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PREFACE

I graduated cum laude in 2019 in Mechanical Engineering at the University of
Ferrara discussing the thesis entitled "Implementation of a numerical model
for shape memory alloy wires" under the supervision of Prof. R. Rizzoni.
Immediately after, I joined with a postgraduate fellowship the research group
led by Prof. G. Dalpiaz at the same university. Then, after eight months I
started my Ph.D. in Engineering Science, again under the supervision of Prof.
G. Dalpiaz.

During the first year of my Ph.D., my research activity was focused on the
definition of a numerical finite-element procedure for the estimation of the
non-linear radial stiffness of rolling-element bearings. This quantity, in fact,
is a crucial input parameter that is inserted into dynamic models of com-
plex machinery and it greatly affects their outcome. As a consequence, the
load-displacement relationship of these components should be determined as
accurately as possible, e.g. through the finite-element method. Therefore, the
inquiry aimed at finding a procedure for the generation of computationally
efficient load-dependent meshes, i.e. providing an acceptable compromise be-
tween the accuracy of the results and the computational time. This study was
first published in 2021 in the journal Mathematical Problems in Engineering

[1]:

[1] A. Gabrielli, M. Battarra, and E. Mucchi. “A Critical Analysis of Finite-Element Model-
ing Procedures for Radial Bearing Stiffness Estimation.” In: Mathematical Problems in
Engineering 2021 (2021), p. 9955398. 1SSN: 1024-123X. DOIL: 10.1155/2021/9955398.

Further results and additional considerations were later added and presented
the following year at the ISMA 2022 conference held in Leuven, Belgium [2]:
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[2] A. Gabrielli, M. Battarra, and E. Mucchi. “A numerical finite-element method for radial
bearing stiffness estimation based on load dependent meshing.” In: Proceedings of
ISMA 2022 - International Conference on Noise and Vibration Engineering and USD 2022 -
International Conference on Uncertainty in Structural Dynamics, pp. 1527-1541. Leuven,
Belgium, 2022.

During the second year, I tackled the problem of the lumped parameter
modelling of defective rolling-element bearings. In this regard, it was observed
that the estimation of several quantities that are inserted in these models is
commonly characterized by a high degree of uncertainty. Hence, effort was
dedicated to the development of a robust procedure capable of determining
the values of these unknown parameters. This goal was achieved by proposing
a multi-objective optimization procedure, in which the objective functions to
be minimized were global indicators that took into account the discrepancy
between signal features estimated numerically and experimentally. The former
were obtained by means of a lumped parameter model of a defective bearing.
The latter were obtained through an extensive experimental study realised on
a dedicated test bench which was set-up at the Engineering Department of the
University of Ferrara. The described investigation led to a publication, in 2023,
in the journal Mechanical Systems and Signal Processing [3]:

[3] A. Gabrielli, M. Battarra, E. Mucchi, and G. Dalpiaz. “A procedure for the assessment
of unknown parameters in modeling defective bearings through multi-objective op-
timization.” In: Mechanical Systems and Signal Processing 185 (2023), p. 109783. ISSN:
0888-3270. DOI: https://doi.org/10.1016/]j.ymssp.2022.109783.

Additionally, the experimental data were stored as a dataset in a online reposi-
tory hosted by Mendeley Data [4]:

[4] A. Gabrielli, M. Battarra, E. Mucchi, and G. Dalpiaz. Acceleration signals of rolling element
bearings with artificial defects. Mendeley Data, V1. 2022. por: 10.17632/8wdzm5gwng. 1.

The last part of my research, which was carried out during the third and
final year of my Ph.D., involved the investigation and the development of
physics-based models devoted to the prognostics of rolling-element bearings.
The previous effort on the dynamic modelling of faulty bearings was extended
and integrated into a novel technique for the estimation of a parameter related
to the evolution of bearing degradation over time, namely the equivalent dam-
aged volume. A procedure for the estimation of this quantity from real bearing
deterioration histories was introduced. Then, it was further employed to pro-
pose two psychics-based prognostic models, which were aimed at predicting
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the future health state of a bearing on the basis of actual data recorded during
its working life. To this end, the aforementioned bearing test bench at the Uni-
versity of Ferrara was utilized to perform a series of run-to-failure experiments,
i.e. tests in which the entire operative life of a bearing was monitored from the
very beginning until the eventual failure of the component.

Finally, in addition to my Ph.D. research topic, I also had the chance to perform
several experimental activities and conduct numerical analyses involving the
modelling of complex mechanical systems. These activities allowed me to solve
real industrial problems and enhance my problem-solving capabilities in the
NVH field. Among those, I worked on a numerical vibro-acoustic methodology
for the estimation of the vibratory and acoustic level of a gearbox employed on
agricultural equipment. The endeavour aimed at generating the NVH digital
twin of the real component, which was experimentally validated through
comparison with data acquired on a dedicated test bench. This work was
presented at the ISMA 2020 conference [5]:

[s] A. Gabrielli, E Pizzolante, E. Soave, M. Battarra, C. Mazzeo, M. Tarabra, E. Fava, and E.
Mucchi. “A numerical model for NVH analysis of gearboxes employed on agricultural
equipment.” In: Proceedings of ISMA 2020 - International Conference on Noise and Vibration
Engineering and USD 2020 - International Conference on Uncertainty in Structural Dynamics,
pp. 3191 - 3203. Leuven, Belgium, 2020.

To conclude this brief summary of my Ph.D. experience, I would like to spend
a few words to acknowledge the people that worked me in the last three -
almost four - years. Firstly, Prof. G. Dalpiaz, that gave me the opportunity to
pursue this path under his supervision. Then, I want to express my heartfelt
gratitude to Prof. Emiliano Mucchi, Eng. Gianluca D’Elia and Eng. Mattia
Battarra for the precious help and the time they spent discussing with me the
arguments detailed in this thesis, plus many more related to the field of NVH
analysis. Finally, a special thanks goes to all people that shared this experience
with me, starting with my office mates, my co-workers in the research group
and, most importantly, the friends I have met along the way. Needless to say,
this work would have never seen the light of day without the support of all of
you. Sincerely, you have my deepest gratitude.
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INTRODUCTION

1.1 INTRODUCTION TO ROLLING ELEMENT BEARINGS

Rolling-element bearings (REBs) are one of the most frequently employed
components in rotating machinery [6]. They are load carrying components
which permit to eliminate the sliding friction between two machine elements
by introducing rolling elements in between them. As a consequence, they
allow for smooth operation while reducing the production of heat, energy
consumption and wear [7]. Their ease of mounting and dismounting allows
for an efficient exchange of the components. Besides, they are available in
a number of shapes and dimensions, and their cost is usually limited. The
combination of all these factors explain their wide employment in the field of
mechanics.

REBs are commonly composed by four parts, i.e. inner ring, outer ring, rolling
elements and cage. An example of bearing assembly is shown in Figure 1.
The two rings, which are mounted on the components to be uncoupled, are
separated by a number of rolling elements. The rings are designed so that the
rolling elements are able to move on paths called raceways or races. A bearing
may have one or more raceways on each ring to increase the total number of
rolling elements. These three components are made of steel, which is usually
hardened on the surfaces in contact. In addition, a cage must be inserted to
ensure proper operation. In fact, this component permits to maintain a fixed
distance between the rolling elements and keep them evenly spaced. Compared
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Figure 1: Exploded view of a double-row self-aligning ball bearing.

to the other parts, the cage is made of softer materials, e.g. aluminium or
polymers such as polyamide and polytetrafluoroethylene. Nonetheless, steel
cages are available for certain applications, for instance in high-temperature
environments. In the majority of cases, the inner ring rotates, while the outer
ring remains stationary. In this context, the structure that supports the outer
ring is usually referred to as housing. However, there are scenarios in which
the opposite situation takes place, or where both rings are able to rotate, e.g.
in inter-shafts bearings [8]. Finally, REBs are lubricated by either oil or grease
to further decrease the friction and dissipate heat.

Rolling bearings may be roughly subdivided in two major categories. i.e.
ball and roller bearings, depending on the type of rolling element that is
employed. Balls provides low rolling friction, thus allowing to accommodate
high shaft speeds. However, because of this characteristic they should not be
employed for applications involving heavy loads. On the other hand, rollers
are characterized by an higher friction, making them more suitable to carry
heavy loads, but they are indicated for slower speeds. Moreover, bearings may
be further classified on the basis of the supported load in radial and thrust
bearings. Radial bearings are able to carry loads which act perpendicularly to
the shaft. On the contrary, thrust bearings may accommodate axial loads only.
Some radial bearings are also capable of supporting a combination of axial
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loads in one or two axial directions. Similarly, some thrust bearings may carry
radial loads. Metric bearing dimensions are standardized according to ISO
(International Organization for Standardization) standards. They are denoted
by their boundary dimensions, i.e. bore diameter, outside diameter, width or
height and chamfer dimensions. The standardization of these widely employed
components is essential to guarantee their interchangeability.

Among ball bearings, the most popular are single-row deep-groove ball bear-
ings. They are characterized by raceway grooves which have a curvature radius
in the order of 51.5 to 53 % of the ball diameter. They are designed to carry
radial loads, but they may work also under of combinations of radial and axial
loads. Moreover, they are able to maintain good performance even at high
speeds. Double-row ball bearings are similar but have two raceways instead of
one. They have a greater load capacity compared to their single-row counter-
part. Other common types of REBs are the angular-contact ball bearings, which
are specifically designed to accommodate combinations of trust and radial
loads. They are also indicated to support heavy thrust loads, and their groove
radius is in the order of 52 to 53 % of the ball diameter. They are also available
in a single or double-row fashion. The two-rows design allows to carry thrust
loads in either directions, even combined with a radial load. Furthermore,
self-aligning ball bearings are special types of double-row ball bearings in
which the outer raceway is a portion of a sphere. As a consequence, they are
internally self-aligning but, due to the low conformity of the outer raceway,
they have a reduced low-carrying capacity. Despite this, they are commonly
employed in applications that may involve a certain degree of misalignment.
Finally, thrust ball bearings are employed to carry axial load and are suitable
for high speed operations.

Concerning roller bearings, they provide a larger load carrying capacity com-
pared to ball bearings of the same size. In this regard, they are also charac-
terized by an increased fatigue life and an higher stiffness. Cylindrical roller
bearings are the most common type of bearing in this category. They are are
able to support high radial loads and may operate at high speeds. As the name
suggests, the rollers are characterized by a cylindrical shape. They might be
partially or fully crowned to reduce the stress at the edges and offer a slight
protection against misalignment. Even for these type of bearings, double-row
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variants are available. Needle roller bearings, instead, have a similar design
but rollers are designed to have a remarkably higher length compared to their
diameter. They are ideal for applications in which the available space is low. In
fact, they are sometimes inserted directly on hardened shafts without inserting
the two rings. Differently, tapered roller bearings are able to accommodate
combinations of radial and axial loads. They are not suitable to run at high
speeds due to friction at the guide flanges of the rings, but they guarantee an
high load capacity. Furthermore, these components are separable: therefore,
they must be always mounted in pairs. It is also worth mentioning the peculiar
design of spherical roller bearings, in which the outer raceway is a portion of
a sphere. Therefore, these REBs are internally self-aligning. They are able to
perform well under very high loads but are not suited for high-speed opera-
tions. Finally, roller thrust bearings may be found in a number of variants, i.e.
with cylindrical, spherical or tapered rollers. These types of bearing, however,
are not indicated for high shaft speeds. They may be replaced by needle roller
bearings if the available space is limited, but at the expense of a lighter load
capacity.

