure are shown in Figure 66. In each plot, the predicted
TT is compared with the actual TT, which is a straight decreasing line with a
slope equal to -1. Therefore, the prediction accuracy of the method is evaluated
by comparing the predicted values with this reference line: the quality of the
estimate is higher if the predicted points are closer to the actual TT. Figure 66

shows that the same behaviour is observed for all curves. In fact, the predicted
TT consistently differ from the actual TT at the beginning of the final stage.
Later, when more points become available, the quality of the fitting increases.
Predicted values are more accurate for certain tests, in particular for tests
E2, E3, E4 and E5, which are shown in Figure 66.b, Figure 66.c, Figure 66.d
and 66.e, respectively. In these cases, the predicted points all fall around the
actual TT line after a certain number of test points. This behaviour is due to
the different slopes of the real curve during the degradation process. In fact,
the fitting curve detects an accurate tth if the damage progression speed is
comparable with the actual velocity up to the considered data sample. In other
words, a steep increase of the equivalent damaged volume at very beginning of
the final stage may lead to extremely low values of TT, e.g. as in test E3 plotted
in Figure 66.c. In this test the initial TT estimates are remarkably far from the
actual ones, but they are sensibly closer to the real values after approximately
150 minutes. In fact, as the degradation progresses, the curve stabilizes and
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converges to the actual data distribution. This becomes more evident the
further the degradation evolution has proceeded, has it may be seen from the
considered plots. On the other hand, Figure 66.a and Figure 66.e show that for
tests E1 and E6 the estimated TT is always lower than the real one. While the
estimation for E1 is denoted by low values that follow the real distribution,
results are considerably worse for test E6. Indeed, Figure 66.e shows that test
E6 produces the worst results with this method. This may imputable to the
incorrect choice of threshold values or fitting function for this particular test,
which instead provided satisfactory results in all other cases. This aspect is
investigated by testing different threshold values and subsequently estimating
the associate TT for test E6. The results of this additional study are depicted
in Figure 67.a, Figure 67.b and Figure 67.c for threshold values equal to 0.03

mm3/mm, 0.08 mm3/mm and 0.1 mm3/mm, respectively. By comparing these
trends with the results obtained for Vth = 0.05 mm3/mm, it is possible to
examine the differences introduced by the choice of another threshold value.
By employing the lowest Veq, the predicted trend is closer to the expected one.
Differently, the predicted trend change for the other two values. In particular,
by changing from 0.08 to 0.1 mm3/mm the curve shifts towards higher TT
values.

In conclusion, the chosen threshold may greatly affect the outcome of the
model. Although good estimates are obtained with a value of Veq set to 0.05

mm3/mm, different and possibly better results were obtained by utilizing
diverse values in test E6. Moreover, other kinds of fitting functions should be
investigated in further inquiries. In spite of this, the proposed methodology
already shows a good potential for application in REB prognostics. In fact, it
is worth underlining that PBM models may be applied to several operative
conditions, since they are based on the physics of the problem rather than on
previously acquired data on the system. As a result, the two proposed PBMs
demonstrate the capabilities of the EDV method within the context of bearing
prognostics.
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Figure 66: TT computed through the proposed method: (a) E1 (4 kN); (b) E2 (4 kN);
(c) E3 (4 kN); (d) E4 (3 kN); (e) E5 (4.7 kN); (f) E6 (5 kN).

5.5 summarizing remarks

This chapter introduced a novel parameter related to the evolution of defect
dimensions during the final stage of bearing life. This quantity, named equiva-
lent damaged volume, was exploited to propose two physics-based prognostics
models for the assessment of rolling bearing health state.
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Figure 67: TT computed for test E6 for various threshold values: (a) Vth = 0.03

mm3/mm; (b) Vth = 0.08 mm3/mm; (c) Vth = 0.1 mm3/mm.

The faulty bearing dynamic model, which was previously described in Section
4.2.2, was extended to also consider extended defects. This task was performed
in order to replicate the experimental evidence that the defects produced
during the experimental campaign where all characterized by a large angular
extent at the end of bearing life. Thus, to account for this aspect in the model,
the ball path trajectory inside the defect was modified by introducing the
possibility of contact with the bottom of the defect, which was modelled as
a rough surface. Besides, the model parameters were tuned according to the
procedure to determine their unknown values described in Chapter 4.

Then, the algorithm that allows to compute the EDV values was detailed. The
proposed algorithm takes as input the numerical RMS map computed at the
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experimental working condition and the experimental RMS history in the final
stage of the bearing life. The RMS map is a surface in which, for a given load
and shaft rotation speed, at each point corresponds a different combination of
the dimensions that characterize the modelled defect, i.e. angular extent and
depth. The numerical RMS values were computed through the enhanced LP
model, which is able to consider both dimensions. The output of the algorithm
is the equivalent damaged volume per unit of width Veq and the associated
defect dimensions ∆φd and hd for each point extracted from the experimental
RMS history.

The EDV algorithm was then exploited to propose two potential PBM prog-
nostic models. The first PBM aimed at the prediction of RMS trends under
different conditions with respect to a reference degradation history. Due to the
limited number of available test data, this methodology was only employed to
compare the obtained histories and to perform a rough quantitative estimate
on the RMS values at end of the bearing life. On the contrary, the objective of
the second PBM was to predict the propagation of the equivalent defect that
develops in the bearing during the final stage of its life. This approach was
applied in order to evaluate the time-to-threshold, i.e. the time between the
actual time and the instant in which Veq crosses a pre-defined threshold. The
prediction was based on the assumption that the damage evolution follows
a quadratic polynomial function over time. This was verified by fitting Veq

values with the assumed fitting functions. Then, the method was applied to
determine TT values during operation by fitting the available data points up
to the actual time with the chosen polynomial. The efficiency of the method
was demonstrated by estimating the time-to-threshold on signals acquired
during the run-to-failure experiments. However, the main downside of this
technique is that it provides unrealistic estimate at the beginning of the final
stage due to the low number of sample points. However, as more data become
available during bearing operation, the quality of the fitting increases and so
does the accuracy of the estimate. Moreover, different fitting functions and
other threshold values shall be further investigated in future works to enhance
the capabilities of the proposed PBM. Despite the fact that the work carried
out in this chapter should be only considered a first approach to the problem
of bearing prognostics, it provides an original contribution on the subject. In
fact, it introduces two modelling approaches based on an indicator, i.e. the
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equivalent damaged volume, that is calculated by means of a dynamic model
of a faulty bearing with localised or extended defects. Indeed, this is the main
aspect of novelty of the detailed study.

