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Abstract

In this work we propose a novel space-dependent multiscale model for the spread of
infectious diseases in a two-dimensional spatial context on realistic geographical scen-
arios. The model couples a system of kinetic transport equations describing a population
of commuters moving on a large scale (extra-urban) with a system of diffusion equations
characterizing the non commuting population acting over a small scale (urban). The
modeling approach permits to avoid unrealistic effects of traditional diffusion models in
epidemiology, like infinite propagation speed on large scales and mass migration dynam-
ics. A construction based on the transport formalism of kinetic theory allows to give a
clear model interpretation to the interactions between infected and susceptible in com-
partmental space-dependent models. In addition, in a suitable scaling limit, our approach
permits to couple the two populations through a consistent diffusion model acting at the
urban scale. A discretization of the system based on finite volumes on unstructured
grids, combined with an asymptotic preserving method in time, shows that the model is
able to describe correctly the main features of the spatial expansion of an epidemic. An
application to the initial spread of COVID-19 is finally presented.

Keywords: kinetic transport equations, epidemic models, commuting flows, COVID-19,
diffusion limit, asymptotic-preserving schemes, unstructured grids

1 Introduction

The study of epidemic models has certainly experienced enormous growth in recent times
due to the impact of the COVID-19 outbreak [2, 6, 8, 26, 29, 41, 42, 46, 47]. Most models and
results focused on the nature of epidemic interaction at a global level under the assumption
of homogeneous mixing, thus ignoring other possible aspects of human behavior, particularly
regarding mobility patterns and social interactions. Although meta-population approaches
attempt to overcome such limitations they still suffer from the complexity of the model
construction in developing interactions within the meta-populations [4, 17,27,29,43].
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On the contrary, the geographical spread of epidemics is less understood and much less
studied than the temporal development and the corresponding control of infectious diseases.
The usefulness of realistic models for the spatio-temporal evolution of epidemics is evident
if one considers the implementation of appropriate quarantine control strategies in the first
phase of the epidemic or the progressive restart of productive activities in a second phase.
Both phases require knowledge of the epidemic spread over the territory and therefore, it is of
paramount importance to have predictive models that take into account spatial characteristics
in order to efficiently deal with the consequences of the epidemic. On the other hand, the
increasing availability of information on people’s mobility through the use of GPS devices
and the Internet, together with the increase in computational capabilities, makes it realistic
today to think about the construction of mathematical models able to take into account the
heterogeneity of the territory [25,27,35,39,47,48].

Most models based on partial differential equations describing the spatial dynamics of the
epidemic are based on reaction-diffusion equations with a single population per compartment
[3, 13, 25, 35, 38, 39, 45, 47, 48, 50]. These models have highlighted the ability to describe the
formation of heterogeneous spatial patterns and the diffusion of the epidemic in geographical
contexts where the entire population moves indistinctly. Recently, in order to avoid the
paradox of the infinite speed of propagation typical of diffusion problems, alternative models
based on hyperbolic equations have been proposed [5,8,18]. However, preferential directions
of displacement have not been considered while of paramount importance to describe correctly
a population dynamic.

Kinetic transport equations add a whole new level of description to our toolbox of math-
ematical models for spatial spread of populations. They are situated between individual
based models, which act on the microscopic scale and reaction diffusion equations, which
rank on the diffusive macroscopic scale. Transport equations are thus often associated with
a mesoscopic description based on a statistical physic approach [12]. These equations use
movement characteristics of individual agents (velocity, turning rate etc.), but they describe
a population by a continuous density [16, 31, 40] which can be interpreted as the probability
for an individual to be in a given position and to move in a certain direction at a given instant
of time. They have the possibility to describe complex interaction dynamics in a similar way
to particle collision dynamics in rarefied gas flows [1, 6, 7, 15,19,22,41,51].

In this work, taking inspiration from the Boltzmann theory of rarefied gas dynamic,
we propose a novel multiscale kinetic model for the spread of infectious diseases in a two-
dimensional setting. The model is characterized by a coupled system composed, from one
side, of kinetic transport equations that describe a population of commuters moving on a
large scale (extra-urban) and a set of diffusion equations that characterize the non commut-
ing population on a small scale (urban). The formalism of kinetic theory permits to give
a precise interpretation to the interactions between infected and susceptible in a compart-
mental space-dependent setting and, using a suitable scaling limit [37], allows to highlight
the relationship with existing models based on reaction-diffusion equations. In addition, our
model avoids the unphysical feature of infinite propagation speed and thanks to the interac-
tion between the two populations, it also avoids that the whole population in a compartment
moves indiscriminately in the full space originating an unrealistic mass migration effect. This
latter aspect is of paramount importance if one wants to track the effective motion of the
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infection between cities.
Once the model is defined, its solution on a computational domain describing a realistic

geographical scenario poses several difficulties, due to the large dimensionality of the system
(in addition to space and time the system depends on the additional velocity variable), the
irregular shape of the spatial region of interest, and the multiscale nature of the dynamics.
A particular care has been then devoted to the design of an effective numerical solver which
provides an accurate and computationally feasible model solution. To this aim we introduced
a discretization of the system based on Gaussian quadrature points in velocity space [30,34]
and a finite volume approach on unstructured grids [24, 28], combined with an asymptotic
preserving method in time [9, 10].

The rest of the manuscript is organized as follows. In Section 2, we introduce the basic
features of our model in the case of a simple SIR compartmental interaction. In addition, at
an appropriate scaling limit, we show that a two-population diffusion model can be recovered
if needed. The model is subsequently extended to a more realistic SEIR type compartmental
structure taking into account specific characteristics of the COVID-19 pandemic. Next,
in Section 3 we present several numerical examples aimed at validating the model and its
numerical solution. The details of the numerical scheme employed and a numerical study of
its convergence properties are reported in a separate Appendix. Finally, an application to a
realistic geographical scenario describing the spread of COVID-19 is analyzed and discussed.
Some conclusions and future research directions are reported at the end of the paper.

2 Multiscale kinetic transport models for epidemic spread

Let Ω ∈ R2 a two-dimensional domain of interest. Suppose that individuals can be separated
into two separate populations, a commuter population typically moving over long distances
(extra-urban) and a non commuter population moving only in small-scale urban areas. For
simplicity, we first illustrate our model in the case of a classic SIR compartmental dynamic
and subsequently we will extend our arguments to a more realistic SEIR model designed to
take into account specific features of the COVID-19 pandemic. In general, our reasoning can
naturally be extended to other, more structured, compartment models.

2.1 A simple kinetic compartmental model

We consider the population of commuters at position x ∈ Ω moving with velocity directions
v ∈ S1 and denote by fS = fS(x, v, t), fI = fI(x, v, t) and fR = fR(x, v, t), the respective
kinetic densities of susceptible (individuals who may be infected by the disease), infected (
individuals who may transmit the disease) and recovered (individuals healed or died due to
the disease). The kinetic distribution of commuters is then given by

f(x, v, t) = fS(x, v, t) + fI(x, v, t) + fR(x, v, t),

and we recover their total density by integration over the velocity space

ρ(x, t) =

∫
S1
f(x, v∗, t) dv∗.
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This then provides the total density of people regardless of their direction of motion. As a
consequence

S(x, t) =
1

2π

∫
S1
fS(x, v, t) dv, I(x, t) =

1

2π

∫
S1
fI(x, v, t) dv, R(x, t) =

1

2π

∫
S1
fR(x, v, t) dv,

with ρ(x, t) = S(x, t) + I(x, t) +R(x, t), denoting the density fractions of the commuter pop-
ulation at position x and time t > 0 that are susceptible, infected and recovered respectively.
In this setting, the kinetic densities of the commuters satisfy the transport dynamic equations

∂fS
∂t

+ vS · ∇xfS = −F (fS , IT ) +
1

τS
(S − fS)

∂fI
∂t

+ vI · ∇xfI = F (fS , IT )− γfI +
1

τI
(I − fI) (1)

∂fR
∂t

+ vR · ∇xfR = γfI +
1

τR
(R− fR)

where we defined the total densities

ST (x, t) = S(x, t) + Su(x, t), IT (x, t) = I(x, t) + Iu(x, t), RT (x, t) = R(x, t) +Ru(x, t),

and Su(x, t), Iu(x, t), Ru(x, t) are the density fractions of the non commuter individuals
moving only on an urban scale. These are described accordingly to a diffusion dynamic
acting on a local scale

∂Su
∂t

= −F (Su, IT ) +∇x(Du
S∇xS)

∂Iu
∂t

= F (Su, IT )− γIu +∇x(Du
I∇xI) (2)

∂Ru
∂t

= γIu +∇x(Du
R∇xR).