REBs cover a major role in the dynamic behaviour of the systems in which
they are mounted [9]. As a consequence, it is crucial to be able to properly
characterize their fundamental properties. Indeed, in the context of bearing
modelling, one of the most important properties is the bearing stiffness. In
the most general case, a bearing is denoted by 6 degrees of freedom (DOFs).
Thus, REB stiffness is completely defined by a 6x6 matrix [10]. However, in
the majority of cases it is usually sufficient to be able to characterize either
the radial or axial stiffness of these components, as these are the quantities
needed for employment in further models. Bearing stiffness values, in fact,
may be utilized for several purposes. For instance, they might be provided
as input values to model bearings in finite-element models of a mechanical
system. Similarly, these values may be inserted in a lumped parameter model
of complex machinery [11]. In this context, components might be connected
to the ground or among them through springs which idealize the bearings
behaviour. Despite the importance of REBs stiffness, its value is not provided
by any bearing constructor. As a result, stiffness must be "manually” evaluated
by the analyst when this parameter is needed. However, the estimation of the
bearing stiffness is a non-trivial process which involves the modelling of a
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@ (b)

Load [N]
Stiffness [N/m]

Displacement [m] Load [N]

Figure 2: Typical stiffness characteristics of a rolling bearing for a given position of
rolling elements: (a) load - displacement relationship; (b) stiffness - load
relationship.

number of contacts among complex geometries. Furthermore, this quantity
is non-linear, i.e. the displacement does not vary linearly with the load, as it
may be appreciated in Figure 2.a. In particular, Figure 2.b shows that stiffness
presents a steep trend for lower loads and assumes a more linear trend for
higher loads. As a result, stiffness needs to be evaluated at different loads
in order to determine the non-linear load-displacement relationship within
the load range of interest. In addition, stiffness is also time-dependent, as the
load-deflection relationship depends on the position of the rolling elements
with respect to the load direction. In fact, if the load is stationary, the stiffness
varies over time during the bearing service life since the position of the rolling
elements with respect to the direction of the load constantly changes. This
variation is periodic if the rotation speed is constant, and it is equal to the
the spacing between two consecutive rolling elements. This phenomenon is
usually referred to as Varying Compliance (VC) effect in the literature [12].
It is particularly relevant in the dynamic behaviour of machinery, since the
periodic stiffness variation induces vibrations on the system even when the
bearing does not present any type of fault.

REBs stiffness characteristics is also influenced by the amount of radial clear-
ance, as it modifies the angular extent of the load zone [6]. This translates
to a variation of the number of loaded rolling elements and the maximum
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load on the most loaded one. In particular, a positive clearance reduces the
stiffness due to an increase in the load zone extent, while a negative clearance
leads to an increase in stiffness caused by a diminished angular span of the
load zone. Furthermore, stiffness also depends on the magnitude of the rota-
tion speed, but only for high velocities, for which inertial effects may not be
neglected [13]. This dependency, in fact, is negligible for low and moderate
speed values [10, 14]. Finally, REBs stiffness is influenced by temperature [15]
and further depends on axial and radial preloads [16]. Concerning this latter
aspect, axial preload is commonly applied in angular-contact ball bearings in
order to reduce their non-linear characteristic [6]. Radial preload, on the other
hand, is employed to obtain a greater number of loaded rolling elements and
consequently reduce the maximum load applied on the most loaded one. In
conclusion, the value of this peculiar parameter is influenced by several factors.
Therefore, authors have developed numerous methods to evaluate REBs stiff-
ness, including experimental techniques, analytical and finite-element models
[17]. However, its estimation is indeed challenging and it is characterized by a
high degree of uncertainty.

Moreover, despite all the advantages introduced by the employment of REBs,
these components are subjected to one important limitation. In fact, two of the
most prominent bearing analysts, i.e. T.A. Harris and M.N. Kotzalas, state, in
their famous effort "Rolling Bearing Analysis - Essential Concepts of Bearing
Analysis" [6], that:

“[...] even if rolling bearings are properly lubricated, properly mounted, properly
protected from dirt and moisture, and otherwise properly operated, they will eventually
fail because of fatigue of the surfaces in rolling contact.”

In other words, they declare that bearing failure is an unavoidable phenomenon
that must be always taken into account, as this event takes place independently
from the application: a bearing will inevitably fail after a certain number of
working cycles due to rolling contact fatigue. The local stress in the contact
zones, in fact, is remarkably higher compared to other structural components
[18]. By neglecting lubrication effects, it possible to assume that its magnitude
and distribution are governed by the Hertz contact theory [19]. Therefore, since
the bearing components are cyclically loaded, a subsurface crack eventually
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generates inside one of them and progressively propagates to the surface
producing a pit or a spall. Then, bearing defects are classified on the basis
of their location as outer, inner, rolling element and cage faults [20]. Further-
more, they may subdivided in localised, extended and distributed defects [21].
Localised defects include spalls, cracks, pits, debris and lubricant impurities.
Extended defects are generated from localised defects to due to wear of the
fault edges caused by the cyclic passage of the rolling elements in the defect
area. Finally, distributed defects comprise surface roughness and waviness,
misaligned raceways and off-sized rolling elements [22].

A damaged bearing induces vibrations on the system that may possibly lead to
the failure of the entire machinery. As a matter of fact, the wide employment
of REBs translates to the fact that they are one the most frequent reasons for
machine breakdown [23]. Consequently, throughout the years these compo-
nents have been extensively studied by a number of researchers, in order to
thoroughly understand their properties and their dynamic behaviour. Within
this framework, particular effort has been devoted to the development of dy-
namic models aimed at describing the dynamics of both healthy and faulty
REBs. These models allow to determine the vibratory signature produced by
an healthy or defective bearing. In this latter case, the model should be able
to assess the vibration signal for a variety of defect shapes and operative con-
ditions, i.e. shaft speeds and loads. Typical experimental acceleration signals
of healthy and damaged bearings are depicted in Figure 3.a and Figure 3.b,
respectively. The defect, in this case, is a stationary outer ring fault. These
plots highlight the different vibratory response of the system when a localised
defect appears in the bearing. In particular, Figure 3.b. shows that the presence
of the fault introduces distinct pulses which are caused by the impact of the
rolling elements with the defect edges. To model these phenomena, LP models
are employed by the vast majority of researchers [20]. Indeed, these type of
dynamic models proved to be extremely effective in taking into account the
complexity of the contact phenomenon and the time-varying characteristics of
bearings. In this regard, several models have been proposed in the last decades.
However, this modelling approach still provides challenges to be overcome for
the interested scholars. For instance, it is often difficult to reliably estimate all
parameters needed as input in these kind of models. This is due to the fact that
there are quantities which are intrinsically difficult to measure, e.g. damping
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Figure 3: Examples of acceleration signal produced by a REB: (a) healthy bearing; (b)
bearing with a localised defect on the outer race.

values, or associated with physical quantities that are not directly measurable,
e.g. stiffness of artificial high-frequency resonators introduced for modelling
purposes [24].

Dynamic models are extremely important for the development of diagnostic
schemes and prognostic procedures [25]. Diagnostic techniques involve the
detection and identification of a defect during the operative life of the compo-
nent, while prognostic models aim at estimating the Remaining Useful Life
(RUL) of the system [26]. These two aspects are integrated within the so-called
Prognostics and Health Management (PHM) of mechanical systems, which is
a topic that has gained increasing attention from the industrial world in recent
years [27]. In particular, it has led to the rise in popularity of Condition Based
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Maintenance (CBM) approaches for the maintenance of industrial plants and
mechanical components. CBM is a maintenance strategy which consists in the
real-time monitoring of the health condition of the system in order to plan
the maintenance based on its actual health state [28]. This approach differs
sensibly from traditional maintenance methods, i.e. preventive and reactive
maintenance. The former consists in relying on historical data and life estima-
tion computations to replace the components at scheduled intervals. In this
case, however, the risk is to substitute the monitored components way before
they show signs of damage, leading to a waste of resources and excessive
machine downtime. The latter approach suggests to intervene only when the
failure occurs. This approach is particularly dangerous since it may lead to the
catastrophic failure of the whole system if machinery is not promptly stopped.
On the contrary, a CBM approach greatly increases the efficiency of the main-
tenance strategy compared to traditional methods. As a matter of fact, CBM
allows to sensibly reduce machine downtime and consequently decrease the
costs associated with maintenance procedures [27]. Although CBM introduces
further costs due to the implementation of the required technology, in the
long-term the benefits remarkably overcome the starting additional expense.
Additionally, CBM permits to increase the overall security of the mechanical
system due to the reduction of unexpected failures and diminish the mean
maintenance time due to the possibility to localize the fault from the recorded
data [29].

CBM may applied to REBs, provided that suitable prognostic models are
available. In this regard, the life of a REB may be subdivided in different
Health States (HSs) on the basis of the time-varying trend of a selected health
indicator. A common and simple indicator to detect the change in HS is the
RMS value of the signal, as the progression of fault severity leads to an increase
of this parameter. By observing the RMS evolution over time, bearing operative
life may be divided in two or more different HSs depending on the degradation
history of the bearing [28]. In order to illustrate these different behaviours,
two degradation histories extracted from the well-known IMS dataset [30] are
depicted in Figure 4. Specifically, Figure 4.a shows an example of degradation
trend with two HS, i.e. healthy stage and unhealthy stage. In the first part,
only random fluctuations occur in the RMS since no fault is present in the
system. In the second HS, the RMS starts to increase as soon as the bearing
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begins to deteriorate. Therefore, RUL should be calculated when the bearing
enters in the second stage, as there are no sufficient information to compute
its value in the first HS. The initial time from which RUL may be computed
is referred to as first predicting time (FPT), which also marks the moment
when bearing enters in the unhealthy stage. Differently, Figure 4.b shows a
RMS history subdivided in three stages, i.e. an healthy stage, a degradation
stage and a critical stage. While the first stage is the same as in the previous
case, the two subsequent ones are not. In the degradation stage, the RMS trend
is characterized by an "increase-decrease-increase” trend. This phenomenon
was studied by T. Williams et al. [31], which defined it as a "healing" process
of the REB. In this stage, the defect is initially generated as small spalls and
cracks which are subsequently smoothed by the repeated passage of the rolling
elements. Eventually, as the damage expands to a broader area, the bearing
shifts to the third and last stage, i.e. the critical stage, which is characterized
by a rapid increase of the RMS.

In light of the presented discussion, this thesis aims at covering several aspects
within the context of bearing modelling. The effort is carried out in order to
improve the available methods and to propose novel approaches to tackle REB
modelling both in case of static and dynamic simulations. In particular, this
work deals with three different topics and their associated challenges:

* It investigates bearing stiffness estimation techniques through the aid of
tinite-element software. Therefore, effort is placed on providing numerical
instruments to determine this crucial quantity which greatly affects the
dynamic behaviour of mechanical systems. To this end, a technique for the
generation of computationally efficient load-dependent meshes is developed.

