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Abstract: Among the symptoms of SARS-CoV-2, follicular conjunctivitis has become relevant. The
conjunctiva acts as an open lymph node, reacting to the viral antigen that binds the epithelial cells,
forming follicles of B cells with activated T cells and NK cells on its surface, which, in turn, talk
to monocyte-derived inflammatory infected macrophages. Here, the NLRP3 inflammasome is a
major driver in releasing pro-inflammatory factors such as IL-6 and caspase-1, leading to follicular
conjunctivitis and bulbar congestion, even as isolated signs in the ‘asymptomatic’ patient.

Keywords: COVID-19; ACE2&TMPRSS2; P2X7R; macrophages and activated T cells; follicular
conjunctivitis

1. Opinion

SARS-CoV-2 is inhaled as droplets or through surface contact and can cause COVID-
19. The virus adheres to the angiotensin-converting enzyme 2 (ACE2) receptor, diffusely
expressed in human eye surface epithelial cells, in adnexal glands and goblet cells. The
trans-membrane serine protease 2 (TMPRSS2) is used for S protein priming by host cell pro-
tease [1], as demonstrated in SARS-CoV-2-infected TMPRSS2 knock-out mice that showed
no pulmonary disease and lower viral replication [2]. TMPRSS2 proteolitically processes
the Spike (S) viral protein, co-localizes with ACE2 at the cell membranes, and is the domi-
nant driver of S protein activation [3]. The two protrusions of the N-peptidase domain of
ACE2 provide a peptide substrate-binding site between them, where the extended SARS-
CoV-2 receptor-binding domain (RBD) matches with the bottom side of the ACE2 small
bump [4], while the N terminal helix of ACE2 accommodates in the outer surface recess
of the receptor-binding motif (RBM). The expression is weaker in the cell membrane than
in the cytoplasm, where the NLRP3 inflammasome could be activated by the P2X7 recep-
tor (P2X7R), a plasma membrane receptor gated by extracellular adenosine triphosphate
(ATP) [5], acting as a major driver in releasing pro-inflammatory factors such as IL-6 [6]
and caspase-1.

After infecting monocytes, the hyperactivation of macrophages paves the way for
hyper-inflammation in COVID-19 [7]. Activated T cells stimulate macrophages through
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tumor necrosis factor (TNF) and interferon gamma (IFNγ), and natural killer (NK) cells
through IFNγ and GM–CSF receptors.

Furthemore, P2X7R has been suggested to bridge coagulation, releasing microvesicle-
associated tissue factor (TF) and inducing a heightened pro-thrombotic response [8]. Mi-
crothrombi are also caused by tromboxane-A2 (TxA2) induction enhanced by IL-1β [9].

As for the general concept, an antigen can be recognized as a non-self constituent
and activates lymphocytes only if it somehow distorts or modifies the configuration of
macrophage self-antigen [10,11]. According to Oppenheim [12] and LeBien and Tedder [13]
lymphocyte activating factor (LAF) or interleukin 1 (IL-1), a single polypeptide chain
produced by the macrophage cell lines, promotes antibody production by macrophage-
depleted B lymphocytes to T cell-dependent antigens (Figure 1).
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Figure 1. Follicular conjunctivitis induced by epithelial coronavirus infection.

Figure 1 summarizes the cross-talks between the B lymphocytes in the conjunctival
follicles and their macrophages. Mast cells are activated via plasma cell (not reported).

Macrophage activation and releases can induce a “cytokine storm” in lung alveolar
cells and dwell in the conjunctival follicles of B lymphocytes.

Surface TLR (toll-like receptor) ACE2R (angiotensin-converting enzyme 2 receptor)
binding the SARS-CoV-2 receptor-binding domain gives rise to follicles of activated Tcells
releasing type I interferon, TNF (tumor necrosis factor), and the monomeric glycoprotein
GM-CSF (granulocyte-macrophage colony-stimulating factor), while the coronavirus it-
self enters macrophages through ACE2R and P2X7R (purinergic receptor) [14,15]. High
extracellular adenosine triphosphate (ATP) levels—inexistent in physiological conditions,
but reaching high concentrations when released from immune cells in response to a tissue
insult—are required for the receptor to be triggered and contribute to its role in cell dam-
age signaling, activating the NLRP3 (NOD-like receptor P3) inflammasome through IL-6,
which induces caspase-1 activation, leading to IL-1, IL-6, TNF, and caspase-1 maturation



