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Abstract 

Background  Previous studies have demonstrated that purinergic receptors could be therapeutic targets to modu‑
late the inflammatory response in multiple models of brain diseases. However, tools for the selective and efficient 
targeting of these receptors are lacking. The development of new P2X7-specific nanobodies (nbs) has enabled us to 
effectively block the P2X7 channel.

Methods  Temporary middle cerebral artery occlusion (tMCAO) in wild-type (wt) and P2X7 transgenic (tg) mice was 
used to model ischemic stroke. Adenosine triphosphate (ATP) release was assessed in transgenic ATP sensor mice. 
Stroke size was measured after P2X7-specific nbs were injected intravenously (iv) and intracerebroventricularly (icv) 
directly before tMCAO surgery. In vitro cultured microglia were used to investigate calcium influx, pore formation via 
4,6-diamidino-2-phenylindole (DAPI) uptake, caspase 1 activation and interleukin (IL)-1β release after incubation with 
the P2X7-specific nbs.

Results  Transgenic ATP sensor mice showed an increase in ATP release in the ischemic hemisphere compared to the 
contralateral hemisphere or the sham-treated mice up to 24 h after stroke. P2X7-overexpressing mice had a signifi‑
cantly greater stroke size 24 h after tMCAO surgery. In vitro experiments with primary microglial cells demonstrated 
that P2X7-specific nbs could inhibit ATP-triggered calcium influx and the formation of membrane pores, as measured 
by Fluo4 fluorescence or DAPI uptake. In microglia, we found lower caspase 1 activity and subsequently lower IL-1β 
release after P2X7-specific nb treatment. The intravenous injection of P2X7-specific nbs compared to isotype controls 
before tMCAO surgery did not result in a smaller stroke size. As demonstrated by fluorescence-activated cell sorting 
(FACS), after stroke, iv injected nbs bound to brain-infiltrated macrophages but not to brain resident microglia, indicat‑
ing insufficient crossing of the blood–brain barrier of the nbs. Therefore, we directly icv injected the P2X7-specific nbs 
or the isotype nbs. After icv injection of 30 µg of P2X7 specific nbs, P2X7 specific nbs bound sufficiently to microglia 
and reduced stroke size.

Conclusion  Mechanistically, we can show that there is a substantial increase of ATP locally after stroke and that 
blockage of the ATP receptor P2X7 by icv injected P2X7-specific nbs can reduce ischemic tissue damage.
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Introduction
Stroke induces sterile inflammation, which worsens the 
initial brain damage and neurological outcome [1, 2]. 
Hypoxic brain tissue releases many molecules, which can 
activate cells such as microglia in the surrounding tissue 
and lead to infiltration of other immune cells such as neu-
trophils, amplifying the inflammatory cascade [3]. These 
molecules include adenosine triphosphate (ATP) as well 
as nicotinamide adenine dinucleotide (NAD), heat shock 
protein (HSP), and high-mobility group box  1 protein 
(HMGB1). These factors can activate the inflammasome 
and induce the secretion of proinflammatory cytokines 
by innate immune cells [4, 5]. These molecules activate 
several pathways, such as the ATP/P2X7 pathway or the 
nuclear factor kappa-light-chain-enhancer of activated B 
cells (NFκB) pathway [6]. The P2X7 receptor is a homo-
trimeric, ligand-gated nonselective cation channel that 
is expressed in the central nervous system as well as on 
immune cells [7]. The P2X7 receptor consists of three 
polypeptide subunits, each with two transmembrane 
domains [8, 9]. After activation by extracellular ATP 
(eATP), these subunits form an ion-permeable channel, 
which induces Na+ and Ca2+ influx and K+ efflux, result-
ing in plasma membrane depolarization and initiation of 
Ca2+ signaling cascades. The K+ efflux through the P2X7 
receptor supports the formation of the Nod-like recep-
tor protein 3 (NLRP3)-mediated inflammasome complex, 
which cleaves pro-caspase 1 and leads to a subsequent 
cleavage of pro-IL-1β and pro-IL-18 into their biologi-
cally active forms [5, 10, 11]. The amount of accessible 
intracellular pro-IL-1β and pro-IL-18 also depends on 
another signal transmitted by receptors, such as Toll-like 
receptors (TLRs) or tumor necrosis factor (TNF)-recep-
tors, and subsequent NFκB activation.

In the central nervous system (CNS), P2X7 has been 
found primarily on microglia, with less on astrocytes 
and oligodendrocytes [12–17]. These findings were con-
firmed by data from the Allen Brain Atlas for mice [18] 
and humans [19]. There are some similarities between 
human and rodent P2X7 expression in the brain, such 
as high expression on microglia and low expression on 
astrocytes, but there are also some differences such as 
high expression of P2X7 on human oligodendrocytes and 
low expression on rodent oligodendrocytes.

Several studies have shown that the experimental 
stroke size in P2X7−/− mice is smaller than that in wild-
type mice [20, 21]. In addition, blocking the P2X7 chan-
nel with brilliant blue G (BBG) attenuated ischemic 

damage [20]. However, systemic BBG cannot be used in 
humans since it is nonspecific and toxic.