In the above model, the velocities vS = λSv, vI = λIv, vR = λRv, λS , λI , λR ≥ 0 in (1), as
well as the diffusion coefficients Du

S , Du
I , Du

R in (2), are designed to take into account the
heterogeneities of geographical areas, and are thus chosen dependent on the spatial location.
Similarly, also the relaxation times τS , τI and τR are space dependent. The quantity γ = γ(x)
is the recovery rate of infected, while the transmission of the infection is governed by an
incidence function F (·, IT ) modeling the transmission of the disease [32]. We assume local
interactions to characterize the general incidence function

F (g, IT ) = β
gIpT

1 + κIT
, (3)

where the classic bilinear case corresponds to p = 1, k = 0, even though it has been observed
that an incidence rate that increases more than linearly with respect to the number of infected
I can occur under certain circumstances [5,14,36]. The parameter β = β(x) characterizes the
contact rate, whereas the parameter κ = κ(x) > 0 takes into account social distancing and
other control effects which may occur during the progress of the disease [26,50]. The resulting
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model (1)-(2) will be referred to as multiscale kinetic SIR (MK-SIR) model. Note that,
because of the presence of two populations acting at different scale distances, the model allows
a more realistic description of the typical commuting dynamic involving only a fraction of the
population and distinguishes it from the epidemic process affecting the entire population.

The standard threshold of epidemic models is the well-known reproduction number R0,
which defines the average number of secondary infections produced when one infected indi-
vidual is introduced into a host population in which everyone is susceptible [32]. This number
determines when an infection can invade and persist in a new host population. For many
deterministic infectious disease models, an infection begins in a fully susceptible population
if and only if R0 > 1. Assuming no inflow/outflow boundary conditions in Ω, integrating
over velocity/space and summing up the second equation in (1) and (2) we have

∂

∂t

∫
Ω
IT (x, t) dx =

∫
Ω
F (ST , IT ) dx−

∫
Ω
γ(x)IT (x, t) dx ≥ 0

when

R0(t) =

∫
Ω F (ST , IT ) dx∫

Ω γ(x)IT (x, t) dx
≥ 1. (4)

The above quantity therefore, defines the basic reproduction number for system (1) describ-
ing the space averaged instantaneous variation of the number of infective individuals at time
t > 0. This definition naturally extends locally by integrating over any subset of the compu-
tational domain Ω if one ignores the boundary flows.

Let us also observe that, under the same no inflow/outflow boundary conditions, integ-
rating in Ω equations (1) and (2) yields respectively the conservation of the total populations
of commuters and non commuters

∂

∂t

∫
Ω

(S(x, t) + I(x, t) +R(x, t)) dx = 0,
∂

∂t

∫
Ω

(Su(x, t) + Iu(x, t) +Ru(x, t)) dx = 0.

2.1.1 Diffusion limit of the commuters dynamic

In this part we discuss the multiscale nature of the model (1) in order to elucidate the different
population behaviors in urban and nonurban areas and to emphasize the relationships with
other classical space dependent epidemic models where typically the entire dynamic has a
diffusive nature. To this aim, let us introduce the flux functions

JS =
λS
2π

∫
S1
vfS(x, v, t) dv, JI =

λI
2π

∫
S1
vfI(x, v, t) dv, JR =

λR
2π

∫
S1
vfR(x, v, t) dv.

Then, integrating the system (1) against v, it is straightforward to get the following set of
equations for the macroscopic densities of commuters

∂S

∂t
+∇x · JS = −F (S, IT )

∂I

∂t
+∇x · JI = F (S, IT )− γI (5)

∂R

∂t
+∇x · JR = γI
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whereas the flux functions satisfy

∂JS
∂t

+
λ2
S

2π

∫
S1

(v · ∇xfS)v dv = −F (JS , IT )− 1

τS
JS

∂JI
∂t

+
λ2
I

2π

∫
S1

(v · ∇xfI)v dv = −λI
λS
F (JS , IT )− γJI −

1

τI
JI (6)

∂JR
∂t

+
λ2
R

2π

∫
S1

(v · ∇xfR)v dv = −λR
λI
γJI −

1

τR
JR.

Clearly, the above system is not closed because the evolution of the fluxes in (6) involves
higher order moments of the kinetic densities. The diffusion limit can be formally recovered,
by introducing the space dependent diffusion coefficients

DS =
1

2
λ2
SτS , DI =

1

2
λ2
IτI , DR =

1

2
λ2
RτR, (7)

and keeping the above quantities fixed while letting the relaxation times τS,I,R to zero. We
get from the r.h.s. in (1)

fS = S, fI = I, fR = R,

and consequently from (6) we recover Fick’s law

JS = −DS∇xS, JI = −DI∇xI, JR = −DR∇xR, (8)

since ∫
S1

(v · ∇xS)v dv =

∫
S1

(v ⊗ v) dv∇xS = π∇xS

and similarly for the other densities. Thus, substituting (8) into (5) we get the diffusion
system for the commuters’ population [39,45,49]

∂S

∂t
= −F (S, IT ) +∇x(DS∇xS)

∂I

∂t
= F (S, IT )− γI +∇x(DI∇xI) (9)

∂R

∂t
= γI +∇x(DR∇xR),

coupled with system (2) for the non commuters. Let us observe that the model’s capability
to account for different regimes, hyperbolic or parabolic, accordingly to the space dependent
values τS , τI , τR, makes it suitable for describing the dynamics of populations composed of
human beings. Indeed, it is clear that the daily routine is a complex mixing of individuals
moving at the scale of a city and individuals moving among different urban centers. In
this situation, it seems reasonable to avoid, due to the lack of microscopic information and
the high complexity, the description of the details of movements within an urban area and
to describe this aspect through a diffusion operator. On the other hand, commuters when
moving from one city to another follow well established connections for which a hyperbolic
setting is certainly the most appropriate approach. Finally, we emphasize that commuters
entering an urban area change their regime by adapting to a diffusive dynamic thanks to an
appropriate choice of the scaling parameters τS , τI , τR.
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2.2 Extension to more structured kinetic compartmental models

It is clear that, one can consider more general compartmental subdivisions. For example,
more realistic models for COVID-19 should take into account the exposed population as well
as the asymptomatic fraction of infected (see for example [29, 46]). In a space-dependent
model, however, the increase in the number of compartments has some drawbacks, due to
both the increasing computational complexity and the inherent difficulties in the process
of identifying the parameters. Here, we describe the extension of the multiscale kinetic
modeling presented in the previous section to a more general compartmental structure, even
if still sufficiently simple, where the exposed population includes also the asymptomatic one
(see [47, 48] for a similar approach). We denote the commuter individuals which belong to
the newly introduced compartment of exposed by fE(x, v, t). The kinetic dynamic of the
commuters then reads

∂fS
∂t

+ vS · ∇xfS = −FI(fS , IT )− F̃E(fS , ET ) +
1

τS
(S − fS)

∂fE
∂t

+ vE · ∇xfE = FI(fS , IT ) + F̃E(fS , ET )− ãfE − γ̃EfE +
1

τE
(E − fE)

(10)
∂fI
∂t

+ vI · ∇xfI = ãfE − γIfI +
1

τI
(I − fI)

∂fR
∂t

+ vR · ∇xfR = γ̃EfE + γIfI +
1

τR
(R− fR) .

In such model, the kinetic compartment fE is characterized by a fraction ζfE of latently
infected, i.e. individuals who are not yet contagious and a fraction (1 − ζ)fE of contagious
asymptomatic individuals. The above model can be formally derived starting from a more
general one that takes into account also the asymptomatic compartment as proposed in
[29, 46]. In this context, system (10) is obtained by merging the asymptomatic and the
exposed compartment in one single category while the parameter ζ still permits to distinguish
the two classes of individuals. The parameter ã is then given, in this setting, by ã = σζa
where a−1 is the average incubation period and σ is the probability that a latently infected
individual develops symptoms. Finally, γ̃E = (1− ζ)γE and γI are the recovery rates of the
fraction of asymptomatic and of the infected with symptoms. The so-called incident functions
are given by

F̃E(g,ET ) = βE
g(1− ζ)ET

1 + κE(1− ζ)ET
, (11)

while FI has the form (3) for p = 1 with contact rate parameters βI and κI . Assuming
σ = ζ = 1, namely absence of asymptomatic individuals, we recover the corresponding
kinetic version of the standard SEIR model [32].