Finally, to conclude the chapter, it is worth underlining some relevant aspects
of the EDV algorithm and its potential further developments. In this regard,
this endeavour only dealt with outer races defects. This was based on the
observation that the defect observed in the experimental tests were all located
in the outer raceways. However, in general, defects may also develop in the
other components of the bearing, i.e. inner ring, rolling elements and cage.
The EDV algorithm may be also applied to these type of damages, provided
that the RMS maps are computed by modifying the LP model accordingly.
Besides, the EDV algorithm might be also employed to compute Veq values
under varying operative conditions. However, in this case, the complexity of
the procedure greatly increases. In fact, several RMS maps must be generated,
each one for a different combination of load and speed. It is evident that a
similar approach requires a large initial computational effort to generate all
the required RMS maps. Nevertheless, for a given system, this process must
be performed only the first time, since for subsequent EDV analyses the RMS
maps will be already available. Notably, it is not possible to generate a RMS
map for every operative condition, since these maps may only be defined at
discrete load or shaft speed values. Consequently, values in-between must be
somehow extracted through interpolation between the RMS values estimated
from two maps instead of one. Finally, it is also worth emphasizing that the
main characteristic of prognostic models based on the EDV algorithm is that,
by being physics-based, they may be employed for any given combination
of load and shaft speed values. Therefore, these models show a remarkable
potential for employment in real-case scenarios.
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6
F I N A L R E M A R K S

This thesis discussed a number of numerical techniques that may be employed
to address several aspects related to the modelling of rolling-element bearings.
In particular, the dissertation covered the following topics:

• The estimation of bearing stiffness values through the finite-element method,
by proposing a computationally efficient methodology for the generation of
load-dependent meshes.

• The dynamic LP modelling of rolling bearings with localised defects, by
establishing a procedure for the estimation of unknown model parameters.

• The development of physics-based prognostic models, through the introduc-
tion of a degradation-related indicator based on a LP model of a defective
bearing.

All these subjects where thoroughly analysed in a dedicated chapter each.
Results were validated either against analytical models retrieved from the
literature or from actual experimental data acquired on a specifically-designed
test bench.

Firstly, Chapter 1 introduced the arguments of the thesis and provided an
exhaustive literature review on the state-of-the-art in bearing modelling. The
survey highlighted the major aspects of interest from the massive amount
of works which discuss about the modelling of these widely-employed me-
chanical components. Moreover, the chapter outlined the research objectives
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and illustrated the organization of the thesis. Then, Chapter 2 described the
bearing test bench that was set up at the Engineering Department of the Uni-
versity of Ferrara. The test rig was employed to perform two type of tests:
stationary tests for bearing with artificial localised defects and run-to-failure
tests. Concerning the former, the tests involved the acquisition of acceleration
signals of defective bearings under several combinations of values of applied
load, shaft rotation speed and defect dimension. To this end, artificial defects
were seeded on the outer raceway of a number of self-aligning ball bearings
through electro-discharge machining. Differently, run-to-failure tests regarded
the acquisition of bearing vibration signals throughout the entire life of the
components. In this regard, accelerated tests were performed by exerting a
high load on the bearing under test. A total of six run-to-failure experiments
were accomplished, all at the same rotation speed but with different applied
loads. Every test led to the generation of an extended defect on the outer
raceway of each tested bearing. The results of both test types were employed
for the validation of the modelling techniques delineated in the subsequent
chapters.

Chapter 3 focused on the finite-element simulation of REBs. Within this context,
it discussed the development of a computationally-efficient method for the
generation of load-dependent meshes. The technique was primarily aimed at
proposing an efficient tool for the estimation of bearing radial stiffness, but
it may be also employed to model these components in more complex FE as-
semblies. The developed methodology involved the generation of a dedicated
mesh for each load condition under exam. Interestingly, element dimensions
were determined through analytical formulae rather than performing several
convergence checks on subsequently finer grids. In fact, the main difficulty
associated with this kind of simulations is the need of a sufficiently fine mesh
in the proximity of the contact zones. This may lead to an excessive compu-
tational burden, especially at lower loads, for which contact surfaces reduce
accordingly. Therefore, element dimensions in the neighbourhood of the con-
tact areas between rolling elements and races were determined by means of the
Hertzian theory. This well-known theory provided a simple and straightfor-
ward approach to the problem for a rough estimation of the expected contact
areas. The proposed technique was then applied to two reference bearings,
i.e. a roller bearing and a deep-groove ball bearing, in order to demonstrate
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its efficiency for two different types of contacts between raceways and rolling
elements. The inquiry ultimately led to the definition of the best element types
to be employed for these simulations and the associated element dimensions
for different load values. The accuracy of the stiffness estimate was compared
against the results of an analytical model retrieved from the literature, thus
validating the procedure. Moreover, additional effects that might influence
bearing stiffness values were also investigated. Specifically, the effect of cage
modelling, load direction and clearance were examined. By inserting the cage
into the model as a meshed body, the computational time greatly increased
in spite of a slight variation in the estimated stiffness. This result suggests to
avoid modelling this component for the purpose of stiffness evaluation. On the
other hand, a different direction of maximum load led to a stiffness deviation
of up to 6.7%. Consequently, this effect might be considered by the interested
analyst depending on the required degree of accuracy. Finally, clearance effect
was studied by introducing a small gap between the components and by cor-
respondingly modifying the load distribution. Clearance remarkably affected
the stiffness values, in accordance with the results of the analytical model. In
conclusion, the main aspect of originality of this work lies in the definition
of an analytical procedure for the assessment of the optimal mesh elements
dimensions for the estimation of bearing stiffness through FE analysis.