Nanobodies (nbs), named for their small size (2.5  nm 
diameter, 4  nm height, 12  kDa) [22], are single-domain 
antibodies derived from camelid heavy chain antibod-
ies. Compared to small molecule inhibitors, nbs have 
key advantages, such as low toxicity, high specificity, no 
off-target effects and, in the case of P2X7, a more potent 
inhibition [10, 21, 23]. With their long complementarity 
determining region 3 (CDR3), these molecules can access 
cavities or clefts on membrane proteins that are often 
inaccessible to antibodies [24, 25]. Other advantages of 
nbs over conventional antibodies include high stability, 
better solubility and rapid and targetable in vivo biodis-
tribution. In addition, the ability to form nb multimers 
and the low costs and ease of production make them ideal 
candidates for treatment [26]. Fusion of an nb (monomer 
or multimer) to the Fc domain of a conventional anti-
body yields a heavy chain antibody with reconstituted 
Fc-mediated effector functions, including binding to Fc 
receptors, extended half-life and complement activation. 
This phenomenon allows a much broader tailoring of nbs 
than of conventional antibodies to different pathophysi-
ologies [27].

In this proof-of-concept study, we used P2X7-specific 
nbs to treat mice directly before temporary middle cer-
ebral artery occlusion (tMCAO) surgery. We found that 
these nbs need to be injected intracerebroventricularly to 
reach P2X7 receptor on brain resident cells and protect 
against ischemic stroke.

Methods
Animals
All animal experiments were approved by the local ani-
mal care committees (Behörde für Justiz und Veterinär-
wesen Hamburg, Nr 006/18) and conducted following 
the “Guide of the Care and Use of Laboratory Animals” 
published by the US National Institutes of Health (NIH 
Publication No. 83–123, revised 1996). All mice were 
kept at a constant temperature of 22 ± 2  °C with a 12-h 
light–dark cycle and ad libitum access to food and water. 
Only 12- to 18-week-old male mice were used for this 
study. C57BL/6J mice were purchased from Charles River 
(Bar Harbor, ME 04609, USA), whereas the generation 
of pmeLUC transgenic and P2X7-EGFP transgenic mice 
(line 17 in C57BL/6J) was described previously [28, 29].
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Production of P2X7 nbs
The P2X7-antagonizing nbs 1c81 and 13A7 were selected 
and cloned into the pCSE2.5 expression vector (kindly 
provided by Thomas Schirrmann, Braunschweig, Ger-
many) [30] as described previously [10, 28]. Then, 13A7 
was fused to the hinge, constant domain heavy chain 
(CH) 2, and CH3 domains of mouse immunoglobulin (Ig) 
G2c, resulting in a heavy chain format (nb A), whereas 
1c81 was dimerized and fused to the albumin-specific 
nb Alb8 (mAb77) [31], resulting in a bispecific hetero-
trimeric nb with an extended half-life (nb B) (Additional 
file  1: Fig. S1). Since dimers showed a higher potency 
than monomers [10], we used nb B for intracerebroven-
tricular (icv) injection. For icv injection, we needed to 
create a construct that could be highly concentrated 
without aggregation, so we modified our nb B (Additional 
file 1: Fig. S1). The modified nb B-mod was concentrated 
up to 15 μg/μl without aggregation. The exact sequences 
and further information on the various constructs can be 
found in patent WO/2013/178783.

HEK-6E cells were transfected with the constructs, and 
6 days after transfection, the nbs were purified from the 
cell supernatant by affinity chromatography on a protein-
G Sepharose column. The buffer was exchanged by gel fil-
tration on a PD-10 column. The concentration and purity 
were monitored by sodium dodecyl sulfate–polyacryla-
mide gel electrophoresis (SDS-PAGE) and a BCA™ Pro-
tein Assay Kit (Pierce).

tMCAO surgery and stroke size analysis
tMCAO was performed as previously described [32–34]. 
Mice were anesthetized with 1.5% isoflurane in 100% 
O2 and an intraperitoneal injection of 0.05  mg/kg body 
weight buprenorphine in saline was used as analgesic. A 
midline skin incision in the neck was made before ligat-
ing the proximal common carotid artery (CCA) and 
the external carotid artery (ECA) without disrupting 
the venous vessels. Vital parameters were continuously 
monitored with PhysioSuite (Kent Scientific Corporation, 
USA). Occlusion was confirmed by a laser Doppler moni-
tor (moorVMS-LDF; Moor Instruments, UK) and per-
sisted for 40 min. Mice with an occlusion rate of less than 
80% were excluded.

Stroke size was measured by triphenyl tetrazolium 
chloride (TTC) staining and magnetic resonance imag-
ing (MRI). We used a 7-Tesla MR small animal imag-
ing system (ClinScan, Bruker, Ettlingen, Germany). The 
imaging protocol comprised T2-weighted imaging MRI. 
Calculation of corrected stroke volumes was performed 
as described previously [35].

The infarct volumes and total areas of the treated hemi-
sphere were calculated using NIH ImageJ software.