¢ It inquires the dynamic modelling of bearings with faults. In particular,
it proposes a robust procedure devoted to the assessment of unknown
parameters in REBs lumped parameter models in presence of localised
defects. Major effort is placed on the discussion of dynamic modelling of
REBs by means of dedicated LP models.

¢ Lastly, it examines potential numerical methods for bearing prognostics.
In this regard, a parameter related to the evolution of the defect during
bearing life is introduced, namely the Equivalent Damaged Volume (EDV).
An algorithm capable of estimating its value from real bearing degradation
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(a)
Healthy stage

RMS [g]

Unhealthy stage

Time [Days]

(b)

Healthy stage Degradation stage
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Time [Days] Critical stage

Figure 4: RMS trends representing different degradation processes of a REB: (a) two-
stages life; (b) three-stages life.

histories is detailed. Notably, the developed method involves the integration
and expansion of the LP model for localised defects in order to also con-
sider extended defects. Finally, two prognostic models based on the EDV
algorithm are proposed.

To support the findings of the research, this thesis also provides experimental
results for a number of tests which were carried out on a dedicated bearing
test rig. Specifically, two types of tests have been performed: stationary tests
on faulty bearings with artificial defects and run-to-failure tests on initially
healthy bearings. The former are employed to validate the procedure for the
estimation of the parameters of the LP model with localised defects, while the
latter are exploited to evaluate the efficiency of the EDV algorithm and the
associated prognostic models.
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Before proceeding with the discussion related to the three aforementioned
subjects, this introductory chapter provides a thorough review of the state-of-
the-art for these topics. Then, research objectives are outlined along with the
structure of the thesis.

1.2 STATE-OF-THE-ART IN BEARING MODELLING

REBs are one of the most frequently employed components in rotating machin-
ery. As such, they have been extensively studied by a number of researchers
throughout the years, and a vast literature regarding their characteristics is
currently available. The necessity to deeply understand these components
arises from the fact that the noise, vibration and harshness (NVH) behaviour
of mechanical systems is greatly affected by REBs dynamics. In fact, it is well
known that these components cover a major role in transmitting vibrations
through the system in which they are inserted [9]. As a consequence, it is
crucial to accurately estimate parameters related to REBs, especially if they
are needed to be employed in dynamic models of complex machinery [32].
Within this framework, one the most important quantities to be determined is
the bearing stiffness, whose estimation has been tackled by means of several
techniques. Moreover, scholars devoted a considerable effort in the dynamic
modelling of REBs, especially to describe the characteristics of faulty bearings.
This allowed to develop accurate REB models that were employed for both
diagnostics and prognostics purposes. Concerning this last matter, the field of
REBs prognosis gained remarkable traction in the last decades thanks to the
potential application of these models in industrial contexts.

Therefore, an extensive literature review on bearing modelling is proposed in
this section. In particular, the survey is divided in three parts, which corre-
spond to the topics covered in the thesis. First, the subject of bearing stiffness
estimation is covered, mainly focusing on FE methods. Then, attention is
placed on bearing dynamic modelling for either healthy and faulty REBs. In
this regard, particular effort is dedicated to the description of LP models. To
conclude, the final part is devoted to REBs prognostics. This closing section
reports examples of PBMs, DDMs and hybrid models.

12
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1.2.1  Stiffness estimation methods

Radial stiffness is one of the main parameters that needs to be evaluated in
a REB. In fact, it is an important quantity that greatly affects the outcome of
dynamic models. For instance, bearing stiffness values are needed for geartrain
models, in which connection between gears and frame is realized through REBs
[11]. Despite the amount of literature on the topic, the inherent complexity of
these components still provides challenges to overcome for researchers and
designers when determining stiffness values. As a result, over the years the
estimation of the non-linear stiffness-load relationship has been faced by a vast
number of experimental, analytical and numerical approaches.

Experimental techniques are commonly divided into direct and indirect meth-
ods, depending on the employed procedure. The former requires the direct
measurement of the displacement [33], while the latter necessitates other tech-
niques, e.g. modal analysis [34]. Concerning the first approach, R. Madoliat
and M. F. Ghanati [35] used a general purpose tensile testing machine to apply
the load on the bearing. An ad-hoc housing was constructed to accommodate
the bearing inside the loading device and a shaft was fitted in the bearing
bore. Tests were first performed without the bearing to determine the fixture
stiffness. Then, when the REB was mounted, bearing stiffness was determined
by subtraction. Example of application of the second approach may be found
in the work of N.J. Ali and J.M. Garcia [36]. The authors developed a test rig
in which the load was applied radially and axially through two pneumatic
pumps. The system was then excited by an impact hammer, and the frequency
response of the structure was employed to extract the stiffness. Moreover,
W. Jacobs et al. [37, 38] presented a test rig aimed at determining bearing
characteristics through modal analysis. The test bench design was optimized
to measure bearing stiffness under highly varying loads both in static and
operative conditions.

Concerning the analytical approaches, formulae are either based on a rigorous
mathematical procedure, typically based on the Hertz contact theory [6, 39,
40], or derived from experimental measurements [41, 42]. In this context, it is
noteworthy the double-effort of T.C. Lim and R. Singh [43, 44]. In the first part,
they provided multiple methods to analytically determine bearing stiffness
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and complemented the work with parametric studies to assess the influence
of several parameters on the results. Besides, in the second part, the previous
formulation was integrated with a discrete system model which included LP
and FE techniques. They further expanded the theory in subsequent works to
study the dynamic behaviour of a geared rotor system [45] and to estimate
the coupling loss factor between shaft and casing by means of statistical en-
ergy analysis [46]. Afterwards, A. Gunduz and S. Rajendra [47] introduced
an approach based on the Hertzian theory aimed at the estimation of the
stiffness matrix for double row angular contact ball bearings. In particular, they
provided results for the back-to-back, face-to-face, and tandem arrangements.
An enhanced version which is also employable for duplex bearings was subse-
quently presented by T. Xu et al. [48]. Moreover, D. Petersen et al. [419] further
included a localised defect in their modelling. Their approach was exploited
for defect size estimation in operative conditions by analysing the excitation
produced by the change in stiffness caused by the fault. Based on their work,
H. Cheng et al. [50] extensively studied the time-varying stiffness introduced
by the presence of a defect. Additionally, they further investigated the VC
phenomenon to examine its coupling with the local fault. B. Fang et al. [51]
inspected the stiffness characteristic under speed-varying conditions. For this
purpose, they employed an analytical model derived from the formulation of
T.J. Royston and I. Basdogan [52]. Later, the same authors [53] investigated the
influence of the off-diagonal terms in the stiffness matrix. In order to perform
such a task, they proposed a model for ball bearings which took into account
the influence of rotating speed and loads. Then, they analysed the influence of
stiffness terms on the coupled rotor system dynamics. Furthermore, Q. Niu et
al. [54] proposed a 5 DOFs analytical model for stiffness matrix computation
and employed it to assess the effect of different operative conditions and the
variations of bearing parameters.

Finally, among the numerical techniques, the most common approach involves
the employment of in-house or commercial FE software to model the bearing
under exam. Within the context of REB modelling, FE simulations are usually
exploited to determine rings displacement and contact stresses. A common
issue in this kind of modelling, however, lies in the complexity of the contact
phenomenon. In fact, the need for a sufficiently fine mesh in the proximity of
the contact area has a significant impact on simulation time and the excessive

14



1.2 STATE-OF-THE-ART IN BEARING MODELLING

number of required mesh elements might lead to an excessive computational
burden [55]. Therefore, researchers strived to simplify the problem by using
a variety of approaches. The most straightforward solution to this concern
consists in reducing the original 3D model to a planar 2D problem. To this
end, H. Zhao [56] described a contact algorithm to model roller bearing con-
tacts in 2D simulations and evaluated the influence of various parameters on
load distribution. N. Demirhan and B. Kanber [57] investigated stress and
displacement distribution on a roller bearing by introducing a 2D mesh with
plane strain option to simplify the model. Model validation was carried out
by comparison against theoretical and experimental data. X. Hao et al. [15]
proposed a 2D FE model that considered temperature effects and clearance
change to examine their influence on displacement, stress and bearing stiffness.
The relative displacement between inner and outer ring obtained on a test rig
was employed for validation. Good agreement was found between FE and
experimental results, while analytical formulae departed from them. Although
2D approaches allow to obtain good stiffness estimate, this kind of meshing
is not applicable to every bearing type. For instance, the computational do-
main of deep-groove ball bearings, self-aligning ball bearings and tapered
roller bearings may not be reduced to a bi-dimensional plane. Therefore, 3D
approaches are more suitable to tackle the problem of REBs modelling as a
whole without losing generality in the procedure.

Concerning 3D simulations, several methodologies were established. In partic-
ular, a number of scholars focused their effort in proposing methods to reduce
the number of contacts in REBs models. Within this framework, L. Kania [58]
employed truss elements to replace rollers in slewing bearings. This technique
allowed to greatly reduce simulation time at the expense of additional effort
in the pre-processing phase. A similar approach was proposed by A. Daidié
et al. [59]. They analysed load distribution by employing non-linear traction
springs instead of truss elements. The efficiency of this method encouraged
other researchers [60, 61, 62, 63] to exploit it for slewing bearings modelling.
Techniques devoted to removing contacts in lower size bearings were also
studied by L. Molnar et al. [64]. In particular, they proposed two methods to
avoid modelling contacts between rollers and rings in needle bearings. The
first one was similar to the one developed by A. Daidié et al. [59], as rollers
were replaced by springs. The second one consisted in substituting the entire
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volume between rings with a fictitious equivalent material replicating the
same behaviour of the row of rollers. Obtained radial displacements were com-
pared with the full model involving contacts, demonstrating their capability to
considerably reduce the computational time.

Despite these techniques being successful in speeding-up the solution pro-
cess, other researchers followed different strategies to model the phenomena
occurring within the contact area. Y. Guo and R.G. Parker [10] developed a
procedure involving a combined surface integral and finite element method to
solve the contact problem in rolling and ball bearings. They computed radial,
axial and tilting stiffness to obtain a fully populated 6x6 matrix including
cross-coupling terms. Results were compared against data available from the
literature. F. Massi et al. [65] set-up 2D and 3D simulations of ball bearings to
compute the contact stress due to specific boundary conditions and relate them
with bearing degradation. They reduced the size of the problem by modelling
a portion of the bearing, with only one roller in contact with the two races.
The authors noticed that the relative error between 3D and 2D simulations
was relevant due to conforming contact between ball and races. R. Lostado et
al. [17] studied the contact stress in tapered roller bearings. They developed
a procedure to adjust the original mesh by generating subsequent non-linear
sub-models with increasingly smaller mesh densities. Relative displacement
between raceways was also analysed and compared to experimental data,
showing good agreement. The procedure was utilized by R. Martinez et al. [66]
in combination with machine learning techniques to determine the optimal
working conditions of the device. S. Murer et al. [67] presented a FE model of
their experimental set-up to assess the relevancy of using capacitive probes for
in-situ measurements of bearing deflection. S. Li [68] developed a software to
compute the contact stress in ball and roller bearings by exploiting a novel con-
tact algorithm. Stress distribution on contact areas were found to be different
from results reported in previous studies [10] and analytical formulae.