Subsequently, Chapter 4 inquired a numerical procedure for the estimation
of the unknown parameter in LP models of defective REBs. In fact, it was
observed that several parameters which are commonly inserted in these mod-
els are hardly measurable or rather denoted by a high degree of uncertainty.
Notably, these involve the selection of damping values and the definition of
the properties of the high-frequency resonant masses. Hence, the investigation
was aimed at detailing a procedure for the estimation of these parameters
on the basis of available experimental data. This problem was solved by in-
troducing a multi-objective optimization technique in which the objective
functions were global indicators that took into account the difference between
numerical and experimental results for a variety of operative conditions and
defect dimensions. The numerical features were determined through a LP
model of a defective bearing, while experimental ones were calculated on
the basis of the experimental signals acquired on a dedicated bearing test
rig. The unknown parameters were the optimization variables of the problem.
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These were constrained in order to only be able to assume plausible values
within fixed boundaries depending on their physical properties. Furthermore,
additional analytical relationships relating these quantities were added to take
into account all possible dependencies between the considered parameters. To
apply the proposed technique, a LP model of a self-aligning ball bearing was
generated. Its formulation was based on previous works [22, 88, 99], but it was
adapted to take into account a different ball path inside the defect area. This
kind of model was employed to replicate the same bearing that was mounted
on the bearing test bench. However, the LP model and the subsequent opti-
mization procedure may be also extended to other bearing types. Moreover,
contact damping was also differently defined by means of Rayleigh damping
to achieve an enhanced control of this parameter over the whole frequency
range of interest. Six unknown parameters were chosen, i.e. the two values
needed to define the contact damping, the damping value of the inner ring,
and the damping, stiffness and mass of the high-frequency resonant mass. The
multi-objective optimization technique, then, aimed at minimizing two indica-
tors, namely ∆RMS and ∆A∗, which took into account the energy of the whole
signal and the energy associated to defect-related frequencies, respectively.
The outcome of the procedure resulted in a number of weak Pareto optimals
in which the variability in ∆RMS was considerably higher than the deviation
of ∆A∗ values. Therefore, the optimal set of parameters was estimated to be
the one providing the lowest value of the first indicator. Comparison with the
experimental acceleration signals denoted a good agreement, especially for all
conditions associated with the lowest rotation frequency value, i.e. 20 Hz, and
for all conditions associated with the smallest defect width, i.e. 0.928 mm. This
result is in agreement with previously reported studies, which showed that
these kind of models tend to loose accuracy for higher size of the localised
defect. Furthermore, the effect of rolling element slippage was also inquired.
The influence of the slip term appeared to be more marked for lower defect
dimensions. Nevertheless, the parameters estimated by the optimization proce-
dure allowed to capture the system vibration even by neglecting this additional
term in the analysis. Ultimately, the main aspect of novelty introduced by
the developed methodology consists in the peculiar approach adopted for
the determination of the unknown model parameters. For this purpose, the
technique provided satisfactory results, as highlighted by the comparison with
experimental data.
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Finally, Chapter 5 discussed about bearing prognostics. Specifically, effort was
placed on the development of physics-based models to assess the bearing
health state during its operative life. In this regard, a novel indicator named
Equivalent Damaged Volume (EDV) was proposed. This parameter was defined
as the equivalent volume per unit of width whose associated defect dimensions,
if inserted into the LP model of the bearing, would give the same numerical
RMS as the experimental one. The employed LP model was based on the one
introduced in Chapter 4, but it was further improved to also take into account
extended defects. This type of defect was modelled by adding the possible
contact of the rolling elements with the bottom surface of the defect, which was
described as a rough surface. The need to introduce this additional formulation
arises from the experimental evidence that the bearing defects at the end of the
run-to-failure tests all fell in the category of extended defects rather than their
localised counterpart. These latter type of faults, in fact, usually appear only
at the beginning of the damage stage. Then, subsequent passage of the rolling
elements over the defect edges leads to the enlargement of the fault until it
transitions to an extended defect. The proposed EDV algorithm took as input
the RMS of the experimental signal during the final stage of the bearing life
and the numerical RMS map calculated under a specified operative condition.
The beginning of the final stage was evaluated by introducing a diagnostic
indicator, i.e. the sum of the first five bearing characteristics frequencies in
the envelope spectrum. The rapid increase of this indicator, in fact, paralleled
the relatively slow increment of the RMS value, thus allowing for a better
prediction of the time in which the bearing shifted from its normal operative
life to the final stage. Besides, the RMS map were constructed by running
several simulations with the LP model, each one characterized by different
combinations of defect depth and angular extent. As a result, the output of
the algorithm were the equivalent damaged volume Veq and its associated
dimensions ∆φd and hd over time for each acquisition of the experimental
signal. Interestingly, the EDV method was constructed in order to always
generate an increasing volume over time, except when no suitable values
to satisfy this condition were available in the RMS map for a given signal
sample. The proposed algorithm was exploited to compute Veq values of the
experimental signals acquired during the run-to-failure campaign. Based on
the estimated values, a first approach to bearing prognostics was attempted by
proposing two prognostic PBMs that exploited this peculiar parameter. The first
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PBM involved the prediction of bearing degradation histories under different
conditions with respect to a reference one. This method was based on the
assumption that the damage process followed the same trend under a different
operative condition. However, this idea was limited by the low number of
performed experimental tests. In fact, the same bearing may undergo several
different degradation histories even under the same conditions of applied load
and shaft rotation speeds. Therefore, this first approach shall be investigated
in future efforts, presumably by considering a larger experimental data pool.
On the contrary, the second PBM allowed to obtain more promising results. In
fact, it was noted that experimental Veq values had a slow increment prior to
a certain threshold value. After that value of Veq was crossed, the damaged
volume rapidly increased until failure occurred. Therefore, the second PBM
was based on the assumption that the trend of the equivalent volume below a
certain threshold Vth could be predicted by fitting the data with a quadratic
polynomial. As a a consequence, this approach aimed at estimating the time-to-
threshold value rather than the RUL of the bearing. The efficiency in predicting
the TT was demonstrated by applying the proposed method to the run-to-
failure experiments. However, the major downside of this technique was that
the quality of the fitting depended on the number of available data points in
the final stage. In fact, the accuracy of the estimated TT was found to be low at
the beginning of this phase, but it consistently increased as more data became
available during each test. Therefore, further improvements to this model might
include the analysis of other threshold values and the employment of different
functions to fit the experimental data. To conclude, the main contribution of
the closing chapter of this dissertation is the definition of a degradation-related
parameter, i.e. the equivalent damaged volume per unit of width, which is
employed to propose novel approaches for bearing prognostics.