Intravenous (iv) and icv injections of nbs
Different methods of nb administration were used. 
P2X7-specific nbs (nb A, 13A7-Fc) were directly injected 
(100  µg in 100  µl of phosphate-buffered saline [PBS]) 
intravenously, or P2X7-specific nbs (nb B/nb B-mod, 
1c81-dim-HLE) or isotype nbs against human cluster-of-
differentiation (CD) 38 were injected (30 µg in 2 µl of PBS 
containing 60  mg/ml trehalose and 0.4  mg/ml Tween-
20) directly into the ventricles of the brain by using a 
stereotaxic apparatus. Mice were pain treated with 1 mg 
tramadol/kg body weight one day before surgery. Directly 
before the surgery, the mice were anesthetized with iso-
flurane (4% for induction, 2.5% for maintenance) in 100% 
oxygen. After placing the mice in a stereotactic frame 
(Stoelting, 51615), we made a 1-cm-long incision above 
the midline. A cranial burr hole (0.9  mm) was drilled 
1.1 mm lateral and 0.5 mm posterior to the bregma. Nbs 
were drawn into a 10-μl Hamilton syringe (Hamilton, 
1701RN) connected to a 26-gauge needle (Hamilton, 
26G, Point Style 4, 12°) controlled by a motorized stere-
otaxic injector (Stoelting, integrated stereotaxic injector 
[ISI]).

The needle was slowly introduced 2.3  mm deep into 
the left ventricle (Additional file 1: Fig. S2). Following a 
period of 5 min to let the ventricular system re-expand, 
2 μl of dissolved nbs at a concentration of 15 μg/μl was 
injected at 1  μl/min. This step was followed by another 
10-min break and slow removal of the needle. Vital 
parameters were monitored by an animal support unit 
(Minerve, Esternay, France). Body temperature was 
maintained throughout the procedure at 37  °C using a 
feedback-controlled heating device.

In vivo ATP measurement after tMCAO using pmeLUC‑TG
Three hours before tMCAO surgery, 150 mg/kg luciferin 
(Promega) was injected intraperitoneally. Luciferin was 
reinjected 1 day after tMCAO in prior of the measure-
ment. In vivo ATP release was monitored by whole-body 
luminometry performed using the IVIS-Perkin Elmer 
in  vivo imaging system. In  vitro calibration was per-
formed in brain homogenates from pmeLUC-tg mice.

Microglia and macrophage preparation and FACS
Animals were euthanized and perfused with PBS. Brains 
were dissected and digested in 1  mg/ml collagenase A 
(Roche) and 0.1 mg/ml DNase type I (Sigma). Separation 
from myelin and debris was performed by density cen-
trifugation with Percoll (GE Healthcare). The following 
antibodies and detection systems were used: CD45-APC-
Cy7 (1:100, 30-F11, #103,115 BioLegend), CD45-PerCP 
(1:100, 30-F11, #103,129, BioLegend), CD11b-APC 
(1:100, M1/70, #17–0112-82, eBioscience), Ly6C-PerCP/
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Cy5.5 (1:100, HK1.4, #128,011, BioLegend), anti-mIgG1-
brilliant violet (BV) 421 (1:100, RMG1-1, #406,615, 
BioLegend), anti-mIgG2-BV421 (1:100, RM223, #31–
1103-02, Dianova), steptavidin-BV421 (1:100, #405,226, 
BioLegend), Fc blocking anti-CD16/CD32 (1:100, 2.4G2, 
#BE0307, BioXcell), and mAb77 (1:100, Alb8-specific 
mouse monoclonal antibody kindly provided by Ablynx). 
Microglia were gated as mentioned in the supplementary 
materials (Additional file 1: Fig. S3). In the first step, cells 
were incubated (30  min on ice) with Fc blocking anti-
CD16/32, where ex  vivo samples were incubated with 
0.5  μg of P2X7 specific nb in the presence of Fc block-
ing anti-CD16/32. For detection of cell-bound P2X7 nbs, 
cells were incubated either with biotinylated anti-mouse 
IgG2c-fused antibody followed by streptavidin BV421 
conjugated (nb A) or with mAb77 (nb B-mod) followed 
by fluorochrome-conjugated antibodies in the pres-
ence of Fc blocking anti-CD16/CD32 (Additional file  1: 
Fig. S1). Calcium influx was measured by a Fam-fluoro-
chrome-labeled inhibitor of caspase-1 (FLICA) detection 
system. DAPI uptake and IL-1β release were monitored 
by flow cytometry. IL-1β enzyme-linked immunoas-
says (ELISAs) were performed according to Invitrogen 
Thermo Fisher Scientific (#BMS6002).

Differentiation between brain resident microglia and 
brain infiltrating macrophages was performed by FACS, 
where infiltrating cells were labeled CD45+CD11b+Ly6Chigh 
and microglia were labeled CD45intCD11b+ [36].

For functional analysis, brain cells from icv injected 
brain cells were stimulated with 0.5  mM ATP in RPMI 
containing DAPI at 37  °C for 5  min. Cells were washed 
and analyzed by flow cytometry.

Immunostaining
Mice were deeply anesthetized, and brains were fixed 
with 4% paraformaldehyde (PFA) by transcardial per-
fusion. After fixation in 4% PFA overnight, 50 µm thick 
sections were prepared using a vibratome. Immunostain-
ing was performed at 4  °C on free-floating sections 
using an anti-Iba1 antibody to detect microglia (Fujifilm 
Wako Pure Chemical Corporation) and an anti-neu-
ronal nuclear protein (NeuN) antibody to detect neu-
rons (Thermo Fisher Scientific). DAPI (Thermo Fisher 
Scientific) was used to counterstain nuclei. Images were 
obtained by confocal laser scanning microscopy (LSM 
880, Zeiss, Oberkochen, Germany).