As it may be observed from the proposed literature review, there is a tendency
to reduce the size of the computational domain of the problem whenever
REB modelling is involved. Typical strategies include taking advantage of
symmetry planes [17, 56, 58, 59, 60, 63, 64, 66], removing unloaded rollers
[56] and replacing contacts with equivalent elements [58, 59, 60, 61, 62, 63].
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Unloaded rollers are kept by most researchers but removed by others, e.g. H.
Zhao [56] and S. Murer et al. [67]. Cage is commonly neglected, but e.g. Murer
et al. [67] accounted for its effect by employing rigid connectors between rollers.
Load is applied on the center of the shaft [15, 56, 57, 64], on rings [59, 63, 65]
or on a central node rigidly connected to the nodes on the surface of the inner
ring [60, 61, 62]. Problems are solved by employing 2D and 3D approaches,
usually exploiting quadrilateral or hexahedral elements, respectively. Meshing
with tetrahedral elements is rare, and differences between linear and parabolic
elements are not addressed. Convergence check are regularly performed, but
some researchers as N. Demirhan and B. Kanber [57] only tested it for one load
value, albeit convergence rate depends on applied load, especially at low force
values. Concerning the post-process, radial bearing stiffness may be computed
considering the approach of bearing rings [15, 17, 57] or the displacement of
the shaft axis [64].

In conclusion, the reviewed methods proved to be successful in different
aspects of bearing analysis and in particular to estimate REB stiffness. How-
ever, the proposed survey highlighted the large number of different available
methodologies and the consequent lack of uniformity in the employed ap-
proaches.

1.2.2  Dynamic modelling of faulty bearings

As underlined in the introductory section of this chapter, REBs are prone
to the development of defects after a certain number of working cycles. In
fact, faults eventually generate in one of the bearing components because of
rolling fatigue generated by cyclic passage of the rolling elements in the loaded
zone of the bearing. This phenomenon leads to the onset of subsurface cracks
that gradually propagates to the surface, therefore producing spalls or pits. A
local fault greatly affects the vibration of the system and might remarkably
alter its behaviour or possibly lead to its failure. Hence, throughout the years
a number of researchers have tackled the problem of developing dynamic
models capable of determining the vibratory response of systems comprising
bearings subjected to this peculiar condition.
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P. McFadden and J. Smith [69] were amongst the first to work on the topic by
proposing an analytical model of the phenomenon. They studied the effect
of point defects and modelled the response of the system by convolving the
exponential decay response function with a series of impulses at the passing
frequency of the rolling elements. As a result, this kind of modelling approach
is commonly referred to as impulse train model. They later extended the
formulation to multiple point defects [70]. Subsequently, N. Tandon and A.
Choudhury [71] considered pulses of finite width whose shape were assumed
to be rectangular, triangular of half-sinusoidal. Y.F. Wang and P.J. Kootsookos
[72] also exploited an impulse train model to model bearing presence in
machinery and estimate the bearing induced vibrations on an industrial com-
ponent. D. Brie [73] improved the method by introducing a slight period
variation between the impulses which allowed to better represent experimen-
tal observations. Therefore, this modified model was named quasi-periodic
impulse train model, as it included minor random slip between impulses. R.B.
Randall et al. [74] took advantage of this approach and analysed the results by
means of cyclostationary techniques. The periodic and quasi-periodic impulse
train models allowed to correctly predict the spectral components associated
with the localised fault. However, a major drawback of both models is that
they not take into account the VC effect of the bearing assembly.

Based on these investigations, the majority of subsequent works dealt with
the development of LP models capable of describing the response of systems
comprising faulty bearings. In these models, the influence of the defect was
inserted by either adding a constant displacement to the balls rolling over the
fault or by defining the contact forces generated by the balls when striking
the edges or the bottom of the defective area. Within this context, S. Sassi et
al. [75] employed a 3 DOFs model to assess vibration due to point defects by
considering the shock behaviour of the fault. They also introduced a noisy
response resulting from sliding friction and other possible disturbances. A.
Rafsanjani et al. [76] analysed the effect of local defects on the stability of
a rotor-bearing system. They modelled the faults as a series of impulses
separated by their characteristic frequency. Their amplitude was related to the
angular velocity and the loading condition at the point of contact. The model
was employed by the authors to present the conditions for stable and unstable
response to subdivide the main routes to chaotic motion. Differently, M. Behzad
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et al. [77] dealt with the problem by considering the stochastic excitation
generated by the surface roughness in the healthy and defective contact areas
between rolling element and races. H. Cao et al. [78] focused on the behaviour
of high-speed ball bearings by exploiting Gupta’s model [79], thus associating
6 DOFs to each moving element. In addition, they also discussed the influence
of single, multiple and compound defects on a cylindrical roller bearing in a
subsequent paper [80]. Besides, G. Kogan et al. [81] proposed a 3D dynamic
model to simulate faulty duplex bearing whilst underlining the differences in
the response of corresponding single bearings. S. Khanam et al. [82] discussed
a technique to generate the forcing function induced by the motion of rolling
elements inside an inner race defect. The entry and exit events were formulated
differently in order to take into account the impulsive nature of the latter. Based
on the work of C. Sunnersjo [12], R. Yang. et al. [83] exploited the harmonic
balance method to determine the vibration of a rotor-ball bearing system
and discussed the presence of super-harmonics of the defect frequency in the
resulting spectrum. Y. Qin et al. [84] developed a model for a high-speed faulty
angular contact ball bearing where the defect influence was inserted through
a B-spline fitting displacement excitation. They indicated that the duration
of one impulse increased with larger fault extension and decreasing rotation
speed. Moreover, acceleration amplitude was found to be more sensible to
defect size compared to shaft rotation frequency. T. Gao and S. Cao [85]
studied the paroxysmal impulse waveform generated by faulty inter-shaft
bearing and demonstrated their dependence from certain speed ratios. R.
Yang et al. [86] studied the influence of the resonance characteristics and
rotor eccentric excitations during transients due to raceway faults. Despite the
noteworthy contribution of the mentioned papers, a common characteristic of
these modelling approaches is the arbitrary choice of damping values. In fact,
they are commonly set in order to match some experimental data related to a
few test conditions or on the basis of values employed in previous researches.

Within the context of LP modelling of REBs, many researchers focused their
efforts on the definition of an analytical expression to account for the path
travelled by the rolling elements inside a fault. Contrarily to other models, in
which the fault was modelled by means of an additional constant displacement,
some authors strived in defining an analytical expression capable of simulating
the trajectory of the ball inside the defect. In this regard, N. Sawalhi and R.
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Randall [24] improved the 2 DOFs model of S. Fukata et al. [87] and proposed
a LP model of a gearbox with a defective self-aligning ball bearing. They
described the modelling of inner, outer and rolling element defects. This
demonstrated the effectiveness of LP models for the further integration with
other components schematized in a similar fashion, e.g. geartrains [11]. Their
formulation included the effective path travelled by the balls in the defective
area. Other than the masses of inner and outer rings, they also added a
fictitious additional mass to model a high resonant mode of the system. Its
mass and stiffness were tuned on the basis of a resonance frequency observed
on an experimental signal. However, no further indications on the selection
of their values and on the influence on the system response were provided.
Later, D. Petersen et al. [88] enhanced N. Sawalhi and R.B. Randall’s model
and discussed the effect of the rapid stiffness changes induced by defects with
sharp edges on the system response. Their work was also further studied by
L. Cui et al. [89] which investigated the relationship between the defect size
and vibration response, therefore assessing the fault severity on the basis of
the time between impacts. Moreover, F. Larizza et al. [go] employed the model
developed by D. Petersen et al. to analyse the static and dynamic stiffness
of the system. They reported that stiffness values rapidly changed for load
values above a certain threshold dependent on defect shape and load value.
The authors also examined the influence of entry and exit defect slopes in large
outer ring defects by computing the contact forces through Love’s equation
[91]. M. Patil et al. [92] described the defect as half-sinusoidal and employed
their model to numerically assess the effects of different defect size. J. Liu
et al. [93], instead, exploited a piecewise function whose shape depended
on the ratio between ball diameter and the characteristic dimension of the
defect, i.e. its length and width. By employing a different approach, A. Moazen
Ahmadi et al. [94] avoided making any assumption on the ball trajectory
inside the defect. Instead, they considered the finite size of the rolling element,
i.e. each ball had its associated DOF and its own dimension. This allowed
to better describe the events taking place as the balls roll over the defect. A
different formulation was proposed by J. Liu et al. [95], which exploited the
quarter-space method to calculate the contact stiffness near the defect edges.
The authors also advanced the definition for spalls with a shoulder, which
were described as the combination of a sinusoidal and exponential function
[06]. Moreover, they added the effect of a deformable interface between the
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outer ring and the housing in a consequent work [97]. A further technique was
exploited by F. Kong et. al [98], who utilized the estimated Hertzian contact
area between rolling elements and races in the proximity of the contact area
to determine the actual deflection of the contacting bodies. This approach
denoted a change in the contact force before the entry in the defective area.
More recently, Y. Jiang et al. [22] thoroughly discussed the modelization of 3D
rectangular-like defects. Their inquiry led to establish the larger influence of
the circumferential extent of the defect compared to its axial width. Latterly, S.
Gao et al. [99] proposed a novel formulation for an asymmetric defect on an
angular contact ball bearing by taking into account different defect dimensions
and positions with respect to the path followed on a healthy bearing. They
suggested that it is possible to mitigate the vibration response by reducing
the circumferential extension of the defect or by diminishing the radial-axial
load ratio. The cited researchers provided remarkable contributions on the
analytical definition of the ball trajectory inside the defective area. However,
even in these works the choice of damping values was based upon arbitrary
selection.

In other works, the introduction of elastohydrodynamic lubrication (EHL)
allowed for a different definition of the forces arising due to the presence
of an intermediary fluid film between the balls and the raceways. Within
this framework, Y.H. Wijnant et al. [100] were among the first to introduce
this aspect in bearing modelling by means of a non-linear spring-damper
model. Afterwards, J. Sopanen and A. Mikkola [101, 102] introduced a 6 DOFs
model which included the elastohydrodynamic fluid film and a number of
non-idealities, i.e. rings waviness, shaft misalignment and localised defects. D.
S. Shah an V. Patel [103] discussed the influence of lubrication on their localised
defect model. P. Yan et al. [104] included the effect of EHL and reported the
impact of load and shaft speed on the lubricating film and consequently on
the system stiffness. The effect of the EHL condition on stiffness and damping
was also investigated by M. Luo et al. [105]. Furthermore, S. Mufazzal et al.
[106] introduced the lubrication theory on a 2 DOFs model with a circular
defect to analyse the amplitude of the first four harmonics of the defect
characteristic frequency due to different defect size. Differently, V. Parmar et
al. [107] included EHL along with race waviness to understand the influence
of the number of waves. In addition, V. Parmar et al. [108] also examined,
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in a ensuing paper, the response of spherical rolling-element bearings with
localised defects under misalignment. It was observed that the rolling element
could follow either an offset or an inclined trajectory while passing over the
defect. In addition, they reported the effect of load and misalignment angle.