186



A
A P P E N D I X : A N U M E R I C A L M O D E L F O R N V H A N A LY S I S
O F G E A R B O X E S E M P L O Y E D O N A G R I C U LT U R A L
E Q U I P M E N T

a.1 introduction

The appendix of this thesis deals with the problem of gearbox modelling
applied to a real industrial problem. In particular, this chapter describes the
generation process of a digital twin aimed at the noise, vibration and harshness
(NVH) analysis of a gearbox employed on agricultural equipment. These
components, in fact, may produce high levels of noise during their operational
life. The noise is generated by gear meshing, and it is further amplified by
the resonances of the case [240]. Consequently, noise levels during operation
may be too high and exceed acoustic tolerance limits. As a matter of fact,
the acoustic emission is hardly estimable during the design process, which
is finalized at obtaining a certain gear ratio for the gearbox. Nonetheless, the
overall acoustic pressure level will depend both on the choice of the gears and
on the properties of the case. Therefore, by assuming a fixed design for the case,
the generated noise will depend on the appropriate selection of gears that are
able to achieve the required gear ratio. In particular, their teeth profile highly
affects the meshing phenomenon and the associated vibration. As a result,
noise reduction may be accomplished by performing an extensive campaign of
experimental testing. However, this means measuring acoustic pressure levels
for every possible combination of gears and teeth profile. Indeed, the process
is very time-consuming and requires a large amount of resources.
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A faster way to optimize the gearbox design consists in generating a digital
twin of the component itself, i.e. a digital replication of the physical entity
[241] which allows to test different gear configurations without creating a
physical prototype of the gearbox for each test. In this case, the experimental
tests must be carried out only to validate the initial baseline model. In fact,
subsequent design modifications may be numerically evaluated by changing
its input parameters [242]. Within this framework, this appendix describes the
generation process of a digital twin of a real gearbox employed on agricultural
equipment. The main objective is to provide a tool capable of assessing the
overall acoustics in operational conditions. The proposed digital twin is a
combination of a lumped-parameter (LP) model, a structural finite-element
(SFE) model and an acoustical finite-element (AFE) model. A similar procedure,
involving the use of these three types of models, was developed in previous
works [243, 244, 245]. The LP model is used to obtain the reaction forces on the
bearings during working conditions. Reaction forces are employed as an input
for the further SFE dynamic model to evaluate the dynamic response of the
gearbox case, which is then exploited to set-up the AFE model. This last model
allows to estimate the noise generation in terms of overall acoustic pressure.
Numerical results are validated through comparison against experimental
data acquired on a real gearbox. Testing activities were carried out at Comer
Industries facility in Reggiolo, where specimens and test benches were set.

In the following, the developed models are presented and experimentally
assessed. Section A.2 describes the system under examination and the three
numerical models. Section A.3 reports the experimental setup and the valida-
tion process of the models based on the acquired data. Eventually, Section A.4
closes the work by providing some summarizing remarks.

a.2 digital twin of the gearbox

The developed digital twin is a combination of three sub-models: a LP model,
a SFE model and an AFE model of a gearbox employed on agricultural equip-
ment. The output of the combined LP/SFE/AFE model is the overall acoustic
pressure due to specified working conditions and gear design. The following
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sections describe the system under exam and all the implemented numerical
models.

a.2.1 Description of the system

The system under study is schematically depicted in Figure 68. The gearbox
case contains three shafts, five spur gears and six bearings. The shafts are
named driver, intermediate and driven shafts, respectively. On the other hand,
the gears are denoted by numbers from 1 to 5. Gear ratio of the system, i.e.
τ = Ωout/Ωin, may take the values 1 or 1.8, depending on the selected meshing
gears. In fact, τ is equal to 1 when the meshing takes place between gears 1-3
and 3-5, while τ = 1.8 when the meshing occurs between gears 2-4 and 3-5.
The gear ratio may be manually changed by employing a coupling mounted
on the driver shaft. Within the context of this work, results will be reported
only for τ = 1, i.e. Ωin = Ωout. This gear ratio is achieved due to the fact that
gears 1, 3 and 5 have the same number of teeth, i.e. 37. For the purpose of this
work, only the condition τ = 1 is investigated.