Results
ATP is released rapidly after ischemic stroke
We analyzed ATP release after tMCAO by using ATP-
sensing pmeLUC transgenic mice. These mice ubiqui-
tously express firefly-derived luciferase on the outer layer 
of the plasma membrane [29, 37], which is activated by 

extracellular ATP. The pmeLUC mice can be used to 
detect changes in the extracellular ATP concentration in 
the micromolar range in a strictly ATP-selective fashion 
since the luciferase used is insensitive to all other nucleo-
tides [37].

Immediately after tMCAO, a base image was taken 
(Fig. 1). At 90 min after artery occlusion, eATP release/
luminescence increased in the ischemic hemisphere. 
After 24  h, we could still detect a strong signal in the 
ischemic hemisphere. Rough estimations of the in  vivo 
eATP concentration were performed by an in vitro con-
centration gradient (Additional file 1: Fig. S4).

P2X7 overexpression exacerbates stroke volume
Immunostaining of P2X7-enhanced green fluorescent 
protein (EGFP) transgenic mice revealed that P2X7 is 
expressed mainly on ionized calcium-binding adapter 
molecule 1 (IbA1)-positive cells (Fig.  2A, negative con-
trols in Additional file  1: Fig. S5). Merged staining of 
IbA1 and GFP showed, for the most part, a congruent 
symmetry, where neurons stained with NeuN did not 
show any GFP expression.

Additionally, we used the expression data from the 
Allen Brain Atlas for mice [18] and humans [19] to deter-
mine cellular P2X7 expression in the brain (Table 1).

To evaluate the relevance of P2X7 for ischemic stroke, 
we used P2X7-overexpressing mice [28]. Littermate mice 
(n = 10) and P2X7-overexpressing mice (n = 9) were sub-
jected to tMCAO, and the stroke size was determined 
by TTC staining. After 40  min of occlusion, we found 
that stroke sizes in P2X7-overexpressing mice was sig-
nificantly larger in comparison to wt controls 24 h after 
tMCAO. The P2X7-overexpressing mice had a mean 
ischemic volume of 52.50 mm3 ± 8.52 mm3 compared 
to the littermates with a mean ischemic volume of 36.66 
mm3 ± 13.64 mm3(Fig.  2B). Additionally, the percentage 
of the ischemic hemisphere differed significantly between 
the two cohorts, with 49.36% ± 8.76% in the P2X7-over-
expressing cohort and 34.15% ± 13.56% in the control 
group (Fig. 2B).

P2X7‑specific nbs inhibit the P2X7 receptor on microglia 
in vitro
To verify that P2X7-specific nbs can inhibit the P2X7 
receptor in microglia, we tested them in ATP-stimulated 
primary microglia in vitro. The P2X7-specific nbs (1 μg/
ml) decreased the ATP-evoked calcium influx compared 
to the isotype control nbs (Fig.  3A). In addition, the 
P2X7-specific nbs dampened the ATP-evoked pore for-
mation monitored by DAPI uptake (Fig.  3B). Caspase-1 
activation, measured by the FAM-FLICA detection sys-
tem, was reduced significantly in the presence of the 
P2X7-blocking nbs (Fig. 3C; mean fluorescence intensity 
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[MFI]: 2617 vs. 674; ***p < 0.001; n = 3). LPS/ATP-evoked 
IL-1β release was significantly reduced after preincuba-
tion with the P2X7-specific nbs (Fig.  3D; ***p < 0.001; 
n = 3). Further investigation showed that low doses of nbs 
were sufficient to suppress IL-1β release (Fig. 3E).

Iv injection of P2X7‑specific nbs does not affect stroke size
Next, we investigated the effect of the P2X7-specific 
nbs on stroke size in wild-type mice. We intravenously 
injected 100  μg of nb B prior to tMCAO. Stroke size 
was analyzed 24  h after surgery in two independent 
cohorts by histology or MRI. We did not find any sig-
nificant reduction in stroke size compared to that of the 
isotype control nb group (MRI and TTC: p > 0.05). The 
isotype-treated wild-type mice showed ischemic lesions 
of 60.91% ± 12.23% in the ischemic hemisphere in the 
TTC cohort and 62.92% ± 1.68% in the MRI cohort. The 
nb-treated mice showed an almost identical ischemic 
lesions, with 59.41% ± 15.13% in the TTC cohort and 
63.72% ± 3.73% in the MRI cohort (Fig. 4A).

To detect whether the nbs successfully cross the blood–
brain barrier (BBB), we intravenously injected fluoro-
phore-labeled P2X7-specific nbs 1 h after tMCAO. After 
24  h, we analyzed the MFI of P2X7-specific nbs bound 
to either brain resident microglia or brain infiltrating 
macrophages (see staining protocol in Additional file  1: 
Fig. S1). We found that 100 µg of intravenously injected 
nbs did not label brain resident microglia but could be 
detected on infiltrating macrophages (Fig.  4B), indicat-
ing an insufficient passage through the BBB of the nbs. 
This insufficient passage was further verified by a dose–
response analysis of intravenously injected nbs (Addi-
tional file 1: Fig. S6), indicating that extremely high doses 
are needed for BBB crossing.