LP techniques were not the only methods utilized for the modelling of faulty
REBs. For instance, a few authors exploited dynamic FE techniques to produce
models of defective bearings. The efficiency of the FE method in bearing
simulations, in fact, was previously underlined in Section 1.2.1. In particular,
Z. Kiral and H. Karagiille [109, 110] described a bearing-housing FE model
discretized by 3D tetrahedral elements. In this model, the loading condition
was assumed to be generated by shaft unbalance. Consequently, the radial load
distribution continuously changed around the outer ring circumference. The
FE model was employed to estimate vibrations induced by both healthy and
faulty bearings. Y. Shao et al. [111] proposed a similar model which included
inner ring, outer ring and rolling element localised faults. They determined
that, for the same defect dimension, the outer ring defect produced the highest
vibration while the rolling element fault induced the lowest. Afterwards, A.
Utpat [112] constructed a 3D FE model of a deep-groove ball bearing and
inserted a localized defect either in the inner or the outer ring. The author
reported the acceleration response on a node located on the outer surface of
the outer ring caused by different defect sizes. S. Singh et al. [113] successfully
implemented a FE technique to investigate the entry and exit events taking
place when a rolling element interacts with the defect edges. Finally, a mixed
formulation was employed by M. Tadina et al. [114], which modelled the inner
ring as a 2 DOFs lumped mass while the outer ring was discretized by planar
FEs. Therefore, differently from other LP models, the outer ring was made
deformable. They employed this peculiar modelling approach to determine
the effect of various faults under different shaft speeds.

Some researchers also investigated the problem of extended defects modelling.
However, this matter received less attention compared to localised defect, and
a fewer number of publications on the subject may be found in the literature.
Within this context, N. Sawalhi and R.B. Randall [115] extended their previous
work [24] in order to also take into account this type of fault. To perform
such a task, they proposed a procedure for the generation of a rough surface
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within the angular span separating the entry and exit edges of the defect. In
fact, in their modified model the rolling elements are allowed to touch the
bottom of the defect, which is modelled as an area characterized by a non-zero
roughness. Later, their work was further extended by D. Petersen et al. [88].
They employed the model to assess the different bearing stiffness values due
to the presence of localised and extended defects. Notably, they showed that
an extended defect induces a slow variation of the stiffness terms compared to
a narrow localised defect.

To conclude, this review exhibited various approaches commonly applied to
model the dynamic behaviour of REBs with localised and extended defects.
Although the majority of the detailed approaches produced remarkable re-
sults, a common issue found during this research was the lack of sufficient
explanation for the choice of several parameters involved in the construction of
the models. In particular, the selection of damping values and the inertial and
stiffness properties of the resonant masses were found to not be thoroughly
illustrated in most of the reviewed works.

1.2.3 Prognostic models

Prognostics tackles the problem of estimating the RUL of machinery, which
is defined as the time length which separates the current time and the end
of the useful life of a component [116]. The useful life is usually considered
to have reached its end when the monitored health indicator crosses a fixed
failure threshold [117]. This threshold may be either considered a constant line
or a probability distribution. Although the second approach is generally more
accurate, since it takes into account the system uncertainties, it also introduces
an higher degree of complexity. As a result, the first approach is employed in
most publications [28].

RUL prediction methods may subdivided in three major categories [27]:
physics-based models (PBMs), data-driven models (DDMs) and hybrid models.
PBMs describe the degradation process and the failure modes through mathe-
matical modelling of the system physics. The development of these models
demands a thorough understanding of the system properties, its degradation
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mechanisms and its possible failure modes [118]. On the other hand, DDMs
exploit statistical and machine learning techniques to assess the current and
future HS of the system. Differently from PBMs, they do not rely on the
knowledge of the system physics but only on the history of data acquired
on the system. This category may be subdivided in two further groups, i.e.
statistical model-based approaches and Artificial Intelligence (AI) approaches,
depending on the chosen prediction technique [28]. Finally, hybrid models
refers to approaches that combine both PBMs and DDMs in order to take
advantage of the benefits of both methodologies. In some cases, however, some
hybrid models are the combinations of different models that represent the same
phenomenon, so to increase the robustness of the health assessment. These
peculiar models are usually referred to as ensemble models [119]. This section
reviews a number of works which concern these three types of prognostics
models.

1.2.3.1 Physics-based models

Prognostic PBMs assess the future HS of the system by building a mathematical
model based on the physics of the system. The parameters of the physics model
are usually correlated to the stress on the component and the properties of
the material [27]. PBMs are able to perform RUL prediction by tracking the
degradation process of the system. Therefore, a complete understanding of
both the degradation mechanisms and the failure modes of the components
under exam must be acquired before constructing a PBM. In this regard, it is
worth clarifying that degradation mechanisms are processes which lead to the
failure of the mechanical system, while failure modes explain why and how a
function of the system may be no longer fulfilled [120]. Besides, degradation
models require as input information about the current severity of the system
deterioration. These data are acquired by means of sensors mounted on the
monitored machinery.

The Paris-Erdogan (PE) model is one of the most widely employed physics
models in the RUL prediction of machinery. It was first proposed by P. Paris
and F. Erdogan [121] in order to represent the development of crack growth.
Cracks, in fact, are a typical consequence of fatigue damage that ultimately
brings the system to its failure. According to T. Tinga [120], the process of
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crack growth may be subdivided in three regions. In the first one, the crack
grows slowly and its length is not considered to be significant. In the second
region, the crack dimensions become significant and its size steadily increases.
Lastly, in the third phase the crack becomes unstable and rapidly propagates
until failure. Within this context, the PE model describes the second region of
crack growth. Its validation is based on a number of experimental observations
that allowed the two researchers to relate the number of cycles and the crack
length through the combination of material parameters and the stress range
undergone by the component. Although the PE model does not take into
account the instability of the crack and its initial length, its implementation
has been proved successful in PBMs. In fact, throughout the years their model
was extended and refined, and a number of researchers applied it to the field
of machinery and REBs prognostics.

In this regard, Y. Li et al. [122] proposed a model similar to PE. In their
formulation, the number of cycles was related to the defect area instead of the
crack length. They developed an adaptive algorithm to fine tune the parameters
through on-line comparison with measured defect size. They subsequently
refined the model in a consequent effort [123] by introducing a stochastic term
in the form of a lognormal random variable. A similar approach was adopted
by M.R. Hoeprich [124] which introduced an equation similar to PE in order
to represent the growth of defect areas in REBs. Their model was extended
by M.N. Kotzalas and T.A Harris [125] to include thermal effects and later
validated by an experimental campaign carried out by S. Li et al. [126]. Y.
Lei et al. [127] and ]J. Wang et al. [128] modified the PE formulation into an
empirical model for RUL assessment. The former presented a method based
on particle filter that integrated measurements and physics model into a state-
space framework to accurately consider the nonlinearity and the uncertainty of
the degradation process. The latter described a procedure to integrate multiple
features and correlate them with the degradation history. Similarly, L. Liao et al.
[129] proposed a combination of features in order to define a global one which
was able to describe the deterioration process. For this purpose, they exploited
a genetic algorithm to extract a feature with the optimal monotonicity. J. Sun
et al. [130] enhanced the PE model to a state-space model and proposed the
optimal degradation state estimation through the employment of a Bayesian
framework. D. Xu et al. [131] developed two modified versions of the PE
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model for application in rolling bearings. M. Corbetta et al. [132] described
an approach to estimate the crack progression by combining a PBM with
a particle filter for parameters estimation. In a subsequent work [133], the
authors integrated the PE model into a probabilistic method which exploited
a sequential Monte Carlo sampling combined with the probability density
function of the model parameters. Similar approaches where also presented by
F. Cadini et al. [134] and E. Zio and G. Peloni [135]. More recently, Y. Lu et al.
[136] proposed a PBM for REBs, which employed the realized volatility of the
signal as an indicator for the system HS. L. Saidi et al. [137] integrated the PE
law along with a Kalman smoother to perform prognosis of high-speed REBs
mounted on wind turbines.

Despite the popularity of the PE model, several other models based on other
approaches have been proposed. J. Qiu et al. [138] developed a stiffness-based
prognostic model which related the natural frequencies and the vibration
amplitude to the failure lifetime of a REB. They described the damage accu-
mulation by either a linear damage rule, damage curve approach and a double
linear damage rule. Differently, F. Sadeghi et al. [18] proposed a model for
the evaluation of rolling contact fatigue in REBs. In a similar fashion, some
authors employed contact stress analysis to describe the wear phenomenon
on bearing components. For instance, C.D. Begg et al. [139] and D. Chelidze
and J.P. Cudumano [140] based their models on system dynamics, while S.
Marble and B.P. Morton [141] took advantage of contact stress analysis. P.K.
Gupta and E.V. Zaretsky [142] proposed stress-based life models for REBs and
were able to develop a formulation which related bearing life to the maximum
subsurface shear stress and the amount of stressed volume. A completely dif-
ferent technique was utilized by T. Slack and F. Sadeghi [143] who developed
a 2D explicit FE model to model the crack subsurface initiation and its propa-
gation to the surface. In order to perform such a task, the pressure distribution
was continuously moved across the domain so to replicate the complete time
history of the subsurface stress. Although applied for other components, FE
analysis was also employed in combination with a modified PE law by M.].
Pais and N.H. Kim [144] to predict the fatigue crack growth in aerospace
panels. On the other hand, an original methodology was proposed by L. Cui
et al. [145]. In fact, they built a so-called performance degradation dictionary
by performing a large number of numerical run-to-failure simulations through
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the employment of a REB dynamic model based on the work of N. Sawalhi and
R.B. Randall [24]. In each simulation, different fault parameters were employed
to generate diverse degradation histories. RUL assessment was then performed
by taking advantage of the similarity theory [146] which allowed to consider
the uncertainty of the RUL estimation through comparison with experimental
data. T. Wang et al. [147] presented a probabilistic framework in which fault
presence was detected by means of spectral comparison between modelled
and experimental signals. Then, RUL was computed through a least-square
method and Bayesian inference was used to determine its distribution. Their
unsupervised approach allowed to avoid manual parameter setting and their
consequent fine-tuning. B. Yan [148] introduced a two-stage physics-based
Wiener process. It took into account the fatigue crack mechanism and its
growth, the component structure, assembly accuracy and the conditions of the
working environment. Interestingly, the first region of crack growth was also
considered in their model. Finally, it is worth citing that other crack growth
formulations have been employed to model this phenomenon in other types
of mechanical components. For instance, C.H. Oppenheimer and K.A. Loparo
[149] utilized the Forman crack growth law ([150]) to estimate the RUL for
rotor shafts prognostics.