a.2.2 Lumped parameter model

The dynamic behaviour of the moving components inside the case is described
by means of a non-linear lumped-parameter model. The LP model allows to
estimate the reaction forces on the bearings due to gear meshing by simulating
the dynamic effect of the motion of the components inside the case. Therefore,
it consists in the subdivision of the system into masses and inertias connected
to each other by elastic and viscous damping elements. The model considers
the effects of time-varying mesh stiffness, the non-linearity of the meshing
phenomenon and a constant bearing stiffness. It also takes into account the
backlash, which is necessary to allow better lubrication, reduce wear and limit
interference due to geometrical construction errors. However, the backlash
induces torsional vibrations that can cause the detachment between teeth [246].
Consequently, in this model, for a given direction of pinion rotation the forces
are exchanged along the direct line of action. Despite this, in case contact is
lost, the driven wheel may impact the pinion on the opposite side of the tooth.
By considering that only spur gears are present in the system, translations
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Figure 68: Schematic depiction of the gearbox.

and rotations were monitored just in the plane transverse to the gears, as no
displacement will occur in the z direction. As a result, as it may be appreciated
in Figure 69, the LP model is composed by nine degrees of freedom, i.e. the x
and y translations and the angular displacement θ around the shaft rotation
axis for each gear. The equation governing the motion of the system is:

Mẍ + Γ(xd, xb)
[︃

Cẋ + Kx −
1

2
kmxb

]︃
= w (98)

where

Γ(xd, xb) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if xd > xb/2

0 if − xb/2 ⩽ xd ⩽ xb/2

−1 if xd < −xb/2

(99)

while M, C and K are the mass, damping and stiffness matrices, respectively;
xd is the dynamic transmission error; xb is the gear backlash; km is the time-
varying meshing stiffness; ẍ, ẋ, x are the acceleration, velocity and displacement

190



A.2 digital twin of the gearbox

vectors, respectively; w is the external forces vector. Damping is defined as
Rayleigh damping, i.e. proportional to mass and stiffness matrices, as detailed
in Eq. 39. Different strategies may be followed for the choice of parameters αc

and βc. As a preliminary approach, they may be fixed according to experience.
Then, they may be calibrated on the most important linearised resonances of
the geartrain, which may be obtained experimentally. In this study, the first
option is adopted. As a result, different damping coefficients are considered
for each damper in the LP model.

According to Figure 68, since the investigation is carried out only for gear
ratio τ = 1, the considered gears are the number 1, 3 and 5. Since each gear
has three DOFs, the total number of DOFs in the model is nine. For the i-th
gear, kb,i and cb,i are the bearing stiffness and damping, respectively. For
the latter, coefficient αc,i and βc,i are also introduced. Besides, km,ij(t) is the
time-varying meshing stiffness between the i-th and j-th gears, while cm,ij(t)

is the associated damping. The associated Rayleigh damping parameters are
named αc,ij and βc,ij, respectively. Parameters m1 and j1 are the mass and
inertia of the components mounted on the driver shaft. Similarly, m3 and J3
have the same meaning for the intermediate shaft, while m5 and J5 refer to
the driven shaft. When meshing takes place between gears 1 and 3, gear 2 is
not rotating with the driver shaft. Its rotary motion, in fact, is accomplished
by gear 4 that is mounted on the intermediate shaft. As a consequence, the
rotary inertia of gear 2 is considered as part of J3. On the other hand, the
oscillating mass of gear 2 is accounted for by m1. The proposed numerical
model is implemented in MATLAB [235] and it is employed to determine the
reaction forces on bearings for a given operative condition.

a.2.3 Structural finite-element model

A FE analysis is carried out in order to estimate the case vibration due to the
reaction forces exerted on bearings by gear meshing. The model is developed
in Simcenter 3D [214], where the pre and post-process phases are carried out,
while the chosen solver is Simcenter Nastran. In the proposed SFE model, only
the external case of the gearbox is meshed. The operation is performed by
exploiting 4-nodes 3D tetrahedral elements, as shown in Figure 70.a. On the
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Figure 69: Scheme of the geartrain LP model.

contrary, all the internal components are replaced by concentrated masses,
which are elements defined only by their centre of mass and inertial properties,
i.e. mass and moments of inertia. As it may be appreciated in Figure 70.b, these
concentrated masses are connected to the respective bearing housings by rigid
elements, namely RBE2 in Nastran. Thus, the central node, i.e. the concentrated
mass, is connected to all the nodes on the surface of the corresponding bearing
housing. Concerning the boundary conditions, Figure 70.c shows that fixed
constraints are applied on the bottom of the case, in place of the screws that
would tighten it to the plate below. A fixed constraint implies that all the
degrees of freedom for the involved nodes are restrained. The SFE model is
employed to perform a numerical modal analysis and a dynamic simulation.
The former allows to validate the mesh of the model through comparison
with experimental results, and it is solved by exploiting Nastran solution SOL
103. The dynamic model, on the other hand, is solved by utilizing the modal
frequency response solution, i.e. SOL 111 in Nastran. The output forces of the
LP model are used as input for this model to assess the structural vibration
of the case. Results are validated by comparison against acceleration data
acquired during testing.
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Figure 70: Gearbox mesh: (a) whole case; (b) rigid elements connecting a concentrated
mass to the case; (c) constrained nodes.

a.2.4 Acoustical finite-element model

An acoustical finite-element model is developed to estimate the overall acoustic
level due to the vibration of the case induced by gear meshing. The proposed
AFE model exploits the acoustic transfer vector (ATV) approach. This method
consists in computing a set of functions which establish a relationship between
the normal velocity of the nodes on the surface of the vibrating structure and
the acoustic pressure at defined locations [247], named microphone points. For
each one of them, a frequency-dependent vector atv(f) is computed so that:

p(f) = atvT (f)vn(f) (100)

where p(f) is the pressure at a specified location and vn(f) is a vector contain-
ing the normal velocities of each node on the radiating surface. Both these
quantities are also frequency dependent. Furthermore, by assuming that there
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are m microphone points and n nodes on the vibrating surface, the vector
atv(f) is computed for all m point in order to generate an m x n acoustic
transfer matrix ATM(f) that satisfies the equation:

p(f) = ATM(f)Tvn(f) (101)

where p(f) is a vector of length m containing the frequency-dependent acoustic
pressures at each microphone point. The main characteristic of the ATV matrix
ATM(f) is that it does not depend on the structural response. In fact, it only
depends on the properties of the acoustic domain and on the position of the
microphone points. This peculiar characteristic translates to the fact that, for
a given fluid - radiating surface interface, matrix ATM(f) is constant and
needs to be computed only once. As a result, various loading conditions may
be computed by using the same ATV matrix, thus leading to a consistent
reduction in analysis time compared to other approaches.