The above system can then be coupled with an analogous dynamics of the non commuter
population acting at a diffusion level on restricted regions identified by the urban centers.
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This reads

∂Su
∂t

= −FI(Su, IT )− F̃E(Su, ET ) +∇x(Du
S∇xS)

∂Eu
∂t

= FI(Su, IT ) + F̃E(Su, ET )− ãEu − γ̃EEu +∇x(Du
E∇xE)

(12)
∂Iu
∂t

= ãEu − γIIu +∇x(Du
I∇xI)

∂Ru
∂t

= γ̃EE + γIIu +∇x(Du
R∇xR).

In (10)-(12) we denoted by ET = E + Eu, E(x, t) = 1
2π

∫
S1 fE(x, v, t) dv, vE = λEv, λE > 0,

τE the relaxation time, and Du
E the diffusion coefficient associated to the non commuters

population of exposed. All these quantities have to be intended spatial dependent. The
resulting model (10)-(12) will be referred to as multiscale kinetic SEIR (MK-SEIR) model in
the following.

Let us point out that when a more realistic spatial model is introduced to describe the
spread of an epidemic, it is necessary to resort to the definition of generalized reproduction
number based on the spectral radius of a suitable epidemiological matrix [20, 29]. To this
goal, summing up the second and the third equations in systems (10) and (12) and integrating
against v and x we obtain

∂

∂t

∫
Ω
ET (x, t) dx =

∫
Ω

(
FI(ST , IT ) + F̃E(ST , ET )

)
dx−

∫
Ω

(ã(x) + γ̃E(x))ET (x, t) dx

(13)
∂

∂t

∫
Ω
IT (x, t) dx =

∫
Ω
ã(x)ET (x, t) dx−

∫
Ω
γI(x)IT (x, t) dx,

showing that both compartments now contribute to the disease transmission. Following the
analysis in [20,29,47], and omitting the details for brevity, we obtain a reproduction number
as the sum of two contributions

R0(t) =

∫
Ω F̃E(ST , ET ) dx∫

Ω (ã(x) + γ̃E(x))ET (x, t) dx

+

∫
Ω FI(ST , IT ) dx∫

Ω (ã(x) + γ̃E(x))ET (x, t) dx
·
∫

Ω ã(x)ET (x, t) dx∫
Ω γI(x)IT (x, t) dx

.

(14)

The above definition can be considered as an indicator of viral reproduction for the velocity
and space averaged kinetic model. It is easy to see that, whenever both the exposed as well
as the infected population are non decreasing in (13) we have R0(t) ≥ 1, on the other hand
the converse is not true in general. In particular, for σ = ζ = 1 we have FE ≡ 0, γ̃E = 0
and expression (14) reduces to (4). Models with additional compartments can be analyzed
similarly, we refer to [29,46] for more details.

Finally, in a similar way to the case of the MK-SIR model, taking the limit where the
relaxation parameters goes to zero, τS,E,I,R → 0, under the assumptions (7) and the additional
one that DE = 1

2λ
2
EτE remains fixed, we formally obtain the corresponding diffusion system
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for the commuting population [44,47,48]

∂S

∂t
= −FI(S, IT )− F̃E(S,ET ) +∇x(DS∇xS)

∂E

∂t
= FI(S, IT ) + F̃E(S,ET )− ãE − γ̃EE +∇x(DE∇xE)

(15)
∂I

∂t
= ãE − γII +∇x(DI∇xI)

∂R

∂t
= γ̃EE + γII +∇x(DR∇xR),

coupled with system (12) for the non commuters. Clearly, the latter model also retains the
multiscale spatial structure and allows for different situations of urban centers, with intense
small-scale movements, connected by major road networks.

Remark 1. In the kinetic transport models describing the dynamics of commuters we
assumed the disease transmission independent from the velocity of individuals. On the other
hand, if one considers a velocity dependent transmission rate where interactions are not
homogeneous with respect to the speed of motion the term F (g, IT ) in (3) can be replaced by
F (g, Iu)(x, t) +K(g, fI)(x, v, t) where

K(g, fI)(x, v, t) =
g(x, v, t)

2π(1 + kIT )

∫
S1
β(x, v, v∗)f

p
I (x, v∗, t) dv∗.

We refer to [6,19,41,51] for other recent approaches in this direction based on Boltzmann-type
equations. Note, however, that this additional level of description can be hardly connected
with the few experimental data at disposal.

In the next section, we discuss several numerical examples based on the models (1)-(2)
and (10)-(12). It is important to underline that the discretization of the resulting multiscale
system of PDEs is not trivial and therefore requires the construction of a specific numerical
method able to correctly describe the transition from a convective to a diffusive regime in
realistic geometries. Although this is an important aspect of the present contribution, in order
to make the presentation more readable all the details concerning the numerical scheme and
its validation in terms of accuracy are reported in a separate Appendix.

3 Numerical examples

In this section, we present several numerical experiments in order to validate the proposed
models. First, the kinetic model (1) is solved in a spatially heterogeneous environment,
involving a space-dependent contact rate. Second, the influence of the commuters propagation
and of the hyperbolic and parabolic regimes is tested for the the MK-SIR model (1)-(2) in a
simple setting involving three abstract urban areas and related connections. The last example
concerns a realistic application: we simulate the first ten days of the COVID-19 outbreak
around March 2020 in the Italian region of Emilia-Romagna. For this test we employ the MK-
SEIR model (10)-(12) and we show its capability to reproduce correctly a complex epidemic
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Figure 1: Test 1. Initial condition for S (left), I (middle) and β (right).

scenario. Unstructured meshes composed by triangles or polygonal cells are used to pave the
computational domain, while a fully second order in space and time asymptotic preserving
discretization is adopted. We refer to Appendix A.1-A.4 for the details and the properties of
the numerical scheme used (A.1 for the velocity approximation, A.2 for the finite volume space
discretization on unstructured grids, A.3 for the time integration and A.4 for the numerical
convergence analysis). In the sequel, if not stated otherwise, in the models we assume that
propagation speeds as well as relaxation times are space-dependent but not changing among
the populations. Finally, a total number of M = 8 discrete velocity directions accordingly to
a Gaussian quadrature has been used in all simulations (see Appendix A.1 for details).

3.1 Prototype test cases for the MK-SIR model

3.1.1 Test 1. Commuter dynamics in epidemic heterogeneous environments

In this test, we analyse the role played by the epidemic parameters when they are chosen space
dependent. To further simplify the dynamic here we ignore the non commuters population
and consider only the dynamic of the commuters given by the kinetic system (1).

In particular, we focus on the contact rate β = β(x) and we move along the lines of a
test firstly proposed in [50]. The distribution of the population is initially assigned as follows
within the computational domain Ω = [0; 20]2:

S = 1− I, I = 0.01 · e−(x−10)2−(y−10)2 , R = 0. (16)

Zero-flux boundaries are adopted and the fluxes associated to each population are initially
set to zero. The recovery rate is set to γ = 10, whereas the contact rate is given by

β = β̃

[
1 + 0.05 sin

(
13πx

20

)
sin

(
13πy

20

)]
. (17)

The initial condition for this test is shown in Figure 1 for a computational mesh composed of
NE = 15672 polygonal control volumes. By choosing β̃ = 8 an initial reproduction number
of R0 = 0.808 is obtained. This means that the infection is not able to start spreading being
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Figure 2: Test 1. Evolution of S (left) and I (right) for a reproduction number R0 < 1 and
relaxation times τ = 1.0 with λ2 = 1.0 (hyperbolic regime, blue line) and τ = 10−4 with
λ2 = 104 (parabolic regime, red line).