Icv injection of P2X7‑specific nbs reduces stroke size
To circumvent the BBB, we performed direct icv injec-
tion of nbs into the brain and examined the effect of 
these P2X7-specific nbs on stroke size. Because of the 
minimal volume of 1–2  μl available for icv injections, 
we needed to concentrate the nbs. For this, we had 

Fig. 1  ATP was released after stroke. Transgenic ATP sensor mice (pmeLuc-mice) show eATP in the brain. A After tMCAO, ATP is rapidly released in 
the ischemic hemisphere starting after 30 min and is still prominent after 24 h compared to that in the contralateral hemisphere. B Sham-treated 
mice do not show substantial ATP level differences between the two hemispheres. Three mice for each group underwent surgery with similar 
results. Representative pictures are provided
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to slightly modify nb B (see MM). After performing a 
dose–response analysis of icv injected nbs, we saw that 
10 to 30  μg were already sufficient to cover the P2X7 
receptor on all microglia and could be detected up to 
21 days after injection (Additional file 1: Figs. S7, S8).

Following our dose response curve we injected 30  μg 
of this modified P2X7-specific nb B-mod (n = 8) or an 
isotype control nb (n = 9) intracerebroventricularly into 
wildtype mice. Twenty-four hours after tMCAO, we ana-
lyzed the stroke size and found that the P2X7-specific 

Fig. 2  P2X7 was mainly expressed on microglia, and P2X7-overexpressing transgenic mice had more strokes. Immunostaining of 50 μm 
free-floating sections of P2X7-EGFP (A, n = 2) transgenic mice illustrated that P2X7 is highly expressed on IbA1-positive (red) cells compared to 
NeuN-positive (purple) neurons. DAPI (blue) was used to stain the nucleus. For the negative control, see Additional file 1: Fig. S5. B One day after 
tMCAO surgery, including an occlusion time of 40 min, the P2X7-overexpressing mice had a significantly higher infarct volume and a significantly 
higher % loss of parenchyma in the ischemic hemisphere. Statistical significance was analyzed by Student’s t test. **p < 0.001. Data are presented as 
the median ± range of 9 P2X7-overexpressing mice and 10 wild-type littermate controls. Representative TTC staining and representative overlays of 
stroke volume at day 1 following tMCAO treatment
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nbs resulted in significantly decreased stroke sizes (26.16 
mm3 ± 10.29 mm3 compared to isotype 42.02 mm3 ± 8.49 
mm3; ***p < 0.01; Fig. 5A). This effect was also reflected by 
the loss of viable tissue (22.78% ± 8.84% compared to iso-
type 38.00% ± 8.32%; ***p < 0.01; Fig. 5A). Flow cytometry 
of brain resident microglia of these mice showed a strong 
signal of the P2X7-specific nbs (Fig.  5B). This signal 
could not be further increased by ex vivo addition of the 
P2X7-specific nbs. Functional P2X7 activation after icv 
injection of nbs was tested by analysis of ATP-induced 
DAPI uptake (Fig.  5C). Then, 160  min after icv injec-
tion of the P2X7-specific nbs, microglia were isolated 
from the brain and activated by ATP. Microglia exposed 
to the P2X7-specific nbs in  vivo showed substantially 
lower DAPI uptake. After in  vivo icv injection of 30  μg 
and administration of 0.5 mM ATP 61.9% of the micro-
glia were protected from P2X7 activation and accordingly 
from DAPI-uptake. As a positive control DAPI-uptake 
in the absence of nbs and the presence of 0.5 mM ATP 
was 89.5%. The negative control without any nbs or ATP 
resulted in a DAPI-uptake of 1.4% (Table 2).

Discussion
Here, we show that eATP is present early after cerebral 
ischemia and that blocking the ATP receptor P2X7 
with specific nbs diminishes the tissue damage caused 
by ischemia. However, the nbs need to be injected 

intracerebroventricularly to bypass the BBB and reach 
the P2X7 receptor on brain resident cells.

Mounting evidence indicates that stroke triggers a ster-
ile inflammatory response. The injured tissue releases a 
myriad of molecules that can activate the surrounding 
or infiltrating immune cells. Potent activators of local 
immune responses are danger-associated molecular pat-
terns (DAMPs). Some of these endogenous danger sig-
nals can induce activation of the inflammasome and 
the secretion of proinflammatory cytokines by innate 
immune cells [4, 38]. Using transgenic mice that express 
luciferase on the outer layer of the cell membrane, we 
showed that similar to traumatic brain injury [39], eATP 
is released very early during ischemic tissue damage. In 
addition, the signal is sustained over 24  h, clearly indi-
cating an ongoing release of eATP in the ischemic tissue. 
Therefore, eATP and its cognate receptors likely play an 
important role in the initiation of the inflammatory reac-
tion following stroke. eATP activates purinergic recep-
tors. While the microglial P2Y12 receptor is important 
for microglial neuron interactions, the proinflammatory 
response by microglia is likely triggered by P2X7, which 
is highly expressed by microglia [40–42].

P2X7 is expressed in the brain mainly on glial cells. 
Expression data from the Allen Brain Atlas for mice [18] 
and humans [19] show that the P2X7 receptor is highly 
expressed by microglia in humans and rodents (Table 1). 