Despite the demonstrated efficiency of PBMs in tackling PHM problems,
they present some limitations. Most notably, their performance depends on the
degree of understanding of the failure mechanisms and the estimation of model
parameters. In fact, several degradation mechanisms present high difficulties in
their modelling, making this approach unsuitable for complex machinery for
which it may be challenging to fully understand the physics of damage [28]. As
a result, although PBMs have been proven to be successful in REBs prognosis,
they are not suitable in every PHM application. Furthermore, in contrast with
DDM approaches, PBMs are non scalable between different systems. However,
differently from DDMs, they do not rely on having large amount of previously
acquired data on the system being monitored. In addition, PBMs permit to
model the physics of the degradation mechanism and consequently allow for
an adequate modelling of the system under exam, which may be employed for
other purposes other than prognosis, e.g. certification of machinery [27].
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1.2.3.2 Data-driven models

DDM prognostic model are based on data historically collected on the system
[20]. Scholars have developed a large number of techniques, which may be
broadly subdivided in two major categories: statistical approaches and Al
approaches. Statistical approaches, often referenced as empirical model-based
approaches [28], aim at estimating the RUL by constructing statistical models
on the basis of experimental observations and empirical experience. Their
typical outcome is a conditional probability density function (PDF) of the
RUL based on experimental data [116]. Differently, AI approaches employ Al
techniques to foresee the future degradation of the system. These methods
work as "black-boxes" where data is fed to the Al and prognostic information is
obtained as output. [151]. Therefore, the main characteristic that differentiates
these methodologies from PBMs is that both approaches do not rely on the
knowledge of the system physics. As a result, they are scalable between
different systems, but they require large training data to attain reliable results
as opposed to PBMs. Popular statistical DDMs include autoregressive (AR)
models, random coefficient models, Markov models, Wiener process models,
Inverse Gaussian (IG) models, gamma process models and Proportional Hazard
(PH) models. Concerning AI approaches, often employed methods encompass
Artificial Neural Network (ANN), Convolutional Neural Network (CNN),
Neuro-Fuzzy (NF) systems, Support Vector Machine (SVM), Relevance Vector
Machine (RVM) and Gaussian Process Regression (GPR).

STATISTICAL APPROACHES Among the statistical approaches, AR models
are widely employed for PHM purposes. Their underlying assumption is
that the future state of the system may be seen as a combination of a linear
function of past observations and random error terms [26]. This approach was
utilized in bearing prognosis by W. Caesarendra et al. [152], who introduced
the AR moving average model to improve the accuracy of the estimate. For
the same purpose, Y. Qian et al. [153] extracted input data for the AR model
by employing a Kalman filter. Later, Y. Qian and R. Yan (2015) [154] refined
the previous effort by combining a multi-order AR model with a particle
filter algorithm. Differently, L. Cui et al. [155] employed Kalman filtering to
automatically match different degradation phases. The functions at the base of
the procedure were linear in the normal deterioration phase and non linear
in the final stage of the component life. The proposed algorithm was able to
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autonomously switch between the two functions. In a subsequent effort, the
same authors [156] further expanded the available techniques by introducing
a time-varying particle filter algorithm constructed by a combination of an
adaptive selection rule and a sliding window. Through this procedure they
were able to estimate bearings RUL. The main strength of AR models is their
easiness of implementation. However, their performance is highly dependent
on the quality of available data.

Another common type of models are random coefficient models, which de-
scribe the randomness of the deterioration process by introducing normally
distributed random coefficients. In this regard, N. Gebraeel and J. Pan [157]
developed an exponential model which comprised random errors. Model pa-
rameters were determined by means of a Bayesian approach. Their model was
later enhanced by Y. Wang et al. [158] to further ameliorate the parameter
estimation process. X. Jin et al. [159] tackled bearing prognostics by proposing
a model built as the sum of two exponential functions. First, an AR filter was
employed to eliminate spectral components unrelated to faults. Subsequently,
statistically unhealthy signals were analysed to determine the RUL of the
component. Although these models consent to determine the PDF of the RUL,
the base assumption of Gaussian randomness restricts their applicability.

Markov models are extensively employed in PHM thanks to their capability to
provide an efficient compromise between computational time and accuracy of
RUL estimation [160]. They are based on the hypothesis that the degradation
process of machinery may be described by a finite number of transitions
between different states that follow the principle of the Markov chain [161].
However, the vast majority of these techniques fall in the category of the
so-called Hidden Markov Models (HMMs). In fact, in contrast with traditional
Markov models, HHMs describe the evolution process of "hidden", non-directly
observable states which are typical of machinery in working conditions. To
overcome this restriction, the relationship between physical observations and
the actual degradation is defined by means of a stochastic approach. Examples
of applications of HMMs are described in the works of R.B. Chinnam and P.
Baruah [162] and E. Ramasso and T. Denoeux [163]. Recently, E. Soave et al.
[164] improved the HHM technique by introducing a Generalized Gaussian
Hidden Markov Model (GGHMM). To this end, they considered possible
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distribution variations among different states by defining the probabilistic
function as a mixture of generalized Gaussian distributions. The GGHMM
method was successfully employed for the assessment of bearing degradation
histories. Variants in the form of hidden semi-Markov models were also
proposed to improve the flexibility of HMMs, as shown by K. Medjaher et
al. [165] for bearing prognosis and by Q. Liu et al. [166] for predicting future
HSs of hydraulic pumps. Although their demonstrated effectiveness for RUL
estimation, HMMs rely on the assumption of Markov property, i.e. the future
state does not depend on previous observations but only on the current state.
Therefore, their employment is somewhat limited in real applicative scenarios.

Furthermore, Wiener process models are built by combining a drift term
plus a diffusion term which follows Browning motion [28]. First proof of
their application in PHM may be found in the work of K.A. Doksum and A.
Hoéyland [167]. Then, examples of employment in REB prognosis may be found
in the works of N. Li et al. [168] and Y. Wang et al. [169]. Moreover, ]. Wen et
al. [170] employed a nonlinear Wiener process model to assess bearing RUL
and quantify the associated uncertainties. Similarly to HMMs, the application
of Wiener process models is limited by the need to assume Markov property,
which is an hypothesis that is not always applicable in industrial applications.
Despite this issue, they allow for an efficient description of the temporal
variability of the deterioration history.

Similar to the previous models, IG models are based on the assumption that
the degradation history is characterized by independent increments. However,
in this case, it is hypothesized that they follow an IG distribution instead. In
this regard, it is worth mentioning the works of N. Chen et al. [171] and W.
Peng et al. [172]. Likewise, gamma process models are based on a assumption
similar to IG models but increments rather follow a gamma distribution. Both
approaches are based on the Markov hypothesis and are therefore limited in
their use. Furthermore, they may only describe monotonic processes. Despite
these limitations, they accurately take into account the time variability of the
degradation and are able to simultaneously take into account various random
effects.
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Finally, PH models were introduced by D.R. Cox [173] by assuming that it was
possible to subdivide the hazard rate of a system, i.e. the rate of fault for a
system at a certain operating time, into two multiplicative factors, namely a
base hazard function and a covariate function. In other words, the hazard rate
was hypothesized as the product of a deterministic and a stochastic component.
His method was applied by D. Banjevic and A K.S. Jardine [174] to determine
the RUL through a Weibull PH model. Later, L. Wang et al. [1775] proposed a
PH model to forecast bearing RUL. First, they extracted suitable features from
on-line measurement and then fed them to a neural network which allowed
to predict their future values. Eventually, a PH model was constructed to
assess the survival function. In general, PH models allow to obtain accurate
predictions but at the expense of a remarkable computational burden.

AI APPROACHES In the field of PHM, ANNSs are one of the most popular
Al approaches. They are constructed as several nodes linked in a complex
structure aimed at reproducing the working process of the human brain.
Within this context, the most popular ANN is the feed-forward neural network
(FFNN), whose potential has been demonstrated by the works of C. Lu et
al. [176] and L. Xiao et al. [177]. The latter authors successfully employed an
ANN for the estimation of bearing HSs. Notably, their procedure allowed to
predict the future degradation without the need to rely on prior histories of
failures nor suspensions. Moreover, C. Sbarufatti et al. [178] added sequential
Monte Carlo sampling to determine the RUL of fatigue cracks. M. Behzad et
al. [77] also took advantage of a FFNN and utilized a feature based on the
high-frequency vibration of a ball bearing for REBs prognosis. In recent years,
authors began to employ a ANN variant called Convolutional Neural Network
(CNN). Among those, Y. Shang et al. [179] presented a CNN to learn spatial
features from the monitored data of a REB and, after further manipulations,
were able to extract the degradation trends. Besides, W. Li et al. [180] exploited
a CNN to tackle the problem of bearing prognosis under variable operative
conditions. ANNs are well-suited to learn complex non-linear relationships
and are therefore indicated for complicated systems. However, they require a
large number of training data to ensure reliable estimates.

On the other hand, a NF approach may be described as fuzzy-logic system in
which membership functions are optimized by ANNs [181]. This methodology
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was implemented in the field of prognostics by J.S.R. Jang et al. [182] and
was later employed by a number of authors, including C.Chen et al. [183] and
D. Zurita et al. [184]. Similarly to ANNSs, these techniques require a massive
amount of training data.

A different approach is employed by SVM, which is a method based on the
statistical theory developed by V.N. Vapnik [185]. They consist in learning
algorithms employable for classification and regression analysis. In the context
of REBs prognosis, they have been exploited for degradation prediction by
S. Dong and T. Luo [186] and F. Sloukia et al. [187]. Nevertheless, the most
frequent application in PHM is found in the form of support vector regression
(SVR), as demonstrated in the works of E. Fumeo et al. [188], T.H. Loutas et
al. [189] and M. Zhao et al. [190]. The aforementioned authors utilized SVR
to estimate bearings RUL. However, SVM approaches have one limitation,
i.e. they provide point prediction instead of a PDF. To overcome this issue,
RVM were introduced [191]. They are based on the same concepts of SVM,
but they are able to provide a probabilistic prediction instead. Both SVM and
RVM are advisable for problems denoted by a small numbers of training data.
Per contra, the major downside of these techniques is associated with the
estimation of model parameters and the choice of kernel functions.

Eventually, GPR is a supervised machine learning framework that may be
exploited for data regression [192]. Among GPR models for REBs prognosis,
it is worth mentioning the efforts of S. Hong et al. [193] and S.A. Aye and
P.S. Heyns [194]. These kind of models are characterized by a remarkable
computational burden but permit to obtain satisfactory results for both small
and large training sets.

1.2.3.3 Hybrid models

Hybrid models combine two or more different models in order to take ad-
vantage of the capabilities of diverse approaches. These kind of models are
considerably rarer in the literature compared to PBMs and DDMs [28], mainly
because of the inevitable increase in complexity introduced by the imple-
mentation of different models. On this subject, this paragraph reports some
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hybrid-models worth of mention. Among those, F. Di Maio et al. [195] inte-
grated a RVM with a random coefficient model to perform an exponential
regression that allowed to calculate and continuously update the residual life
estimation for bearing prognosis. A. Soualhi et al. [196], instead, detailed a pro-
cedure for REB prognosis based on a combination of a HMM and a NF system.
While the former detected the imminence of the subsequent degradation stage,
the latter predicted the intervening period before the next HS. A different
approach was employed by J. Yu [197], who combined a stochastic model
to construct the degradation history and employed particle filtering for RUL
estimation. Furthermore, Y. Qian et al. [198] proposed a multi-scale approach
in which a modified PE model was integrated with a phase space warping
technique for bearing prognostics. While the PE model, i.e. the PBM, described
the crack propagation on a slow-time scale, the phase space warping, i.e. the
DDM, characterized the dynamical behaviour of the component on a fast-time
scale. The combined procedure involved the construction of a tracking metric
which related measurements on the fast-time scale to the degradation process
on the slow-time scale. To conclude, an extensive literature survey concerning
multi-model approaches in PHM may be found in the work of J.J. Montero
Jimenez et al. [199].