R0 < 1. In contrast to this first choice, we consider a second possibility by fixing β̃ = 10
which leads to R0 = 1.111. In this second case we expect the infection to expand in the host
population and the epidemic disease starts spreading. These two scenarios are considered in
two different regimes, namely a hyperbolic configuration with τ = 1.0 and λ2 = 1.0 as well
as a diffusive setting with τ = 10−4 and λ2 = 104 to appreciate the differences in modeling
the migration of individuals in a given region. The final time of the simulation is tf = 10.
The time evolution of the infected I population is shown in Figure 2 for both hyperbolic and
parabolic configurations with R0 < 1, while Figure 3 depicts the distribution I at different
output times. The same kind of plots are found in Figures 4 and 5 in the case R0 > 1,
clearly capturing the spreading of the disease. Different dynamics of the infectious spread are
noticed according to the hyperbolic or parabolic regime, highlighting the different behavior
of the model which is one of the relevant aspects of our approach. This is even more evident
when considering the scenario with R0 > 1: the propagations speeds in the parabolic case
are much faster than the ones in the hyperbolic regime, as depicted in Figure 5. Finally, let
us observe that the patterns generated by the infective population in the hyperbolic limit,
correctly resemble the spatial distribution of the contact rate given by (17). Contrarily, the
parabolic limit leads to a more homogeneous pattern, which tends to become independent of
the variable contact rate.

3.1.2 Test 2. Commuter and non commuter interactions in disease spread

The MK-SIR model (1)-(2) was employed to simulate the spread of a disease in an environ-
ment that aims to reproduce three urban areas of different sizes connected by paths to which
we assigned different propagation speeds. The computational domain is given by Ω = [0; 1]2

with zero-flux boundaries set everywhere and it is discretized with a total number of poly-
gonal cells NE = 10112. The urban areas A, B and C are expanded around the centers of
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Figure 3: Test 1. Time evolution of the infected I for a reproduction number R0 < 1. Left
image shows the results for a relaxation time τ = 1.0 with λ2 = 1.0, i.e. a hyperbolic regime.
Right image shows the results for τ = 10−4 with λ2 = 104, i.e. a parabolic regime. Numerical
results at output times t = 1 and t = 2 (from top to bottom).
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Figure 4: Test 1. Evolution of S (left) and I (right) for a reproduction number R0 > 1 and
relaxation times τ = 1.0 with λ2 = 1.0 (blue line, hyperbolic regime) and τ = 10−4 with
λ2 = 104 (red line, parabolic regime).
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Figure 5: Test 1. Time evolution of the infected I for a reproduction number R0 > 1. Left
image shows the results for a relaxation time τ = 1.0 with λ2 = 1.0, i.e. a hyperbolic regime.
Right image shows the results for τ = 10−4 with λ2 = 104, i.e. a parabolic regime. Numerical
results at output times t = 2, t = 4, t = 8 and t = 10 (from top to bottom).
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coordinates

xA = (xA, yA) = (0.2, 0.2), xB = (xB, yB) = (0.9, 0.5), xC = (xC , yC) = (0.3, 0.9). (18)

The propagation speed is λ2 = 102 along the straight paths A-B and A-C, while it drops
to λ2 = 10−2 along the connection B-C, thus we expect a lower level of individuals moving
between the urban areas B and C. Each path has a width of h = 0.04 and in the remaining
part of the computational domain we set λ2 = 10−12, this means that almost all individuals
move or in the urban region in a diffusive regime or along the connecting paths. The recovery
rate is set to γ = 1 and the contact rate is space-dependent, that is

β =

{
6 if (ST + IT ) > 0
0 if (ST + IT ) = 0,

(19)

with the initial distribution of the populations given by

ST = max
[
0, −100(x− xA)2 − 100(y − yA)2

]
+ max

[
0, 1− 500(x− xB)2 − 500(y − yB)2

]
+ max

[
0, 1− 500(x− xC)2 − 500(y − yC)2

]
,

IT = max
[
0, 1− 500(x− xB)2 − 500(y − yB)2

]
,

RT = 0. (20)

We furthermore impose that the commuters are

S = 0.01 · ST , I = 0.8 · IT , R = RT , (21)

thus, for the sake of conservation, leading to Su = ST − S and Iu = IT − I for the non
commuters. Finally, the relaxation time is also spatially heterogeneous. Let us define an
auxiliary variable τ̃ which writes

τ̃ = τr

e− 1
2

((x−xA)2+(y−yA)2)
s21 + e

− 1
2

((x−xB)2+(y−yB)2)
s22 + e

− 1
2

((x−xC )2+(y−yC )2)
s22

 , (22)

with s1 = 0.05 and s2 = 0.025. The parameter τr = 104 is set to define a hyperbolic
regime, while τr = 10−4 allows the diffusive system to be recovered. The relaxation time
within each urban area is always defined as τ0 = 10−4, therefore the initial distribution of
the space-dependent relaxation time is given by

τ = max

[
τ0, τr −

3

2
τ̃

]
. (23)

Figure 6 depicts the initial distribution for β, λ and τ in the hyperbolic regime configuration.
The final time of the simulation is tf = 20 and the evolution of the total susceptible, infected
and recovered is shown in Figure 7 for both the hyperbolic and the diffusive regimes for the
populations of commuters. It is interesting to observe the appearance of a second wave of
infected due to the spatial dynamics in the region. Additionally, the dynamic induced by
the diffusive regime is faster compared to the propagation of the disease in the hyperbolic

14



Figure 6: Test 2. Initial condition for β (left), λ (middle) and τ (right) for the hyperbolic
regime.

configuration. This is also evident from the time evolution of the current reproduction number
R0 reported in Figure 7. A comparison between hyperbolic and parabolic numerical results
is shown at different output times for IT = I + Iu in Figure 8. Let us observe how the
relaxation time drastically determines the dynamic, while the same set of governing equations
is maintained. In fact it is clear from Figure 7 that when a parabolic regime is chosen the
epidemic spreads at much faster pace.
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Figure 7: Test 2. Time evolution of the susceptible (S), infected (I) and recovered (R)
population in the hyperbolic regime with τ = 104 (left) and parabolic regime with τ = 10−4

(middle). Hyperbolic velocities λ2 = 102 and SIR parameters β = 6 and γ = 1. Right:
evolution of index R0 for hyperbolic (red line) and parabolic (blue line) regime.

Finally, the distribution of the total population is depicted in Figure 9, demonstrating
that, as expected, the majority the population still remains at their initial locations. Indeed,
only the fraction of commuters moves to other locations.
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Figure 8: Test 2. Distribution of total infected population IT = I + Iu in hyperbolic regime
with τ = 104 (left) and parabolic regime with τ = 10−4 (right). Hyperbolic velocities λ2 = 102

and SIR parameters β = 6 and γ = 1. Output at times t = 2.5, t = 5, t = 10 and t = 15
(from top to bottom).
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Figure 9: Test 2. Distribution of total population (S+Su)+(I+Iu)+(R+Ru) at initial time
(left), at time t = 15 in hyperbolic regime (middle) and parabolic regime (right). Hyperbolic
velocities λ2 = 102 and SIR parameters β = 6 and γ = 1.

3.2 Application to the spatial spread of COVID-19 in a realistic geograph-
ical scenario

As last numerical example, we apply the novel MK-SEIR model (10)-(12) to a realistic geo-
graphical and epidemic setting. Specifically, we consider the COVID-19 outbreak which took
place in a region of northern Italy, Emilia-Romagna, in the first ten days of March 2020.
The setup of this simulation requires the knowledge of (i) the computational domain, (ii) the
location of the main cities and the boundary definition of the provinces within the region and
(iii) the spatial distribution of the population as well as of the infected people at the initial
time of the computation. Here, the MK-SEIR model is adopted, thus the initial number
of the exposed population (which includes also the asymptomatic) must be estimated and
therefore it is affected by uncertainty. We leave, however, the analysis of the influence of such
uncertain data to further study and in this example limit ourselves to a deterministic setting
in agreement with observations.

The computational domain is defined in terms of the boundary that limits the region
of Emilia-Romagna. This can be found in [52] as a list of georeferenced points in the
ED50/UTM Zone 32N reference coordinate system. In order to avoid ill-conditioned re-
construction matrices and other related problems arising while dealing with big numbers in
finite arithmetics, all coordinates are rescaled by a factor of αx = 106. The computational
grid is composed of a total number of triangular control volumes NE = 5057 and zero-flux
boundary conditions are imposed everywhere, thus assuming that no exchange of population
is present with the surrounding regions. The region is then subdivided into a total number
of Nc = 9 provinces with the associated main cities, as depicted in Figure 10.