Table 1  Expression of P2X receptor genes in brain resident cells in humans and mice

Expression data from the Allen Brain Atlas for mice [18] and humans [19] on P2X receptors and pannexin 1. P2X7 expression is mainly found on human and rodent 
microglia and perivascular macrophages (PVM). Data are given as the mean count per million (CPM). Other cells show substantially lower expression of P2X7. 
Although oligodendrocytes show high expression of P2X7 in humans, this cannot be transferred to rodents. Oligo precursor cells (OPC) show intermediate P2X7 
expression in humans and rodents

Cell class Species P2X1R P2X2R P2X3R P2X4R P2X5R P2X6R P2X7R Panx1

All Mice 0.332 0.511 1.216 19.836 1.051 3.929 7.355 29.659

Human 0.292 0.339 0.445 10.320 5.952 6.170 41.939 13.923

Non-Neuronal Mice 2.397 0.000 1.514 46.330 0.524 7.071 80.562 6.860

Human 2.705 0.003 0.641 15.760 0.002 1.908 120.507 8.173

Endothelial Mice 0.003 0.000 0.116 17.535 0.563 0.000 5.314 3.262

Human 45.215 0.000 0.000 3.565 0.000 0.000 0.067 2.641

Microglia/PVM Mice 13.870 0.000 0.067 132.048 0.000 0.617 390.551 12.421

Human 26.250 0.000 0.074 92.659 0.000 0.054 226.445 16.611

Astrocytes Mice 0.012 0.000 0.898 28.560 0.327 10.739 17.652 0.044

Human 0.176 0.000 1.042 11.586 0.002 0.507 26.116 1.883

Oligo-
dendrocytes

Mice 0.000 0.000 2.622 46.636 0.000 0.359 22.786 11.473

Human 1.076 0.009 0.812 12.157 0.003 2.621 189.904 7.268

OPC Mice 5.271 0.000 9.382 20.593 5.435 0.000 122.913 56.927

Human 0.098 0.000 0.098 5.707 0.000 3.245 121.165 15.029

Excitatory
Neurons

Mice 0.369 0.008 1.331 23.817 0.993 5.603 4.603 25.911

Human 0.149 0.480 0.452 10.647 6.711 5.875 45.346 11.203

Inhibitory
Neurons

Mice 0.117 1.118 1.084 13.174 1.170 1.884 4.010 36.270

Human 0.119 0.052 0.383 8.268 5.328 7.877 15.680 22.188
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In contrast, astrocytes show low levels of P2X7 RNA. 
Species-specific differences in P2X7 expression can 
be found for oligodendrocytes, where P2X7 is highly 
expressed by human oligodendrocytes but not by murine 
oligodendrocytes. Therefore, it is likely that in rodents, 
the main effect of blocking P2X7 is mediated through 
microglial cells.

After ischemic stroke, the expression of P2X7 is 
increased on microglia [43, 44] and can induce cell death 

in ischemic microglia [15]. This increase in P2X7 expres-
sion is not found in astrocytes after ischemic stroke [17]. 
We and others have shown that experimental stroke in 
P2X7-/- mice results in smaller infarcts and that block-
ade of P2X7 with BBG reduces cerebral ischemic damage 
[20, 45]. In addition, the inhibition of the NLRP3 inflam-
masome decreased the amount of damage after cerebral 
ischemia, but there was no additional benefit if P2X7 was 
also blocked [20]. These data are still controversial [12]. 

Fig. 3  P2X7-specific nbs influenced the P2X7 pathway in vitro. Primary microglia preincubated with P2X7-specific nbs showed a substantially lower 
calcium influx (monitored by Fluo4 [A]) and DAPI uptake (B) than those of the isotype control group after ATP (1.5 mM) challenge. As a positive 
control, ionomycin facilitated calcium influx across the plasma membrane. C In the absence of P2X7-specific nbs, stimulated microglia showed 
significantly higher caspase 1 activation (measured by the appearance of FAM-FLICA; n = 3) than ATP-activated microglia in the presence of these 
nbs. D Blockade of P2X7 by specific nbs dampened IL-1β release in cultured microglia after ATP and LPS stimulation. Both types of P2X7-specific nbs 
used in this investigation significantly decreased IL-1β release (n = 3). The findings in D are specified in E, showing that IL-1β release can be reduced 
by using even low doses of nbs. Statistical significance was determined by Student’s t test. ***p < 0.0001

(See figure on next page.)
Fig. 4  Intravenously injected P2X7-blocking nbs did not cross the BBB and did not influence stroke size. C57BL6J mice intravenously received 
100 μg of P2X7-specific nbs or isotype control nbs after tMCAO surgery. Twenty-four hours after stroke, lesion size was measured via MRI and TTC. 
Between both groups, the % of parenchymal loss in the ischemic hemisphere did not differ significantly (A; TTC: isotype n = 13 vs. P2X7-specific 
nb n = 7; MRI: isotype n = 8 vs. P2X7-specific nb n = 8). Statistical significance was determine by Student’s t test. B For determination of whether 
nbs cross the BBB, the brains of iv nb-treated mice were analyzed 24 h after treatment and stroke. After injection of 100 μg of nbs conjugated with 
AlexaFluor647, infiltrating macrophages (C; CD45+CD11b+Ly6Chigh) were covered with P2X7-specific nbs, whereas brain resident microglia (C; 
CD45+CD11intermedLy6Clow) did not show any P2X7-specific nb on their surface by flow cytometry. As a positive control, 0.5 μg of nb A was added 
ex vivo
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Fig. 4  (See legend on previous page.)
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Yanagisawa and colleagues observed an exacerbation of 
ischemic brain damage when P2X7 was blocked. Simi-
lar findings were also reported by Kang et  al. [46], who 
observed an effect on ciliary neurotrophic factor (CNTF) 
production but no effect on lesion size. One explanation 
for these discrepancies is the use of BBG. Small molecule 

inhibitors are often semispecific and toxic. In particular, 
BBG is not specific for P2X7 [47] and is known to have 
dose-dependent off-target effects. Therefore, we used nbs 
that we had recently developed and are currently in the 
process of being patented (see MM; WO/2013/178783) 
[10]. We not only generated several different families 