Microorganisms 2023, 11, 2198 3 of 7

and release, and stimulating inflammation to create “cytokine storm” [9,16] and bulbar
congestion. NF-kB (nuclear factor-kappa B) is a nuclear transcription factor present in all
cytokine-producing cells. NK (natural killer) cells, large granular lymphocytes, talk with
macrophages through the GM-CSF and IFN-γ (interferon-gamma) receptors, activating
the JAK-STAT (Janus kinase/signal transducer and activator of transcription proteins)
pathway that communicates information from outside of the cell to the nucleus, resulting
in the activation of genes through the transcription process [7]. Interactions between B
cell, macrophage, plasmacells and mastcells: B cells can differentiate into plasma cells and
memory B cells under the stimulation of IL-4 from Th cells. Plasma cells continuously
secrete immunoglobulins, which directly produce inflammation. Specifically, IgE can acti-
vate macrophage polarization and mast cell degranulation and subsequently increase their
production of proteases such as MMPs (metalloproteinases) and cathepsins. These factors
work together in the pathogenesis of extracellular matrix degradation and are an example
of immune cell interactions in conjunctival disease.

The acute inflammatory follicular response is mostly present in the tarsal and fornix
conjunctiva, semilunar fold, and caruncle, while the bulbar conjunctiva shows a picture
of hyperemia, edema, and lymphangiectasia with bulbar congestion and hitching. The
secretion is serous, often scarce, but never purulent unless bacterial co-infection occurs,
with abundant colorable mononuclear cells in the smear. There, electron microscopy (EM)
and immunoelectron microscopy (IEM) allow the identification and characterization of
viral particles [17], while PCR is superior to ELISA for sensitivity and accuracy in detecting
infections [18], where the conjunctiva and cornea seem to be the ophthalmic structures
most affected by viral infections, as previously summarized by Frezzotti and Guerra [19],
Sen et al. [20], and McHang et al. [21]. A new discovery showed for the first time that in the
tears of vaccinated COVID-19 patients, ocular secretory IgA (sIgA) values are remarkably
different vs. those of non-vaccinated patients [22], with significant differences in available
vaccines. The IgA receptor (FcαR or CD89) can be found on the surface of neutrophils,
eosinophils, monocytes, some macrophages, and dendritic cells [23].

Moreover, it is also interesting that a soluble form of the P2X7 receptor acts as an
indicator of ocular inflammatory status, as has recently been documented in a PhD thesis in
molecular medicine [24], which defined the presence and role of the soluble form (sP2X7) in
normal and pathological human aqueous and vitreous humor. It can also be hypothesized
to have a future significance for the liquid biopsy of intraocular tumors and for diabetic
retinopathy. Therein, the hyperglycemia-induced damage to retinal pericytes leads to cell
lysis, accompanied by the release of ATP into the extracellular environment, which in turn
binds P2X7R on neighboring cells, activating the inflammasome and taking on the function
of an inflammatory damage-signaling device via an autocrine/paracrine mechanism [25],
resulting in a powerful trigger for vascular endothelial growth factor (VEGF) release, as
described in the monocyte and macrophage activation pathway [7,26].

Brief Commentary on the Histopathology and Clinical Behavior of Follicles in Comparison to
Conjunctival Papillae

The cause of follicular conjunctivitis includes viral infection, chlamydial infection,
topical drug-induced, Parinaud oculo-glandular disease, and idiopathic. It comprises
nodules of lymphocytes with reactive germinal centers, composed of immature large
Bcells, surrounded by a mantle of smaller mature Bcells (Figure 1). These nodules are
present in the substantia propria and cause a smooth bulge of the overlying conjunctival
epithelium. Haematoxylin and eosin (H&E)-stained reactive lymphoid follicles show
tingible-body macrophages among the lymphocytes. Dendritic cells are represented. These
macrophages tend to be a feature of a benign lymphoid follicle. Follicular conjunctivitis,
stained immunohistochemically with the Bcell marker CD20 (CD20 is a molecule specific
to mature B cells that works as a membrane-incorporated Ca2+ channel, (Figure 2), shows
follicles composed of B cells [27].
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Figure 2. Section showing a reactive lymphoid follicle case stained immunohistochemically with a
Bcell marker, CD20. This shows that the follicles are composed of B cells and have a non-destructive,
well-defined architecture [27] (Courtesy Dr. S. Honavar, IJO editor-in-chief).