To compute ATM(f), it is necessary to create a 3D acoustic mesh for the fluid
surrounding the gearbox case. As the problem concerns the solution of exterior
acoustics, the size of the domain is reduced by exploiting a perfectly matched
layer (PML), which is an artificial layer that absorbs all the incoming incident
waves instead of reflecting them back into the fluid, independently from their
frequency and their direction [248]. The PML allows to truncate the size of the
acoustic domain, thus reducing the number of 3D elements needed to create
the mesh. The resulting grid is shown in Figure 71. The layer is applied on
the entire external surface of the mesh excluding its bottom side, where an
infinite plane is defined instead. In fact, according to Figure 72, such a plane
allows to take into account the presence of the steel plate located below the
case, which behaves like a reflecting surface. To this end, the infinite plane
allows to impose a symmetry boundary condition, i.e. the normal velocity on
the plane is enforced to be equal to zero. Finally, microphone points may be
placed anywhere outside the layer, as shown in Figure 71. In the acoustical
model, they are located in the same location as the corresponding microphones
in the experimental tests. This model is solved through Nastran solution SOL
108.
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MIC1

MIC2

Figure 71: Acoustic mesh and microphone points.

a.3 validation of the digital twin

This section outlines the validation process of the models which constitute the
digital twin of the gearbox. The experimental setup employed to acquire the
data during operation is described. Then, the results of the LP, SFE and AFE
models are reported along with the associated experimental validations.

a.3.1 Experimental setup

The experimental setup is shown in Figure 72. The driver shaft is connected
to the output shaft of the engine of an agricultural tractor by an universal
joint, while the driven shaft is connected to a braking system. The case is
fixed on a steel plate. The reference frame depicted in the bottom left of the
figure, employed for the experimental tests, has the same orientation as the
ones utilised in all the numerical models. The performed experimental tests
may be divided in two categories, i.e. experimental modal analysis (EMA)
and operative analysis (OA). The EMA was carried out by using the roving
hammer based method. For this purpose, 31 excitation points and 3 response
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Figure 72: Experimental setup.

points distributed on the surfaces of the case were employed. Excitations were
applied with an impact hammer model PCB 086D05, while the responses
were measured by piezoelectric triaxial accelerometers model PCB 356B21. The
results of this analysis are used to validate the SFE model. On the other hand,
the OA has been realized in firing condition by applying a load on the driver
shaft through the output shaft of the engine. Acceleration on the case was
measured by using two piezoelectric triaxial accelerometers model PCB 356B21

(Acc1 and Acc2 in Figure 72) fixed on two opposite faces of the case. At the
same time, the acoustic pressure was measured with two microphones model
PCB 378B02 in front of the accelerometers, at a distance of 20 cm from the
corresponding surfaces (Mic1 and Mic2 in Figure 72). The rotational speed of
the input and output shafts was acquired by using two optical tachometers
placed on the corresponding shafts.

Tests were run for one working condition and for two different teeth profiles,
here called Baseline and Mod1. The latter consists in a modification of the
geometry of the former, i.e. the original profile. This peculiar profile is not
described for confidentiality reasons. By changing the profiles, two different

196



A.3 validation of the digital twin

Description Symbol Value

Input power W 50 kW
Gear ratio τ 1

Rotational speed of the driver shaft Ωin 506.4 RPM
Rotational speed of the driven shaft Ωout 506.4 RPM
Rotational frequency of the shafts frot 8.4 Hz

Meshing frequency of gear pairs 1-3 and 3-5 fm 310.8 Hz

Table 23: Tested working condition.

time-varying meshing stiffness are generated. As a consequence, different
acoustic emissions are produced. The working condition utilized for testing is
reported in Table 23. It is defined by the rotational speed of the driver shaft
Ωin, input power W and gear ratio τ. The table also reports the rotational
frequency frot of the shafts and the gear meshing frequency fm of gears 1-3
and 3-5. It is worth noting that for both gear pairs only one value is listed
since for τ = 1 all shafts have the same speed, thus leading to an equal gear
meshing frequency.

Pressure levels measured during OA are reported in Figure 73 for both tested
profiles. From these graphs it may be noticed how the highest contribution to
the overall level comes from the frequency interval consisting in the 1/3 octave
bands whose centre frequencies range from 630 Hz to 2500 Hz, i.e. from 562

Hz (lower frequency limit of the 630 Hz band) to 2818 Hz (upper frequency
limit of the 2818 Hz band). This observation allows lowering the computational
burden for the SFE and AFE dynamic model by decreasing the frequency
range of the analysis from 0 - 20 kHz to the reduced interval 562 - 2818 Hz.
To conclude, it should be noted that profile Mod1 provides a reduction in the
overall levels. In fact, reductions of 3.5 dB(A) on Mic1 and 4.9 dB(A) on Mic2

are obtained by changing from the original to the modified teeth profile. These
levels are A-weighted and computed over the reduced frequency range 562 -
2818 Hz for a reference pressure Pref = 2 · 10−5 Pa.
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Figure 73: Acoustic levels sensed by the microphones: (a) Mic1; (b) Mic2. Reference
pressure is pref = 2 · 10−5 Pa. (Values on y-axis not shown for confidential-
ity reasons).