The initial distribution of a generic population f(x, y) is assigned to each main city
denoted with subscript c as a multivariate Gaussian function with the variance being the
radius of the urban area, that is

f(x, y) =
1

2πrc
e
− (x−xc)

2+(y−yc)
2

2r2c fc, (24)
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Figure 10: Top: map of the Emilia-Romagna region with main cities (left) and associated
provinces (right). Bottom: unstructured computational mesh used to discretize the region
(left) and initial condition for λ (right).
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where fc is the number of the individuals in the population associated to the generic city.
The radius of the city refers to the circular area of each province proportional to the order of
magnitude of the population of the biggest city (Bologna). In this way, the integral over the
computational domain of the initial population distribution exactly retrieves the quantity
fc in (24). The initial settings for each province of the Emilia-Romagna region are taken
from [53] and reported in Table 1 with PT representing the total inhabitants of each province
of the region.

Table 1: Initial data: name of the city, radius of the city rc measured in km, total population
PT , total number of infected (IT ) and exposed (IT ) people on 1/03/2020 in the region Emilia-
Romagna.

City Radius (rc) Population (PT ) Infected (IT ) Exposed (ET )

[km] [person] [person] [person]

Piacenza 4.5 2.87 · 105 174 696

Parma 6 4.54 · 105 59 236

Reggio Emilia 6 5.32 · 105 7 28

Modena 9 7.07 · 105 24 96

Bologna 15 10.18 · 105 2 8

Ferrara 4.5 3.49 · 105 0 0

Ravenna 4.5 3.89 · 105 2 8

Cesena 4.5 3.98 · 105 1 4

Rimini 3 3.40 · 105 16 64

The total infected IT and exposed ET populations are initialized with (24) according to
the values reported in Table 1, while the total susceptible population is initially prescribed
by setting ST = PT − IT − ET . The part of the population which involves the commuters is
assigned according to the mobility data of the region that can be found in [54]. In particular,
the total number of individuals that commute among the provinces of the region are counted,
so that the commuters matrix reported in Table 2 can be constructed. We only consider
the paths connecting each province to its direct neighbor provinces, thus people crossing
more than one province in one day are not taken into account. The relative number C of all
commuters within each province normalized by the population of the city of origin is then
easily evaluated and reported in the last column of Table 2 as a percentage. These percentages
are then adopted for setting the commuters populations S, E, I and R. Specifically, each
control volume is assigned the total percentage of commuters referred to the province where
it is located. For instance, in the province of Ferrara we set

S = 0.068 · ST , E = 0.068 · ET , I = 0.068 · IT . (25)

Then, the static populations (Su, Eu, Iu) which are not moving away from the cities are
computed relying on conservation principles. All values of populations are normalized by a
factor of αp = 105 and the recovered population is initially set to zero. The contact rates
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Table 2: Matrix of commuters among the provinces of the region Emilia-Romagna. Departure
provinces are listed on the first left column, while arrival provinces are reported in columns
(PC=Piacenza, PR=Parma, RE=Reggio Emilia, MO=Modena, BO=Bologna, FE=Ferrara,
RA=Ravenna, FC=Cesena, RN=Rimini).

From \To PC PR RE MO BO FE RA FC RN C [%]
PC - 4178 - - - - - - - 1.45
PR 1707 - 5142 - - - - - - 1.51
RE - 8969 - 19841 - - - - - 5.42
MO - - 11488 - 13034 1173 - - - 3.63
BO - - - 6842 - 5983 3887 - - 1.64
FE - - - 2682 16865 - 2610 - - 6.80
RA - - - - 9808 1016 - 9211 - 5.14
FC - - - - - 6646 - 6944 3.41
RN - - - - - - 6075 - 1.79

have been estimated from available data on the entire Emilia-Romagna region using the
corresponding zero-order SEIR model and are set to βI = βE = 3.7 · 10−3, while the recovery
rate and the incubation period are taken from established values in the literature [47] and
read γI = γE = 1/12 and a = 1/7, respectively. The incidence functions (3)-(11) are adopted
with p = 1, κI = 6 · 107 and κE = 2.3 · 104. The values κI and κE have been chosen in
agreement with the zero-order model at a regional level. The higher value of κI allows to
mimic the effect of quarantines and social distancing with respect to infected people. We
finally set σ = ζ = 0.25 according to [29], hence we estimate the initial number of exposed
individuals, including asymptomatic, as ET = 4 IT , thus obtaining an initial reproduction
number R0 ≈ 2.3 that is in accordance with available literature [42].

The propagation speed has been selected in order to match the overall epidemic data
in the different provinces, and has been fixed to λ2 = 6.25 · 10−4 for susceptible, exposed
and recovered populations. The same speed is prescribed along the main connections of the
region, namely the highway Piacenza-Rimini, the connection between Ferrara and Rimini,
passing through Ravenna, as well as the minor path joining Ferrara to Bologna, as shown in
the last panel of Figure 10. A value of λ2 = 10−12 is set in the rest of the computational
domain and each connection band has a width of h = 1.5 km. The propagation speed of
the infected population is set to zero, i.e. λ2

I = 0, meaning that all individuals who have
been detected as infected are not allowed to move according to the governement restrictions.
However, the infected people, even if limited by quarantines and social distancing, can still
contribute to the spread the disease via the diffusion process at the urban scale (mimicking
for instance the still possible infections happening at the family level). The relaxation time is
τr = 104 so that the model recovers a hyperbolic regime in the entire region, apart from the
main cities, where a parabolic setting is prescribed in order to correctly capture the diffusive
behavior of the disease spreading which typically occurs in highly urbanized zones. Therefore,
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the relaxation time τ is prescribed as follows:

τ = τr + (τ0 − τr)
Nc∑
c=1

e
− 1

2

((x−xc)
2+(y−yc)

2)
r2c , (26)

with (xc, yc) representing the coordinates of a generic city center and rc the associated radius
defined in Table 1. The diffusion relaxation time is chosen to be τ0 = 10−4.

The final time is chosen to be t = 10, therefore a total number of ten days is simulated. The
south-west part of the region is not assigned any population distribution nor any propagation
speed since it is mainly covered by the Appennini mountains and almost zero circulation
of people is observed. The units of measure used in our simulations can be conveniently
summarized as follows:

1 km = 10−3 L, 1 person = 10−5 P, 1 day = 2T, (27)

with [L], [P] and [T] being the length, person and time units used in the simulation, respect-
ively.

Figure 11 shows the time evolution of the exposed population E, including asymptomatic,
which is moving from both Piacenza and Rimini towards the center of the region and the
city of Bologna, then spreading northern in the direction of Ferrara. The wave of the ex-
posed population is clearly visible, highlighting the hyperbolic regime of the model. Figure
12 depicts the total population at the initial and final time, including the non commuters
(Su, Eu, Iu, Ru) that remain at rest in the cities and are only affected by a diffusive process
modeled by the relaxation time τ0. One can notice that the total population of the cities does
not change in time, since only 1.45%−6.8% of the individuals are moving, which corresponds
to the real scenario defined by Table 2. Nevertheless the disease is spreading over the entire
region due to the people who daily commute from one city to another one.

Finally, Figure 13 plots a comparison against the measured data at the regional level
which can be found in [53] and the same comparison for the province of Piacenza, Parma,
Bologna and Rimini. The time evolution of the reproduction number R0 at the regional
level is depicted in Figure 14, which qualitatively recovers the results obtained in [42]. The
reproduction number has been monitored with (4) and is beyond the threshold of R0 = 1,
thus indicating that the epidemic spreading is growing. An overall very good agreement with
experimental measurements can be appreciated both at the regional and at the provincial
level, thus demonstrating the capability of the novel model to adapt to real world settings
and applications.