Follicles must be differentiated with papillary conjunctivitis. Papillary conjunctivitis
causes include allergic/atopic (vernal, seasonal, or perennial), topical drugs or preparation
(even cosmetics), and chronic irritation (mechanical i.e., contact lens), or ocular diseases (dry
eyes, superior limbic conjunctivitis) that induce the polygonal distortion of the epithelium.
Each elevation is usually polygonal, larger than a follicle, and contains vertically orientated
vessels around which are many inflammatory cells. The nature of the inflammatory cells
can suggest the etiology. For example, if mast cells and eosinophils are seen, it points to
an allergic/atopic etiology [27,28]. They comprise a fibrovascular core with a variety of
inflammatory cells, and the surface is often covered in metaplastic squamous epithelium.

The papillae in allergic-type disorders are often packed full of eosinophils and mast-
cells (MC). Pro-inflammatory and anti-inflammatory cytokines play a key role in MC
activation by neuropeptides. In the brain, they are activated by neuropeptide substance
P (SP), corticotropin-releasing hormone (CRH), and neurotensin. Lauritano and coll. [29]
suggest a therapeutic effect of the anti-inflammatory cytokines IL-37 and IL-38.

The practice of conjunctival biopsy in these inflammatory or allergic/immunological
forms is rarely necessary; in cases of systemic immunopathology (i.e., Sjogren, sarcoidosis)
it is customary to preferentially resort to a biopsy of the buccal mucosa. The conjunctival
smear technique for the immunohistochemical evaluation of allergic forms is useful in
research studies, but little practiced in clinical routine [30].

Moreover, dry eye-associated symptoms are frequently present in patients affected by
allergic conjunctivitis. By performing qualitative and quantitative tests on tears, obtained
from the inferior fornix, the immune activation state can be detected. Immunocytochemical
markers for CD45RO, CD8, CD20, and EG2 (monoclonal antibody-binding eosinophil
cationic protein) evaluated semi-quantitatively were found to be altered in our previous
research [28]. They were reduced in allergic patients in comparison to the control group
(p < 0.001). In conjunctival biopsies of allergic patients, a very high number of CD45RO+
and EG2+ cells was found (p < 0.001): a lower number of CD45RO+ cells and no EG2+
cells have been identified in control biopsies. Multivariate analysis showed a significant
relationship between tear tests and conjunctival infiltrate (CD45RO+ and EG2+). The tear
film alterations are strictly related to conjunctival immune infiltration. In particular, the
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reduction of the mucin-related component of tear film can be related to the toxic effect of the
granule cationic proteins released by conjunctival activated eosinophils (EG2+ cells) [28].

During the development of experimental allergic conjunctivitis, conjunctival macrophages
act as antigen-presenting cells (APC), that take up, process, and present antigens to T
cells [31].

2. Conclusions

The complexity of immune cell interactions, their cross-talk, and the role of the cytokine
microenvironment in the immune response are still under investigation. Considering the
range of receptors expressed and the ability to produce cytokines that can both initiate and
regulate inflammation, is possible to assume that the epithelium is central to immunity,
with characteristics that bridge both innate and adaptive immune responses [11,32,33].

SARS-CoV-2 receptors allow infected macrophages to play a key role in the local
conjunctiva (eye setting), oropharingeal tract (nose/throat setting)—as we previously
reported [34]—and alveolar epithelial cells, until the appearance of a “cytokine storm”,
as in Figure 1. It seems significant to signal the mechanisms of cellular cross-talk and
the possibility that an acute, non-remitting microfollicular conjunctivitis presents itself
as the only sign of an ‘asymptomatic’ but contagious SARS-CoV-2 viral infection [35].
Clinicians should suspect COVID-19-related follicular conjunctivitis from patients’medical
history, absence of previous history of seasonal conjunctivitis, recurrent, relapsing, endemic
COVID-19 clusters, or from a positive COVID-19 test (positive antigenic oral swab taken
at the time of admission, molecular swab positivity, or conjunctival swab, according to
Scalinci, Sarma, and Azzolini) [35–37].

Healthcare professionals nowadays are still facing an unprecedented global health
issue which is affecting each medical specialty, requiring a holistic vision to exert the
maximum effort to reduce the contagion rate and to treat patients to the best of their
abilities, keeping the alert level high, despite fact that the WHO has declared an end to
the pandemic.
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