a.3.2 LP model results

The value of the parameters used for the LP models are reported in Table 24.
The values of masses and inertias are determined based on the considerations
reported in Section A.2.2. Since all six bearings are the same model only one
value, namely kb, is reported in Table 24 To simplify the problem, the non-
linear characteristic of the bearing is neglected, thus leading to a constant value
of radial stiffness. The meshing stiffness, on the other hand, is the source of
excitation in the model and it is therefore time-varying. The average value over
time for the two profiles Baseline and Mod1 are shown in the table. Then, in the
LP model, the corresponding meshing stiffness values km13(t) and km35(t) are
equal to either one of them depending on the testing condition under exam.
Damping values, on the contrary, assume different values on each bearing and
meshing gear pair. As detailed in Section A.2.2, damping is defined through
Rayleigh damping. As a consequence, Table 24 reports the values coefficients
αc and βc. While αc retains the same value for each component, βc does not.
The values of βc, in fact, are chosen in order to consider the damping effect of
the oil inside the case.

Resulting reaction forces on bearings are exploited as input solicitation for the
subsequent SFE analysis. The forces generated by gear meshing are depicted
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Description Symbol Value

Mass
Gear 1 m1 15.88 kg
Gear 3 m3 16.85 kg
Gear 5 m5 10.69 kg

Moment of inertia
Gear 1 J1 2.36·10

10 kg·m2

Gear 3 J3 5.38·10
10 kg·m2

Gear 5 J5 1.72·10
10 kg·m2

Bearing stiffness All kb 1.82·10
9 N/m

Average meshing stiffness
Baseline km,B 7.73·10

8 N/m
Mod1 km,M 7.26·10

8 N/m

βc coefficients

Gear 1 βc, 1·10
-4 s

Gear 3 βc3 5·10
-4 s

Gear 5 βc5 6·10
-4 s

Meshing 1-3 βc13 1·10
-4 s

Meshing 3-5 βc35 5·10
-4 s

αc coefficient All αci, αcij 1 s-1

Table 24: Values assigned to the components of the LP model.

in Figure 74 for both planar directions, i.e. x and y. However, the shafts are
mounted on two bearings each. Therefore, in the SFE model, the total force
on each gear is subdivided on the two respective bearings on the basis of the
distance between the gear itself and the bearings. Finally, from Figure 74 it is
also possible to observe that profile modification from Baseline and Mod1 leads
to a strong reduction of bearing reaction forces.

a.3.3 SFE model results

The SFE model is generated according to the methods described in Section
A.2.3. Material of the case is cast iron with Young’s modulus E = 90 GPa,
Poisson’s ratio ν = 0.3 and density ρ = 7250 kg/m3. Before proceeding with
the dynamic analysis, the structural mesh is validated against the EMA results.
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Figure 74: Reaction forces on bearings as a function of the gear pitch: (a) Gear 1,
x direction; (b) Gear 1, y direction; (c) Gear 3, x direction; (d) Gear 3, y
direction; (e) Gear 5, x direction; (f) Gear 5, y direction. (Values on y-axis
not shown for confidentiality reasons).

This purpose is fulfilled by comparing the natural frequencies and the mode
shapes obtained numerically against EMA results. In agreement with the
acoustic measurements reported in Section A.3.1, focus is placed only on the
frequency range with the highest acoustical emission, i.e. the one located
between 562 and 2818 Hz. In particular, validation is carried out for the first
two experimental modes in this interval which are found at 828 Hz and 1221

Hz. The results obtained with SOL 103 are reported in Table 25, while the
numerical and experimental mode shapes are shown in Figure 75.a for the
first mode and Figure 75.b for the second mode. It is worth nothing that,
for both modes, the obtained numerical natural frequencies are close to the
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Natural Frequency [Hz]

EMA Numerical MAC

Mode 1 828 835 0.66

Mode 2 1221 1143 0.73

Table 25: Comparison between the first two natural frequencies obtained experimen-
tally (EMA) and numerically (Nastran SOL 103).

experimental ones, as the frequency difference between them is 0.9% for mode
1 and 6.4% for mode 2. Furthermore, the modal assurance criterion (MAC)
takes fairly high values for both of them, since it is equal 0.66 and 0.73 for the
first and second mode, respectively. These results denote a good accordance
between the experimental and numerical results, hence validating the SFE
model and allowing to further employ it for the dynamic analysis.

The modal frequency response solution, i.e. SOL 111 in Nastran, is employed
to solve the dynamic model. Forces are applied on the bearing housings by
providing their magnitude and phase and by distributing them on the entire
surface of each housing. Since the axial forces are neglected, a total of twelve
forces acting on the system, six of them in the x direction and the other six
in the y direction, are considered so that two forces acting on each bearing
are accounted as described in Section A.3.2. As for the modal analysis, the
dynamic analysis is carried out only in the frequency range of interest located
between 562 and 2818 Hz. Furthermore, frequency-dependent modal damping
is introduced in this analysis. Its values, estimated by the EMA, are reported
in Table 26. The applied forces are the ones estimated by the LP model for the
working conditions reported in Table 23. The output of the model of major
interest is the vibration of the case, namely its acceleration. To validate the
results, numerical acceleration results are compared with experimental results
obtained during the operative analysis by the accelerometers Acc1 and Acc2

(Figure 72). Acceleration is numerically evaluated by taking the x component
of the acceleration from two nodes on the case shown in Figure 76. In fact, they
are located in the same position as the accelerometers in Figure 72. Results
are then compared in terms of reduction of overall acceleration levels in the
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(a)Experimental Numerical