Fig. 5  Icv injection of P2X7 nbs significantly reduced stroke size. P2X7-blocking nbs (30 μg) were injected intracerebroventricularly directly before 
tMCAO surgery of C57BL6J mice. Twenty-four hours after tMCAO, the mice were sacrificed. The mice treated with P2X7-blocking nbs showed 
significantly smaller ischemic volumes and a significantly smaller % of parenchyma loss in the ischemic hemisphere than the mice treated with 
a control isotype nbs. A Flow cytometry of brain resident microglia showed full coverage by P2X7-specific nbs compared to the controls (gating 
strategy Additional file 1: Fig. S2). Statistical significance was determined by Student’s t test. ***p < 0.001 Data are presented as the median ± SD of 8 
P2X7-specific nb-injected mice and 9 isotype control-injected mice. B Representative TTC staining and representative overlays of stroke volume at 
24 h following tMCAO. C 160 min after icv injection or ex vivo administration of 30 μg of P2X7-specific nbs, isolated microglia showed substantially 
lower DAPI uptake. Microglia in the absence of nbs and ATP did not show any DAPI uptake
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of murine P2X7-specific nbs but also different human 
P2X7-specific nbs. Nbs, recombinant single domain 
antibodies derived from camelid heavy chain antibodies, 
are a promising new technology platform. The first nb-
based reagents developed by Ablynx-Sanofi have entered 
clinical trials and have achieved FDA approval (target-
ing TNF-α, von Willebrand factor, receptor activator of 
nuclear factor κB [RANK]-ligand, and IL-6 receptor [48, 
49]).

The BBB is a major obstacle for the treatment of brain 
disease with biologicals. Under healthy conditions, the 
BBB is only permeable for lipophilic molecules of up 
to 400  kDa [50]. In addition, the delivery of conven-
tional antibodies to the brain is further hampered by Fc 
receptor-mediated efflux to the blood [51]. Therefore, 
nbs lacking an Fc part may reach targets behind the BBB. 
However, under nonpathological conditions, mono-
valent nbs do not attain sufficient concentrations for 
in vivo brain imaging [52] or therapeutic purposes [53]. 
In stroke, biphasic BBB breakdown is caused by activated 
matrix metalloproteinase (MMP)-2, MMP-3 and MMP-9 
[54, 55]. The breakdown of the BBB is initially revers-
ible but is further increased with the release of MMP-3 
and MMP-9 [56]. These findings suggest that antibodies 
or nbs would have easier access to the brain in ischemic 
stroke. However, as we can show here, only a minor por-
tion of the intravenously injected nbs reached the brain. 
While macrophages from the bloodstream were quickly 
covered with intravenously injected nbs, when they 
reached the brain, microglia did not carry any nbs, and 
their function was unimpaired (Fig.  4). These findings 
are similar to observations in antibodies crossing the 
BBB, where a direct shuttle system such as the transferrin 
receptor is usually needed to enter the brain [57]. Since 
this problem prevents noninvasive iv administration of 
the nbs, it is necessary to find strategies to facilitate the 
transport of nbs across the BBB. For this study, we chose 

to directly inject our nbs into the ventricular system of 
the brain, which is difficult in the mouse system because 
of the small volume that can be injected. We were able 
to modify our nbs so they could be highly concen-
trated without aggregating (Additional file 1: Fig. S1). In 
humans, nb delivery would be less of a problem since it 
could be accomplished by lumbar puncture and injection 
into the cerebral spinal fluid (CSF). Direct injection in the 
CSF of therapeutics is already used for other neurologi-
cal diseases, such as neuronal ceroid lipofuscinosis [58]. 
Other promising possibilities for nb delivery to the CNS 
include the fusion of nbs to ligands of brain-endothelial 
receptors such as ApoE-LDL-receptor or to nbs directed 
against cell transcytosis receptors on cerebral endothelial 
cells [59–61].

In stroke, microglia are the first immune cells to 
respond, while macrophages enter the brain at later 
stages [32]. Therefore, it is not surprising that there was 
no difference in ischemic lesion size after iv nb injection, 
where the nbs could not pass the BBB. In contrast, after 
an icv injection of P2X7-specific nbs, we could reach up 
to 95% of the microglia. This level of P2X7R blockade was 
sufficient to inhibit microglial activation and improve the 
outcome. Our study shows that inhibition of signaling 
by eATP is only effective if it is done early and reaches 
locally expressed P2X7 in the brain.

Limitations
Our study was a proof-of-concept study, which was not 
designed to simulate the clinical setting. Further stud-
ies are needed to determine whether P2X7-specific nbs 
improve outcomes after stroke, how they influence long-
term outcomes, and if they are similarly effective in 
female, comorbid and old mice. Our results will have to 
be reproduced in other laboratories and other model sys-
tems before translation.