The aforementioned discussion on prognostic models showed a large variety
of approaches that are typically employed for RUL estimation. For each kind
of method, advantages and disadvantages have been reported.

1.3 RESEARCH OBJECTIVES

The proposed literature review highlighted the broad number of available
publications in the field of bearing modelling. Despite only covering a por-
tion of the massive amount of papers that deal with this topic, the survey
demonstrated the remarkable advance in bearing modelling and the complex
techniques developed by researchers in the last decades. However, it also
underlined possible improvements in some modelling aspects, which are con-
sequently taken as motivation to carry out the research detailed in this thesis.
Specifically, this work aims at answering the following three questions:
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e Is it possible to develop a robust and efficient procedure for the finite-
element simulation of rolling-element bearings? Can the proposed procedure
allow for an accurate estimation of REB stiffness terms?

* What is an effective way to determine the model parameters that, in LP
models of defective bearings, are hardly measurable or denoted by an high
degree of uncertainty?

¢ Are there means to perform bearing life prognosis by utilizing a PBM
developed on the basis of parameters extracted from a dedicated LP dynamic
model?

These questions are answered one by one in a different chapter of this thesis.
In particular, the following original solutions are offered in the dissertation:

* The finite-element simulation of REBs is tackled by proposing a procedure
for the generation of load-dependent meshes of the component under exam.
The method is developed with the primary goal of determining the stiffness
of different types of REBs. The main contribution to the subject is the defini-
tion of mesh element dimensions on the basis of analytical formulae and
in the subsequently proposed methodology for the estimation of stiffness
terms.

* The unknown parameters in LP models of defective bearing are determined
through a dedicated multi-objective optimization technique in which the
objective functions are features calculated from bearing acceleration signals.
The technique involves the comparison of experimentally computed values
with numerical features evaluated by means of a LP model. The proposed
technique aims at determining the best set of parameters that are able to
characterize the system vibration under a variety of operative conditions
and defect dimensions. Therefore, the novelty of the procedure lies in the
proposed technique and its peculiar implementation in the context of bearing
LP models.

* Bearing prognostics is tackled by proposing two PBMs based on a novel
degradation-related parameter, namely the Equivalent Damaged Volume
(EDV). This quantity is determined through comparison of experimental
features with numerically generated maps of the same feature. In this work,
the numerical maps are supplied by computing the RMS values associated
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to different combinations of angular extent and depth of the defect. This
process gives as output the EDV values, which may be further taken as
input for further prognostics models. As a result, the original aspect of the
proposed endeavour is the development of PBMs on the basis of a peculiar
parameter which has been specifically introduced in this work.

1.4 ORGANIZATION OF THE THESIS

The thesis is subdivided as follows. Firstly, Chapter 2 describes the bearing test
bench that was set-up at Engineering Department of the University of Ferrara.
This chapter also details the two types of performed tests, i.e. stationary tests
with localised defects and run-to-failure tests. The results of these tests are
employed for the subsequent validation of the proposed numerical methods.
Chapter 3 tackles the problem of bearing FE modelling and stiffness estima-
tion. Specifically, it reports the proposed advanced meshing procedure for the
generation of load-dependent grids. First, application of the Hertzian theory
to REBs is explained. Then, the chapter details the types of elements to be em-
ployed for meshing, their optimal size, exploitable modelling hypotheses and
computational domain reduction strategies. Demonstration of the capabilities
of the proposed modelling procedure are provided by computing the stiff-
ness curves for two different reference bearings. Results are compared against
analytical models, whose formulations are also reported. Finally, the chapter
closes by evaluating the influence of additional factors on the computations, i.e.
inclusion of the cage, load direction and magnitude of the radial clearance. The
subsequent Chapter 4 presents a methodology for the assessment of unknown
parameters in the context of LP modelling of faulty bearings. A theoretical
LP formulation is provided to test the proposed procedure. The LP model is
integrated with the proposed technique in order to determine its efficiency. To
this end, the results of the stationary tests detailed in Chapter 2 are employed.
An extensive description of the proposed procedure and the obtained model
parameters is given. Moreover, Chapter 5 tackles the topic of REBs prognostics.
In particular, it details two approaches to generate PBM models based on a
peculiar degradation-related parameter named equivalent damaged volume.
The full algorithm that allows to extract this parameter from real bearing
degradation histories is described. For this purpose, data obtained from the
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run-to-failure experiments introduced in Chapter 2 are utilized to demonstrate
the capabilities of the proposed models. Discussion about the employability
of the proposed methodology and its potential use in REB prognostics are
thoroughly detailed. Eventually, Chapter 6 summarizes the detailed work and
provides some final remarks, also including possible further developments.

As an addition, Appendix A reports a supplementary work that is not strictly
related to the field of bearing modelling. However, it is included in this
thesis as it is a contribution that was presented by the author at the ISMA
2020 conference in Leuven, Belgium [5]. Moreover, it is somewhat related to
the numerical models described in the previous chapters, as it describes the
generation process of the digital twin of a gearbox employed on agricultural
equipment through the combination of LP and FE models.
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ENGINEERING DEPARTMENT OF THE UNIVERSITY OF
FERRARA

2.1 INTRODUCTION

Experimental validation is the typical approach employed to determine the
effectiveness of analytical and numerical models. In an ideal situation, data
should be acquired on the effective system where the modelled component
is mounted. This methodology would allow to test the part under exam in a
condition where the effective load and constraints are applied. However, this
operation is not always possible, especially in an industrial scenario, mainly
due to the inevitable machine downtime that would follow. A dedicated
experimental campaign, in fact, would require to stop the machinery in order
to mount the sensors and proceed with the testing. As a consequence, test
benches that replicate the effective operative conditions are usually employed
both in the academic and industrial field.

Within this context, vibratory signals of REBs have been included by researchers
in a number of datasets acquired on different test benches. Among them, the
data collected on the test rig of the Intelligent Maintenance Systems (IMS)
of the University of Cincinnati (Ohio) is one of the most employed in the
literature [30, 200]. The test bench consisted in four double row spherical roller
bearings installed on a shaft, which was connected to an AC motor by rub
belts. The rotation speed was kept constant at 2000 RPM. A radial load equal to
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27.7 kN was applied on the shaft by means of a spring mechanism. Vibration
signals of all bearing were captured through an accelerometers mounted on
each casing. This experimental setup was employed to perform three run-to-
failure tests. For each one, 1 second of signal was acquired every 20 minutes
with a sampling rate equal to 20 kHz. Another famous dataset is related
to the PRONOSTIA test rig owned by the FEMTO-ST Institute of Besangon,
France [201]. This test bench has been employed to perform accelerated run-
to-failure experiments on a deep-groove ball bearing. In their test rig, the
motor transmitted the rotary motion through a gearbox which delivered the
motion to a secondary shaft. The load was applied via a pneumatic jack.
The dataset consists of a total of seventeen sets of data for three different
combinations of shaft speed and applied load values, i.e. 1800 RPM and 4000
N, 1650 RPM and 4200 N and 1500 RPM and 5000 N. Vibration of the test
bearing was monitored through two accelerometers mounted perpendicularly
to each other on the outer race. Signals were acquired at a sampling frequency
of 25.6 kHz. However, only 2560 samples were recorded every 10 seconds.
Moreover, the dataset of the Case Western Reserve University, also known
as CWRU dataset [202], is widely employed for the validation of diagnostic
models. The test bench consisted in a electric motor that drove a shaft in which
a torque transducer and encoder were mounted. Torque was applied to the
shaft through an electronically controlled dynamometer. Two deep-groove ball
bearings were selected as test bearings. They were mounted on the fan-end and
the drive-end of the motor. In these tests, defects were not naturally developed.
Rather, they were artificially seeded on their inner and outer rings. The faults
were generated via electrical-discharge machining (EDM) and their diameter
ranged from 0.18 mm to 0.71 mm. Test were run at an approximate constant
speed ranging from 1720 to 1797 RPM. No radial load was applied: therefore,
the only radial load acting on the system was the static gravitational load
[203]. Vibration signals were measured in several locations in the proximity
and far-off from the motor bearings. Sampling frequency was set either to
12 kHz or 48 kHz. Recently, B. Wang et al. made available vibration signals
collected on their bearing test rig [128, 204]. The experimental platform allowed
to conduct accelerated degradation tests under different operating conditions.
The system included an AC motor connected to a shaft, which was mounted on
two heavy duty roller bearings. The bearing under test was a deep-groove ball
bearing. A total of fifteen bearings were tested under three different operative
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conditions. Radial load, which was applied on the test bearing housing, was
generated through an hydraulic loading system. Shaft speed, imparted by the
motor, was kept constant during the tests. The combinations of loads and
speeds were the following: 2100 RPM and 12 kN, 2250 RPM and 11 kN and
2400 RPM and 10 kN. Vibration signals were acquired via two accelerometers
mounted orthogonally to each other on the housing of the bearing under test.
Finally, 1.28 s were recorded at intervals of 1 min with a sampling frequency
of 25.6 kHz. Another dataset is provided by KAT datacenter of the German
University of Paderborn [205, 206]. The test rig included a drive motor, a torque
measurement shaft and a load motor [207]. This test bench was employed to
test both healthy and artificially damaged grooved ball bearings. Tests were
run under four different combinations of rotational speed, applied torque
and radial force values. For each one, two possible values were chosen, i.e.
900 and 1500 RPM, 0.1 and 0.7 Nm and 400 and 1000 N. A total of thirty-
two tests were conducted: six were on healthy bearings, twelve on artificially
damaged REBs and fourteen on bearings damaged through accelerated life
testing. For each test, 20 measurements of 4 seconds each were performed.
Finally, a dataset for diagnosis and fault detection was also provided by the
Society for Machinery Failure Prevention Technology (Illinois), also known as
MFPT dataset [208]. They employed roller bearings, which were tested under
different initial health conditions, i.e. healthy bearing, artificial inner and outer
race faults and naturally developed defects. Load conditions ranged from o to
1334 N, while shaft speed was kept constant at 25 Hz [209]. This brief review
showed just some of the publicly available datasets and the employed test
rigs. Many more test benches and design have been proposed by researchers,
but only few of them uploaded the acquired dataset on on-line repositories.
Therefore, the reported survey attempted to cover some of the most famous
ones.