(b)Experimental Numerical

Figure 75: Comparison between the first two mode shapes obtained experimentally
(EMA) and numerically (Natran SOL 103): (a) Mode 1; (b) Mode 2.

frequency range 562 - 2818 Hz as reported in Table 27 and in 1/3 octave band
spectrum as shown in Figure 77. The results show that the dynamic model
is able to capture the reduction due to the modified profile, as the order of
magnitude of the dB reductions is similar for both accelerometers. In fact,
for accelerometer Acc1, the model predicts a reduction of 7.3 dB, while the
experimentally measured reduction is 5.3 dB; for Acc2 the results are closer, as
the model gives a reduction of 5.5 dB instead of the experimental reduction
of 6.1 dB. Since interest is placed in the assessment of the overall levels, these
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Frequency [Hz] Modal Damping [%]

562 7.6
828 7.6

1221 3.7
1423 1.8
2154 0.5
2818 2.3

Table 26: Modal damping values estimated by the EMA .

(a) (b)

Acc1

Acc2

Figure 76: Location of the nodes corresponding to the two accelerometers: (a) Acc1;
(b) Acc2.

results validate the dynamic model. Consequently, it may be subsequently
exploited for the AFE model.
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Acc1 Acc2

Experimental Numerical Experimental Numerical

dB reduction -5.3 -7.3 -6.1 -5.5

Table 27: Reduction of the overall acceleration levels, x component, computed in
the highest acoustic emission frequency range (562 - 2818 Hz). Reference
acceleration is aref = 1 g.
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Figure 77: Experimental and numerical acceleration levels in 1/3 octave band spec-
trum, x component, for both teeth profiles: (a) Acc1, experimental; (b) Acc2,
experimental; (c) Acc1, numerical; (d) Acc2, numerical. (Values on y-axis
not shown for confidentiality reasons).
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Mic1 Mic2

Experimental Numerical Experimental Numerical

dB(A) reduction -3.5 -3.3 -4.9 -4.9

Table 28: Reduction of the overall acoustic pressure levels, A-weighted, computed in
the highest acoustic emission frequency range (562 - 2818 Hz). Reference
pressure is pref = 2·10

-5 Pa.

a.3.4 AFE model results

The AFE model detailed in Section A.2.4 allows to compute the ATV matrix
that relates the normal velocity on the surface to the acoustic pressure at
defined microphone points. Therefore, it can be combined with the results of
the dynamic model to obtain the acoustic pressure at locations Mic1 and Mic2

shown in Figure 71. The acoustic fluid is assumed to be air having constant
properties, in particular density ρ = 1.20 kg/m3 and speed of sound vs = 343

m/s.

The reductions of overall acoustic pressure levels due to to teeth profile modifi-
cation are reported in Table 28. Moreover, Figure 78 compares the experimental
and numerical results in 1/3 octave band spectrum. According to these results,
the model is able to capture the relative reductions of the acoustic pressure
when the tooth profile is changed. In fact, for Mic1 the reduction is 3.5 dB(A)
in the experiments and 3.3 dB(A) for the numerical model. Moreover, the same
reduction is achieved for both the experimental and the numerical results for
Mic2, i.e. 4.9 dB(A). This ensures the quality of the results obtained by the
combined LP/SFE/AFE model. In conclusion, the proposed digital twin for
the gearbox is validated, as it is able to capture the overall reduction of sound
pressure levels in the selected frequency range due to modifications in the
geartrain design.
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Figure 78: Experimental and numerical A-weighted acoustic pressure levels in 1/3

octave band spectrum, for both teeth profiles: (a) Mic1, experimental; (b)
Mic2, experimental; (c) Mic1, numerical; (d) Mic2, numerical. (Values on
y-axis not shown for confidentiality reasons).

a.4 summarizing remarks

This appendix detailed a combined LP/SFE/AFE model forthe vibro-acoustic
analysis of gearboxes. The model was exploited to generate the NVH digital
twin of a real gearbox employed on agricultural equipment. The LP model
simulated the dynamic behaviour of the components inside the case, while the
SFE model allowed to predict its vibration. Finally, the AFE model permitted
to determine the overall acoustic pressure level at microphone points. Results
were experimentally assessed, and a good accordance was found between
the numerical and the experimental data. In fact, the SFE model of the case
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allowed to accurately identify the first two natural frequencies in the highest
acoustic emission interval. Furthermore, the dynamic SFE model was capable
of capturing the reduction of overall acceleration levels due to different teeth
profiles. A similar result was achieved by the AFE model in terms of overall
acoustic pressure level.

The validation process allows to assert the combined LP/SFE/AFE model as a
digital twin of the gearbox, that is, a tool that may accompany the designer
in the choice of the optimal solution for the noise generation problem. The
main advantage of this model is the capability of being able to easily estimate
the acoustic pressure level generated by various working conditions, i.e. input
speeds, power, gear ratio and teeth profiles, in order to choose the optimal
design which reduces the noise produced by gear meshing. In fact, by using
the ATV method, the ATV matrix must be computed only once provided
that the fluid-radiating surface interface does not change. In other words,
further computations are not needed if the external geometry of the case is
not modified. As a consequence, this methodology speeds-up the optimization
process since only the LP and the SFE models have to be solved again to obtain
the normal velocities on the surface of the case that are needed for the AFE
model. Also, even the numerical modal analysis (SOL 103) has to be performed
only once. In fact, once the structural mesh is validated, it shall not be modified
in subsequent analyses with the same case.

In conclusion, the proposed digital twin is suitable to estimate overall levels
and it can be employed as an instrument to evaluate the best design among a
set of possible combinations of gear types to determine which one generates
the lowest noise. Its main strength, in fact, resides in the capability to assess
the variations in terms of dB when the magnitude of the excitation source, i.e.
gear meshing, changes.
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