Conclusion
Here, we demonstrate the importance of locally pro-
duced eATP for the damage in ischemic stroke and the 
potential of intracerebroventricularly injected P2X7 nbs 
to reduce this damage.
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iv	� Intravenous
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(e)ATP	� (Extracellular) adenosine triphosphate
FACS	� Fluorescence-activated cell sorting

Table 2  DAPI-uptake of microglia after icv injection of P2X7 
specific nb-B mod

Functional analysis of P2X7 activation in microglia after icv injection of nbs was 
tested by checking the ATP-induced DAPI-uptake (Fig. 5C)

DAPI 
negative 
cells (in %)

DAPI positive 
cells (in %)

no nb in vivo + no nb ex vivo + no ATP 98.6 1.4

no nb in vivo + 0.5 μg ex vivo + 0.5 mM 
ATP

83.3 16.7

30 μg in vivo + no nb ex vivo + 0.5 mM 
ATP + 160 min circulation

61.9 38.1

no nb in vivo +
no nb ex vivo + 0.5 mM ATP

10.5 89.5
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IbA1	� Ionized calcium-binding adapter molecule 1
NeuN	� Neuronal nuclear protein
BBB	� Blood–brain barrier
MFI	� Mean fluorescence intensity
DAMPs	� Damage-associated molecular patterns
RNA	� Ribonucleic acid
MFCNTF	� Ciliary neuronotrophic factor
RANK	� Receptor activator of nuclear factor k
MMP	� Matrix metalloproteinases
CSF	� Cerebral spinal fluid
ApoB	� Apolipoprotein B
LDL	� Low density lipoprotein receptor

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12974-​022-​02601-z.

Additional file 1: Figure S1. The nbs used and their staining procedure. 
For this study, different nb constructs were used. The 13A7 nb (P2X7-
specific nb; see patent WO/2013/178783; [10]) was fused to the hinge, 
CH2, and CH3 domains of mouse IgG2c, resulting in a heavy chain format 
(nb A), whereas 1c81 (P2X7-specific nb; see patent WO/2013/178783 [10]) 
was dimerized and fused to the albumin-specific nb Alb8 (nb B). To pre‑
vent aggregation at high concentrations, we modified nb B (nb B-mod). 
For recognition of these nbs in FACS, we used the following staining 
protocols: After binding of nb A to P2X7, cells were stained with a bioti‑
nylated anti-mouse IgG2c-fused antibody followed by streptavidin BV421 
conjugation. After binding of nb B-mod, cells were stained with an anti-
Alb8-nb fused to the mouse IgG1 heavy chain backbone, followed by an 
anti-mouse IgG1 antibody conjugated with BV421. Figure S2. Schematic 
representation of icv surgery. The cranial burr hole was drilled 1.1 mm 
lateral and 0.5 mm posterior to bregma. Nbs were injected 2.3 mm deep 
directly into the left ventricular system. As a proof-of-concept, 2 μl of 5% 
Evans blue was injected into the ventricular system. Two hours after injec‑
tion, Evans blue was distributed equally in the whole ventricular system. 
Figure S3. Gating strategy for brain resident microglia. Flow cytometry 
of brain cells. Three minutes before euthanasia, a CD45-fluorochrome-
conjugated antibody was injected intravenously to separate intravascular 
from intraparenchymal cells. Brain resident microglia were identified 
as CD45intermed CD11bhigh cells, which were not labeled by the intrave‑
nously injected CD45-fluorochrome conjugated antibody. Figure S4. 
In vitro calibration of brain homogenates from pmeLUC mice. The panel 
shows the in vitro calibration of brain homogenates from pmeLUC mice, 

showing the luminescence response to the addition of exogenous ATP 
and the obliteration of luminescence in the presence of the ATP-hydro‑
lyzing enzyme apyrase. With all the caveats due to the in vitro setting, 
this calibration suggests that the eATP concentration in the stroked brain 
may reach hundreds of micromoles/L. Figure S5. Negative control. In 
GFP-negative littermates, no P2X7 signal was found. Figure S6. High 
doses of P2X7-blocking nbs are necessary to cross the BBB efficiently. 
C57BL6J mice received different amounts of nb A intravenously. Four 
hours after iv injection mice were sacrificed and nbs bound to microglia 
were labeled by FACS (See MM). Full coverage of P2X7 was reached with 
3200 μg, where 1000 μg and lower concentrations achieved less than 60% 
occupancy of microglial P2X7. These FACS data are representative images 
of two independent cohorts of 5 mice each. Figure S7. Low amounts of 
icv injectedP2X7-blocking nb B-mod showed high P2X7 occupancy on 
microglia. C57BL6J mice received different amounts of P2X7-specific nbs 
intracerebroventricularly. 18 h after icv injection mice were sacrificed and 
nbs bound to microglia were labeled by FACS (See MM). Low amounts of 
P2X7 blocking nb B-mod were needed to show almost full occupancy of 
microglial P2X7 receptor. These FACS data are representative images of 
two independent cohorts of 5 mice each. Figure S8. Icv injection of P2X7-
blocking nb B-mod resulted in a long time P2X7 occupancy on microglia. 
C57BL6J mice received 30 μg P2X7-specific nb-B mod intracerebroven‑
tricularly. Mice were sacrificed at different time points after icv injection 
and nbs bound to microglia were labeled by FACS (See MM). After 2.5 h 
microglial P2X7 showed nearly complete coverage by P2X7 nbs. This 
high occupancy started to decrease 14 days after the icv injection, but 
still nearly 40% of microglial P2X7 was occupied after 21 days post icv 
injection. These FACS data are representative images of two independent 
cohorts of 6 mice each.
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