Due to the need to validate bearing models, a dedicated bearing test bench has
been set-up in the laboratory of the Engineering Department of the University
of Ferrara. Its design allows to replicate real conditions that are applied on the
bearing during its operational life. The test rig is tailored with the objective
to perform two different types of tests, i.e. stationary tests on faulty bearings
and run-to-failure experiments. The former allows to determine the vibratory
signal generated by a bearing with some kind of artificial defect inserted on
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Figure 5: Photos of bearing test benches, taken from the literature: (a) IMS [30]; (b)
FEMTO-ST [201]; (c) CWRU [202]; (d) B. Wang et al. [128]; (e) Paderborn
University [205].

one of its components, i.e. rings, rolling elements or cage. These tests may be
run for a variety of applied loads and shaft rotation frequencies. The acquired
data may be employed to validate dynamic models of REBs with faults. The
latter permit to acquire the vibratory signal of a REB during its entire operative
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life. In this case, no artificial defects are introduced on the bearing under test.
In fact, the goal is obtain natural defects that may appear during the real
operational life of the component. The acquired signals may be utilized for the
validation of diagnostic and prognostic models. In light of these considerations,
this section describes the proposed test bench design and the two types of
conducted tests.

2.2 TEST BENCH DESCRIPTION

The test rig is displayed in Figure 6 and schematized in Figure 7. The bearing
under test is a self-aligning ball bearing, model 1205 ETN9, as shown in
Figure 8. Its dimensions are reported in Table 1. The REB is mounted on a
shaft, which is connected through a flexible coupling to an electric motor. The
rotation frequency of its output shaft is controlled by an inverter. The shaft is
supported by two spherical roller bearings, model 22207 EKS, connected to
the frame. The test bearing is enclosed in a casing, and the load is applied by
means of a lever system, oriented so that the resulting force is vertical and
acts radially on the bearing. A load is exerted at the end of the longer arm
by varying the preload of an extension spring which connects the lever to the
ground. The lever system amplifies the magnitude of the applied force to the
other side, which is connected to the bearing casing through a steel truss. A
load cell is inserted in this component in order to measure the effective value
of the resulting force, which is labelled as w in Figure 7. During the tests, the
acceleration signal is acquired through a piezoelectric accelerometer model
PCB 356B21 mounted on top of the casing. Moreover, during the run-to-failure
experiments, two further accelerometers are mounted on the support bearings
for monitoring purposes.

2.3 PERFORMED TESTS
2.3.1 Stationary tests for bearings with artificial defects
For the stationary tests, artificial defects were generated on a number of test

bearings. In particular, nine bearings of this type were considered, and an outer
race defect was seeded on each one. These defects are rectangular in shape
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Figure 7: Schematic depiction of the bearing test bench.

and have been generated through EDM. Therefore, they are characterized by
three main dimensions, i.e. their depth, circumferential length and axial width.
The depth is the same for all defects and, due to the curvature of the outer
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Figure 8: Geometry of the self-aligning ball bearing 1205 ETN9 employed as test
bearing on the test bench.

Table 1: Design parameters of the self-aligning ball bearing model 1205 ETNg.

Description Symbol  Value
Inner ring groove radius Tgi 3.66 mm
Inner ring race radius Ty 16.64 mm
Outer ring radius To 22.91 mm
Ball radius T 3.56 mm
Contact angle x 10.2°
Number of balls on each row ny 12

raceway, its minimum value is 0.06 mm towards the center of the ring while
its maximum amounts at 1.6 mm at the other extremity. The width is also
constant for every bearing and it is equal to 6 mm.

The chosen depth and width prevent the rolling elements to contact either the
bottom or the side edges of the defect. In fact, during the modelling stage this
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(b)

Figure 9: Artificial defects seeded on the outer rings: (a) Defect width D1; (b) Defect
width D2; (c) Defect width D3.

defect depth allows to focus on the modelling of the trajectory of the balls and
their free flight from the leading to the trailing edge of the defect. Such kind of
artificial defects are commonly employed in the literature for model validation
[24, 82, 89, 103, 105, 106, 210]. The importance of this type of defect shape
is further demonstrated by L. Cui et al. [145], which employed this defect
geometry to simulate the initial stages of defect propagation on a prognostic
model.

On the other hand, the circumferential length is different for each bearing.
Three nominal dimensions, i.e. 0.9 mm, 1.6 mm and 2.5 mm are assumed and
labelled as D1, D2 and D3, respectively. The same dimension is replicated three
times on three different bearings. Consequently, each bearing is labelled with
a letter a, b or ¢ to differentiate among them, as depicted in Figure 9. These
defect extensions are similar to dimensions typically found in the literature.
In fact, N. Sawalhi and R. Randall [24] used one defect with width 0.8 mm. S.
Khanam et al. [82] employed several dimensions ranging from 0.35 mm to 2.02
mm. L. Cui et al. [89] included defects with widths up to 5 mm. D. S. Shah and
V. Patel [103] considered defects as wide as 1.5 mm. A. Chen and T. R. Kurfess
[210] considered three fault dimensions with widths 0.794 mm, 1.135 mm and
1.530 mm, respectively. M. Luo et al. [105] also proposed three different defects
dimensions, i.e., 1 mm, 1.45 mm and 2 mm. S. Mufazzal et al. [106] generated
artificial defects ranging from 0.5 mm to 2 mm, although characterized by a
circular shape.
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Table 2: Dimensions of the defects seeded on each bearing. The width values measured
on each bearing have an uncertainty equal to 2 pm.

Values for each bearing Average values

ID Width [mm] Angular extent [°)] ID Width [mm] Angular extent [°]

Di.a 0.932 2.372
D1b 0.907 2.308 D1 0.928 2.362
Di.c 0.945 2.405
D2z.a 1.671 4.253
D2.b 1.664 4.236 D2 1.664 4.236
D2.c 1.658 4.218
D3.a 2.507 6.382
D3.b 2.513 6.397 D3 2.501 6.366
D3.c 2.483 6.320

Finally, the defects are located so that only the balls of one row are able to
roll inside the defect. This scenario is a well consolidated strategy for testing
defective self-aligning ball bearings [24, 88, 108]. Some authors tackled the
problem of multiple and compound faults [8o, 211, 212], but that case is not
considered in the performed experimental campaign.

The effective length and width of the artificial faults were measured through a
coordinate-measuring machine to determine the effective shapes and dimen-
sions of the defects. The results are depicted in Figure 10. They are represented
by considering the projection of each coordinate point on a plane parallel to the
original rectangular shape, which resides on a circular surface. The effective
width of each one has been measured by considering the distance between the
opposite edges at the theoretical line of contact between the rolling elements
and the raceway. The average values in terms of defect widths and angular
extent are reported in Table 2. It is worth noting that the average values are
very close to the nominal values. Furthermore, the scatter around each average
value is considerably low for all defects, since all measurements deviate from
the average by less than 2.3 %.
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Figure 10: Measured defect dimensions. In each plot, the x-axis is aligned with the
external border of the bearing. The employed measuring machine has an

accuracy equal to (0.48 + 1) um, where 1 is the measuring distance expressed
in meters. (a) Fault size D1; (b) Fault size D2; (c) Fault size D3.

The faulty bearings were tested for different combinations of applied load
values and shaft rotation frequencies. In particular, two static load values
equal to 1000 N and 2000 N and three rotation speed values equal to 20
Hz, 30 Hz and 40 Hz were selected, leading to six tested conditions for each
bearing under test. Moreover, each defect width was replicated three times
on three different bearings, thus leading to eighteen tests on the same defect
dimension. Finally, three different defect widths were generated. As a results,
a total of fifty-four tests were run. Each signal was acquired for 15 seconds
at a sampling frequency of 51.2 kHz. The signals were then low-passed at
9.5 kHz for the subsequent analyses described in Chapter 4. The vibration
signals were acquired through a LMS SCADAS Mobile Mo6 equipped with 56
analog channels, a 24 bit AC/DC converter and an anti-aliasing filter. The raw
acceleration signals are publicly available: in fact, they have been uploaded in
a online data repository hosted by Mendeley Data [4].
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2.3.2  Run-to-failure tests

Run-to-failure tests involve the acquisition of the vibratory signal through
the entire operative life of the bearing under test. In this way, it is possible
to understand the effective vibration of the component in both healthy and
unhealthy conditions. Moreover, run-to-failure tests induce the generation of
natural defects in the bearing, which are the ones that are effectively produced
during real operations. Therefore, the resulting signals also contain information
about the damage progression and may consistently differ from stationary
tests with artificial defects with controlled dimensions.

The main issue related to run-to-failure tests is the extensive time duration of
this kind of tests. In fact, bearing life may be roughly estimated according to
the well-known Loy, value [6]:

anr [(Cr\® _ ¢
Lion = (X1 4
10 = 8000w, < P ) 0 @)

which allows to determine the fatigue life, expressed in hours, that go % of
the bearing population will endure. In Eq. 1, ws is the shaft rotation speed, C;
is the basic dynamic load rating of the bearing, P is the equivalent dynamic
bearing load and s is an exponent which is equal to 3 for ball bearings and
10/9 for roller bearings. Within this context, C; is the load that, if applied
to the bearing, would lead to a rating life equal to 10° revolutions. For the
bearing reported in Table 1, C; = 12.2 kN. Moreover, for a radial bearing, P
is equal to the applied radial load if the REB is not subjected to any axial
load. Additionally, Eq. 1 presents a further term aj, which is a coefficient
that allows to take into account other life influencing factors. Its value is
provided by international standards, e.g. ISO 281 [7]. This equation leads
to two important considerations. Firstly, that bearing failure is a statistically
distributed phenomenon. Therefore, the effective length of run-to-failure test
may vary even under identical operative conditions. As a consequence, for the
purpose of run-to-failure tests, the estimated L;on allows to perform rough
estimation on the expected test length under given conditions. Secondly, Lign
value depends on the applied load and the rotation speed of the shaft. In
particular, it greatly depends on the magnitude of the applied load. To better
underline this concept, Figure 11 shows the values of Lo, expressed in days,
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Figure 11: Expected life of the bearing 1205 ETN9 under different combinations of
radial load and shaft speed values: (a) Load range 1-6 kN; (b) Load range
3-6 kN.

for the bearing under test as computed for different combinations of loads and
speeds. Specifically, Figure 11.a reports the bearing rating life between 1 and
6.6 kN. The plot demonstrates that bearing life decreases exponentially with
increasing load, as highlighted by Eq. 1. In particular, the expected life ranges
from more than 500 days for 1 kN of load to less than 5 days for 6 kN. In the
vast majority of applications, bearings are chosen to work in the left part of
the graph, so to have the highest possible expected life and minimize their
required maintenance.

However, working at low loads and shaft speeds is not suitable for testing
on a bearing test rig. In particular, low loads would lead to excessive test
times, in the order of hundreds of days of continuous operation. In order to
overcome this issue, accelerated tests are performed. In this kind tests, a large
load is applied in order to induce a fast degradation of the component. This
is a standard kind of testing procedure employed by researchers to generate
faulty bearing datasets, as reported in Section 2.1. This aspect is emphasized
by Figure 11.b, which depicts Lo, values between 3 and 6 kN. Within this
range, the bearing life ranges approximately from 20 to 2.5 days at a shaft
speed equal to 40 Hz. Therefore, tests performed inside this range of loads
allow to attain an acceptable testing time and permit to carry out multiple
tests in a relatively short amount of time.