4 Conclusions

In this work, we introduced new multiscale kinetic models for the description of the spread
of an epidemic disease in a spatially heterogeneous context. The models distinguish between
two populations of individuals, a population of commuters moving over long distances (extra-
urban) and a population of non commuters acting over short distances (urban). Commuter
dynamics are described by a kinetic transport equation, while non commuter dynamics follow
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Figure 11: Distribution of exposed population E including asymptomatic at times t = 0,
t = 2, t = 4, t = 6, t = 8 and t = 10 (from top left to bottom right).
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Figure 12: Distribution of total population (S + Su) + (E + Eu) + (I + Iu) + (R + Ru) at
initial time t = 0 (left) and at the final time t = 10 (right).
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Figure 13: Left: time evolution of total infected and recovered population (R+ I) compared
against experimental data for the region Emilia-Romagna. Right: time evolution of total in-
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Figure 14: Time evolution of the reproduction number at the regional level compared to the
study presented in [42].

a classical diffusion process limited to urban areas. From the epidemiological point of view
the model was first presented in a simple SIR compartmental framework and then extended to
the case of a SEIR compartmental structure designed to take into account the characteristics
of COVID-19. In an appropriate scaling limit, the commuters can be described by traditional
diffusive models. This is indeed the scale considered for this portion of the population when
approaching an urban center that allows commuters to be consistently described as non-
commuters within these highly populated regions.

The proposed models were solved using ad hoc developed finite volume numerical methods
acting on unstructured grids capable of effectively solving the kinetic model at small space-
time scales. This allowed us to present several numerical results showing the ability of the
kinetic model to avoid the unrealistic features of traditional diffusive models based on a
single population, such as infinite propagation speed and indistinct movement of the entire
population. A last part of the work is dedicated to a careful simulation of the first days of
the COVID-19 epidemic in a realistic geographical scenario.

In perspective, we would like to study the effectiveness of the model in the case of more
complex compartmental models that take into account, for example, hospitalized data and
mortality [29, 46]. Moreover, to make the model more effective for decision-makers, the
inclusion of suitable control processes describing lockdown limitations and the incorporation
of an age-structured population is crucial to correctly describe the impact of specific kinds of
infectious diseases, like the COVID-19 pneumonia [18, 32]. Finally, since data of the spread
of epidemics are generally highly heterogeneous and affected by a great deal of uncertainty,
future perspectives include the application of uncertainty quantification methods to assess
the impact of stochastic inputs in the proposed multiscale kinetic transport model [2, 33].
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A An asymptotic-preserving method on unstructured grids

In this appendix, we report the details of the numerical method used for the discretization of
the multiscale kinetic system described in the main part of the paper. To avoid unessential
difficulties we illustrate the numerical method in the case of the simpler kinetic model (1)-(2),
i.e. the MK-SIR model. The numerical scheme combines a discrete ordinate method in velo-
city with the even and odd parity formulation [21, 34] and achieves asymptotic preservation
in time using suitable IMEX Runge-Kutta schemes [9,10]. Namely, to obtain a scheme which
consistently captures the diffusion limit and for which the choice of the time discretization
step is not related to the smallness of the scaling parameters τS,I,R. Next, we summarize
the key ingredients used to discretize the space variables on a two-dimensional unstructured
mesh [11,28] which permits to deal with realistic geometries.

A.1 Even and odd parities formulation

From a computational viewpoint, it is convenient to rewrite (1) by splitting it into four parts
according to the quadrants of the velocity space to which velocities belong. Let us denote
v = (η, ξ) ∈ S1, we obtain four equations with non-negative ξ, η ≥ 0. We then define the even
and odd parities [34]

r
(1)
S (ξ, η) =

1

2
(fS(ξ,−η) + fS(−ξ, η)), r

(2)
S (ξ, η) =

1

2
(fS(ξ, η) + fS(−ξ,−η))

r
(1)
I (ξ, η) =

1

2
(fI(ξ,−η) + fI(−ξ, η)), r

(2)
I (ξ, η) =

1

2
(fI(ξ, η) + fI(−ξ,−η))

r
(1)
R (ξ, η) =

1

2
(fR(ξ,−η) + fR(−ξ, η)), r

(2)
R (ξ, η) =

1

2
(fR(ξ, η) + fR(−ξ,−η))

and the scalar fluxes

j
(1)
S (ξ, η) =

λS
2

(fS(ξ,−η) + fS(−ξ, η)), j
(2)
S (ξ, η) =

λS
2

(fS(ξ, η) + fS(−ξ,−η))

j
(1)
I (ξ, η) =

λI
2

(fI(ξ,−η) + fI(−ξ, η)), j
(2)
I (ξ, η) =

λI
2

(fI(ξ, η) + fI(−ξ,−η))

j
(1)
R (ξ, η) =

λR
2

(fR(ξ,−η) + fR(−ξ, η)), j
(2)
R (ξ, η) =

λR
2

(fR(ξ, η) + fR(−ξ,−η))
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An equivalent formulation with respect to (1) then reads as

∂r
(1)
S

∂t
+ ξ

∂j
(1)
S

∂x
− η

∂j
(1)
S

∂y
= −F (r

(1)
S , IT ) +

1

τS

(
S − r(1)

S

)
∂r

(2)
S

∂t
+ ξ

∂j
(2)
S

∂x
+ η

∂j
(2)
S

∂y
= −F (r

(2)
S , IT ) +

1

τS

(
S − r(2)

S

)
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(1)
I

∂t
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(28)

and
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Note that, due to symmetry, we need to solve these equations for ξ, η in the positive quadrant
only. Thus the number of unknowns in (1) and (28)-(29) is effectively the same. Furthermore,
setting for λ ∈ [0, 1]

ξ = cos

(
λπ

2

)
, η = sin

(
λπ

2

)
(30)

we have

S =
1

2

∫ 1

0
(r

(1)
S + r

(2)
S ) dλ, I =

1

2

∫ 1

0
(r

(1)
I + r

(2)
I ) dλ, R =

1

2

∫ 1

0
(r

(1)
R + r

(2)
R ) dλ. (31)

The above densities can be can be approximated by a Gauss-Legendre quadrature rule. This
leads to a discrete velocity setting, usually referred to as the discrete ordinate method, where
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we approximate

S ≈ SM =
1

4

n∑
i=1

wi

(
r

(1)
S (ξi, ηi) + r

(2)
S (ξi, ηi)

)
(32)

and similarly for the other densities I and R. In (32) we defined

ξi = cos

(
(ζi + 1)π

4

)
, ηi = sin

(
(ζi + 1)π

4

)
so that wi and ζi are the standard Gauss-Legendre quadrature weights and points in [−1, 1].

A.2 Space discretization on unstructured grids

We consider a spatial two-dimensional computational domain Ω which is discretized by a
set of non overlapping polygons Pi, i = 1, . . . Np. The union of all elements is called the
tessellation TΩ of the domain Ω and can be expressed as

TΩ =

Np⋃
i=1

Pi, (33)

where Np is the total number of elements contained in the domain. The mesh is conforming,
thus each edge λ of an element is always shared by two adjacent control volumes, apart from
physical boundaries of the computational domain. Each element Pi is allowed to exhibit an
arbitrary number NSi of edges λj,i, thus ranging from triangles to general polygonal shapes.
The boundary of the cell is addressed with ∂Pi and is then given by

∂Pi =

NSi⋃
j=1

λji, (34)

where λji is the edge shared by elements Pi and Pj . Further details on the construction of a
conforming polygonal tessellation can be found for instance in [11,28].

The governing equations are then discretized on the unstructured mesh by means of a
finite volume scheme. Let the system of PDE be cast in the general form

∂Q

∂t
+∇ · F(Q) = S(Q), (x, y) ∈ Ω ⊂ R2, t ∈ R+

0 , Q ∈ ΩQ ⊂ Rν , (35)

where Q = (q1, q2, ..., qν) is the vector of conserved variables defined in the space of the
admissible states ΩQ ⊂ Rν , F(Q) is the linear flux tensor and S(Q) represents the stiff
source term. More precisely, the multiscale kinetic SIR model (1)-(2) with system (1) written
using the parities in the form (28)-(29) fits the formalism (35) by setting

Q =
(
r

(1)
S , r

(2)
S , r

(1)
I , r

(2)
I , r

(1)
R , r

(2)
R , j

(1)
S , j

(2)
S , j

(1)
I , j

(2)
I , j

(1)
R , j

(2)
R , Su, Iu, Ru

)>
,
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and

F =



ξ j
(1)
S

ξ j
(2)
S

ξ j
(1)
I

j
(2)
I

ξ j
(1)
R

ξ j
(2)
R

ξ λ2
S r

(1)
S

ξ λ2
S r

(2)
S

ξ λ2
I r

(1)
I

ξ λ2
I r

(2)
I

ξ λ2
R r

(1)
R

ξ λ2
R r

(2)
R

−D0
S Sx

−D0
I Ix

−D0
RRx

−η j(1)
S

η j
(2)
S

−η j(1)
I

η j
(2)
I

−η j(1)
R

η j
(2)
R

−η λ2
S r

(1)
S

η λ2
S r

(2)
S

−η λ2
I r

(1)
I

η λ2
I r

(2)
I

−η λ2
R r

(1)
R

η λ2
R r

(2)
R

−D0
S Sy

−D0
I Iy

−D0
RRy



, S =



−F (r
(1)
S , IT ) + 1

τS

(
S − r(1)

S

)
−F (r

(2)
S , IT ) + 1

τS

(
S − r(2)

S

)
F (r

(1)
S , IT )− γr(1)

I + 1
τI

(
I − r(1)

I

)
F (r

(2)
S , IT )− γr(2)

I + 1
τI

(
I − r(2)

I

)
γr

(1)
I + 1

τR

(
R− r(1)

R

)
γr

(2)
I + 1

τR

(
R− r(2)

R

)
−F (j

(1)
S , IT )− 1

τS
j

(1)
S

−F (j
(2)
S , IT )− 1

τS
j

(2)
S

F (j
(1)
I , IT )− γj(1)

I −
1
τI
j

(1)
I

F (j
(2)
I , IT )− γj(2)

I −
1
τI
j

(2)
I

γj
(1)
R −

1
τR
j

(1)
R

γj
(2)
R −

1
τR
j

(2)
R

−F (Su, IT )
F (Su, IT )− γIu

γIu



.

As usual for finite volume schemes, data are represented by spatial cell averages, which
are defined at time tn as

Qn
i =

1

|Pi|

∫
Pi

Q(x, tn) dx, (36)

where |Pi| denotes the surface of element Pi at the current time tn. Higher order in space is
achieved by piecewise high order polynomials. We refer to them as to wi(x) and they have to
be reconstructed from the given cell averages (36). Here, we rely on a second order Central
WENO (CWENO) reconstruction procedure along the lines of [23]. We omit the details for
brevity.

Finite volume scheme. A finite volume method is directly derived by integration of the
governing system (35) over a space-time control volume |Pi| × [tn; tn+1], thus obtaining

Qn+1
i = Qn

i −
∆t

|Pi|
∑

Pj∈NSi

∫
λij

tn+1∫
tn

H̃n
ij dt dx +

tn+1∫
tn

∫
Ti(t)

Sn+1 dx dt. (37)

The term H̃n
ij = Fij · nij is a numerical flux function to resolve the discontinuity of the

numerical solution at the edges λij in the normal direction defined by the outward pointing
unit normal vector nij . A simple and robust local Lax-Friedrichs flux is adopted, thus yielding

H̃n
ij =

1

2

(
F(w+

i,j) + F(w−i,j)
)
· nij −

1

2
smax

(
w+
i,j −w−i,j

)
, (38)
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where w+
i,j ,w

−
i,j are the high order boundary extrapolated data evaluated through the CWENO

reconstruction procedure. The numerical dissipation is given by smax which is the maximum
eigenvalue of the Jacobian matrix in spatial normal direction,

An =
∂F

∂Q
. (39)

Notice that for the equations involving the non-commuter populations (Su, Iu, Ru) in (2),
the numerical flux must account for a dissipation proportional to the diffusive terms, thus it
is supplemented with a numerical viscosity given by the maximum eigenvalue of the viscous
operator sVmax = max (Du

S , D
u
I , D

u
R).

Finally, in the diffusion limit the source term S(Q) becomes stiff as (τS , τI , τR) → 0,
therefore it must be discretized implicitly according to (37) in order to overcome too severe
time step restrictions. To this aim, a fully second order IMEX method which preserve the
asymptotic diffusion limit is proposed and briefly described hereafter.

A.3 Time integration and numerical diffusion limit

Since the multiscale nature of the dynamics is originated only by the commuters population
we restrict our analysis to system (1) formulated using the parities (28)-(29). For notation
simplicity we assume τS,I,R = τ and rewrite (28)-(29) in partitioned form as

∂u

∂t
+
∂f(v)

∂x
+
∂g(v)

∂y
= E(u) +

1

τ
(U− u)

∂v

∂t
+ Λ2∂f(u)

∂x
+ Λ2∂g(u)

∂y
= E(v)− 1

τ
v,

(40)

in which

u =
(
r

(1)
S , r

(2)
S , r

(1)
I , r

(2)
I , r

(1)
R , r

(2)
R

)T
, v =

(
j

(1)
S , j

(2)
S , j

(1)
I , j

(2)
I , j

(1)
R , j

(2)
R

)T
,

f(v) = ξv, g(v) = ηJv, J = diag{−1, 1,−1, 1,−1, 1},

E(u) =
(
−F (r

(1)
S , IT ),−F (r

(2)
S , IT ), F (r

(1)
S , IT )− γr(1)

I , F (r
(2)
S , IT )− γr(2)

I , γr
(1)
I , γr

(2)
I

)T
,

U = (S, S, I, I, R,R)T , Λ = diag{λS , λS , λI , λI , λR, λR},
(41)

and f(u), g(u), E(v) are defined similarly.
Following [10], the Implicit-Explict Runge-Kutta (IMEX-RK) approach that we consider

for system (40) consists in computing the internal stages

u(k) = un −∆t
k∑
j=1

akj

(
∂f(v(j))

∂x
+
∂g(v(j))

∂y
− 1

τ

(
U(j) − u(j)

))
+ ∆t

k−1∑
j=1

ãkjE
(
u(j)

)

v(k) = vn −∆t
k−1∑
j=1

ãkj

(
Λ2∂f(u(j))

∂x
+ Λ2∂g(u(j))

∂y
−E(v(j))

)
+ ∆t

k∑
j=1

akj
1

τ
v(j),

(42)
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followed by the numerical solution

un+1 = Un −∆t

s∑
k=1

bk

(
∂f(v(k))

∂x
+
∂g(v(k))

∂y
− 1

τ

(
U(k) − u(k)

))
+ ∆t

s∑
k=1

b̃kE
(
u(k)

)
vn+1 = vn −∆t

s∑
k=1

b̃k

(
Λ2∂f(U(k))

∂x
+ Λ2∂g(u(k))

∂y
−E(v(k))

)
+ ∆t

s∑
k=1

bk
1

τ
v(k).

(43)

Matrices Ã = (ãkj), with ãkj = 0 for j ≥ k, and A = (akj), with akj = 0 for j > k are
s × s matrices, with s number of Runge-Kutta stages, defining respectively the explicit and
the implicit part of the scheme, and vectors b̃ = (b̃1, ..., b̃s)

T and b = (b1, ..., bs)
T are the

quadrature weights. The above IMEX-RK system (42)-(43) is complemented with the same
explicit Runge-Kutta scheme defined by Ã and b̃ applied to the non commuters population
system (2).

Furthermore, referring to [9, 10], if the following relations hold,

akj = bj , j = 1, . . . , s, ãkj = b̃j , j = 1, . . . , s− 1,

the method is said to be globally stiffly accurate (GSA). It is worth to notice that this
definition states also that the numerical solution of a GSA IMEX-RK scheme coincides exactly
with the last internal stage of the scheme. This latter property is fundamental in order to
achieve asymptotic-preservation stability in stiff regimes.

Numerical diffusion limit. The scheme (42)-(43) permits to treat implicitly the stiff
terms and explicitly all the rest, maintaining a consistent discretization of the limit system in
the diffusive regime. To verify the numerical diffusion limit we assume for simplicity DS,I,R

independent from space, the extension to the general case follows straightforwardly. From
the second equation in (42) we have

τv(k) = τvn −∆t

k−1∑
j=1

ãkj

(
τΛ2∂f(u(j))

∂x
+ τΛ2∂g(u(j))

∂y
− τE(v(j))

)
+ ∆t

k∑
j=1

akjv
(j),

therefore, assuming (7), in the limit τ → 0 yields

k∑
j=1

akjv
(j) =

k−1∑
j=1

ãkj

(
2D

∂f(U(j))

∂x
+ 2D

∂g(U(j))

∂y

)
, (44)

where D = diag {DS , DS , DI , DI , DR, DR} and we used the fact that from the first equation

in (42) as τ → 0 we have u(j) = U(j). Note that (44) implies that j
(1)
S,I,R = j

(2)
S,I,R in v(j).

Using the identity u(j) = U(j) into the first equation in (42) we get

U(k) = Un −∆t

k∑
j=1

akj

(
∂f(v(j))

∂x
+
∂g(v(j))

∂y

)
+ ∆t

k−1∑
j=1

ãkjE
(
U(j)

)
. (45)
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Applying (44) into (45) thanks to the definitions of f and g gives

U(k) =Un − 2∆tD

k−1∑
j=1

ãkj

(
ξ2∂

2U(j)

∂x2
+ 2ξηJ

∂2U(j)

∂x∂y
+ η2∂

2U(j)

∂y2

)

+ ∆t

k−1∑
j=1

ãkjE
(
U(j)

)
.

(46)

Finally, integrating over λ defined by (30) and summing up the components of U(k) by
pairs yields

S(k) =Sn −∆tDS

k−1∑
j=1

ãkj

(
∂2S(j)

∂x2
+
∂2S(j)

∂y2

)
−∆t

k−1∑
j=1

ãkjF (S(j), I
(j)
T ),

I(k) =In −∆tDI

k−1∑
j=1

ãkj

(
∂2I(j)

∂x2
+
∂2I(j)

∂y2

)
+ ∆t

k−1∑
j=1

ãkj

(
F (S(j), I

(j)
T )− γI(j)

)
,

R(k) =Rn −∆tDR

k−1∑
j=1

ãkj

(
∂2R(j)

∂x2
+
∂2R(j)

∂y2

)
+ ∆t

k−1∑
j=1

ãkjγI
(j)

(47)

and thus, the internal stages correspond to the stages of the explicit scheme applied to the
reaction-diffusion system (9). Thanks to the GSA property this is enough to guarantee that
the scheme is asymptotic-preserving.

A.4 Numerical convergence analysis

The convergence rate of the novel numerical scheme is studied by considering the MK-SIR
model with only commuters and a test problem with no discontinuities neither in the distri-
bution of the populations nor in the associated flux functions. The computational domain is
the square Ω = [−1; 1]2 with zero-flux boundary conditions and the initial condition reads

S = sin(2πx) sin(2πy), I = 1− S, R = 0, (48)

with all other quantities initially set to zero. The contact and recovery rate are set to β = 10
and γ = 4, respectively, while the final time of the simulation is tf = 0.1. Three different
relaxation times are considered, thus yielding a fully hyperbolic system with τ = 1 and λ2 = 1,
a mildly diffusive system with τ = 10−2 and λ2 = 102, and a purely diffusive system with
τ = 10−4 and λ2 = 104. The computational domain is initially discretized with NE = 304
triangles. Mesh refinement is then carried out for triangular meshes relying on conforming
finite element discretizations, hence each element is split into sub-elements with an isotropic
refinement factor χ. Specifically, a total number of sub-elements NR = χ2 is generated, as
depicted in Figure 15.

Errors are measured in L1 norm as

L1 =

∫
Ω
‖se(x)− sh(x)‖ dA, (49)
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Figure 15: Convergence analysis: Isotropic mesh refinement used for convergence analysis
with triangular meshes and refinement factor χ = 1 (NR = 1), χ = 2 (NR = 4) and χ = 3
(NR = 9).

Table 3: Numerical convergence results for the kinetic transport model with second order of
accuracy in space and time and discrete number of velocities M = 4. The errors are measured

in L1 norm and refer to the variables S, I, j
(1)
S and j

(1)
I for relaxation times τ = 1.0, τ = 10−2

and τ = 10−4.

τ = 1.0

S I j
(1)
S j

(1)
I

h(Ω) L1 O(L1) L1 O(L1) L1 O(L1) L1 O(L1)

7.24E-02 4.3160E-03 - 2.2020E-02 - 2.4944E-03 - 1.3150E-02 -

4.82E-02 1.9773E-03 1.93 1.0274E-02 1.88 1.3645E-03 1.49 7.5176E-03 1.38

3.62E-02 1.1979E-03 1.74 6.4905E-03 1.60 8.0601E-04 1.83 4.5374E-03 1.76

2.89E-02 8.0575E-04 1.78 4.5021E-03 1.64 4.7722E-04 2.35 2.6960E-03 2.33

τ = 10−2

h(Ω) L1 O(L1) L1 O(L1) L1 O(L1) L1 O(L1)

7.24E-02 1.1339E-03 - 6.7944E-03 - 2.8801E-03 - 1.7520E-02 -

4.82E-02 4.8583E-04 2.09 2.9178E-03 2.08 1.3359E-03 1.89 8.1327E-03 1.89

3.62E-02 2.4811E-04 2.34 1.4901E-03 2.34 7.1628E-04 2.17 4.3649E-03 2.16

2.89E-02 1.3812E-04 2.62 8.2940E-04 2.63 4.1486E-04 2.45 2.5317E-03 2.44

τ = 10−4

h(Ω) L1 O(L1) L1 O(L1) L1 O(L1) L1 O(L1)

7.24E-02 2.9065E-03 - 1.6949E-02 - 6.4945E-03 - 3.9721E-02 -

4.82E-02 1.4582E-03 1.70 8.7873E-03 1.62 3.3835E-03 1.61 2.0671E-02 1.61

3.62E-02 8.0997E-04 2.04 4.9511E-03 1.99 1.9730E-03 1.87 1.2093E-02 1.86

2.89E-02 4.7890E-04 2.36 2.9495E-03 2.32 1.2228E-03 2.14 7.5199E-03 2.13
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with se and sh denoting the reference and the numerical solution of a generic variable s of

the system. Results are shown for variables S, I, j
(1)
S and j

(1)
I , demonstrating that the formal

order of accuracy is achieved in all regimes thanks to the asymptotic preserving property
exhibited by the second order IMEX scheme.

Table 4: Numerical convergence results for the kinetic transport model with second order of
accuracy in space and time and discrete number of velocities M = 8. The errors are measured

in L1 norm and refer to the variables S, I, j
(1)
S and j

(1)
I for relaxation times τ = 1.0, τ = 10−2

and τ = 10−4.

τ = 1.0

S I j
(1)
S j

(1)
I

h(Ω) L1 O(L1) L1 O(L1) L1 O(L1) L1 O(L1)

7.24E-02 3.9041E-03 - 1.9272E-02 - 1.1499E-03 - 5.8528E-03 -

4.82E-02 1.7662E-03 1.96 8.8050E-03 1.93 5.8676E-04 1.66 3.1030E-03 1.48

3.62E-02 1.0044E-03 1.96 5.1038E-03 1.90 3.3150E-04 1.98 1.7731E-03 1.95

2.89E-02 6.0960E-04 2.24 3.1314E-03 2.19 2.1407E-04 1.96 1.1824E-03 1.82

τ = 10−2

h(Ω) L1 O(L1) L1 O(L1) L1 O(L1) L1 O(L1)

7.24E-02 8.9391E-04 - 5.2662E-03 - 1.3332E-03 - 8.2209E-03 -

4.82E-02 4.6649E-04 1.60 2.8084E-03 1.55 7.6802E-04 1.36 4.7691E-03 1.34

3.62E-02 2.7284E-04 1.86 1.6548E-03 1.84 4.7508E-04 1.67 2.9561E-03 1.66

2.89E-02 1.6479E-04 2.26 1.0015E-03 2.25 2.9910E-04 2.07 1.8616E-03 2.07

τ = 10−4

h(Ω) L1 O(L1) L1 O(L1) L1 O(L1) L1 O(L1)

7.24E-02 2.8333E-03 - 1.6481E-02 - 3.1802E-03 - 1.9511E-02 -

4.82E-02 1.4078E-03 1.72 8.4724E-03 1.64 1.6563E-03 1.61 1.0163E-02 1.61

3.62E-02 7.7612E-04 2.07 4.7389E-03 2.02 9.5751E-04 1.90 5.8910E-03 1.90

2.89E-02 4.5623E-04 2.38 2.8063E-03 2.35 5.8739E-04 2.19 3.6247E-03 2.18
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